Science.gov

Sample records for responsables energie municipaux

  1. Coordination of Energy Efficiency and Demand Response

    SciTech Connect

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  2. Demand Response and Energy Storage Integration Study

    SciTech Connect

    Ma, Ookie; Cheung, Kerry

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational value in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.

  3. A Responsive Battery with Controlled Energy Release.

    PubMed

    Wang, Xiaopeng; Gao, Jian; Cheng, Zhihua; Chen, Nan; Qu, Liangti

    2016-11-14

    A new type of responsive battery with the fascinating feature of pressure perceptibility has been developed, which can spontaneously, timely and reliably control the power outputs (e.g., current and voltage) in response to pressure changes. The device design is based on the structure of the Zn-air battery, in which graphene-coated sponge serves as pressure-sensitive air cathode that endows the whole system with the capability of self-controlled energy release. The responsive batteries exhibit superior battery performance with high open-circuit voltage (1.3 V), and competitive areal capacity of 1.25 mAh cm(-2) . This work presents an important move towards next-generation intelligent energy storage devices with energy management function.

  4. Auditory response to pulsed radiofrequency energy.

    PubMed

    Elder, J A; Chou, C K

    2003-01-01

    The human auditory response to pulses of radiofrequency (RF) energy, commonly called RF hearing, is a well established phenomenon. RF induced sounds can be characterized as low intensity sounds because, in general, a quiet environment is required for the auditory response. The sound is similar to other common sounds such as a click, buzz, hiss, knock, or chirp. Effective radiofrequencies range from 2.4 to 10000 MHz, but an individual's ability to hear RF induced sounds is dependent upon high frequency acoustic hearing in the kHz range above about 5 kHz. The site of conversion of RF energy to acoustic energy is within or peripheral to the cochlea, and once the cochlea is stimulated, the detection of RF induced sounds in humans and RF induced auditory responses in animals is similar to acoustic sound detection. The fundamental frequency of RF induced sounds is independent of the frequency of the radiowaves but dependent upon head dimensions. The auditory response has been shown to be dependent upon the energy in a single pulse and not on average power density. The weight of evidence of the results of human, animal, and modeling studies supports the thermoelastic expansion theory as the explanation for the RF hearing phenomenon. RF induced sounds involve the perception via bone conduction of thermally generated sound transients, that is, audible sounds are produced by rapid thermal expansion resulting from a calculated temperature rise of only 5 x 10(-6) degrees C in tissue at the threshold level due to absorption of the energy in the RF pulse. The hearing of RF induced sounds at exposure levels many orders of magnitude greater than the hearing threshold is considered to be a biological effect without an accompanying health effect. This conclusion is supported by a comparison of pressure induced in the body by RF pulses to pressure associated with hazardous acoustic energy and clinical ultrasound procedures.

  5. Neutron energy measurements in emergency response applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Hornish, Michael; Wilde, Scott; Stampahar, Tom; Reed, Michael

    2009-08-01

    We present significant results in recent advances in the measurement of neutron energy. Neutron energy measurements are a small but significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of importance. At the Remote Sensing Laboratory (RSL) of National Security Technologies, LLC, a series of materials, viz., liquid organic scintillator (LOS), Lithium Gadolinium Borate (LGB) or Li6Gd(BO3)3 in a plastic matrix, a recently developed crystal of Cesium Lithium Yttrium Chloride, Cs2LiYCl6: Ce (called CLYC)[1], and normal plastic scintillator (BC-408) with 3He tubes have been used to study their effectiveness as a portable neutron energy spectrometer. Comparisons illustrating the strengths of the various materials will be provided. Of these materials, LGB offers the ability to tailor its response to the neutron spectrum by varying the isotopic composition of the key constituents (Lithium, Gadolinium [Yttrium], and Boron). All three of the constituent elements possess large neutron capture cross section isotopes for highly exothermic reactions. These compounds of composition Li6Gd(Y)(BO3)3 can be activated by Cerium ions Ce3+. CLYC, on the other hand, has a remarkable gamma response in addition to superb neutron discrimination, comparable to that of Europium-doped Lithium Iodide (6LiI: Eu). Comparing these two materials, CLYC has higher light output (4500 phe/MeV) than that from 6LiI: Eu and shows better energy resolution for both gamma and neutron pulse heights. Using CLYC, gamma energy pulses can be discriminated from the neutron signals by simple pulse height separation. For the cases of both LGB and LOS, careful pulse shape discrimination is needed to separate the gamma energy signals from neutron pulses. Both analog and digital

  6. Lattice Truss Structural Response Using Energy Methods

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred Scottson

    1996-01-01

    A deterministic methodology is presented for developing closed-form deflection equations for two-dimensional and three-dimensional lattice structures. Four types of lattice structures are studied: beams, plates, shells and soft lattices. Castigliano's second theorem, which entails the total strain energy of a structure, is utilized to generate highly accurate results. Derived deflection equations provide new insight into the bending and shear behavior of the four types of lattices, in contrast to classic solutions of similar structures. Lattice derivations utilizing kinetic energy are also presented, and used to examine the free vibration response of simple lattice structures. Derivations utilizing finite element theory for unique lattice behavior are also presented and validated using the finite element analysis code EAL.

  7. Controller reduction by preserving impulse response energy

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Su, Tzu-Jeng

    1989-01-01

    A model order reduction algorithm based on a Krylov recurrence formulation is developed to reduce order of controllers. The reduced-order controller is obtained by projecting the full-order LQG controller onto a Krylov subspace in which either the controllability or the observability grammian is equal to the identity matrix. The reduced-order controller preserves the impulse response energy of the full-order controller and has a parameter-matching property. Two numerical examples drawn from other controller reduction literature are used to illustrate the efficacy of the proposed reduction algorithm.

  8. Bird community response to fruit energy.

    PubMed

    Peters, Valerie E; Mordecai, Rua; Ronald Carroll, C; Cooper, Robert J; Greenberg, Russell

    2010-07-01

    1. The abundance and predictability of food resources have been posited as explanations for the increase of animal species richness in tropical habitats. However, the heterogeneity of natural ecosystems makes it difficult to quantify a response of animal species richness to these qualities of food resources. 2. Fruit-frugivore studies are especially conducive for testing such ecological theories because fruit is conspicuous and easily counted. Fruit-frugivore research in some locations has demonstrated a relationship between animal abundance and fruit resource abundance, both spatially and temporally. These studies, which typically use fruit counts as the variable of fruit abundance, have never documented a response of species richness at the community level. Furthermore, these studies have not taken into account factors influencing the detection of an individual within surveys. 3. Using a combination of nonstandard approaches to fruit-frugivore research, we show a response of bird species richness to fruit resources. First, we use uniform and structurally similar, one-ha shade-grown coffee plots as replicated experimental units to reduce the influence of confounding variables. Secondly, we use multi-season occupancy modelling of a resident omnivorous bird assemblage in order to account for detection probability in our analysis of site occupancy, local immigration and local emigration. Thirdly, we expand our variable of fruit abundance, Fruit Energy Availability (FEA), to include not only fruit counts but also fruit size and fruit quality. 4. We found that a site's average monthly FEA was highly correlated (0.90) with a site's average bird species richness. In our multi-season occupancy model 92% of the weight of evidence supported a single model that included effects of FEA on initial occupancy, immigration, emigration and detection. 5. These results demonstrate that fruit calories can broadly influence the richness of a neotropical bird community, and that

  9. Changing the energy of an immune response

    PubMed Central

    Delmastro-Greenwood, Meghan M; Piganelli, Jon D

    2013-01-01

    The breakdown of nutrients into the critical energy source ATP is the general purpose of cellular metabolism and is essential for sustaining life. Similarly, the immune system is composed of different cell subsets that are indispensable for defending the host against pathogens and disease. The interplay between metabolic pathways and immune cells leads to a plethora of different signaling pathways as well as cellular activities. The activation of T cells via glycolysis-mediated upregulation of surface markers, for example, is necessary for an appropriate effector response against an infection. However, tight regulation of immune cell metabolism is required for protecting the host and resuming homeostasis. An imbalance of immunological metabolic function and/or metabolic byproducts (reactive oxygen species) can oftentimes lead to diseases. In the case of cancer, overactive glucose metabolism can lead to hyperproliferation of cells and subsequent decreases in cytotoxic T cell activity, which attack and destroy the tumor. For this reason and many more, targeting metabolism in immune cells may be a novel therapeutic strategy for treatment of disease. The metabolic pathways of immune cells and the possibilities of immunometabolic therapies will be discussed. PMID:23885324

  10. Automated Demand Response for Energy Sustainability

    DTIC Science & Technology

    2015-05-01

    ahead price incentives to customers for reducing energy consumption during a DBP Event. The DR controlled electric loads at Fort Irwin consisted of...offers Day-Ahead price incentives to customers for reducing energy consumption during a DBP Event. A Day-Ahead DBP Event may be called at SCE’s...sometimes struggle to meet customer demands, which can cause instability, rolling blackouts, and high energy prices . This technology enables the

  11. Home Energy Displays. Consumer Adoption and Response

    SciTech Connect

    LaMarche, Janelle; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. The team hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, Fraunhofer conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. In light of these challenges, the team is pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  12. Biologic response to microwave/RF energy

    SciTech Connect

    Michaelson, S.M.

    1980-01-01

    A systematic and up-to-date review of observations and theoretical approaches to the biological effects and health implications of exposure to microwave/radiofrequency energies is presented. A primary objective is to review and place available information and concepts in proper perspective to understand and encourage the full potential for the beneficial uses of these energies while at the same time preventing adverse effects to individuals exposed to microwaves/RF.

  13. Home Energy Displays: Consumer Adoption and Response

    SciTech Connect

    LaMarche, J.; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. We hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, we conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. First, after extensive outreach campaigns to apartment complexes with 760 units, only 8% of building's tenants elected to receive a free HED in their homes as part of the field study. Second, the HED used, a leading market model, had a spectrum of problems, including gateway miscommunications, failure to post to a data-hosting third party, and display malfunctions. In light of these challenges, we are pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  14. Response of the bubble detector to neutrons of various energies.

    PubMed

    Smith, M B; Andrews, H R; Ing, H; Koslowsky, M R

    2015-04-01

    A series of Monte-Carlo simulations has been performed in order to investigate the response of the bubble detector to monoenergetic neutrons of various energies. The work was driven by the need to better understand the energy dependence of the detector for applications in space, where the neutron spectrum has a significant component with energy of >20 MeV. The response to neutrons in the range of a few keV to 500 MeV has been calculated, and good agreement between the simulations and experimental data is demonstrated over the entire energy range.

  15. Financial Responsibility and Installer Certification - 2005 Energy Policy Act

    EPA Pesticide Factsheets

    Grant guidelines to implement the financial responsibility and installer certification provision in Section 9003(i) of the Solid Waste Disposal Act, enacted by the Underground Storage Tank Compliance Act, part of the Energy Policy Act of 2005.

  16. Correcting the Response of an Albedo Neutron Dosimeter for Energy

    DTIC Science & Technology

    2007-01-01

    detectors; thermoluminescent dosemeters (TLDs), neutron, energy 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON Dr. Gordon K. Riel a... Thermoluminescent Dosemeters (TLD).......................................................................................... 1 Detectors for Energy...SSBN ballistic missile submarine TLD thermoluminescent dosemeter USNA United States Naval Academy NSWCCD-63-TR–2006/36 1 Introduction The

  17. Renewable Energy RFPs: Solicitation Response and Wind ContractPrices

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark

    2005-04-18

    As input into renewable energy policy discussions in Illinois, we have been asked to provide information on the results of recent, competitive solicitations for renewable energy, with a focus on wind power. In particular, this memorandum includes two pieces of information: (1) Publicly available data on the strength of response to recent renewable energy solicitations; and (2) Wind power purchase costs as revealed through actual power purchase agreements with electric utilities.

  18. Energy intake and response to infection with influenza.

    PubMed

    Gardner, Elizabeth M; Beli, Eleni; Clinthorne, Jonathan F; Duriancik, David M

    2011-08-21

    Influenza is a worldwide public health concern, particularly with emerging new strains of influenza to which vaccines are ineffective, limited, or unavailable. In addition, the relationship between adequate nutrition and immune function has been repeatedly demonstrated. Mouse models provide strong evidence that energy extremes, including energy restriction (ER) and diet-induced obesity (DIO), have deleterious effects on the immune response to influenza infection. Both ER and DIO mice demonstrate increased susceptibility and mortality to influenza infection. The effects of ER are more pronounced during innate responses to influenza infection, whereas the effects of DIO are evidenced during innate and adaptive responses to both primary and secondary infection. There are striking similarities between ER and DIO during influenza infection, including impaired natural killer cell function and altered inflammation. Future studies must develop effective nutritional paradigms to offset the effects of these energy extremes on the immune response to an acute infection.

  19. Microchannel plate response to high-energy neutrons

    SciTech Connect

    Persing, R.; Medley, S.S.

    1981-07-01

    The response of a chevron microchannel plate (MCP) to high energy neutrons was measured. The large area (4.6 cm x 13 cm) multi-anode MCP performance characteristics in the saturated pulse counting mode of operation were examined prior to neutron testing. This established a linear operating regime in which the neutron detection efficiency was measured to be 0.17% for 2.5 MeV-DD neutrons and 0.64% for 14 MeV-DT neutrons. The higher response measured for the 14 MeV-DT neutrons is attributed to gamma ray contamination induced by neutron collisions with materials located between the neutron source and the MCP detector. Due to their lower energy, the 2.5 MeV-DD response measurements are expected to be relatively free of gamma contamination and, hence, indicative of actual response of the MCP detector to neutrons in the 1 to 10 MeV energy range.

  20. Linking Continuous Energy Management and Open Automated Demand Response

    SciTech Connect

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2008-10-03

    Advances in communications and control technology, the strengthening of the Internet, and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto-DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (Open Auto-DR or OpenADR). Basic building energy science and control issues in this approach begin with key building components, systems, end-uses and whole building energy performance metrics. The paper presents a framework about when energy is used, levels of services by energy using systems, granularity of control, and speed of telemetry. DR, when defined as a discrete event, requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

  1. Evaluate Scintillation Response Over a Continuous Energy Region

    SciTech Connect

    Zhang, Yanwen; Elfman, Mikael; Milbrath, Brian D.; Weber, William J.

    2008-06-26

    A recently developed fast analysis technique utilizing a time of flight (TOF) telescope is demonstrated to obtain relevant quantitative data on material scintillation response to energetic He particles. With superior energy resolution and fast response of the TOF telescope, energy of individual particle before impinging on a scintillating crystal can be determined with a high counting rate, which allows quantitative study of material performance over a continuous energy range in a relatively short time. Scintillation performances in terms of light output, nonlinearity and energy resolution in bismuth germinate (BGO) and europium-doped calcium fluoride (CaF2:Eu) Crystals are demonstrated, and the corresponding energy resolution is compared with gamma-ray tests on the same crystals.

  2. Energy response improvement for photon dosimetry using pulse analysis

    NASA Astrophysics Data System (ADS)

    Zaki, Dizaji H.

    2016-02-01

    During the last few years, active personal dosimeters have been developed and have replaced passive personal dosimeters in some external monitoring systems, frequently using silicon diode detectors. Incident photons interact with the constituents of the diode detector and produce electrons. These photon-induced electrons deposit energy in the detector's sensitive region and contribute to the response of diode detectors. To achieve an appropriate photon dosimetry response, the detectors are usually covered by a metallic layer with an optimum thickness. The metallic cover acts as an energy compensating shield. In this paper, a software process is performed for energy compensation. Selective data sampling based on pulse height is used to determine the photon dose equivalent. This method is applied to improve the energy response in photon dosimetry. The detector design is optimized for the response function and determination of the photon dose equivalent. Photon personal dose equivalent is determined in the energy range of 0.3-6 MeV. The error values of the calculated data for this wide energy range and measured data for 133Ba, 137Cs, 60Co and 241Am-Be sources respectively are up to 20% and 15%. Fairly good agreement is seen between simulation and dose values obtained from our process and specifications from several photon sources.

  3. 75 FR 54063 - Demand Response Compensation in Organized Wholesale Energy Markets; Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ...-000] Demand Response Compensation in Organized Wholesale Energy Markets; Technical Conference AGENCY.... \\1\\ Demand Response Compensation in Organized Wholesale Energy Markets, Notice of Proposed...

  4. Equilibrium shoreline response of a high wave energy beach

    USGS Publications Warehouse

    Yates, M.L.; Guza, R.T.; O'Reilly, W. C.; Hansen, J.E.; Barnard, P.L.

    2011-01-01

    Four years of beach elevation surveys at Ocean Beach, San Francisco, California, are used to extend an existing equilibrium shoreline change model, previously calibrated with fine sand and moderate energy waves, to medium sand and higher-energy waves. The shoreline, characterized as the cross-shore location of the mean high water contour, varied seasonally by between 30 and 60 m, depending on the alongshore location. The equilibrium shoreline change model relates the rate of horizontal shoreline displacement to the hourly wave energy E and the wave energy disequilibrium, the difference between E and the equilibrium wave energy that would cause no change in the present shoreline location. Values for the model shoreline response coefficients are tuned to fit the observations in 500 m alongshore segments and averaged over segments where the model has good skill and the estimated effects of neglected alongshore sediment transport are relatively small. Using these representative response coefficients for 0.3 mm sand from Ocean Beach and driving the model with much lower-energy winter waves observed at San Onofre Beach (also 0.3 mm sand) in southern California, qualitatively reproduces the small seasonal shoreline fluctuations at San Onofre. This consistency suggests that the shoreline model response coefficients depend on grain size and may be constant, and thus transportable, between sites with similar grain size and different wave climates. The calibrated model response coefficients predict that for equal fluctuations in wave energy, changes in shoreline location on a medium-grained (0.3 mm) beach are much smaller than on a previously studied fine-grained (0.2 mm) beach. Copyright ?? 2011 by the American Geophysical Union.

  5. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  6. Nuclear Energy Response in the EMF27 Study

    SciTech Connect

    Kim, Son H.; Wada, Kenichi; Kurosawa, Atsushi; Roberts, Matthew

    2014-03-25

    The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 – 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 – 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

  7. Propensity to obesity impacts the neuronal response to energy imbalance.

    PubMed

    Cornier, Marc-Andre; McFadden, Kristina L; Thomas, Elizabeth A; Bechtell, Jamie L; Bessesen, Daniel H; Tregellas, Jason R

    2015-01-01

    The mechanisms responsible for the propensity to gain weight or remain normal weight are poorly understood. The objective of this study was to study the neuronal response to visual food cues during short-term energy imbalance in healthy adults recruited as obesity-resistant (OR) or obesity-prone (OP) based on self-identification, body mass index, and personal/family weight history. Twenty-five OR and 28 OP subjects were studied in underfed (UF) and overfed (OF) as compared to eucaloric (EU) conditions in a randomized crossover design. Each study phase included a 3-day run-in diet, 1 day of controlled feeding (basal energy needs for EU, 40% above/below basal energy needs for OF/UF), and a test day. On the test day, fMRI was performed in the acute fed stated (30 min after a test meal) while subjects viewed images of foods of high hedonic value and neutral non-food objects. Measures of appetite and hormones were also performed before and every 30 min after the test meal. UF was associated with significantly increased activation of insula, somatosensory cortex, inferior and medial prefrontal cortex (PFC), parahippocampus, precuneus, cingulate, and visual cortex in OR. However, UF had no impact in OP. As a result, UF was associated with significantly greater activation, specifically in the insula, inferior PFC, and somatosensory cortex in OR as compared to OP. While OF was overall associated with reduced activation of inferior visual cortex, no group interaction was observed with OF. In summary, these findings suggest that individuals resistant to weight gain and obesity are more sensitive to short-term energy imbalance, particularly with UF, than those prone to weight gain. The inability to sense or adapt to changes in energy balance may represent an important mechanism contributing to excess energy intake and risk for obesity.

  8. Propensity to Obesity Impacts the Neuronal Response to Energy Imbalance

    PubMed Central

    Cornier, Marc-Andre; McFadden, Kristina L.; Thomas, Elizabeth A.; Bechtell, Jamie L.; Bessesen, Daniel H.; Tregellas, Jason R.

    2015-01-01

    The mechanisms responsible for the propensity to gain weight or remain normal weight are poorly understood. The objective of this study was to study the neuronal response to visual food cues during short-term energy imbalance in healthy adults recruited as obesity-resistant (OR) or obesity-prone (OP) based on self-identification, body mass index, and personal/family weight history. Twenty-five OR and 28 OP subjects were studied in underfed (UF) and overfed (OF) as compared to eucaloric (EU) conditions in a randomized crossover design. Each study phase included a 3-day run-in diet, 1 day of controlled feeding (basal energy needs for EU, 40% above/below basal energy needs for OF/UF), and a test day. On the test day, fMRI was performed in the acute fed stated (30 min after a test meal) while subjects viewed images of foods of high hedonic value and neutral non-food objects. Measures of appetite and hormones were also performed before and every 30 min after the test meal. UF was associated with significantly increased activation of insula, somatosensory cortex, inferior and medial prefrontal cortex (PFC), parahippocampus, precuneus, cingulate, and visual cortex in OR. However, UF had no impact in OP. As a result, UF was associated with significantly greater activation, specifically in the insula, inferior PFC, and somatosensory cortex in OR as compared to OP. While OF was overall associated with reduced activation of inferior visual cortex, no group interaction was observed with OF. In summary, these findings suggest that individuals resistant to weight gain and obesity are more sensitive to short-term energy imbalance, particularly with UF, than those prone to weight gain. The inability to sense or adapt to changes in energy balance may represent an important mechanism contributing to excess energy intake and risk for obesity. PMID:25767441

  9. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  10. Global stabilization of high-energy response of a nonlinear wideband electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kato, S.; Masuda, A.

    2016-09-01

    This paper presents a resonance-type vibration energy harvester with a Duffing-type nonlinear oscillator which is designed to perform effectively in a wide frequency band. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. Introducing a Duffing-type nonlinearity can expand the resonance frequency band and enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator may have coexisting multiple steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to give global stability to the high-energy orbit by destabilizing other unexpected low-energy orbits by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this paper, an improved control law that switches the load resistance according to a frequency-dependent threshold is proposed to ensure the oscillator to respond in the high-energy orbit without ineffective power consumption. Numerical study shows that the steady-state responses of the harvester with the proposed control low are successfully kept on the high-energy orbit without repeating activation of the excitationmode.

  11. Simulation of Energy Response of the ATIC Calorimeter

    NASA Technical Reports Server (NTRS)

    Batkov, K. E.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Granger, D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. For reconstruction of primary spectra from spectra of energy deposits measured in the experiment, correlations between kinetic energy of a primary particle E(sub kin) and energy deposit in the calorimeter E(sub d) should be known. For this purpose, simulations of energy response of the calorimeter on energy spectra of different nuclei were done. The simulations were performed by GEANT-3.21 code with QGSM generator for nucleus - nucleus interactions. The incident flux was taken as isotropic in the ATIC aperture. Primary spectra power-law by momentum were used as inputs according to standard models of cosmic ray acceleration. These spectra become power-law by kinetic energy at E(sub kin) higher than approx.20Mc(sup 2), where M is primary nucleus mass. It should be noted that energy deposit spectra measured by ATIC illustrate similar behavior. Distributions of ratio E(sub kin)/E(sub d) are presented for different energy deposits and for a set of primaries. For power-law regions of energy spectra at E(sub d)> or equal to 20Mc(sup 2) the obtained mean value of E(sub kin)/E(sub d) increases from approx.2.4 for protons to approx.3.1 for iron, while rms/ decreases from 50% for protons to about 15% for iron. These values were obtained for the spectral index gamma=1.6

  12. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are

  13. Linear response of homogeneous nuclear matter with energy density functionals

    NASA Astrophysics Data System (ADS)

    Pastore, A.; Davesne, D.; Navarro, J.

    2015-03-01

    Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.

  14. Deriving a dosage-response relationship for community response to high-energy impulsive noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-01-01

    The inability to systematically predict community response to exposure to sonic booms (and other high energy impulsive sounds) is a major impediment to credible analyses of the environmental effects of supersonic flight operations. Efforts to assess community response to high energy impulsive sounds are limited in at least two important ways. First, a paucity of appropriate empirical data makes it difficult to infer a dosage-response relationship by means similar to those used in the case of general transportation noise. Second, it is unclear how well the 'equal energy hypothesis' (the notion that duration, number, and level of individual events are directly interchangeable determinants of annoyance) applies to some forms of impulsive noise exposure. Some of the issues currently under consideration by a CHABA working group addressing these problems are discussed. These include means for applying information gained in controlled exposure studies about different rates of growth of annoyance with impulsive and non-impulsive sound exposure levels, and strategies for developing a dosage-response relationship in a data-poor area.

  15. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  16. Response of shallow geothermal energy pile from laboratory model tests

    NASA Astrophysics Data System (ADS)

    Marto, A.; Amaludin, A.

    2015-09-01

    In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement

  17. Phenotypic clines, energy balances and ecological responses to climate change.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kingsolver, Joel G

    2014-01-01

    The Metabolic Theory of Ecology has renewed interest in using energetics to scale across levels of ecological organization. Can scaling from individual phenotypes to population dynamics provides insight into why species have shifted their phenologies, abundances and distributions idiosyncratically in response to recent climate change? We consider how the energetic implications of phenotypes may scale to understand population and species level responses to climate change using four focal grasshopper species along an elevation gradient in Colorado. We use a biophysical model to translate phenotypes and environmental conditions into estimates of body temperatures. We measure thermal tolerances and preferences and metabolic rates to assess rates of energy use and acquisition. Body mass declines along the elevation gradient for all species, but mass-specific metabolic rates increases only modestly. We find interspecific differences in both overall thermal tolerances and preferences and in the variation of these metrics along the elevation gradient. The more dispersive species exhibit significantly higher thermal tolerance and preference consistent with much of their range spanning hot, low elevation areas. When integrating these metrics to consider metabolic constraints, we find that energetic costs decrease along the elevation gradient due to decreasing body size and temperature. Opportunities for energy acquisition, as reflected by the proportion of time that falls within a grasshopper's thermal tolerance range, peak at mid elevations. We discuss methods for translating these energetic metrics into population dynamics. Quantifying energy balances and allocation offers a viable approach for predicting how populations will respond to climate change and the consequences for species composed of populations that may be locally adapted.

  18. Surface energy budget responses to radiative forcing at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Miller, Nathaniel B.; Shupe, Matthew D.; Cox, Christopher J.; Noone, David; Persson, P. Ola G.; Steffen, Konrad

    2017-02-01

    Greenland Ice Sheet surface temperatures are controlled by an exchange of energy at the surface, which includes radiative, turbulent, and ground heat fluxes. Data collected by multiple projects are leveraged to calculate all surface energy budget (SEB) terms at Summit, Greenland, for the full annual cycle from July 2013 to June 2014 and extend to longer periods for the radiative and turbulent SEB terms. Radiative fluxes are measured directly by a suite of broadband radiometers. Turbulent sensible heat flux is estimated via the bulk aerodynamic and eddy correlation methods, and the turbulent latent heat flux is calculated via a two-level approach using measurements at 10 and 2 m. The subsurface heat flux is calculated using a string of thermistors buried in the snow pack. Extensive quality-control data processing produced a data set in which all terms of the SEB are present 75 % of the full annual cycle, despite the harsh conditions. By including a storage term for a near-surface layer, the SEB is balanced in this data set to within the aggregated uncertainties for the individual terms. November and August case studies illustrate that surface radiative forcing is driven by synoptically forced cloud characteristics, especially by low-level, liquid-bearing clouds. The annual cycle and seasonal diurnal cycles of all SEB components indicate that the non-radiative terms are anticorrelated to changes in the total radiative flux and are hence responding to cloud radiative forcing. Generally, the non-radiative SEB terms and the upwelling longwave radiation component compensate for changes in downwelling radiation, although exact partitioning of energy in the response terms varies with season and near-surface characteristics such as stability and moisture availability. Substantial surface warming from low-level clouds typically leads to a change from a very stable to a weakly stable near-surface regime with no solar radiation or from a weakly stable to neutral

  19. 76 FR 16657 - Demand Response Compensation in Organized Wholesale Energy Markets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ...\\ Demand response means a reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to incentive payments designed to induce lower consumption of electric energy. 18 CFR 35.28(b)(4) (2010). \\3\\ Demand response...

  20. US energy policies: Will they be responsive to future needs?

    SciTech Connect

    Hemphill, J.G.

    1995-12-31

    This paper reviews the history of early US energy policy as a prescription for failure, the evolution of national goals in energy, and the basic principles of energy policy (market based, clean energy alternatives should receive recognition; energy and environment planning coordinated; progress measured and adjustments made; technology transfer encouraged; government assistance should support economic and environmental objectives).

  1. The Integration of Energy Efficiency, Renewable Energy, DemandResponse and Climate Change: Challenges and Opportunities for Evaluatorsand Planners

    SciTech Connect

    Vine, Edward

    2007-05-29

    This paper explores the feasibility of integrating energyefficiency program evaluation with the emerging need for the evaluationof programs from different "energy cultures" (demand response, renewableenergy, and climate change). The paper reviews key features andinformation needs of the energy cultures and critically reviews theopportunities and challenges associated with integrating these withenergy efficiency program evaluation. There is a need to integrate thedifferent policy arenas where energy efficiency, demand response, andclimate change programs are developed, and there are positive signs thatthis integration is starting to occur.

  2. 10 CFR 1040.124 - Responsibility of the Federal Energy Regulatory Commission.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Responsibility of the Federal Energy Regulatory Commission. 1040.124 Section 1040.124 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN... the Federal Energy Regulatory Commission. The FERC has authority under section 402(b) of the...

  3. 10 CFR 1040.124 - Responsibility of the Federal Energy Regulatory Commission.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Responsibility of the Federal Energy Regulatory Commission. 1040.124 Section 1040.124 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN... the Federal Energy Regulatory Commission. The FERC has authority under section 402(b) of the...

  4. 10 CFR 1040.124 - Responsibility of the Federal Energy Regulatory Commission.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Responsibility of the Federal Energy Regulatory Commission. 1040.124 Section 1040.124 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN... the Federal Energy Regulatory Commission. The FERC has authority under section 402(b) of the...

  5. 10 CFR 1040.124 - Responsibility of the Federal Energy Regulatory Commission.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Responsibility of the Federal Energy Regulatory Commission. 1040.124 Section 1040.124 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN... the Federal Energy Regulatory Commission. The FERC has authority under section 402(b) of the...

  6. Investigation of TLD-700 energy response to low energy x-ray encountered in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Herrati, Ammar; Bourouina, Mourad; Khalal-Kouache, Karima

    2016-01-01

    The aim of thiswork is to study the energy dependence of thermoluminescent dosimeter (TLD-700) for low energy X-ray beams encountered in conventional diagnostic radiology. In the first step, we studied some characteristics (reproducibility and linearity) of TLD-700 chips using a 137Cs source, and selected TLD chips with reproducibility better than 2.5%. Then we determined TLD-700 energy response for diagnostic radiology X-ray qualities, and investigated its influence on air kerma estimate. A maximum deviation of 60% can be obtained if TLDs are calibrated for 137Cs radiation source and used in diagnostic radiology fields. However, this deviation became less than 20% if TLDs chips are calibrated for the reference x-ray radiation quality RQR5 (recommended by the IEC 61267 standard). Consequently, we recommend calibrating this kind of TLDdetector with RQR5 diagnostic radiology X-ray quality. This method permits to obtain a good accuracy when assessing the entrance dose in diagnostic radiology procedures.

  7. Numerical modeling of Thermal Response Tests in Energy Piles

    NASA Astrophysics Data System (ADS)

    Franco, A.; Toledo, M.; Moffat, R.; Herrera, P. A.

    2013-05-01

    Nowadays, thermal response tests (TRT) are used as the main tools for the evaluation of low enthalpy geothermal systems such as heat exchangers. The results of TRT are used for estimating thermal conductivity and thermal resistance values of those systems. We present results of synthetic TRT simulations that model the behavior observed in an experimental energy pile system, which was installed at the new building of the Faculty of Engineering of Universidad de Chile. Moreover, we also present a parametric study to identify the most influent parameters in the performance of this type of tests. The modeling was developed using the finite element software COMSOL Multiphysics, which allows the incorporation of flow and heat transport processes. The modeled system consists on a concrete pile with 1 m diameter and 28 m deep, which contains a 28 mm diameter PEX pipe arranged in a closed circuit. Three configurations were analyzed: a U pipe, a triple U and a helicoid shape implemented at the experimental site. All simulations were run considering transient response in a three-dimensional domain. The simulation results provided the temperature distribution on the pile for a set of different geometry and physical properties of the materials. These results were compared with analytical solutions which are commonly used to interpret TRT data. This analysis demonstrated that there are several parameters that affect the system response in a synthetic TRT. For example, the diameter of the simulated pile affects the estimated effective thermal conductivity of the system. Moreover, the simulation results show that the estimated thermal conductivity for a 1 m diameter pile did not stabilize even after 100 hours since the beginning of the test, when it reached a value 30% below value used to set up the material properties in the simulation. Furthermore, we observed different behaviors depending on the thermal properties of concrete and soil. According to the simulations, the thermal

  8. Characterization of seismic hazard and structural response by energy flux

    USGS Publications Warehouse

    Afak, E.

    2000-01-01

    Seismic safety of structures depends on the structure's ability to absorb the seismic energy that is transmitted from ground to structure. One parameter that can be used to characterize seismic energy is the energy flux. Energy flux is defined as the amount of energy transmitted per unit time through a cross-section of a medium, and is equal to kinetic energy multiplied by the propagation velocity of seismic waves. The peak or the integral of energy flux can be used to characterize ground motions. By definition, energy flux automatically accounts for site amplification. Energy flux in a structure can be studied by formulating the problem as a wave propagation problem. For buildings founded on layered soil media and subjected to vertically incident plane shear waves, energy flux equations are derived by modeling the buildings as an extension of the layered soil medium, and considering each story as another layer. The propagation of energy flux in the layers is described in terms of the upgoing and downgoing energy flux in each layer, and the energy reflection and transmission coefficients at each interface. The formulation results in a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. The upgoing and downgoing energy flux in the layers allows calculation of the energy demand and energy dissipation in each layer. The methodology is applicable to linear, as well as nonlinear structures. ?? 2000 Published by Elsevier Science Ltd.

  9. Renewable Energy Analysis for Strategic Responsiveness 2 (REASR 2)

    DTIC Science & Technology

    2002-12-01

    The analysis of renewable energy within a hybrid electric generator system for remote military applications has not been studied. This report...added that renewable energy can bring to tactical operation centers and remote power stations (for purposes of homeland security) in terms of increased operational readiness, reduced cost, energy savings and pollution abatement.

  10. Custom astrocyte-mediated vasomotor responses to neuronal energy demand

    PubMed Central

    LeMaistre, Jillian L; Anderson, Christopher M

    2009-01-01

    Astrocytes mediate either constriction or dilation of local brain arterioles in response to synaptic activity. Recent work indicates that the directionality of this response may be dictated by ambient oxygen levels. PMID:19232077

  11. Energy Vulnerability Within the CINCPAC Area of Responsibility

    DTIC Science & Technology

    1992-04-01

    38, September 23, 1991, pg 6. 5. Kiani , Babak, and Julia Culver Hopper, South Korea: Asia- Pacific Energy series Country Report, Honolulu: Energy...Resource Systems Institute, East-West Center, 1988, pg 125; and Kiani , (South Korea) op. cit., pg 109. 16. Fridley, David, China. A Survey of Chinese...not indicate a flattening of demand after 2000, and is, therefore, closer to the high end of the range given by the Energy Outlook. 42. Kiani , op. cit

  12. Response of plastic scintillators to low-energy photons.

    PubMed

    Peralta, Luis; Rêgo, Florbela

    2014-08-21

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  13. Wintering With Solar: One School's Response to Scarce Energy

    ERIC Educational Resources Information Center

    Shore, Ron

    1978-01-01

    Through a course in energy conservation and domestic solar energy technology, students evaluated the thermal performance of existing campus structures and made suggestions for improvements in thermal efficiency. Besides making some of these improvements, the students also designed, built, and operated a solar greenhouse. (MA)

  14. Time for a revolution: smart energy and microgrid use in disaster response.

    PubMed

    Callaway, David Wayne; Noste, Erin; McCahill, Peter Woods; Rossman, A J; Lempereur, Dominique; Kaney, Kathleen; Swanson, Doug

    2014-06-01

    Modern health care and disaster response are inextricably linked to high volume, reliable, quality power. Disasters place major strain on energy infrastructure in affected communities. Advances in renewable energy and microgrid technology offer the potential to improve mobile disaster medical response capabilities. However, very little is known about the energy requirements of and alternative power sources in disaster response. A gap analysis of the energy components of modern disaster response reveals multiple deficiencies. The MED-1 Green Project has been executed as a multiphase project designed to identify energy utilization inefficiencies, decrease demands on diesel generators, and employ modern energy management strategies to expand operational independence. This approach, in turn, allows for longer deployments in potentially more austere environments and minimizes the unit's environmental footprint. The ultimate goal is to serve as a proof of concept for other mobile medical units to create strategies for energy independence.

  15. Energy Sector Adaptation in Response to Water Scarcity

    NASA Astrophysics Data System (ADS)

    Johnson, N. A.; Fricko, O.; Parkinson, S.; Riahi, K.

    2015-12-01

    Global energy systems models have largely ignored the impacts of water scarcity on the energy sector and the related implications for climate change mitigation. However, significant water is required in the production of energy, including for thermoelectric power plant cooling, hydropower generation, irrigation for bioenergy, and the extraction and refining of liquid fuels. With a changing climate and expectations of increasing competition for water from the agricultural and municipal sectors, it is unclear whether sufficient water will be available where needed to support water-intensive energy technologies in the future. Thus, it is important that water use and water constraints are incorporated into energy systems models to better understand energy sector adaptation to water scarcity. The global energy systems model, MESSAGE, has recently been updated to quantify the water consumption and withdrawal requirements of the energy sector and now includes several cooling technologies for addressing water scarcity. This study introduces water constraints into the model to examine whether and how the energy sector can adapt to water scarcity over the next century. In addition, the implications for climate mitigation are evaluated under a scenario in which warming is limited to 2˚C over the pre-industrial level. Given the difficulty of introducing meaningful water constraints into global models, we use a simplistic approach and evaluate a series of scenarios in which the water available to the energy sector is systematically reduced. This approach allows for the evaluation of energy sector adaptations under various levels of water scarcity and can provide insight into how water scarcity, whether from climate change or competing demands, may impact the energy sector in different world regions. This study will provide insight into the following questions: How does the energy sector adapt to water scarcity in different regions? What are the costs associated with adaptation

  16. Statistical energy analysis response prediction methods for structural systems

    NASA Technical Reports Server (NTRS)

    Davis, R. F.

    1979-01-01

    The results of an effort to document methods for accomplishing response predictions for commonly encountered aerospace structural configurations is presented. Application of these methods to specified aerospace structure to provide sample analyses is included. An applications manual, with the structural analyses appended as example problems is given. Comparisons of the response predictions with measured data are provided for three of the example problems.

  17. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Energy Sources

    EPA Pesticide Factsheets

    Introduction to changes in basal energy sources with urbanization, overview of terrestrial leaf litter dynamics in urban streams, overview of how urbanization can affect primary production, respiration, and dissolved organic carbon quantity and quality.

  18. Upper Oceanic Energy Response to Tropical Cyclone Passage

    DTIC Science & Technology

    2013-04-15

    respectively. Shay et al. (2000) demonstrated the importance of re- gions of elevated OHC in the intensity evolution of Hurricane Opal (1995)—work that has...feature on Hurricane Opal . Mon. Wea. Rev., 128, 1366–1383. Uhlhorn, E., and L. K. Shay, 2012: Loop Current mixed layer en- ergy response to Hurricane

  19. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  20. Response of silicon-Based Linear Energy Transfer Spectrometers

    NASA Technical Reports Server (NTRS)

    Aman, A.; Bman, B.; Badhwar, G. D.; ONeill, P. M. O.

    2000-01-01

    Silicon-based linear energy transfer (LET) telescope,(e. g., DOSTEL and RRMD) have recently been flown in space. LET spectra measured using tissue equivalent proportional counters show differences that need to be fully understood. A Monte Carlo technique based on: 1. radiation transport cluster intra-cascade model. 2. Landau-Vavilov distribution, 3. telescope geometry and detector coincidence & discriminator settings, 4. spacecraft shielding geometry, and 5. the external free space radiation environment, including recent albedo measurements, was developed.

  1. Effects of Activation Energy to Transient Response of Semiconductor Gas Sensor

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Ohtani, Tatsuki

    The smell classifiable gas sensor will be desired for many applications such as gas detection alarms, process controls for food production and so on. We have tried to realize the sensor using transient responses of semiconductor gas sensor consisting of tin dioxide and pointed out that the sensor gave us different transient responses for kinds of gas. Results of model calculation showed the activation energy of chemical reaction on the sensor surface strongly depended on the transient response. We tried to estimate the activation energies by molecular orbital calculation with SnO2 Cluster. The results show that there is a liner relationship between the gradient of the transient responses and activation energies for carboxylic and alcoholic gases. Transient response will be predicted from activation energy in the same kind of gas and the smell discrimination by single semiconductor gas sensor will be realized by this relationship.

  2. Physiological responses and energy expenditure during competitive fencing.

    PubMed

    Milia, Raffaele; Roberto, Silvana; Pinna, Marco; Palazzolo, Girolamo; Sanna, Irene; Omeri, Massimo; Piredda, Simone; Migliaccio, Gianmario; Concu, Alberto; Crisafulli, Antonio

    2014-03-01

    Fencing is an Olympic sport in which athletes fight one against one using bladed weapons. Contests consist of three 3-min bouts, with rest intervals of 1 min between them. No studies investigating oxygen uptake and energetic demand during fencing competitions exist, thus energetic expenditure and demand in this sport remain speculative. The aim of this study was to understand the physiological capacities underlying fencing performance. Aerobic energy expenditure and the recruitment of lactic anaerobic metabolism were determined in 15 athletes (2 females and 13 males) during a simulation of fencing by using a portable gas analyzer (MedGraphics VO2000), which was able to provide data on oxygen uptake, carbon dioxide production and heart rate. Blood lactate was assessed by means of a portable lactate analyzer. Average group energetic expenditure during the simulation was (mean ± SD) 10.24 ± 0.65 kcal·min(-1), corresponding to 8.6 ± 0.54 METs. Oxygen uptakeand heart rate were always below the level of anaerobic threshold previously assessed during the preliminary incremental test, while blood lactate reached its maximum value of 6.9 ± 2.1 mmol·L(-1) during the final recovery minute between rounds. Present data suggest that physical demand in fencing is moderate for skilled fencers and that both aerobic energy metabolism and anaerobic lactic energy sources are moderately recruited. This should be considered by coaches when preparing training programs for athletes.

  3. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    SciTech Connect

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  4. Essays on Industry Response to Energy and Environmental Policy

    NASA Astrophysics Data System (ADS)

    Sweeney, Richard Leonard

    This dissertation consists of three essays on the relationship between firm incentives and energy and environmental policy outcomes. Chapters 1 and 2 study the impact of the 1990 Clean Air Act Amendments on the United States oil refining industry. This legislation imposed extensive restrictions on refined petroleum product markets, requiring select end users to purchase new cleaner versions of gasoline and diesel. In Chapter 2, I estimate the static impact of this intervention on refining costs, product prices and consumer welfare. Isolating these effects is complicated by several challenges likely to appear in other regulatory settings, including overlap between regulated and non-regulated markets and deviations from perfect competition. Using a rich database of refinery operations, I estimate a structural model that incorporates each of these dimensions, and then use this cost structure to simulate policy counterfactuals. I find that the policies increased gasoline production costs by 7 cents per gallon and diesel costs by 3 cents per gallon on average, although these costs varied considerably across refineries. As a result of these restrictions, consumers in regulated markets experienced welfare losses on the order of 3.7 billion per year, but this welfare loss was partially offset by gains of 1.5 billion dollars per year among consumers in markets not subject to regulation. The results highlight the importance of accounting for imperfect competition and market spillovers when assessing the cost of environmental regulation. Chapter 2 estimates the sunk costs incurred by United States oil refineries as a result of the low sulfur diesel program. The complex, regionally integrated nature of the industry poses many challenges for estimating these costs. I overcome them by placing the decision to invest in sulfur removal technology within the framework of a two period model and estimate the model using moment inequalities. I find that the regulation induced between 2

  5. Suitability of rapid energy magnitude determinations for emergency response purposes

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Parolai, Stefano; Bormann, Peter; Grosser, Helmut; Saul, Joachim; Wang, Rongjiang; Zschau, Jochen

    2010-01-01

    It is common practice in the seismological community to use, especially for large earthquakes, the moment magnitude Mw as a unique magnitude parameter to evaluate the earthquake's damage potential. However, as a static measure of earthquake size, Mw does not provide direct information about the released seismic wave energy and its high frequency content, which is the more interesting information both for engineering purposes and for a rapid assessment of the earthquake's shaking potential. Therefore, we recommend to provide to disaster management organizations besides Mw also sufficiently accurate energy magnitude determinations as soon as possible after large earthquakes. We developed and extensively tested a rapid method for calculating the energy magnitude Me within about 10-15 min after an earthquake's occurrence. The method is based on pre-calculated spectral amplitude decay functions obtained from numerical simulations of Green's functions. After empirical validation, the procedure has been applied offline to a large data set of 767 shallow earthquakes that have been grouped according to their type of mechanism (strike-slip, normal faulting, thrust faulting, etc.). The suitability of the proposed approach is discussed by comparing our rapid Me estimates with Mw published by GCMT as well as with Mw and Me reported by the USGS. Mw is on average slightly larger than our Me for all types of mechanisms. No clear dependence on source mechanism is observed for our Me estimates. In contrast, Me from the USGS is generally larger than Mw for strike-slip earthquakes and generally smaller for the other source types. For ~67 per cent of the event data set our Me differs <= +/-0.3 magnitude units (m.u.) from the respective Me values published by the USGS. However, larger discrepancies (up to 0.8 m.u.) may occur for strike-slip events. A reason of that may be the overcorrection of the energy flux applied by the USGS for this type of earthquakes. We follow the original

  6. Earthquake Induced Damage Mechanism of Long Period Structures Using Energy Response

    SciTech Connect

    Du Yongfeng; Li Hui

    2008-07-08

    This paper presents a method of expounding the damage of RC long period frame structure using energy analysis method. Since the damage of structures usually occurs under major earthquakes, the structure is assumed to be in elasto-plastic state, and degraded Bouc-Wen model is used to describe the hysteretic component of the restoring force. A double index damage criterion defined by the maximum drift and energy absorption is used as the damage criterion. The energy transferring relation in a structure is derived, and both momentary and cumulative energy response is used to reflect the delay of the collapse of a long period structure. The mechanism of collapse delay of the long period structure is suggested through a numerical example combing the energy response and time history response.

  7. The conversion of community-derived wastes to methane in a high-rate digester. La conversion des dechets solides municipaux en methane dans un digesteur a rendement eleve

    SciTech Connect

    Biljetina, R.; Srivastava, V.J.; Punwani, D.V.

    1988-01-01

    The Institute of Gas Technology (IGT) has been operating a 4.5-m/sup 3/, anaerobic solids-concentrating digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida, since January 1984. This digester development work is part of a larger effort that provides effective community waste treatment and disposal options while recovering a valuable methane resources from these wastes. Excellent conversions to methane have been obtained in the digester during 4 years of uninterrupted operation. Data were collected on wastes from experimental municipal wastewater treatment applications, that is, water hyacinths were harvested from secondary wastewater treatment channels and combined with sludge from primary clarifiers to maximize potential methane recoveries in the digester; wastes from agricultural operations, that is, sorghum was selected as a candidate because it represents both a potential energy crop, as well as a waste resource if only portions of the plant are converted after grain production; and wastes from municipal waste collection. Municipal solids waste (MSW) from a commercial resource recovery center was selected. 3 refs., 4 figs., 5 tabs.

  8. 75 FR 15362 - Demand Response Compensation in Organized Wholesale Energy Markets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to incentive payments designed to induce lower consumption of electric... elsewhere. See e.g., Wholesale Competition in Regions with Organized Electric Markets, Order No. 719, 73...

  9. The Response of Vocational Education to the National Energy Crisis. A Special Report.

    ERIC Educational Resources Information Center

    National Advisory Council on Vocational Education, Washington, DC.

    Rationale and recommendations are presented for vocational education's response to the national energy crisis in light of present involvement and future needs. The problem is stated in terms of the need for training programs in the newer energy technologies, including those related to conservation. Federal policies are outlined, specifically the…

  10. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    NASA Astrophysics Data System (ADS)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  11. Immediate Dose-Response Effect of High-Energy Versus Low-Energy Extracorporeal Shock Wave Therapy on Cutaneous Microcirculation.

    PubMed

    Kraemer, Robert; Sorg, Heiko; Forstmeier, Vinzent; Knobloch, Karsten; Liodaki, Eirini; Stang, Felix Hagen; Mailaender, Peter; Kisch, Tobias

    2016-12-01

    Elucidation of the precise mechanisms and therapeutic options of extracorporeal shock wave therapy (ESWT) is only at the beginning. Although immediate real-time effects of ESWT on cutaneous hemodynamics have recently been described, the dose response to different ESWT energies in cutaneous microcirculation has never been examined. Thirty-nine Sprague-Dawley rats were randomly assigned to three groups that received either focused high-energy shock waves (group A: total of 1000 impulses, 10 J) to the lower leg of the hind limb, focused low-energy shock waves (group B: total of 300 impulses, 1 J) or placebo shock wave treatment (group C: 0 impulses, 0 J) using a multimodality shock wave delivery system (Duolith SD-1 T-Top, Storz Medical, Tägerwilen, Switzerland). Immediate microcirculatory effects were assessed with the O2C (oxygen to see) system (LEA Medizintechnik, Giessen, Germany) before and for 20 min after application of ESWT. Cutaneous tissue oxygen saturation increased significantly higher after high-energy ESWT than after low-energy and placebo ESWT (A: 29.4% vs. B: 17.3% vs. C: 3.3%; p = 0.003). Capillary blood velocity was significantly higher after high-energy ESWT and lower after low-energy ESWT versus placebo ESWT (group A: 17.8% vs. group B: -22.1% vs. group C: -5.0%, p = 0.045). Post-capillary venous filling pressure was significantly enhanced in the high-energy ESWT group in contrast to the low-energy ESWT and placebo groups (group A: 25% vs. group B: 2% vs. group C: -4%, p = 0.001). Both high-energy and low-energy ESWT affect cutaneous hemodynamics in a standard rat model. High-energy ESWT significantly increases parameters of cutaneous microcirculation immediately after application, resulting in higher tissue oxygen saturation, venous filling pressure and blood velocity, which suggests higher tissue perfusion with enhanced oxygen saturation, in contrast to low-energy as well as placebo ESWT. Low-energy ESWT also increased tissue oxygen

  12. Measurement of flexoelectric response in polyvinylidene fluoride films for piezoelectric vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Bok; Kim, Gi-Woo

    2017-02-01

    This study presents an investigation on the measurement of flexoelectric response in β-phase polyvinylidene fluoride (PVDF) films attached on cantilever beam-based flexible piezoelectric vibration energy harvesters (PVEHs). The flexoelectric response associated with negative strain gradients was simulated through harmonic response analysis by using the finite element method (FEM). The polarization frequency response functions (FRFs) modified by direct flexoelectric effect of PVDF films was experimentally validated by multi-mode FRFs. From quantitative comparisons between experimental observations and simulated estimation of FRFs, it is demonstrated that the direct flexoelectric response can be observed in PVDF films attached on PVEHs.

  13. Monte Carlo simulation of the nonlinear full peak energy responses for gamma-ray scintillation detectors.

    PubMed

    Peeples, Johanna L; Gardner, Robin P

    2012-07-01

    A Monte Carlo code has been developed, which predicts the nonlinear full peak energy responses of scintillation detectors to incident gamma-rays. It is illustrated here for the popular scintillation detectors, NaI and BGO. The full energy response can be determined by treating the detector as effectively infinite and assuming that all photons and electrons are fully absorbed within the detector. This assumption means that no geometrical direction or position tracking is required, only the selection of sequential photon interactions based on the appropriate energy-dependent interaction cross-sections. The full energy pulse-height response is determined by the sum of the pulse-height responses from all secondary electrons. Results from infinite NaI and BGO detectors indicate that even though the maximum difference in electron scintillation efficiency is about the same for the two scintillation detectors, the overall effect on the extent of the difference in pulse height is much less for BGO than NaI. This result is due to the larger density and effective atomic number of BGO, which causes significantly fewer Compton scattering events. Compton scattering interactions reduce the incident photon energy without absorption and therefore give more responses at reduced energy where the electron scintillation efficiency is most different.

  14. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    SciTech Connect

    Perfetti, Christopher M; Rearden, Bradley T

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  15. Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans.

    PubMed

    Mennella, Ilario; Savarese, Maria; Ferracane, Rosalia; Sacchi, Raffaele; Vitaglione, Paola

    2015-01-01

    Animal data suggest that dietary fat composition may influence endocannabinoid (EC) response and dietary behavior. This study tested the hypothesis that fatty acid composition of a meal can influence the short-term response of ECs and subsequent energy intake in humans. Fifteen volunteers on three occasions were randomly offered a meal containing 30 g of bread and 30 mL of one of three selected oils: sunflower oil (SO), high oleic sunflower oil (HOSO) and virgin olive oil (VOO). Plasma EC concentrations and appetite ratings over 2 h and energy intake over 24 h following the experimental meal were measured. Results showed that after HOSO and VOO consumption the circulating oleoylethanolamide (OEA) was significantly higher than after SO consumption; a concomitantly significant reduction of energy intake was found. For the first time the oleic acid content of a meal was demonstrated to increase the post-prandial response of circulating OEA and to reduce energy intake at subsequent meals in humans.

  16. Modeling silicon diode energy response factors for use in therapeutic photon beams.

    PubMed

    Eklund, Karin; Ahnesjö, Anders

    2009-10-21

    Silicon diodes have good spatial resolution, which makes them advantageous over ionization chambers for dosimetry in fields with high dose gradients. However, silicon diodes overrespond to low-energy photons, that are more abundant in scatter which increase with large fields and larger depths. We present a cavity-theory-based model for a general response function for silicon detectors at arbitrary positions within photon fields. The model uses photon and electron spectra calculated from fluence pencil kernels. The incident photons are treated according to their energy through a bipartition of the primary beam photon spectrum into low- and high-energy components. Primary electrons from the high-energy component are treated according to Spencer-Attix cavity theory. Low-energy primary photons together with all scattered photons are treated according to large cavity theory supplemented with an energy-dependent factor K(E) to compensate for energy variations in the electron equilibrium. The depth variation of the response for an unshielded silicon detector has been calculated for 5 x 5 cm(2), 10 x 10 cm(2) and 20 x 20 cm(2) fields in 6 and 15 MV beams and compared with measurements showing that our model calculates response factors with deviations less than 0.6%. An alternative method is also proposed, where we show that one can use a correlation with the scatter factor to determine the detector response of silicon diodes with an error of less than 3% in 6 MV and 15 MV photon beams.

  17. Earth's changing global atmospheric energy cycle in response to climate change

    NASA Astrophysics Data System (ADS)

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  18. Earth's changing global atmospheric energy cycle in response to climate change

    PubMed Central

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324

  19. Earth's changing global atmospheric energy cycle in response to climate change.

    PubMed

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P

    2017-01-24

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  20. Investigation of the energy response of EBT-2 GAFCHROMIC(TM) film model

    NASA Astrophysics Data System (ADS)

    Singh, Khushdeep

    The aim of this project is to quantify the energy response of the existing EBT-2 model GAFCHROMIC™ film and investigate for the eventual possible chemical compositions with improved energy response. In this work, the overall energy dependence of the EBT-2 model GAFCHROMIC™ film is quantized through intrinsic and absorbed dose energy response. Absorbed dose energy response is studied by calculating dose to film sensitive layer and dose to water using DOSRZnrc of EGSnrcMP Monte Carlo user-code. The film was simulated inside a large body of solid water for megavoltage beams, while at kilovoltage energies the film was modeled in air. The simulations were repeated to score the dose to water for megavoltage and air kerma for kilo-voltage beams, respectively. The intrinsic energy response is quantified through a measurement of total energy response divided by the Monte Carlo calculated absorbed dose energy response. The measurements consisted of delivering an exact dose of 2 Gy to the sensitive layer of the film at orthovoltage energies (50 kVp, 120 kVp, and 180 kVp), 192Ir and 60Co beam. AAPM TG-51 and TG-61 reports were used to determine the dose-to-water and air-kerma in air in megavoltage and orthovoltage beams, respectively, while Monte Carlo simulated corrections were used to convert these results to the desired dose to the sensitive layer of the film. For EBT-2 model GAFCHROMIC™ film, the overall energy dependence was found to vary by 39 % in the effective energy range from 24 keV to 1.25 MeV (for 60Co beam). It was determined that intrinsic (LET-dependent) energy dependence also plays an important role in the total energy dependence of EBT-2 model GAFCHROMIC™ film and cannot be ignored. The absorbed dose energy dependence was also studied for a wide variety of film active layer compositions in a 10 keV-100 keV energy range as well as at 60Co using Monte Carlo simulations. The composition of the film active layer was varied according to physical limits set

  1. Modelling Socio-Environmental Sensitivities: How Public Responses to Low Carbon Energy Technologies Could Shape the UK Energy System

    PubMed Central

    Moran Jay, Brighid

    2014-01-01

    Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public's socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO). PMID:24587735

  2. Modelling socio-environmental sensitivities: how public responses to low carbon energy technologies could shape the UK energy system.

    PubMed

    Moran Jay, Brighid; Howard, David; Hughes, Nick; Whitaker, Jeanette; Anandarajah, Gabrial

    2014-01-01

    Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public's socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO).

  3. Energy Performance Analysis of Pelotint Dynamic Sun Responsive Thermochromic (SRT) Windows

    NASA Astrophysics Data System (ADS)

    Surel, Ali

    This study presents the energy performance test results of the Pleotint Sun Responsive Thermochromic (SRT) windows by using the Iowa Energy Center Energy Resource Station (ERS) test systems and data acquisition resources. The data includes experimental test results by using the ERS test, instrumentation and data acquisition resources. The experimental procedures were conducted under controlled environments. The controlled environments consists of test rooms, office space, air handling units and air cooled chillers. The weather data were also collected at the facility and used for both experimental and simulation test procedures. The experimental performance results presented in this thesis for the SRT windows include the analysis of natural gas and electricity energy use for heating loads, cooling loads, pump energy, fan energy and lighting energy at the test room level. Considering energy efficiency, the results of this study show that Pleotint SRT window technology can save more energy compared to Low-E dark tinted performance windows while still satisfying comfort level requirements. The results of the study show that most of the energy savings were from lighting energy compared to cooling and heating loads.

  4. Energy Expenditure Responses to Fasting and Overfeeding Identify Phenotypes Associated With Weight Change

    PubMed Central

    Schlögl, Mathias; Pannacciuli, Nicola; Bonfiglio, Susan M.; Krakoff, Jonathan; Thearle, Marie S.

    2015-01-01

    Because it is unknown whether 24-h energy expenditure (EE) responses to dietary extremes will identify phenotypes associated with weight regulation, the aim of this study was to determine whether such responses to fasting or overfeeding are associated with future weight change. The 24-h EE during energy balance, fasting, and four different overfeeding diets with 200% energy requirements was measured in a metabolic chamber in 37 subjects with normal glucose regulation while they resided on our clinical research unit. Diets were given for 24 h each and included the following: 1) low protein (3%), 2) standard (50% carbohydrate, 20% protein), 3) high fat (60%), and 4) high carbohydrate (75%). Participants returned for follow-up 6 months after the initial measures. The decrease in 24-h EE during fasting and the increase with overfeeding were correlated. A larger reduction in EE during fasting, a smaller EE response to low-protein overfeeding, and a larger response to high-carbohydrate overfeeding all correlated with weight gain. The association of the fasting EE response with weight change was not independent from that of low protein in a multivariate model. We identified the following two independent propensities associated with weight gain: a predilection for conserving energy during caloric and protein deprivation and a profligate response to large amounts of carbohydrates. PMID:26185280

  5. Energy Expenditure Responses to Fasting and Overfeeding Identify Phenotypes Associated With Weight Change.

    PubMed

    Schlögl, Mathias; Piaggi, Paolo; Pannacciuli, Nicola; Bonfiglio, Susan M; Krakoff, Jonathan; Thearle, Marie S

    2015-11-01

    Because it is unknown whether 24-h energy expenditure (EE) responses to dietary extremes will identify phenotypes associated with weight regulation, the aim of this study was to determine whether such responses to fasting or overfeeding are associated with future weight change. The 24-h EE during energy balance, fasting, and four different overfeeding diets with 200% energy requirements was measured in a metabolic chamber in 37 subjects with normal glucose regulation while they resided on our clinical research unit. Diets were given for 24 h each and included the following: (1) low protein (3%), (2) standard (50% carbohydrate, 20% protein), (3) high fat (60%), and (4) high carbohydrate (75%). Participants returned for follow-up 6 months after the initial measures. The decrease in 24-h EE during fasting and the increase with overfeeding were correlated. A larger reduction in EE during fasting, a smaller EE response to low-protein overfeeding, and a larger response to high-carbohydrate overfeeding all correlated with weight gain. The association of the fasting EE response with weight change was not independent from that of low protein in a multivariate model. We identified the following two independent propensities associated with weight gain: a predilection for conserving energy during caloric and protein deprivation and a profligate response to large amounts of carbohydrates.

  6. Long-range correlation energy calculated from coupled atomic response functions

    SciTech Connect

    Ambrosetti, Alberto; Reilly, Anthony M.; Tkatchenko, Alexandre; DiStasio, Robert A.

    2014-05-14

    An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.

  7. Response of lithium formate EPR dosimeters at photon energies relevant to the dosimetry of brachytherapy

    SciTech Connect

    Adolfsson, Emelie; Alm Carlsson, Gudrun; Grindborg, Jan-Erik; Gustafsson, Haakan; Lund, Eva; Carlsson Tedgren, Aasa

    2010-09-15

    Purpose: To investigate experimentally the energy dependence of the detector response of lithium formate EPR dosimeters for photon energies below 1 MeV relative to that at {sup 60}Co energies. High energy photon beams are used in calibrating dosimeters for use in brachytherapy since the absorbed dose to water can be determined with high accuracy in such beams using calibrated ion chambers and standard dosimetry protocols. In addition to any differences in mass-energy absorption properties between water and detector, variations in radiation yield (detector response) with radiation quality, caused by differences in the density of ionization in the energy imparted (LET), may exist. Knowledge of an eventual deviation in detector response with photon energy is important for attaining high accuracy in measured brachytherapy dose distributions. Methods: Lithium formate EPR dosimeters were irradiated to known levels of air kerma in 25-250 kV x-ray beams and in {sup 137}Cs and {sup 60}Co beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free in air into values of mean absorbed dose to the detectors were made using EGSnrc MC simulations and x-ray energy spectra measured or calculated for the actual beams. The signals from the detectors were measured using EPR spectrometry. Detector response (the EPR signal per mean absorbed dose to the detector) relative to that for {sup 60}Co was determined for each beam quality. Results: Significant decreases in the relative response ranging from 5% to 6% were seen for x-ray beams at tube voltages {<=}180 kV. No significant reduction in the relative response was seen for {sup 137}Cs and 250 kV x rays. Conclusions: When calibrated in {sup 60}Co or MV photon beams, corrections for the photon energy dependence of detector response are needed to achieve the highest accuracy when using lithium formate EPR dosimeters for measuring absorbed doses around brachytherapy sources emitting photons in the energy

  8. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case

  9. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  10. Towards a better understanding of people's responses to renewable energy technologies: Insights from Social Representations Theory.

    PubMed

    Batel, Susana; Devine-Wright, Patrick

    2015-04-01

    In the past few years, social research has been examining what contributes to the attitude-behaviour gap in people's responses to large-scale renewable energy technologies. The NIMBY explanation for the gap has long dominated that area of research, but has also been criticised. Alternative proposals to NIMBY were advanced, but it is still evident that some of those maintain presuppositions of NIMBY and that this area of research needs more integration, namely at a theoretical level. In this paper we argue that to overcome those aspects it is relevant, first, to situate the promotion of renewable energy production as a social change process in today's societies, and, second, to therefore consider the socio-psychological aspects involved in people's responses to social change. We discuss specifically how the Theory of Social Representations may help us with that and contribute to a better understanding of people's responses to renewable energy technologies.

  11. Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    NASA Astrophysics Data System (ADS)

    Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner

    2016-08-01

    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.

  12. Study of silicon PIN diode responses to low energy gamma-rays

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Jeon, H. B.; Kang, K. H.; Park, H.

    2016-11-01

    Low energy gamma-ray detectors play an important role in diagnosis in nuclear medicine, in detection of gamma-ray bursts for gravitational wave research and in detection of underground nuclear tests. The silicon positive-intrinsic-negative (PIN) diode detector is useful for detection of low energy gamma radiation without using a scintillator because it generates a high signal in a small active volume, has a fast response time and has good intrinsic energy resolution. We measured the detector responses, energy resolutions and signal-to-noise ratios for various gamma energies by using manufactured silicon PIN diode and photodiodes. Radioactive gamma sources, 241Am, 133Ba, and 57Co, providing gamma-rays with energies between 14.4 keV and 136.5 keV are used for the measurements. The energy resolution and the signal-to-noise ratio for 14.4 keV gamma-ray are measured to be 17.1 % and 12.8 for a 500 μm thick silicon diode. The energy resolutions measured at the FWHM for 59.5 keV and 122.1 keV gamma-rays by using the silicon diode are better by up to two times compared to those obtained using the NaI:Tl or the BGO scintillator with a photomultiplier tube. The dependence of detection speeds of the signals on the diode's thickness is also measured.

  13. Applicability to foraging simulation of a reinforcement schedule controlling the response energy of pigeons.

    PubMed

    Kono, Masanori

    2013-12-01

    In optimal foraging theory (OFT), energy expenditure is an important variable for predicting foraging behavior. However, early studies, including operant simulations of foraging, did not measure energy expenditure. In the present study, an adjusting energy (AE) schedule was developed to control energy expenditure. Interresponse energy (IRE), a measure of the energy expenditure during a response, was calculated by dividing the square of the elapsed time between two consecutive responses by the square of the straight-line distance between the locations of the same two responses. An adjusting procedure was employed to estimate the indifference point between the requirements of the AE schedule and a fixed ratio (FR) schedule, which has been used in many operant simulations. In the adjusting procedure, pigeons adjusted the requirement of the AE schedule to that of the FR schedule. The results showed a systematic relationship between the requirements of the AE and FR schedules. Moreover, the total IRE per reinforcement systematically increased with the AE requirement. Thus, the present study demonstrates the utility of the AE schedule as a procedure for testing the validity of OFT.

  14. A systematic characterization of the low-energy photon response of plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to 137Cs and 60Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators’ volume. The scintillators’ expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator’s light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams (137Cs and 60Co), the scintillators’ response was corrected for the Cerenkov stem effect. The scintillators’ response increased by a factor of approximately 4 from a 20 kVp to a 60Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about 11%+/- 1% between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  15. Responses of energy use to climate change: A climate modeling study

    NASA Astrophysics Data System (ADS)

    Hadley, Stanton W.; Erickson, David J.; Hernandez, Jose Luis; Broniak, Christine T.; Blasing, T. J.

    2006-09-01

    Using a general-circulation climate model to drive an energy-use model, we projected changes in USA energy-use and in corresponding fossil-fuel CO2 emissions through year 2025 for a low (1.2°C) and a high (3.4°C) temperature response to CO2 doubling. The low-ΔT scenario had a cumulative (2003-2025) energy increase of 1.09 quadrillion Btu (quads) for cooling/heating demand. Northeastern states had net energy reductions for cooling/heating over the entire period, but in most other regions energy increases for cooling outweighed energy decreases for heating. The high-ΔT scenario had significantly increased warming, especially in winter, so decreased heating needs led to a cumulative (2003-2025) heating/cooling energy decrease of 0.82 quads. In both scenarios, CO2 emissions increases from electricity generation outweighed CO2 emissions decreases from reduced heating needs. The results reveal the intricate energy-economy structure that must be considered in projecting consequences of climate warming for energy, economics, and fossil-fuel carbon emissions.

  16. Model thermal response to minor radiative energy sources and sinks in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Fomichev, V. I.; Fu, C.; de Grandpré, J.; Beagley, S. R.; Ogibalov, V. P.; McConnell, J. C.

    2004-10-01

    This paper presents the thermal response of the Canadian middle atmosphere model (CMAM) to minor radiative energy sources and sinks. These include chemical heating, infrared (IR) H2O cooling, sphericity effect in solar heating, and solar heating in the near-IR CO2 bands. All of these energy sources/sinks can be considered as minor ones either in terms of their magnitude or in terms of the limited height region where they are of importance or both. To examine the thermal response of the middle atmosphere, a version of the CMAM with an interactive gas phase chemistry scheme has been used in a series of multiyear experiments for conditions of perpetual July. Each of the analyzed mechanisms may provide a noticeable contribution into the model energy balance that results in a statistically significant model response. Various forcing terms due to minor energy sources/sinks have different spatial and temporal distributions. Their magnitudes vary from tenths K d-1 for the sphericity effect up to ˜10 K d-1 for chemical heating that provides corresponding thermal responses of a few to about 20 K in the middle atmosphere. The model thermal response depends on the magnitude of the applied forcing but is not always local and can be spread beyond the regions where the forcing terms are initially applied. On a globally averaged basis the local strength of the model response is nearly proportional to the magnitude of the small forcing terms but shows nonlinearity when forcing due to chemical heating exceeds ˜1 K d-1 in the mesosphere. Accounting for the combined effects of the minor energy sources and sinks leads to a better agreement between the model temperature field and observations.

  17. Characterization of the energy response and backscatter contribution for two electronic personal dosimeter models.

    PubMed

    Meier, Joseph; Kappadath, S Cheenu

    2015-11-08

    We characterized the energy response of personal dose equivalent (Hp(10) in mrem) and the contribution of backscatter to the readings of two electronic personal dosimeter (EPD) models with radionuclides commonly used in a nuclear medicine clinic. The EPD models characterized were the RADOS RAD-60R, and the SAIC PD-10i. The experimental setup and calculation of EPD energy response was based on ANSI/HPS N13.11-2009. Fifteen RAD-60R and 2 PD-10i units were irradiated using (99m)Tc, (131)I, and (18)F radionuclides with emission energies at 140 keV, 364 keV, and 511 keV, respectively. At each energy, the EPDs output in Hp(10) [mrem] were recorded with 15 inch thick PMMA to simulate backscatter form the torso. Simultaneous free-in-air exposure rate measurements were also performed using two Victoreen ionization survey meters to calculate the expected EPD Hp(10) values per ANSI/HPS N13.11-2009. The energy response was calculated by taking the ratio of the EPD Hp(10) readings with the expected Hp(10) readings and a two-tailed z-test was used to determine the significance of the ratio deviating away from unity. The contribution from backscatter was calculated by taking the ratio of the EPD Hp(10) readings with and without backscatter material. A paired, two-tailed t-test was used to determine the significance of change in EPD Hp(10) readings. The RAD-60R mean energy response at 140 keV was 0.85, and agreed to within 5% and 11% at 364 and 511 keV, respectively. The PD-10i mean energy response at 140 keV was 1.20, and agreed to within 5% at 364 and 511 keV, respectively. On average, in the presence of acrylic, RAD-60R values increased by 32%, 12%, and 14%, at 140, 364, and 511 keV, respectively; all increases were statistically significant. The PD-10i increased by 25%, 19%, and 10% at 140 keV, 364 keV, and 511 keV, respectively; however, only the 140 keV measurement was statistically significant. Although both EPD models performed within the manufacturers' specifications of

  18. The Search for Energy Alternatives: Responses Received by State Agricultural Experiment Stations.

    ERIC Educational Resources Information Center

    Cross, William M.

    Directors of the 51 agricultural experiment stations in the United States (including Guam) were mailed questionnaires inquiring as to the extent of requests which had been received for information about wind, solar, and other energy alternatives such as wood and gasahol. There was a total response of 88% with three mailings. The returned…

  19. Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells.

    PubMed

    Devin, Anne; Rigoulet, Michel

    2007-01-01

    This review focuses on the different mechanisms involved in the adjustment of mitochondrial ATP production to cellular energy demand. The oxidative phosphorylation steady state at constant mitochondrial enzyme content can vary in response to energy demand. However, such an adaptation is tightly linked to a modification in both oxidative phosphorylation yield and phosphate potential and is obviously very limited in eukaryotic cells. We describe the three main mechanisms involved in mitochondrial response to energy demand. In heart cells, a short-term adjustment can be reached mainly through metabolic signaling via phosphotransfer networks by the compartmentalized energy transfer and signal transmission. In such a complex regulatory mechanism, Ca(2+) signaling participates in activation of matricial dehydrogenases as well as mitochondrial ATP synthase. These processes allow a large increase in ATP production rate without an important modification in thermodynamic forces. For a long-term adaptation, two main mechanisms are involved: modulation of the mitochondrial enzyme content as a function of energy demand and/or kinetic regulation by covalent modifications (phosphorylations) of some respiratory chain complex subunits. Regardless of the mechanism involved (kinetic regulation by covalent modification or adjustment of mitochondrial enzyme content), the cAMP signaling pathway plays a major role in molecular signaling, leading to the mitochondrial response. We discuss the energetic advantages of these mechanisms.

  20. Preliminary investigation into the design of thermally responsive Forster resonance energy transfer colloids

    NASA Astrophysics Data System (ADS)

    Bedford, Monte Scott

    While nuclear imaging techniques (Magnetic Resonance Imaging, Computed Tomography, and Positron Emission Tomography) have proven effective for diagnosis and treatment of disease in the human body, fluorescence-enhanced optical imaging offers additional benefits. Fluorescent imaging provides high resolution with real-time response, persistent lifetime (hours to days), cell targeting, and transdermal penetration with minimal physical encumbrance. Malignant cells can be targeted by absorbance of exogenous fluorescent nanoprobe contrast agents. Imaging is improved by fluorescent enhancement, especially by energy transfer between attached dyes. Also for use against cancer are heat-active treatments, such as hyperthermal, photothermal, and chemothermal therapies. Helpful to these treatments is the thermal response from nanoprobes, within human cells, which provide real-time feedback. The present study investigates the design and feasibility of a nanoprobe molecular device, absorbable into malignant human cells, which provides real-time tracking and thermal response, as indicated by enhanced fluorescence by energy transfer. A poly(propargyl acrylate) colloidal suspension was synthesized. The particles were modified with a triblock copolymer, previously shown to be thermally responsive, and an end-attached fluorescent dye. A second dye was modeled for attachment in subsequent work. When two fluorescent dyes are brought within sufficiently close proximity, and excitation light is supplied, energy can be transferred between dyes to give enhanced fluorescence with a large Stokes shift (increase in wavelength between excitation and emission). The dye pair was modeled for overlap of emission and absorbance wavelengths, and energy transfer was demonstrated with 23% efficiency and a 209 nm Stokes shift. The quantum yield of the donor dye was determined at 70%, and the distance for 50% energy transfer was calculated at 2.9 nm, consistent with reports for similar compounds. When

  1. Design of energy storage system to improve inertial response for large scale PV generation

    DOE PAGES

    Wang, Xiaoyu; Yue, Meng

    2016-07-01

    With high-penetration levels of renewable generating sources being integrated into the existing electric power grid, conventional generators are being replaced and grid inertial response is deteriorating. This technical challenge is more severe with photovoltaic (PV) generation than with wind generation because PV generation systems cannot provide inertial response unless special countermeasures are adopted. To enhance the inertial response, this paper proposes to use battery energy storage systems (BESS) as the remediation approach to accommodate the degrading inertial response when high penetrations of PV generation are integrated into the existing power grid. A sample power system was adopted and simulated usingmore » PSS/E software. Here, impacts of different penetration levels of PV generation on the system inertial response were investigated and then BESS was incorporated to improve the frequency dynamics.« less

  2. Design of energy storage system to improve inertial response for large scale PV generation

    SciTech Connect

    Wang, Xiaoyu; Yue, Meng

    2016-07-01

    With high-penetration levels of renewable generating sources being integrated into the existing electric power grid, conventional generators are being replaced and grid inertial response is deteriorating. This technical challenge is more severe with photovoltaic (PV) generation than with wind generation because PV generation systems cannot provide inertial response unless special countermeasures are adopted. To enhance the inertial response, this paper proposes to use battery energy storage systems (BESS) as the remediation approach to accommodate the degrading inertial response when high penetrations of PV generation are integrated into the existing power grid. A sample power system was adopted and simulated using PSS/E software. Here, impacts of different penetration levels of PV generation on the system inertial response were investigated and then BESS was incorporated to improve the frequency dynamics.

  3. Output response identification in a multistable system for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Arafa, Mustafa; Litak, Grzegorz; Bowen, Chris R.; Iwaniec, Joanna

    2017-01-01

    In this paper we examine in detail the multiple responses of a novel vibrational energy harvester composed of a vertical bistable beam whose complex non-linear behavior is tuned via magnetic interaction. The beam was excited horizontally by a harmonic inertial force while mechanical vibrational energy is converted to electrical power through a piezoelectric element. The bistable laminate beam coupled to the piezoelectric transducer showed a variety of complex responses in terms of the beam displacement and harvested power output. The range of vibration patterns in this non-linear system included single-well oscillations and snap-through vibrations of periodic and chaotic character. Harvested power was found to be strongly dependent on the vibration pattern with nonlinearities providing a broadband response for energy harvesting. Wavelet analysis of measured voltage, displacement and velocity time histories indicated the presence of a variety of nonlinear periodic and also chaotic phenomena. To measure the complexity of response time series we applied phase portraits and determine stroboscopic points and multiscale entropy. It is demonstrated that by changing parameters such as the magnetic interaction, the characteristics of the bistable laminate harvester, such as the natural frequency, bandwidth, vibration response and peak power can be readily tailored for harvesting applications.

  4. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.

    PubMed

    Aslam; Matysiak, W; Atanackovic, J; Waker, A J

    2012-06-01

    This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to

  5. Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess.

    PubMed

    Martin, Bronwen; Pearson, Michele; Kebejian, Lisa; Golden, Erin; Keselman, Alex; Bender, Meredith; Carlson, Olga; Egan, Josephine; Ladenheim, Bruce; Cadet, Jean-Lud; Becker, Kevin G; Wood, William; Duffy, Kara; Vinayakumar, Prabhu; Maudsley, Stuart; Mattson, Mark P

    2007-09-01

    Females and males typically play different roles in survival of the species and would be expected to respond differently to food scarcity or excess. To elucidate the physiological basis of sex differences in responses to energy intake, we maintained groups of male and female rats for 6 months on diets with usual, reduced [20% and 40% caloric restriction (CR), and intermittent fasting (IF)], or elevated (high-fat/high-glucose) energy levels and measured multiple physiological variables related to reproduction, energy metabolism, and behavior. In response to 40% CR, females became emaciated, ceased cycling, underwent endocrine masculinization, exhibited a heightened stress response, increased their spontaneous activity, improved their learning and memory, and maintained elevated levels of circulating brain-derived neurotrophic factor. In contrast, males on 40% CR maintained a higher body weight than the 40% CR females and did not change their activity levels as significantly as the 40% CR females. Additionally, there was no significant change in the cognitive ability of the males on the 40% CR diet. Males and females exhibited similar responses of circulating lipids (cholesterols/triglycerides) and energy-regulating hormones (insulin, leptin, adiponectin, ghrelin) to energy restriction, with the changes being quantitatively greater in males. The high-fat/high-glucose diet had no significant effects on most variables measured but adversely affected the reproductive cycle in females. Heightened cognition and motor activity, combined with reproductive shutdown, in females may maximize the probability of their survival during periods of energy scarcity and may be an evolutionary basis for the vulnerability of women to anorexia nervosa.

  6. Sex-Dependent Metabolic, Neuroendocrine, and Cognitive Responses to Dietary Energy Restriction and Excess

    PubMed Central

    Martin, Bronwen; Pearson, Michele; Kebejian, Lisa; Golden, Erin; Keselman, Alex; Bender, Meredith; Carlson, Olga; Egan, Josephine; Ladenheim, Bruce; Cadet, Jean-Lud; Becker, Kevin G.; Wood, William; Duffy, Kara; Vinayakumar, Prabhu; Maudsley, Stuart; Mattson, Mark P.

    2008-01-01

    Females and males typically play different roles in survival of the species and would be expected to respond differently to food scarcity or excess. To elucidate the physiological basis of sex differences in responses to energy intake, we maintained groups of male and female rats for 6 months on diets with usual, reduced [20% and 40% caloric restriction (CR), and intermittent fasting (IF)], or elevated (high-fat/high-glucose) energy levels and measured multiple physiological variables related to reproduction, energy metabolism, and behavior. In response to 40% CR, females became emaciated, ceased cycling, underwent endocrine masculinization, exhibited a heightened stress response, increased their spontaneous activity, improved their learning and memory, and maintained elevated levels of circulating brain-derived neurotrophic factor. In contrast, males on 40% CR maintained a higher body weight than the 40% CR females and did not change their activity levels as significantly as the 40% CR females. Additionally, there was no significant change in the cognitive ability of the males on the 40% CR diet. Males and females exhibited similar responses of circulating lipids (cholesterols/triglycerides) and energy-regulating hormones (insulin, leptin, adiponectin, ghrelin) to energy restriction, with the changes being quantitatively greater in males. The high-fat/high-glucose diet had no significant effects on most variables measured but adversely affected the reproductive cycle in females. Heightened cognition and motor activity, combined with reproductive shutdown, in females may maximize the probability of their survival during periods of energy scarcity and may be an evolutionary basis for the vulnerability of women to anorexia nervosa. PMID:17569758

  7. Use of borated polyethylene to improve low energy response of a prompt gamma based neutron dosimeter

    NASA Astrophysics Data System (ADS)

    Priyada, P.; Ashwini, U.; Sarkar, P. K.

    2016-05-01

    The feasibility of using a combined sample of borated polyethylene and normal polyethylene to estimate neutron ambient dose equivalent from measured prompt gamma emissions is investigated theoretically to demonstrate improvements in low energy neutron dose response compared to only polyethylene. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of boron, hydrogen and carbon prompt gamma emissions to mono energetic neutrons. The weighted least square method is employed to arrive at the best linear combination of these responses that approximates the ICRP fluence to dose conversion coefficients well in the energy range of 10-8 MeV to 14 MeV. The configuration of the combined system is optimized through FLUKA simulations. The proposed method is validated theoretically with five different workplace neutron spectra with satisfactory outcome.

  8. Response of BGO detectors to photons of 3-50 MeV energy

    NASA Astrophysics Data System (ADS)

    Matulewicz, T.; Henning, W.; Emling, H.; Freifelder, R.; Grein, H.; Grosse, E.; Herrmann, N.; Holzmann, R.; Kulessa, R.; Simon, R. S.; Wollersheim, H. J.; Schoch, B.; Vogt, J.; Wilhelm, M.; Kratz, J. V.; Schmidt, R.; Janssens, R. V. F.

    1993-02-01

    The response of an array of 7 hexagonal BGO detectors each 7.5 cm long (6.7 radiation lengths) with 3.6 cm side-to-side distance was measured using monochromatic photons from the tagged-photon facility at the electron accelerator MAMI A at Mainz. The experimental spectra of the deposited energy for a single detector and for the array of seven modules compare very well with the predictions of Monte Carlo shower simulations using the code GEANT3. Significant improvement of the energy resolution is observed for the summed energy spectra compared to the resolution of a single module. This improvement deteriorates at higher photon energies because the length of the detector is not sufficient to absorb the forward component of the electromagnetic shower.

  9. Using high frequency consumption data to identify demand response potential for solar energy integration

    NASA Astrophysics Data System (ADS)

    Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.

    2015-12-01

    California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.

  10. Measurement and Analysis of Thermal Energy Responses from Discrete Urban Surfaces Using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Ridd, M. K.

    1993-01-01

    This study employs data from the airborne Thermal Infrared Multispectral Scanner (TIMS) to measure thermal (i.e., longwave) energy responses, emitted or upwelling, from discrete surfaces that are typical of the city landscape within Salt Lake City, Utah, over a single diurnal time period (i.e., a single day, night-time sequence). These data are used to quantify the disposition of thermal energy for selected urban surfaces during the daytime and night-time, and the amount of change in thermal response or flux recorded between day and night. An analysis is presented on the thermal interrelationships observed for common urban materials for day, night, and flux, as identified from the TIMS data through the delineation of discrete surface type polygons. The results from the study illustrate that such factors as heat capacity, thermal conductivity, and the amount of soil moisture available have a profound impact on the magnitude of thermal energy emanating from a specific surface and on the dynamics of longwave energy response between day and night.

  11. Male weasels decrease activity and energy expenditure in response to high ambient temperatures.

    PubMed

    Zub, Karol; Fletcher, Quinn E; Szafrańska, Paulina A; Konarzewski, Marek

    2013-01-01

    The heat dissipation limit (HDL) hypothesis suggests that the capacity of endotherms to dissipate body heat may impose constraints on their energy expenditure. Specifically, this hypothesis predicts that endotherms should avoid the detrimental consequences of hyperthermia by lowering their energy expenditure and reducing their activity in response to high ambient temperatures (T(a)). We used an extensive data set on the daily energy expenditure (DEE, n = 27) and the daily activity time (AT, n = 48) of male weasels (Mustela nivalis) during the spring and summer breeding season to test these predictions. We found that T(a) was related in a "hump-shaped" (i.e. convex) manner to AT, DEE, resting metabolic rate (RMR) and metabolic scope (the ratio of DEE to RMR). These results support the HDL hypothesis because in response to warm Tas male weasels reduced their AT, DEE, and RMR. Although the activity and energy expenditure of large endotherms are most likely to be constrained in response to warm Tas because they are less able to dissipate heat, our results suggest that small endotherms may also experience constraints consistent with the HDL hypothesis.

  12. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  13. Spatial optimization of an ideal wind energy system as a response to the intermittency of renewable energies?

    NASA Astrophysics Data System (ADS)

    Lassonde, Sylvain; Boucher, Olivier; Breon, François-Marie; Tobin, Isabelle; Vautard, Robert

    2016-04-01

    The share of renewable energies in the mix of electricity production is increasing worldwide. This trend is driven by environmental and economic policies aiming at a reduction of greenhouse gas emissions and an improvement of energy security. It is expected to continue in the forthcoming years and decades. Electricity production from renewables is related to weather and climate factors such as the diurnal and seasonal cycles of sunlight and wind, but is also linked to variability on all time scales. The intermittency in the renewable electricity production (solar, wind power) could eventually hinder their future deployment. Intermittency is indeed a challenge as demand and supply of electricity need to be balanced at any time. This challenge can be addressed by the deployment of an overcapacity in power generation (from renewable and/or thermal sources), a large-scale energy storage system and/or improved management of the demand. The main goal of this study is to optimize a hypothetical renewable energy system at the French and European scales in order to investigate if spatial diversity of the production (here electricity from wind energy) could be a response to the intermittency. We use ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim meteorological reanalysis and meteorological fields from the Weather Research and Forecasts (WRF) model to estimate the potential for wind power generation. Electricity demand and production are provided by the French electricity network (RTE) at the scale of administrative regions for years 2013 and 2014. Firstly we will show how the simulated production of wind power compares against the measured production at the national and regional scale. Several modelling and bias correction methods of wind power production will be discussed. Secondly, we will present results from an optimization procedure that aims to minimize some measure of the intermittency of wind energy. For instance we estimate the optimal

  14. Skeletal muscle responses to negative energy balance: effects of dietary protein.

    PubMed

    Carbone, John W; McClung, James P; Pasiakos, Stefan M

    2012-03-01

    Sustained periods of negative energy balance decrease body mass due to losses of both fat and skeletal muscle mass. Decreases in skeletal muscle mass are associated with a myriad of negative consequences, including suppressed basal metabolic rate, decreased protein turnover, decreased physical performance, and increased risk of injury. Decreases in skeletal muscle mass in response to negative energy balance are due to imbalanced rates of muscle protein synthesis and degradation. However, the underlying physiological mechanisms contributing to the loss of skeletal muscle during energy deprivation are not well described. Recent studies have demonstrated that consuming dietary protein at levels above the current recommended dietary allowance (0.8 g · kg(-1) · d(-1)) may attenuate the loss of skeletal muscle mass by affecting the intracellular regulation of muscle anabolism and proteolysis. However, the specific mechanism by which increased dietary protein spares skeletal muscle through enhanced molecular control of muscle protein metabolism has not been elucidated. This article reviews the available literature related to the effects of negative energy balance on skeletal muscle mass, highlighting investigations that assessed the influence of varying levels of dietary protein on skeletal muscle protein metabolism. Further, the molecular mechanisms that may contribute to the regulation of skeletal muscle mass in response to negative energy balance and alterations in dietary protein level are described.

  15. High-energy response of passive dosemeters in use at LANL.

    PubMed

    Olsher, Richard H; McLean, Thomas D; Mallett, Michael W; Romero, Leonard L; Devine, Robert T; Hoffman, Jeffrey M

    2007-01-01

    The high-energy neutron response of three passive dosemeters in use at the Los Alamos National Laboratory (LANL) has been investigated using metrology-grade fields. The dosemeters include the LANL Model 8823 TLD badge and the LANL PN3 track etch device. Both are dosemeters of record at LANL. The third device was the Personal Neutron Dosemeter (PND), a superheated emulsion device, manufactured by Bubble Technology Industries, Inc. (BTI). The response of the three dosemeters at neutron energies exceeding 10 MeV was assessed with monoenergetic neutrons at the Physikalisch-Technische Bundesanstalt facility (14.8 and 19 MeV). For the sake of completeness, data collected at lower energies are also included in this study. High-energy quasi-monoenergetic beams produced by the cyclotron facilities at the Université Catholique de Louvain (UCL) and the The Svedberg Laboratory (TSL) were also utilised as part of this study. These measurements were made to better understand and help interpret dosemeter readings obtained by workers at high-energy accelerators, such as the 800 MeV spallation neutron source facility located at the Los Alamos Neutron Science Center (LANSCE).

  16. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    SciTech Connect

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-08-12

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. Overall results show that pilot participants had energy savings of 20%, and the potential for an additional 14% to 20% load drop during a 100 F demand response event. In addition to the efficiency-related bill savings, participants on the dynamic rate saved an estimated 5% on their energy costs compared to the standard rate. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability of customers on dynamic rates to respond to intermittent price events.

  17. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE PAGES

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  18. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  19. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  20. U.S. Department of Energy Consequence Management Under the National Response Framework

    SciTech Connect

    Don Van Etten and Paul Guss

    2009-02-03

    Under the Nuclear/Radiological Incident Annex of the National Response Framework, the U.S. Department of Energy (DOE) has specific responsibilities as a coordinating agency and for leading interagency response elements in the Federal Radiological Monitoring and Assessment Center (FRMAC). Emergency response planning focuses on rapidly providing response elements in stages after being notified of a nuclear/radiological incident. The use of Home Teams during the field team deployment period and recent advances in collecting and transmitting data from the field directly to assessment assets has greatly improved incident assessment times for public protection decisions. The DOE’s Remote Sensing Laboratory (RSL) based in Las Vegas, Nevada, has successfully deployed technical and logistical support for this mission at national exercises such as Top Officials Exercise IV (TOPOFF IV). In a unique response situation, DOE will provide advance contingency support to NASA during the scheduled launch in the fall of 2009 of the Mars Science Laboratory (MSL). The MSL rover will carry a radioisotope power system that generates electricity from the heat of plutonium’s radioactive decay. DOE assets and contingency planning will provide a pre-incident response posture for rapid early plume phase assessment in the highly unlikely launch anomaly.

  1. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability.

    PubMed

    Noriega, Lilia G; Feige, Jérôme N; Canto, Carles; Yamamoto, Hiroyasu; Yu, Jiujiu; Herman, Mark A; Mataki, Chikage; Kahn, Barbara B; Auwerx, Johan

    2011-09-30

    The nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase SIRT1 is a major metabolic regulator activated by energy stresses such as fasting or calorie restriction. SIRT1 activation during fasting not only relies on the increase in the NAD(+)/NADH ratio caused by energy deprivation but also involves an upregulation of SIRT1 mRNA and protein levels in various metabolic tissues. We demonstrate that SIRT1 expression is controlled systemically by the activation of the cyclic AMP response-element-binding protein upon low nutrient availability. Conversely, in the absence of energetic stress, the carbohydrate response-element-binding protein represses the expression of SIRT1. Altogether, these results demonstrate that SIRT1 expression is tightly controlled at the transcriptional level by nutrient availability and further underscore that SIRT1 is a crucial metabolic checkpoint connecting the energetic status with transcriptional programmes.

  2. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses

    PubMed Central

    Das, Jayajit

    2016-01-01

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. PMID:26958894

  3. California Federal Facilities: Rate-Responsive Building Operation for Deeper Cost and Energy Savings

    SciTech Connect

    2012-05-01

    Dynamic pricing electricity tariffs, now the default for large customers in California (peak demand of 200 kW and higher for PG&E and SCE, and 20 kW and higher for SDG&E), are providing Federal facilities new opportunities to cut their electricity bills and help them meet their energy savings mandates. The U.S. Department of Energy’s (DOE) Federal Energy Management Program (FEMP) has created this fact sheet to help California federal facilities take advantage of these opportunities through “rate-responsive building operation.” Rate-responsive building operation involves designing your load management strategies around your facility’s variable electric rate, using measures that require little or no financial investment.

  4. Fuel switching and energy partitioning during the postprandial metabolic response in the ball python (Python regius).

    PubMed

    Waas, Stefan; Werner, Roland A; Starck, J Matthias

    2010-04-01

    Digestion, absorption and assimilation of the meal are active processes that require start-up energy before the energy contained in a meal can be utilized. The energetic costs associated with feeding (specific dynamic action, SDA) are high in sit-and-wait foraging snakes that tolerate long fasting periods. We used (13)C-labelled prey to partition between endogenous energy sources (i.e. snakes' own resources) and exogenous energy sources (i.e. prey). A linear mixing model was then applied to determine the portion of (13)C originating from the different sources. The snakes showed a normal and typical postprandial response. By four hours after feeding, the delta(13)C-values indicated fuel switching from endogenous to exogenous. From then on, fuel mixing continuously increased until, at 20 h after feeding, 75% of fuel was exogenous. Resource partitioning showed that throughout SDA, the amount of exogenous energy increased to approximately 60% of SDA, which was equivalent to approximately 4.5% of the energy contained in a meal.

  5. Calculations and measurements of the energy-dependent response of a shielded gamma-ray detector

    SciTech Connect

    Byrd, R.C.

    1996-03-01

    Instruments designed to record high-intensity gamma-ray flashes must have fast time response, wide dynamic range, and good rejection of photon backgrounds at lower energies. In principle, plastic scintillators can easily provide the necessary time response and dynamic range; like other photon detectors, however, they must be carefully shielded to reduce their low-energy sensitivity. This shielding is often complicated by the need to use different optical sensors to cover the full dynamic range, which each sensor requiring a separate opening through the shielding. In this detector, a high-sensitivity photomultiplier tube handles low-intensity signals, and a silicon photodiode covers high intensities. These electronic components, particularly the diode, may also respond directly to incident radiation, so localized shielding must be provided. To reduce the detector`s total mass, the scintillator and photodiode are enclosed in a relatively thick, tight-fitting inner shield, which is surrounded by a thin outer shield to reduce the leakage through any gaps. Although efficient, this arrangement demands careful design and testing. This report describes such an analysis, which uses Monte Carlo simulations to develop a comprehensive model of the detector at photon energies from threshold to above 10 MeV. Included are discussions of the fundamental responses of the unshielded silicon diode and plastic scintillator, explanations of the effectiveness of different shielding materials, studies of calibration sources, and comparisons with laboratory tests.

  6. Angular response characterization of the Martin Marietta Energy Systems, Inc., personnel dosimeter

    SciTech Connect

    Ahmed, A.B.; McMahan, K.L.; Colwell, D.S.

    1993-08-01

    An evaluation of the Martin Marietta Energy Systems, Inc., personnel dosimeter to radiation incident from non-perpendicular angles was carried out to meet the Department of Energy Laboratory Accreditation Program (DOELAP) requirements. Dosimeters were exposed to six different radiation sources. For each source, dosimeters were rotated about their horizontal and vertical axes at seven different angles each. Raw readings were processed through the dose calculation algorithm used for routine personnel dosimetry to determine dose equivalent values. Dose equivalent responses relative to zero degree incident angle were found to be within {plus_minus} 20% for M150, K-59 and {sup 137}Cs photons when the incident angle was 60{degree} or less. For low-energy photon irradiations (M30 and K-16), responses for angles other than perpendicular incidence are generally unpredictable. Reasons include: (1) failure of dose calculation algorithm to identify the radiation field correctly due to unusual element ratios; and (2) at extreme angles ({plus_minus} 85{degree}), the dosimeter design (in relation to the irradiation geometry) becomes the limiting factor in producing reproducible results. Response to {sup 204}Tl beta particles decreases rapidly with increasing angle of incidence.

  7. Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings

    SciTech Connect

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-17

    Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

  8. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect

    Jehlik, Forrest; LaClair, Tim J.

    2014-04-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  9. [Responses of biological soil crust to and its relief effect on raindrop kinetic energy].

    PubMed

    Qin, Ning-qiang; Zhao, Yun-ge

    2011-09-01

    Based on the field investigation and by the method of simulated single-drop rain, this paper studied the responses of different types of biological soil crusts (biocrusts) in the wind-water erosion interleaving region of Loess Plateau to and their relief effect on the kinetic energy of raindrops. The responses of the biocrusts to raindrop kinetic energy had close relations with their biological composition. The cyanobacteria-dominated biocrusts with a thickness of 1 cm and the moss-dominated biocrusts with the coverage of 80% could resist in 0.99 J and 75.56 J of cumulative rain drop kinetic energy, respectively, and the potential resistance of the biocrusts with the same biological compositions was relative to the biomass of the biological compositions, i.e., the larger the biomass, the higher the resistance. As the chlorophyll a content of cyanobacteria- dominated biocrusts (which characterizes the cyanobacterial biomass) increased from 3.32 to 3.73 microg x g(-1), the resistance of the biocrusts against the cumulative raindrop kinetic energy increased from 0.99 to 2.17 J; when the moss biomass in the moss- dominated biocrusts increased from 2.03 to 4.73 g x dm(-2), the resistance of the crusts increased from 6.08 to 75.56 J. During the succession of the biocrusts, their responses to the raindrop kinetic energy presented an "S" pattern. No significant differences in the resistance against raindrop cumulative kinetic energy were observed between the cyanobacteria-dominated biocrusts with variable biomass, but the resistance of moss-dominated biocrusts increased significantly as their biomass per unit area increased. The resistance of moss-dominated biocrusts increased linearly when their biomass increased from 2.03 g x dm(-2) to 4.73 g x dm(-2). The moss-dominated biocrusts could resist in 62.03 J of raindrop kinetic energy when their biomass was up to 3.70 g x dm(-2). Biocrusts had obvious effects in relieving raindrop kinetic energy, and the relief effect

  10. Sex-related differences in energy balance in response to caloric restriction.

    PubMed

    Valle, A; Català-Niell, A; Colom, B; García-Palmer, F J; Oliver, J; Roca, P

    2005-07-01

    Sex-related differences in energy balance were studied in young Wistar rats fed standard chow pellets either ad libitum or in restricted amounts (60% of ad libitum intake) for 100 days. Caloric intake, indirect calorimetry, organ and adipose tissue weights, energy efficiency, liver mitochondrial respiration rate, and brown adipose tissue (BAT) uncoupling protein-1 (UCP1) content were measured. Ad libitum-fed females showed greater oxygen consumption (Vo(2)) and carbon dioxide production (Vco(2)) and lower energy efficiency than males. Caloric restriction induced a chronic drop of Vo(2) and Vco(2) in females but not in males over the period studied. Restricted females showed a better conservation of metabolic active organ mass and a greater decrease in adipose depots than restricted males. Moreover, changes of BAT size and UCP1 content suggest that BAT may be the main cause responsible for sex differences in the response of energy balance to caloric restriction. In conclusion, our results indicate that females under caloric restriction conditions deactivate facultative thermogenesis to a greater degree than males. This ability may have obvious advantages for female survival and therefore the survival of the species when food is limiting.

  11. Antibody responses in protein-energy restricted beef cows and their cold stressed progeny.

    PubMed Central

    Olson, D P; Bull, R C

    1986-01-01

    Antibody titers were measured in serum and colostral whey of pregnant beef cows immunized with tetanus toxoid and chicken red blood cells while being fed diets either restricted or nonrestricted in protein and/or metabolizable energy during the last 150 days of gestation. Serum antibody titers were also measured in the colostrum-fed, cold and noncold stressed progeny that were actively immunized with dinitrophenol conjugated to keyhole limpet hemocyanin. In general, there were no major or sustained differences in humoral immune responses to injection of tetanus toxoid or chicken red blood cells between cows fed diets that were adequate or restricted in protein or metabolizable energy. In the few cases where serum antibody titers to tetanus toxoid or chicken red blood cells differed (P less than 0.05) between adequately fed or restricted cows, the differences were no greater than twofold. Anti-chicken red blood cell titers were uniformly low (P less than 0.05) by a magnitude of two to threefold in colostral whey of cows restricted in protein and/or metabolizable energy when compared to titers in cows fed adequate amounts of protein and metabolizable energy. With one exception, neither maternal dietary restriction nor cold exposure had a major effect on the ability of the calves to absorb antitetanus toxoid and chicken red blood cell antibodies from colostrum. The humoral immune responses of all calves to injection of keyhole limpet hemocyanin and dinitrophenol were similar in magnitude. PMID:3091232

  12. Separating the nature and nurture of the allocation of energy in response to global change.

    PubMed

    Applebaum, Scott L; Pan, T-C Francis; Hedgecock, Dennis; Manahan, Donal T

    2014-07-01

    Understanding and predicting biological stability and change in the face of rapid anthropogenic modifications of ecosystems and geosystems are grand challenges facing environmental and life scientists. Physiologically, organisms withstand environmental stress through changes in biochemical regulation that maintain homeostasis, which necessarily demands tradeoffs in the use of metabolic energy. Evolutionarily, in response to environmentally forced energetic tradeoffs, populations adapt based on standing genetic variation in the ability of individual organisms to reallocate metabolic energy. Combined study of physiology and genetics, separating "Nature and Nurture," is, thus, the key to understanding the potential for evolutionary adaptation to future global change. To understand biological responses to global change, we need experimentally tractable model species that have the well-developed physiological, genetic, and genomic resources necessary for partitioning variance in the allocation of metabolic energy into its causal components. Model species allow for discovery and for experimental manipulation of relevant phenotypic contrasts and enable a systems-biology approach that integrates multiple levels of analyses to map genotypic-to-phenotypic variation. Here, we illustrate how combined physiological and genetic studies that focus on energy metabolism in developmental stages of a model marine organism contribute to an understanding of the potential to adapt to environmental change. This integrative research program provides insights that can be readily incorporated into individual-based ecological models of population persistence under global change.

  13. Cardiovascular Fitness and Energy Expenditure Response during a Combined Aerobic and Circuit Weight Training Protocol

    PubMed Central

    Benito, Pedro J.; Alvarez-Sánchez, María; Díaz, Víctor; Morencos, Esther; Peinado, Ana B.; Cupeiro, Rocio

    2016-01-01

    Objectives The present study describes the oxygen uptake and total energy expenditure (including both aerobic and anaerobic contribution) response during three different circuit weight training (CWT) protocols of equivalent duration composed of free weight exercises, machine exercises, and a combination of free weight exercises intercalating aerobic exercise. Design Controlled, randomized crossover designs. Methods Subjects completed in a randomized order three circuit weight training protocols of the same duration (3 sets of 8 exercises, 45min 15s) and intensity (70% of 15 repetitions maximum). The circuit protocols were composed of free weight exercises, machine exercises, or a combination of free weight exercises with aerobic exercise. Oxygen consumption and lactate concentration were measured throughout the circuit to estimate aerobic and anaerobic energy expenditure respectively. Results Energy expenditure is higher in the combined exercise protocol (29.9±3.6 ml/kg/min), compared with Freeweight (24.2±2.8ml/kg/min) and Machine (20.4±2.9ml/kg/min). The combined exercise protocol produced the highest total energy expenditure but the lowest lactate concentration and perceived exertion. The anaerobic contribution to total energy expenditure was higher in the machine and free weight protocols compared with the combined exercise protocol (6.2%, 4.6% and 2.3% respectively). Conclusions In the proposed protocols, the combined exercise protocol results in the highest oxygen consumption. Total energy expenditure is related to the type of exercise included in the circuit. Anaerobic contributions to total energy expenditure during circuit weight training may be modest, but lack of their estimation may underestimate total energy expenditure. Trial Registration ClinicalTrials.gov NCT01116856 PMID:27832062

  14. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment

    NASA Astrophysics Data System (ADS)

    Nabel, Moritz; Bueno Piaz Barbosa, Daniela; Horsch, David; Jablonowski, Nicolai David

    2014-05-01

    The global demand for energy security and the mitigation of climate change are the main drivers pushing energy-plant production in Germany. However, the cultivation of these plants can cause land use conflicts since agricultural soil is mostly used for plant production. A sustainable alternative to the conventional cultivation of food-based energy-crops is the cultivation of special adopted energy-plants on marginal lands. To further increase the sustainability of energy-plant cultivation systems the dependency on synthetic fertilizers needs to be reduced via closed nutrient loops. In the presented study the energy-plant Sida hermaphrodita (Malvaceae) will be used to evaluate the potential to grow this high potential energy-crop on a marginal sandy soil in combination with fertilization via digestate from biogas production. With this dose-response experiment we will further identify an optimum dose, which will be compared to equivalent doses of NPK-fertilizer. Further, lethal doses and deficiency doses will be observed. Two weeks old Sida seedlings were transplanted to 1L pots and fertilized with six doses of digestate (equivalent to a field application of 5, 10, 20, 40, 80, 160t/ha) and three equivalent doses of NPK-fertilizer. Control plants were left untreated. Sida plants will grow for 45 days under greenhouse conditions. We hypothesize that the nutrient status of the marginal soil can be increased and maintained by defined digestate applications, compared to control plants suffering of nutrient deficiency due to the low nutrient status in the marginal substrate. The dose of 40t/ha is expected to give a maximum biomass yield without causing toxicity symptoms. Results shall be used as basis for further experiments on the field scale in a field trial that was set up to investigate sustainable production systems for energy crop production under marginal soil conditions.

  15. Exchange Energy Density Functionals that reproduce the Linear Response Function of the Free Electron Gas

    NASA Astrophysics Data System (ADS)

    García-Aldea, David; Alvarellos, J. E.

    2009-03-01

    We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).

  16. Phenotypic vulnerability of energy balance responses to sleep loss in healthy adults

    PubMed Central

    Spaeth, Andrea M.; Dinges, David F.; Goel, Namni

    2015-01-01

    Short sleep duration is a risk factor for increased hunger and caloric intake, late-night eating, attenuated fat loss when dieting, and for weight gain and obesity. It is unknown whether altered energy-balance responses to sleep loss are stable (phenotypic) over time, and the extent to which individuals differ in vulnerability to such responses. Healthy adults experienced two laboratory exposures to sleep restriction separated by 60–2132 days. Caloric intake, meal timing and weight were objectively measured. Although there were substantial phenotypic differences among participants in weight gain, increased caloric intake, and late-night eating and fat intake, responses within participants showed stability across sleep restriction exposures. Weight change was consistent in both normal-weight and overweight adults. Weight change and increased caloric intake were more stable in men whereas late-night eating was consistent in both genders. This is the first evidence of phenotypic differential vulnerability and trait-like stability of energy balance responses to repeated sleep restriction, underscoring the need for biomarkers and countermeasures to predict and mitigate this vulnerability. PMID:26446681

  17. The response of Kodak EDR2 film in high-energy electron beams.

    PubMed

    Gerbi, Bruce J; Dimitroyannis, Dimitri A

    2003-10-01

    Kodak XV2 film has been a key dosimeter in radiation therapy for many years. The advantages of the recently introduced Kodak EDR2 film for photon beam dosimetry have been the focus of several IMRT verification dosimetry publications. However, no description of this film's response to electron beams exists in the literature. We initiated a study to characterize the response and utility of this film for electron beam dosimetry. We exposed a series of EDR2 films to 6, 9, 12, 16, and 20 MeV electrons in addition to 6 and 18 MV x rays to develop standard characteristic curves. The linac was first calibrated to ensure that the delivered dose was known accurately. All irradiations were done at dmax in polystyrene for both photons and electrons, all films were from the same batch, and were developed at the same time. We also exposed the EDR2 films in a solid water phantom to produce central axis depth dose curves. These data were compared against percent depth dose curves measured in a water phantom using an IC-10 ion chamber, Kodak XV2 film, and a PTW electron diode. The response of this film was the same for both 6 and 18 MV x rays, but showed an apparent energy-dependent enhancement for electron beams. The response of the film also increased with increasing electron energy. This caused the percent depth dose curves using film to be shifted toward the surface compared to the ion chamber data.

  18. Solvent free energy curves for electron transfer reactions: A nonlinear solvent response model

    NASA Astrophysics Data System (ADS)

    Ichiye, Toshiko

    1996-05-01

    Marcus theory for electron transfer assumes a linear response of the solvent so that both the reactant and product free energy curves are parabolic functions of the solvent polarization, each with the same solvent force constant k characterizing the curvature. Simulation data by other workers indicate that the assumption of parabolic free energy curves is good for the Fe2+-Fe3+ self-exchange reaction but that the k of the reactant and product free energy curves are different for the reaction D0+A0→D1-+A1+. However, the fluctuations sampled in these simulations were not large enough to reach the activation barrier region, which was thus treated either by umbrella sampling or by parabolic extrapolation. Here, we present free energy curves calculated from a simple model of ionic solvation developed in an earlier paper by Hyun, Babu, and Ichiye, which we refer to here as the HBI model. The HBI model describes the nonlinearity of the solvent response due to the orientation of polar solvent molecules. Since it is a continuum model, it may be considered the first-order nonlinear correction to the linear response Born model. Moreover, in the limit of zero charge or infinite radius, the Born model and the Marcus relations are recovered. Here, the full free energy curves are calculated using analytic expressions from the HBI model. The HBI reactant and product curves have different k for D0+A0→D1-+A1+ as in the simulations, but examining the full curves shows they are nonparabolic due to the nonlinear response of the solvent. On the other hand, the HBI curves are close to parabolic for the Fe2+-Fe3+ reaction, also in agreement with simulations, while those for another self-exchange reaction D0-A1+ show greater deviations from parabolic behavior than the Fe2+-Fe3+ reaction. This indicates that transitions from neutral to charged species will have the largest deviations. Thus, the second moment of the polarization is shown to be a measure of the deviation from Marcus

  19. Exploring storm time ring current formation and response on the energy input

    NASA Astrophysics Data System (ADS)

    Ilie, Raluca

    While extensive research has been made over the last decades regarding the storm-time dynamics, there are still unanswered questions regarding the ring current formation and plasmasphere evolution, specifically about the ring current response on the energy input. Large-scale data analysis and global magnetospheric simulations provide complementary alternatives for exploring highly complex coupling of the solar wind-ionosphere-magnetosphere system. Superposed Epoch analysis of intense storms data suggests that a distinct time stamp is needed in order to resolve certain solar wind features. However, when it conies to hot proton at geosynchronous orbit, the choice of reference time primarily matters to accurately describe the size of peaks, while the presence and time evolution is unaltered by it. Examination of the role the transient spikes in the solar wind parameters play in the development of magnetic storms, reveals that changes in the energy input produce a nonlinear response of the inner magnetosphere. While initial increases in the energy input enhance the magnetospheric response, as the power transferred to the system is increased, the growth of the ring current is stalled and a saturation limits sets in. A threshold in the energy input is necessary for the ring current to develop, while the short time scale fluctuations in the solar wind parameters did not have a significant contribution. This implies the existence of an internal feedback mechanism as the magnetosphere acts as a low-pass filter of the IMF, limiting the energy flow in the magnetosphere. Further, the main characteristic in determining IMF Bz fluctuation periodicity transfer of solar wind mass and energy to the inner magnetosphere, is the peak signal to noise ratio in the power spectrum of the input parameter, suggesting that a ratio of 10 is needed in order to trigger a similar periodicity in the magnetosphere response. Theoretical and numerical modifications to an inner magnetosphere model

  20. Analytic model of energy-absorption response functions in compound X-ray detector materials.

    PubMed

    Yun, Seungman; Kim, Ho Kyung; Youn, Hanbean; Tanguay, Jesse; Cunningham, Ian A

    2013-10-01

    The absorbed energy distribution (AED) in X-ray imaging detectors is an important factor that affects both energy resolution and image quality through the Swank factor and detective quantum efficiency. In the diagnostic energy range (20-140 keV), escape of characteristic photons following photoelectric absorption and Compton scatter photons are primary sources of absorbed-energy dispersion in X-ray detectors. In this paper, we describe the development of an analytic model of the AED in compound X-ray detector materials, based on the cascaded-systems approach, that includes the effects of escape and reabsorption of characteristic and Compton-scatter photons. We derive analytic expressions for both semi-infinite slab and pixel geometries and validate our approach by Monte Carlo simulations. The analytic model provides the energy-dependent X-ray response function of arbitrary compound materials without time-consuming Monte Carlo simulations. We believe this model will be useful for correcting spectral distortion artifacts commonly observed in photon-counting applications and optimal design and development of novel X-ray detectors.

  1. Response of corn markets to climate volatility under alternative energy futures

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; Hertel, Thomas W.; Scherer, Martin; Verma, Monika

    2012-07-01

    Recent price spikes have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades. However, commodity price volatility is also influenced by other factors, which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the United States, which causes US corn price volatility to increase sharply in response to global warming projected to occur over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages and climate change.

  2. Response of corn markets to climate volatility under alternative energy futures.

    PubMed

    Diffenbaugh, Noah S; Hertel, Thomas W; Scherer, Martin; Verma, Monika

    2012-07-01

    Recent price spikes(1,2) have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades(3,4). However, commodity price volatility is also influenced by other factors(5,6), which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change.

  3. Change in energy expenditure and physical activity in response to aerobic and resistance exercise programs.

    PubMed

    Drenowatz, Clemens; Grieve, George L; DeMello, Madison M

    2015-01-01

    Exercise is considered an important component of a healthy lifestyle but there remains controversy on effects of exercise on non-exercise physical activity (PA). The present study examined the prospective association of aerobic and resistance exercise with total daily energy expenditure and PA in previously sedentary, young men. Nine men (27.0 ± 3.3 years) completed two 16-week exercise programs (3 exercise sessions per week) of aerobic and resistance exercise separated by a minimum of 6 weeks in random order. Energy expenditure and PA were measured with the SenseWear Mini Armband prior to each intervention as well as during week 1, week 8 and week 16 of the aerobic and resistance exercise program. Body composition was measured via dual x-ray absorptiometry. Body composition did not change in response to either exercise intervention. Total daily energy expenditure on exercise days increased by 443 ± 126 kcal/d and 239 ± 152 kcal/d for aerobic and resistance exercise, respectively (p < 0.01). Non-exercise moderate-to-vigorous PA, however, decreased on aerobic exercise days (-148 ± 161 kcal/d; p = 0.03). There was no change in total daily energy expenditure and PA on non-exercise days with aerobic exercise while resistance exercise was associated with an increase in moderate-to-vigorous PA during non-exercise days (216 ± 178 kcal/d, p = 0.01). Results of the present study suggest a compensatory reduction in PA in response to aerobic exercise. Resistance exercise, on the other hand, appears to facilitate non-exercise PA, particularly on non-exercise days, which may lead to more sustainable adaptations in response to an exercise program.

  4. Satiety responsiveness in toddlerhood predicts energy intake and weight status at four years of age.

    PubMed

    Mallan, Kimberley M; Nambiar, Smita; Magarey, Anthea M; Daniels, Lynne A

    2014-03-01

    The aim of this study was to examine whether maternal-report of child eating behaviour at two years predicted self-regulation of energy intake and weight status at four years. Using an 'eating in the absence of hunger' paradigm, children's energy intake (kJ) from a semi-standardized lunch meal and a standardized selection of snacks were measured. Participants were 37 mother-child dyads (16 boys, Median child age=4.4years, Inter-quartile range=3.7-4.5years) recruited from an existing longitudinal study (NOURISH randomised controlled trial). All participants were tested in their own home. Details of maternal characteristics, child eating behaviours (at age two years) reported by mothers on a validated questionnaire, and measured child height and weight (at age 3.5-4years) were sourced from existing NOURISH trial data. Correlation and partial correlation analyses were used to examine longitudinal relationships. Satiety responsiveness and Slowness in eating were inversely associated with energy intake of the lunch meal (partial r=-.40, p=.023, and partial r=-.40, p=.023) and the former was also negatively associated with BMI-for-age Z score (partial r=-.42, p=.015). Food responsiveness and Enjoyment of food were not related to energy intake or BMI Z score. None of the eating behaviours were significantly associated with energy intake of the snacks (i.e., eating in the absence of hunger). The small and predominantly 'healthy weight' sample of children may have limited the ability to detect some hypothesized effects. Nevertheless, the study provides evidence for the predictive validity of two eating behaviours and future research with a larger and more diverse sample should be able to better evaluate the predictive validity of other children's early eating behaviour styles.

  5. Program Plan for Renewable Energy generation of electricity. Response to Section 2111 of the Energy Policy Act of 1992

    SciTech Connect

    1994-12-01

    A 5-Year Program Plan for providing cost-effective options for generating electricity from renewable energy sources is presented by the US Department of Energy Office of Energy Efficiency and Renewable Energy. The document covers the Utility-Sector situation, scope of the program, specific generating technologies, and implementation of the program plan.

  6. Automated Demand Response Approaches to Household Energy Management in a Smart Grid Environment

    NASA Astrophysics Data System (ADS)

    Adika, Christopher Otieno

    The advancement of renewable energy technologies and the deregulation of the electricity market have seen the emergence of Demand response (DR) programs. Demand response is a cost-effective load management strategy which enables the electricity suppliers to maintain the integrity of the power grid during high peak periods, when the customers' electrical load is high. DR programs are designed to influence electricity users to alter their normal consumption patterns by offering them financial incentives. A well designed incentive-based DR scheme that offer competitive electricity pricing structure can result in numerous benefits to all the players in the electricity market. Lower power consumption during peak periods will significantly enhance the robustness of constrained networks by reducing the level of power of generation and transmission infrastructure needed to provide electric service. Therefore, this will ease the pressure of building new power networks as we avoiding costly energy procurements thereby translating into huge financial savings for the power suppliers. Peak load reduction will also reduce the inconveniences suffered by end users as a result of brownouts or blackouts. Demand response will also drastically lower the price peaks associated with wholesale markets. This will in turn reduce the electricity costs and risks for all the players in the energy market. Additionally, DR is environmentally friendly since it enhances the flexibility of the power grid through accommodation of renewable energy resources. Despite its many benefits, DR has not been embraced by most electricity networks. This can be attributed to the fact that the existing programs do not provide enough incentives to the end users and, therefore, most electricity users are not willing to participate in them. To overcome these challenges, most utilities are coming up with innovative strategies that will be more attractive to their customers. Thus, this dissertation presents various

  7. Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow

    NASA Astrophysics Data System (ADS)

    Akcabay, Deniz Tolga; Young, Yin Lu

    2012-05-01

    Electroactive polymers such as piezoelectric elements are able to generate electric potential differences from induced mechanical deformations. They can be used to build devices to harvest ambient energy from natural flow-induced deformations, e.g., as flapping flags subject to flowing wind or artificial seaweed subject to waves or underwater currents. The objectives of this study are to (1) investigate the transient hydroelastic response and energy harvesting potential of flexible piezoelectric beams fluttering in incompressible, viscous flow, and (2) identify critical non-dimensional parameters that govern the response of piezoelectric beams fluttering in viscous flow. The fluid-structure interaction response is simulated using an immersed boundary approach coupled with a finite volume solver for incompressible, viscous flow. The effects of large beam deformation, membrane tension, and coupled electromechanical responses are all considered. Validation studies are shown for the motion of a flexible filament in uniform flow, and for a piezoelectric beam subject to base vibration. The predicted flutter velocities and frequencies also compared well with published experimental and numerical data over a range of Reynolds numbers for varying fluid and solid combinations. The results showed that for a heavy beam in a light fluid (i.e., high βρ regime), flutter incepts at a lower critical speed with a lower reduced frequency than for a light beam in a heavy fluid (i.e., low βρ regime). In the high βρ regime, flutter develops at the second mode and is only realized when the fluid inertial forces are in balance with the solid elastic restoring forces, which leads to large amplitude oscillations and complex wake patterns; the flutter speed is practically independent of the Reynolds number (Re) and solid to fluid mass ratio (βρ), because the response is dominated by the solid inertial forces. In the low βρ regime, fluid inertial forces dominate, flutter develops at

  8. Energy Consumption and Control Response Evaluations of AODV Routing in WSANs for Building-Temperature Control

    PubMed Central

    Booranawong, Apidet; Teerapabkajorndet, Wiklom; Limsakul, Chusak

    2013-01-01

    The main objective of this paper is to investigate the effects of routing protocols on wireless sensor and actuator networks (WSANs), focusing on the control system response and the energy consumption of nodes in a network. We demonstrate that routing algorithms designed without considering the relationship between communication and control cannot be appropriately used in wireless networked control applications. For this purpose, an ad-hoc on-demand distance vector (AODV) routing, an IEEE 802.15.4, and a building-temperature control system are employed for this exploration. The findings from our scenarios show that the AODV routing can select a path with a high traffic load for data transmission. It takes a long time before deciding to change a new route although it experiences the unsuccessful transmission of packets. As a result, the desirable control target cannot be achieved in time, and nodes consume more energy due to frequent packet collisions and retransmissions. Consequently, we propose a simple routing solution to alleviate these research problems by modifying the original AODV routing protocol. The delay-threshold is considered to avoid any congested connection during routing procedures. The simulation results demonstrate that our solution can be appropriately applied in WSANs. Both the energy consumption and the control system response are improved. PMID:23807689

  9. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  10. Comparison of New Methods for Assessing Community Response to High Energy Impulsive Sounds

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1996-01-01

    The latest CHABA Working Group to have reviewed published information about the effects of high energy impulsive sounds (such as sonic booms) on communities has recommended abandonment of the dosage-response relationship identified by its predecessor in favor of two alternate prediction method. Both of the new assessment methods continue to rely on C-weighted measurements of impulsive sounds One of the two assessment methods retains the standard assumptions of the 'equal energy hypothesis' (the notion that annoyance is governed simply by the product of level, duration, and number noise events), and further assumes that the rate of growth of the prevalence of annoyance is proportional to the rate of growth of loudness with level. The other assessment method, however, assumes a level dependent (non-equal energy) summation of the C-weighted sound exposure levels of individual impulsive events. Since predictions of the second method are distribution-dependent, they are not readily represents graphically in the form of a single dosage-response function. The effects on annoyance predictions of variance in distributions of CSEL values of impulsive sounds are explored in this presentation.

  11. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral

    NASA Astrophysics Data System (ADS)

    Sheridan, C.; Grosjean, Ph.; Leblud, J.; Palmer, C. V.; Kushmaro, A.; Eeckhaut, I.

    2014-12-01

    High sedimentation rates have been linked to reduced coral health within multiple systems; however, whether this is a direct result of compromised coral immunity has not been previously investigated. The potential effects of sedimentation on immunity of the hard coral Montipora patula were examined by comparing physiological responses of coral fragments inoculated with sterilized marine sediments and those under control conditions. Sediments were collected from terrestrial runoff-affected reefs in SW Madagascar and applied cyclically for a total of 24 h at a rate observed during precipitation-induced sedimentation events. Coral health was determined 24 h after the onset of the sedimentation stress through measuring metabolic proxies of O2 budget and lipid ratios. Immune response of the melanin synthesis pathway was measured by quantifying phenoloxidase activity and melanin deposits. Sedimentation induced both immune and metabolic responses in M. patula. Both phenoloxidase activity and melanin deposition were significantly higher in the sediment treatment compared to controls, indicating an induced immune response. Sediment-treated corals also showed a tendency towards increased respiration (during the night) and decreased photosynthesis (during the day) and a significant depletion of energy reserves as compared to controls. These data highlight that short-term (24 h) sedimentation, free of live microorganisms, compromises the health of M. patula. The energetically costly immune response, potentially elicited by residual endotoxins and other inflammatory particles associated with the sterile sediments, likely contributes to the energy depletion. Overall, exposure to sedimentation adversely affects coral health and continued exposure may lead to resource depletion and an increased susceptibility to disease.

  12. Relative response of the alanine dosimeter to medium energy x-rays.

    PubMed

    Anton, M; Büermann, L

    2015-08-07

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  13. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.

    2013-03-01

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt{s} = 900 {GeV} and 7 TeV collected during 2009 and 2010. Then, using the decay of K s and Λ particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5 % for central isolated hadrons and 1-3 % for the final calorimeter jet energy scale.

  14. Energy response of GR-200A thermoluminescence dosemeters to 60Co and to monoenergetic synchrotron radiation in the energy range 28-40 keV.

    PubMed

    Emiro, F; Di Lillo, F; Mettivier, G; Fedon, C; Longo, R; Tromba, G; Russo, P

    2016-01-01

    The response of LiF:Mg,Cu,P thermoluminescence dosemeters (type GR-200A) to monoenergetic radiation of energy 28, 35, 38 and 40 keV was evaluated with respect to irradiation with a calibrated (60)Co gamma-ray source. High-precision measurements of the relative air kerma response performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility (Trieste, Italy) showed a significant deviation of the average response to low-energy X-rays from that to (60)Co, with an over-response from 6 % (at 28 keV) to 22 % (at 40 keV). These data are not consistent with literature data for these dosemeters, where model predictions gave deviation from unity of the relative air kerma response of about 10 %. The authors conclude for the need of additional determinations of the low-energy relative response of GR-200A dosemeters, covering a wider range of monoenergetic energies sampled at a fine energy step, as planned in future experiments by their group at the ELETTRA facility.

  15. Dosimetric response of radiochromic films to protons of low energies in the Bragg peak region

    NASA Astrophysics Data System (ADS)

    Battaglia, M. C.; Schardt, D.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Quesada, J. M.; Lallena, A. M.; Miras, H.; Guirado, D.

    2016-06-01

    One of the major advantages of proton or ion beams, applied in cancer treatment, is their excellent depth-dose profile exhibiting a low dose in the entrance channel and a distinct dose maximum (Bragg peak) near the end of range in tissue. In the region of the Bragg peak, where the protons or ions are almost stopped, experimental studies with low-energy particle beams and thin biological samples may contribute valuable information on the biological effectiveness in the stopping region. Such experiments, however, require beam optimization and special dosimetry techniques for determining the absolute dose and dose homogeneity for very thin biological samples. At the National Centre of Accelerators in Seville, one of the beam lines at the 3 MV Tandem Accelerator was equipped with a scattering device, a special parallel-plate ionization chamber with very thin electrode foils and target holders for cell cultures. In this work, we present the calibration in absolute dose of EBT3 films [Gafchromic radiotherapy films, http://www.ashland.com/products/gafchromic-radiotherapy-films] for proton energies in the region of the Bragg peak, where the linear energy transfer increases and becomes more significant for radiobiology studies, as well as the response of the EBT3 films for different proton energy values. To irradiate the films in the Bragg peak region, the energy of the beam was degraded passively, by interposing Mylar foils of variable thickness to place the Bragg peak inside the active layer of the film. The results obtained for the beam degraded in Mylar foils are compared with the dose calculated by means of the measurement of the beam fluence with an ionization chamber and the energy loss predicted by srim2008 code.

  16. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    SciTech Connect

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  17. Beneficial physiological and performance responses to a month of restricted energy intake in healthy overweight women.

    PubMed

    Buffenstein, R; Karklin, A; Driver, H S

    2000-02-01

    Changes in mood, performance, cortisol, and physiological variables with a month-long energy restricting diet (3.347 MJ/day) were studied in nine overweight (mean mass 71.2 +/- 8 kg; body mass index 26.1 +/- 2.8 kg/m(2)), healthy premenopausal (age 20-36 years) women. Measurements were taken in the 2 weeks before the diet (baseline) and again in the final 2 weeks of the diet to attenuate menstrual cycle differences. A reduction in energy intake and concomitant weight loss (5.80 +/- 1.65 kg) were accompanied by a significant decline in systolic blood pressure (5.4%), heart rate (7.6%), and cortisol concentration (13.6%). Fatigue and vigour on the Profile of Mood States (POMS) questionnaire were adversely affected; however, subjective assessments of mood, concentration, temperature sensitivity, appetite, and sleep quality using visual analogue scales, were not significantly altered during the month-long period of energy restriction. Motor performance, as assessed by hand-eye coordination, improved with both a reduction in mean reaction time and improved accuracy in response to visual stimuli. The very low-energy diet appeared to be neither physiologically nor psychologically stressful. Beneficial effects were evident with a reduction in BMI, reduced risk of cardiovascular stress, improved motor performance, and a decline in physiological stress with dieting success.

  18. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  19. Linear-response theory for Mukherjee's multireference coupled-cluster method: excitation energies.

    PubMed

    Jagau, Thomas-C; Gauss, Jürgen

    2012-07-28

    The recently presented linear-response function for Mukherjee's multireference coupled-cluster method (Mk-MRCC) [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044115 (2012)] is employed to determine vertical excitation energies within the singles and doubles approximation (Mk-MRCCSD-LR) for ozone as well as for o-benzyne, m-benzyne, and p-benzyne, which display increasing multireference character in their ground states. In order to assess the impact of a multireference ground-state wavefunction on excitation energies, we compare all our results to those obtained at the single-reference coupled-cluster level of theory within the singles and doubles as well as within the singles, doubles, and triples approximation. Special attention is paid to the artificial splitting of certain excited states which arises from the redundancy intrinsic to Mk-MRCC theory and hinders the straightforward application of the Mk-MRCC-LR method.

  20. Measurement of Low Energy Electronic Recoil Response and Electronic/Nuclear Recoils Discrimination in XENON100

    NASA Astrophysics Data System (ADS)

    Ye, Jingqiang; Xenon Collaboration

    2017-01-01

    The XENON100 detector uses liquid xenon time projection chamber to search for nuclear recoils(NR) caused by hypothetical Weakly Interacting Massive Particles (WIMPs). The backgrounds are mostly electronic recoils(ER), thus it's crucial to distinguish NR from ER. Using high statistical calibration data from tritiated methane, AmBe and other sources in XENON100, the ER/NR discrimination under different electric fields are measured. The Photon yield and recombination fluctuation of low energy electronic recoils under different fields will also be presented and compared to results from NEST and other experiments, which is crucial to understanding the response of liquid xenon detectors in the energy regime of searching dark matter.

  1. Increased energy expenditure by a seabird in response to higher food abundance

    USGS Publications Warehouse

    Jodice, P.G.R.; Roby, D.D.; Suryan, R.M.; Irons, D.B.; Turco, K.R.; Brown, E.D.; Thedinga, J.F.; Visser, G. Henk

    2006-01-01

    Variability in forage fish abundance strongly affects seabird behavior and reproductive success, although details of this relationship are unclear. During 1997 and 1998, we measured (1) daily energy expenditure (DEE) of 80 parent black-legged kittiwakes Rissa tridactyla at 2 colonies in Prince William Sound, Alaska (North Icy Bay and Shoup Bay), (2) abundance of surface-schooling forage fishes within the foraging range of each colony, and (3) diet composition, energy delivery rates to nestlings, and reproductive success of kittiwakes at these same colonies. Female DEE was highest at North Icy Bay in 1998, while male DEE did not differ by colony year. Abundances of Pacific herring Clupea pallasi and sand lance Ammodytes hexapterus were highest near North Icy Bay in 1998 and nearly egual in density, although Age 1+ herring comprised the majority of the diet there. Energy delivery rates to nestlings, nestling growth rates, and productivity were also highest at North Icy Bay in 1998. We suggest that female kittiwakes responded to the increased abundance of Age 1+ herring near North Icy Bay in 1998 by increasing their DEE, which in turn positively affected reproductive success. Given that adult kittiwakes have been shown to suffer decreased survival as a response to increased energy expenditure during brood rearing, the positive correlation we observed between increased abundance of a high quality food source, parental effort, and productivity is consistent with maximizing lifetime reproductive success. The lack of a response in male DEE suggests that brood-rearing roles in kittiwakes differ between genders. ?? Inter-Research 2006.

  2. Nanotube liquid crystal elastomers: photomechanical response and flexible energy conversion of layered polymer composites

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoming; King, Benjamin C.; Loomis, James; Campo, Eva M.; Hegseth, John; Cohn, Robert W.; Terentjev, Eugene; Panchapakesan, Balaji

    2014-09-01

    Elastomeric composites based on nanotube liquid crystals (LCs) that preserve the internal orientation of nanotubes could lead to anisotropic physical properties and flexible energy conversion. Using a simple vacuum filtration technique of fabricating nanotube LC films and utilizing a transfer process to poly (dimethyl) siloxane wherein the LC arrangement is preserved, here we demonstrate unique and reversible photomechanical response of this layered composite to excitation by near infra-red (NIR) light at ultra-low nanotube mass fractions. On excitation by NIR photons, with application of small or large pre-strains, significant expansion or contraction of the sample occurs, respectively, that is continuously reversible and three orders of magnitude larger than in pristine polymer. Schlieren textures were noted in these LC composites confirming long range macroscopic nematic order of nanotubes within the composites. Order parameters of LC films ranged from Soptical = 0.51-0.58 from dichroic measurements. Film concentrations, elastic modulus and photomechanical stress were all seen to be related to the nematic order parameter. For the same nanotube concentration, the photomechanical stress was almost three times larger for the self-assembled LC nanotube actuator compared to actuator based on randomly oriented carbon nanotubes. Investigation into the kinetics of photomechanical actuation showed variation in stretching exponent β with pre-strains, concentration and orientation of nanotubes. Maximum photomechanical stress of ˜0.5 MPa W-1 and energy conversion of ˜0.0045% was achieved for these layered composites. The combination of properties, namely, optical anisotropy, reversible mechanical response to NIR excitation and flexible energy conversion all in one system accompanied with low cost makes nanotube LC elastomers important for soft photochromic actuation, energy conversion and photo-origami applications.

  3. Nanotube liquid crystal elastomers: photomechanical response and flexible energy conversion of layered polymer composites.

    PubMed

    Fan, Xiaoming; King, Benjamin C; Loomis, James; Campo, Eva M; Hegseth, John; Cohn, Robert W; Terentjev, Eugene; Panchapakesan, Balaji

    2014-09-05

    Elastomeric composites based on nanotube liquid crystals (LCs) that preserve the internal orientation of nanotubes could lead to anisotropic physical properties and flexible energy conversion. Using a simple vacuum filtration technique of fabricating nanotube LC films and utilizing a transfer process to poly (dimethyl) siloxane wherein the LC arrangement is preserved, here we demonstrate unique and reversible photomechanical response of this layered composite to excitation by near infra-red (NIR) light at ultra-low nanotube mass fractions. On excitation by NIR photons, with application of small or large pre-strains, significant expansion or contraction of the sample occurs, respectively, that is continuously reversible and three orders of magnitude larger than in pristine polymer. Schlieren textures were noted in these LC composites confirming long range macroscopic nematic order of nanotubes within the composites. Order parameters of LC films ranged from S(optical) = 0.51-0.58 from dichroic measurements. Film concentrations, elastic modulus and photomechanical stress were all seen to be related to the nematic order parameter. For the same nanotube concentration, the photomechanical stress was almost three times larger for the self-assembled LC nanotube actuator compared to actuator based on randomly oriented carbon nanotubes. Investigation into the kinetics of photomechanical actuation showed variation in stretching exponent β with pre-strains, concentration and orientation of nanotubes. Maximum photomechanical stress of ∼ 0.5 MPa W(-1) and energy conversion of ∼ 0.0045% was achieved for these layered composites. The combination of properties, namely, optical anisotropy, reversible mechanical response to NIR excitation and flexible energy conversion all in one system accompanied with low cost makes nanotube LC elastomers important for soft photochromic actuation, energy conversion and photo-origami applications.

  4. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    NASA Astrophysics Data System (ADS)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  5. Why energy from waste incineration is an essential component of environmentally responsible waste management

    SciTech Connect

    Porteous, A. . E-mail: s.j.lumbers@open.ac.uk

    2005-07-01

    This paper outlines the key factors involved in adopting energy from waste incineration (EfWI) as part of a waste management strategy. Incineration means all forms of controlled direct combustion of waste. 'Emerging' technologies, such as gasification, are, in the author's view, 5 to 10 years from proven commercial application. The strict combustion regimen employed and the emissions therefrom are detailed. It is shown that EfWI merits consideration as an integral part of an environmentally responsible and sustainable waste management strategy, where suitable quantities of waste are available.

  6. Study on Response Function of Organic Liquid Scintillator for High-Energy Neutrons

    NASA Astrophysics Data System (ADS)

    Satoh, Daiki; Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Takada, Masashi; Ishibashi, Kenji

    2005-05-01

    Response functions of liquid organic scintillator for neutrons up to 800 MeV have been measured at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS). 800-MeV/u Si ions and 400-MeV/u C ions bombarded a thick carbon target to produce neutrons. The kinetic energies of emitted neutrons were determined by the time-of-flight (TOF) method. Light output for neutrons was evaluated by eliminating events due to gamma-rays and charged particles. The measured response functions were compared with calculations using SCINFUL-QMD and CECIL codes. It was found that SCINFUL-QMD reproduced our experimental data adequately.

  7. Low energy x-ray response of Ge detectors with amorphous Ge entrance contacts

    SciTech Connect

    Luke, P.N.; Rossington, C.S.; Wesela, M.F.

    1993-10-01

    The low energy x-ray response of GI detectors with amorphous GI entrance contacts has been evaluated. The spectral background due to near contact incomplete charge collection was found to consist of two components: a low level component which is insensitive to applied voltage and a high level step-like component which is voltage dependent. At high operating voltages, the high level component can be completely suppressed, resulting in background levels which are much lower than those previously observed using GI detectors with Pd surface barrier or B ion implanted contacts, and which also compare favorably to those obtained with Si(Li) x-ray detectors. The response of these detectors to {sup 55}Fe and 1.77 keV x-rays is shown. A qualitative explanation of the origins of the observed background components is presented.

  8. Physical origin of the high energy optical response of three dimensional photonic crystals.

    PubMed

    Dorado, Luis A; Depine, Ricardo A; Lozano, Gabriel; Míguez, Hernán

    2007-12-24

    The physical origin of the optical response observed in three-dimensional photonic crystals when the photon wavelength is equal or lower than the lattice parameter still remains unsatisfactorily explained and is the subject of an intense and interesting debate. Herein we demonstrate for the first time that all optical spectra features in this high energy region of photonic crystals arise from electromagnetic resonances within the ordered array, modified by the interplay between these resonances with the opening of diffraction channels, the presence of imperfections and finite size effects. All these four phenomena are taken into account in our theoretical approach to the problem, which allows us to provide a full description of the observed optical response based on fundamental phenomena as well as to attain fair fittings of experimental results.

  9. SirT1 Regulates Energy Metabolism and Response to Caloric Restriction in Mice

    PubMed Central

    Boily, Gino; Seifert, Erin L.; Bevilacqua, Lisa; He, Xiao Hong; Sabourin, Guillaume; Estey, Carmen; Moffat, Cynthia; Crawford, Sean; Saliba, Sarah; Jardine, Karen; Xuan, Jian; Evans, Meredith; Harper, Mary-Ellen; McBurney, Michael W.

    2008-01-01

    The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction. PMID:18335035

  10. Gonadal transcriptome alterations in response to dietary energy intake: sensing the reproductive environment.

    PubMed

    Martin, Bronwen; Pearson, Michele; Brenneman, Randall; Golden, Erin; Wood, William; Prabhu, Vinayakumar; Becker, Kevin G; Mattson, Mark P; Maudsley, Stuart

    2009-01-01

    Reproductive capacity and nutritional input are tightly linked and animals' specific responses to alterations in their physical environment and food availability are crucial to ensuring sustainability of that species. We have assessed how alterations in dietary energy intake (both reductions and excess), as well as in food availability, via intermittent fasting (IF), affect the gonadal transcriptome of both male and female rats. Starting at four months of age, male and female rats were subjected to a 20% or 40% caloric restriction (CR) dietary regime, every other day feeding (IF) or a high fat-high glucose (HFG) diet for six months. The transcriptional activity of the gonadal response to these variations in dietary energy intake was assessed at the individual gene level as well as at the parametric functional level. At the individual gene level, the females showed a higher degree of coherency in gonadal gene alterations to CR than the males. The gonadal transcriptional and hormonal response to IF was also significantly different between the male and female rats. The number of genes significantly regulated by IF in male animals was almost 5 times greater than in the females. These IF males also showed the highest testosterone to estrogen ratio in their plasma. Our data show that at the level of gonadal gene responses, the male rats on the IF regime adapt to their environment in a manner that is expected to increase the probability of eventual fertilization of females that the males predict are likely to be sub-fertile due to their perception of a food deficient environment.

  11. Application of the Most Likely Extreme Response Method for Wave Energy Converters: Preprint

    SciTech Connect

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-07-01

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  12. Protein-energy malnutrition decreases immune response to Leishmania chagasi vaccine in BALB/c mice.

    PubMed

    Malafaia, G; Serafim, T D; Silva, M E; Pedrosa, M L; Rezende, S A

    2009-01-01

    Protein-energy malnutrition and visceral leishmaniasis are important problems of public health affecting millions of people worldwide. Vaccine efficacy depends on the ability of individuals to mount an appropriate immune response and may be inadequate in malnourished persons. In this study, we used a mouse model to verify the effect of combined protein, iron and zinc deficiency in the response to Leishmania chagasi antigen vaccine. BALB/c mice were fed with a low-protein (3% casein), iron- and zinc-deficient diet or control diet (14% casein and sufficient in zinc and iron). After malnutrition establishment, mice were vaccinated subcutaneously with L. chagasi Ag plus saponin. After vaccination, mice were nutritionally repleted and then all mice were challenged with L. chagasi promastigotes. Four weeks later, liver and spleen parasite load was evaluated. Our data show that vaccine caused a significant reduction in parasite load in spleen and liver from mice fed with control diet. However, splenic parasitism was increased in mice fed with deficient diet and this diet caused a reduction in splenocyte IFN-gamma production in response to the vaccine in repleted mice. These data suggest that malnutrition may alter immune response to L. chagasi vaccine in BALB/c model of infection, even after nutritional repletion.

  13. Application of the Most Likely Extreme Response Method for Wave Energy Converters

    SciTech Connect

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-06-24

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  14. Improving the energy response of external beam therapy (EBT) GafChromic{sup TM} dosimetry films at low energies (≤100 keV)

    SciTech Connect

    Bekerat, H. Devic, S.; DeBlois, F.; Singh, K.; Sarfehnia, A.; Seuntjens, J.; Shih, Shelley; Yu, Xiang; Lewis, D.

    2014-02-15

    Purpose: Purpose of this work is to investigate the effects of varying the active layer composition of external beam therapy (EBT) GafChromic{sup TM} films on the energy dependence of the film, as well as try to develop a new prototype with more uniform energy response at low photon energies (⩽100 keV). Methods: First, the overall energy response (S{sub AD,} {sub W}(Q)) of different commercial EBT type film models that represent the three different generations produced to date, i.e., EBT, EBT2, and EBT3, was investigated. Pieces of each film model were irradiated to a fixed dose of 2 Gy to water for a wide range of beam qualities and the corresponding S{sub AD,} {sub W}(Q) was measured using a flatbed document scanner. Furthermore, the DOSRZnrc Monte Carlo code was used to determine the absorbed dose to water energy dependence of the film, f(Q). Moreover, the intrinsic energy dependence, k{sub bq}(Q), for each film model was evaluated using the corresponding S{sub AD,} {sub W}(Q) and f(Q). In the second part of this study, the authors investigated the effects of changing the chemical composition of the active layer on S{sub AD,} {sub W}(Q). Finally, based on these results, the film manufacturer fabricated several film prototypes and the authors evaluated their S{sub AD,} {sub W}(Q). Results: The commercial EBT film model shows an under response at all energies below 100 keV reaching 39% ± 4% at about 20 keV. The commercial EBT2 and EBT3 film models show an under response of about 27% ± 4% at 20 keV and an over response of about 16% ± 4% at 40 keV.S{sub AD,} {sub W}(Q) of the three commercial film models at low energies show strong correlation with the corresponding f{sup −1}(Q) curves. The commercial EBT3 model with 4% Cl in the active layer shows under response of 22% ± 4% at 20 keV and 6% ± 4% at about 40 keV. However, increasing the mass percent of chlorine makes the film more hygroscopic which may affect the stability of the film's readout. The

  15. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  16. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses.

    PubMed

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-11-23

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy.

  17. Amchitka Island, Alaska, Potential U.S. Department of Energy Site Responsibilities

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    1999-01-22

    This historical records review report concerns the activities of the US Atomic Energy Commission (AEC) at Amchitka Island, Alaska, over a period extending from 1942 to 1993. The report focuses on AEC activities resulting in known or suspected contamination of the island environment by nonradiological hazardous or toxic materials as discerned through historical records. In addition, the information from historical records was augmented by an August 1998 sampling event. Both the records review and sampling were conducted by IT Corporation on behalf of the US Department of Energy (DOE), the predecessor agency to the AEC. The intent of this investigation was to identify all potentially contaminated sites for which DOE may be responsible, wholly or partially, including all official sites of concern as recognized by the US Fish and Wildlife Service (USFWS). Additionally, potential data gaps that the DOE will need to fill to support the ecological and human health risk assessments performed were identified. A review of the available historical information regarding AEC's activities on Amchitka Island indicates that the DOE is potentially responsible for 11 sites identified by USFWS and an additional 10 sites that are not included in the USFWS database of sites of potential concern.

  18. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

    PubMed Central

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M.; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-01-01

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy. PMID:27886076

  19. Uncertainties in modeling and scaling in the prediction of fuel stored energy and thermal response

    SciTech Connect

    Wulff, W.

    1987-01-01

    The steady-state temperature distribution and the stored energy in nuclear fuel elements are computed by analytical methods and used to rank, in the order of importance, the effects on stored energy from statistical uncertainties in modeling parameters, in boundary and in operating conditions. An integral technique is used to calculate the transient fuel temperature and to estimate the uncertainties in predicting the fuel thermal response and the peak clad temperature during a large-break loss of coolant accident. The uncertainty analysis presented here is an important part of evaluating the applicability, the uncertainties and the scaling capabilities of computer codes for nuclear reactor safety analyses. The methods employed in this analysis merit general attention because of their simplicity. It is shown that the blowdown peak is dominated by fuel stored energy alone or, equivalently, by linear heating rate. Gap conductance, peaking factors and fuel thermal conductivity are the three most important fuel modeling parameters affecting peak clad temperature uncertainty. 26 refs., 10 figs., 6 tabs.

  20. Watershed response and land energy feedbacks under climate change depend upon groundwater.

    SciTech Connect

    Maxwell, R M; Kollet, S J

    2008-06-10

    Human induced climate change will have a significant impact on the hydrologic cycle, creating changes in fresh water resources, land cover, and feedbacks that are difficult to characterize, which makes it an issue of global importance. Previous studies have not included subsurface storage in climate change simulations and feedbacks. A variably-saturated groundwater flow model with integrated overland flow and land surface model processes is used to examine the interplay between coupled water and energy processes under climate change conditions. A case study from the Southern Great Plains (SGP) USA, an important agricultural region that is susceptible to drought, is used as the basis for three scenarios simulations using a modified atmospheric forcing dataset to reflect predicted effects due to human-induced climate change. These scenarios include an increase in the atmospheric temperature and variations in rainfall amount and are compared to the present-day climate case. Changes in shallow soil saturation and groundwater levels are quantified as well as the corresponding energy fluxes at the land surface. Here we show that groundwater and subsurface lateral flow processes are critical in understanding hydrologic response and energy feedbacks to climate change and that certain regions are more susceptible to changes in temperature, while others to changes in precipitation. This groundwater control is critical for understanding recharge and drought processes, possible under future climate conditions.

  1. Modelled contrast in the response of the surface energy balance during heatwaves for forest and grassland

    NASA Astrophysics Data System (ADS)

    Stap, Lennert; van den Hurk, Bart; Neggers, Roel; van Heerwaarden, Chiel

    2013-04-01

    Observations have shown that differences in surface energy fluxes over grasslands and forests are amplified during heat waves. The role of land atmosphere feedbacks in this process in still uncertain. In this study, we use a single-column model (SCM) to investigate the difference between forest and grassland in their energy response to heat waves. Three simulations for the period 2005-2011 were carried out: a control run using vegetation characteristics for Cabauw (the Netherlands), a run where the vegetation is changed to 100% forest, and a run with 100% short grass as vegetation. A surface evaporation tendency equation is used to analyse the impact of the land atmosphere feedbacks on evapotranspiration and sensible heat release under normal summer and heatwave conditions with excessive shortwave radiation. Land atmosphere feedbacks modify the contrast in surface energy fluxes between forest and grass, particularly during heat wave conditions. The surface resistance feedback has the largest positive impact, while boundary layer feedbacks generally tend to reduce the contrast. This resulted in higher air temperatures, that tend to evaporate less. In offline land surface model simulations the difference between forest and grassland during heat waves cannot be diagnosed adequately owing to the absence of boundary layer feedbacks.

  2. Energy harvesting from the discrete gust response of a piezoaeroelastic wing: Modeling and performance evaluation

    NASA Astrophysics Data System (ADS)

    Xiang, Jinwu; Wu, Yining; Li, Daochun

    2015-05-01

    The objective of this paper is to investigate energy harvesting from the unfavorable gust response of a piezoelectric wing. An aeroelectroelastic model is built for the evaluation and improvement of the harvesting performance. The structural model is built based on the Euler-Bernoulli beam theory. The unsteady aerodynamics, combined with 1-cosine gust load, are obtained from Jones' approximation of the Wagner function. The state-space equation of the aeroelectroelastic model is derived and solved numerically. The energy conversion efficiency and output density are defined to evaluate the harvesting performance. The effects of the sizes and location of the piezoelectric transducers, the load resistance in the external circuit, and the locations of the elastic axis and gravity center axis of the wing are studied, respectively. The results show that, under a given width of the transducers in chordwise direction, there are one thickness of the transducers corresponding to highest conversion efficiency and one smaller optimal value for the output density. The conversion efficiency has an approximate linear relationship with the width. As the transducers are placed at the wing root, a maximum conversion efficiency is reached under a certain length in the spanwise direction, whereas a smaller length helps reaching a larger output density. One optimal resistance is found to maximize the conversion efficiency. The rearward shift of either the elastic axis or gravity center axis improves the energy output while reducing the conversion efficiency.

  3. Disturbance of wildlife by outdoor winter recreation: allostatic stress response and altered activity-energy budgets.

    PubMed

    Arlettaz, Raphaël; Nusslé, Sébastien; Baltic, Marjana; Vogel, Peter; Palme, Rupert; Jenni-Eiermann, Susanne; Patthey, Patrick; Genoud, Michel

    2015-07-01

    Anthropogenic disturbance of wildlife is of growing conservation concern, but we lack comprehensive approaches of its multiple negative effects. We investigated several effects of disturbance by winter outdoor sports on free-ranging alpine Black Grouse by simultaneously measuring their physiological and behavioral responses. We experimentally flushed radio-tagged Black Grouse from their snow burrows, once a day, during several successive days, and quantified their stress hormone levels (corticosterone metabolites in feces [FCM] collected. from individual snow burrows). We also measured feeding time allocation (activity budgets reconstructed from radio-emitted signals) in response to anthropogenic disturbance. Finally, we estimated the related extra energy expenditure that may be incurred: based on activity budgets, energy expenditure was modeled from measures of metabolism obtained from captive birds subjected to different ambient temperatures. The pattern of FCM excretion indicated the existence of a funneling effect as predicted by the allostatic theory of stress: initial stress hormone concentrations showed a wide inter-individual variation, which decreased during experimental flushing. Individuals with low initial pre-flushing FCM values augmented their concentration, while individuals with high initial FCM values lowered it. Experimental disturbance resulted in an extension of feeding duration during the following evening foraging bout, confirming the prediction that Black Grouse must compensate for the extra energy expenditure elicited by human disturbance. Birds with low initial baseline FCM concentrations were those that spent more time foraging. These FCM excretion and foraging patterns suggest that birds with high initial FCM concentrations might have been experiencing a situation of allostatic overload. The energetic model provides quantitative estimates of extra energy expenditure. A longer exposure to ambient temperatures outside the shelter of snow

  4. Geomorphically Effective Energy Expenditure for Quantifying Channel Responses to Extreme Floods

    NASA Astrophysics Data System (ADS)

    Amponsah, William; Righini, Margherita; Wohl, Ellen E.; Borga, Marco; Marchi, Lorenzo; Rathburn, Sara L.; Surian, Nicola; Zoccatelli, Davide

    2016-04-01

    Flash floods are characterized by strong spatio-temporal rainfall variability and therefore show variations in energy expenditure and associated geomorphic impacts that depend on geological controls on channel geometry and sediment characteristics, as well as on variations in flood intensity. Geomorphic modification is expected to occur in river channels when driving forces (i.e., hydraulic and abrasive forces of water and sediment acting on the channel) exceed threshold of resisting forces (i.e., the ability of channel boundaries to remain unchanged by the passage of water and sediments). However, these forces that determine the capacity of floods to modify existing channel configuration are extremely difficult to quantify. Geomorphic impacts or hazards usually take the form of erosional and depositional modification of the pre-flood channel and valley geometry. A central question in hydrogeomorphology relates to why flash floods of similar magnitudes and intensities sometimes produce dissimilar geomorphic results? In fact, some less magnitude floods in terms of discharge per unit of drainage area have been found to produce major geomorphic damage than some high magnitude events. Furthermore, the use of peak instantaneous flow parameters such as discharge, velocity, shear stress and stream power to quantify geomorphic changes have often been non-deterministic and/or inconclusive. Investigations are therefore needed on how factors such as channel geometry, substrate, riparian vegetation, sediment supply, and flood magnitude and duration can interact and influence geomorphic effectiveness of high magnitude floods. The main objective of this study is to assess the coupled influence of flood-flow duration and total energy expenditure on geomorphic response to extreme flash floods, which is aimed at developing an index that combines flow duration, stream power per unit area and threshold for major channel erosion to be evaluated as a predictor of geomorphic adjustment

  5. Energy conservation in the transient response of nonlinear beam vibration problems subjected to pulse loading - A numerical approach

    NASA Technical Reports Server (NTRS)

    Moyer, E. T., Jr.

    1984-01-01

    The nonlinear vibration response of a double cantilevered beam subjected to pulse loading over a central sector is studied. The initial response is generated in detail to ascertain the energetics of the response. The total energy is used as a gauge of the stability and accuracy of the solution. It is shown that to obtain accurate and stable initial solutions an extremely high spatial and time resolution is required. This requirement was only evident through an examination of the energy of the system. It is proposed, therefore, to use the total energy of the system as a necessary stability and accuracy criterion for the nonlinear response of conservative systems. The results also demonstrate that even for moderate nonlinearities, the effects of membrane forces have a significant influence on the system. It is also shown that while the fundamental response is contained in a first mode envelope, the fluctuations caused by the higher order modes must be resolved.

  6. Personal dose equivalent angular response factors for photons with energies up to 1 GeV.

    PubMed

    Veinot, K G

    2013-04-01

    When performing personal dosemeter calibrations, the dosemeters are typically irradiated while mounted on slab-type phantoms and oriented facing the source. Performance testing standards or intercomparison studies may also specify various rotational angles to test the response of the dosemeter and associated algorithm as this rotation introduces changes in the quantity of delivered dose. Correction factors for rotational effects are available, but many have not been updated in recent years and were typically calculated using the kerma approximation. The personal dose equivalent, Hp(d), is the quantity recommended by the International Commission on Radiation Units and Measurements to be used as an approximation of the protection quantity effective dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body, but typically the location of interest is the trunk where personal dosemeters are worn and in this instance a suitable approximation is a 30 cm × 30 cm × 15 cm slab-type phantom. In this work personal dose equivalent conversion coefficients for photons with energies up to 1 GeV have been calculated for depths of 0.007, 0.3 and 1.0 cm in the slab phantom for rotational angles ranging from 15° to 75°. Angular response factors have been determined by comparing the conversion coefficients for each angle and energy to those reported in an earlier work for a non-rotational (e.g. perpendicular to the phantom face) geometry. The angular response factors were determined for discrete angles, but fits of the factors are provided.

  7. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways.

    PubMed

    Bhasin, Manoj K; Dusek, Jeffery A; Chang, Bei-Hung; Joseph, Marie G; Denninger, John W; Fricchione, Gregory L; Benson, Herbert; Libermann, Towia A

    2013-01-01

    The relaxation response (RR) is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal) genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS) as top upregulated critical molecules (focus hubs) and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress.

  8. Relaxation Response Induces Temporal Transcriptome Changes in Energy Metabolism, Insulin Secretion and Inflammatory Pathways

    PubMed Central

    Joseph, Marie G.; Denninger, John W.; Fricchione, Gregory L.; Benson, Herbert; Libermann, Towia A.

    2013-01-01

    The relaxation response (RR) is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal) genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS) as top upregulated critical molecules (focus hubs) and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress. PMID:23650531

  9. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-09-01

    Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity.

  10. Negative energy balance in a male songbird, the Abert's Towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-07-10

    Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none has investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's Towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone (T) responsiveness of the HPG axis. Wild-caught birds were either ad libitum-fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma T response to GnRH challenge. Energy deficiency did, however, decrease the plasma T responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting in decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity.

  11. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation

    PubMed Central

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L.; Deviche, Pierre

    2015-01-01

    ABSTRACT Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary–gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. PMID:26333925

  12. Increased dietary protein attenuates C-reactive protein and creatine kinase responses to exercise-induced energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined if dietary protein (P) modulates responses of C-reactive protein (CRP) and creatine kinase (CK), biomarkers of inflammation and muscle damage, during exercise-induced energy deficit (DEF). Thirteen healthy men (22 +/- 1 y, VO2peak 60 +/- 2 ml.kg-1.min-1) balanced energy expenditure (EE...

  13. Responses of primiparous and multiparous Holstein cows to additional energy from fat or concentrate during summer.

    PubMed

    Drackley, J K; Cicela, T M; LaCount, D W

    2003-04-01

    Supplemental fat has been advocated for use during hot weather and often increases milk yield of cows past peak production when energy intake should not be limiting. Relative responses of primiparous and multiparous cows to supplemental fat or isocaloric addition of concentrates under hot weather conditions have not been determined. Nine multiparous and nine primiparous Holstein cows (154 and 167 d in milk, respectively) were used in a replicated 3 x 3 Latin square design with 28-d periods. Diets were 1) control (35% alfalfa silage, 25% corn silage, and 40% concentrate, dry matter [DM] basis); 2) control plus 3% fat (HF); and 3) high concentrate ([HC] 15% alfalfa silage, 25% corn silage, and 60% concentrate). Diets were isonitrogenous; diets HF and HC were isocaloric (1.60 Mcal of net energy for lactation [NE(L)] per kilogram DM) and higher energy than the control (1.52 Mcal/kg). No parity x diet interactions approached significance. DM intake (DMI) was greater when cows were fed HC than when they were fed HF (21.0, 20.1, and 21.3 kg/d for control, HF, and HC, respectively); intake of NE(L) tended to be increased only for HC. Milk yield was increased by higher-energy diets, but milk fat content was decreased. Milk total protein content was decreased by HF and increased by HC. Yield of solids-corrected milk (SCM) was not different among diets. Efficiency of milk production, expressed either as total milk solids yield per kilogram of DMI or as kilograms of SCM per megacalorie of NE(L) intake, was greater for HF than for HC. Plasma glucose was higher after feeding for cows fed HC; plasma nonesterified fatty acids were greater for HF. Respiration rate and rectal temperature were greater for HC than for HF. Regardless of parity, increased energy density from either fat or concentrate increased milk yield in midlactation cows, but diets caused energy to be partitioned differently among milk components and body storage. Supplemental rumen-active fat had modest advantages

  14. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies

    SciTech Connect

    Arjomandy, Bijan; Tailor, Ramesh; Anand, Aman; Sahoo, Narayan; Gillin, Michael; Prado, Karl; Vicic, Milos

    2010-05-15

    Purpose: Since the Gafchromic film EBT has been recently replaced by the newer model EBT2, its characterization, especially energy dependence, has become critically important. The energy dependence of the dose response of Gafchromic EBT2 film is evaluated for a broad range of energies from different radiation sources used in radiation therapy. Methods: The beams used for this study comprised of kilovoltage x rays (75, 125, and 250 kVp), {sup 137}Cs gamma (662 KeV), {sup 60}Co gamma (1.17-1.33 MeV), megavoltage x rays (6 and 18 MV), electron beams (6 and 20 MeV), and proton beams (100 and 250 MeV). The film's response to each of the above energies was measured over the dose range of 0.4-10 Gy, which corresponds to optical densities ranging from 0.05 to 0.74 for the film reader used. Results: The energy dependence of EBT2 was found to be relatively small within measurement uncertainties (1{sigma}={+-}4.5%) for all energies and modalities. Conclusion: For relative and absolute dosimetry of radiation therapy beams, the weak energy dependence of the EBT2 makes it most suitable for clinical use compared to other films.

  15. Fluctuating currents in stochastic thermodynamics. II. Energy conversion and nonequilibrium response in kinesin models

    NASA Astrophysics Data System (ADS)

    Altaner, Bernhard; Wachtel, Artur; Vollmer, Jürgen

    2015-10-01

    Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations. Stochastic thermodynamics uses Markovian jump processes to model the random transitions between the chemical and configurational states of these biological macromolecules. A recently developed theoretical framework [A. Wachtel, J. Vollmer, and B. Altaner, Phys. Rev. E 92, 042132 (2015), 10.1103/PhysRevE.92.042132] provides a simple algorithm for the determination of macroscopic currents and correlation integrals of arbitrary fluctuating currents. Here we use it to discuss energy conversion and nonequilibrium response in different models for the molecular motor kinesin. Methodologically, our results demonstrate the effectiveness of the algorithm in dealing with parameter-dependent stochastic models. For the concrete biophysical problem our results reveal two interesting features in experimentally accessible parameter regions: the validity of a nonequilibrium Green-Kubo relation at mechanical stalling as well as a negative differential mobility for superstalling forces.

  16. The transmissibility of nonlinear energy sink based on nonlinear output frequency-response functions

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Ye-Wei; Ding, Hu; Chen, Li-Qun

    2017-03-01

    For the first time, a new representation of transmissibility based on nonlinear output frequency-response functions (NOFRFs) is proposed in the present study. Furthermore, the transmissibility is applied to evaluate the vibration isolation performance of a nonlinear energy sink (NES) in frequency domain. A two-degree-of-freedom (2-DOF) structure with the NES attached system is adopted. Numerical simulations have been performed for the 2-DOF structure. Moreover, the effects of NES parameters on the transmissibility of the nonlinear system are evaluated. By increasing the viscous damping and mass, as well as decreasing the cubic nonlinear stiffness of the NES, the analytical results show that the transmissibility of the 2-DOF structure with NES is reduced over all resonance regions. Therefore, the present paper produces a novel method for NES design in frequency domain.

  17. Protein-energy malnutrition alters thermoregulatory homeostasis and the response to brain ischemia.

    PubMed

    Smith, Shari E; Prosser-Loose, Erin J; Colbourne, Frederick; Paterson, Phyllis G

    2011-02-01

    Co-existing protein-energy malnutrition (PEM), characterized by deficits in both protein and energy status, impairs functional outcome following global ischemia and has been associated with increased reactive gliosis. Since temperature is a key determinant of brain damage following an ischemic insult, the objective was to investigate whether alterations in post-ischemic temperature regulation contribute to PEM-induced reactive gliosis following ischemia. Male Sprague-Dawley rats (190-280 g) were assigned to either control diet (18% protein) or PEM induced by feeding a low protein diet (2% protein) for 7 days prior to either global ischemia or sham surgery. There was a rapid disruption in thermoregulatory function in rats fed the low protein diet as assessed by continuous recording of core temperature with bio-electrical sensor transmitters. Both daily temperature fluctuation and mean temperature increased within the first 24 hours, and these remained significantly elevated throughout the 7 day pre-ischemic period (p < 0.027). In the immediate post-surgical period, PEM decreased body temperature to a greater extent than that in well-nourished controls (p = 0.003). The increase in daily temperature fluctuation caused by PEM persisted throughout the 7 day post-surgical period (p < 0.001), and this interacted with the effects of global ischemia on days 8 (p = 0.018) and 11 (p = 0.021). The astrocytic and microglial responses induced at 7 days after global ischemia were not influenced by PEM, but this preliminary analysis needs to be confirmed with a more reliable global ischemia model. In conclusion, exposure to a low protein diet rapidly impairs the ability to maintain thermoregulatory homeostasis, and the resultant PEM also diminishes the ability to thermoregulate in response to a challenge. Since temperature regulation is a key determinant of brain injury following ischemia, these findings suggest that the pathophysiology of brain injury could be altered in stroke

  18. Adaptive responses of energy storage and fish life histories to climatic gradients.

    PubMed

    Giacomini, Henrique C; Shuter, Brian J

    2013-12-21

    Energy storage is a common adaptation of fish living in seasonal environments. For some species, the energy accumulated during the growing season, and stored primarily as lipids, is crucial to preventing starvation mortality over winter. Thus, in order to understand the adaptive responses of fish life history to climate, it is important to determine how energy should be allocated to storage and how it trades off with the other body components that contribute to fitness. In this paper, we extend previous life history theory to include an explicit representation of how the seasonal allocation of energy to storage acts as a constraint on fish growth. We show that a strategy that privileges allocation to structural mass in the first part of the growing season and switches to storage allocation later on, as observed empirically in several fish species, is the strategy that maximizes growth efficiency and hence is expected to be favored by natural selection. Stochastic simulations within this theoretical framework demonstrate that the relative performance of this switching strategy is robust to a wide range of fluctuations in growing season length, and to moderate short-term (i.e., daily) fluctuations in energy intake and/or expenditure within the growing season. We then integrate this switching strategy with a biphasic growth modeling framework to predict typical growth rates of walleye Sander vitreus, a cool water species, and lake trout Salvelinus namaycush, a cold water specialist, across a climatic gradient in North America. As predicted, growth rates increased linearly with the duration of the growing season. Regression line intercepts were negative, indicating that growth can only occur when growing season length exceeds a threshold necessary to produce storage for winter survival. The model also reveals important differences between species, showing that observed growth rates of lake trout are systematically higher than those of walleye in relatively colder lakes

  19. Reconciled climate response estimates from climate models and the energy budget of Earth

    NASA Astrophysics Data System (ADS)

    Richardson, Mark; Cowtan, Kevin; Hawkins, Ed; Stolpe, Martin B.

    2016-10-01

    Climate risks increase with mean global temperature, so knowledge about the amount of future global warming should better inform risk assessments for policymakers. Expected near-term warming is encapsulated by the transient climate response (TCR), formally defined as the warming following 70 years of 1% per year increases in atmospheric CO2 concentration, by which point atmospheric CO2 has doubled. Studies based on Earth's historical energy budget have typically estimated lower values of TCR than climate models, suggesting that some models could overestimate future warming. However, energy-budget estimates rely on historical temperature records that are geographically incomplete and blend air temperatures over land and sea ice with water temperatures over open oceans. We show that there is no evidence that climate models overestimate TCR when their output is processed in the same way as the HadCRUT4 observation-based temperature record. Models suggest that air-temperature warming is 24% greater than observed by HadCRUT4 over 1861-2009 because slower-warming regions are preferentially sampled and water warms less than air. Correcting for these biases and accounting for wider uncertainties in radiative forcing based on recent evidence, we infer an observation-based best estimate for TCR of 1.66 °C, with a 5-95% range of 1.0-3.3 °C, consistent with the climate models considered in the IPCC 5th Assessment Report.

  20. Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition

    SciTech Connect

    Baudin, Pablo; Marín, José Sánchez; Cuesta, Inmaculada García; Sánchez de Merás, Alfredo M. J.

    2014-03-14

    A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well as the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.

  1. Response of large area avalanche photodiodes to low energy x rays

    SciTech Connect

    Gentile, T. R.; Bales, M.; Arp, U.; Dong, B.; Farrell, R.

    2012-05-15

    For an experiment to study neutron radiative beta-decay, we operated large area avalanche photodiodes (APDs) near liquid nitrogen temperature to detect x rays with energies between 0.2 keV and 20 keV. Whereas there are numerous reports of x ray spectrometry using APDs at energies above 1 keV, operation near liquid nitrogen temperature allowed us to reach a nominal threshold of 0.1 keV. However, due to the short penetration depth of x rays below 1 keV, the pulse height spectrum of the APD become complex. We studied the response using monochromatic x ray beams and employed phenomenological fits of the pulse height spectrum to model the measurement of a continuum spectrum from a synchrotron. In addition, the measured pulse height spectrum was modelled using a profile for the variation in efficiency of collection of photoelectrons with depth into the APD. The best results are obtained with the collection efficiency model.

  2. Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wren, J A; Wozniak, P R; Aptekar, R; Golentskii, S; Pal'shin, V; Sakamoto, T; White, R R; Evans, S; Casperson, D; Fenimore, E

    2006-07-13

    The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.

  3. Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction

    NASA Astrophysics Data System (ADS)

    Oyewola, O.; Djenidi, L.; Antonia, R. A.

    2008-01-01

    The response of mean turbulent energy dissipation rate and spectra to concentrated suction applied through a porous wall strip has been quantified. Both suction and no suction data of the spectra collapsed reasonably well for Kolmogorov normalised wavenumber k {1/*} > 0.2. Similar results were also observed for second-order structure functions (not shown) for Kolmogorov normalised radius r* < 10. Although, the quality of collapsed is poorer for transverse component, the result highlights that Kolmogorov similarity hypothesis is reasonably well satisfied. However, the suction results shows a significant departure from the no suction case of the Kolmogorov normalised spectra and second-order structure functions for k {1/*} < 0.2 and r* > 20, respectively. The departure at the larger scales with collapse at the small scales suggests that suction induce a change in the small-scale motion. This is also reflected in the alteration of mean turbulent energy dissipation rate and Taylor microscale Reynolds number. This change is a result of the weakening of the large-scale structures. The effect is increased as the suction rate is increased.

  4. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    PubMed

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases.

  5. Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance.

    PubMed

    Flak, Jonathan N; Patterson, Christa M; Garfield, Alastair S; D'Agostino, Giuseppe; Goforth, Paulette B; Sutton, Amy K; Malec, Paige A; Wong, Jenny-Marie T; Germani, Mark; Jones, Justin C; Rajala, Michael; Satin, Leslie; Rhodes, Christopher J; Olson, David P; Kennedy, Robert T; Heisler, Lora K; Myers, Martin G

    2014-12-01

    Hypoglycemia initiates the counter-regulatory response (CRR), in which the sympathetic nervous system, glucagon and glucocorticoids restore glucose to appropriate concentrations. During starvation, low leptin levels restrain energy utilization, enhancing long-term survival. To ensure short-term survival during hypoglycemia in fasted animals, the CRR must overcome this energy-sparing program and nutrient depletion. Here we identify in mice a previously unrecognized role for leptin and a population of leptin-regulated neurons that modulate the CRR to meet these challenges. Hypoglycemia activates neurons of the parabrachial nucleus (PBN) that coexpress leptin receptor (LepRb) and cholecystokinin (CCK) (PBN LepRb(CCK) neurons), which project to the ventromedial hypothalamic nucleus. Leptin inhibits these cells, and Cck(cre)-mediated ablation of LepRb enhances the CRR. Inhibition of PBN LepRb cells blunts the CRR, whereas their activation mimics the CRR in a CCK-dependent manner. PBN LepRb(CCK) neurons are a crucial component of the CRR system and may be a therapeutic target in hypoglycemia.

  6. Plasma response to electron energy filter in large volume plasma device

    SciTech Connect

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-12-15

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  7. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity.

    PubMed

    Li, Tongyu; Li, Erchao; Suo, Yantong; Xu, Zhixin; Jia, Yongyi; Qin, Jian G; Chen, Liqiao; Gu, Zhimin

    2017-02-01

    The toxicity and poisoning mechanisms of sulfide were studied in Litopenaeus vannamei from the perspective of energy metabolism and metabolomics. The lethal concentrations of sulfide in L. vannamei (LC50) at 24h, 48h, 72h, and 96h were determined. Sulfide at a concentration of 0, 1/10 (425.5μg/L), and 1/5 (851μg/L) of the LC50 at 96h was used to test the metabolic responses of L. vannamei for 21days. The chronic exposure of shrimp to a higher sulfide concentration of 851μg/L decreased shrimp survival but did not affect weight gain or the hepatopancreas index. The glycogen content in the hepatopancreas and muscle and the activity of hepatopancreas cytochrome C oxidase of the shrimp exposed to all sulfide concentrations were significantly lower, and the serum glucose and lactic acid levels and lactic acid dehydrogenase activity were significantly lower than those in the control. Metabolomics assays showed that shrimp exposed to sulfide had lower amounts of serum pyruvic acid, succinic acid, glycine, alanine, and proline in the 425.5μg/L group and phosphate, succinic acid, beta-alanine, serine, and l-histidine in the 851μg/L group than in the control. Chronic sulfide exposure could disturb protein synthesis in shrimp but enhance gluconeogenesis and substrate absorption for ATP synthesis and tricarboxylic acid cycles to provide extra energy to cope with sulfide stress. Chronic sulfide exposure could adversely affect the health status of L. vannamei, as indicated by the high amounts of serum n-ethylmaleamic acid, pyroglutamic acid, aspartic acid and phenylalanine relative to the control. This study indicates that chronic exposure of shrimp to sulfide can decrease health and lower survival through functional changes in gluconeogenesis, protein synthesis and energy metabolism.

  8. Audit Report "Department of Energy Efforts to Manage Information Technology Resources in an Energy-Efficient and Environmentally Responsible Manner"

    SciTech Connect

    2009-05-01

    The American Recovery and Reinvestment Act of 2009 emphasizes energy efficiency and conservation as critical to the Nation's economic vitality; its goal of reducing dependence on foreign energy sources; and, related efforts to improve the environment. The Act highlights the significant use of various forms of energy in the Federal sector and promotes efforts to improve the energy efficiency of Federal operations. One specific area of interest is the increasing demand for Federal sector computing resources and the corresponding increase in energy use, with both cost and environmental implications. The U.S. Environmental Protection Agency reported that, without aggressive conservation measures, data center energy consumption alone is expected to double over the next five years. In our report on Management of the Department's Data Centers at Contractor Sites (DOE/IG-0803, October 2008) we concluded that the Department of Energy had not always improved the efficiency of its contractor data centers even when such modifications were possible and practical. Despite its recognized energy conservation leadership role, the Department had not always taken advantage of opportunities to reduce energy consumption associated with its information technology resources. Nor, had it ensured that resources were managed in a way that minimized impact on the environment. In particular: (1) The seven Federal and contractor sites included in our review had not fully reduced energy consumption through implementation of power management settings on their desktop and laptop computers; and, as a consequence, spent $1.6 million more on energy costs than necessary in Fiscal Year 2008; (2) None of the sites reviewed had taken advantage of opportunities to reduce energy consumption, enhance cyber security, and reduce costs available through the use of techniques, such as 'thin-client computing' in their unclassified environments; and, (3) Sites had not always taken the necessary steps to reduce

  9. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  10. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions.

    PubMed

    Guerard, Jennifer J; Tentscher, Peter R; Seijo, Marianne; Samuel Arey, J

    2015-06-14

    First principles simulations were used to predict aqueous one-electron oxidation potentials (Eox) and associated half-cell reorganization energies (λaq) for aniline, phenol, methoxybenzene, imidazole, and dimethylsulfide. We employed quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations of the oxidized and reduced species in an explicit aqueous solvent, followed by EOM-IP-CCSD computations with effective fragment potentials for diabatic energy gaps of solvated clusters, and finally thermodynamic integration of the non-linear solvent response contribution using classical MD. A priori predicted Eox and λaq values exhibit mean absolute errors of 0.17 V and 0.06 eV, respectively, compared to experiment. We also disaggregate Eox into several well-defined free energy properties, including the gas phase adiabatic free energy of ionization (7.73 to 8.82 eV), the solvent-induced shift in the free energy of ionization due to linear solvent response (-2.01 to -2.73 eV), and the contribution from non-linear solvent response (-0.07 to -0.14 eV). The linear solvent response component is further apportioned into contributions from the solvent-induced shift in vertical ionization energy of the reduced species (ΔVIEaq) and the solvent-induced shift in negative vertical electron affinity of the ionized species (ΔNVEAaq). The simulated ΔVIEaq and ΔNVEAaq are found to contribute the principal sources of uncertainty in computational estimates of Eox and λaq. Trends in the magnitudes of disaggregated solvation properties are found to correlate with trends in structural and electronic features of the solute. Finally, conflicting approaches for evaluating the aqueous reorganization energy are contrasted and discussed, and concluding recommendations are given.

  11. Monte Carlo study of the energy and angular dependence of the response of plastic scintillation detectors in photon beams

    SciTech Connect

    Wang, Lilie L. W.; Klein, David; Beddar, A. Sam

    2010-10-15

    Purpose: By using Monte Carlo simulations, the authors investigated the energy and angular dependence of the response of plastic scintillation detectors (PSDs) in photon beams. Methods: Three PSDs were modeled in this study: A plastic scintillator (BC-400) and a scintillating fiber (BCF-12), both attached by a plastic-core optical fiber stem, and a plastic scintillator (BC-400) attached by an air-core optical fiber stem with a silica tube coated with silver. The authors then calculated, with low statistical uncertainty, the energy and angular dependences of the PSDs' responses in a water phantom. For energy dependence, the response of the detectors is calculated as the detector dose per unit water dose. The perturbation caused by the optical fiber stem connected to the PSD to guide the optical light to a photodetector was studied in simulations using different optical fiber materials. Results: For the energy dependence of the PSDs in photon beams, the PSDs with plastic-core fiber have excellent energy independence within about 0.5% at photon energies ranging from 300 keV (monoenergetic) to 18 MV (linac beam). The PSD with an air-core optical fiber with a silica tube also has good energy independence within 1% in the same photon energy range. For the angular dependence, the relative response of all the three modeled PSDs is within 2% for all the angles in a 6 MV photon beam. This is also true in a 300 keV monoenergetic photon beam for PSDs with plastic-core fiber. For the PSD with an air-core fiber with a silica tube in the 300 keV beam, the relative response varies within 1% for most of the angles, except in the case when the fiber stem is pointing right to the radiation source in which case the PSD may over-response by more than 10%. Conclusions: At {+-}1% level, no beam energy correction is necessary for the response of all three PSDs modeled in this study in the photon energy ranges from 200 keV (monoenergetic) to 18 MV (linac beam). The PSD would be even closer

  12. Energy deposition and middle atmosphere electrodynamic response to a highly relativistic electron precipitation event

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Baker, D. N.; Herrero, F. A.; Mccarthy, S. P.; Twigg, P. A.; Croskey, C. L.; Hale, L. C.

    1994-01-01

    Rocket data have been used to evaluate the characteristics of precipitating relativistic electrons and their effects on the electrodynamic structure of the middle atmosphere. These data were obtained at Poker Flat, Alaska, on May 13 and 14, 1990, during a midday, highly relativistic electron (HRE) precipitation event. Solid state detectors were used to measure the electron fluxes and their energy spectra. An X ray scintillator was included on each flight to measure bremsstrahlung X rays produced by energetic electrons impacting on the upper atmosphere. However, these were found the be of negligible importance for this particular event. The energy deposition by the electrons has been determined from the flux measurements and compared with in situ measurements of the atmospheric electrical response. The electrodynamic measurements were obtained by the same rockets and additionally on May 13, with an accompanying rocket. The impact flux was highly irregular, containing short-lived bursts of relativistic electrons, mainly with energies below 0.5 MeV and with fluxes most enhanced between pitch angles of 0 deg - 20 deg. Although the geostationary counterpart of this measured event was considered to be of relatively low intensity and hardness, energy deposition peaked near 75 km with fluxes approaching an ion pair production rate in excess of 100/cu cm s. This exceeds peak fluxes in relativistic electron precipitation (REP) events as observed by us in numerous rocket soundings since 1976. Conductivity measurements from a blunt probe showed that negative electrical conductivities exceeded positive conductivities down to 50 km or lower, consistent with steady ionization by precipitating electrons above 1 MeV. These findings imply that the electrons from the outer radiation zone can modulate the electrical properties of the middle atmosphere to altitudes below 50 km. During the decline and activity minimum of the current solar cycle, we anticipate the occurence of similar

  13. Effects of skeletal muscle energy availability on protein turnover responses to exercise.

    PubMed

    Smiles, William J; Hawley, John A; Camera, Donny M

    2016-01-01

    Skeletal muscle adaptation to exercise training is a consequence of repeated contraction-induced increases in gene expression that lead to the accumulation of functional proteins whose role is to blunt the homeostatic perturbations generated by escalations in energetic demand and substrate turnover. The development of a specific 'exercise phenotype' is the result of new, augmented steady-state mRNA and protein levels that stem from the training stimulus (i.e. endurance or resistance based). Maintaining appropriate skeletal muscle integrity to meet the demands of training (i.e. increases in myofibrillar and/or mitochondrial protein) is regulated by cyclic phases of synthesis and breakdown, the rate and turnover largely determined by the protein's half-life. Cross-talk among several intracellular systems regulating protein synthesis, breakdown and folding is required to ensure protein equilibrium is maintained. These pathways include both proteasomal and lysosomal degradation systems (ubiquitin-mediated and autophagy, respectively) and the protein translational and folding machinery. The activities of these cellular pathways are bioenergetically expensive and are modified by intracellular energy availability (i.e. macronutrient intake) and the 'training impulse' (i.e. summation of the volume, intensity and frequency). As such, exercise-nutrient interactions can modulate signal transduction cascades that converge on these protein regulatory systems, especially in the early post-exercise recovery period. This review focuses on the regulation of muscle protein synthetic response-adaptation processes to divergent exercise stimuli and how intracellular energy availability interacts with contractile activity to impact on muscle remodelling.

  14. Exploring potential mechanisms responsible for observed changes of ultrasonic backscattered energy with temperature variations

    PubMed Central

    Li, Xin; Ghoshal, Goutam; Lavarello, Roberto J.; Oelze, Michael L.

    2014-01-01

    Purpose: Previous studies have provided the observation that the ultrasonic backscattered energy from a tissue region will change due to a change of temperature. The mechanism responsible for the changes in backscattered energy (CBE) with temperature has been hypothesized to be from the changes in scattering properties of local aqueous and lipid scatterers. An alternative mechanism is hypothesized here to be capable of producing similar CBE curves, i.e., changes in speckle resulting from changes in summation of scattered wavelets. Methods: Both simulations and experiments were conducted with a 5.5 MHz, 128-element linear array and synthetic and physical phantoms containing randomly spaced scatterers. The speckle pattern resulting from summation of scattered wavelets was changed in simulations and experiments by directly increasing the background sound speed from 1520 to 1540 m/s, and changing the temperature from 37 °C to 48 °C, respectively. Shifts in the backscattered signal were compensated using 2D cross-correlation techniques. Results: Excellent agreement between simulations and experiments was observed, with each pixel in the CBE images on average undergoing either a monotonic increase (up to 3.2 dB) or a monotonic decrease (down to −1.9 dB) with increasing sound speed or temperature. Similar CBE curves were also produced by shifting the image plane in the elevational and axial directions even after correcting for apparent motion. Conclusions: CBE curves were produced by changing the sound speed or temperature in tissue mimicking phantoms or by shifting the image plane in the elevational and axial directions and the production of these CBE curves did not require the presence of lipid and aqueous scatterers. PMID:24784401

  15. Dietary fat alters the response of hypothalamic neuropeptide Y to subsequent energy intake in broiler chickens.

    PubMed

    Wang, Xiao J; Xu, Shao H; Liu, Lei; Song, Zhi G; Jiao, Hong C; Lin, Hai

    2017-02-15

    Dietary fat affects appetite and appetite-related peptides in birds and mammals; however, the effect of dietary fat on appetite is still unclear in chickens faced with different energy statuses. Two experiments were conducted to investigate the effects of dietary fat on food intake and hypothalamic neuropeptides in chickens subjected to two feeding states or two diets. In Experiment 1, chickens were fed a high-fat (HF) or low-fat (LF) diet for 35 days, and then subjected to fed (HF-fed, LF-fed) or fasted (HF-fasted, LF-fasted) conditions for 24 h. In Experiment 2, chickens that were fed a HF or LF diet for 35 days were fasted for 24 h and then re-fed with HF (HF-RHF, LF-RHF) or LF (HF-RLF, LF-RLF) diet for 3 h. The results showed that chickens fed a HF diet for 35 days had increased body fat deposition despite decreasing food intake even when the diet was altered during the re-feeding period (P<0.05). LF diet (35 days) promoted agouti-related peptide (AgRP) expression compared with HF diet (P<0.05) under both fed and fasted conditions. LF-RHF chickens had lower neuropeptide Y (NPY) expression compared with LF-RLF chickens; conversely, HF-RHF chickens had higher NPY expression than HF-RLF chickens (P<0.05). These results demonstrate: (1) that HF diet decreases food intake even when the subsequent diet is altered; (2) the orexigenic effect of hypothalamic AgRP; and (3) that dietary fat alters the response of hypothalamic NPY to subsequent energy intake. These findings provide a novel view of the metabolic perturbations associated with long-term dietary fat over-ingestion in chickens.

  16. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response

    DOE PAGES

    Raugei, Marco; Sgouridis, Sgouris; Murphy, David; ...

    2017-01-01

    A recent paper by Ferroni and Hopkirk (2016) asserts that the ERoEI (also referred to as EROI) of photovoltaic (PV) systems is so low that they actually act as net energy sinks, rather than delivering energy to society. Such claim, if accurate, would call into question many energy investment decisions. In the same paper, a comparison is also drawn between PV and nuclear electricity. We have carefully analysed this paper, and found methodological inconsistencies and calculation errors that, in combination, render its conclusions not scientifically sound. Ferroni and Hopkirk adopt 'extended' boundaries for their analysis of PV without acknowledging thatmore » such choice of boundaries makes their results incompatible with those for all other technologies that have been analysed using more conventional boundaries, including nuclear energy with which the authors engage in multiple inconsistent comparisons. In addition, they use out-dated information, make invalid assumptions on PV specifications and other key parameters, and conduct calculation errors, including double counting. Here in this paper, we provide revised EROI calculations for PV electricity in Switzerland, adopting both conventional and 'extended' system boundaries, to contrast with their results, which points to an order-of-magnitude underestimate of the EROI of PV in Switzerland by Ferroni and Hopkirk.« less

  17. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response

    SciTech Connect

    Raugei, Marco; Sgouridis, Sgouris; Murphy, David; Fthenakis, Vasilis; Frischknecht, Rolf; Breyer, Christian; Bardi, Ugo; Barnhart, Charles; Buckley, Alastair; Carbajales-Dale, Michael; Csala, Denes; de Wild-Scholten, Mariska; Heath, Garvin; Jæger-Waldau, Arnulf; Jones, Christopher; Keller, Arthur; Leccisi, Enrica; Mancarella, Pierluigi; Pearsall, Nicola; Siegel, Adam; Sinke, Wim; Stolz, Philippe

    2017-01-01

    A recent paper by Ferroni and Hopkirk (2016) asserts that the ERoEI (also referred to as EROI) of photovoltaic (PV) systems is so low that they actually act as net energy sinks, rather than delivering energy to society. Such claim, if accurate, would call into question many energy investment decisions. In the same paper, a comparison is also drawn between PV and nuclear electricity. We have carefully analysed this paper, and found methodological inconsistencies and calculation errors that, in combination, render its conclusions not scientifically sound. Ferroni and Hopkirk adopt 'extended' boundaries for their analysis of PV without acknowledging that such choice of boundaries makes their results incompatible with those for all other technologies that have been analysed using more conventional boundaries, including nuclear energy with which the authors engage in multiple inconsistent comparisons. In addition, they use out-dated information, make invalid assumptions on PV specifications and other key parameters, and conduct calculation errors, including double counting. Here in this paper, we provide revised EROI calculations for PV electricity in Switzerland, adopting both conventional and 'extended' system boundaries, to contrast with their results, which points to an order-of-magnitude underestimate of the EROI of PV in Switzerland by Ferroni and Hopkirk.

  18. Understanding the response of commercial and institutional organizations to the California energy crisis. A report to the California Energy Commission - Sylvia Bender, Project Manager

    SciTech Connect

    Lutzenhiser, Loren; Janda, Kathryn; Kunkle, Rick; Payne, Christopher

    2002-07-24

    Beginning in the summer of 2000, California experienced serious energy supply problems, sharp increases in wholesale (and retail) electricity and natural gas prices, and isolated blackouts. In response to the rapidly worsening electricity situation in California in late 2000, the state set, as an initial goal, the reduction of the state's peak demand for the summer of 2001 by 5,000 megawatts. To meet this goal, the governor and legislature took a variety of steps to enhance supply, encourage rapid voluntary reductions in demand, and provide incentives for actions that would result in load reductions. Three bills-Assembly Bill 970, Senate Bill X1 5 and Assembly Bill X1 29-allocated roughly $950 million for consumption and demand reduction programs. The governor also enacted a variety of additional measures, including the ''Flex Your Power'' (media awareness and direct business involvement) campaign, requirements for retail sector outdoor lighting reductions, and toughening of energy efficiency building codes. There were, in fact, significant reductions in electricity demand in California during the summer of 2001 and the large number of expected supply disruptions was avoided. To understand the nature of these demand reductions and the motivations for consumer response, Washington State University (WSU) undertook a study for the California Energy Commission (CEC) focusing on conservation behavior in the residential, commercial, and agricultural sectors. The research presented in this report represents an exploration of the response of commercial and institutional organizations to the California energy situation and the unique set of influences that existed during this time. These influences included informational messages and media attention, program interventions, price changes, and external triggering events (e.g., blackouts). To better understand the effects of these influences on organizational response to the energy situation, we conducted 84 semi

  19. Energy

    DTIC Science & Technology

    2003-01-01

    Canada, Britain, and Spain. We found that the energy industry is not in crisis ; however, U.S. government policies, laws, dollars, and even public...CEIMAT (Centro de Investagaciones Energeticas , Medioambeintales y Tecnologicas) Research and development Page 3 of 28ENERGY 8/10/04http://www.ndu.edu...procurement or storage of standard, common use fuels. NATURAL GAS Natural gas, abundant globally and domestically, offers energy versatility among

  20. Monitoring and modeling shoreline response due to shoreface nourishment on a high-energy coast

    USGS Publications Warehouse

    Barnard, P. L.; Erikson, Li H.; Hansen, J. E.

    2009-01-01

    Shoreface nourishment can be an efficient technique to feed sediment into the littoral zone without the order of magnitude cost increase incurred by directly nourishing the beach. An erosion hot spot at Ocean Beach in San Francisco, California, USA, threatens valuable public infrastructure as well as safe recreational use of the beach. In an effort to reduce the erosion at this location, a new beneficial reuse plan was implemented in May 2005 for the sediment dredged annually from the main shipping channel at the mouth of San Francisco Bay. From 2005 to 2007, approximately 230,000 m of sand was placed annually at depths between 9 and 14 m, in a location where strong tidal currents and open-ocean waves could potentially feed sediment onto the section of beach experiencing critical erosion. The evolution of the disposal mound and adjacent beach were monitored with 12 multibeam bathymetric surveys, and over 40 high-resolution beach topographic surveys. In addition, sediment transport processes were investigated using sediment grab samples, acoustic Doppler profilers, and two separate models: a cross-shore profile model (UNIBEST-TC) and a coastal area model (Delft3D). The results of the monitoring and modeling demonstrate that the disposal mound may be effective in dissipating wave energy striking this vulnerable stretch of coast with negligible shadowing effects, but a positive shoreline response can only be achieved by placing the sediment in water depths less than 5 m. 

  1. Model of yield response of corn to plant population and absorption of solar energy.

    PubMed

    Overman, Allen R; Scholtz, Richard V

    2011-01-31

    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1) and g plant(-1)) on plant population (plants m(-2)). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m) (Mg ha(-1)) for maximum yield at high plant population and c (m(2) plant(-1)) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c) = 1/c (plants m(-2)). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c) were very similar for the three field studies with the same crop species.

  2. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell.

    PubMed

    Li, Jianyong; Li, Jinhua; Chen, Quanpeng; Bai, Jing; Zhou, Baoxue

    2013-11-15

    Direct discharging great quantities of organics into water-body not only causes serious environmental pollution but also wastes energy sources. In this paper, a solar responsive dual photoelectrode photocatalytic fuel cell (PFC(2)) based on TiO2/Ti photoanode and Cu2O/Cu photocathode was designed for hazardous organics treatment with simultaneous electricity generation. Under solar irradiation, the interior bias voltage produced for the Fermi level difference between photoelectrodes drives photoelectrons of TiO2/Ti photoanode to combine with photoholes of Cu2O/Cu photocathode through external circuit thus generating electricity. In the meantime, organics are decomposed by photoholes remained at TiO2/Ti photoanode. By using various hazardous organics including azo dyes as model pollutants, the PFC showed high converting performance of organics into electricity. For example, in 0.05 M phenol solution, a short-circuit current density 0.23 mA cm(-2), open-circuit voltage 0.49 V, maximum power output 0.3610(-4)W cm(-2) was achieved. On the other hand, removal rate of chroma reached 67%, 87% and 63% in 8h for methyl orange, methylene blue, Congo red, respectively.

  3. pH-responsive self-assembly of polysaccharide through a rugged energy landscape

    PubMed Central

    Morrow, Brian H.; Payne, Gregory F.

    2015-01-01

    Self-assembling polysaccharides can form complex networks with structures and properties highly dependent on the sequence of triggering cues. Controlling the emergence of such networks provides an opportunity to create soft matter with unique features; however, it requires a detailed understanding of the subtle balance between the attractive and repulsive forces that drives the stimuli-induced self-assembly. Here we employ all-atom molecular dynamics simulations on the order of 100 ns to study the mechanisms of the pH-responsive gelation of the weakly basic aminopolysaccharide chitosan. We find that low pH induces a sharp transition from gel to soluble state, analogous to pH-dependent folding of proteins, while at neutral and high pH self-assembly occurs via a rugged energy landscape, reminiscent of RNA folding. A surprising role of salt is to lubricate conformational search for the thermodynamically stable states. Although our simulations represent the early events in the self-assembly process of chitosan, which may take seconds or minutes to complete, the atomically-detailed insights are consistent with recent experimental observations and provide a basis for understanding how environmental conditions modulate the structure and mechanical properties of the self-assembled polysaccharide systems. The ability to control structure and properties via modification of process conditions will aid in the technological efforts to create complex soft matter with applications ranging from bioelectronics to regenerative medicine. PMID:26383701

  4. Thermal Response of Human Skin to Microwave Energy: A Critical Review.

    PubMed

    Foster, Kenneth R; Ziskin, Marvin C; Balzano, Quirino

    2016-12-01

    This is a review/modeling study of heating of tissue by microwave energy in the frequency range from 3 GHz through the millimeter frequency range (30-300 GHz). The literature was reviewed to identify studies that reported RF-induced increases in skin temperature. A simple thermal model, based on a simplified form of Pennes' bioheat equation (BHTE), was developed, using parameter values taken from the literature with no further adjustment. The predictions of the model were in excellent agreement with available data. A parametric analysis of the model shows that there are two heating regimes with different dominant mechanisms of heat transfer. For small irradiated areas (less than about 0.5-1 cm in radius) the temperature increase at the skin surface is chiefly limited by conduction of heat into deeper tissue layers, while for larger irradiated areas, the steady-state temperature increase is limited by convective cooling by blood perfusion. The results support the use of this simple thermal model to aid in the development and evaluation of RF safety limits at frequencies above 3 GHz and for millimeter waves, particularly when the irradiated area of skin is small. However, very limited thermal response data are available, particularly for exposures lasting more than a few minutes to areas of skin larger than 1-2 cm in diameter. The paper concludes with comments about possible uses and limitations of thermal modeling for setting exposure limits in the considered frequency range.

  5. Hierarchical transport networks optimizing dynamic response of permeable energy-storage materials.

    PubMed

    Nilson, Robert H; Griffiths, Stewart K

    2009-07-01

    Channel widths and spacing in latticelike hierarchical transport networks are optimized to achieve maximum extraction of gas or electrical charge from nanoporous energy-storage materials during charge and discharge cycles of specified duration. To address a range of physics, the effective transport diffusivity is taken to vary as a power, m , of channel width. Optimal channel widths and spacing in all levels of the hierarchy are found to increase in a power-law manner with normalized system size, facilitating the derivation of closed-form approximations for the optimal dimensions. Characteristic response times and ratios of channel width to spacing are both shown to vary by the factor 2/m between successive levels of any optimal hierarchy. This leads to fractal-like self-similar geometry, but only for m=2 . For this case of quadratic dependence of diffusivity on channel width, the introduction of transport channels permits increases in system size on the order of 10;{4} , 10;{8} , and 10;{10} , without any reduction in extraction efficiency, for hierarchies having 1, 2 and, 8 levels, respectively. However, we also find that for a given system size there is an optimum number of hierarchical levels that maximizes extraction efficiency.

  6. Energy loss of ions in a magnetized plasma: conformity between linear response and binary collision treatments.

    PubMed

    Nersisyan, H B; Zwicknagel, G; Toepffer, C

    2003-02-01

    The energy loss of a heavy ion moving in a magnetized electron plasma is considered within the linear response (LR) and binary collision (BC) treatments with the purpose to look for a connection between these two models. These two complementary approaches yield close results if no magnetic field is present, but there develop discrepancies with growing magnetic field at ion velocities that are lower than, or comparable with, the thermal velocity of the electrons. We show that this is a peculiarity of the Coulomb interaction which requires cutoff procedures to account for its singularity at the origin and its infinite range. The cutoff procedures in the LR and BC treatments are different as the order of integrations in velocity and in ordinary (Fourier) spaces is reversed in both treatments. While BC involves a velocity average of Coulomb logarithms, there appear in LR Coulomb logarithms of velocity averaged cutoffs. The discrepancies between LR and BC vanish, except for small contributions of collective modes, for smoothened potentials that require no cutoffs. This is shown explicitly with the help of an improved BC in which the velocity transfer is treated up to second order in the interaction in Fourier space.

  7. Response report from US Department of Energy hearings on proposed salt site nominations

    SciTech Connect

    Not Available

    1983-11-01

    As required by the Nuclear Waste Policy Act (US Congress, 1983, Pub. L. 97-425, Section 112(b)(2)), the US Department of Energy (DOE) conducted a series of nine formal public hearings during April and May 1983, in Louisiana, Mississippi, Texas, and Utah and in the state capitals of Mississippi, Texas, and Utah. The hearings were held in local communities in the vicinity of sites identified as potentially suitable for further study in the program to select a site for the nation's first repository for high-level nuclear waste. The public hearings for potential sites in salt focused on the proposed nomination of the Vacherie salt dome site in Louisiana; the Richton and Cypress Creek salt dome sites in Mississippi; the Deaf Smith County and Swisher County bedded salt sites in Texas; and the Davis and Lavender Canyon bedded salt sites in Utah. The oral and written comments made during the course of the nine formal public hearings were analyzed, paraphrased into almost 1100 comments, and grouped into 62 issues or subjects within the following nine major topical areas: National Waste Terminal Storage program Planning Process, Consultation and Cooperation, Engineering/Repository Design, Geology, Hydrology, Transportation, Public Health and Safety, Environmental Quality, and Socioeconomics. This document provides general responses to each of the 62 major issues raised during the hearings.

  8. Response report from US Department of Energy Hearings on proposed salt site nominations

    SciTech Connect

    Not Available

    1983-11-01

    As required by the Nuclear Waste Policy Act (US Congress, 1983, Pub. L. 97-425, Section 112(b) (2)), the US Department of Energy (DOE) conducted a series of nine formal public hearings during April and May 1983, in Louisiana, Mississippi, Texas, and Utah and in the state capitals of Mississippi, Texas, and Utah. The hearings were held in local communities in the vicinity of sites identified as potentially suitable for further study in the program to select a site for the nation's first repository for high-level nuclear waste. The public hearings for potential sites in salt focused on the proposed nomination of the Vacherie salt dome site in Louisiana; the Richton and Cypress Creek salt dome sites in Mississippi; the Deaf Smith County and Swisher County bedded salt sites in Texas; and the Davis and Lavender Canyon bedded salt sites in Utah. The oral and written comments made during the course of the nine formal public hearings were analyzed, paraphrased into almost 1100 comments, and grouped into 62 issues or subjects within the following nine major topical areas: National Waste Terminal Storage Program Planning Process, Consultation and Cooperation, Engineering/Repository Design, Geology, Hydrology, Transportation, Public Health and Safety, Environmental Quality, and Socioeconomics. This document provides general responses to each of the 62 major issues raised during the hearings. 137 references, 7 figures, 12 tables.

  9. Optimizing minimum free-energy crossing points in solution: Linear-response free energy/spin-flip density functional theory approach

    SciTech Connect

    Minezawa, Noriyuki

    2014-10-28

    Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.

  10. Optimizing minimum free-energy crossing points in solution: linear-response free energy/spin-flip density functional theory approach.

    PubMed

    Minezawa, Noriyuki

    2014-10-28

    Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.

  11. 75 FR 47499 - Demand Response Compensation in Organized Wholesale Energy Markets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Markets AGENCY: Federal Energy Regulatory Commission. ACTION: Supplemental Notice of Proposed Rulemaking... markets administered by Independent System Operators or Regional Transmission Organizations. The... competitiveness of organized wholesale energy markets and thus ensure just and reasonable wholesale rates....

  12. Comment response document for the Secretary of Energy`s ``Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program``

    SciTech Connect

    1990-11-01

    On November 29, 1989, the Secretary of Energy published his ``Report to Congress on the Reassessment of the Civilian Radioactive Waste Management Program`` (Report), and sent copies to numerous interested parties for their review and comment. This document summarizes comments received on the Report and presents the DOE`s current responses to those comments as a basis for further discussions. Included as appendixes are a list of commenters, a crosswalk showing where each comment is addressed, the comment letters themselves with specific comments delineated, and the DOE`s response to those letters. Twenty-five individuals or organizations submitted comments on the Report. The DOE identified 130 individual comments and classified them into the following seven categories: Management, Institutional, Regulatory, Transportation, Monitored Retrievable Storage, Scheduling, and Yucca Mountain. For the responses, comments were than grouped into more specific topics under each of the major headings. The DOE attempted to respond to all comments.

  13. High energy neutron response characteristics of a passive survey instrument for the determination of cosmic radiation fields in aircraft.

    PubMed

    Bartlett, D T; Tanner, R J; Hager, L G

    2002-01-01

    A passive survey instrument has been developed for the determination of cosmic radiation fields in aircraft. The instrument contains 30 TLDs and 36 PADC etched track detectors in order to obtain the required precision and an isotropic response. Two active electronic personal dosemeters are included to record the time profile of the field intensity. The instrument is robust and reliable, and is particularly useful to verify values of route doses based on calculations. The energy of the neutron component of the field to be determined extends to over 500 MeV, but with the majority of the dose equivalent below 200 MeV. The results are reported of measurements at Uppsala University and Physikalisch-Technische Bundesanstalt of the response characteristics of the instrument to quasi-monoenergetic neutrons in the energy range 60 to 180 MeV and for monoenergetic neutrons of energy from 70 keV to 14.7 MeV.

  14. Comparative Analysis of Homebuyer Response to New Zero-Energy Homes: Preprint

    SciTech Connect

    Farhar, B. C.; Coburn, T. C.; Murphy, M.

    2004-07-01

    In 2004, mail questionnaires were sent to 271 homebuyers in a highly energy-efficient community and 98 homebuyers living in an adjacent conventional community. People surveyed had to have lived in their homes for at least 6 months. The questionnaires addressed perceptions and preferences relative to the new home purchases, and the role, if any, that energy efficiency and solar features might have played in these purchases. Also investigated was the willingness to pay for energy features; preferences on whether energy features should be standard or optional; preferences on energy policies; perceived problems; aesthetics; homebuyer satisfaction and the reasons for it; environmentalism; and experience with the utility company.

  15. The effects of energy balance, obesity-proneness and sex on the neuronal response to sweet taste.

    PubMed

    Cornier, Marc-Andre; Shott, Megan E; Thomas, Elizabeth A; Bechtell, Jamie L; Bessesen, Daniel H; Tregellas, Jason R; Frank, Guido K

    2015-02-01

    We have previously shown that propensity for weight gain, energy balance state and sex are important determinants of the neuronal response to visual food cues. It is not clear, though, whether these factors also impact the neuronal response to taste. The objective of this study was to examine the neuronal response to sweet taste during energy imbalance in men and women recruited to be obesity-prone (OP) or obesity-resistant (OR). OP (13 men and 12 women) and OR (12 men and 12 women) subjects were studied after 1 day of eucaloric, overfed and underfed conditions in a randomized crossover design. On each test day, fMRI was performed in the respective acute fed state while subjects received in random order 60 trials each of 1M sucrose solution (SU), or artificial saliva (AS) following a visual cue predicting the taste. The neuronal response to SU versus AS expectation was significantly greater in the amygdala, orbitofrontal cortex, putamen and insula in OR versus OP; SU receipt was not different between groups. There were also sex-based differences with men having greater neuronal response to SU versus AS receipt in the caudate than women. The results, however, were not impacted by the state of energy balance. In summary, response to expectation but not receipt of basic sweet taste was different in OR compared to OP, highlighting the importance of learning and conditioning in the propensity to gain weight. Response to sucrose taste receipt was stronger in men than women, raising questions about the effect of sex hormones on brain response to food.

  16. The Effects of Energy Balance, Obesity-Proneness and Sex on the Neuronal Response to Sweet Taste

    PubMed Central

    Cornier, Marc-Andre; Shott, Megan E.; Thomas, Elizabeth A.; Bechtell, Jamie L.; Bessesen, Daniel H.; Tregellas, Jason R.; Frank, Guido K.

    2014-01-01

    We have previously shown that propensity for weight gain, energy balance state and sex are important determinants of the neuronal response to visual food cues. It is not clear, though, whether these factors also impact the neuronal response to taste. The objective of this study was to examine the neuronal response to sweet taste during energy imbalance in men and women recruited to be obesity-prone (OP) or obesity-resistant (OR). OP (13M, 12W) and OR (12M, 12W) subjects were studied after one day of eucaloric, overfed and underfed conditions in a randomized crossover design. On each test day, fMRI was performed in the respective acute fed state while subjects received in random order 60 trials each of 1M sucrose solution (SU), or artificial saliva (AS) following a visual cue predicting the taste. The neuronal response to SU vs AS expectation was significantly greater in the amygdala, orbitofrontal cortex, putamen and insula in OR versus OP; SU receipt was not different between groups. There were also sex-based differences with men having greater neuronal response to SU vs AS receipt in the caudate than women. The results, however, were not impacted by the state of energy balance. In summary, response to expectation but not receipt of basic sweet taste was different in OR compared to OP, highlighting the importance of learning and conditioning in the propensity to gain weight. Response to sucrose taste receipt was stronger in men than women, raising questions about the effect of sex hormones on brain response to food. PMID:25447301

  17. Spatial heterogeneity in response of male greater sage-grouse lek attendance to energy development.

    PubMed

    Gregory, Andrew J; Beck, Jeffrey L

    2014-01-01

    Landscape modification due to rapidly expanding energy development, in particular oil and gas, in the westernUSA, have prompted concerns over how such developments may impact wildlife. One species of conservation concern across much of the Intermountain West is the greater sage-grouse (Centrocercusurophasianus). Sage-grouse have been petitioned for listing under provisions of the Endangered Species Act 7 times and the state of Wyoming alone represents 64% of the extant sage-grouse population in the eastern portion of their range. Consequently, the relationship between sage-grouse populations and oil and gas development in Wyoming is an important component to managing the long-term viability of this species. We used 814 leks from the Wyoming Game and Fish Department's lek survey database and well pad data from the Wyoming Oil and Gas Conservation Commission to evaluate changes in sage-grouse lek counts as a function of oil and gas development since 1991.From 1991-2011 we found that oil and gas well-pad density increased 3.6-fold across the state and was associated with a 24% decline in the number of male sage-grouse. Using a spatial and temporally structured analysis via Geographically Weighted Regression, we found a 1-to-4 year time lag between development density and lek decline. Sage-grouse also responded to development densities at multiple spatial neighborhoods surrounding leks, including broad scales of 10 km. However, sage-grouse lek counts do not always decline as a result of oil and gas development. We found similar development densities resulting in different sage-grouse lek count responses, suggesting that development density alone is insufficient to predict the impacts that oil and gas development have on sage-grouse. Finally, our analysis suggests a maximum development density of 1 well-pad within 2 km of leks to avoid measurable impacts within 1 year, and <6 well-pads within 10 km of leks to avoid delayed impacts.

  18. A comprehensive study on the photon energy response of RadFET dosimeters using the PENELOPE Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Kahraman, A.; Kaya, S.; Jaksic, A.; Yilmaz, E.

    2015-05-01

    Radiation-sensing Field Effect Transistors (RadFETs or MOSFET dosimeters) with SiO2 gate dielectric have found applications in space, radiotherapy clinics, and high-energy physics laboratories. More sensitive RadFETs, which require modifications in device design, including gate dielectric, are being considered for personal dosimetry applications. This paper presents results of a detailed study of the RadFET energy response simulated with PENELOPE Monte Carlo code. Alternative materials to SiO2 were investigated to develop high-efficiency new radiation sensors. Namely, in addition to SiO2, Al2O3 and HfO2 were simulated as gate material and deposited energy amounts in these layers were determined for photon irradiation with energies between 20 keV and 5 MeV. The simulations were performed for capped and uncapped configurations of devices irradiated by point and extended sources, the surface area of which is the same with that of the RadFETs. Energy distributions of transmitted and backscattered photons were estimated using impact detectors to provide information about particle fluxes within the geometrical structures. The absorbed energy values in the RadFETs material zones were recorded. For photons with low and medium energies, the physical processes that affect the absorbed energy values in different gate materials are discussed on the basis of modelling results. The results show that HfO2 is the most promising of the simulated gate materials.

  19. Variations of China's emission estimates: response to uncertainties in energy statistics

    NASA Astrophysics Data System (ADS)

    Hong, Chaopeng; Zhang, Qiang; He, Kebin; Guan, Dabo; Li, Meng; Liu, Fei; Zheng, Bo

    2017-01-01

    The accuracy of China's energy statistics is of great concern because it contributes greatly to the uncertainties in estimates of global emissions. This study attempts to improve the understanding of uncertainties in China's energy statistics and evaluate their impacts on China's emissions during the period of 1990-2013. We employed the Multi-resolution Emission Inventory for China (MEIC) model to calculate China's emissions based on different official data sets of energy statistics using the same emission factors. We found that the apparent uncertainties (maximum discrepancy) in China's energy consumption increased from 2004 to 2012, reaching a maximum of 646 Mtce (million tons of coal equivalent) in 2011 and that coal dominated these uncertainties. The discrepancies between the national and provincial energy statistics were reduced after the three economic censuses conducted during this period, and converging uncertainties were found in 2013. The emissions calculated from the provincial energy statistics are generally higher than those calculated from the national energy statistics, and the apparent uncertainty ratio (the ratio of the maximum discrepancy to the mean value) owing to energy uncertainties in 2012 took values of 30.0, 16.4, 7.7, 9.2 and 15.6 %, for SO2, NOx, VOC, PM2.5 and CO2 emissions, respectively. SO2 emissions are most sensitive to energy uncertainties because of the high contributions from industrial coal combustion. The calculated emission trends are also greatly affected by energy uncertainties - from 1996 to 2012, CO2 and NOx emissions, respectively, increased by 191 and 197 % according to the provincial energy statistics but by only 145 and 139 % as determined from the original national energy statistics. The energy-induced emission uncertainties for some species such as SO2 and NOx are comparable to total uncertainties of emissions as estimated by previous studies, indicating variations in energy consumption could be an important source of

  20. Modelling the Response of Energy, Water and CO2 Fluxes Over Forests to Climate Variability

    NASA Astrophysics Data System (ADS)

    Ju, W.; Chen, J.; Liu, J.; Chen, B.

    2004-05-01

    Understanding the response of energy, water and CO2 fluxes of terrestrial ecosystems to climate variability at various temporal scales is of interest to climate change research. To simulate carbon (C) and water dynamics and their interactions at the continental scale with high temporal and spatial resolutions, the remote sensing driven BEPS (Boreal Ecosystem Productivity Simulator) model was updated to couple with the soil model of CENTURY and a newly developed biophysical model. This coupled model separates the whole canopy into two layers. For the top layer, the leaf-level conductance is scaled up to canopy level using a sunlit and shaded leaf separation approach. Fluxes of water, and CO{2} are simulated as the sums of those from sunlit and shaded leaves separately. This new approach allows for close coupling in modeling these fluxes. The whole profile of soil under a seasonal snowpack is split into four layers for estimating soil moisture and temperature. Long-term means of the vegetation productivity and climate are employed to initialize the carbon pools for the computation of heterotrophic respiration. Validated against tower data at four forested sites, this model is able to describe these fluxes and their response to climate variability. The model captures over 55% of year-round half/one hourly variances of these fluxes. The highest agreement of model results with tower data was achieved for CO2 flux at Southern Old Aspen (SOA) (R2>0.85 and RMSE<2.37 μ mol C m-2 s-1, N=17520). However, the model slightly overestimates the diurnal amplitude of sensible heat flux in winter and sometimes underestimates that of CO2 flux in the growing season. Model simulations suggest that C uptakes of forests are controlled by climate variability and the response of C cycle to climate depends on forest type. For SOA, the annual NPP (Net Primary Productivity) is more sensitive to temperature than to precipitation. This forest usually has higher NPP in warm years than in cool

  1. Advice and recommendations to the US Department of Energy in response to the charge letter of September 20, 1996

    SciTech Connect

    1996-11-01

    In Jan. 1996, the Fusion Energy Advisory Committee (FEAC) provided recommendations to DOE on how to restructure the fusion program in light of compressional guidance and budget realities. DOE endorsed these recommendations and prepared a strategic plan. The FEAC report concluded that the goals of the restructured program could most effectively be accomplished at a funding level of $275 million per year, including Federal government management costs. DOE requested that Congress appropriate $255.6 million in FY97 for the fusion energy sciences program exclusive of Federal government management costs (about $8 million). On Sept. 11, 1996, the Energy and Water Development Conference Committee settled on a FY97 appropriation for the fusion energy sciences program of $232.5 million. This report contains the response to the charge letter, on how the program described in the strategic plan could be changed to make it consistent with the $232.5 million appropriation.

  2. Variations in semiconductor device response in a medium-energy x-ray dose-enhancing environment

    SciTech Connect

    Beutler, D.E.; Fleetwood, D.M.; Beezhold, W.; Knott, D.; Lorence, L.J. Jr.; Draper, B.L.

    1987-01-01

    A series of experiments was performed to investigate the response of semiconductor devices to medium-energy x-ray irradiation under conditions in which dose-enhancement effects are very important. The response of MOS capacitors to ''dose-enhanced'' radiation can depend on incident radiation spectra, temperature of the device, and oxide electric field. Indeed, the amount of enhanced response can vary by as much as a factor of 10 as these conditions are changed. In such cases, it appears that changes in electron-hole recombination and hole trapping as a function of radiation energy are very important to the interpretation of the results. Therefore, coupled electron/photon transport codes such as the Monte Carlo integrated TIGER series (ITS), which consider only changes in the dose deposited in the device active region, are inadequate, at least in some cases, for predictions of dose-enhancement effects in semiconductor devices. In addition, the response of semiconductor diodes to dose-enhanced radiation appears to be qualitatively different from that of capacitors, and differs markedly in value from code predictions. Hence, an understanding of the modification of incident radiation by its interactions with dose-enhancing materials alone is insufficient to predict the response of semiconductor devices. The dependence of the device response on radiation spectra, electron-hole recombination, and hole transport and trapping, must also be included to assure good simulation fidelity of tests for devices to be used in dose-enhancing environments.

  3. Spontaneous Energy Concentration in Energetic Molecules, Interfaces and Composites: Response to Ultrasound and THz Radiation

    DTIC Science & Technology

    2015-12-21

    Technical Report 3. DATES COVERED (From - To) -1 Mar 2011 to 30 Sept 2015 4. TITLE AND SUBTITLE Spontaneous energy concentration in energetic...SUPPLEMENTARY NOTES 14. ABSTRACT The effects of weak energies , THz and ultrasound, on energetic materials, was studied experimentally using laser...vibrational spectroscopies and time-resolved thermal imaging microscopy. 15. SUBJECT TERMS Ultrasound, THz radiation, energetic materials, hot spots, energy

  4. A method to estimate cow potential and subsequent responses to energy and protein supply according to stage of lactation.

    PubMed

    Daniel, J B; Friggens, N C; Van Laar, H; Ferris, C P; Sauvant, D

    2017-03-02

    Milk responses to dietary change are influenced by the relative production level, that is, the distance between observed production and potential production. The closer the animal is to its potential, the smaller the expected response is to extra nutrients. Therefore, the aim of this work was to provide a method to quantify cow potential, to estimate subsequent responses to changes in nutrient supply. The observed efficiencies in net energy for lactation (NEL) and metabolizable protein (MP) are proposed as a basis to estimate the relative production level of the animal. The rationale for using NEL and MP efficiency (ratios of milk energy yield/NEL above maintenance supply and milk protein yield/MP above maintenance supply) builds on the uniformity of the observed relationships between size of the milk responses and extra NEL supply and MP supply, when centered on a given efficiency. From there, a pivot nutritional situation where MP and NEL efficiency are 0.67 and 1.00, respectively, was defined, from which milk responses could be derived across animals varying in production potential. An implicit assumption of using response equations centered on reference efficiency pivots is that the size of the response to a fixed change in nutrient supply, relative to the pivot, is identical for animals with different production capacities. The proposed approach was evaluated with 2 independent data sets, where different dietary treatments were applied during the whole lactation. In these data sets, MP and NEL above maintenance supply were calculated weekly using the recently updated INRA Systali feed units system. Differences in NEL and MP supply above maintenance between the extreme dietary treatments were large, on average 667 g of MP/d and 13 MJ of NEL/d (3.11 Mcal/d) in the first data set, and 513 g of MP/d and 29 MJ of NEL/d (6.93 Mcal/d) for the second data set. Milk energy yield and milk component yields were predicted with root mean square prediction errors between 7

  5. Characterizing the constitutive response and energy absorption of rigid polymeric foams subjected to intermediate-velocity impact

    SciTech Connect

    Koohbor, Behrad; Kidane, Addis; Lu, Wei-Yang

    2016-06-27

    As an optimum energy-absorbing material system, polymeric foams are needed to dissipate the kinetic energy of an impact, while maintaining the impact force transferred to the protected object at a low level. As a result, it is crucial to accurately characterize the load bearing and energy dissipation performance of foams at high strain rate loading conditions. There are certain challenges faced in the accurate measurement of the deformation response of foams due to their low mechanical impedance. In the present work, a non-parametric method is successfully implemented to enable the accurate assessment of the compressive constitutive response of rigid polymeric foams subjected to impact loading conditions. The method is based on stereovision high speed photography in conjunction with 3D digital image correlation, and allows for accurate evaluation of inertia stresses developed within the specimen during deformation time. In conclusion, full-field distributions of stress, strain and strain rate are used to extract the local constitutive response of the material at any given location along the specimen axis. In addition, the effective energy absorbed by the material is calculated. Finally, results obtained from the proposed non-parametric analysis are compared with data obtained from conventional test procedures.

  6. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    NASA Astrophysics Data System (ADS)

    Wu, Dufan; Xu, Xiaofei; Zhang, Li; Wang, Sen

    2016-09-01

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  7. Characterizing the constitutive response and energy absorption of rigid polymeric foams subjected to intermediate-velocity impact

    DOE PAGES

    Koohbor, Behrad; Kidane, Addis; Lu, Wei-Yang

    2016-06-27

    As an optimum energy-absorbing material system, polymeric foams are needed to dissipate the kinetic energy of an impact, while maintaining the impact force transferred to the protected object at a low level. As a result, it is crucial to accurately characterize the load bearing and energy dissipation performance of foams at high strain rate loading conditions. There are certain challenges faced in the accurate measurement of the deformation response of foams due to their low mechanical impedance. In the present work, a non-parametric method is successfully implemented to enable the accurate assessment of the compressive constitutive response of rigid polymericmore » foams subjected to impact loading conditions. The method is based on stereovision high speed photography in conjunction with 3D digital image correlation, and allows for accurate evaluation of inertia stresses developed within the specimen during deformation time. In conclusion, full-field distributions of stress, strain and strain rate are used to extract the local constitutive response of the material at any given location along the specimen axis. In addition, the effective energy absorbed by the material is calculated. Finally, results obtained from the proposed non-parametric analysis are compared with data obtained from conventional test procedures.« less

  8. Beyond prometheus and Bakasura: Elements of an alternative to nuclear power in India's response to the energy-environment crisis

    NASA Astrophysics Data System (ADS)

    Mathai, Manu Verghese

    In India, as elsewhere, modern energy-society relations and economic development, metaphorically, Prometheus and the insatiable demon Bakasura, respectively, have produced unprecedented economic growth even as they have ushered in the "energy-environment crisis." Government efforts interpret the crisis as insufficiently advanced modernity. Resulting efforts to redress this crisis reaffirm more economic growth through modern energy-society relations and economic development. The civilian nuclear power renaissance in India, amidst rapidly accelerating economic growth and global climate change, is indicative. It presents the prospect of producing "abundant energy" and being "green" at the same time. This confidence in civilian nuclear power is questioned. It is investigated as proceeding from the modern discourse of "Cornucopianism" and its institutionalization as "modern megamachine organization of society." It is found that civilian nuclear power as energy policy is based on a presumption of overabundance as imperative for viable social and economic development; is predisposed to centralization and secrecy; its institutionalization limits deliberation on energy-society relations to technocratic terms; such deliberation is restrained to venues accessible only to the highest political office and technocratic elite; it fails to redress entrenched "energy injustice;" it embodies "modern technique" fostering the "displaced person" while eclipsing the "complete human personality." Overall, despite its green rhetoric, civilian nuclear power reaffirms the "politics of commodification" and refutes social and political arrangements for sustainability and equity. Alternatives are surveyed as strategies for resistance. They include the DEFENDUS approach for energy planning, the "Human Development and Capability Approach" and the "Sustainable Energy Utility." These alternatives and the synergy between them are offered as avenues to resist nuclear power as a response to the

  9. Stimuli-Responsive Metal Organic Frameworks: Stimuli-Responsive Metal Organic Frameworks for Energy-Efficient Post Combustion Capture

    SciTech Connect

    2010-07-01

    IMPACCT Project: A team led by three professors at Texas A&M is developing a subset of metal organic frameworks that respond to stimuli such as small changes in temperature to trap CO2 and then release it for storage. These frameworks are a promising class of materials for carbon capture applications because their structure and chemistry can be controlled with great precision. Because the changes in temperature required to trap and release CO2 in Texas A&M’s frameworks are much smaller than in other carbon capture approaches, the amount of energy or stimulus that has to be diverted from coal-fired power plants to accomplish this is greatly reduced. The team is working to alter the materials so they bind only with CO2, and are stable enough to withstand the high temperatures found in the chimneys of coal-fired power plants.

  10. Free Energy Contribution Analysis Using Response Kernel Approximation: Insights into the Acylation Reaction of a Beta-Lactamase.

    PubMed

    Asada, Toshio; Ando, Kanta; Bandyopadhyay, Pradipta; Koseki, Shiro

    2016-09-08

    A widely applicable free energy contribution analysis (FECA) method based on the quantum mechanical/molecular mechanical (QM/MM) approximation using response kernel approaches has been proposed to investigate the influences of environmental residues and/or atoms in the QM region on the free energy profile. This method can evaluate atomic contributions to the free energy along the reaction path including polarization effects on the QM region within a dramatically reduced computational time. The rate-limiting step in the deactivation of the β-lactam antibiotic cefalotin (CLS) by β-lactamase was studied using this method. The experimentally observed activation barrier was successfully reproduced by free energy perturbation calculations along the optimized reaction path that involved activation by the carboxylate moiety in CLS. It was found that the free energy profile in the QM region was slightly higher than the isolated energy and that two residues, Lys67 and Lys315, as well as water molecules deeply influenced the QM atoms associated with the bond alternation reaction in the acyl-enzyme intermediate. These facts suggested that the surrounding residues are favorable for the reactant complex and prevent the intermediate from being too stabilized to proceed to the following deacylation reaction. We have demonstrated that the free energy contribution analysis should be a useful method to investigate enzyme catalysis and to facilitate intelligent molecular design.

  11. High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments.

    PubMed

    Missirian, Victor; Conklin, Phillip A; Culligan, Kevin M; Huefner, Neil D; Britt, Anne B

    2014-01-01

    Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as "collateral" damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe(26+) high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5-24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the "DSB response" were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing "extended night." This response was not apparent in gamma-irradiated plants.

  12. Energy.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This document describes a course designed to acquaint students with the many societal and technological problems facing the United States and the world due to the increasing demand for energy. The course begins with a writing assignment that involves readings on the environmental philosophy of Native Americans and the Chernobyl catastrophe.…

  13. SU-E-T-462: Impact of the Radiochromic Film Energy Response On Dose Measurements of Low Energy Electronic Brachytherapy Sources

    SciTech Connect

    Liang, L; Bekerat, H; Tomic, N; DeBlois, F; Devic, S; Morcos, M; Popovic, M; Watson, P; Seuntjens, J

    2015-06-15

    Purpose: We investigated the effect of the EBT3 GafChromicTM film model absorbed dose energy response when used for percent depth dose (PDD) measurements in low-energy photon beams. Methods: We measured PDDs in water from a Xoft 50 kVp source using EBT3 film, and compared them to PDD measurements acquired with a PTW-TN34013 parallel-plate ionization chamber. For the x-ray source, we simulated spectra using the EGSnrc (BEAMnrc) Monte Carlo code, and calculated Half Value Layer (HVL) at different distances from the source in water. Pieces of EBT3 film were irradiated in air and calibration curves were created in terms of air-kerma in air ((Kair)air) for different beam qualities. Pieces of EBT3 film were positioned at distances of 2–6 cm from the Xoft source in a water phantom using a custom-made holder, and irradiated at the same time. As scatter is incorporated in the measured film signal in water, measured (Kair)wat was subsequently converted into absorbed dose to water by the ratio of mass energy absorption coefficients following the AAPM TG-61 dosimetry protocol. Results: Our results show that film calibration curves obtained at beam qualities near the effective energy of the Xoft 50 kVp source in water lead to variation in absorbed dose energy dependence of the response of around 3%. However, if the calibration curve was established at MV beam quality, the error in absorbed dose could be as large as 15%. We observed agreement within 1% between PDD measurements using EBT3 film model (using a calibration curve obtained at 80 kVp, HVL=2.18 mm Al, Eeff=29.5 keV) and the parallel-plate ionization chamber. Conclusion: Accurate dose measurements using radiochromic films at low photon energies require that the radiochromic film dosimetry system be calibrated at corresponding low energies, as large absorbed dose errors are expected for calibrations performed at MV beam qualities.

  14. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods123

    PubMed Central

    Byrne, Claire S; Chambers, Edward S; Alhabeeb, Habeeb; Chhina, Navpreet; Preston, Tom; Tedford, Catriona; Fitzpatrick, Julie; Irani, Cherag; Busza, Albert; Garcia-Perez, Isabel; Fountana, Sofia; Holmes, Elaine; Goldstone, Anthony P; Frost, Gary S

    2016-01-01

    Background: Short-chain fatty acids (SCFAs), metabolites produced through the microbial fermentation of nondigestible dietary components, have key roles in energy homeostasis. Animal research suggests that colon-derived SCFAs modulate feeding behavior via central mechanisms. In humans, increased colonic production of the SCFA propionate acutely reduces energy intake. However, evidence of an effect of colonic propionate on the human brain or reward-based eating behavior is currently unavailable. Objectives: We investigated the effect of increased colonic propionate production on brain anticipatory reward responses during food picture evaluation. We hypothesized that elevated colonic propionate would reduce both reward responses and ad libitum energy intake via stimulation of anorexigenic gut hormone secretion. Design: In a randomized crossover design, 20 healthy nonobese men completed a functional magnetic resonance imaging (fMRI) food picture evaluation task after consumption of control inulin or inulin-propionate ester, a unique dietary compound that selectively augments colonic propionate production. The blood oxygen level–dependent (BOLD) signal was measured in a priori brain regions involved in reward processing, including the caudate, nucleus accumbens, amygdala, anterior insula, and orbitofrontal cortex (n = 18 had analyzable fMRI data). Results: Increasing colonic propionate production reduced BOLD signal during food picture evaluation in the caudate and nucleus accumbens. In the caudate, the reduction in BOLD signal was driven specifically by a lowering of the response to high-energy food. These central effects were partnered with a decrease in subjective appeal of high-energy food pictures and reduced energy intake during an ad libitum meal. These observations were not related to changes in blood peptide YY (PYY), glucagon-like peptide 1 (GLP-1), glucose, or insulin concentrations. Conclusion: Our results suggest that colonic propionate production may

  15. Spatial Heterogeneity in Response of Male Greater Sage-Grouse Lek Attendance to Energy Development

    PubMed Central

    Gregory, Andrew J.; Beck, Jeffrey L.

    2014-01-01

    Landscape modification due to rapidly expanding energy development, in particular oil and gas, in the westernUSA, have prompted concerns over how such developments may impact wildlife. One species of conservation concern across much of the Intermountain West is the greater sage-grouse (Centrocercusurophasianus). Sage-grouse have been petitioned for listing under provisions of the Endangered Species Act 7 times and the state of Wyoming alone represents 64% of the extant sage-grouse population in the eastern portion of their range. Consequently, the relationship between sage-grouse populations and oil and gas development in Wyoming is an important component to managing the long-term viability of this species. We used 814 leks from the Wyoming Game and Fish Department's lek survey database and well pad data from the Wyoming Oil and Gas Conservation Commission to evaluate changes in sage-grouse lek counts as a function of oil and gas development since 1991.From 1991–2011 we found that oil and gas well-pad density increased 3.6-fold across the state and was associated with a 24% decline in the number of male sage-grouse. Using a spatial and temporally structured analysis via Geographically Weighted Regression, we found a 1-to-4 year time lag between development density and lek decline. Sage-grouse also responded to development densities at multiple spatial neighborhoods surrounding leks, including broad scales of 10 km. However, sage-grouse lek counts do not always decline as a result of oil and gas development. We found similar development densities resulting in different sage-grouse lek count responses, suggesting that development density alone is insufficient to predict the impacts that oil and gas development have on sage-grouse. Finally, our analysis suggests a maximum development density of 1 well-pad within 2 km of leks to avoid measurable impacts within 1 year, and <6 well-pads within 10 km of leks to avoid delayed impacts. PMID:24918922

  16. Zone Level Occupant-Responsive Building Energy Systems at the GSA

    SciTech Connect

    Robinson, Alastair

    2014-03-01

    The General Services Administration (GSA) partnered with the U.S. Department of Energy (DOE) to develop and implement building energy system retrofits, aiming to reduce energy consumption of at least two building systems by a total of 30 percent or more, as part of DOE’s Commercial Building Partnership (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program, working with the GSA and a team of consultants. This case study reports expected energy savings from appropriate energy efficient design and operations modifications to lighting and heating, ventilating and air conditioning (HVAC) systems at the selected study sites. These retrofits comprised installation of new lighting systems with dimming capability and occupancy-sensor control at the individual light fixture level, and utilized lighting system occupancy sensor signals to continually readjust zone-level ventilation airflow according to the number of people present, down to minimum rates when vacant.

  17. Peasant agriculture and global change: A maya response to energy development in southeastern Mexico

    SciTech Connect

    Collier, G.A. ); Mountjoy, D.C. ); Nigh, R.B. )

    1994-06-01

    This article combines data and perspectives from anthropology, agricultural economics, and landscape ecology to study how peasant activity mediates the influence of global economic driving forces on land-use patterns. Southeastern Mexico underwent rapid energy development during the 1960's and 1970's. The state used oil revenues to complete projects such as two major new hydroelectric power projects. As energy development went into high gear, the southeastern region, which had been primarily agrarian, began to supply Mexico with 50% of its energy and much of its export oil and the agricultural base declined. Discussed in this article are the following related areas: sectoral changes under the energy development boom; landscape dynamics; off-farm activities of peasants during the energy boom; Ainacanteco agriculture transformed after 1982; off-farm peasant production and agrarian transformation; peasant versatility and environmental policy. 28 refs., 7 figs.

  18. Fusion Energy Advisory Committee: Advice and recommendations to the US Department of Energy in response to the charge letter of September 1, 1992

    SciTech Connect

    Not Available

    1993-04-01

    This document is a compilation of the written records that relate to the Fusion Energy Advisory Committee`s deliberations with regard to the Letter of Charge received from the Director of Energy Research, dated September 1, 1992. During its sixth meeting, held in March 1993, FEAC provided a detailed response to the charge contained in the letter of September 1, 1992. In particular, it responded to the paragraph: ``I would like the Fusion Energy Advisory Committee (FEAC) to evaluate the Neutron Interactive Materials Program of the Office of Fusion Energy (OFE). Materials are required that will satisfy the service requirements of components in both inertial and magnetic fusion reactors -- including the performance, safety, economic, environmental, and recycle/waste management requirements. Given budget constraints, is our program optimized to achieve these goals for DEMO, as well as to support the near-term ITER program?`` Before FEAC could generate its response to the charge in the form of a letter report, one member, Dr. Parker, expressed severe concerns over one of the conclusions that the committee had reached during the meeting. It proved necessary to resolve the issue in public debate, and the matter was reviewed by FEAC for a second time, during its seventh meeting, held in mid-April, 1993. In order to help it to respond to this charge in a timely manner, FEAC established a working group, designated Panel No. 6, which reviewed the depth and breadth of the US materials program, and its interactions and collaborations with international programs. The panel prepared background material, included in this report as Appendix I, to help FEAC in its deliberations.

  19. No Evidence for a Low Linear Energy Transfer Adaptive Response in Irradiated RKO Cells

    SciTech Connect

    Sowa, Marianne B.; Goetz, Wilfried; Baulch, Janet E.; Lewis, Adam J.; Morgan, William F.

    2011-01-06

    It has become increasingly evident from reports in the literature that there are many confounding factors that are capable of modulating radiation induced non-targeted responses such as the bystander effect and the adaptive response. In this paper we examine recent data that suggest that the observation of non-targeted responses may not be universally observable for differing radiation qualities. We have conducted a study of the adaptive response following low LET exposures for human colon carcinoma cells and failed to observe adaption for the endpoints of clonogenic survival or micronucleus formation.

  20. Peripartum performance and metabolism of dairy cows in response to prepartum energy and protein intake.

    PubMed

    Doepel, L; Lapierre, H; Kennelly, J J

    2002-09-01

    Twenty-six multiparous Holstein cows were used to examine the effects of prepartum energy and protein intake on periparturient metabolism and lactation performance. Two levels of energy, 1.65 Mcal/kg of net energy for lactation (NEL) and 1.30 Mcal/kg of NEL, and two levels of protein, 17.0% CP and 12.5% CP, were tested according to a factorial arrangement in a randomized block design. Dietary treatments were fed ad libitum from 21 d before expected calving date to the day of calving. After calving, all cows were fed the same diet. Increased nutrient density did not affect prepartum feed intake, but postpartum intake was higher for cows fed the high-energy diets. Treatment had no effect on cow body weight and body condition score, however, cows fed the high-energy diets were in greater energy balance throughout the study. Milk and milk component yields were unaffected by treatment. Cows fed the high-energy diets had lower plasma nonesterified fatty acid concentrations than cows fed the low energy diets (354.3 vs. 439.9 mumol/L). Hepatic triglyceride concentrations were lower for cows on the high-energy diets than for those on the low-energy diets. Liver glycogen was unaffected by treatment. Acetyl-CoA carboxylase and fatty acid synthase abundance was significantly lower at calving than pretreatment, and higher for cows on the high-energy diets relative to those on the low-energy diets. The activity of acetyl-CoA carboxylase and lipoprotein lipase was greatly decreased with the onset of lactation. Increased protein intake prepartum resulted in elevated plasma beta-hydroxybutyrate concentrations postpartum. Prepartum plasma urea nitrogen was increased and 3-methylhistidine decreased by the high protein treatments. Overall, increased energy density of prepartum diets had beneficial effects on feed intake and lipid metabolism but did not improve lactation performance. Increasing the protein content of the prepartum diet did not appear to confer any advantages to cow

  1. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density.

    PubMed

    Lee, Jae-Won; Kim, Young-Hun; Lee, Soo-Min; Lee, Hyoung-Woo

    2012-07-01

    The optimal conditions for the torrefaction of mixed softwood were investigated by response surface methodology. This showed that the chemical composition of torrefied biomass was influenced by the severity factor of torrefaction. The lignin content in the torrefied biomass increased with the SF, while holocellulose content decreased. Similarly, the carbon content energy value of torrefied biomass ranged from 19.31 to 22.12 MJ/kg increased from 50.79 to 57.36%, while the hydrogen and oxygen contents decreased. The energy value of torrefied biomass ranged from 19.31 to 22.12 MJ/kg. This implied that the energy contained in the torrefied biomass increased by 4-19%, when compared with the untreated biomass. The energy value and weight loss in biomass slowly increased as the SF increased up until 6.12; and then dramatically increased as the SF increased further from 6.12 to 7.0. However, the energy yield started decreasing at SF value higher than 6.12; and the highest energy yield was obtained at low SF.

  2. Experimental and Theoretical Determination of the Thermomechanical Response of Inelastic Structural Materials to High Energy Thermal Inputs

    DTIC Science & Technology

    1988-12-01

    CLASSIFICATION AUTHORITY 3 . DISTRIBUTION /AVAILABILITY OF REPORT __________________________________ A~PrOyed tOr publIc release, 2o. DECLASSIFICATION...DETERMINATION OF THE THERMOMECHANICAL RESPONSE OF INELASTIC STRUCTURAL MATERIALS TO HIGH ENERGY THERMAL INPUTS 3 Semi-Annual Technical Report Submitted by...D.H. Allen Aerospace Engineering Department and M.S. Pilant Mathematics Department 5Texas A&M University College Station, Texas 77843U 3 to the Air

  3. Lagrangian and energy forms for retrieving the impulse response of the Earth due to random electromagnetic forcing.

    PubMed

    Slob, Evert; Weiss, Chester J

    2011-08-01

    We distinguish between trivial and nontrivial differences in retrieving the real or imaginary parts of the Green's function. Trivial differences come from different Green's function definitions. The energy and lagrangian forms constitute nontrivial differences. Magnetic noise sources suffice to extract the quasistatic electromagnetic-field Earth impulse response in the lagrangian form. This is of interest for Earth subsurface imaging. A numerical example demonstrates that all source vector components are necessary to extract a single-field vector component.

  4. Preliminary findings on the role of PLIN1 polymorphisms on body composition and energy metabolism response to energy restriction in obese women.

    PubMed

    Ruiz, J R; Larrarte, E; Margareto, J; Ares, R; Alkorta, P; Labayen, I

    2011-08-01

    The aim of the present study was to investigate the association of PLIN1 11482G>A (rs894160) and PLIN1 13041A>G (rs2304795) polymorphisms with body composition, energy and substrate metabolism, and the metabolic response to a 12-week energy-restricted diet in obese women. The study comprised a total of seventy-eight obese (BMI 34·0 (SD 2·8) kg/m(2)) women (age 36·7 (SD 7) years). We measured weight, height and waist circumference before and after a 12-week controlled energy-restricted diet intervention. Body fat mass and lean mass were measured by dual-energy X-ray absorptiometry. RMR and lipid oxidation rate were measured by indirect calorimetry. We also analysed fasting plasma glucose, insulin, cholesterol and leptin. Women carrying the 11482A allele had a lower reduction in waist circumference than non-A allele carriers (3·2 (SD 0·5) v. 4·6 (SD 0·6) %, respectively, P = 0·047; P for gene-diet interaction = 0·064). Moreover, women with the 11482A allele had a higher decrease in lipid oxidation rate than non-A allele carriers (58·9 (SD 6·7) v. 31·3 (SD 8·2) %, respectively, P = 0·012; P for gene-diet interaction = 0·004). There was no interaction effect between the 13041A>G polymorphism and diet-induced changes on the outcome variables (all P>0·1). These results confirm and extend previous findings suggesting that the PLIN1 11482G>A polymorphism plays a modulating role on diet-induced changes in body fat and energy metabolism in obese women.

  5. Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows.

    PubMed

    Wathes, D Claire; Cheng, Zhangrui; Chowdhury, Waliul; Fenwick, Mark A; Fitzpatrick, Richard; Morris, Dermot G; Patton, Joe; Murphy, John J

    2009-09-09

    Most dairy cows suffer uterine microbial contamination postpartum. Persistent endometritis often develops, associated with reduced fertility. We used a model of differential feeding and milking regimes to produce cows in differing negative energy balance status in early lactation (mild or severe, MNEB or SNEB). Blood hematology was assessed preslaughter at 2 wk postpartum. RNA expression in endometrial samples was compared using bovine Affymetrix arrays. Data were mapped using Ingenuity Pathway Analysis. Circulating concentrations of IGF-I remained lower in the SNEB group, whereas blood nonesterified fatty acid and beta-hydroxybutyrate concentrations were raised. White blood cell count and lymphocyte number were reduced in SNEB cows. Array analysis of endometrial samples identified 274 differentially expressed probes representing 197 recognized genes between the energy balance groups. The main canonical pathways affected related to immunological and inflammatory disease and connective tissue disorders. Inflammatory response genes with major upregulation in SNEB cows included matrix metalloproteinases, chemokines, cytokines, and calgranulins. Expression of several interferon-inducible genes including ISG20, IFIH1, MX1, and MX2 were also significantly increased in the SNEB cows. These results provide evidence that cows in SNEB were still undergoing an active uterine inflammatory response 2 wk postpartum, whereas MNEB cows had more fully recovered from their energy deficit, with their endometrium reaching a more advanced stage of repair. SNEB may therefore prevent cows from mounting an effective immune response to the microbial challenge experienced after calving, prolonging the time required for uterine recovery and compromising subsequent fertility.

  6. Enabling Responsible Energy Decisions: What People Know, Want to Know, and Need to Know about Climate Change

    NASA Astrophysics Data System (ADS)

    PytlikZillig, L. M.; Tomkins, A. J.; Harrington, J. A.

    2012-12-01

    As part of a broader regional effort focused on climate change education and rural communities, this paper focuses on a specific effort to understand effective approaches to two presumably complementary goals: The goal of increasing knowledge about climate change and climate science in a community, and the goal of having communities use climate change and climate science information when making decisions. In this paper, we explore the argument that people do not need or want to know about climate change, in order to make responsible and sustainable energy decisions. Furthermore, we hypothesize that involvement in making responsible and sustainable energy decisions will increase openness and readiness to process climate science information, and thus increase learning about climate change in subsequent exposures to such information. Support for these hypotheses would suggest that rather than encouraging education to enable action (including engagement in attempts to make responsible decisions), efforts should focus on encouraging actions first and education second. To investigate our hypotheses, we will analyze and report results from efforts to engage residents from a medium-sized Midwestern city to give input on future programs involving sustainable energy use. The engagement process (which will not be complete until after the AGU deadline) involves an online survey and an optional face-to-face discussion with city officials and experts in energy-related areas. The online survey includes brief information about current local energy programs, questions assessing knowledge of climate change, and an open-ended question asking what additional information residents need in order to make good decisions and recommendations concerning the energy programs. To examine support for our hypotheses, we will report (1) relationships between subjective and objective knowledge of climate science and willingness to attend the face-to-face discussion about the city's energy decisions

  7. Milk yield and milk composition responses to change in predicted net energy and metabolizable protein: a meta-analysis.

    PubMed

    Daniel, J B; Friggens, N C; Chapoutot, P; Van Laar, H; Sauvant, D

    2016-12-01

    Using a meta-analysis of literature data, this study aimed to quantify the dry matter (DM) intake response to changes in diet composition, and milk responses (yield, milk component yields and milk composition) to changes in dietary net energy for lactation (NEL) and metabolizable protein (MP) in dairy cows. From all studies included in the database, 282 experiments (825 treatments) with experimentally induced changes in either NEL or MP content were kept for this analysis. These treatments covered a wide range of diet characteristics and therefore a large part of the plausible NEL and MP contents and supplies that can be expected in practical situations. The average MP and NEL contents were, respectively (mean±SD), 97±12 g/kg DM and 6.71±0.42 MJ/kg DM. On a daily supply basis, there were high between-experiment correlations for MP and NEL above maintenance. Therefore, supplies of MP and NEL above maintenance were, respectively, centred on MP supply for which MP efficiency into milk protein is 0.67, and NEL above maintenance supply for which the ratio of NEL milk/NEL above maintenance is 1.00 (centred variables were called MP67 and NEL100). The majority of the selected studies used groups of multiparous Holstein-Friesian cows in mid lactation, milked twice a day. Using a mixed model, between- and within-experiment variation was split to estimate DM intake and milk responses. The use of NEL100 and MP67 supplies substantially improved the accuracy of the prediction of milk yield and milk component yields responses with, on average, a 27% lower root mean square error (RMSE) relative to using dietary NEL and MP contents as predictors. For milk composition (g/kg), the average RMSE was only 3% lower on a supply basis compared with a concentration basis. Effects of NEL and MP supplies on milk yield and milk component yields responses were additive. Increasing NEL supply increases energy partitioning towards body reserve, whereas increasing MP supply increases the

  8. Improved High-Energy Response of AlGaAs/GaAs Solar Cells Using a Low-Cost Technology

    NASA Astrophysics Data System (ADS)

    Noorzad, Camron D.; Zhao, Xin; Harotoonian, Vache; Woodall, Jerry M.

    2016-12-01

    We report on an AlGaAs/GaAs solar cell with a significantly increased high-energy response that was produced via a modified liquid phase epitaxy (LPE) technique. This technique uses a one-step process in which the solid-liquid equilibrium Al-Ga-As:Zn melt in contact with an n-type vendor GaAs substrate simultaneously getters impurities in the substrate that shorten minority carrier lifetimes, diffuses Zn into the substrate to create a p- n junction, and forms a thin p-AlGaAs window layer that enables more high-energy light to be efficiently absorbed. Unlike conventional LPE, this process is performed isothermally. In our "double Al" method, the ratio of Al in the melt ("Al melt ratio") that was used in our process was two times more than what was previously reported in the record 1977 International Business Machines (IBM) solar cell. Photoluminescence (PL) results showed our double Al sample yielded a response to 405 nm light ("blue light"), which was more than twice as intense as the response from our replicated IBM cell. The original 1977 cell had a low-intensity spectral response to photon wavelengths under 443 nm (Woodall and Hovel in Sol Energy Mater Sol Cells 29:176, 1990). Secondary ion mass spectrometry results confirmed the increased blue light response was due to a large reduction in AlGaAs window layer thickness. These results proved increasing the Al melt ratio broadens the spectrum of light that can be transmitted through the window layer into the active GaAs region for absorption, increasing the overall solar cell efficiency. Our enhanced double Al method can pave the way for large-scale manufacturing of low-cost, high-efficiency solar cells.

  9. COCO, a Compton coincidence experiment to study liquid scintillator response in the 1-20 keV energy range

    NASA Astrophysics Data System (ADS)

    Péron, M. N.; Cassette, P.

    1994-12-01

    The use of Liquid Scintillation Counting (LSC) as a fundamental radionuclide standardisation method requires a correct description of the physical phenomena occurring during the LSC process. In that framework, a special point of interest is the description of the liquid scintillator response, especially for low-energy electrons, in a region where this response is known to be non-linear. As there is no simple way to produce monoenergetic electrons in the liquid scintillator, we have simulated these electrons using a Compton interaction coincidence method. Due to the energy conservation law, the selection of the energy of the scattered Compton X-ray photon is equivalent to the selection of the energy of a monoenergetic electron. This paper describes the experimental system and the methods used to analyse the experimental results in order to deduce the statistical distribution of the photons emitted by the scintillator. The effects of some artefacts are discussed, including the accidental coincidences and the influence of cascade Compton interactions.

  10. Where is the chromospheric response to conductive energy input from a hot pre-flare coronal loop?

    SciTech Connect

    Battaglia, Marina; Fletcher, Lyndsay; Simões, Paulo J. A.

    2014-07-01

    Before the onset of a flare is observed in hard X-rays, there is often a prolonged pre-flare or pre-heating phase with no detectable hard X-ray emission but pronounced soft X-ray emission, which suggests that energy is already being released and deposited into the corona and chromosphere at this stage. This work analyzes the temporal evolution of coronal source heating and the chromospheric response during this pre-heating phase to investigate the origin and nature of early energy release and transport during a solar flare. Simultaneous X-ray, EUV, and microwave observations of a well-observed flare with a prolonged pre-heating phase are analyzed to study the time evolution of the thermal emission and to determine the onset of particle acceleration. During the 20 minute duration of the pre-heating phase we find no hint of accelerated electrons in either hard X-rays or microwave emission. However, the total energy budget during the pre-heating phase suggests that energy must be supplied to the flaring loop to sustain the observed temperature and emission measure. Under the assumption of this energy being transported toward the chromosphere via thermal conduction, significant energy deposition at the chromosphere is expected. However, no detectable increase of the emission in the AIA wavelength channels sensitive to chromospheric temperatures is observed. The observations suggest energy release and deposition in the flaring loop before the onset of particle acceleration, yet a model in which energy is conducted to the chromosphere and subsequent heating of the chromosphere is not supported by the observations.

  11. Leptin signaling is required for adaptive changes in food intake, but not energy expenditure, in response to different thermal conditions.

    PubMed

    Kaiyala, Karl J; Ogimoto, Kayoko; Nelson, Jarrell T; Schwartz, Michael W; Morton, Gregory J

    2015-01-01

    Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity.

  12. Dependence the Integrated Energy of the Electromagnetic Response from Excitation Pulse Duration for Epoxy Samples With Sand Filler

    NASA Astrophysics Data System (ADS)

    Surzhikov, V. P.; Demikhova, A. A.

    2017-01-01

    Results of research of influence of the excitation pulse duration on the parameters of the electromagnetic response of epoxy samples with filler the quartz sand presented in the paper. The electric component of a response was registered by the capacitive sensors using a differential amplifier. Measurements were carried out at two frequencies of the master generator of 65 kHz and 74 kHz. The pulse duration was changing from 10 to 100 microseconds. The stepped sort of dependence of the integrated oscillations energy in the response from duration of the excitation pulse was discovered. The conclusion was made about the determining role of the normal oscillations in formation of such dependence.

  13. Variation in energy available to populations of subsurface anaerobes in response to geological carbon storage.

    PubMed

    Kirk, Matthew F

    2011-08-01

    Microorganisms can strongly influence the chemical and physical properties of the subsurface. Changes in microbial activity caused by geological CO(2) storage, therefore, have the potential to influence the capacity, injectivity, and integrity of CO(2) storage reservoirs and ultimately the environmental impact of CO(2) injection. This analysis uses free energy calculations to examine variation in energy available to Fe(III) and SO(4)(2-) reducers and methanogens because of changes in the bulk composition of brine and shallow groundwater following subsurface CO(2) injection. Calculations were performed using data from two field experiments, the Frio Formation experiment and an experiment at the Zero Emission Research and Technology test site. Energy available for Fe(III) reduction increased significantly during CO(2) injection in both experiments, largely because of a decrease in pH from near-neutral levels to just below 6. Energy available to SO(4)(2-) reducers and methanogens varied little. These changes can lead to a greater rate of microbial Fe(III) reduction following subsurface CO(2) injection in reservoirs where Fe(III) oxides or oxyhydroxides are available and the rate of Fe(III) reduction is limited by energy available prior to injection.

  14. Ghrelin Modulates the fMRI BOLD Response of Homeostatic and Hedonic Brain Centers Regulating Energy Balance in the Rat

    PubMed Central

    Deli, Levente; Gajári, Dávid; Dávid, Szabolcs; Pozsgay, Zsófia; Hegedűs, Nikolett; Tihanyi, Károly; Liposits, Zsolt

    2014-01-01

    The orexigenic gut-brain peptide, ghrelin and its G-protein coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1A) are pivotal regulators of hypothalamic feeding centers and reward processing neuronal circuits of the brain. These systems operate in a cooperative manner and receive a wide array of neuronal hormone/transmitter messages and metabolic signals. Functional magnetic resonance imaging was employed in the current study to map BOLD responses to ghrelin in different brain regions with special reference on homeostatic and hedonic regulatory centers of energy balance. Experimental groups involved male, ovariectomized female and ovariectomized estradiol-replaced rats. Putative modulation of ghrelin signaling by endocannabinoids was also studied. Ghrelin-evoked effects were calculated as mean of the BOLD responses 30 minutes after administration. In the male rat, ghrelin evoked a slowly decreasing BOLD response in all studied regions of interest (ROI) within the limbic system. This effect was antagonized by pretreatment with GHS-R1A antagonist JMV2959. The comparison of ghrelin effects in the presence or absence of JMV2959 in individual ROIs revealed significant changes in the prefrontal cortex, nucleus accumbens of the telencephalon, and also within hypothalamic centers like the lateral hypothalamus, ventromedial nucleus, paraventricular nucleus and suprachiasmatic nucleus. In the female rat, the ghrelin effects were almost identical to those observed in males. Ovariectomy and chronic estradiol replacement had no effect on the BOLD response. Inhibition of the endocannabinoid signaling by rimonabant significantly attenuated the response of the nucleus accumbens and septum. In summary, ghrelin can modulate hypothalamic and mesolimbic structures controlling energy balance in both sexes. The endocannabinoid signaling system contributes to the manifestation of ghrelin's BOLD effect in a region specific manner. In females, the estradiol milieu does

  15. Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future

    SciTech Connect

    Corneli, Steve; Kihm, Steve; Schwartz, Lisa

    2015-11-01

    The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s cost and organizational structure.

  16. Appetite, energy intake and resting metabolic responses to 60 min treadmill running performed in a fasted versus a postprandial state.

    PubMed

    Deighton, Kevin; Zahra, Jessica C; Stensel, David J

    2012-06-01

    This study investigated the effect of fasted and postprandial exercise on appetite, energy intake and resting metabolic responses. Twelve healthy males (mean±SD: age 23±3 years, body mass index 22.9±2.1 kg m(-2), maximum oxygen uptake 57.5±9.7 mL kg(-1) min(-1)) performed three 10 h experimental trials (control, fasted exercise and postprandial exercise) in a Latin Square design. Trials commenced at 8 am after an overnight fast. Sixty min of treadmill running at ∼70% of maximum oxygen uptake was performed at 0-1 h in the fasted exercise trial and 4-5 h in the postprandial exercise trial. A standardised breakfast was provided at 1.5 h and ad libitum buffet meals at 5.5 and 9.5 h. Appetite ratings and resting expired air samples were collected throughout each trial. Postprandial exercise suppressed appetite to a greater extent than fasted exercise. Ad libitum energy intake was not different between trials, resulting in a negative energy balance in exercise trials relative to control after accounting for differences in energy expenditure (control: 9774±2694 kJ; fasted exercise: 6481±2318 kJ; postprandial exercise: 6017±3050 kJ). These findings suggest that 60 min treadmill running induces a negative daily energy balance relative to a sedentary day but is no more effective when performed before or after breakfast.

  17. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response

    PubMed Central

    Moyes, Kasey M.; Drackley, James K.; Morin, Dawn E.; Rodriguez-Zas, Sandra L.; Everts, Robin E.; Lewin, Harris A.

    2010-01-01

    Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5) to better understand the mechanisms associated with NEB and risk of mastitis during the transition period. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements for 7 days, and cows assigned to PEB were fed the same diet for ad libitum intake. Five days after feed restriction, one rear mammary quarter of each cow was inoculated with 5,000 cfu of S. uberis (O140J). At 20 h postinoculation, S. uberis-infected mammary quarters from all cows were biopsied for RNA extraction. Negative energy balance resulted in 287 differentially expressed genes (DEG; false discovery rate ≤ 0.05), with 86 DEG upregulated and 201 DEG downregulated in NEB vs. PEB. Canonical pathways most affected by NEB were IL-8 signaling (10 genes), glucocorticoid receptor signaling (13), and NRF2-mediated oxidative stress response (10). Among the genes differentially expressed by NEB, cell growth and proliferation (48) and cellular development (36) were the most enriched functions. Regarding immune response, HLA-A was upregulated due to NEB, whereas the majority of genes involved in immune response were downregulated (e.g., AKT1, IRAK1, MAPK9, and TRAF6). This study provided new avenues for investigation into the mechanisms relating NEB and susceptibility to mastitis in lactating dairy cows. PMID:20103698

  18. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response.

    PubMed

    Moyes, Kasey M; Drackley, James K; Morin, Dawn E; Rodriguez-Zas, Sandra L; Everts, Robin E; Lewin, Harris A; Loor, Juan J

    2010-04-01

    Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5) to better understand the mechanisms associated with NEB and risk of mastitis during the transition period. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements for 7 days, and cows assigned to PEB were fed the same diet for ad libitum intake. Five days after feed restriction, one rear mammary quarter of each cow was inoculated with 5,000 cfu of S. uberis (O140J). At 20 h postinoculation, S. uberis-infected mammary quarters from all cows were biopsied for RNA extraction. Negative energy balance resulted in 287 differentially expressed genes (DEG; false discovery rate ≤ 0.05), with 86 DEG upregulated and 201 DEG downregulated in NEB vs. PEB. Canonical pathways most affected by NEB were IL-8 signaling (10 genes), glucocorticoid receptor signaling (13), and NRF2-mediated oxidative stress response (10). Among the genes differentially expressed by NEB, cell growth and proliferation (48) and cellular development (36) were the most enriched functions. Regarding immune response, HLA-A was upregulated due to NEB, whereas the majority of genes involved in immune response were downregulated (e.g., AKT1, IRAK1, MAPK9, and TRAF6). This study provided new avenues for investigation into the mechanisms relating NEB and susceptibility to mastitis in lactating dairy cows.

  19. Extent and Determinants of Thermogenic Responses to 24 Hours of Fasting, Energy Balance, and Five Different Overfeeding Diets in Humans

    PubMed Central

    Pannacciulli, Nicola; Bonfiglio, Susan; Pacak, Karel; Krakoff, Jonathan

    2013-01-01

    Context: Individual variation in the ability to convert excess calories to heat and the effects of dietary macronutrient composition are unclear. Objective: Stability and determinants of the energy expenditure (EE) response to overconsumption were assessed. Design, Setting, and Participants: Twenty subjects (75% male) with normal glucose regulation were evaluated during 24 hours each of energy balance, fasting, and 5 different diets with 200% energy requirements in a clinical research unit. Interventions: Five 1-day overfeeding diets were given in random order: high carbohydrate (75%) and low protein (3%); high carbohydrate and normal protein (20%); high fat (46%) and low protein; high fat (60%) and normal protein; and balanced (50% carbohydrates, 20% protein). Main Outcome Measures: The 24-hour EE, sleeping EE, and thermic effect of food (TEF) during each diet were measured with a metabolic chamber. Appetitive hormones were measured before and after the diets. Results: The EE response to overfeeding exhibited good intraindividual reproducibility. Similar increases above eucaloric feeding in 24-hour EE (mean 10.7 ± 5.7%, P < .001; range 2.9–18.8%) and sleeping EE (14.4 ± 11.3%, P < .001; range 1.0–45.1%) occurred when overfeeding diets containing 20% protein, despite differences in fat and carbohydrate content, but the EE response during overfeeding diets containing 3% protein was attenuated. The percent body fat negatively correlated with TEF during normal protein overfeeding (r = −0.53, P < .01). Fasting peptide YY negatively correlated with TEF (r = −0.56, P < .01) and the increase in sleeping EE (r = −0.54, P < .01) during overfeeding. Conclusions: There is an intrinsic EE response to overfeeding that negatively associates with adiposity, although it represents a small percentage of consumed calories. PMID:23666976

  20. Common challenge, collaborative response: a roadmap for US-China cooperation on energy and climate change

    SciTech Connect

    2009-01-15

    This Report which was produced in partnership between Asia Society's Center on U.S.-China Relations and Pew Center on Global Climate Change, in collaboration with The Brookings Institution, Council on Foreign Relations, National Committee on U.S.-China Relations, and Environmental Defense Fund presents both a vision and a concrete Roadmap for such Sino-U.S. collaboration. With input from scores of experts and other stakeholders from the worlds of science, business, civil society, policy, and politics in both China and the United States, the Report, or 'Roadmap', explores the climate and energy challenges facing both nations and recommends a concrete program for sustained, high-level, bilateral engagement and on-the-ground action. The Report recommends that, as a first step in forging this new partnership, the leaders of the two countries should convene a leaders summit as soon as practically possible following the inauguration of Barack Obama to launch a 'U.S.-China Partnership on Energy and Climate Change'. This presidential summit should outline a major plan of joint-action and empower relevant officials in each country to take the necessary actions to ensure its implementation. Priority areas of collaboration include: deploying low-emissions coal technologies; improving energy efficiency and conservation; developing an advanced electric grid; promoting renewable energy; and quantifying emissions and financing low-carbon technologies. 5 figs., 1 tab., 2 apps.

  1. Response analysis of a nonlinear magnetoelectric energy harvester under harmonic excitation

    NASA Astrophysics Data System (ADS)

    Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O.

    2015-11-01

    Magnetostrictive (MS) piezoelectric composites provide interesting possibilities to harvest energy from low amplitude and low frequency vibrations with a relative high energy outcome. In this paper a magnetoelectric (ME) vibration energy harvester has been designed, which consists of two ME transducers a magnetic circuit and a magnetic spring. The ME transducers consist of three layered Terfenol-D and Lead Zirconate Titanate (PZT) laminated composites. The outcoming energy is collected directly from the piezo layer to avoid electrical losses. In the system under consideration, the magnetic forces between the ME transducers and the magnetic circuit introduce additional stiffness on the magnetic spring. The one degree of freedom system is analysed analytically and the corresponding governing equation is solved with the Lindstedt-Poincaré method. The effects of the structure parameters, such as the nonlinear magnetic forces and the magnetic field distribution, are analysed based on finite element analysis for optimization of electric output performances. Investigations demonstrate that 1.56 mW output power across 8 MΩ load resistance can be harvested for an excitation amplitude of 1 mm at 21.84 Hz.

  2. Salinity modulates thermotolerance, energy metabolism and stress response in amphipods Gammarus lacustris

    PubMed Central

    Vereshchagina, Kseniya P.; Lubyaga, Yulia A.; Shatilina, Zhanna; Bedulina, Daria; Gurkov, Anton; Axenov-Gribanov, Denis V.; Baduev, Boris; Kondrateva, Elizaveta S.; Gubanov, Mikhail; Zadereev, Egor; Sokolova, Inna

    2016-01-01

    Temperature and salinity are important abiotic factors for aquatic invertebrates. We investigated the influence of different salinity regimes on thermotolerance, energy metabolism and cellular stress defense mechanisms in amphipods Gammarus lacustris Sars from two populations. We exposed amphipods to different thermal scenarios and determined their survival as well as activity of major antioxidant enzymes (peroxidase, catalase, glutathione S-transferase) and parameters of energy metabolism (content of glucose, glycogen, ATP, ADP, AMP and lactate). Amphipods from a freshwater population were more sensitive to the thermal challenge, showing higher mortality during acute and gradual temperature change compared to their counterparts from a saline lake. A more thermotolerant population from a saline lake had high activity of antioxidant enzymes. The energy limitations of the freshwater population (indicated by low baseline glucose levels, downward shift of the critical temperature of aerobic metabolism and inability to maintain steady-state ATP levels during warming) was observed, possibly reflecting a trade-off between the energy demands for osmoregulation under the hypo-osmotic condition of a freshwater environment and protection against temperature stress. PMID:27896024

  3. The individual and combined effects of glycemic index and protein on glycemic response, hunger, and energy intake.

    PubMed

    Makris, Angela P; Borradaile, Kelley E; Oliver, Tracy L; Cassim, Nida G; Rosenbaum, Diane L; Boden, Guenther H; Homko, Carol J; Foster, Gary D

    2011-12-01

    Although high protein and low glycemic index (GI) foods are thought to promote satiety, little is known about the effects of GI, protein, and their interaction on hunger and energy intake several hours following a mixed meal. This study investigated the long term effects of GI, protein, and their combined effects on glucose, insulin, hunger, and energy intake in healthy, sedentary, overweight, and obese adults (BMI of 30.9 ± 3.7 kg/m(2)). Sixteen individuals participated separately in four testing sessions after an overnight fast. The majority (75%) were non-Hispanic Blacks. Each consumed one of four breakfast meals (high GI/low protein, high GI/high protein, low GI/low protein, low GI/high protein) in random order. Visual analog scales (VAS) and blood samples were taken at baseline, 15 min, and at 30 min intervals over 4 h following the meal. After 4 h, participants were given the opportunity to consume food ad libitum from a buffet style lunch. Meals containing low GI foods produced a smaller glucose (P < 0.002) and insulin (P = 0.0001) response than meals containing high GI foods. No main effects for protein or interactions between GI and protein were observed in glucose or insulin responses, respectively. The four meals had no differential effect on observed energy intake or self-reported hunger, satiety, and prospective energy intake. Low GI meals produced the smallest postprandial increases in glucose and insulin. There were no effects for GI, protein, or their interaction on appetite or energy intake 4 h after breakfast.

  4. Renewable Energy Resources Portfolio Optimization in the Presence of Demand Response

    SciTech Connect

    Behboodi, Sahand; Chassin, David P.; Crawford, Curran; Djilali, Ned

    2016-01-15

    In this paper we introduce a simple cost model of renewable integration and demand response that can be used to determine the optimal mix of generation and demand response resources. The model includes production cost, demand elasticity, uncertainty costs, capacity expansion costs, retirement and mothballing costs, and wind variability impacts to determine the hourly cost and revenue of electricity delivery. The model is tested on the 2024 planning case for British Columbia and we find that cost is minimized with about 31% renewable generation. We also find that demand responsive does not have a significant impact on cost at the hourly level. The results suggest that the optimal level of renewable resource is not sensitive to a carbon tax or demand elasticity, but it is highly sensitive to the renewable resource installation cost.

  5. The energy dependence of the lateral dose response functions of detectors with various densities in photon-beam dosimetry

    NASA Astrophysics Data System (ADS)

    Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

    2017-02-01

    The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector’s size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector’s electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.

  6. NOTE: Changes in the energy response of a dedicated gamma camera after exposure to a high-flux irradiation

    NASA Astrophysics Data System (ADS)

    Matheoud, Roberta; Zito, Felicia; Canzi, Cristina; Voltini, Franco; Gerundini, Paolo

    1999-06-01

    This work reports the effects of the gain variation of the photomultiplier tubes (PMTs) observed on a cardiac dedicated gamma camera after accidental high-flux irradiation. One detector of this dual-headed 90°-fixed gamma camera was accidentally left uncollimated during a quality assurance procedure on the other detector with a 57Co flood source (259 MBq) and received a non-uniform high flux of 1.9-0.6 Mcps over 25 000 mm2 areas for about 30 min. To evaluate the severity and the duration of the perturbation effect on the energy response of the detector, the photopeak position was monitored for about 1 month with a 99mTc point source. The 140 keV photopeak shifted to 158 keV soon after irradiation, reached the correct position after 9 days and moved to a stable value of 132 keV after 15 days. Afterwards, a new energy calibration reset the photopeak position at 140 keV and the correct energy response of the gamma camera. This experience suggests that particular care should be taken to avoid exposures to high radiation fluxes that induce persistent gain shifts on the PMTs of this system.

  7. Magnetic response of gelatin ferrogels across the sol-gel transition: the influence of high energy crosslinking on thermal stability.

    PubMed

    Wisotzki, Emilia I; Eberbeck, Dietmar; Kratz, Harald; Mayr, Stefan G

    2016-05-07

    As emerging responsive materials, ferrogels have demonstrated significant potential for applications in areas of engineering to regenerative medicine. Promising techniques to study the behavior of magnetic nanoparticles (MNPs) in such matrices include magnetic particle spectroscopy (MPS) and magnetorelaxometry (MRX). This work investigated the magnetic response of gelatin-based ferrogels with increasing temperatures, before and after high energy crosslinking. The particle response was characterized by the nonlinear magnetization using MPS and quasistatic magnetization measurements as well as MRX to discriminate between Néel and Brownian relaxation mechanisms. The effective magnetic response of MNPs in gelatin was suppressed, indicating that the magnetization of the ferrogels was strongly influenced by competing dipole-dipole interactions. Significant changes in the magnetic behavior were observed across the gelatin sol-gel transition, as influenced by the matrix viscosity. These relaxation processes were modeled by Fourier transformation of the Langevin function, combined with a Debye term for the nonlinear magnetic response, for single core MNPs embedded in matrices of changing viscosities. Using high energy electron irradiation as a crosslinking method, modified ferrogels exhibited thermal stability on a range of timescales. However, MRX relaxation times revealed a slight softening around the gelatin sol-gel transition felt by the smallest particles, demonstrating a high sensitivity to observe local changes in the viscoelasticity. Overall, MPS and MRX functioned as non-contact methods to observe changes in the nanorheology around the native sol-gel transition and in crosslinked ferrogels, as well as provided an understanding of how MNPs were integrated into and influenced by the surrounding matrix.

  8. The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that responds to oxidative stress by binding to the antioxidant response element (ARE) in the promoter of genes coding for antioxidant enzymes like NAD(P)H:quinone oxidoreductase 1 (NQO1) and proteins for glutathione synthesis. ...

  9. Droplet Decomposition in a Reactive Atmosphere: Complete Responses for Large Activation Energies.

    DTIC Science & Technology

    1983-06-01

    their qualitative features suggest that more extensive experiments should be made. Theoretical work on the problem has been done by Fendell (8] and...hence they can described at most the *corners" of the complete response surface H(D1 ,D2 ). Fendell identifies the resulting burning-rate formulas

  10. Characterizing the response of Juno's JADE-E energy analyzers in the presence of Jupiter's strong magnetic field

    NASA Astrophysics Data System (ADS)

    Clark, G. B.; Allegrini, F.; Crary, F. J.; Louarn, P.; McComas, D. J.; Pollock, C. J.; Valek, P. W.; Weidner, S.

    2011-12-01

    NASA's Juno mission, which is scheduled to launch this August, will be the first spacecraft to achieve polar orbit around Jupiter. The Jovian Auroral Distributions Experiment (JADE), onboard Juno, measures the full pitch angle distribution of electrons (JADE-E) and the 3D velocity-space distribution of ions and ion composition (JADE-I). JADE-E consists of three identical energy analyzers covering the range from ~0.1-100 keV. Below ~5keV and in the relatively strong Jovian magnetic field (up to ~8 G along the orbit) the gyro-radius of electrons is comparable to the radius of curvature of the analyzers. Therefore, the response at low energies will be strongly affected by the magnetic field. To better understand, predict, and correct for the response of JADE-E in the presence of Jupiter's strong magnetic field we are characterizing its response in the laboratory. A set of Helmholtz coils capable of producing a magnetic field up to about 9 G with three axis control was built around the vacuum test chamber. We also compare the laboratory measurements with electro-optics simulations. We will present both simulations and measurement results taken with the engineering model of JADE-E and discuss expected performance of the flight instruments when they arrive at Jupiter.

  11. Mean transverse energy and response time measurements of GaInP based photocathodes

    SciTech Connect

    Jin, Xiuguang; Yamamoto, Masahiro; Miyajima, Tsukasa; Honda, Yosuke; Uchiyama, Takashi; Tabuchi, Masao; Takeda, Yoshikazu

    2014-08-14

    GaInP, which has a wider band gap than GaAs, is introduced as a photocathode for energy recovery linac (ERL). The wide band gap of material is expected to reduce the heating effect in the thermal relaxation process after high energy excitation. GaInP photocathodes exhibited higher quantum efficiency than GaAs and low thermal emittance as the same as GaAs photocathodes under green laser light irradiation. A short picosecond electron pulse was also achieved with the GaInP photocathode under 532 nm pulse laser irradiation. These experimental results demonstrate that the GaInP photocathode is an important candidate for ERL.

  12. Strategic Response to Energy-Related Security Threats in the US Department of Defense

    DTIC Science & Technology

    2014-10-15

    demonstration initiatives, including projects using solar energy, photovoltaics, geothermal electricity, geothermal space heating , wood- fueled central power...own citizens, its distrust of the political system , and its insistence that defense be the nation’s overriding priority” are defining characteristics...Defense Fuel Supply Center (DFSC) of the Defense Supply Agency on July 1, 1973. The timing of this move was fortuitous: the embargo tested the new system

  13. Thermospheric Response to High-Latitude Energy Sources at Quiet Times

    NASA Astrophysics Data System (ADS)

    Moe, M. M.; Moe, K.

    2004-12-01

    Recent results from the CHAMP/STAR accelerometer measurements of thermospheric neutral density have brought back to our attention the existence of important energy sources at high latitudes during geomagnetically quiet times. These energy sources produce a large dayside high-latitude density bulge which is more prominent than the sub-solar density bulge. Evidence for this persistent density enhancement during quiet times has accumulated over the past 35 years. We discuss the numerous measurements of the density bulge made by accelerometers, mass spectrometers, pressure gauges, and satellite orbital decay, as well as the correlation with airglow and ionospheric observations. The energy source for this region of increased neutral density is the solar wind, after it has passed through the Earth's bow shock and magnetosphere. The region of increased density appears on the dayside of both the northern and southern hemispheres, and has a geometrical shape similar to a lunette. The central portion of the arc of the lunette coincides with the downward projection of the magnetospheric dayside cusp. Consequently, the density bulge is best described in solar-geomagnetic coordinates. The wings of the lunette extend far beyond the footprint of the dayside cusp, and are most likely energized by particles that come from other parts of the magnetosphere. The arc of the lunette is clearly displayed by airglow observations and is matched by ionospheric measurements. The corresponding neutral density bulge is much broader in geomagnetic latitude, as one might expect from the longer time constants of neutral processes. We show a Mercator projection of the global density distribution at an altitude of 400 km at 12 hours GMT as an example of the neutral density distribution produced by both the UV and corpuscular energy sources at geomagnetically quiet times.

  14. Energy and antioxidant responses of pacific oyster exposed to trace levels of pesticides.

    PubMed

    Epelboin, Yanouk; Quéré, Claudie; Pernet, Fabrice; Pichereau, Vianney; Corporeau, Charlotte

    2015-09-21

    Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 μg/L), isoproturon (0.1 and 1 μg/L), or both in a mixture (0.2 and 0.1 μg/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase α (AMPKα), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was up-regulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.

  15. Regulation of rDNA transcription in response to growth factors, nutrients and energy.

    PubMed

    Kusnadi, Eric P; Hannan, Katherine M; Hicks, Rodney J; Hannan, Ross D; Pearson, Richard B; Kang, Jian

    2015-02-01

    Exquisite control of ribosome biogenesis is fundamental for the maintenance of cellular growth and proliferation. Importantly, synthesis of ribosomal RNA by RNA polymerase I is a key regulatory step in ribosome biogenesis and a major biosynthetic and energy consuming process. Consequently, ribosomal RNA gene transcription is tightly coupled to the availability of growth factors, nutrients and energy. Thus cells have developed an intricate sensing network to monitor the cellular environment and modulate ribosomal DNA transcription accordingly. Critical controllers in these sensing networks, which mediate growth factor activation of ribosomal DNA transcription, include the PI3K/AKT/mTORC1, RAS/RAF/ERK pathways and MYC transcription factor. mTORC1 also responds to amino acids and energy status, making it a key hub linking all three stimuli to the regulation of ribosomal DNA transcription, although this is achieved via overlapping and distinct mechanisms. This review outlines the current knowledge of how cells respond to environmental cues to control ribosomal RNA synthesis. We also highlight the critical points within this network that are providing new therapeutic opportunities for treating cancers through modulation of RNA polymerase I activity and potential novel imaging strategies.

  16. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss.

    PubMed

    Henry, Fredrick E; Sugino, Ken; Tozer, Adam; Branco, Tiago; Sternson, Scott M

    2015-09-02

    Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders.

  17. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss

    PubMed Central

    Henry, Fredrick E; Sugino, Ken; Tozer, Adam; Branco, Tiago; Sternson, Scott M

    2015-01-01

    Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders. DOI: http://dx.doi.org/10.7554/eLife.09800.001 PMID:26329458

  18. Response to dietary-induced energy restriction in dairy sheep divergently selected for resistance or susceptibility to mastitis.

    PubMed

    Bouvier-Muller, J; Allain, C; Enjalbert, F; Tabouret, G; Portes, D; Caubet, C; Tasca, C; Foucras, G; Rupp, R

    2016-01-01

    Dairy ruminants experiencing a severe postpartum negative energy balance (NEB) are considered to be more susceptible to mastitis. Although the genetic variability of mastitis resistance is well established, the biological basis of the link between energy metabolism and resistance is mostly unknown. The aim of this study was to characterize the effect of NEB on metabolism and immune response according to the genetic background for mastitis resistance or susceptibility. Forty-eight ewes from high and low somatic cell score (SCS) genetic lines were allocated to 2 homogeneous subgroups 2 wk after lambing: one group (NEB) received an energy-restricted diet to cover 60% of their energy requirements, and the other group received a control (positive energy balance: PEB) diet. Both diets met the protein requirements. After 10 d on either the NEB or PEB diet, all ewes were injected with a Pam3CSK4/MDP solution in one half-udder to induce an inflammatory response. The ewes were monitored for milk production, somatic cell count (SCC), body weight (BW), body condition score (BCS), and blood metabolites. Differential milk cell counts were determined by flow cytometry. Plasma concentrations of glucose, insulin, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), and triiodothyronine were determined. Energy restriction resulted in an increased fat:protein ratio in milk and decreased milk yield, BW, and BCS. The NEB ewes had significantly higher NEFA and BHB and lower plasma glucose concentrations than PEB ewes, reflecting a mobilization of body reserves and ketone body synthesis. High-SCS ewes had a higher SCS than low-SCS throughout the experiment, except after the inflammatory challenge, which resulted in similar SCS in all 4 groups. A noteworthy interaction between genetic background and diet was evidenced on metabolic parameters and BW. Indeed, high-SCS ewes subjected to NEB showed greater decrease in BW and increased NEFA and BHB concentrations compared with low

  19. Modelling energy efficiency of an integrated anaerobic digestion and photodegradation of distillery effluent using response surface methodology.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2016-10-01

    Anaerobic digestion (AD) is efficient in organic load removal and bioenergy recovery when applied in treating distillery effluent; however, it is ineffective in colour reduction. In contrast, ultraviolet (UV) photodegradation post-treatment for the AD-treated distillery effluent is effective in colour reduction but has high energy requirement. The effects of operating parameters on bioenergy production and energy demand of photodegradation were modelled using response surface methodology (RSM) with a view of developing a sustainable process in which the biological step could supply energy to the energy-intensive photodegradation step. The organic loading rate (OLRAD) and hydraulic retention time (HRTAD) of the initial biological step were the variables investigated. It was found that the initial biological step removed about 90% of COD and only about 50% colour while photodegradation post-treatment removed 98% of the remaining colour. Maximum bioenergy production of 180.5 kWh/m(3) was achieved. Energy demand of the UV lamp was lowest at low OLRAD irrespective of HRTAD, with values ranging between 87 and 496 kWh/m(3). The bioenergy produced formed 93% of the UV lamp energy demand when the system was operated at OLRAD of 3 kg COD/m(3) d and HRT of 20 days. The presumed carbon dioxide emission reduction when electricity from bioenergy was used to power the UV lamp was 28.8 kg CO2 e/m(3), which could reduce carbon emission by 31% compared to when electricity from the grid was used, leading to environmental conservation.

  20. Effect of fenugreek fiber on satiety, blood glucose and insulin response and energy intake in obese subjects.

    PubMed

    Mathern, Jocelyn R; Raatz, Susan K; Thomas, William; Slavin, Joanne L

    2009-11-01

    Eighteen healthy obese subjects participated in a single blind, randomized, crossover study of three test breakfasts, containing 0 g (control), 4 g or 8 g of isolated fenugreek fiber. Subjects recorded ratings of hunger, satiety, fullness and prospective food consumption using visual analog scales (VAS) every 30 min for 3.5 h. Postprandial blood glucose and insulin responses were measured. Energy intake from an ad libitum lunch buffet and for the remainder of the day was assessed. The 8 g dose of fenugreek fiber significantly increased mean ratings of satiety and fullness, and reduced ratings of hunger and prospective food consumption (P < 0.05). Palatability was significantly reduced with increasing doses of fenugreek fiber (P < 0.05). No differences were observed for area under the curve (AUC) for blood glucose among treatments. An increase in insulin AUC was found with 8 g fenugreek fiber. Energy intake at an ad libitum lunch buffet was significantly lower for 8 g than 4 g fenugreek fiber, but not significantly different from control, although there was a trend towards a lower intake (p = 0.11). No differences were observed for energy intake for the remainder of the day. Fenugreek fiber (8 g) significantly increased satiety and reduced energy intake at lunch, suggesting it may have short-term beneficial effects in obese subjects. Satiety results were not related to postprandial blood glucose.

  1. Response

    ERIC Educational Resources Information Center

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  2. Systematics of the Electric and Magnetic Dipole Response in N=82 Isotones Below the Neutron Separation Energy

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.; Hammond, S.; Kelley, J. H.; Tsoneva, N.; Lenske, H.

    2013-03-01

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies around the neutron separation energy. This clustering of strong dipole states has been named the pygmy dipole resonance in contrast to the giant dipole resonance that dominates the E1 response. Understanding the pygmy resonance is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in N=82 nuclei using the quasi monoenergetic and 100% linearly-polarized photon beams from High-Intensity-Gamma-Ray Source facility is presented. The nuclear dipole-strength distribution of the pygmy resonance has been measured and novel information about the character of this mode of excitation has been obtained. The data are compared with predictions from statistical and quasiparticle random-phase approximation models.

  3. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Wehe, David

    2004-09-01

    Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.

  4. U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2

    SciTech Connect

    Jakubowski, F.M.

    1998-02-01

    Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

  5. Development of a 3-D Tree Thermal Response Model for Energy Budget and Scene Simulation Studies.

    DTIC Science & Technology

    1991-03-15

    from a leaf occurs as a process of water vapor dif- fusion from the saturated inner cells through the leaf stomata and across the leaf boundary layer...trees is being developed to understand the thermal properties of trees. The model is being developed for leafed (deciduous) and leafless conditions...thermal response model for individual trees. The model can be used for leafed and leafless trees. The thermal balance for woody material is

  6. Relative response of alanine dosemeters for high-energy electrons determined using a Fricke primary standard.

    PubMed

    Vörös, Sándor; Anton, Mathias; Boillat, Bénédicte

    2012-03-07

    A significant proportion of cancer patients is treated using MeV electron radiation. One of the measurement methods which is likely to furnish reliable dose values also under non-reference conditions is the dosimetry using alanine and read-out via electron spin resonance (ESR). The system has already proven to be suitable for QA purposes for modern radiotherapy involving megavoltage x-rays. In order to render the secondary standard measurement system of the Physikalisch-Technische Bundesanstalt based on alanine/ESR useable for dosimetry in radiotherapy, the dose-to-water (D(W)) response of the dosemeter needs to be known for relevant radiation qualities. For MeV electrons, the D(W) response was determined using the Fricke primary standard of the Swiss Federal Office of Metrology. Since there were no citable detailed publications on the Swiss primary standard available, this measurement system is described in some detail. The experimental results for the D(W) response are compared to results of Monte Carlo simulations which model in detail the beams furnished by the electron accelerator as well as the geometry of the detectors. The agreement between experiment and simulation is very good, as well as the agreement with results published by the National Research Council of Canada which are based on a different primary standard. No significant dependence of the D(W) response was found in the range between 6 and 20 MeV. It is therefore suggested to use a unique correction factor k(E) for alanine for all MeV qualities of k(E) = 1.012 ± 0.010.

  7. Energy and water balance response of a vegetated wetland to herbicide treatment of invasive Phragmites australis

    NASA Astrophysics Data System (ADS)

    Mykleby, Phillip M.; Lenters, John D.; Cutrell, Gregory J.; Herrman, Kyle S.; Istanbulluoglu, Erkan; Scott, Durelle T.; Twine, Tracy E.; Kucharik, Christopher J.; Awada, Tala; Soylu, Mehmet E.; Dong, Bo

    2016-08-01

    The energy and water balance of a Phragmites australis dominated wetland in south central Nebraska was analyzed to assess consumptive water use and the potential for "water savings" as a result of vegetation eradication via herbicide treatment. Energy balance measurements were made at the field site for two growing seasons (treated and untreated), including observations of net radiation, heat storage, and sensible heat flux, which was measured using a large-aperture scintillometer. Latent heat flux was calculated as a residual of the energy balance, and comparisons were made between the two growing seasons and with model simulations to examine the relative impacts of vegetation removal and climate variability. Observed ET rates dropped by roughly 32% between the two growing seasons, from a mean of 4.4 ± 0.7 mm day-1 in 2009 (with live vegetation) to 3.0 ± 0.8 mm day-1 in 2010 (with dead P. australis). These results are corroborated by the Agro-IBIS model simulations, and the reduction in ET implies a total "water savings" of 245 mm over the course of the growing season. The significant decreases in ET were accompanied by a more-than-doubling of sensible heat flux, as well as a ∼60% increase in heat storage due to decreased LAI. Removal of P. australis was also found to cause measurable changes in the local micrometeorology at the wetland. Consistent with the observed increase in sensible heat flux during 2010, warmer, drier, windier conditions were observed in the dead, P. australis section of the wetland, compared to an undisturbed section of live, native vegetation. Modeling results suggest that the elimination of transpiration in 2010 was partially offset by an increase in surface evaporation, thereby reducing the subsequent water savings by roughly 60%. Thus, the impact of vegetation removal depends on the local climate, depth to groundwater, and management decisions related to regrowth of vegetation.

  8. SILICOMB PEEK Kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness

    NASA Astrophysics Data System (ADS)

    Virk, K.; Monti, A.; Trehard, T.; Marsh, M.; Hazra, K.; Boba, K.; Remillat, C. D. L.; Scarpa, F.; Farrow, I. R.

    2013-08-01

    The work describes the manufacturing, testing and parametric analysis of cellular structures exhibiting zero Poisson’s ratio-type behaviour, together with zero and negative stiffness effects. The cellular structures are produced in flat panels and curved configurations, using a combination of rapid prototyping techniques and Kirigami (Origami and cutting) procedures for PEEK (Polyether Ether Ketone) thermoplastic composites. The curved cellular configurations show remarkable large deformation behaviours, with zero and negative stiffness regimes depending also on the strain rate applied. These unusual stiffness characteristics lead to a large increase of energy absorption during cyclic tests.

  9. Variations in semiconductor device response in a medium-energy x-ray dose-enhancing environment

    SciTech Connect

    Beutler, D.E.; Fleetwood, D.M.; Beezhold, W.; Knott, D.; Lorence, L.J. Jr.; Draper, B.L.

    1987-12-01

    The authors performed a series of experiments to investigate the response of semiconductor devices to medium-energy x-ray irradiation under conditions in which dose-enhancement effects are very important. They find that the response of MOS capacitors to the same ''dose-enhanced'' radiation depends not only on the increased dose, but also on the incident radiation spectra, device temperature and processing, and/or oxide thickness and electric field. In many cases, these dependencies cannot be explained simply in terms of existing knowledge of basic mechanisms of radiation effects on MOS devices (for example, electron-hole recombination and hole transport and trapping), or by present Monte Carlo electron/photon transport codes such as the Integrated Tiger Series (ITS). In addition, the response of semiconductor diodes to the ''dose-enhanced'' radiation appears to be qualitatively different from that of MOS capacitors, and differs markedly in value from the ITS code predictions. These results demonstrate that an improved understanding of semiconductor device response to ''enhanced'' radiation is needed to assure simulation fidelity of tests of devices to be used in dose-enhancing environments.

  10. Element Cycling and Energy Flux Responses in Ecosystem Simulations Conducted at the Chinese Lunar Palace-1

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Fu, Yuming; Xie, Beizhen; Wang, Minjuan; Liu, Hong

    2017-01-01

    Bioregenerative life-support systems (BLSS) address interactions between organisms and their environment as an integrated system through the study of factors that regulate the pools and fluxes of materials and energy through ecological systems. As a simple model, using BLSS is very important in the investigation of element cycling and energy flux for sustainable development on Earth. A 105-day experiment with a high degree of closure was carried out in this system from February to May, 2014, with three volunteers. The results indicate that 247 g·d-1 carbon was imported into the system from stored food. Most hydrogen is circulated as water, and more than 99% H2O can be lost through leaf transpiration into the atmosphere. A total of 1.8 g·d-1 "unknown oxygen" emerged between the input and output of the plant growth module. For the urine processing module, 20.5% nitrogen was reused and 5.35 g·d-1 was put into the nutrient solution.

  11. Low-cost energy production: The responsibility of the developed countries toward the less-developed

    SciTech Connect

    Oversby, V.M.

    1991-10-01

    In recent years, the world has begun to develop an awareness of the environmental costs of economic expansion and development. The most widely recognized problems include depletion of the ozone layer, the effects of toxic chemicals on soils, groundwater, and wildlife, and the danger of global climate change through the accumulation of greenhouse'' gases in the atmosphere. In one area, that of ozone depletion, the nations of the world were able to quickly reach a consensus and take action to try to slow, if not stop, the depletion. In the area of global climate change, the ability to reach a consensus is less likely. This is because the production of greenhouse gases is intimately linked to the production of energy, and increases in energy production in the developing nations of the world will be needed if they are to develop their economies and the standard of living for their peoples. It is also highly unlikely that the nations of the developed world will be willing to lower their standard of living in order to allow that of less developed countries to be raised. In my opinion, this dilemma presents a formidable challenge and a great opportunity for both the technical community and the policy makers in the developed nations.

  12. Low-cost energy production: The responsibility of the developed countries toward the less-developed

    SciTech Connect

    Oversby, V.M.

    1991-10-01

    In recent years, the world has begun to develop an awareness of the environmental costs of economic expansion and development. The most widely recognized problems include depletion of the ozone layer, the effects of toxic chemicals on soils, groundwater, and wildlife, and the danger of global climate change through the accumulation of ``greenhouse`` gases in the atmosphere. In one area, that of ozone depletion, the nations of the world were able to quickly reach a consensus and take action to try to slow, if not stop, the depletion. In the area of global climate change, the ability to reach a consensus is less likely. This is because the production of greenhouse gases is intimately linked to the production of energy, and increases in energy production in the developing nations of the world will be needed if they are to develop their economies and the standard of living for their peoples. It is also highly unlikely that the nations of the developed world will be willing to lower their standard of living in order to allow that of less developed countries to be raised. In my opinion, this dilemma presents a formidable challenge and a great opportunity for both the technical community and the policy makers in the developed nations.

  13. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  14. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  15. Effective response theory for zero-energy Majorana bound states in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei

    2015-05-01

    We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3 + 1)-dimensional superconductors. Starting in 4 + 1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an S U (2) 2 Kac-Moody current running along the defect line. The S U (2) 2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3 + 1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-antihedgehog pairs.

  16. The Urban Fabric of the City as Its Affects Thermal Energy Responses Derived from Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    2000-01-01

    The physical geography of the city affects numerous aspects of its interlinked biophysical, social, and land-atmosphere characteristics - those attributes that come together to form the total urban environment. One approach to studying the multitude of interactions that occur as a result of urbanization is to view the city from a systems ecology perspective, where energy and material cycle into and out of the urban milieu. Thus, the urban ecosystem is synergistic in linking land, air, water, and living organisms in a vast network of interrelated physical, human, and biological process. Given the number and the shear complexity of the exchanges and, ultimately, their effects, that occur within the urban environment, we are focusing our research on looking at how the morphology or urban fabric of the city, drives thermal energy exchanges across the urban landscape. The study of thermal energy attributes for different cities provides insight into how thermal fluxes and characteristics are partitioned across the city landscape in response to each city's morphology. We are using thermal infrared remote sensing data obtained at a high spatial resolution from aircraft, along with satellite data, to identify and quantify thermal energy characteristics for 4 U.S. cities: Atlanta, GA, Baton Rouge, LA, Salt Lake City, UT, and Sacramento, CA. Analysis of how thermal energy is spatially distributed across the urban landscapes for these cities provides a unique perspective for understanding how the differing morphology of cities forces land-atmosphere exchanges, such as the urban heat island effect, as well as related meteorological and air quality interactions. Keyword: urban ecosystems, remote sensing, urban heat island

  17. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis.

    PubMed

    Dudits, Dénes; Török, Katalin; Cseri, András; Paul, Kenny; Nagy, Anna V; Nagy, Bettina; Sass, László; Ferenc, Györgyi; Vankova, Radomira; Dobrev, Petre; Vass, Imre; Ayaydin, Ferhan

    2016-03-01

    The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity.

  18. Yearling greater sage-grouse response to energy development in Wyoming

    USGS Publications Warehouse

    Holloran, M.J.; Kaiser, R.C.; Hubert, W.A.

    2010-01-01

    Sagebrush (Artemisia spp.)-dominated habitats in the western United States have experienced extensive, rapid changes due to development of natural-gas fields, resulting in localized declines of greater sage-grouse (Centrocercus urophasianus) populations. It is unclear whether population declines in natural-gas fields are caused by avoidance or demographic impacts, or the age classes that are most affected. Land and wildlife management agencies need information on how energy developments affect sage-grouse populations to ensure informed land-use decisions are made, effective mitigation measures are identified, and appropriate monitoring programs are implemented (Sawyer et al. 2006). We used information from radio-equipped greater sage-grouse and lek counts to investigate natural-gas development influences on 1) the distribution of, and 2) the probability of recruiting yearling males and females into breeding populations in the Upper Green River Basin of southwestern Wyoming, USA. Yearling males avoided leks near the infrastructure of natural-gas fields when establishing breeding territories; yearling females avoided nesting within 950 m of the infrastructure of natural-gas fields. Additionally, both yearling males and yearling females reared in areas where infrastructure was present had lower annual survival, and yearling males established breeding territories less often, compared to yearlings reared in areas with no infrastructure. Our results supply mechanisms for population-level declines of sage-grouse documented in natural-gas fields, and suggest to land managers that current stipulations on development may not provide management solutions. Managing landscapes so that suitably sized and located regions remain undeveloped may be an effective strategy to sustain greater sage-grouse populations affected by energy developments. ?? 2010 The Wildlife Society.

  19. Modulation of Root Microbiome Community Assembly by the Plant Immune Response (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Lebeis, Sarah

    2013-03-01

    Sarah Lebeis of University of North Carolina on "Modulation of root microbiome community assembly by the plant immune response" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  20. Fiber fermentability effects on energy and macronutrient digestibility, fecal traits, postprandial metabolite responses, and colon histology of overweight cats.

    PubMed

    Fischer, M M; Kessler, A M; de Sá, L R M; Vasconcellos, R S; Filho, F O Roberti; Nogueira, S P; Oliveira, M C C; Carciofi, A C

    2012-07-01

    Considering the different potential benefits of divergent fiber ingredients, the effect of 3 fiber sources on energy and macronutrient digestibility, fermentation product formation, postprandial metabolite responses, and colon histology of overweight cats (Felis catus) fed kibble diets was compared. Twenty-four healthy adult cats were assigned in a complete randomized block design to 2 groups of 12 animals, and 3 animals from each group were fed 1 of 4 of the following kibble diets: control (CO; 11.5% dietary fiber), beet pulp (BP; 26% dietary fiber), wheat bran (WB; 24% dietary fiber), and sugarcane fiber (SF; 28% dietary fiber). Digestibility was measured by the total collection of feces. After 16 d of diet adaptation and an overnight period without food, blood glucose, cholesterol, and triglyceride postprandial responses were evaluated for 16 h after continued exposure to food. On d 20, colon biopsies of the cats were collected under general anesthesia. Fiber addition reduced food energy and nutrient digestibility. Of all the fiber sources, SF had the least dietary fiber digestibility (P < 0.05), causing the largest reduction of dietary energy digestibility (P < 0.05). The greater fermentability of BP resulted in reduced fecal DM and pH, greater fecal production [g/(cat × d); as-is], and greater fecal concentration of acetate, propionate, and lactate (P < 0.05). For most fecal variables, WB was intermediate between BP and SF, and SF was similar to the control diet except for an increased fecal DM and firmer feces production for the SF diet (P < 0.05). Postprandial evaluations indicated reduced mean glucose concentration and area under the glucose curve in cats fed the SF diet (P < 0.05). Colon mucosa thickness, crypt area, lamina propria area, goblet cell area, crypt mean size, and crypt in bifurcation did not vary among the diets. According to the fiber solubility and fermentation rates, fiber sources can induce different physiological responses in cats

  1. SU-F-303-15: Ion Chamber Dose Response in Magnetic Fields as a Function of Incident Photon Energy

    SciTech Connect

    Malkov, V. N.; Rogers, D. W. O.

    2015-06-15

    Purpose: In considering the continued development of synergetic MRI-radiation therapy machines, we seek to quantify the variability of ion chamber response per unit dose in the presence of magnetic fields of varying strength as a function of incident photon beam quality and geometric configuration. Methods: To account for the effect of magnetic fields on the trajectory of charged particles a new algorithm was introduced into the EGSnrc Monte Carlo code. In the egs-chamber user code the dose to the cavity of an NE2571 ion chamber is calculated in two configurations, in 0 to 2 T magnetic fields, with an incoming parallel 10×10 cm{sup 2} photon beam with energies ranging between 0.5 MeV and 8 MeV. In the first, the photon beam is incident on the long-axis of the ion chamber (config-1), and in the second the beam is parallel to the long-axis and incident from the conical end of the chamber (config-2). For both, the magnetic field is perpendicular to the direction of the beam and the long axis of the chamber. Results: The ion chamber response per unit dose to water at the same point is determined as a function of magnetic field and is normalized to the 0T case for each of incoming photon energies. For both configurations, accurate modeling of the ion chamber yielded closer agreement with the experimental results obtained by Meijsing et. al (2009). Config-1 yields a gradual increase in response with increasing field strength to a maximum of 13.4% and 1.4% for 1 MeV and 8 MeV photon beams, respectively. Config-2 produced a decrease in response of up to 6% and 13% for 0.5 MeV and 8 MeV beams, respectively. Conclusion: These results provide further support for ion chamber calibration in MRI-radiotherapy coupled systems and demonstrates noticeable energy dependence for clinically relevant fields.

  2. Cerebro- and Cardio-vascular Responses to Energy Drink in Young Adults: Is there a Gender Effect?

    PubMed Central

    Monnard, Cathríona R.; Montani, Jean-Pierre; Grasser, Erik K.

    2016-01-01

    Background and Purpose: Energy drinks (EDs) are suspected to induce potential adverse cardiovascular effects and have recently been shown to reduce cerebral blood flow velocity (CBFV) in young, healthy subjects. Gender differences in CBFV in response to EDs have not previously been investigated, despite the fact that women are more prone to cardiovascular disturbances such as neurocardiogenic syncope than men. Therefore, the aim of this study was to explore gender differences in cerebrovascular and cardiovascular responses to EDs. Methods: We included 45 subjects in a retrospective analysis of pooled data from two previous randomized trials carried out in our laboratory with similar protocols. Beat-to-beat blood pressure, impedance cardiography, transcranial Doppler, and end-tidal carbon dioxide (etCO2) measurements were made for at least 20 min baseline and for 80 min following the ingestion of 355 mL of a sugar-sweetened ED. Gender and time differences in cerebrovascular and cardiovascular parameters were investigated. Results: CBFV was significantly reduced in response to ED, with the greatest reduction observed in women compared with men (−12.3 ± 0.8 vs. −9.7 ± 0.8%, P < 0.05). Analysis of variance indicated significant time (P < 0.01) and gender × time (P < 0.01) effects. The percentage change in CBFV in response to ED was independent of body weight and etCO2. No significant gender difference in major cardiovascular parameters in response to ED was observed. Conclusions: ED ingestion reduced CBFV over time, with a greater reduction observed in women compared with men. Our results have potential implications for women ED consumers, as well as high-risk individuals. PMID:27559316

  3. Demonstration with Energy and Daylighting Assessment of Sunlight Responsive Thermochromic (SRT) Window Systems

    SciTech Connect

    Broekhuis, Michael; Liposcak, Curtis; Witte, Michael; Henninger, Robert; Zhou, Xiaohui; Petzen, George; Buchanan, Michael; Kumar, Sneh

    2012-03-31

    Pleotint, LLC was able to successfully extrude thermochromic interlayer for use in the fenestration industry. Pleotint has developed a thermochromic sytem that requires two thermochromic colors to make a neutral color when in the tinted state. These two colors were assembled into a single interlayer called a tri-layer prelam by Crown Operations for use in the glass lamination industry. Various locations, orientations, and constructions of thermochromic windows were studied with funds from this contract. Locations included Australia, California, Costa Rica, Indiana, Iowa, Mexico. Installed orientations included vertical and skylight glazing applications. Various constructions included monolithic, double pane, triple pane constructions. A daylighting study was conducted at LinEl Signature. LinEl Signature has a conference room with a sylight roof system that has a west orientation. The existing LinEl Signature conference room had constant tint 40% VLT transparent skylights. Irradiance meters were installed on the interior and exterior sides of a constant tint skylight. After a month and a half of data collection, the irradiance meters were removed and the constant tint skylights were replaced with Pleotint thermochromic skylight windows. The irradiance meters were reinstalled in the same locations and irradiance data was collected. Both data sets were compared. The data showed that there was a linear relationship with exterior and interior irradiance for the existing constant tint skylights. The thermochromic skylights have a non-linear relationship. The thermochromic skylights were able to limit the amount of irradiance that passed through the thermochromic skylight. A second study of the LinEl Signature conference was performed using EnergyPlus to calculate the amount of Illuminance that passed through constant tint skylights as compared to thermochromic skylights. The constant tint skylights transmitted Illuminance is 2.8 times higher than the thermochromic

  4. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems

    PubMed Central

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-01-01

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems’ architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation. PMID:27801829

  5. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems.

    PubMed

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-10-28

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

  6. The DOE Subsurface (SubTER) Initiative: Revolutionizing Responsible use of the Subsurface for Energy Production and Storage

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Walck, M. C.; Blankenship, D.; Bonneville, A.; Bromhal, G. S.; Daley, T. M.; Pawar, R.; Polsky, Y.; Mattson, E.; Mellors, R. J.

    2015-12-01

    The subsurface supplies more than 80% of the U.S.'s total energy needs through geothermal and hydrocarbon strategies and also provides vast potential for safe storage of CO2 and disposal of nuclear waste. Responsible and efficient use of the subsurface poses many challenges, many of which require the capability to monitor and manipulate sub-surface stress, fractures, and fluid flow at all scales. Adaptive control of subsurface fractures and flow is a multi-disciplinary challenge that, if achieved, has the potential to transform all subsurface energy strategies. As part of the U.S. Department of Energy's SubTER (Subsurface Technology and Engineering Research development and demonstration) initiative, a multi-National Laboratory team is developing next-generation approaches that will allow for adaptive control of subsurface fractures and flow. SubTER has identified an initial suite of technical thrust areas to focus work, and has initiated a number of small projects. This presentation will describe early progress associated with the SubTER technical topic areas of wellbore integrity, subsurface stress and induced seismicity, permeability manipulation and new subsurface signals. It will also describe SubTER plans, and provide a venue to solicit suggestions and discuss potential partnerships associated with future research directions.

  7. Dynamic Controls for Energy Efficiency and Demand Response:Framework Concepts and a New Construction Study Case in New York

    SciTech Connect

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-06-20

    Many of today's advanced building control systems are designed to improve granularity of control for energy efficiency. Examples include direct digital controls for building heating, ventilation, and cooling systems (HVAC), and dimmable ballasts for continuous dimming for daylighting applications. This paper discusses recent research on the use of new and existing controls in commercial buildings for integrated energy efficiency and demand response (DR). The paper discusses the use of DR controls strategies in commercial buildings and provides specific details on DR control strategy design concepts for a new building in New York. We present preliminary results from EnergyPlus simulations of the DR strategies at the New York Times Headquarters building currently under construction. The DR strategies at the Times building involve unique state of the art systems with dimmable ballasts, movable shades on the glass facade, and underfloor air HVAC. The simulation efforts at this building are novel, with an innovative building owner considering DR and future DR program participation strategies during the design phase. This paper also discusses commissioning plans for the DR strategies. The trends in integration of various systems through the EMCS, master versus supervisory controls and dynamic operational modes concepts are presented and future research directions are outlined.

  8. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    SciTech Connect

    CAP,JEROME S.; TRACEY,BRIAN

    1999-11-15

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code [1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package [2] to study the effects of in-plane modes and to

  9. OSLD energy response performance and dose accuracy at 24 - 1250 keV: Comparison with TLD-100H and TLD-100

    SciTech Connect

    Kadir, A. B. A.; Priharti, W.; Samat, S. B.; Dolah, M. T.

    2013-11-27

    OSLD was evaluated in terms of energy response and accuracy of the measured dose in comparison with TLD-100H and TLD-100. The OSLD showed a better energy response performance for H{sub p}(10) whereas for H{sub p}(0.07), TLD-100H is superior than the others. The OSLD dose accuracy is comparable with the other two dosimeters since it fulfilled the requirement of the ICRP trumpet graph analysis.

  10. Effect of energy balance profiles on metabolic and reproductive response in Holstein and Swedish Red cows.

    PubMed

    Ntallaris, T; Humblot, P; Båge, R; Sjunnesson, Y; Dupont, J; Berglund, B

    2017-03-01

    This study examined the effect of two feeding levels during the antepartum and postpartum period on reproductive performance and blood metabolites (glucose, non-esterified fatty acids (NEFA), insulin) in primiparous Holstein and Swedish Red (SRB) cows, in order to identify possible differences in the way these breeds respond to negative energy balance after calving. A total of 44 cows (22 Holstein, 22 SRB) kept in a loose housing system were included in the study. The control group (HE, n = 23) was fed a diet for high-producing cows (target 35 kg/d energycorrected milk, ECM). A lower feeding intensity (LE, n = 21) was achieved by giving -50% concentrate to target 25 kg/d ECM. Diets were implemented 30 days before expected calving and the cows were monitored for 120 days postpartum. Milk yield and composition, dry matter intake (DMI), live body weight and body condition score (BCS) were assessed to calculate the weekly energy balance (residual feed intake). Blood sampling started before diet implementation and was repeated every 2 weeks until Day 60 postpartum and then once monthly until Day 120. Plasma was kept at -20 °C until analysis for glucose, insulin and NEFA concentrations. Mixed linear models were used to analyse data (SAS 9.3; PROC MIXED). Holstein cows had lower mean energy balance than SRB cows (-4.7 ± 1.4 and -0.9 ± 1.4 MJ, respectively; p = 0.05). SRB cows had higher (p<0.001) BCS (3.3 ± 0.1) than Holstein cows (2.7 ± 0.1) and also higher plasma glucose concentrations from Day -30 to Day 120 relative to parturition (4.1 ± 0.1 and 4.2 ± 0.1 log ; mg/100 ml, respectively; p < 0.05). Overall, breed or diet had no effect on NEFA blood plasma concentrations. However, plasma NEFA concentration levels tended to be higher (p = 0.09) in SRB cows than in Holsteins at Day -14 before calving, indicating higher mobilisation of lipid from adipose tissue already before calving. In contrast, Holstein cows had higher NEFA at Day 14

  11. Effects of Energy Development on Hydrologic Response: a Multi-Scale Modeling Approach

    NASA Astrophysics Data System (ADS)

    Vithanage, J.; Miller, S. N.; Berendsen, M.; Caffrey, P. A.; Bellis, J.; Schuler, R.

    2013-12-01

    Potential impacts of energy development on surface hydrology in western Wyoming were assessed using spatially explicit hydrological models. Currently there are proposals to develop over 800 new oil and gas wells in the 218,000 acre-sized LaBarge development area that abuts the Wyoming Range and contributes runoff to the Upper Green River (approximately 1 well per 2 square miles). The intensity of development raises questions relating to impacts on the hydrological cycle, water quality, erosion and sedimentation. We developed landscape management scenarios relating to current disturbance and proposed actions put forth by the energy operators to provide inputs to spatially explicit hydrologic models. Differences between the scenarios were derived to quantify the changes and analyse the impacts to the project area. To perform this research, the Automated Watershed Assessment Tool (AGWA) was enhanced by adding different management practices suitable for the region, including the reclamation of disturbed lands over time. The AGWA interface was used to parameterize and execute two hydrologic models: the Soil and Water Assessment Tool (SWAT) and the KINEmatic Runoff and EROSion model (KINEROS2). We used freely available data including SSURGO soils, Multi-Resolution Landscape Consortium (MRLC) land cover, and 10m resolution terrain data to derive suitable initial parameters for the models. The SWAT model was manually calibrated using an innovative method at the monthly level; observed daily rainfall and temperature inputs were used as a function of elevation considering the local climate effects. Higher temporal calibration was not possible due to a lack of adequate climate and runoff data. The Nash Sutcliff efficiencies of two calibrated watersheds at the monthly scale exceeded 0.95. Results of the AGWA/SWAT simulations indicate a range of sensitivity to disturbance due to heterogeneous soil and terrain characteristics over a simulated time period of 10 years. The KINEROS

  12. Phenotypic Stability of Energy Balance Responses to Experimental Total Sleep Deprivation and Sleep Restriction in Healthy Adults

    PubMed Central

    Dennis, Laura E.; Spaeth, Andrea M.; Goel, Namni

    2016-01-01

    Experimental studies have shown that sleep restriction (SR) and total sleep deprivation (TSD) produce increased caloric intake, greater fat consumption, and increased late-night eating. However, whether individuals show similar energy intake responses to both SR and TSD remains unknown. A total of N = 66 healthy adults (aged 21–50 years, 48.5% women, 72.7% African American) participated in a within-subjects laboratory protocol to compare daily and late-night intake between one night of SR (4 h time in bed, 04:00–08:00) and one night of TSD (0 h time in bed) conditions. We also examined intake responses during subsequent recovery from SR or TSD and investigated gender differences. Caloric and macronutrient intake during the day following SR and TSD were moderately to substantially consistent within individuals (Intraclass Correlation Coefficients: 0.34–0.75). During the late-night period of SR (22:00–04:00) and TSD (22:00–06:00), such consistency was slight to moderate, and participants consumed a greater percentage of calories from protein (p = 0.01) and saturated fat (p = 0.02) during SR, despite comparable caloric intake (p = 0.12). Similarly, participants consumed a greater percentage of calories from saturated fat during the day following SR than TSD (p = 0.03). Participants also consumed a greater percentage of calories from protein during recovery after TSD (p < 0.001). Caloric intake was greater in men during late-night hours and the day following sleep loss. This is the first evidence of phenotypic trait-like stability and differential vulnerability of energy balance responses to two commonly experienced types of sleep loss: our findings open the door for biomarker discovery and countermeasure development to predict and mitigate this critical health-related vulnerability. PMID:27999367

  13. Geometry optimization based on linear response free energy with quantum mechanical/molecular mechanical method: applications to Menshutkin-type and Claisen rearrangement reactions in aqueous solution.

    PubMed

    Higashi, Masahiro; Hayashi, Shigehiko; Kato, Shigeki

    2007-04-14

    The authors present a method based on a linear response theory that allows one to optimize the geometries of quantum mechanical/molecular mechanical (QM/MM) systems on the free energy surfaces. Two different forms of linear response free energy functionals are introduced, and electronic wave functions of the QM region, as well as the responses of electrostatic and Lennard-Jones potentials between QM and MM regions, are self-consistently determined. The covariant matrix relating the QM charge distribution to the MM response is evaluated by molecular dynamics (MD) simulation of the MM system. The free energy gradients with respect to the QM atomic coordinates are also calculated using the MD trajectory results. They apply the present method to calculate the free energy profiles of Menshutkin-type reaction of NH3 with CH3Cl and Claisen rearrangement of allyl vinyl ether in aqueous solution. For the Menshutkin reaction, the free energy profile calculated with the modified linear response free energy functional is in good agreement with that by the free energy perturbation calculations. They examine the nonequilibrium solvation effect on the transmission coefficient and the kinetic isotope effect for the Claisen rearrangement.

  14. Panchromatic "Dye-Doped" Polymer Solar Cells: From Femtosecond Energy Relays to Enhanced Photo-Response.

    PubMed

    Grancini, Giulia; Sai Santosh Kumar, R; Maiuri, Margherita; Fang, Junfeng; Huck, Wilhelm T S; Alcocer, Marcelo J P; Lanzani, Guglielmo; Cerullo, Giulio; Petrozza, Annamaria; Snaith, Henry J

    2013-02-07

    There has been phenomenal effort synthesizing new low-band gap polymer hole-conductors which absorb into the near-infrared (NIR), leading to >10% efficient all-organic solar cells. However, organic light absorbers have relatively narrow bandwidths, making it challenging to obtain panchromatic absorption in a single organic semiconductor. Here, we demonstrate that (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]dithiophene)-alt-4,7-(2,1,3-benzothiadia-zole)] (PCPDTBT) can be "photo-sensitized" across the whole visible spectrum by "doping" with a visible absorbing dye, the (2,2,7,7-tetrakis(3-hexyl-5-(7-(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-9,9-spirobifluorene) (spiro-TBT). Through a comprehensive sub-12 femtosecond-nanosecond spectroscopic study, we demonstrate that extremely efficient and fast energy transfer occurs from the photoexcited spiro-TBT to the PCPDTBT, and ultrafast charge injection happens when the system is interfaced with ZnO as a prototypal electron-acceptor compound. The visible photosensitization can be effectively exploited and gives panchromatic photoresponse in prototype polymer/oxide bilayer photovoltaic diodes. This concept can be successfully adopted for tuning and optimizing the light absorption and photoresponse in a broad range of polymeric and hybrid solar cells.

  15. Monte Carlo-based energy response studies of diode dosimeters in radiotherapy photon beams.

    PubMed

    Arun, C; Palani Selvam, T; Dinkar, Verma; Munshi, Prabhat; Kalra, Manjit Singh

    2013-01-01

    This study presents Monte Carlo-calculated absolute and normalized (relative to a (60)Co beam) sensitivity values of silicon diode dosimeters for a variety of commercially available silicon diode dosimeters for radiotherapy photon beams in the energy range of (60)Co-24 MV. These values were obtained at 5 cm depth along the central axis of a water-equivalent phantom of 10 cm × 10 cm field size. The Monte Carlo calculations were based on the EGSnrc code system. The diode dosimeters considered in the calculations have different buildup materials such as aluminum, brass, copper, and stainless steel + epoxy. The calculated normalized sensitivity values of the diode dosimeters were then compared to previously published measured values for photon beams at (60)Co-20 MV. The comparison showed reasonable agreement for some diode dosimeters and deviations of 5-17 % (17 % for the 3.4 mm brass buildup case for a 10 MV beam) for some diode dosimeters. Larger deviations of the measurements reflect that these models of the diode dosimeter were too simple. The effect of wall materials on the absorbed dose to the diode was studied and the results are presented. Spencer-Attix and Bragg-Gray stopping power ratios (SPRs) of water-to-diode were calculated at 5 cm depth in water. The Bragg-Gray SPRs of water-to-diode compare well with Spencer-Attix SPRs for ∆ = 100 keV and above at all beam qualities.

  16. Grassland bird response to harvesting switchgrass as a biomass energy crop

    USGS Publications Warehouse

    Roth, A.M.; Sample, D.W.; Ribic, C.A.; Paine, L.; Undersander, D.J.; Bartelt, G.A.

    2005-01-01

    The combustion of perennial grass biomass to generate electricity may be a promising renewable energy option. Switchgrass (Panicum virgatum) grown as a biofuel has the potential to provide a cash crop for farmers and quality nesting cover for grassland birds. In southwestern Wisconsin (near lat. 42??52???, long. 90??08???), we investigated the impact of an August harvest of switchgrass for bioenergy on community composition and abundance of Wisconsin grassland bird species of management concern. Harvesting the switchgrass in August resulted in changes in vegetation structure and bird species composition the following nesting season. In harvested transects, residual vegetation was shorter and the litter layer was reduced in the year following harvest. Grassland bird species that preferred vegetation of short to moderate height and low to moderate density were found in harvested areas. Unharvested areas provided tall, dense vegetation structure that was especially attractive to tall-grass bird species, such as sedge wren (Cistothorus platensis) and Henslow's sparrow (Ammodramus henslowii). When considering wildlife habitat value in harvest management of switchgrass for biofuel, leaving some fields unharvested each year would be a good compromise, providing some habitat for a larger number of grassland bird species of management concern than if all fields were harvested annually. In areas where most idle grassland habitat present on the landscape is tallgrass, harvest of switchgrass for biofuel has the potential to increase the local diversity of grassland birds.

  17. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  18. Scorpions regulate their energy metabolism towards increased carbohydrate oxidation in response to dehydration.

    PubMed

    Kalra, Bhawna; Gefen, Eran

    2012-08-01

    Scorpions successfully inhabit some of the most arid habitats on earth. During exposure to desiccating stress water is mobilized from the scorpion hepatopancreas to replenish the hemolymph and retain hydration and osmotic stability. Carbohydrate catabolism is advantageous under these conditions as it results in high metabolic water production rate, as well as the release of glycogen-bound water. Hypothesizing that metabolic fuel utilization in scorpions is regulated in order to boost body water management under stressful conditions we used a comparative approach, studying energy metabolism during prolonged desiccation in four species varying in resistance performance. We used respirometry for calculating respiratory gas exchange ratios, indicative of metabolic fuel utilization, and measured metabolic fuel contents in the scorpion hepatopancreas. We found that hydrated scorpions used a mixture of metabolic fuels (respiratory exchange rates, RER~0.9), but a shift towards carbohydrate catabolism was common during prolonged desiccation stress. Furthermore, the timing of metabolic shift to exclusive carbohydrate oxidation (RER not different from 1.0) was correlated with desiccation resistance of the respective studied species, suggesting triggering by alterations to hemolymph homeostasis.

  19. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants

    PubMed Central

    Mair, Andrea; Pedrotti, Lorenzo; Wurzinger, Bernhard; Anrather, Dorothea; Simeunovic, Andrea; Weiste, Christoph; Valerio, Concetta; Dietrich, Katrin; Kirchler, Tobias; Nägele, Thomas; Vicente Carbajosa, Jesús; Hanson, Johannes; Baena-González, Elena; Chaban, Christina; Weckwerth, Wolfram; Dröge-Laser, Wolfgang; Teige, Markus

    2015-01-01

    Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites. DOI: http://dx.doi.org/10.7554/eLife.05828.001 PMID:26263501

  20. Effect of surface viscosity, anchoring energy, and cell gap on the response time of nematic liquid crystals

    SciTech Connect

    Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.; Evangelista, L.R.; Zola, R.S.

    2014-07-15

    An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (τ{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that τ∼d{sup b}, where b=2 is observed only for strongly anchored cells, while for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.

  1. Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field

    SciTech Connect

    Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.; O'Leary, Stephen K.; Shur, Michael S.

    2015-03-28

    Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energies in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.

  2. Electronic energy transfer from molecules to metal and semiconductor surfaces, and chemisorption-induced changes in optical response of the nickel (111) surface

    SciTech Connect

    Whitmore, P.M.

    1982-10-01

    The evolution of molecular excited states near solid surfaces is investigated. The mechanisms through which energy is transferred to the surface are described within a classical image dipole picture of the interaction. More sophisticated models for the dielectric response of the solid surface add important new decay channels for the energy dissipation. The predictions and applicability of three of these refined theories are discussed.

  3. Aerobic energy cost and sensation responses during submaximal running exercise--positive effects of wearing compression tights.

    PubMed

    Bringard, A; Perrey, S; Belluye, N

    2006-05-01

    This study aimed to examine the effects of wearing compression compared to classic elastic tights and conventional shorts (control trial) on oxygen cost and sensation responses during submaximal running exercise. In part I, aerobic energy cost was evaluated in six trained runners at 10, 12, 14, and 16 km x h(-1). In part II, the increase in energy cost over time (i. e., slow component expressed as difference in VO2 values between min 2 and end-exercise) was determined in six trained runners at a constant running pace corresponding to 80% of maximal VO2 for 15 min duration. All tests were performed on a 200-m indoor track with equivalent thermal stress conditions. VO2 was determined with a portable metabolic system (Cosmed K4b2, Rome, Italy) during all testing sessions. Runners were asked their ratings of perceived exertion (RPE) and perceptions for clothing sweating, comfort, and whole thermal sensations following each trial. Results showed in part I a significant lower energy cost only at 12 km x h(-1) by wearing compression and elastic tights compared to conventional shorts. During part II, wearing compression tights decreased significantly VO2 slow component by 26 and 36% compared to elastic tights and conventional shorts, respectively. There were no differences in sweating and comfort sensations, RPE, and for whole thermal sensation between clothing conditions in parts I and II. Wearing compression tights during running exercise may enhance overall circulation and decrease muscle oscillation to promote a lower energy expenditure at a given prolonged submaximal speed.

  4. Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men.

    PubMed

    Douglas, Jessica A; King, James A; McFarlane, Ewan; Baker, Luke; Bradley, Chloe; Crouch, Nicole; Hill, David; Stensel, David J

    2015-09-01

    Single bouts of exercise do not cause compensatory changes in appetite, food intake or appetite regulatory hormones on the day that exercise is performed. It remains possible that such changes occur over an extended period or in response to a higher level of energy expenditure. This study sought to test this possibility by examining appetite, food intake and appetite regulatory hormones (acylated ghrelin, total peptide-YY, leptin and insulin) over two days, with acute bouts of exercise performed on each morning. Within a controlled laboratory setting, 15 healthy males completed two, 2-day long (09:00-16:00) experimental trials (exercise and control) in a randomised order. On the exercise trial participants performed 60 min of continuous moderate-high intensity treadmill running (day one: 70.1 ± 2.5% VO2peak, day two: 70.0 ± 3.2% VO2max (mean ± SD)) at the beginning of days one and two. Across each day appetite perceptions were assessed using visual analogue scales and appetite regulatory hormones were measured from venous blood samples. Ad libitum energy and macronutrient intakes were determined from meals provided two and six hours into each day and from a snack bag provided in-between trial days. Exercise elicited a high level of energy expenditure (total = 7566 ± 635 kJ across the two days) but did not produce compensatory changes in appetite or energy intake over two days (control: 29,217 ± 4006 kJ; exercise: 28,532 ± 3899 kJ, P > 0.050). Two-way repeated measures ANOVA did not reveal any main effects for acylated ghrelin or leptin (all P > 0.050). However a significant main effect of trial (P = 0.029) for PYY indicated higher concentrations on the exercise vs. control trial. These findings suggest that across a two day period, high volume exercise does not stimulate compensatory appetite regulatory changes.

  5. Energy Frontier Research Centers (EFRCs): A Response to Five Challenges for Science and the Imagination (2011 EFRC Summit, panel session)

    ScienceCinema

    Alivisatos, Paul (Director, LBNL); Crabtree, George (ANL); Dresselhaus, Mildred (MIT); Ratner, Mark (Northwestern University)

    2016-07-12

    A distinguished panel of speakers at the 2011 EFRC Summit looks at the EFRC Program and how it serves as a response to "Five Challenges for Science and the Imagination”, the culminating report that arose from a series of Basic Research Needs workshops. The panel members are Paul Alivisatos, the Director of Lawrence Berkeley National Laboratory, George Crabtree, Distinguished Fellow at Argonne National Laboratory, Mildred Dresselhause, Institute Professor at the Massachusetts Institute of Technology, and Mark Ratner, Professor at Northwestern University. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  6. Response of a close to final prototype for the P bar ANDA Electromagnetic Calorimeter to photons at energies below 1 GeV

    NASA Astrophysics Data System (ADS)

    Rosenbaum, C.; Diehl, S.; Dormenev, V.; Drexler, Peter; Kavatsyuk, M.; Kuske, T.; Nazarenko, S.; Novotny, R. W.; Rosier, P.; Ryazantsev, A.; Wieczorek, P.; Wilms, A.; Wohlfahrt, B.; Zaunick, H.-G.

    2016-07-01

    The response of two generations of prototypes of the P bar ANDA Electromagnetic Calorimeter (EMC), PROTO60 and PROT120, to photons in the energy range between 50 MeV and 800 MeV was obtained. Furthermore, the performance of the pre-amplifier ASIC (APFEL) under real experimental conditions, the position dependence of the energy resolution within the crystal and the implementation of higher order energy correction algorithms with a 15 GeV/c positron beam were studied.

  7. Comparison of cardiorespiratory responses between Surya Namaskar and bicycle exercise at similar energy expenditure level.

    PubMed

    Sinha, Biswajit; Sinha, Tulika Dasgupta; Pathak, Anjana; Tomer, O S

    2013-01-01

    Surya Namaskar (SN), a popular traditional Indian yogic practice called "Sun Salutations", includes practice of twelve physical postures involving alternate backward bending and forward bending postures. The practice of twelve postures in succession makes one round of its practice. Many people practise it as part of their daily physical fitness regimen. No study is available to compare cardiorespiratory responses of SN with bicycle exercise (BE). 20 healthy Yoga instructors practicing various Yogic practices including SN since last 7-8 years participated in the study. They performed SN in the laboratory according to their customary daily practice routine. The subject also performed incremental load bicycle exercise test till exhaustion on their second visit for measuring their VO2 max. SN and BE were compared at three similar exercise intensity levels in terms of % of VO2 max. The exercise intensities were light (10-20% VO2 max), moderate (21-40% VO2 max) and high intensities (41-50% VO2 max). Heart rate at high work intensity was significantly higher in BE than SN (P < .001). Ventilation and carbon dioxide output were significantly higher in BE than SN at high exercise intensity (P < 0.001). Overall, cardiorespiratory stress is less in SN than BE at similar work intensities.

  8. U.S. Department of Energy Consequence Management Under the National Response Framework

    SciTech Connect

    H. Clark, R. Allen, J. Essex, B. Pobanz

    2009-02-03

    Dramatic advances in data management have been made as a result of the Paperless FRMAC initiative, sponsored by the DOE’s Office of Emergency Response (NA-42). The FRMAC (Federal Radiological Monitoring and Assessment Center) is the hub for all radiological monitoring and the production of data products that interpret those measurements in terms of protective action guidelines. As such, very large amounts of data must be quickly assimilated from numerous sources and then widely distributed as graphical interpretations as fast as possible. Paperless FRMAC is a broad initiative to move that data faster, farther and better through telemetry, automation, and networking. This discussion reviews for the first time the status of the now two-year-old Paperless FRMAC initiative. Key features of Paperless FRMAC include multipath telemetry of measurements from DOE field teams, 24/7 Internet presence, early data entry by first responders, support for distance collaborations, and data exchange with the EPA’s SCRIBE database. The heart of the enterprise is the RAMS database, which provides seamless interfacing with GIS, LIMS, and TurboFRMAC for calculations. Paperless FRMAC is presented to users via two Internet websites. The first, FRMAC Portal website, is restricted to the emergency responders for data input, analysis, and product development. The second, CMweb website, is the showroom for completed and approved products, which are made much more widely available. In fact, CMweb offers seamless, single log-in access to all data products for any IMAAC, NARAC or CMweb user.

  9. Do the noncaffeine ingredients of energy drinks affect metabolic responses to heavy exercise?

    PubMed

    Pettitt, Robert W; Niemeyer, JoLynne D; Sexton, Patrick J; Lipetzky, Amanda; Murray, Steven R

    2013-07-01

    Energy drinks (EDs) such as Red Bull (RB) are marketed to enhance metabolism. Secondary ingredients of EDs (e.g., taurine) have been purported to improve time trial performance; however, little research exists on how such secondary ingredients affect aerobic metabolism during heavy exercise. The purpose of this study was to investigate the effect of the secondary ingredients of RB on aerobic metabolism during and subsequent to heavy exercise. In double-blind, counterbalanced, and crossover fashion, 8 recreationally trained individuals completed a graded exercise test to determine the gas exchange threshold (GET). Subjects returned on 2 separate occasions and ingested either a 245 ml serving of RB or a control (CTRL) drink with the equivalent caffeine before engaging in two 10-minute constant-load cycling bouts, at an intensity equivalent to GET, with 3 minutes of rest between bouts. Accumulated liters of O2 (10 minutes) were higher for the first bout (17.1 ± 3.5 L) vs. the second bout (16.7 ± 3.5 L) but did not differ between drinks. Similarly, excess postexercise oxygen consumption was higher after the initial bout (RB mean, 2.6 ± 0.85 L; CTRL mean, 2.9 ± 0.90 L) vs. the second bout (RB mean, 1.5 ± 0.85 L; CTRL mean, 1.9 ± 0.87 L) but did not differ between drinks. No differences occurred between drinks for measures of heart rate or rating of perceived exertion. These results indicate that the secondary ingredients contained in a single serving of RB do not augment aerobic metabolism during or subsequent to heavy exercise.

  10. Greater sage-grouse population response to energy development and habitat loss

    SciTech Connect

    Walker, B.L.; Naugle, D.E.; Doherty, K.E.

    2007-11-15

    Modification of landscapes due to energy development may alter both habitat use and vital rates of sensitive wildlife species. Greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, have experienced rapid, widespread changes to their habitat due to recent coal-bed natural gas (CBNG) development. We analyzed lek-count, habitat, and infrastructure data to assess how CBNG development and other landscape features influenced trends in the numbers of male sage-grouse observed and persistence of leks in the PRB. From 2001 to 2005, the number of males observed on leks in CBNG fields declined more rapidly than leks outside of CBNG. Of leks active in 1997 or later, only 38% of 26 leks in CBNG fields remained active by 2004-2005, compared to 84% of 250 leks outside CBNG fields. By 2005, leks in CBNG fields had 46% fewer males per active lek than leks outside of CBNG. Persistence of 110 leks was positively influenced by the proportion of sagebrush habitat within 6.4 km of the lek. After controlling for habitat, we found support for negative effects of CBNG development within 0.8 km and 3.2 km of the lek and for a time lag between CBNG development and lek disappearance. Current lease stipulations that prohibit development within 0.4 km of sage-grouse leks on federal lands are inadequate to ensure lek persistence and may result in impacts to breeding populations over larger areas. Seasonal restrictions on drilling and construction do not address impacts caused by loss of sagebrush and incursion of infrastructure that can affect populations over long periods of time. Regulatory agencies may need to increase spatial restrictions on development, industry may need to rapidly implement more effective mitigation measures, or both, to reduce impacts of CBNG development on sage-grouse populations in the PRB.

  11. The Response of the Ionospheric Cusp to the Solar Through Two Perspectives: Low Energy Changed Particle In-Situ Measurements and Low- Energy Neutral Atom Imaging

    NASA Technical Reports Server (NTRS)

    Coffey, V. N.; Moore, T. E.; Chandler, M. O.; Craven, P. D.

    2000-01-01

    The IMAGE mission provides a new perspective on the study of the response of the magnetosphere/ionosphere system to changing solar wind conditions, particularly the variability of ion outflow. Learning to interpret this new type of data becomes an essential step in the process of melding these results with the wealth of in-situ charged particle observations obtained over the past 25 years. In order to understand how the in-situ data correspond to and contrast with IMAGE results we will perform a conjunctive study of event data from two instruments to shed light on the coupling of the solar wind and ionosphere from these different perspectives. We will use the Low Energy Neutral Atom instrument (LENA) which images energetic neutral atom emissions from upward flowing ionospheric ions and the Thermal Ion Dynamics Instrument (TIDE) on the Polar satellite which measures in-situ ion outflow from 0.3-300 eV. Our primary goal will be to understand how comparing the imaging and in-situ perspectives can aid in the analysis of both data sets.

  12. The Response of the Ionospheric Cusp to the Solar Wind Through Two Perspectives: Low Energy Charged Particle In-Situ Measurements and Low-Energy Neutral Atom Imaging

    NASA Technical Reports Server (NTRS)

    Coffey, V. N.; Moore, T. E.; Chandler, M. O.; Giles, B. L.; Craven, P. D.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission provides a new perspective on the study of the response of the magnetosphere/ionosphere system to changing solar wind conditions, particularly the variability of ion outflow. Learning to interpret this new type of data becomes an essential step in the process of melding these results with the wealth of in-situ charged particle observations obtained over the past 25 years. In order to understand how the in-situ data correspond to and contrast with IMAGE results we will perform a conjunctive study of event data from two instruments to shed light on the coupling of the solar wind and ionosphere from these different perspectives. We will use the Low Energy Neutral Atom instrument (LENA) which images energetic neutral atom emissions from upward flowing ionospheric ions and the Thermal Ion Dynamics Instrument (TIDE) on the Polar satellite which measures in-situ ion outflow from 0.3-300 eV. Our primary goal will be to understand how comparing the imaging and in-situ perspectives can aid in the analysis of both data sets.

  13. Brain Transcriptional Responses to High-Fat Diet in Acads-Deficient Mice Reveal Energy Sensing Pathways

    PubMed Central

    Kruger, Claudia; Kumar, K. Ganesh; Mynatt, Randall L.; Volaufova, Julia; Richards, Brenda K.

    2012-01-01

    Background How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain), the enzyme responsible for mitochondrial beta-oxidation of C4–C6 short-chain fatty acids (SCFAs), shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads−/− mice. Methodology/Principal Findings We performed a transcriptional analysis of gene expression in brain tissue of Acads−/− and Acads+/+ mice fed either a high-fat (HF) or low-fat (LF) diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads−/− vs. HF Acads+/+ (3917) and Acads+/+ HF vs. LF Acads+/+ (3879) revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads−/− mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP. Conclusions Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the

  14. Experimental determination of the photon-energy dependent dose-to-water response of TLD600 and TLD700 (LiF:Mg,Ti) thermoluminescence detectors.

    PubMed

    Schwahofer, Andrea; Feist, Harald; Georg, Holger; Häring, Peter; Schlegel, Wolfgang

    2017-03-01

    The aim of this study has been the experimental determination of the energy dependent dose-to-water response of TLD600 and TLD700 thermoluminescent detectors (Harshaw) in X-ray beams with mean photon energies from about 20 to 200keV in comparison with (60)Co gamma rays and 6MV X-rays. Experiments were carried out in collaboration with the German secondary standard laboratory PTW Freiburg. The energy dependent relative responses of TLD600 and TLD700 thermoluminescence detectors were determined at radiation qualities between 30kVp and 280kVp. The overall uncertainty of the measured values was characterized by standard deviations varying from 1.2 to 3%. The present results agree with previous studies on the energy dependent dose-to-water response of TLD100. As an application example, the results were used to measure doses associated with X-ray imaging in image-guided radiotherapy.

  15. Energy and directional response for the Harshaw dosemeter holders 8814 and 8891, and its effect on the appropriate radiation qualities for absolute calibration.

    PubMed

    Børretzen, I; Wøhni, T

    2003-01-01

    The personal dosimetry laboratory at the Norwegian radiation protection authority utilises a two-element dosemeter card for measuring Hp(10) and Hp(0.07), in a Harshaw dosemeter holder type 8814. Energy and directional responses for photons and betas for this holder have been assessed, as well as for the new Harshaw holder type 8891. The energy response characteristics for the 12-1250 keV photon energy range, in terms of TL output per unit Hp(10) and Hp(0.07) have been evaluated. The maximum over-response to under-response ratio for the Hp(10) element was found to be 1.46 for the new type 8891 holder, as compared to 1.55 for the older type 8814. The new holder also displays a more favourable directional response for this element. For the Hp(0.07) element, no significant differences with regard to energy or directional responses were found. Selecting radiation energy for absolute calibration of the Hp(10) and Hp(0.07) elements are discussed.

  16. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.

    PubMed

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu

    2013-08-28

    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).

  17. Energy transfer from an individual silica nanoparticle to graphene quantum dots and resulting enhancement of photodetector responsivity

    NASA Astrophysics Data System (ADS)

    Kim, Sung; Shin, Dong Hee; Kim, Jungkil; Jang, Chan Wook; Kang, Soo Seok; Kim, Jong Min; Kim, Ju Hwan; Lee, Dae Hun; Kim, Jung Hyun; Choi, Suk-Ho; Hwang, Sung Won

    2016-06-01

    Förster resonance energy transfer (FRET), referred to as the transfer of the photon energy absorbed in donor to acceptor, has received much attention as an important physical phenomenon for its potential applications in optoelectronic devices as well as for the understanding of some biological systems. If one-atom-thick graphene is used for donor or acceptor, it can minimize the separation between donor and acceptor, thereby maximizing the FRET efficiency (EFRET). Here, we report first fabrication of a FRET system composed of silica nanoparticles (SNPs) and graphene quantum dots (GQDs) as donors and acceptors, respectively. The FRET from SNPs to GQDs with an EFRET of ∼78% is demonstrated from excitation-dependent photoluminescence spectra and decay curves. The photodetector (PD) responsivity (R) of the FRET system at 532 nm is enhanced by 100∼101/102∼103 times under forward/reverse biases, respectively, compared to the PD containing solely GQDs. This remarkable enhancement is understood by network-like current paths formed by the GQDs on the SNPs and easy transfer of the carriers generated from the SNPs into the GQDs due to their close attachment. The R is 2∼3 times further enhanced at 325 nm by the FRET effect.

  18. Energy transfer from an individual silica nanoparticle to graphene quantum dots and resulting enhancement of photodetector responsivity

    PubMed Central

    Kim, Sung; Shin, Dong Hee; Kim, Jungkil; Jang, Chan Wook; Kang, Soo Seok; Kim, Jong Min; Kim, Ju Hwan; Lee, Dae Hun; Kim, Jung Hyun; Choi, Suk-Ho; Hwang, Sung Won

    2016-01-01

    Förster resonance energy transfer (FRET), referred to as the transfer of the photon energy absorbed in donor to acceptor, has received much attention as an important physical phenomenon for its potential applications in optoelectronic devices as well as for the understanding of some biological systems. If one-atom-thick graphene is used for donor or acceptor, it can minimize the separation between donor and acceptor, thereby maximizing the FRET efficiency (EFRET). Here, we report first fabrication of a FRET system composed of silica nanoparticles (SNPs) and graphene quantum dots (GQDs) as donors and acceptors, respectively. The FRET from SNPs to GQDs with an EFRET of ∼78% is demonstrated from excitation-dependent photoluminescence spectra and decay curves. The photodetector (PD) responsivity (R) of the FRET system at 532 nm is enhanced by 100∼101/102∼103 times under forward/reverse biases, respectively, compared to the PD containing solely GQDs. This remarkable enhancement is understood by network-like current paths formed by the GQDs on the SNPs and easy transfer of the carriers generated from the SNPs into the GQDs due to their close attachment. The R is 2∼3 times further enhanced at 325 nm by the FRET effect. PMID:27250343

  19. Structural response of transient heat loading on a molybdenum surface exposed to low-energy helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Sinclair, G.; Tripathi, J. K.; Diwakar, P. K.; Hassanein, A.

    2016-03-01

    The advancement of fusion reactor engineering is currently inhibited by the lack of knowledge surrounding the stability of plasma facing components (PFCs) in a tokamak environment. During normal operation, events of high heat loading occur periodically where large amounts of energy are imparted onto the PFC surface. Concurrently, irradiation by low-energy helium ions present in the fusion plasma can result in the synthesis of a fibre form nanostructure on the PFC surface, called ‘fuzz’. In order to understand how this heterogeneous structure evolves and deforms in response to transient heat loading, a pulsed Nd:YAG millisecond laser is used to simulate these events on a fuzz form molybdenum (Mo) surface. Performance was analysed by three metrics: nanostructure evolution, particle emission, and improvement in optical properties. Experiments performed at the upper end of the expected range for type-I edge-localized modes (ELMs) found that the helium-induced nanostructure completely disappears after 200 pulses of the laser at 1.5 MJ m-2. In situ mass loss measurements found that the amount of particles leaving the surface increases as energy density increases and the rate of emission increases with pulse count. Finally, optical properties assisted in providing a qualitative indication of fuzz density on the Mo surface; after 400 pulses at 1.5 MJ m-2, the optical reflectivity of the damaged surface is ~90% of that of a mirror polished Mo sample. These findings provide different results than previous studies done with tungsten (W), and further help illustrate the complicated nature of how transient events of high heat loading in a tokamak environment might impact the performance and lifetime of PFCs in ITER and future DEMO devices (Ueda et al 2014 Fusion Eng. Des. 89 901-6).

  20. US Department of Energy final response to standards for remedial actions at inactive uranium processing sites; Proposed rule

    SciTech Connect

    Not Available

    1988-11-14

    This document revisits and supplements information and recommendations presented in the January 1988 US Department of Energy (DOE) submission to the US Environmental Protection Agency (EPA) regarding the proposed standards for Title I uranium processing sites (DOE, 1988). The clarifications and comments in this report are based on further DOE investigation, contemplation, and interpretation of the proposed standards. Since the January response, the DOE has undertaken a number of special studies to -investigate, evaluate, focus, and clarify issues relating to the standards. In addition, the Nuclear Regulatory Commission (NRC) has issued a draft technical position outlining its interpretation of the proposed standards and clarifying how the standards will be implemented (NRC, 1988). Some issues presented are based on previous positions, and the original DOE position is restated for reference. Other issues or recommendations are more recent than the January DOE response; therefore, no former position was advanced. The order of presentation reflects the general order of significance to the DOE, specifically in regards to the Uranium Mill Tailings Remedial Action (UMTRA) Project.

  1. Effect of moderate cold exposure on 24-h energy expenditure: similar response in postobese and nonobese women.

    PubMed

    Buemann, B; Astrup, A; Christensen, N J; Madsen, J

    1992-12-01

    Twenty-four-hour energy expenditure (EE) and substrate oxidation rates were measured two times in eight postobese women and eight matched controls. On one occasion the subjects were exposed to a room temperature of 16 degrees C, on the other to 24 degrees C. Cold exposure elicited a 2% increment in 24-h EE (P < 0.05), with similar response in the two groups. The slight increase in EE was entirely covered by an enhanced carbohydrate oxidation rate. Fasting plasma norepinephrine (NE) increased from 0.74 +/- 0.08 to 1.29 +/- 0.21 nmol/l under cold exposure (P < 0.05), with no group difference. The cold-induced increase in 24-h EE was positively correlated to the increase in NE concentration (r2 = 0.41, P = 0.01). Sleeping EE was found to be 5% lower in the postobese women than in the controls (P = 0.04). The postobese group also had higher 24-h nonprotein respiratory quotient than the control group (P = 0.04), which was due to a 26% lower lipid-to-carbohydrate oxidation ratio. The study demonstrates that the thermogenic response to cold is normal in women susceptible to obesity, but it supports previous reports of a slightly lower basal EE and lower lipid-to-carbohydrate oxidation ratio in postobese subjects.

  2. Efficiency and rumen responses in younger and older Holstein heifers limit-fed diets of differing energy density.

    PubMed

    Zanton, G I; Heinrichs, A J

    2016-04-01

    The objective of this study was to evaluate the effects of limit feeding diets of different predicted energy density on the efficiency of utilization of feed and nitrogen and rumen responses in younger and older Holstein heifers. Eight rumen-cannulated Holstein heifers (4 heifers beginning at 257 ± 7 d, hereafter "young," and 4 heifers beginning at 610 ± 16 d, hereafter "old") were limit-fed high [HED; 2.64 Mcal/kg of dry matter (DM), 15.31% crude protein (CP)] or low (LED; 2.42 Mcal/kg of DM, 14.15% CP) energy density diets according to a 4-period, split-plot Latin square design with 28-d periods. Diets were limit-fed to provide isonitrogenous and isoenergetic intake on a rumen empty body weight (BW) basis at a level predicted to support approximately 800 g/d of average daily gain. During the last 7d of each period, rumen contents were subsampled over a 24-h period, rumen contents were completely evacuated, and total collection of feces and urine was made over 4d. Intakes of DM and water were greater for heifers fed LED, although, by design, calculated intake of metabolizable energy did not differ between age groups or diets when expressed relative to rumen empty BW. Rumen pH was lower, ammonia (NH3-N) concentration tended to be higher, and volatile fatty acids (VFA) concentration was not different for HED compared with LED and was unaffected by age group. Rumen content mass was greater for heifers fed LED and for old heifers, so when expressing rumen fermentation responses corrected for this difference in pool size, NH3-N pool size was not different between diets and total moles of VFA in the rumen were greater for heifers fed LED, whereas these pool sizes were greater for old heifers. Total-tract digestibility of potentially digestible neutral detergent fiber (NDF) was greater in heifers fed LED and for young heifers, whereas the fractional rate of ruminal passage and digestion of NDF were both greater in heifers fed LED. Digestibility of N was greater for

  3. The role of autacoids and the autonomic nervous system in cardiovascular responses to radio-frequency energy heating.

    PubMed

    Jauchem, J R

    2006-04-01

    Among the potential effects of exposure to high levels of radio-frequency energy (RFE) (which includes microwaves), an increase in body temperature is the primary consequence. Release of autacoids and activity of the autonomic nervous system may influence (or be directly responsible for) some of the physiological changes that occur in conjunction with this hyperthermia. The main focus of this review is the interaction of autacoids and the autonomic nervous system with cardiovascular changes during heating. Differences between environmental and RFE-induced heating (such as rate of temperature change and degree of skin vs. core heating) may be important when considering these effects. Antihistamines exhibited no beneficial effect on circulatory collapse during RFE-induced heating. The serotonergic blocker methysergide decreased survival time in rats during terminal RFE exposure, despite no effects on heart rate (HR) or blood pressure. Although blockade of platelet-activating factor resulted in lower HR before RFE exposure, there was a lack of effect on the subsequent increase in HR during heating. Nitric oxide did not contribute to the hypotension that occurs due to rapid heating by RFE exposure. There have been either no or very limited studies of effects of prostaglandins, bradykinin, or angiotensin on RFE-induced heating responses. beta-Adrenoceptor antagonism with propranolol resulted in significantly decreased survival times and lower final colonic temperatures during RFE exposure. A lack of effects of nadolol on survival time and temperature, coupled with its poor ability to traverse the blood-brain barrier, suggests that central beta-adrenergic stimulation rather than peripheral stimulation may alter thermoregulation. Effects of the autonomic nervous system (as studied by adrenoceptor blockade) on potassium changes during heating have not been fully investigated. Such changes could be important in animals' responses to RFE and other modalities of heating, and

  4. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV

    SciTech Connect

    Bonnet, T.; Denis-Petit, D.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Aleonard, M. M.

    2013-01-15

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Region Aquitaine) accelerator at the Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, a model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.

  5. SU-E-T-172: Characterization of TLD-100 (LiF:Mg,Ti) Microcube Energy Response in a Cylindrical Chamber Phantom

    SciTech Connect

    Desai, V; Hammer, C; Kunugi, K; Culberson, W; DeWerd, L

    2015-06-15

    Purpose: To characterize the energy response of TLD-100 microcubes inside a Virtual Water chamber phantom. Methods: Four TLD microcubes were placed inside a water-proof Virtual Water (VW) chamber phantom and irradiated to a known dose on a Varian linac in a 1D water tank. These chamber phantoms were then replaced by TLD-100 chips inside a separate VW paddle and irradiated to the same dose. Each energy response reading was calculated as light output per unit dose in nC/cGy and normalized to a calibration set irradiated to the same dose in 60Co. The differences in response between the TLD chips and microcubes were then analyzed. Results: Across all energies, the average microcube response was less sensitive to energy than the average chip response with both falling consistently within 2.8% of previously established values in the literature Conclusion: TLD microcubes showed a lower average sensitivity to energy than their TLD chip counterparts. The use of TLD-100 microcubes inside the chamber phantom was validated against TLD-100 chips inside of VW paddles.

  6. Thermal response of a series- and parallel-connected solar energy storage to multi-day charge sequences

    SciTech Connect

    Cruickshank, Cynthia A.; Harrison, Stephen J.

    2011-01-15

    The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks. (author)

  7. Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage.

    PubMed

    Gross, Josef J; Kessler, Evelyne C; Albrecht, Christiane; Bruckmaier, Rupert M

    2015-01-01

    The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation.

  8. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Duggan, Lisa; Hood, Claire; Warren-Forward, Helen; Haque, Mamoon; Kron, Tomas

    2004-09-01

    In many medical procedures where accurate radiation dose measurements are needed, the variation of detector response with x-ray energy is of concern. The response of LiF:Mg,Cu,P TLDs to a range of x-ray energies was analysed in monoenergetic (synchrotron), diagnostic and therapy radiation beams with the aim of implementing this dosimeter into clinical practice where existing dosimetry techniques are limited due to lack of sensitivity or tissue equivalence (e.g. neonatal radiography, mammography and brachytherapy). LiF:Mg,Cu,P TLDs in different forms from two manufacturers (MCP-N: TLD Poland, GR-200: SDDML China) were irradiated using x-ray beams covering 10 keV to 18 MVp. Dose readings were compared with an ionization chamber. The effect of different TLD types and annealing cycles on clinical utility was investigated. The measured energy response of LiF:Mg,Cu,P TLDs was fit to a simple model devised by Kron et al (1998 Phys. Med. Biol. 43 3235-59) to describe the variation of TLD response with x-ray energy. If TLDs are handled as recommended in the present paper, the energy response of LiF:Mg,Cu,P deviates by a maximum of 15% from unity and agrees with the model to within 5% or experimental uncertainty between 15 keV and 10 MeV. LiF:Mg,Cu,P TLDs of all forms have consistent and superior energy response compared to the standard material LiF:Mg,Ti and are therefore suitable for a wide range of applications in diagnostic radiology and radiotherapy.

  9. The EPQ Code System for Simulating the Thermal Response of Plasma-Facing Components to High-Energy Electron Impact

    SciTech Connect

    Ward, Robert Cameron; Steiner, Don

    2004-06-15

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10 to 300 MeV, and may potentially cause extensive damage to plasma-facing components (PFCs) through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of PFCs to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts that control the operation of an electron-photon Monte Carlo code to calculate the interaction of the runaway electrons with the plasma-facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials; a code to process, scale, transform, and convert the electron Monte Carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and postprocessing of the data. The electron-photon Monte Carlo code used was Electron-Gamma-Shower (EGS), developed and maintained by the National Research Center of Canada. The Quick-Therm-Two-Dimensional-Nonlinear (QTTN) thermal code solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system is validated using a series of analytical solutions and simulations of experiments. The verification of the QTTN thermal code with analytical solutions shows that the code with the Quickest method is better than 99.9% accurate. The benchmarking of the EPQ code system and QTTN versus experiments showed that QTTN's erosion tracking method is accurate within 30% and that EPQ is able to predict the occurrence of melting within the proper time constraints. QTTN and EPQ are verified and validated as able

  10. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    ERIC Educational Resources Information Center

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that…

  11. Measurement of the fluence response of the GSI neutron ball dosemeter in the energy range from thermal to 19 MeV.

    PubMed

    Fehrenbacher, G; Kozlova, E; Gutermuth, F; Radon, T; Schütz, R; Nolte, R; Böttger, R

    2007-01-01

    At high-energy particle accelerators, area monitoring needs to be performed in a wide range of neutron energies. In principle, neutrons occur from thermal energies up to the energy of the accelerated ions, which is for the present GSI (Gesellschaft für Schwerionenforschung) accelerator facility approximately 1-2 GeV per nucleon. There are no passive dosemeters available, which are designed for the use at high-energy accelerators. At GSI, a neutron dosemeter was developed, which is suitable for the measurement of high-energy neutron radiation by the insertion of a lead layer around Thermoluminescence (TL) detection elements (pairs of TL 600/700) at the centre of the dosemeter. The design of the sphere was derived from the construction of the extended range rem-counters for the measurement of ambient dose equivalent H(10). In this work, the dosemeter fluence response was measured in the quasi-monoenergetic neutron fields of the accelerator facility of the PTB in Braunschweig and in the thermal neutron field of the GKSS research reactor FRG-1 in Geesthacht. For the accelerator measurements, the reactions (7)Li(p,n)(7)Be, (3)H(p,n)(3)He and (2)H(d,n)(3)He were used to produce neutron fields with energy peaks between 144 keV and 19 MeV. The measured fluence responses are 27% too low for thermal energies and show an agreement with approximately 14% for the accelerator produced neutron fields related to the computed fluence responses (MCNP, FLUKA calculations). The measured as well as the computed fluence responses of the dosemeter are compared with the corresponding conversion coefficients.

  12. Sensitivity to change in cognitive performance and mood measures of energy and fatigue in response to morning caffeine alone or in combination with carbohydrate.

    PubMed

    Maridakis, Victor; O'Connor, Patrick J; Tomporowski, Phillip D

    2009-01-01

    This double-blind, placebo-controlled, within-subjects (N = 17) experiment compared the sensitivity to change of the cognitive performance and mood measures of mental energy following consumption of either a moderate dose of caffeine (200 mg), a small amount of carbohydrate (50 g white bread), or both. Caffeine improved mood and performance. The sensitivity to change of the mood and cognitive measures did not differ in response to the three treatments (all p values > .05). The mood and cognitive measures of mental energy used here have similar sensitivity to detecting change in response to caffeine and carbohydrate.

  13. Sensitivity to change in cognitive performance and mood measures of energy and fatigue in response to differing doses of caffeine or breakfast.

    PubMed

    Maridakis, Victor; Herring, Matthew P; O'Connor, Patrick J

    2009-01-01

    This double-blind, placebo-controlled, within-subjects (N = 18) experiment compared the sensitivity to change of cognitive performance and mood measures of mental energy following consumption of either 100 or 200-mg caffeine or a 440-calorie breakfast. Breakfast and 200-mg caffeine improved mood and cognitive performance. The sensitivity to change of the measures did not differ in response to any treatment (all p values > .05). The mood and cognitive measures of mental energy used here have similar sensitivity to detecting change in response to a moderate dose of caffeine and breakfast consumption.

  14. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV)

    SciTech Connect

    Tedgren, Aasa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik; Carlsson, Gudrun Alm

    2011-10-15

    Purpose: High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work was to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to {sup 60}Co and to address discrepancies between the results found in recent publications of detector response. Methods: LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in {sup 137}Cs- and {sup 60}Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for {sup 60}Co was determined at each beam quality. Results: An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and {sup 137}Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al.[Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the

  15. Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint

    SciTech Connect

    Booten, C.; Tabares-Velasco, P. C.

    2012-08-01

    This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

  16. Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution.

    PubMed

    Li, Minghua; Czymmek, Kirk J; Huang, C P

    2011-03-15

    The in vivo responses of C. dubia to nanoparticles exemplified by a photoactive titanium oxide (TiO(2)) and a non-photocatalytic aluminum oxide (Al(2)O(3)) were studied. Both nanomaterials inhibited the growth of C. dubia at concentrations ca. >100mg/L. The EC50 value was 42 and 45 mg/L in the presence of TiO(2) and Al(2)O(3), respectively, based on 3-brood reproduction assay. Results implied that reactive oxygen species (ROS) may not be totally responsible for the adverse effects exerted on the invertebrate. Aggregation and interaction among nanoparticles, C. dubia, and algal cells, major food source of Daphnia, played a significant role on the responses of C. dubia to nanoparticles. Dynamic energy budget (DEB) analysis was used to assess the impact of nanoparticles on the energy allocation of C. dubia. Results indicated that nanoparticles could disrupt the assimilation and consumption of energy in C. dubia dramatically. The assimilation energy was negatively correlated to the concentration of nanomaterials, a reduction from 11 to near 0 μg-C/animal/day in the presence of TiO(2) or Al(2)O(3) nanoparticles at a nanoparticle concentration of 200mg/L. The energy consumed for life-maintenance increased also with increase in the concentration of nanomaterials. Results clearly demonstrated the importance of energy disruption in determining the toxicity of nanoparticles toward C. dubia.

  17. Response of native and exotic bark beetles to high-energy wind event in the Tian Shan Mountains, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Mukhamadiev, N.; Lynch, A.; O'Connor, C.; Sagitov, A.; Panyushkina, I. P.

    2012-12-01

    On May 17, 2011, the spruce forest of Yile-Alatausky and Medeo National Parks in southeast Kazakhstan was surged by a high-energy cyclonic storm. Severe blowdown damaged several thousand hectare of Tian Shan spruce forest (Picea schrenkiana), with over 90% of trees killed in extensive areas. Bark beetle populations are increasing rapidly, particularly Ips hauseri, I. typographis, I. sexdentatus, and Pityogenes perfossus (all Coleoptera: Curculionidae). Little is known about the frequency or extent of either large storm events or bark beetle outbreaks in the Tian Shan Mountains, nor about associations between outbreaks of these species and temperature and precipitation regimes. Local managers are concerned that triggering bark beetle outbreaks during current unusually warm, dry conditions will have devastating consequences for the residual forest and forest outside of the blowdown. We characterize the bark beetle population response to the 2011 event to date, and reconstruct the temporal and spatial dynamics of historical disturbance events in the area using dendrochronology. Additionally temperature and precipitation-sensitive tree-ring width chronologies from the Tian Shan Mountains are analyzed to determine high- and low-frequency variability of climate for the past 200 years. Catastrophic windstorm disturbances may play a crucial role in determining forest structure across the mountains. We hypothesize that the Tian Shan spruce forest could be prone to severe storm winds and subsequent bark beetle outbreaks and never reach an old-growth phase between events.

  18. Monotonicity, frustration, and ordered response: an analysis of the energy landscape of perturbed large-scale biological networks

    PubMed Central

    2010-01-01

    Background For large-scale biological networks represented as signed graphs, the index of frustration measures how far a network is from a monotone system, i.e., how incoherently the system responds to perturbations. Results In this paper we find that the frustration is systematically lower in transcriptional networks (modeled at functional level) than in signaling and metabolic networks (modeled at stoichiometric level). A possible interpretation of this result is in terms of energetic cost of an interaction: an erroneous or contradictory transcriptional action costs much more than a signaling/metabolic error, and therefore must be avoided as much as possible. Averaging over all possible perturbations, however, we also find that unlike for transcriptional networks, in the signaling/metabolic networks the probability of finding the system in its least frustrated configuration tends to be high also in correspondence of a moderate energetic regime, meaning that, in spite of the higher frustration, these networks can achieve a globally ordered response to perturbations even for moderate values of the strength of the interactions. Furthermore, an analysis of the energy landscape shows that signaling and metabolic networks lack energetic barriers around their global optima, a property also favouring global order. Conclusion In conclusion, transcriptional and signaling/metabolic networks appear to have systematic differences in both the index of frustration and the transition to global order. These differences are interpretable in terms of the different functions of the various classes of networks. PMID:20537143

  19. Turnkey Heating, Ventilating, and Air Conditioning and Lighting Retrofit Solution Combining Energy Efficiency and Demand Response Benefits

    SciTech Connect

    Doebber, Ian; Deru, Michael; Trenbath, Kim

    2016-04-12

    NREL worked with the Bonneville Power Administration's Technology Innovation Office to demonstrate a turnkey, retrofit technology that combines demand response (DR) and energy efficiency (EE) benefits for HVAC and lighting in retail buildings. As a secondary benefit, we also controlled various plug loads and electric hot water heaters (EHWH). The technology demonstrated was Transformative Wave's eIQ Building Management System (BMS) automatically responding to DR signals. The BMS controlled the HVAC rooftop units (RTU) using the CATALYST retrofit solution also developed by Transformative Wave. The non-HVAC loads were controlled using both hardwired and ZigBee wireless communication. The wireless controllers, manufactured by Autani, were used when the building's electrical layout was too disorganized to leverage less expensive hardwired control. The six demonstration locations are within the Seattle metro area. Based on the assets curtailed by the BMS at each location, we projected the DR resource. We were targeting a 1.7 W/ft2 shed for the summer Day-Ahead events and a 0.7 W/ft2 shed for the winter events. While summarized in Table ES-1, only one summer DR event was conducted at Casino #2.

  20. United States Department of Energy, Strategic Petroleum Reserve: Phase 2, CERCLA (Comprehensive Environmental Response Compensation Liability Act) report: Confirmation

    SciTech Connect

    Upton, C.

    1987-04-27

    This report was prepared on behalf of the Department of Energy (DOE) by Boeing Petroleum Services, Inc. the management, operations, and maintenance contractor to DOE for the Strategic Petroleum Reserve. DOE Order 5480.14 requires all DOE-owned sites to achieve compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In accordance with the understanding reached between BPS and DOE, and as set forth in the letter dated March 28, 1985, DOE is the owner and operator of the SPR. This report fulfills Phase II (Confirmation) of that order, which is to conduct sampling at the areas of potential hazardous waste identified in the Installation Assessment (Phase I) to confirm the presence or absence of hazardous waste. Recommendations to proceed to the Engineering Assessment (Phase III) are made for areas where the presence of hazardous waste is confirmed. In Phase I, recommendations for further sampling were made for the Bayou Choctaw, Big Hill, Bryan Mound, and Sulphur Mines sites. This sampling was carried out as Phase II. Findings from that sampling are presented in this report. Recommendations to proceed to Engineering Assessment were made for Bayous Choctaw cavern 10 and for the Big Hill wells. 11 figs., 39 tabs.

  1. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  2. Prospects for foreign applications of wind-energy systems, preliminary report in response to Public Law 96-345

    NASA Astrophysics Data System (ADS)

    1981-11-01

    Potential foreign applications were identified. Specific systems which would most closely match the applications requirements from a list of representative U.S. wind energy systems. The energy situation of each of 155 countries and 29 territories was reviewed. Wind resources availability for each country was assessed from existing data sources. The export potential was determined by analyzing a country's applications requirements, cost of alternative energy, financial condition, interest in the development of renewable energy technologies, and level of indigenous competition.

  3. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves

    NASA Astrophysics Data System (ADS)

    Li, Dan; Sun, Ting; Liu, Maofeng; Yang, Long; Wang, Linlin; Gao, Zhiqiu

    2015-05-01

    Heat waves (HWs) are projected to become more frequent and last longer over most land areas in the late 21st century, which raises serious public health concerns. Urban residents face higher health risks due to synergies between HWs and urban heat islands (UHIs) (i.e., UHIs are higher under HW conditions). However, the responses of urban and rural surface energy budgets to HWs are still largely unknown. This study analyzes observations from two flux towers in Beijing, China and reveals significant differences between the responses of urban and rural (cropland) ecosystems to HWs. It is found that UHIs increase significantly during HWs, especially during the nighttime, implying synergies between HWs and UHIs. Results indicate that the urban site receives more incoming shortwave radiation and longwave radiation due to HWs as compared to the rural site, resulting in a larger radiative energy input into the urban surface energy budget. Changes in turbulent heat fluxes also diverge strongly for the urban site and the rural site: latent heat fluxes increase more significantly at the rural site due to abundant available water, while sensible heat fluxes and possibly heat storage increase more at the urban site. These comparisons suggest that the contrasting responses of urban and rural surface energy budgets to HWs are responsible for the synergies between HWs and UHIs. As a result, urban mitigation and adaption strategies such as the use of green roofs and white roofs are needed in order to mitigate the impact of these synergies.

  4. The Role of Values, Moral Norms, and Descriptive Norms in Building Occupant Responses to an Energy-Efficiency Pilot Program and to Framing of Related Messages

    ERIC Educational Resources Information Center

    Arpan, Laura M.; Barooah, Prabir; Subramany, Rahul

    2015-01-01

    This study examined building occupants' responses associated with an occupant-based energy-efficiency pilot in a university building. The influence of occupants' values and norms as well as effects of two educational message frames (descriptive vs. moral norms cues) on program support were tested. Occupants' personal moral norm to conserve energy…

  5. An improved long counter for neutron fluence measurement with a flat response over a wide energy range from 1 keV to 15 MeV

    NASA Astrophysics Data System (ADS)

    Hu, Q. Y.; Zhang, J. H.; Zhang, D.; Guo, H. S.; Yang, G. Z.; Li, B. J.; Ye, F.; Si, F. N.; Liu, J.; Fu, Y. C.; Ning, J. M.; Yang, J.; Yang, H. H.; Wang, W. C.

    2014-12-01

    A new long counter has been developed with a flat energy response over a wide range from 1 keV to 15 MeV. It consists of five 3He proportional counter tubes and a number of carefully designed polyethylene moderators. The structure of this detector was determined by careful Monte Carlo simulations. The calculated results show that the efficiency of this counter is uniform from 1 keV neutron energy to 15 MeV. Calibration was performed on an Am-Be source and the accelerator-produced monoenergetic D-D and D-T neutron sources. Fluctuation of the response curve is less than 10% over this energy range.

  6. Synaptoproteomics of learned helpless rats involve energy metabolism and cellular remodeling pathways in depressive-like behavior and antidepressant response.

    PubMed

    Mallei, Alessandra; Giambelli, Roberto; Gass, Peter; Racagni, Giorgio; Mathé, Aleksander A; Vollmayr, Barbara; Popoli, Maurizio

    2011-06-01

    Although depression is a severe and life-threatening psychiatric illness, its pathogenesis still is essentially unknown. Recent studies highlighted the influence of environmental stress factors on an individual's genetic predisposition to develop mood disorders. In the present study, we employed a well-validated stress-induced animal model of depression, Learned Helplessness paradigm, in rats. Learned helpless (LH) and non-learned helpless (NLH) rats were treated with nortriptyline, a tricyclic antidepressant. The resulting 4 groups (LH vs. NLH, treated vs. non-treated), were subjected to global analysis of protein expression, a powerful approach to gain insight into the molecular mechanisms underlying vulnerability to psychiatric disorders and the long-term action of drug treatments. Many of the biological targets of antidepressant drugs are localized at synapses. Thus, to reduce the complexity of the proteome analyzed and to enrich for less abundant synaptic proteins, purified nerve terminals (synaptosomes) from prefrontal/frontal cortex (P/FC) and hippocampus (HPC) of LH-NLH rats were used. Synaptosomes were purified by differential centrifugation on Percoll gradients and analyzed by two-dimensional polyacrylamide gel electrophoresis (2-DE). Protein spots differently regulated in the various comparisons were excised from gels and identified by mass spectrometry. Proteins involved in energy metabolism and cellular remodeling were primarily dysregulated, when LH and NLH rats were compared. Moreover, several proteins (aconitate hydratase, pyruvate dehydrogenase E1, dihydropyrimidinase-related protein-2 and stathmin) were found to be regulated in opposite directions by stress and drug treatment. These proteins could represent new molecular correlates of both vulnerability to stress and response to drugs, and putative targets for the development of novel drugs with antidepressant action. This article is part of a Special Issue entitled 'Trends in neuropharmacology

  7. Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation.

    PubMed

    Levy, Amalie T; Lee, Kelvin H; Hanson, Thomas E

    2016-11-01

    Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S(0)), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S(0) > thiosulfate. To understand this preference in the context of light energy availability, an "energy landscape" of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times.

  8. Response of chicks to two diets of differing energy levels under conditions of brooding with or without supplemental heat

    NASA Astrophysics Data System (ADS)

    Donkoh, A.; Kese, A. G.

    1987-12-01

    A 2×2 factorial experiment was conducted to determine the performance and certain physiological parameters of 200 day-old chicks fed diets containing either 2600 or 3000 kcal metabolizable energy (ME) per kilogram for a period of 28 days under conditions of brooding with or without supplemental heat in a hot humid tropical area. The results indicated that within each dietary energy level, there was no significant difference in growth rates of chicks brooded with or without supplemental heat, however, the high energy diet significantly (P<0.01) promoted greater weight gains than the low energy diet. Brooding chicks with supplemental heat and with the high energy diet, decreased feed intake and improved feed conversion efficiency. Chicks brooded without supplemental heat consumed significantly (P<0.01) less water than those brooded with heat, irrespective of the dietary energy level. Mortality and blood glucose levels were not affected by the heat and dietary energy treatments. Thyroid weight expressed as percentage of body weight, haemoglobin and hematocrit values were significantly (P<0.01) higher for chicks brooded without supplemental heat. On the other hand, dietary energy levels did not exert any effect on these physiological parameters. No significant heat and dietary energy level interaction effects were noted on all the parameters considered under this trial.

  9. Response of BaF 2 detectors to photons of 3-50 MeV energy

    NASA Astrophysics Data System (ADS)

    Matulewicz, T.; Grosse, E.; Emling, H.; Freifelder, R.; Grein, H.; Henning, W.; Herrmann, N.; Holzmann, R.; Kulessa, R.; Simon, R. S.; Wollersheim, H. J.; Schoch, B.; Vogt, J.; Wilhelm, M.; Kratz, J. V.; Schmidt, R.; Janssens, R. V. F.

    1990-04-01

    BaF 2 detectors of 20 cm length (10 radiation lengths) and hexagonal cross section (diameter 5.2 cm) were tested using monochromatic photons from the tagged-photon facility at the electron accelerator MAMIA at Mainz. The experimental spectra the deposited energy for a single detector and for an array of seven modules compare very well with the predictions of Monte Carlo shower simulations using the code GEANT3. At high photon energies a significant improvement (more than a factor 2) of the energy resolution is observed for the summed energy spectra as compared to the resolution of one single module.

  10. Low-calorie energy drink improves physiological response to exercise in previously sedentary men: a placebo-controlled efficacy and safety study.

    PubMed

    Lockwood, Christopher M; Moon, Jordan R; Smith, Abbie E; Tobkin, Sarah E; Kendall, Kristina L; Graef, Jennifer L; Cramer, Joel T; Stout, Jeffrey R

    2010-08-01

    Energy drink use has grown despite limited research to support efficacy or safety and amid concerns when combined with exercise. The purpose of this study was to assess the effects of 10 weeks of once-daily energy drink consumption or energy drink consumption with exercise on measures of body composition, cardiorespiratory fitness, strength, mood, and safety in previously sedentary males. Thirty-eight males were randomly assigned to energy drink + exercise (EX-A), energy drink (NEX-A), placebo + exercise (EX-B), or placebo (NEX-B). All participants consumed 1 drink per day for 10 weeks; EX-A and EX-B participated in 10 weeks of resistance and endurance exercise. Testing was performed before (PRE) and after (POST) the 10-week intervention. No significant (p > 0.05) changes were observed for body composition, fitness, or strength in NEX-A; however, significantly greater decreases in fat mass and percentage body fat and increases in VO2peak were observed in EX-A versus EX-B. Ventilatory threshold (VT), minute ventilation, VO2 at VT, and power output at VT improved significantly PRE to POST in EX-A but not in EX-B or nonexercising groups. Clinical markers for hepatic, renal, cardiovascular, and immune function, as determined by PRE and POST blood work revealed no adverse effects in response to the energy drink. Mood was not affected by energy drink use. Absent energy restriction or other dietary controls, chronic ingestion of a once-daily low-calorie energy drink appears ineffective at improving body composition, cardiorespiratory fitness, or strength in sedentary males. However, when combined with exercise, preworkout energy drink consumption may significantly improve some physiological adaptations to combined aerobic and resistance training.

  11. Spectral response of the energy-binning Dosepix ASIC coupled to a 300 μm silicon sensor under high fluxes of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fröjdh, E.; Bisello, F.; Campbell, M.; Damet, J.; Hamann, E.; Koenig, T.; Wong, W. S.; Zuber, M.

    2015-12-01

    The Dosepix hybrid pixel detector was designed for dosimetry and radiation monitoring applications. It has three programmable modes of operation: photon counting mode, energy integration mode, and dosimetry mode. The dosimetry mode measures the energy of individual X-ray photons and automatically sorts events into pre-defined energy bins. The output is a histogram representing the measured X-ray energy spectrum, permitting a dose reconstruction that accounts for the attenuation of photons at each energy bin. This presents a potential radiation protection and dosimetry instrument in medical radiodiagnostic practices, including high flux systems such as computed tomography (CT). In this paper, we characterise the Dosepix chip by investigating the energy response and count rate capabilities when coupled to a 300 μm silicon sensor under high fluxes of monochromatic synchrotron radiation. Under nominal settings, the Dosepix detector can detect photons down to 3.5 keV, with an energy resolution of 16.5% FWHM for 8.5 keV photons and 8% FWHM for 40 keV photons. The chip can count up to 1.67 Mcps/mm2 of 40 keV photons whilst maintaining linear counting behaviour. This count rate range can be further increased by changing the programmable operating settings of the detector, making it suitable for a range of photon dosimetry applications.

  12. WE-EF-207-11: Energy and Depth Response of Thermoluminescent Dosimeters and Ionization Chambers in Water for Kilovoltage X-Ray Beams

    SciTech Connect

    Lawless, M; Palmer, B; DeWerd, L

    2015-06-15

    Purpose: To assess the effects of changes in beam quality on detector response in the kilovoltage energy range by modulating the x-ray tube voltage and the measurement depth in water. Methods: Measurements were performed with TLD-100 and TLD-100H thermoluminescent dosimeters and an A12 farmer-type ionization chamber. To assess the energy response of the detectors, irradiations were performed at a depth of 3 cm in a custom-built thin-window water phantom using the moderately filtered x-ray beams at the UWADCL (20 kVp-250 kVp) and a Co-60 beam.The x-ray beams and detectors were modeled using the EGSnrc Monte Carlo code. The model was validated by simulating dose to the collecting volume of an A12 farmer chamber and comparing it with measured A12 signal as a function of depth. Dose was tallied to each detector and to water for comparison with measurements. Simulations were used to calculate the predicted energy response, which was compared to the measured response of each detector. Dose to each detector and dose to water as a function of depth were also simulated. Results: Detector output per dose to water was found to deviate by up to 15%, 20% and 30% as a function of energy relative to Co-60 for the A12, TLD-100H and TLD-100, respectively. The EGSnrc simulations produced results similar to the measurements for ionization chambers, but discrepancies of up to 30% were observed for TLD-100H. Simulated detector response as a function of depth was found to vary by up to 3%. Conclusion: These results suggest that changes in beam quality in kilovoltage x-ray beams can have a significant impact on detector response. In-water detector response was found to differ from the previously investigated in-air response. Deviations in detector response as a function of depth were less significant, but could potentially cause dosimetric errors if ignored.

  13. Responses of energy balance, physiology, and production for transition dairy cows fed with a low-energy prepartum diet during hot season.

    PubMed

    Su, Huawei; Wang, Yachun; Zhang, Qian; Wang, Fuwei; Cao, Zhijun; Rahman, Muhammad Aziz Ur; Cao, Binghai; Li, Shengli

    2013-10-01

    Twenty multiparous Chinese Holstein dairy cows calving in hot summer (S group), were compared with 20 similar control cows calving in cool autumn (C group). Diets were the same for both groups; prepartum diets had relatively low energy density. Average temperature-humidity index was 76.5 and 53.0 in summer and autumn, respectively. S group cows had significantly higher rectal temperatures (39.6 vs. 39.0 °C) and respiration rates (79.0 vs. 31.3 breaths/min) than C group, and consumed less feed (prepartum 8.0 vs. 12.3 kg/day, postpartum 16.3 vs. 21.2 kg/day). Calculated energy balance (EB) was -7.98 vs. -5.15 Mcal/day for S group prepartum and postpartum, respectively. In contrast, EB was 1.36 vs. -2.03 Mcal/day for C group prepartum and postpartum, respectively. S group produced significantly less milk than C group by 15.4 % (5.2 kg/day) and 26.8 % (10.2 kg/d) for milk yield and energy-corrected milk, respectively. Percentages of milk fat (3.28 vs. 4.29 %), protein (3.08 vs. 3.33 %), and solids-not-fat (8.46 vs. 8.78 %) were significantly lower for S group. Milk urea nitrogen (19.54 vs. 13.31 mg/dL) was significantly higher in S group. Significantly lower feed efficiency was observed in S group (1.56 vs. 1.66). During the entire transition period, S group had significantly lower circulating glucose levels. S group had significantly higher levels of nonesterified fatty acids (NEFA) prepartum, but after 14 days in milk, NEFA was significantly lower. We conclude that increasing dietary energy density during transition period (especially prepartum) is necessary to minimize adverse effects of hot season.

  14. SU-E-T-308: Systematic Characterization of the Energy Response of Different LiF TLD Crystals for Dosimetry Applications

    SciTech Connect

    Pena, E; Caprile, P; Sanchez-Nieto, B

    2014-06-01

    Purpose: The thermoluminiscense dosimeters (TLDs) are widely used in personal and clinical dosimetry due to its small size, good sensitivity and tissue equivalence, among other advantages. This study presents the characterization of Lithium Fluoride based TLDs, in terms of their absorbed dose response to successive irradiation cycles in a broad range of beam energies, measured under reference conditions. Methods: Four types of Harshaw TLD chips were used: TLD-100, TLD-600 TLD-700 and 100-H. They were irradiated with 10 photon beams of different energy spectrums, from 28 kVp to 18MV (in 30 consecutive cycles for 6 and 18 MV). Results: It was found that the response of the dosimetric system was stabilized (less than ±3%) after 10 cycles for TLD-600 and TLD-700. In the case of TLD-100 and TLD-100H this dependence was not observed. A decreased response to increasing beam energy in terms of absorbed dose to water was observed, as expected, except for TLD-100H which showed the opposite behavior. The less energy dependent detector was the TLD-100H exhibiting a maximum deviation of 12%. The highest variation observed was 33% for TLD-100. The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy. Conclusion: The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy.

  15. The U.S. Department of Energy, National Nuclear Security Agency's Use of Geographic Information Systems for Nuclear Emergency Response Support

    SciTech Connect

    A. L. Guber

    2001-06-01

    The U.S, Department of Energy (DOE), National Nuclear Security Agency's (NNSA) Remote Sensing Laboratory (RSL) provides Geographic Information System (GIS) support during nuclear emergency response activities. As directed by the NNSA, the RSL GIS staff maintains databases and equipment for rapid field deployment during an emergency response. When on location, GIS operators provide information products to on-site emergency managers as well as to emergency managers at the DOE Headquarters (HQ) Emergency Operations Center (EOC) in Washington, D.C. Data products are derived from multiple information sources in the field including radiological prediction models, field measurements taken on the ground and from the air, and pertinent information researched on the Internet. The GIS functions as a central data hub where it supplies the information to response elements in the field, as well as to headquarters officials at HQ during emergency response activities.

  16. Response function of a superheated drop neutron monitor with lead shell in the thermal to 400-MeV energy range.

    PubMed

    Itoga, Toshiro; Asano, Yoshihiro; Tanimura, Yoshihiko

    2011-07-01

    Superheated drop detectors are currently used for personal and environmental dosimetry and their characteristics such as response to neutrons and temperature dependency are well known. A new bubble counter based on the superheated drop technology has been developed by Framework Scientific. However, the response of this detector with the lead shell is not clear especially above several tens of MeV. In this study, the response has been measured with quasi-monoenergetic and monoenergetic neutron sources with and without a lead shell. The experimental results were compared with the results of the Monte Carlo calculations using the 'Event Generator Mode' in the PHITS code with the JENDL-HE/2007 data library to clarify the response of this detector with a lead shell in the entire energy range.

  17. Energy Deposition in the Body from External Sources to Chemically Trigger Cellular Responses in Desired Localized Regions

    NASA Astrophysics Data System (ADS)

    Ibsen, Stuart Duncan

    One of the major challenges of modern chemotherapy is to deliver a therapeutic dose of active drug to the tumor tissue without causing systemic exposure. The realization of this goal could considerably reduce the negative side effects experienced by patients. The work conducted in this thesis looks at two different approaches to trigger drug activation with the use of external energy sources. This avoids the challenges of relying solely on biochemical and environmental differences as triggers. The two triggers used were low intensity focused ultrasound and 365 nm light delivered with a custom designed needle UV LED fiber optic system. Both can be localized within the body to spatially highlight just the tumor tissue creating a stark differentiation between it and the healthy tissue. The 365nm light based delivery scheme developed here was the first demonstration of a photoactivatable doxorubicin (DOX) prodrug called DOX-PCB. DOX-PCB was shown to be 200 times less toxic than DOX and could be activated to a fully therapeutic form upon exposure to 365nm light. The pharmacokinetics showed a circulation half life comparable to that of DOX and stability against in vivo metabolic degradation. The 365 nm light was shown to adequately irradiate a centimeter of tumor tissue and cause localized activation. In vivo tumors exposed to the light had significantly higher doses of DOX than unexposed control tumors in the same individual. The second delivery scheme made use of focused ultrasound to activate echogenic drug delivery vehicles. These vehicles were the first demonstration of encapsulating microbubbles within liposomes. Specially designed optical equipment documented that the microbubble was ultrasound responsive. The microbubble was shown to violently cavitate and rupture the outer liposome membrane releasing the payload contents. The three dimensional localization of activation was demonstrated in tissue phantoms. The strengths of these two delivery schemes could

  18. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    SciTech Connect

    Friedman, A.; Grote, D. P.; Vay, J. L.

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  19. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    NASA Astrophysics Data System (ADS)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  20. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV.

    PubMed

    Bonnet, T; Comet, M; Denis-Petit, D; Gobet, F; Hannachi, F; Tarisien, M; Versteegen, M; Aleonard, M M

    2013-01-01

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Région Aquitaine) accelerator at the Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, a model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.

  1. Estrogen response element-independent signaling partially restores post-ovariectomy body weight gain but is not sufficient for 17β-estradiol’s control of energy homeostasis

    PubMed Central

    Mamounis, Kyle J.; Yang, Jennifer A.; Yasrebi, Ali; Roepke, Troy A.

    2013-01-01

    The steroid 17β-estradiol (E2) modulates energy homeostasis by reducing feeding behavior and increasing energy expenditure primarily through estrogen receptor α (ERα)-mediated mechanisms. Intact ERαKO female mice develop obesity as adults exhibiting decreased energy expenditure and increased fat deposition. However, intact transgenic female mice expressing a DNA-binding-deficient ERα (KIKO) are not obese and have similar energy expenditure, activity and fat deposition to wild type (WT) females, suggesting that non-Estrogen Response Element (ERE)-mediated signaling is important in E2 regulation of energy homeostasis. However, initial reports did not examine the effects of ovariectomy on energy homeostasis or E2’s attenuation of post-ovariectomy body weight gain. Therefore, we sought to determine if low physiological doses of E2 (250 ng QOD) known to suppress post-ovariectomy body weight gain in WT females, would suppress body weight gain in ovariectomized KIKO females. We observed that the post-ovariectomy increase in body weight was significantly greater in WT females than in KIKO females. Furthermore, E2 did not significantly attenuate the body weight gain in KIKO females as it did in WT females. E2 replacement suppressed food intake and fat accumulation while increasing nighttime oxygen consumption and activity only in WT females. E2 replacement also increased arcuate POMC gene expression in WT females only. These data suggest that in the intact female, ERE-independent mechanisms are sufficient to maintain normal energy homeostasis and to partially restore the normal response to ovariectomy. However, they are not sufficient for E2’s suppression of post-ovariectomy body weight gain and attenuation of decreases in metabolism and activity. PMID:24252383

  2. Estrogen response element-independent signaling partially restores post-ovariectomy body weight gain but is not sufficient for 17β-estradiol's control of energy homeostasis.

    PubMed

    Mamounis, Kyle J; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A

    2014-03-01

    The steroid 17β-estradiol (E2) modulates energy homeostasis by reducing feeding behavior and increasing energy expenditure primarily through estrogen receptor α (ERα)-mediated mechanisms. Intact ERαKO female mice develop obesity as adults exhibiting decreased energy expenditure and increased fat deposition. However, intact transgenic female mice expressing a DNA-binding-deficient ERα (KIKO) are not obese and have similar energy expenditure, activity and fat deposition as to wild type (WT) females, suggesting that non-estrogen response element (ERE)-mediated signaling is important in E2 regulation of energy homeostasis. Initial reports did not examine the effects of ovariectomy on energy homeostasis or E2's attenuation of post-ovariectomy body weight gain. Therefore, we sought to determine if low physiological doses of E2 (250 ng QOD) known to suppress post-ovariectomy body weight gain in WT females would suppress body weight gain in ovariectomized KIKO females. We observed that the post-ovariectomy increase in body weight was significantly greater in WT females than in KIKO females. Furthermore, E2 did not significantly attenuate the body weight gain in KIKO females as it did in WT females. E2 replacement suppressed food intake and fat accumulation while increasing nighttime oxygen consumption and activity only in WT females. E2 replacement also increased arcuate POMC gene expression in WT females only. These data suggest that in the intact female, ERE-independent mechanisms are sufficient to maintain normal energy homeostasis and to partially restore the normal response to ovariectomy. However, they are not sufficient for E2's suppression of post-ovariectomy body weight gain and its effects on metabolism and activity.

  3. Response of detector modules of the neutron hodoscope SENECA to neutrons with energies 7-70 MeV

    NASA Astrophysics Data System (ADS)

    v. Edel, G.; Selke, O.; Pöch, C.; Smend, F.; Schumacher, M.; Nolte, R.; Schrewe, U.; Brede, H. J.; Schuhmacher, H.; Henneck, R.

    1993-07-01

    SENECA is a hodoscope for recoil neutrons from photoreactions on nuclei and nucleons in the photon energy range 50-900 MeV. It consists of 32 hexagonal scintillation detector modules in a honeycomb array. Differential detection efficiency spectra of a single module as well as the cross-talk between neighbouring modules were measured at neutron energies between 7 and 70 MeV. Neutron detection efficiencies were determined in the same energy range with an average experimental uncertainty of 7.6%. The experimental results agree with predictions from Monte Carlo codes within the limits of the experimental error.

  4. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    SciTech Connect

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  5. Effects of food form on food intake and postprandial appetite sensations, glucose and endocrine responses, and energy expenditure in resistance trained v. sedentary older adults.

    PubMed

    Apolzan, John W; Leidy, Heather J; Mattes, Richard D; Campbell, Wayne W

    2011-10-01

    Limited research has suggested that the food form of nutritional supplements (FFNS) and resistance training (RT) influence ingestive behaviour and energy balance in older adults. The effects of the FFNS and RT on acute appetitive, endocrine and metabolic responses are not adequately documented. The present study assessed the effects of the FFNS and RT on postprandial appetite sensations (hunger and fullness), endocrine responses (plasma insulin, cholecystokinin, ghrelin and glucagon-like peptide-1 (GLP-1)), metabolism (glucose, energy expenditure and RER) and food intake (satiation) in older adults. On separate days, eighteen sedentary (Sed) and sixteen RT healthy adults (age 62-84 years) consumed 12·5 % of their energy need as an isoenergetic- and macronutrient-matched solid or beverage. Postprandial responses were assessed over 4 h. No RT × FFNS interactions were observed for any parameter. Fasting cholecystokinin was higher in the RT v. Sed group (P < 0·05). RT did not influence fullness, but fullness was higher following the solid v. beverage intake (P < 0·01). Neither RT nor FFNS influenced hunger. Glucose and insulin were higher after the solid v. beverage intake (P < 0·01). Ghrelin, GLP-1 and energy expenditure were not different between the RT and FFNS groups. Postprandial cholecystokinin was higher in the RT v. Sed group (P < 0·01) and for solid v. beverage (P < 0·05). RER was lower for solid v. beverage (P < 0·001). Neither RT nor FFNS independently or interactively influenced food intake 2 h after post-nutritional supplements. In conclusion, RT had little influence on ingestive behaviour. The appetitive and endocrine responses suggested the solid-promoted satiety; however, the FFNS did not alter subsequent food intake.

  6. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode.

    PubMed

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  7. A Test Bed for Self-regulating Distribution Systems: Modeling Intergrated Renewable Energy and Demand Response in the GridLAB-D/MATLAB Environment

    SciTech Connect

    Wang, Dan; de Wit, Braydon; Parkinson, Simon; Fuller, Jason C.; Chassin, David P.; Crawford, Curran; Djilali, Ned

    2012-01-16

    This paper discusses the development of a simulation test bed permitting the study of integrated renewable energy generators and controlled distributed heat pumps operating within distribution systems. The test bed is demonstrated in this paper by addressing the important issue of the self-regulating effect of consumer-owned air-source heat pumps on the variability induced by wind power integration, particularly when coupled with increased access to demand response realized through a centralized load control strategy.

  8. Response of AMP-activated protein kinase and energy metabolism to acute nitrite exposure in the Nile tilapia Oreochromis niloticus.

    PubMed

    Xu, Zhixin; Li, Erchao; Xu, Chang; Gan, Lei; Qin, Jian G; Chen, Liqiao

    2016-08-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a prevalent mammalian energy metabolism sensor, but little is known about its role as an energy sensor in fish experiencing stress. We aimed to study AMPK in Oreochromis niloticus on both the molecular and the physical level. We found that the cDNAs encoding the AMPKα1 and AMPKα2 variants of the O. niloticus catalytic α subunit were 1753bp and 2563 bp long and encoded 571 and 557 amino acids, respectively. Both the AMPKα1 and the AMPKα2 isoform possess structural features similar to mammalian AMPKα, including a phosphorylation site at Thr172 in the N-terminus, and exhibit high homology with other fish and vertebrate AMPKα sequences (81.3%-98.1%). mRNA encoding the AMPKα isoforms was widely expressed in various tissues with distinctive patterns. AMPKα1 and AMPKα2 were primarily expressed in the intestines and brain, respectively. Under acute nitrite challenge, the mRNA encoding the AMPKα isoforms, as well as AMPK activity, changed over time. Its recovery period in freshwater, combined with the fact that it is highly conserved, suggests that fish AMPK, like its mammalian orthologues, acts as an energy metabolism sensor. Furthermore, subsequent decreases in AMPK mRNA levels and activity suggested that its action was transient but efficient. Physically, glucose, lactic acid and TGs in plasma, as well as energy materials in the hepatopancreas and muscle, were significantly altered over time, indicating changes in energy metabolism during the experimental period. These data have enabled us to characterize energy utilization in O. niloticus and further illustrate the role of fish AMPK as an energy sensor. This study provides new insight into energy metabolism and sensing by AMPK in teleost and necessitates further study of the multiple physiologic roles of AMPK in fish.

  9. Cellular effects of individual high-linear energy transfer particles and implications for tissue response at low doses

    NASA Technical Reports Server (NTRS)

    Braby, L. A.; Brooks, A. L.; Metting, N. F.

    1997-01-01

    The energy deposition patterns produced by the radiation environment in space can be quite different from those in conventional radiation environments. Furthermore, conventional radiation biological experiments, using randomly distributed particle tracks, cannot access some variables which may be important in determining the health effects of irradiation. Controlled microbeam irradiation provides the means to investigate the effects and unique energy deposition patterns and cell environment for a variety of end points.

  10. Growth and haematological response of indigenous Venda chickens aged 8 to 13 weeks to varying dietary lysine to energy ratios.

    PubMed

    Alabi, O J; Ng'ambi, J W; Mbajiorgu, E F; Norris, D; Mabelebele, M

    2015-06-01

    The effect of feeding varying dietary lysine to energy levels on growth and haematological values of indigenous Venda chickens aged 8 - 13 weeks was evaluated. Four hundred and twenty Venda chickens (BW 362 ± 10 g) were allocated to four dietary treatments in a completely randomized design. Each treatment was replicated seven times, and each replicate had fifteen chickens. Four maize-soya beans-based diets were formulated. Each diet had similar CP (150 g/kg DM) and lysine (8 g lysine/kg DM) but varying energy levels (11, 12, 13 and 14 MJ ME/kg DM). The birds were reared in a deep litter house; feed and water were provided ad libitum. Data on growth and haematological values were collected and analysed using one-way analysis of variance. Duncan's test for multiple comparisons was used to test the significant difference between treatment means (p < 0.05). A quadratic equation was used to determine dietary lysine to energy ratios for optimum parameters which were significant difference. Results showed that dietary energy level influenced (p < 0.05) feed intake, feed conversion ratio, live weight, haemoglobin and pack cell volume values of chickens. Dry matter digestibility, metabolizable energy and nitrogen retention not influenced by dietary lysine to energy ratio. Also, white blood cell, red blood cell, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration in female Venda chickens aged 91 days were not influenced by dietary lysine to energy ratio. It is concluded that dietary lysine to energy ratios of 0.672, 0.646, 0.639 and 0.649 optimized feed intake, growth rate, FCR and live weight in indigenous female Venda chickens fed diets containing 8 g of lysine/kg DM, 150 g of CP/kg DM and 11 MJ of ME/kg DM. This has implications in diet formulation for indigenous female Venda chickens.

  11. Acute effects of ingesting Java Fit™ energy extreme functional coffee on resting energy expenditure and hemodynamic responses in male and female coffee drinkers

    PubMed Central

    Taylor, Lemuel W; Wilborn, Colin D; Harvey, Travis; Wismann, Jennifer; Willoughby, Darryn S

    2007-01-01

    Background The purpose of this study was to examine the effects of a functional coffee beverage containing additional caffeine, green tea extracts, niacin and garcinia cambogia to regular coffee to determine the effects on resting energy expenditure (REE) and hemodynamic variables. Methods Subjects included five male (26 ± 2.1 y, 97.16 ± 10.05 kg, 183.89 ± 6.60 cm) and five female (28.8 ± 5.3 y, 142.2 ± 12.6 lbs) regular coffee drinkers. Subjects fasted for 10 hours and were assessed for 1 hour prior (PRE) and 3 hours following 1.5 cups of coffee ingestion [JavaFit™ Energy Extreme (JF) ~400 mg total caffeine; Folgers (F) ~200 mg total caffeine] in a double-blind, crossover design. REE, resting heart rate (RHR), and systolic (SBP) and diastolic (DBP) blood pressure was assessed at PRE and 1, 2, and 3-hours post coffee ingestion. Data were analyzed by three-factor repeated measures ANOVA (p < 0.05). Results JF trial resulted in a significant main effect for REE (p < 0.01), SBP (p < 0.01), RER (p < 0.01), and VO2 (p < 0.01) compared to F, with no difference between trials on the RHR and DBP variables. A significant interaction for trial and time point (p < 0.05) was observed for the variable REE. The JF trial resulted in a significant overall mean increase in REE of 14.4% (males = 12.1%, females = 17.9%) over the observation period (p < 0.05), while the F trial produced an overall decrease in REE of 5.7%. SBP was significantly higher in the JF trial; however, there was no significant increase from PRE to 3-hours post. Conclusion Results from this study suggest that JavaFit™ Energy Extreme coffee is more effective than Folgers regular caffeinated coffee at increasing REE in regular coffee drinkers for up to 3 hours following ingestion without any adverse hemodynamic effects. PMID:17919327

  12. Discrimination between energy transfer and back transfer processes for GaAs host and Er luminescent dopants using electric response analysis

    SciTech Connect

    Ishii, Masashi; Koizumi, Atsushi; Fujiwara, Yasufumi; Takeda, Yoshikazu

    2014-04-07

    The energy transfer and back transfer processes of GaAs co-doped with Er and O (GaAs:Er,O) were experimentally distinguished by using a frequency response analysis of the AC photocurrent. The results were achieved by using the difference in the frequency dispersion between (1) the dispersion of the energy transfer, which is triggered by the trapping of free charges in the GaAs host and is represented with the Debye relaxation response and (2) the dispersion of the energy back transfer, which is induced by non-radiative transition of 4f bound electrons in the Er dopants and is described with a Lorentzian. The Debye relaxation response found in GaAs:Er,O provided a charge trapping time that was dependent on temperature, which was well correlated with the thermal quenching property of intense intra-4f-shell luminescence. The spectral shape of the Lorentzian dependence on the temperature was explained with the thermal excitation of Er 4f electrons and release of trapped charges in GaAs. The thermal excitation and release of charges consistently explained the characteristics of weak 4f luminescence in low- and high-temperature regions, respectively.

  13. a Bilayer Model for Incorporating the Simultaneous Effects of Surface Energy and Microstructure Size Dependency on the Dynamic Response and Stability of Electromechanical Nanocantilevers

    NASA Astrophysics Data System (ADS)

    Keivani, Maryam; Koochi, Ali; Kanani, Abolfazl; Abadyan, Mohamadreza

    2016-05-01

    Nanoscale beams might not be considered uniform isotropic since the energy of the surface layer and microstructure of the bulk material highly affect the mechanical characteristics of the beams. Herein, the simultaneous effects of energy of the surface and microstructure of the bulk on the dynamic response and stability of beam-type electromechanical nanocantilevers are investigated. A bilayer model has been developed which incorporates the strain energy of the surface atoms as well as the microstructure-dependent strain energy of the bulk. The Gurtin-Murdoch surface elasticity in conjunction with the modified couple stress theory (MCST) is applied to derive the governing equation. Since the classical assumption for zero normal surface stresses is not consistent with the surface equilibrium assumption in Gurtin-Murdoch elasticity, the presence of normal surface stresses is incorporated. The von Karman nonlinear strain is employed to derive the governing equation. The presence of gas rarefaction at various Knudsen numbers is considered as well as the edge effect on the distribution of Coulomb and dispersion forces. The mode shapes of the nanobeam are determined as a function of the surface and microstructure parameter and the nonlinear governing equation is solved using Galerkin method. The dynamic response, phase plane and stability threshold of the nanocantilever are discussed.

  14. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel; Perez-Calatayud, Jose; Simancas, Fernando; Lallena, Antonio M.; Gazdic-Santic, Maja

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  15. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    NASA Astrophysics Data System (ADS)

    Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi

    2017-03-01

    Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  16. A Computer Program to Predict Energy Cost, Rectal Temperature, and Heart Rate Response to Work, Clothing, and Environment

    DTIC Science & Technology

    1975-11-01

    temperature and heart rate response to work , environment , and clothing. The report defines the mathematical basis of the program and presents a brief guide for its use with the HP9810A programmable calculator.

  17. 75 FR 34152 - Record of Decision for the Cape Wind Energy Project; Secretary of the Interior's Response to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Project AGENCY: Minerals Management Service, Interior. ACTION: Notice of Availability (NOA) of the Record... provides a detailed response for each of the ACHP's comments and recommendations. Authority: The NOA of...

  18. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses.

    PubMed

    Li, Jia; Armstrong, Cheryl L H; Campbell, Wayne W

    2016-01-26

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER) in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each) in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab), TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03). While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p < 0.05), protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  19. Spatial and temporal benthic species assemblage responses with a deployed marine tidal energy device: a small scaled study.

    PubMed

    Broadhurst, Melanie; Orme, C David L

    2014-08-01

    The addition of man-made structures to the marine environment is known to increase the physical complexity of the seafloor, which can influence benthic species community patterns and habitat structure. However, knowledge of how deployed tidal energy device structures influence benthic communities is currently lacking. Here we examined species biodiversity, composition and habitat type surrounding a tidal energy device within the European Marine Energy Centre test site, Orkney. Commercial fishing and towed video camera techniques were used over three temporal periods, from 2009 to 2010. Our results showed increased species biodiversity and compositional differences within the device site, compared to a control site. Both sites largely comprised of crustacean species, omnivore or predatory feeding regimes and marine tide-swept EUNIS habitat types, which varied over the time. We conclude that the device could act as a localised artificial reef structure, but that further in-depth investigations are required.

  20. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO{sub 2}

    SciTech Connect

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO{sub 2} concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO{sub 2} in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across.

  1. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO[sub 2

    SciTech Connect

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO[sub 2] concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO[sub 2] in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across.

  2. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect

    Bower, Ward Isaac; Heavener, Paul; Sena-Henderson, Lisa; Hammell, Darren; Holveck, Mark; David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  3. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    NASA Astrophysics Data System (ADS)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2014-01-01

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ωα and oscillator strengths fα for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ωα(R) curves along the bond dissociation coordinate R for the molecules LiH, Li2, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.

  4. A differential response in the reproductive system and energy balance of spiny mice Acomys populations to vasopressin treatment.

    PubMed

    Wube, Tilaye; Fares, Fuad; Haim, Abraham

    2008-12-01

    Increased dietary salinity suppressed reproduction of the xeric adapted golden spiny mouse, Acomys russatus. Testicular and uterine mass were reduced, suppressed spermatogenesis and vaginal closure were observed. The anti-diuretic hormone, vasopressin (VP), was suggested to mediate such effects. However, increased dietary salinity did not affect reproductive status of a mesic adapted population of the common spiny mouse, A. cahirinus. In the present study, the effect of exogenous VP on the reproductive status and energy balance of both males and females of A. russatus and of a mesic population of A. cahirinus was tested. Vasopressin (Sigma, 50 microg/kg) was injected intraperitoneally in three-day intervals for four weeks. In VP-treated A. russatus, spermatogenesis was significantly suppressed while the change in testis mass did not show significant difference. Both control and VP-treated females lost body mass (W(b)) significantly and the latter also exhibited a higher energy expenditure compared to their male counterparts. VP did not affect reproductive status in both sexes of A. cahirinus. Also it did not have a significant effect on W(b), energy intake, and energy expenditure in this species. Our results support the idea that VP mediates the effects of increased diet salinity on reproduction in A. russatus. The results also reinforce previous knowledge that different physiological systems could be integrated by a single biochemical signal.

  5. Energy coupling between DNA binding and subunit association is responsible for the specificity of DNA-Arc interaction.

    PubMed Central

    Silva, J. L.; Silveira, C. F.

    1993-01-01

    The effects of several DNA molecules on the free energy of subunit association of Arc repressor were measured. The association studies under equilibrium conditions were performed by the dissociating perturbation of hydrostatic pressure. The magnitude of stabilization of the subunit interaction was determined by the specificity of the protein-DNA interaction. Operator DNA stabilized the free energy of association by about 2.2 kcal/mol of monomeric unit, whereas poly(dG-dC) stabilized the subunit interaction by only 0.26 kcal. Measurements of the stabilizing free energy at different DNA concentrations revealed a stoichiometry of two dimers per 21 bp for the operator DNA sequence and for the nonspecific DNA poly(dA-dT). However, the maximum stabilization was much larger for operator sequence (delta p = 1,750 bar) as compared for poly(dA-dT) (delta p = 750 bar). The importance of the free-energy linkage for the recognition process was corroborated by its absence in a mutant Arc protein (PL8) that binds to operator and nonspecific DNA sequences with equal, low affinity. We conclude that the coupling accounts for the high specificity of the Arc-operator DNA interaction. We hypothesize a mutual coupling between the protein subunits and the two DNA strands, in which the much higher persistency of the associated form when Arc is bound to operator would stabilize the interactions between the two DNA strands. PMID:8318899

  6. The ability of habitual exercise to influence appetite and food intake in response to high- and low-energy preloads in man.

    PubMed

    Long, S J; Hart, K; Morgan, L M

    2002-05-01

    The present study tested the hypothesis that habitual exercisers demonstrate an increased accuracy of regulation of food intake in compensation for previous dietary energy intake. Twenty-three lean healthy male subjects were divided into two groups on the basis of their habitual exercise levels: non-exercisers (no exercise sessions/week, n 9), and exercisers (>two exercise sessions of 40 min or more/week, n 14). The appetite response to covert liquid preloads of high (2513 kJ) energy (HE) and low (1008 kJ) energy (LE) was investigated Sixty minutes after the preload subjects were offered an ab libitum buffet-style meal and energy intake (EI) was calculated. Subjective hunger and satiety were assessed throughout using self-rated visual-analogue scales. Buffet EI in non-exercisers was not significantly different following the LE or HE preloads (mean compensation 7 %), but the exercise group significantly reduced their energy intake following the HE, compared with the LE, preload (mean compensation 90 %; P=0.0035). A broadly similar pattern of response was observed for both moderate (two to three sessions/week, n 7) and high exercisers (>four sessions/week, n 7). There were no significant differences between hunger or satiety ratings following HE or LE preloads for either group. However non-exercisers scored significantly higher on their self-ratings of hunger at the start of the study, before preload consumption, compared with the exercisers (P<0.01). These findings demonstrate that habitual exercisers have an increased accuracy of short-term regulation of food intake in compensation for preload manipulation, and provide additional support for advocating regular exercise in the prevention of overweight and obesity.

  7. Response of Cs2LiYCl6:Ce (CLYC) to High Energy Protons

    SciTech Connect

    Coupland, Daniel David Schechtman; Stonehill, Laura Catherine; Goett III, John Jerome

    2015-11-23

    Cs2LiYCl6:Ce (CLYC) is a promising new inorganic scintillator for gamma and neutron detection. As a gamma-ray detector, it exhibits bright light output and better resolution and proportionality of response than traditional gamma-ray scintillators such as NaI. It is also highly sensitive to thermal neutrons through capture on 6Li, and recent experiments have demonstrated sensitivity to fast neutrons through interactions with 35Cl. The response of CLYC to other forms of radiation has not been reported. We have performed the first measurements of the response of CLYC to several-hundred MeV protons. We have collected digitized waveforms from proton events, and compare to those produced by gammas and thermal neutrons. Finally, we discuss the potential for pulse shape discrimination between them.

  8. Absolute measurements of the response function of an NE213 organic liquid scintillator for the neutron energy range up to 206 /MeV

    NASA Astrophysics Data System (ADS)

    Nakao, Noriaki; Kurosawa, Tadahiro; Nakamura, Takashi; Uwamino, Yoshitomo

    2001-05-01

    The absolute values of the neutron response functions of a 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator were measured using a quasi-monoenergetic neutron field in the energy range of 66- 206 MeV via the 7Li(p,n) 7Be reaction in the ring cyclotron facility at RIKEN. The measured response functions were compared with calculations using a Monte Carlo code developed by Cecil et al. The measurements clarified that protons escaping through the scintillator wall induced by high-energy neutrons increase from 6% for 66 MeV neutrons to 35% for 206 MeV neutrons, and that this wall effect causes a difficult problem for n-γ discrimination. Measured response functions without the wall-effect events were also obtained by eliminating the escaping-proton events in the analysis, and compared with calculations using a modified Monte Carlo code. Comparisons between the measurements and calculations both with and without any wall-effect events gave a good agreement, but some discrepancy in the light output distribution could be found, mainly because the deuteron generation process was not taken into account in the calculation. The calculated efficiencies for 10 MeVee threshold, however, also gave good agreement within about 10% with the measurements.

  9. Nutrition and colostrum production in sheep. 2. Metabolic and hormonal responses to different energy sources in the final stages of pregnancy.

    PubMed

    Banchero, G E; Quintans, G; Martin, G B; Milton, J T B; Lindsay, D R

    2004-01-01

    Lupins and maize, with similar concentrations of metabolisable energy, should produce similar responses in colostrum production at parturition when fed during the last week of pregnancy, but, in the present study, we tested the proposal that the physical form of whole lupins would restrict intake and, therefore, the response compared with cracked lupins or maize. Fifty-five twin-bearing ewes were divided into four groups: in the last 15 days of pregnancy, 14 were fed whole lupins, 13 were fed cracked lupins, 14 were fed cracked maize and 14 received no supplement. The cracked supplements were fed in increasing amounts for 6 days to avoid acidosis. The whole lupins were fed only from Day -8. All supplementary grains increased the intake of metabolisable energy by >35%, but only ewes eating maize accumulated significantly more colostrum at parturition: control, 207 g; cracked maize, 452 g; cracked lupins, 206 g; whole lupins, 231 g (P < 0.05). Plasma urea concentrations were extremely high (approximately 10 mmol L(-1)) for both groups eating lupins and approximately double those of control ewes or those receiving maize ( P < 0.05). We conclude that gut distention is not a cause of a poor response to lupins, but the ammonia associated with near-toxic concentrations of plasma urea may be affecting the production of colostrum.

  10. Response calculations based on an independent particle system with the exact one-particle density matrix: excitation energies.

    PubMed

    Giesbertz, K J H; Gritsenko, O V; Baerends, E J

    2012-03-07

    Adiabatic response time-dependent density functional theory (TDDFT) suffers from the restriction to basically an occupied → virtual single excitation formulation. Adiabatic time-dependent density matrix functional theory allows to break away from this restriction. Problematic excitations for TDDFT, viz. bonding-antibonding, double, charge transfer, and higher excitations, are calculated along the bond-dissociation coordinate of the prototype molecules H(2) and HeH(+) using the recently developed adiabatic linear response phase-including (PI) natural orbital theory (PINO). The possibility to systematically increase the scope of the calculation from excitations out of (strongly) occupied into weakly occupied ("virtual") natural orbitals to larger ranges of excitations is explored. The quality of the PINO response calculations is already much improved over TDDFT even when the severest restriction is made, to virtually the size of the TDDFT diagonalization problem (only single excitation out of occupied orbitals plus all diagonal doubles). Further marked improvement is obtained with moderate extension to allow for excitation out of the lumo and lumo+1, which become fractionally occupied in particular at longer distances due to left-right correlation effects. In the second place the interpretation of density matrix response calculations is elucidated. The one-particle reduced density matrix response for an excitation is related to the transition density matrix to the corresponding excited state. The interpretation of the transition density matrix in terms of the familiar excitation character (single excitations, double excitations of various types, etc.) is detailed. The adiabatic PINO theory is shown to successfully resolve the problematic cases of adiabatic TDDFT when it uses a proper PI orbital functional such as the PILS functional.

  11. Response calculations based on an independent particle system with the exact one-particle density matrix: Excitation energies

    NASA Astrophysics Data System (ADS)

    Giesbertz, K. J. H.; Gritsenko, O. V.; Baerends, E. J.

    2012-03-01

    Adiabatic response time-dependent density functional theory (TDDFT) suffers from the restriction to basically an occupied → virtual single excitation formulation. Adiabatic time-dependent density matrix functional theory allows to break away from this restriction. Problematic excitations for TDDFT, viz. bonding-antibonding, double, charge transfer, and higher excitations, are calculated along the bond-dissociation coordinate of the prototype molecules H2 and HeH+ using the recently developed adiabatic linear response phase-including (PI) natural orbital theory (PINO). The possibility to systematically increase the scope of the calculation from excitations out of (strongly) occupied into weakly occupied ("virtual") natural orbitals to larger ranges of excitations is explored. The quality of the PINO response calculations is already much improved over TDDFT even when the severest restriction is made, to virtually the size of the TDDFT diagonalization problem (only single excitation out of occupied orbitals plus all diagonal doubles). Further marked improvement is obtained with moderate extension to allow for excitation out of the lumo and lumo+1, which become fractionally occupied in particular at longer distances due to left-right correlation effects. In the second place the interpretation of density matrix response calculations is elucidated. The one-particle reduced density matrix response for an excitation is related to the transition density matrix to the corresponding excited state. The interpretation of the transition density matrix in terms of the familiar excitation character (single excitations, double excitations of various types, etc.) is detailed. The adiabatic PINO theory is shown to successfully resolve the problematic cases of adiabatic TDDFT when it uses a proper PI orbital functional such as the PILS functional.

  12. Joint Real-Time Energy and Demand-Response Management using a Hybrid Coalitional-Noncooperative Game

    SciTech Connect

    He, Fulin; Gu, Yi; Hao, Jun; Zhang, Jun Jason; Wei, Jiaolong; Zhang, Yingchen

    2015-11-11

    In order to model the interactions among utility companies, building demands and renewable energy generators (REGs), a hybrid coalitional-noncooperative game framework has been proposed. We formulate a dynamic non-cooperative game to study the energy dispatch within multiple utility companies, while we take a coalitional perspective on REGs and buildings demands through a hedonic coalition formation game approach. In this case, building demands request different power supply from REGs, then the building demands can be organized into an ultimate coalition structure through a distributed hedonic shift algorithm. At the same time, utility companies can also obtain a stable power generation profile. In addition, the interactive progress among the utility companies and building demands which cannot be supplied by REGs is implemented by distributed game theoretic algorithms. Numerical results illustrate that the proposed hybrid coalitional-noncooperative game scheme reduces the cost of both building demands and utility companies compared with the initial scene.

  13. Coupled electro-mechanical response of an electroactive polymer cantilever structure and its application in energy harvesting

    NASA Astrophysics Data System (ADS)

    Ahish, B.; Anand, S. V.; Bharath, P.; Arvind, K.; Chakraborty, N.; Mahapatra, D. Roy

    2009-03-01

    Ionic polymer-metal composites (IPMC), piezoelectric polymer composites and nematic elastomer composites are materials, which exhibit characteristics of both sensors and actuators. Large deformation and curvature are observed in these systems when electric potential is applied. Effects of geometric non-linearity due to the chargeinduced motion in these materials are poorly understood. In this paper, a coupled model for understanding the behavior of an ionic polymer beam undergoing large deformation and large curvature is presented. Maxwell's equations and charge transport equations are considered which couple the distribution of the ion concentration and the pressure gradient along length of a cantilever beam with interdigital electrodes. A nonlinear constitutive model is derived accounting for the visco-elasto-plastic behavior of these polymers and based on the hypothesis that the presence of electrical charge stretches/contracts bonds, which give rise to electrical field dependent softening/hardening. Polymer chain orientation in statistical sense plays a role on such softening or hardening. Elementary beam kinematics with large curvature is considered. A model for understanding the deformation due to electrostatic repulsion between asymmetrical charge distributions across the cross-sections is presented. Experimental evidence that Silver(Ag) nanoparticle coated IPMCs can be used for energy harvesting is reported. An IPMC strip is vibrated in different environments and the electric power against a resistive load is measured. The electrical power generated was observed to vary with the environment with maximum power being generated when the strip is in wet state. IPMC based energy harvesting systems have potential applications in tidal wave energy harvesting, residual environmental energy harvesting to power MEMS and NEMS devices.

  14. Energy landscape of a GSTP1 polymorph linked with cytological function decay in response to chemical stressors.

    PubMed

    Basharat, Zarrin; Yasmin, Azra

    2017-04-20

    Gene polymorphisms lead to varied structure and functional properties. A single nucleotide polymorphism (SNP) i.e. Ile105Val (rs1695) in glutathione S-transferase P1 (GSTP1) gene influences cytological toxicity and modulates the risk to occupational diseases. Apart from this, cancer, neuropathy, NOx, SOx and ozone mediated respiratory function decline including lung inflammation, asthma, allergy etc., have been reported in people with this missense mutation. Here, the functional properties of rs1695 polymorph are revisited through a computational approach. Changes incurred by GSTP1 antioxidant protein as a result of alteration in its sequence, have been studied through docking followed by Poisson-Boltzmann electrostatic equation interpretation, grid and coulombic energy profile mapping for protein polymorphs with DelPhi. Molecular docking simulation of variant and wild type (WT) protein was carried out with eight FDA approved compounds that target GSTP1 for treatment of various diseases. This was to observe binding pattern variation upon mutation induction. Grid, reaction field and coulombic energy calculation of WT and mutated polymorph, complexed with and without these moieties was then attempted. Alteration in conformation and energy was observed in apo- and holo- form of GSTP1 and their ligand-bound complexes as a result of this mutation. This study is a demo of appraising gene-environment interaction based deleteriousness through molecular docking and dynamics simulation approach.

  15. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 1; Dynamic Crushing of Components and Multi-Terrain Impacts

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.

  16. Efficient approach to include molecular polarizations using charge and atom dipole response kernels to calculate free energy gradients in the QM/MM scheme.

    PubMed

    Asada, Toshio; Ando, Kanta; Sakurai, Koji; Koseki, Shiro; Nagaoka, Masataka

    2015-10-28

    An efficient approach to evaluate free energy gradients (FEGs) within the quantum mechanical/molecular mechanical (QM/MM) framework has been proposed to clarify reaction processes on the free energy surface (FES) in molecular assemblies. The method is based on response kernel approximations denoted as the charge and the atom dipole response kernel (CDRK) model that include explicitly induced atom dipoles. The CDRK model was able to reproduce polarization effects for both electrostatic interactions between QM and MM regions and internal energies in the QM region obtained by conventional QM/MM methods. In contrast to charge response kernel (CRK) models, CDRK models could be applied to various kinds of molecules, even linear or planer molecules, without using imaginary interaction sites. Use of the CDRK model enabled us to obtain FEGs on QM atoms in significantly reduced computational time. It was also clearly demonstrated that the time development of QM forces of the solvated propylene carbonate radical cation (PC˙(+)) provided reliable results for 1 ns molecular dynamics (MD) simulation, which were quantitatively in good agreement with expensive QM/MM results. Using FEG and nudged elastic band (NEB) methods, we found two optimized reaction paths on the FES for decomposition reactions to generate CO2 molecules from PC˙(+), whose reaction is known as one of the degradation mechanisms in the lithium-ion battery. Two of these reactions proceed through an identical intermediate structure whose molecular dipole moment is larger than that of the reactant to be stabilized in the solvent, which has a high relative dielectric constant. Thus, in order to prevent decomposition reactions, PC˙(+) should be modified to have a smaller dipole moment along two reaction paths.

  17. A Dual-Responsive Nanocomposite toward Climate-Adaptable Solar Modulation for Energy-Saving Smart Windows.

    PubMed

    Lee, Heng Yeong; Cai, Yufeng; Bi, Shuguang; Liang, Yen Nan; Song, Yujie; Hu, Xiao Matthew

    2017-02-22

    In this work, a novel fully autonomous photothermotropic material made by hybridization of the poly(N-isopropylacrylamide) (PNIPAM) hydrogel and antimony-tin oxide (ATO) is presented. In this photothermotropic system, the near-infrared (NIR)-absorbing ATO acts as nanoheater to induce the optical switching of the hydrogel. Such a new passive smart window is characterized by excellent NIR shielding, a photothermally activated switching mechanism, enhanced response speed, and solar modulation ability. Systems with 0, 5, 10, and 15 atom % Sb-doped ATO in PNIPAM were investigated, and it was found that a PNIPAM/ATO nanocomposite is able to be photothermally activated. The 10 atom % Sb-doped PNIPAM/ATO exhibits the best response speed and solar modulation ability. Different film thicknesses and ATO contents will affect the response rate and solar modulation ability. Structural stability tests at 15 cycles under continuous exposure to solar irradiation at 1 sun intensity demonstrated the performance stability of such a photothermotropic system. We conclude that such a novel photothermotropic hybrid can be used as a new generation of autonomous passive smart windows for climate-adaptable solar modulation.

  18. MiR-34a is up-regulated in response to low dose, low energy X-ray induced DNA damage in breast cells

    PubMed Central

    2013-01-01

    Background MicroRNAs are non-coding RNAs involved in the regulation of gene expression including DNA damage responses. Low doses of low energy X-ray radiation, similar to those used in mammographic exams, has been described to be genotoxic. In the present work we investigated the expression of miR-34a; a well described p53-regulated miRNA implicated in cell responses to X-ray irradiation at low doses. Methods Non-cancerous breast cell line MCF-10A and cancerous T-47D and MCF-7 cell lines were submitted to a low-energy X-ray irradiation (ranging from 28–30 Kv) using a dose of 5 Gy. The expression level of miR-34a, let-7a and miR-21 was assessed by qRT-PCR at 4 and 24 hours post-irradiation. DNA damage was then measured by comet assay and micronuclei estimation in MCF-10A and MCF-7 cell lines, where an increase of miR-34a levels could be observed after irradiation. The rate of apoptotic cells was estimated by nuclear staining and fluorescence microscopy. These experiments were also performed at low doses (3; 12 and 48 mGy) in MCF-10A and MCF-7 cell lines. Results We have observed an increase in miR-34a expression 4 hours post-irradiation at 5 Gy in MCF-10A and MCF-7 cell lines while its level did not change in T-47D, a breast cancer cell line bearing non-functional p53. At low doses, miR-34a was up-regulated in non-tumoral MCF-10A to a higher extent as compared to MCF-7. MiR-34a levels decreased 24 hours post-irradiation. We have also observed DNA damage and apoptosis at low-energy X-ray irradiation at low doses and the high dose in MCF-10A and MCF-7 4 and 24 hours post-irradiation relative to the mock control. Conclusion Low energy X-ray is able to promote DNA strand breaks and miR-34a might be involved in cell responses to low energy X-ray DNA damage. MiR-34a expression correlates with X-ray dose, time after irradiation and cell type. The present study reinforces the need of investigating consequences of low dose X-ray irradiation of breast cells. PMID

  19. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism.

    PubMed

    Alqurashi, May; Gehring, Chris; Marondedze, Claudius

    2016-06-01

    The second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.

  20. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism

    PubMed Central

    Alqurashi, May; Gehring, Chris; Marondedze, Claudius

    2016-01-01

    The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis. PMID:27258261

  1. The responses of cytochrome redox state and energy metabolism to dehydration support a role for cytoplasmic viscosity in desiccation tolerance

    PubMed

    Leprince; Hoekstra

    1998-12-01

    To characterize the depression of metabolism in anhydrobiotes, the redox state of cytochromes and energy metabolism were studied during dehydration of soaked cowpea (Vigna unguiculata) cotyledons and pollens of Typha latifolia and Impatiens glandulifera. Between water contents (WC) of 1.0 and 0.6 g H2O/g dry weight (g/g), viscosity as measured by electron spin resonance spectroscopy increased from 0.15 to 0.27 poise. This initial water loss was accompanied by a 50% decrease in respiration rates, whereas the adenylate energy charge remained constant at 0.8, and cytochrome c oxidase (COX) remained fully oxidized. From WC of 0.6 to 0.2 g/g, viscosity increased exponentially. The adenylate energy charge declined to 0.4 in seeds and 0.2 in pollen, whereas COX became progressively reduced. At WC of less than 0.2 g/g, COX remained fully reduced, whereas respiration ceased. When dried under N2, COX remained 63% reduced in cotyledons until WC was 0.7 g/g and was fully reduced at 0.2 g/g. During drying under pure O2, the pattern of COX reduction was similar to that of air-dried tissues, although the maximum reduction was 70% in dried tissues. Thus, at WC of less than 0.6 g/g, the reduction of COX probably originates from a decreased O2 availability as a result of the increased viscosity and impeded diffusion. We suggest that viscosity is a valuable parameter to characterize the relation between desiccation and decrease in metabolism. The implications for desiccation tolerance are discussed.

  2. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response.

    PubMed

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O; Sokolova, Inna M; Bock, Christian

    2010-08-11

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell, synergistic effects of elevated temperature and CO₂-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO₂ levels (partial pressure of CO₂ in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCo₂ and 15 °C hemolymph pH fell (pH(e) = 7.1 ± 0.2 (CO₂-group) vs. 7.6 ± 0.1 (control)) and P(e)CO₂ values in hemolymph increased (0.5 ± 0.2 kPa (CO₂-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO₂-incubated oysters ([HCO₃⁻](e) = 1.8 ± 0.3 mM (CO₂-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pH(e) did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO₂-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO₂-incubated group. Investigation in isolated gill cells revealed a similar temperature dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using ¹H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy

  3. Water and Energy Balance in Response to the Removal of Invasive Phragmites Australis in a Riparian Wetland

    NASA Astrophysics Data System (ADS)

    Mykleby, P.; Lenters, J. D.; Cutrell, G. J.; Herrman, K.; Istanbulluoglu, E.; Scott, D.

    2011-12-01

    Vegetation plays an important role in the surface energy and water balance of wetlands. Transpiration from phreatophytes, in particular, withdraws water directly from groundwater, often impacting streamflow rates in adjacent tributaries. In the Republican River basin of the Central Plains (USA), streamflow has declined significantly in the past 30-40 years. Invasive vegetation species (such as Phragmites australis) have been removed from portions of the riparian corridor in an effort to halt or reverse the downward trend in streamflow. In this study, we investigated the energy and water balance of a P. australis-dominated riparian wetland in south-central Nebraska to assess the potential effectiveness of such an approach. Evapotranspiration (ET) rates were measured during two growing seasons - one being 2009, when the P. australis was at full growth, and the other during 2010, after the vegetation had been sprayed with herbicide (and remained only as dead, standing biomass). Energy balance measurements at the field site included net radiation, heat storage rates in the canopy, soil, and standing water, and sensible heat flux, which was measured using a large-aperture scintillometer (LAS). Latent heat flux (i.e., ET) was calculated as a residual of the energy balance, and comparisons were made between the two growing seasons. As a result of the spraying of the P. australis vegetation, season-mean ET rates dropped from 4.4 mm day-1 in 2009 to 3.0 mm day-1 in 2010. This decrease in ET was associated with a large increase in sensible heat flux, which more than doubled between the two years (from 33 W m-2 in 2009 to 76 W m-2 in 2010). Meteorological conditions at the site were slightly different from one year to the next, but the differences were not large enough to account for the dramatic changes in latent and sensible heat flux that were observed. We conclude, therefore, that the majority of the ~30% decrease in ET (and ~130% increase in sensible heat flux) was the

  4. Monte Carlo simulation of the nuclear-electromagnetic cascade development and the energy response of ionization spectrometers

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1973-01-01

    Modifications to the basic computer program for performing the simulations are reported. The major changes include: (1) extension of the calculations to include the development of cascades initiated by heavy nuclei, (2) improved treatment of the nuclear disintegrations which occur during the interactions of hadrons in heavy absorbers, (3) incorporation of accurate multi-pion final-state cross sections for various interactions at accelerator energies, (4) restructuring of the program logic so that calculations can be made for sandwich-type detectors, and (5) logic modifications related to execution of the program.

  5. Report to the Nuclear energy Research Advisory Committee (NERAC) Subcommittee on "Long-Term Isotope Research and Productions Plan" - Responses to Questions

    SciTech Connect

    Ammoniums

    1999-07-01

    This report presents responses to two series of questions that were raised by a subcommittee of the Nuclear Energy Research Advisory Committee (NERAC) that has been charged with producing a ''Long-Term Isotope Research and Production Plan.'' The NERAC subcommittee is chaired by Dr. Richard Reba, and the Hanford Site Visit team, which comprises a subset of the subcommittee members, is chaired by Dr. Thomas Ruth. The first set of questions raised by the subcommittee on isotope production at the Hanford Site was received from Dr. Ruth on May 10, 1999, and the second set was received from him on July 5, 1999. Responses to the first set of questions were prepared as part of a June 1999 report entitled ''Isotope Production at the Hanford Site in Richland, Washington'' (PNNL 1999a). The responses to these questions are summarized in this document, with frequent references to the June 1999 report for additional details. Responses to the second set of questions from the NERAC subcommittee are presented in this document for the first time.

  6. Response of Silicon-Based Linear Energy Transfer Spectrometers: Implication for Radiation Risk Assessment in Space Flights

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; O'Neill, P. M.

    2001-01-01

    There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed. c2001 Elsevier Science B.V. All rights reserved.

  7. Response of silicon-based linear energy transfer spectrometers: implication for radiation risk assessment in space flights.

    PubMed

    Badhwar, G D; O'Neill, P M

    2001-07-11

    There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed.

  8. Translocation of the Na+/H+ exchanger 1 (NHE1) in cardiomyocyte responses to insulin and energy-status signalling.

    PubMed

    Lawrence, Scott P; Holman, Geoffrey D; Koumanov, Françoise

    2010-12-15

    The Na+/H+ exchanger NHE1 is a highly regulated membrane protein that is required for pH homoeostasis in cardiomyocytes. The activation of NHE1 leads to proton extrusion, which is essential for counteracting cellular acidity that occurs following increased metabolic activity or ischaemia. The activation of NHE1 intrinsic catalytic activity has been well characterized and established experimentally. However, we have examined in the present study whether a net translocation of NHE1 to the sarcolemma of cardiomyocytes may also be involved in the activation process. We have determined the distribution of NHE1 by means of immunofluorescence microscopy and cell-surface biotinylation. We have discovered changes in the distribution of NHE1 that occur when cardiomyocytes are stimulated with insulin that are PI3K (phosphoinositide 3-kinase)-dependent. Translocation of NHE1 also occurs when cardiomyocytes are challenged by hypoxia, or inhibition of mitochondrial oxidative metabolism or electrically induced contraction, but these responses occur through a PI3K-independent process. As the proposed additional level of control of NHE1 through translocation was unexpected, we have compared this process with the well-established translocation of the glucose transporter GLUT4. In immunofluorescence microscopy comparisons, the translocation of NHE1 and GLUT4 to the sarcolemma that occur in response to insulin appear to be very similar. However, in basal unstimulated cells the two proteins are mainly located, with the exception of some co-localization in the perinuclear region, in distinct subcellular compartments. We propose that the mechanisms of translocation of NHE1 and GLUT4 are linked such that they provide spatially and temporally co-ordinated responses to cardiac challenges that necessitate re-adjustments in glucose transport, glucose metabolism and cell pH.

  9. In vitro hydrolytic digestion, glycemic response in dogs, and true metabolizable energy content of soluble corn fibers.

    PubMed

    de Godoy, M R C; Knapp, B K; Parsons, C M; Swanson, K S; Fahey, George C

    2014-06-01

    The objective of this research was to measure in vitro hydrolytic digestion, glycemic and insulinemic responses in dogs, and true ME (TMEn) content of select soluble corn fibers (SCF) in roosters. The first generation (G1) SCF included hydrochloric acid-treated corn syrup (G1-CS-HCl), an SCF with an increased total dietary fiber (TDF) content (G1-SCF-HCl), an SCF that was spray-dried (G1-SCF-SD), and a hydrogenated SCF (G1-SCF-hydrog). The second generation (G2) SCF included those prepared using phosphoric acid catalyzation in both a liquid [G2-SCF-phos (Lq)] and powder [G2-SCF-phos (Pw)] form, and SCF that were prepared using hydrochloric acid catalyzation in both a liquid [G2-SCF-HCl (Lq)] and powder [G2-SCF-HCl (Pw)] form. Also, in the G2 set of samples were SCF prepared using the same method, but in 3 separate batches, all of which contained 70% TDF and 15% sugars. Two were in liquid form [G2-SCF-phos+HCl (Lq1)] and [G2-SCF-phos+HCl (Lq2)], and one in powder form ([G2-SCF-phos+HCl (Pw)]. A lower sugar form (80% TDF and 5% sugar) of SCF was also evaluated (G2-SCF-low sugar). Glucose was the major free sugar and bound monosaccharide in all SCF except for G1-SCF-hydrog that had greater concentrations of sorbitol. All SCF had intermediate to low amounts of monosaccharides released as a result of in vitro hydrolytic digestion, with glucose being the primary sugar component released. The G1-SCF were more digestible in vitro (approximately 50%) compared to G2-SCF (approximately 32%). All SCF had attenuated glycemic responses in adult dogs compared to a maltodextrin control (P < 0.05). The G2-SCF, on average, had lower glycemic responses and TMEn values in roosters than G1-SCF. All SCF had low free sugar concentrations with varying degrees of resistance to digestion, reduced caloric content, and attenuated glycemic and insulinemic responses in adult dogs. These ingredients are potential candidates for inclusion in reduced calorie and low glycemic canine diets.

  10. A comparison between state-specific and linear-response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD-PCM method.

    PubMed

    Caricato, Marco

    2013-07-28

    The calculation of vertical electronic transition energies of molecular systems in solution with accurate quantum mechanical methods requires the use of approximate and yet reliable models to describe the effect of the solvent on the electronic structure of the solute. The polarizable continuum model (PCM) of solvation represents a computationally efficient way to describe this effect, especially when combined with coupled cluster (CC) methods. Two formalisms are available to compute transition energies within the PCM framework: State-Specific (SS) and Linear-Response (LR). The former provides a more complete account of the solute-solvent polarization in the excited states, while the latter is computationally very efficient (i.e., comparable to gas phase) and transition properties are well defined. In this work, I review the theory for the two formalisms within CC theory with a focus on their computational requirements, and present the first implementation of the LR-PCM formalism with the coupled cluster singles and doubles method (CCSD). Transition energies computed with LR- and SS-CCSD-PCM are presented, as well as a comparison between solvation models in the LR approach. The numerical results show that the two formalisms provide different absolute values of transition energy, but similar relative solvatochromic shifts (from nonpolar to polar solvents). The LR formalism may then be used to explore the solvent effect on multiple states and evaluate transition probabilities, while the SS formalism may be used to refine the description of specific states and for the exploration of excited state potential energy surfaces of solvated systems.

  11. US Department of Energy response to standards for remedial actions at inactive uranium processing sites: Proposed rule

    SciTech Connect

    Not Available

    1988-01-29

    The Title I groundwater standards for inactive uranium mill tailings sites, which were promulgated on January 5, 1983, by the US Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action (UMTRA) Project, were remanded to the EPA on September 3, 1985, by the US Tenth Circuit Court of Appeals. The Court instructed the EPA to compile general groundwater standards for all Title I sites. On September 24, 1987, the EPA published proposed standards (52FR36000-36008) in response to the remand. This report includes an evaluation of the potential effects of the proposed EPA groundwater standards on the UMTRA Project, as well as a discussion of the DOE's position on the proposed standards. The report also contains and appendix which provides supporting information and cost analyses. In order to assess the impacts of the proposed EPA standards, this report summarizes the proposed EPA standards in Section 2.0. The next three sections assess the impacts of the three parts of the EPA standards: Subpart A considers disposal sites; Subpart B is concerned with restoration at processing sites; and Subpart C addresses supplemental standards. Section 6.0 integrates previous sections into a recommendations section. Section 7.0 contains the DOE response to questions posed by the EPA in the preamble to the proposed standards. 6 refs., 5 figs., 3 tabs.

  12. Proteomic analysis of mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands

    PubMed Central

    Villeneuve, Lance M.; Stauch, Kelly L.; Fox, Howard S.

    2014-01-01

    Many biological processes converge on the mitochondria. In such systems, where many pathways converge, manipulation of the components can produce varied and far-reaching effects. Due to the centrality of the mitochondria in many cellular pathways, we decided to investigate the brain mitochondrial proteome during early development. Using a SWATH mass spectrometry-based technique, we were able to identify vast proteomic alterations between whole brain mitochondria from rats at embryonic day 18 compared to postnatal day 7. These findings include statistically significant alterations in proteins involved in glycolysis and mitochondrial trafficking/dynamics. Additionally, bioinformatic analysis enabled the identification of HIF1A and XBP1 as upstream transcriptional regulators of many of the differentially expressed proteins. These data suggest that the cell is rearranging mitochondria to accommodate special energy demands and that cytosolic proteins exert mitochondrial effects through dynamic interactions with mitochondria. PMID:25046836

  13. The Office of Inspector General audit report on the U.S. Department of Energy`s efforts to increase the financial responsibility of its major for-profit operating contractors

    SciTech Connect

    1998-11-01

    In 1994, the Departmental contract reform team recommended that the Department`s major for-profit operating contractors assume greater financial responsibility. IN response, the Department developed model contract provisions to increase contractor financial responsibility and accountability. The objective of the audit was to determine if the Government is protected from liabilities such as fines, penalties, third-party claims, and damage to or loss of Government property incurred by contractors who manage and operate Department facilities and sites. The Government was not adequately protected against contractor created liabilities on 16 of its 20 major for-profit operating contracts awarded by the Department of Energy. The auditors recommend that the Director for Procurement and Assistance Management negotiate changes in major for-profit operating contracts to include contract reform liability provisions and ensure that performance guarantees with indemnification provisions are executed with subsidiary contractors` parent or corporate business entities. They also recommend that the Director for Procurement and Assistance Management issue regulatory rulemaking that requires indemnification provisions be included in performance guarantees signed by the parent or corporate business entity of subsidiary contractors.

  14. Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers

    PubMed Central

    Li, Jiaolong; Hou, Yongqing; Yi, Dan; Zhang, Jun; Wang, Lei; Qiu, Hongyi; Ding, Binying; Gong, Joshua

    2015-01-01

    This study was carried out to investigate the effects of tributyrin (TB) on the growth performance, pro-inflammatory cytokines, intestinal morphology, energy status, disaccharidase activity, and antioxidative capacity of broilers challenged with lipopolysaccharide (LPS). A total of 160 one-day-old Cobb broilers were allocated to 1 of 4 treatments, with 4 replicated pens per treatment and 10 birds per pen. The experiment consisted of a 2×2 factorial arrangements of treatments with TB supplementation (0 or 500 mg/kg) and LPS challenge (0 or 500 μg/kg body weight [BW]). On days 22, 24, and 26 of the trial, broilers received an intraperitoneal administration of 500 μg/kg BW LPS or saline. Dietary TB showed no effect on growth performance. However, LPS challenge decreased the average daily gain of broilers from day 22 to day 26 of the trial. Dietary TB supplementation inhibited the increase of interleukin-1β (in the jejunum and ileum), interleukin-6 (in the duodenum and jejunum), and prostaglandin E2 (in the duodenum) of LPS-challenged broilers. Similar inhibitory effects of TB in the activities of total nitric oxide synthase (in the ileum) and inducible nitric oxide synthase (in the jejunum) were also observed in birds challenged with LPS. Additionally, TB supplementation mitigated the decrease of ileal adenosine triphosphate, adenosine diphosphate and total adenine nucleotide and the reduction of jejunal catalase activity induced by LPS. Taken together, these results suggest that the TB supplementation was able to reduce the release of pro-inflammatory cytokines and improve the energy status and anti-oxidative capacity in the small intestine of LPS-challenged broilers. PMID:26580447

  15. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis1

    PubMed Central

    Dudits, Dénes; Török, Katalin; Cseri, András; Paul, Kenny; Nagy, Bettina; Sass, László; Ferenc, Györgyi; Vankova, Radomira; Dobrev, Petre; Vass, Imre; Ayaydin, Ferhan

    2016-01-01

    The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity. PMID:26729798

  16. Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers.

    PubMed

    Li, Jiaolong; Hou, Yongqing; Yi, Dan; Zhang, Jun; Wang, Lei; Qiu, Hongyi; Ding, Binying; Gong, Joshua

    2015-12-01

    This study was carried out to investigate the effects of tributyrin (TB) on the growth performance, pro-inflammatory cytokines, intestinal morphology, energy status, disaccharidase activity, and antioxidative capacity of broilers challenged with lipopolysaccharide (LPS). A total of 160 one-day-old Cobb broilers were allocated to 1 of 4 treatments, with 4 replicated pens per treatment and 10 birds per pen. The experiment consisted of a 2×2 factorial arrangements of treatments with TB supplementation (0 or 500 mg/kg) and LPS challenge (0 or 500 μg/kg body weight [BW]). On days 22, 24, and 26 of the trial, broilers received an intraperitoneal administration of 500 μg/kg BW LPS or saline. Dietary TB showed no effect on growth performance. However, LPS challenge decreased the average daily gain of broilers from day 22 to day 26 of the trial. Dietary TB supplementation inhibited the increase of interleukin-1β (in the jejunum and ileum), interleukin-6 (in the duodenum and jejunum), and prostaglandin E2 (in the duodenum) of LPS-challenged broilers. Similar inhibitory effects of TB in the activities of total nitric oxide synthase (in the ileum) and inducible nitric oxide synthase (in the jejunum) were also observed in birds challenged with LPS. Additionally, TB supplementation mitigated the decrease of ileal adenosine triphosphate, adenosine diphosphate and total adenine nucleotide and the reduction of jejunal catalase activity induced by LPS. Taken together, these results suggest that the TB supplementation was able to reduce the release of pro-inflammatory cytokines and improve the energy status and anti-oxidative capacity in the small intestine of LPS-challenged broilers.

  17. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  18. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress

    PubMed Central

    Tamarkin-Ben-Harush, Ana; Vasseur, Jean-Jacques; Debart, Françoise; Ulitsky, Igor; Dikstein, Rivka

    2017-01-01

    Transcription start-site (TSS) selection and alternative promoter (AP) usage contribute to gene expression complexity but little is known about their impact on translation. Here we performed TSS mapping of the translatome following energy stress. Assessing the contribution of cap-proximal TSS nucleotides, we found dramatic effect on translation only upon stress. As eIF4E levels were reduced, we determined its binding to capped-RNAs with different initiating nucleotides and found the lowest affinity to 5'cytidine in correlation with the translational stress-response. In addition, the number of differentially translated APs was elevated following stress. These include novel glucose starvation-induced downstream transcripts for the translation regulators eIF4A and Pabp, which are also translationally-induced despite general translational inhibition. The resultant eIF4A protein is N-terminally truncated and acts as eIF4A inhibitor. The induced Pabp isoform has shorter 5'UTR removing an auto-inhibitory element. Our findings uncovered several levels of coordination of transcription and translation responses to energy stress. DOI: ht