Atwood, E.L.
1958-01-01
Response bias errors are studied by comparing questionnaire responses from waterfowl hunters using four large public hunting areas with actual hunting data from these areas during two hunting seasons. To the extent that the data permit, the sources of the error in the responses were studied and the contribution of each type to the total error was measured. Response bias errors, including both prestige and memory bias, were found to be very large as compared to non-response and sampling errors. Good fits were obtained with the seasonal kill distribution of the actual hunting data and the negative binomial distribution and a good fit was obtained with the distribution of total season hunting activity and the semi-logarithmic curve. A comparison of the actual seasonal distributions with the questionnaire response distributions revealed that the prestige and memory bias errors are both positive. The comparisons also revealed the tendency for memory bias errors to occur at digit frequencies divisible by five and for prestige bias errors to occur at frequencies which are multiples of the legal daily bag limit. A graphical adjustment of the response distributions was carried out by developing a smooth curve from those frequency classes not included in the predictable biased frequency classes referred to above. Group averages were used in constructing the curve, as suggested by Ezekiel [1950]. The efficiency of the technique described for reducing response bias errors in hunter questionnaire responses on seasonal waterfowl kill is high in large samples. The graphical method is not as efficient in removing response bias errors in hunter questionnaire responses on seasonal hunting activity where an average of 60 percent was removed.
Validity of mail survey data on bagged waterfowl
Atwood, E.L.
1956-01-01
Knowledge of the pattern of occurrence and characteristics of response errors obtained during an investigation of the validity of post-season surveys of hunters was used to advantage to devise a two-step method for removing the response-bias errors from the raw survey data. The method was tested on data with known errors and found to have a high efficiency in reducing the effect of response-bias errors. The development of this method for removing the effect of the response-bias errors, and its application to post-season hunter-take survey data, increased the reliability of the data from below the point of practical management significance up to the approximate reliability limits corresponding to the sampling errors.
A misleading review of response bias: comment on McGrath, Mitchell, Kim, and Hough (2010).
Rohling, Martin L; Larrabee, Glenn J; Greiffenstein, Manfred F; Ben-Porath, Yossef S; Lees-Haley, Paul; Green, Paul; Greve, Kevin W
2011-07-01
In the May 2010 issue of Psychological Bulletin, R. E. McGrath, M. Mitchell, B. H. Kim, and L. Hough published an article entitled "Evidence for Response Bias as a Source of Error Variance in Applied Assessment" (pp. 450-470). They argued that response bias indicators used in a variety of settings typically have insufficient data to support such use in everyday clinical practice. Furthermore, they claimed that despite 100 years of research into the use of response bias indicators, "a sufficient justification for [their] use… in applied settings remains elusive" (p. 450). We disagree with McGrath et al.'s conclusions. In fact, we assert that the relevant and voluminous literature that has addressed the issues of response bias substantiates validity of these indicators. In addition, we believe that response bias measures should be used in clinical and research settings on a regular basis. Finally, the empirical evidence for the use of response bias measures is strongest in clinical neuropsychology. We argue that McGrath et al.'s erroneous perspective on response bias measures is a result of 3 errors in their research methodology: (a) inclusion criteria for relevant studies that are too narrow; (b) errors in interpreting results of the empirical research they did include; (c) evidence of a confirmatory bias in selectively citing the literature, as evidence of moderation appears to have been overlooked. Finally, their acknowledging experts in the field who might have highlighted these errors prior to publication may have prevented critiques during the review process.
Evidence for Response Bias as a Source of Error Variance in Applied Assessment
ERIC Educational Resources Information Center
McGrath, Robert E.; Mitchell, Matthew; Kim, Brian H.; Hough, Leaetta
2010-01-01
After 100 years of discussion, response bias remains a controversial topic in psychological measurement. The use of bias indicators in applied assessment is predicated on the assumptions that (a) response bias suppresses or moderates the criterion-related validity of substantive psychological indicators and (b) bias indicators are capable of…
Measurement error in environmental epidemiology and the shape of exposure-response curves.
Rhomberg, Lorenz R; Chandalia, Juhi K; Long, Christopher M; Goodman, Julie E
2011-09-01
Both classical and Berkson exposure measurement errors as encountered in environmental epidemiology data can result in biases in fitted exposure-response relationships that are large enough to affect the interpretation and use of the apparent exposure-response shapes in risk assessment applications. A variety of sources of potential measurement error exist in the process of estimating individual exposures to environmental contaminants, and the authors review the evaluation in the literature of the magnitudes and patterns of exposure measurement errors that prevail in actual practice. It is well known among statisticians that random errors in the values of independent variables (such as exposure in exposure-response curves) may tend to bias regression results. For increasing curves, this effect tends to flatten and apparently linearize what is in truth a steeper and perhaps more curvilinear or even threshold-bearing relationship. The degree of bias is tied to the magnitude of the measurement error in the independent variables. It has been shown that the degree of bias known to apply to actual studies is sufficient to produce a false linear result, and that although nonparametric smoothing and other error-mitigating techniques may assist in identifying a threshold, they do not guarantee detection of a threshold. The consequences of this could be great, as it could lead to a misallocation of resources towards regulations that do not offer any benefit to public health.
Dynamic response tests of inertial and optical wind-tunnel model attitude measurement devices
NASA Technical Reports Server (NTRS)
Buehrle, R. D.; Young, C. P., Jr.; Burner, A. W.; Tripp, J. S.; Tcheng, P.; Finley, T. D.; Popernack, T. G., Jr.
1995-01-01
Results are presented for an experimental study of the response of inertial and optical wind-tunnel model attitude measurement systems in a wind-off simulated dynamic environment. This study is part of an ongoing activity at the NASA Langley Research Center to develop high accuracy, advanced model attitude measurement systems that can be used in a dynamic wind-tunnel environment. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration which results in a model attitude measurement bias error. Significant bias errors in model attitude measurement were found for the measurement using the inertial device during wind-off dynamic testing of a model system. The amount of bias present during wind-tunnel tests will depend on the amplitudes of the model dynamic response and the modal characteristics of the model system. Correction models are presented that predict the vibration-induced bias errors to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment. The optical system results were uncorrupted by model vibration in the laboratory setup.
Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements
NASA Technical Reports Server (NTRS)
Buehrle, R. D.; Young, C. P., Jr.
1995-01-01
This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.
Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.
Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei
2017-07-20
This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.
Individual differences in conflict detection during reasoning.
Frey, Darren; Johnson, Eric D; De Neys, Wim
2018-05-01
Decades of reasoning and decision-making research have established that human judgment is often biased by intuitive heuristics. Recent "error" or bias detection studies have focused on reasoners' abilities to detect whether their heuristic answer conflicts with logical or probabilistic principles. A key open question is whether there are individual differences in this bias detection efficiency. Here we present three studies in which co-registration of different error detection measures (confidence, response time and confidence response time) allowed us to assess bias detection sensitivity at the individual participant level in a range of reasoning tasks. The results indicate that although most individuals show robust bias detection, as indexed by increased latencies and decreased confidence, there is a subgroup of reasoners who consistently fail to do so. We discuss theoretical and practical implications for the field.
Liu, Chuanjun; Xiao, Chengli
2018-01-01
The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one.
Liu, Chuanjun; Xiao, Chengli
2018-01-01
The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one. PMID:29467698
Effects of vibration on inertial wind-tunnel model attitude measurement devices
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Buehrle, Ralph D.; Balakrishna, S.; Kilgore, W. Allen
1994-01-01
Results of an experimental study of a wind tunnel model inertial angle-of-attack sensor response to a simulated dynamic environment are presented. The inertial device cannot distinguish between the gravity vector and the centrifugal accelerations associated with wind tunnel model vibration, this situation results in a model attitude measurement bias error. Significant bias error in model attitude measurement was found for the model system tested. The model attitude bias error was found to be vibration mode and amplitude dependent. A first order correction model was developed and used for estimating attitude measurement bias error due to dynamic motion. A method for correcting the output of the model attitude inertial sensor in the presence of model dynamics during on-line wind tunnel operation is proposed.
A Misleading Review of Response Bias: Comment on McGrath, Mitchell, Kim, and Hough (2010)
ERIC Educational Resources Information Center
Rohling, Martin L.; Larrabee, Glenn J.; Greiffenstein, Manfred F.; Ben-Porath, Yossef S.; Lees-Haley, Paul; Green, Paul; Greve, Kevin W.
2011-01-01
In the May 2010 issue of "Psychological Bulletin," R. E. McGrath, M. Mitchell, B. H. Kim, and L. Hough published an article entitled "Evidence for Response Bias as a Source of Error Variance in Applied Assessment" (pp. 450-470). They argued that response bias indicators used in a variety of settings typically have insufficient data to support such…
Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A
2018-04-15
For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.
A Systematic Error Correction Method for TOVS Radiances
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Rokke, Laurie; Einaudi, Franco (Technical Monitor)
2000-01-01
Treatment of systematic errors is crucial for the successful use of satellite data in a data assimilation system. Systematic errors in TOVS radiance measurements and radiative transfer calculations can be as large or larger than random instrument errors. The usual assumption in data assimilation is that observational errors are unbiased. If biases are not effectively removed prior to assimilation, the impact of satellite data will be lessened and can even be detrimental. Treatment of systematic errors is important for short-term forecast skill as well as the creation of climate data sets. A systematic error correction algorithm has been developed as part of a 1D radiance assimilation. This scheme corrects for spectroscopic errors, errors in the instrument response function, and other biases in the forward radiance calculation for TOVS. Such algorithms are often referred to as tuning of the radiances. The scheme is able to account for the complex, air-mass dependent biases that are seen in the differences between TOVS radiance observations and forward model calculations. We will show results of systematic error correction applied to the NOAA 15 Advanced TOVS as well as its predecessors. We will also discuss the ramifications of inter-instrument bias with a focus on stratospheric measurements.
Automated detection of heuristics and biases among pathologists in a computer-based system.
Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia
2013-08-01
The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to diagnostic errors. The authors conducted the study using a computer-based system to view and diagnose virtual slide cases. The software recorded participant responses throughout the diagnostic process, and automatically classified participant actions based on definitions of eight common heuristics and/or biases. The authors measured frequency of heuristic use and bias across three levels of training. Biases studied were detected at varying frequencies, with availability and search satisficing observed most frequently. There were few significant differences by level of training. For representativeness and anchoring, the heuristic was used appropriately as often or more often than it was used in biased judgment. Approximately half of the diagnostic errors were associated with one or more biases. We conclude that heuristic use and biases were observed among physicians at all levels of training using the virtual slide system, although their frequencies varied. The system can be employed to detect heuristic use and to test methods for decreasing diagnostic errors resulting from cognitive biases.
Peak-locking centroid bias in Shack-Hartmann wavefront sensing
NASA Astrophysics Data System (ADS)
Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.
2018-05-01
Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.
Radiation Tests on 2Gb NAND Flash Memories
NASA Technical Reports Server (NTRS)
Nguyen, Duc N.; Guertin, Steven M.; Patterson, J. D.
2006-01-01
We report on SEE and TID tests of highly scaled Samsung 2Gbits flash memories. Both in-situ and biased interval irradiations were used to characterize the response of the total accumulated dose failures. The radiation-induced failures can be categorized as followings: single event upset (SEU) read errors in biased and unbiased modes, write errors, and single-event-functional-interrupt (SEFI) failures.
NASA Astrophysics Data System (ADS)
Zhang, Kuiyuan; Umehara, Shigehiro; Yamaguchi, Junki; Furuta, Jun; Kobayashi, Kazutoshi
2016-08-01
This paper analyzes how body bias and BOX region thickness affect soft error rates in 65-nm SOTB (Silicon on Thin BOX) and 28-nm UTBB (Ultra Thin Body and BOX) FD-SOI processes. Soft errors are induced by alpha-particle and neutron irradiation and the results are then analyzed by Monte Carlo based simulation using PHITS-TCAD. The alpha-particle-induced single event upset (SEU) cross-section and neutron-induced soft error rate (SER) obtained by simulation are consistent with measurement results. We clarify that SERs decreased in response to an increase in the BOX thickness for SOTB while SERs in UTBB are independent of BOX thickness. We also discover SOTB develops a higher tolerance to soft errors when reverse body bias is applied while UTBB become more susceptible.
Should Studies of Diabetes Treatment Stratification Correct for Baseline HbA1c?
Jones, Angus G.; Lonergan, Mike; Henley, William E.; Pearson, Ewan R.; Hattersley, Andrew T.; Shields, Beverley M.
2016-01-01
Aims Baseline HbA1c is a major predictor of response to glucose lowering therapy and therefore a potential confounder in studies aiming to identify other predictors. However, baseline adjustment may introduce error if the association between baseline HbA1c and response is substantially due to measurement error and regression to the mean. We aimed to determine whether studies of predictors of response should adjust for baseline HbA1c. Methods We assessed the relationship between baseline HbA1c and glycaemic response in 257 participants treated with GLP-1R agonists and assessed whether it reflected measurement error and regression to the mean using duplicate ‘pre-baseline’ HbA1c measurements not included in the response variable. In this cohort and an additional 2659 participants treated with sulfonylureas we assessed the relationship between covariates associated with baseline HbA1c and treatment response with and without baseline adjustment, and with a bias correction using pre-baseline HbA1c to adjust for the effects of error in baseline HbA1c. Results Baseline HbA1c was a major predictor of response (R2 = 0.19,β = -0.44,p<0.001).The association between pre-baseline and response was similar suggesting the greater response at higher baseline HbA1cs is not mainly due to measurement error and subsequent regression to the mean. In unadjusted analysis in both cohorts, factors associated with baseline HbA1c were associated with response, however these associations were weak or absent after adjustment for baseline HbA1c. Bias correction did not substantially alter associations. Conclusions Adjustment for the baseline HbA1c measurement is a simple and effective way to reduce bias in studies of predictors of response to glucose lowering therapy. PMID:27050911
Cheng, Dunlei; Branscum, Adam J; Stamey, James D
2010-07-01
To quantify the impact of ignoring misclassification of a response variable and measurement error in a covariate on statistical power, and to develop software for sample size and power analysis that accounts for these flaws in epidemiologic data. A Monte Carlo simulation-based procedure is developed to illustrate the differences in design requirements and inferences between analytic methods that properly account for misclassification and measurement error to those that do not in regression models for cross-sectional and cohort data. We found that failure to account for these flaws in epidemiologic data can lead to a substantial reduction in statistical power, over 25% in some cases. The proposed method substantially reduced bias by up to a ten-fold margin compared to naive estimates obtained by ignoring misclassification and mismeasurement. We recommend as routine practice that researchers account for errors in measurement of both response and covariate data when determining sample size, performing power calculations, or analyzing data from epidemiological studies. 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Klein, V.; Schiess, J. R.
1977-01-01
An extended Kalman filter smoother and a fixed point smoother were used for estimation of the state variables in the six degree of freedom kinematic equations relating measured aircraft responses and for estimation of unknown constant bias and scale factor errors in measured data. The computing algorithm includes an analysis of residuals which can improve the filter performance and provide estimates of measurement noise characteristics for some aircraft output variables. The technique developed was demonstrated using simulated and real flight test data. Improved accuracy of measured data was obtained when the data were corrected for estimated bias errors.
Nonparametric Item Response Curve Estimation with Correction for Measurement Error
ERIC Educational Resources Information Center
Guo, Hongwen; Sinharay, Sandip
2011-01-01
Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…
Alternative mechanisms for regulating racial responses according to internal vs external cues.
Amodio, David M; Kubota, Jennifer T; Harmon-Jones, Eddie; Devine, Patricia G
2006-06-01
Personal (internal) and normative (external) impetuses for regulating racially biased behaviour are well-documented, yet the extent to which internally and externally driven regulatory processes arise from the same mechanism is unknown. Whereas the regulation of race bias according to internal cues has been associated with conflict-monitoring processes and activation of the dorsal anterior cingulate cortex (dACC), we proposed that responses regulated according to external cues to respond without prejudice involves mechanisms of error-perception, a process associated with rostral anterior cingulate cortex (rACC) activity. We recruited low-prejudice participants who reported high or low sensitivity to non-prejudiced norms, and participants completed a stereotype inhibition task in private or public while electroencephalography was recorded. Analysis of event-related potentials revealed that the error-related negativity component, linked to dACC activity, predicted behavioural control of bias across conditions, whereas the error-perception component, linked to rACC activity, predicted control only in public among participants sensitive to external pressures to respond without prejudice.
Tate, A Rosemary; Jones, Margaret; Hull, Lisa; Fear, Nicola T; Rona, Roberto; Wessely, Simon; Hotopf, Matthew
2007-01-01
Background Low response and reporting errors are major concerns for survey epidemiologists. However, while nonresponse is commonly investigated, the effects of misclassification are often ignored, possibly because they are hard to quantify. We investigate both sources of bias in a recent study of the effects of deployment to the 2003 Iraq war on the health of UK military personnel, and attempt to determine whether improving response rates by multiple mailouts was associated with increased misclassification error and hence increased bias in the results. Methods Data for 17,162 UK military personnel were used to determine factors related to response and inverse probability weights were used to assess nonresponse bias. The percentages of inconsistent and missing answers to health questions from the 10,234 responders were used as measures of misclassification in a simulation of the 'true' relative risks that would have been observed if misclassification had not been present. Simulated and observed relative risks of multiple physical symptoms and post-traumatic stress disorder (PTSD) were compared across response waves (number of contact attempts). Results Age, rank, gender, ethnic group, enlistment type (regular/reservist) and contact address (military or civilian), but not fitness, were significantly related to response. Weighting for nonresponse had little effect on the relative risks. Of the respondents, 88% had responded by wave 2. Missing answers (total 3%) increased significantly (p < 0.001) between waves 1 and 4 from 2.4% to 7.3%, and the percentage with discrepant answers (total 14%) increased from 12.8% to 16.3% (p = 0.007). However, the adjusted relative risks decreased only slightly from 1.24 to 1.22 for multiple physical symptoms and from 1.12 to 1.09 for PTSD, and showed a similar pattern to those simulated. Conclusion Bias due to nonresponse appears to be small in this study, and increasing the response rates had little effect on the results. Although misclassification is difficult to assess, the results suggest that bias due to reporting errors could be greater than bias caused by nonresponse. Resources might be better spent on improving and validating the data, rather than on increasing the response rate. PMID:18045472
Error-Based Design Space Windowing
NASA Technical Reports Server (NTRS)
Papila, Melih; Papila, Nilay U.; Shyy, Wei; Haftka, Raphael T.; Fitz-Coy, Norman
2002-01-01
Windowing of design space is considered in order to reduce the bias errors due to low-order polynomial response surfaces (RS). Standard design space windowing (DSW) uses a region of interest by setting a requirement on response level and checks it by a global RS predictions over the design space. This approach, however, is vulnerable since RS modeling errors may lead to the wrong region to zoom on. The approach is modified by introducing an eigenvalue error measure based on point-to-point mean squared error criterion. Two examples are presented to demonstrate the benefit of the error-based DSW.
Parr, Christine L; Hjartåker, Anette; Laake, Petter; Lund, Eiliv; Veierød, Marit B
2009-02-01
Case-control studies of melanoma have the potential for recall bias after much public information about the relation with ultraviolet radiation. Recall bias has been investigated in few studies and only for some risk factors. A nested case-control study of recall bias was conducted in 2004 within the Norwegian Women and Cancer Study: 208 melanoma cases and 2,080 matched controls were invited. Data were analyzed for 162 cases (response, 78%) and 1,242 controls (response, 77%). Questionnaire responses to several host factors and ultraviolet exposures collected at enrollment in 1991-1997 and in 2004 were compared stratified on case-control status. Shifts in responses were observed among both cases and controls, but a shift in cases was observed only for skin color after chronic sun exposure, and a larger shift in cases was observed for nevi. Weighted kappa was lower for cases than for controls for most age intervals of sunburn, sunbathing vacations, and solarium use. Differences in odds ratio estimates of melanoma based on prospective and retrospective measurements indicate measurement error that is difficult to characterize. The authors conclude that indications of recall bias were found in this sample of Norwegian women, but that the results were inconsistent for the different exposures.
Sources of Response Bias in Older Ethnic Minorities: A Case of Korean American Elderly
Kim, Miyong T.; Ko, Jisook; Yoon, Hyunwoo; Kim, Kim B.; Jang, Yuri
2015-01-01
The present study was undertaken to investigate potential sources of response bias in empirical research involving older ethnic minorities and to identify prudent strategies to reduce those biases, using Korean American elderly (KAE) as an example. Data were obtained from three independent studies of KAE (N=1,297; age ≥60) in three states (Florida, New York, and Maryland) from 2000 to 2008. Two common measures, Pearlin’s Mastery Scale and the CES-D scale, were selected for a series of psychometric tests based on classical measurement theory. Survey items were analyzed in depth, using psychometric properties generated from both exploratory factor analysis and confirmatory factor analysis as well as correlational analysis. Two types of potential sources of bias were identified as the most significant contributors to increases in error variances for these psychological instruments. Error variances were most prominent when (1) items were not presented in a manner that was culturally or contextually congruent with respect to the target population and/or (2) the response anchors for items were mixed (e.g., positive vs. negative). The systemic patterns and magnitudes of the biases were also cross-validated for the three studies. The results demonstrate sources and impacts of measurement biases in studies of older ethnic minorities. The identified response biases highlight the need for re-evaluation of current measurement practices, which are based on traditional recommendations that response anchors should be mixed or that the original wording of instruments should be rigidly followed. Specifically, systematic guidelines for accommodating cultural and contextual backgrounds into instrument design are warranted. PMID:26049971
Sources of Response Bias in Older Ethnic Minorities: A Case of Korean American Elderly.
Kim, Miyong T; Lee, Ju-Young; Ko, Jisook; Yoon, Hyunwoo; Kim, Kim B; Jang, Yuri
2015-09-01
The present study was undertaken to investigate potential sources of response bias in empirical research involving older ethnic minorities and to identify prudent strategies to reduce those biases, using Korean American elderly (KAE) as an example. Data were obtained from three independent studies of KAE (N = 1,297; age ≥60) in three states (Florida, New York, and Maryland) from 2000 to 2008. Two common measures, Pearlin's Mastery Scale and the CES-D scale, were selected for a series of psychometric tests based on classical measurement theory. Survey items were analyzed in depth, using psychometric properties generated from both exploratory factor analysis and confirmatory factor analysis as well as correlational analysis. Two types of potential sources of bias were identified as the most significant contributors to increases in error variances for these psychological instruments. Error variances were most prominent when (1) items were not presented in a manner that was culturally or contextually congruent with respect to the target population and/or (2) the response anchors for items were mixed (e.g., positive vs. negative). The systemic patterns and magnitudes of the biases were also cross-validated for the three studies. The results demonstrate sources and impacts of measurement biases in studies of older ethnic minorities. The identified response biases highlight the need for re-evaluation of current measurement practices, which are based on traditional recommendations that response anchors should be mixed or that the original wording of instruments should be rigidly followed. Specifically, systematic guidelines for accommodating cultural and contextual backgrounds into instrument design are warranted.
Elias, Lorin J; Robinson, Brent; Saucier, Deborah M
2005-12-01
Neurologically normal individuals exhibit strong leftward response biases during free-viewing perceptual judgments of brightness, quantity, and size. When participants view two mirror-reversed objects and they are forced to choose which object appears darker, more numerous, or larger, the stimulus with the relevant feature on the left side is chosen 60-75% of the time. This effect could be influenced by inaccurate judgments of the true centre-point of the objects being compared. In order to test this possibility, 10 participants completed three visual bisection tasks on stimuli known to elicit strong leftward response biases. Participants were monitored using a remote eye-tracking device and instructed to stare at the subjective midpoint of objects presented on a computer screen. Although it was predicted that bisection errors would deviate to the left of centre (as is the case in the line bisection literature), the opposite effect was found. Significant rightward bisection errors were evident on two of the three tasks, and the leftward biases seen during forced-choice tasks could be the result of misjudgments to the right of centre on these same tasks.
Santin, G; Bénézet, L; Geoffroy-Perez, B; Bouyer, J; Guéguen, A
2017-02-01
The decline in participation rates in surveys, including epidemiological surveillance surveys, has become a real concern since it may increase nonresponse bias. The aim of this study is to estimate the contribution of a complementary survey among a subsample of nonrespondents, and the additional contribution of paradata in correcting for nonresponse bias in an occupational health surveillance survey. In 2010, 10,000 workers were randomly selected and sent a postal questionnaire. Sociodemographic data were available for the whole sample. After data collection of the questionnaires, a complementary survey among a random subsample of 500 nonrespondents was performed using a questionnaire administered by an interviewer. Paradata were collected for the complete subsample of the complementary survey. Nonresponse bias in the initial sample and in the combined samples were assessed using variables from administrative databases available for the whole sample, not subject to differential measurement errors. Corrected prevalences by reweighting technique were estimated by first using the initial survey alone and then the initial and complementary surveys combined, under several assumptions regarding the missing data process. Results were compared by computing relative errors. The response rates of the initial and complementary surveys were 23.6% and 62.6%, respectively. For the initial and the combined surveys, the relative errors decreased after correction for nonresponse on sociodemographic variables. For the combined surveys without paradata, relative errors decreased compared with the initial survey. The contribution of the paradata was weak. When a complex descriptive survey has a low response rate, a short complementary survey among nonrespondents with a protocol which aims to maximize the response rates, is useful. The contribution of sociodemographic variables in correcting for nonresponse bias is important whereas the additional contribution of paradata in correcting for nonresponse bias is questionable. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Measurement Error in Nonparametric Item Response Curve Estimation. Research Report. ETS RR-11-28
ERIC Educational Resources Information Center
Guo, Hongwen; Sinharay, Sandip
2011-01-01
Nonparametric, or kernel, estimation of item response curve (IRC) is a concern theoretically and operationally. Accuracy of this estimation, often used in item analysis in testing programs, is biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. In this study, we investigate…
On the limits of Kagan's impulsive reflective distinction.
Jones, B; McIntyre, L
1976-05-01
A logical analysis is made of the Matching Familiar Figures (MFF) Test on the basis of which children have been classified as "impulsive" or "reflective." The reflective strategy is implicitly preferred to the impulsive because the reflective child makes fewer errors though generally taking longer to make his first response. We show that the test allows the choice of a number of "game plans" and speed-accuracy tradeoffs which in practice may not be very different. Error rates may not indicate perceptual sensitivity, in any case, since sensitivity and response factors may be confounded in the error rate. Using a visual running-memory-span task to avoid the inherent difficulties of the MFF test, we found that children previously classified on the basis of that test as impulsive or reflective did not differ in recognition accuracy but did differ in response bias and response latency. Accuracy and bias are estimated by way of Luce's choice theory (Luce, 1963), and the results are discussed in those terms.
Evaluation and error apportionment of an ensemble of ...
Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII.The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact
Form and Objective of the Decision Rule in Absolute Identification
NASA Technical Reports Server (NTRS)
Balakrishnan, J. D.
1997-01-01
In several conditions of a line length identification experiment, the subjects' decision making strategies were systematically biased against the responses on the edges of the stimulus range. When the range and number of the stimuli were small, the bias caused the percentage of correct responses to be highest in the center and lowest on the extremes of the range. Two general classes of decision rules that would explain these results are considered. The first class assumes that subjects intend to adopt an optimal decision rule, but systematically misrepresent one or more parameters of the decision making context. The second class assumes that subjects use a different measure of performance than the one assumed by the experimenter: instead of maximizing the chances of a correct response, the subject attempts to minimize the expected size of the response error (a "fidelity criterion"). In a second experiment, extended experience and feedback did not diminish the bias effect, but explicitly penalizing all response errors equally, regardless of their size, did reduce or eliminate it in some subjects. Both results favor the fidelity criterion over the optimal rule.
A computerized Stroop task to assess cancer-related cognitive biases.
DiBonaventura, Marco DaCosta; Erblich, Joel; Sloan, Richard P; Bovbjerg, Dana H
2010-01-01
Biases in processing information related to sources of stress have widely been demonstrated with the use of Stroop emotional color word tasks. One study reported such biases among women with histories of breast cancer in a first-degree relative (FH+) who were given a Stroop cancer word task. This study aimed to replicate and extend these findings with a computerized version of the task. Response latencies and errors were recorded during administration of the task to FH+ and FH- women. A cancer list and 5 comparison lists were administered. Results indicated that FH+ women exhibited longer response latencies for cancer words than did FH- women (p < 0.04), providing further support for cognitive biases in FH+ women. Confirming the psychometric properties of the task, lists exhibited high reliability for both latency (alphas 0.96-0.98) and error rate (alphas 0.61-0.79). In sum, results support the favorable psychometrics and predictive validity of the Stroop cancer word task.
AQMEII3: the EU and NA regional scale program of the ...
The presentation builds on the work presented last year at the 14th CMAS meeting and it is applied to the work performed in the context of the AQMEII-HTAP collaboration. The analysis is conducted within the framework of the third phase of AQMEII (Air Quality Model Evaluation International Initiative) and encompasses the gauging of model performance through measurement-to-model comparison, error decomposition and time series analysis of the models biases. Through the comparison of several regional-scale chemistry transport modelling systems applied to simulate meteorology and air quality over two continental areas, this study aims at i) apportioning the error to the responsible processes through time-scale analysis, and ii) help detecting causes of models error, and iii) identify the processes and scales most urgently requiring dedicated investigations. The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while the apportioning of the error into its constituent parts (bias, variance and covariance) can help assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the previous phases of AQMEII. The National Exposure Research Laboratory (NERL) Computational Exposur
Errors in causal inference: an organizational schema for systematic error and random error.
Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji
2016-11-01
To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.
Jackson, Simon A.; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar
2016-01-01
In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants (N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation. PMID:27790170
Jackson, Simon A; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar
2016-01-01
In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants ( N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation.
Concurrent variation of response bias and sensitivity in an operant-psychophysical test.
NASA Technical Reports Server (NTRS)
Terman, M.; Terman, J. S.
1972-01-01
The yes-no signal detection procedure was applied to a single-response operant paradigm in which rats discriminated between a standard auditory intensity and attenuated comparison values. The payoff matrix was symmetrical (with reinforcing brain stimulation for correct detections and brief time-out for errors), but signal probability and intensity differences were varied to generate a family of isobias and isosensitivity functions. The d' parameter remained fairly constant across a wide range of bias levels. Isobias functions deviated from a strict matching strategy as discrimination difficulty increased, although an orderly relation was maintained between signal probability value and the degree and direction of response bias.
Vrijheid, Martine; Deltour, Isabelle; Krewski, Daniel; Sanchez, Marie; Cardis, Elisabeth
2006-07-01
This paper examines the effects of systematic and random errors in recall and of selection bias in case-control studies of mobile phone use and cancer. These sensitivity analyses are based on Monte-Carlo computer simulations and were carried out within the INTERPHONE Study, an international collaborative case-control study in 13 countries. Recall error scenarios simulated plausible values of random and systematic, non-differential and differential recall errors in amount of mobile phone use reported by study subjects. Plausible values for the recall error were obtained from validation studies. Selection bias scenarios assumed varying selection probabilities for cases and controls, mobile phone users, and non-users. Where possible these selection probabilities were based on existing information from non-respondents in INTERPHONE. Simulations used exposure distributions based on existing INTERPHONE data and assumed varying levels of the true risk of brain cancer related to mobile phone use. Results suggest that random recall errors of plausible levels can lead to a large underestimation in the risk of brain cancer associated with mobile phone use. Random errors were found to have larger impact than plausible systematic errors. Differential errors in recall had very little additional impact in the presence of large random errors. Selection bias resulting from underselection of unexposed controls led to J-shaped exposure-response patterns, with risk apparently decreasing at low to moderate exposure levels. The present results, in conjunction with those of the validation studies conducted within the INTERPHONE study, will play an important role in the interpretation of existing and future case-control studies of mobile phone use and cancer risk, including the INTERPHONE study.
Hypothesis Testing Using Factor Score Regression
Devlieger, Ines; Mayer, Axel; Rosseel, Yves
2015-01-01
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and with structural equation modeling (SEM) by using analytic calculations and two Monte Carlo simulation studies to examine their finite sample characteristics. Several performance criteria are used, such as the bias using the unstandardized and standardized parameterization, efficiency, mean square error, standard error bias, type I error rate, and power. The results show that the bias correcting method, with the newly developed standard error, is the only suitable alternative for SEM. While it has a higher standard error bias than SEM, it has a comparable bias, efficiency, mean square error, power, and type I error rate. PMID:29795886
Acute anxiety and social inference: An experimental manipulation with 7.5% carbon dioxide inhalation
Button, Katherine S; Karwatowska, Lucy; Kounali, Daphne; Munafò, Marcus R; Attwood, Angela S
2016-01-01
Background: Positive self-bias is thought to be protective for mental health. We previously found that the degree of positive bias when learning self-referential social evaluation decreases with increasing social anxiety. It is unclear whether this reduction is driven by differences in state or trait anxiety, as both are elevated in social anxiety; therefore, we examined the effects on the state of anxiety induced by the 7.5% carbon dioxide (CO2) inhalation model of generalised anxiety disorder (GAD) on social evaluation learning. Methods: For our study, 48 (24 of female gender) healthy volunteers took two inhalations (medical air and 7.5% CO2, counterbalanced) whilst learning social rules (self-like, self-dislike, other-like and other-dislike) in an instrumental social evaluation learning task. We analysed the outcomes (number of positive responses and errors to criterion) using the random effects Poisson regression. Results: Participants made fewer and more positive responses when breathing 7.5% CO2 in the other-like and other-dislike rules, respectively (gas × condition × rule interaction p = 0.03). Individuals made fewer errors learning self-like than self-dislike, and this positive self-bias was unaffected by CO2. Breathing 7.5% CO2 increased errors, but only in the other-referential rules (gas × condition × rule interaction p = 0.003). Conclusions: Positive self-bias (i.e. fewer errors learning self-like than self-dislike) seemed robust to changes in state anxiety. In contrast, learning other-referential evaluation was impaired as state anxiety increased. This suggested that the previously observed variations in self-bias arise due to trait, rather than state, characteristics. PMID:27380750
Button, Katherine S; Karwatowska, Lucy; Kounali, Daphne; Munafò, Marcus R; Attwood, Angela S
2016-10-01
Positive self-bias is thought to be protective for mental health. We previously found that the degree of positive bias when learning self-referential social evaluation decreases with increasing social anxiety. It is unclear whether this reduction is driven by differences in state or trait anxiety, as both are elevated in social anxiety; therefore, we examined the effects on the state of anxiety induced by the 7.5% carbon dioxide (CO2) inhalation model of generalised anxiety disorder (GAD) on social evaluation learning. For our study, 48 (24 of female gender) healthy volunteers took two inhalations (medical air and 7.5% CO2, counterbalanced) whilst learning social rules (self-like, self-dislike, other-like and other-dislike) in an instrumental social evaluation learning task. We analysed the outcomes (number of positive responses and errors to criterion) using the random effects Poisson regression. Participants made fewer and more positive responses when breathing 7.5% CO2 in the other-like and other-dislike rules, respectively (gas × condition × rule interaction p = 0.03). Individuals made fewer errors learning self-like than self-dislike, and this positive self-bias was unaffected by CO2. Breathing 7.5% CO2 increased errors, but only in the other-referential rules (gas × condition × rule interaction p = 0.003). Positive self-bias (i.e. fewer errors learning self-like than self-dislike) seemed robust to changes in state anxiety. In contrast, learning other-referential evaluation was impaired as state anxiety increased. This suggested that the previously observed variations in self-bias arise due to trait, rather than state, characteristics. © The Author(s) 2016.
AQMEII3 evaluation of regional NA/EU simulations and ...
Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impac
Cultural differences in survey responding: Issues and insights in the study of response biases.
Kemmelmeier, Markus
2016-12-01
This paper introduces the special section "Cultural differences in questionnaire responding" and discusses central topics in the research on response biases in cross-cultural survey research. Based on current conceptions of acquiescent, extreme, and socially desirable responding, the author considers current data on the correlated nature of response biases and the conditions under which different response styles they emerge. Based on evidence relating different response styles to the cultural dimension of individualism-collectivism, the paper explores how research presented as part of this special section might help resolves some tensions in this literature. The paper concludes by arguing that response styles should not be treated merely as measurement error, but as cultural behaviors in themselves. © 2016 International Union of Psychological Science.
van Holst, Ruth J; Lemmens, Jeroen S; Valkenburg, Patti M; Peter, Jochen; Veltman, Dick J; Goudriaan, Anna E
2012-06-01
The aim of this study was to examine whether behavioral tendencies commonly related to addictive behaviors are also related to problematic computer and video game playing in adolescents. The study of attentional bias and response inhibition, characteristic for addictive disorders, is relevant to the ongoing discussion on whether problematic gaming should be classified as an addictive disorder. We tested the relation between self-reported levels of problem gaming and two behavioral domains: attentional bias and response inhibition. Ninety-two male adolescents performed two attentional bias tasks (addiction-Stroop, dot-probe) and a behavioral inhibition task (go/no-go). Self-reported problem gaming was measured by the game addiction scale, based on the Diagnostic and Statistical Manual of Mental Disorders-fourth edition criteria for pathological gambling and time spent on computer and/or video games. Male adolescents with higher levels of self-reported problem gaming displayed signs of error-related attentional bias to game cues. Higher levels of problem gaming were also related to more errors on response inhibition, but only when game cues were presented. These findings are in line with the findings of attentional bias reported in clinically recognized addictive disorders, such as substance dependence and pathological gambling, and contribute to the discussion on the proposed concept of "Addiction and Related Disorders" (which may include non-substance-related addictive behaviors) in the Diagnostic and Statistical Manual of Mental Disorders-fourth edition. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Detecting Careless Responses to Self-Reported Questionnaires
ERIC Educational Resources Information Center
Kountur, Ronny
2016-01-01
Problem Statement: The use of self-report questionnaires may lead to biases such as careless responses that distort the research outcomes. Early detection of careless responses in self-report questionnaires may reduce error, but little guidance exists in the literature regarding techniques for detecting such careless or random responses in…
Measurement Error and Environmental Epidemiology: A Policy Perspective
Edwards, Jessie K.; Keil, Alexander P.
2017-01-01
Purpose of review Measurement error threatens public health by producing bias in estimates of the population impact of environmental exposures. Quantitative methods to account for measurement bias can improve public health decision making. Recent findings We summarize traditional and emerging methods to improve inference under a standard perspective, in which the investigator estimates an exposure response function, and a policy perspective, in which the investigator directly estimates population impact of a proposed intervention. Summary Under a policy perspective, the analysis must be sensitive to errors in measurement of factors that modify the effect of exposure on outcome, must consider whether policies operate on the true or measured exposures, and may increasingly need to account for potentially dependent measurement error of two or more exposures affected by the same policy or intervention. Incorporating approaches to account for measurement error into such a policy perspective will increase the impact of environmental epidemiology. PMID:28138941
Bias in the Wagner-Nelson estimate of the fraction of drug absorbed.
Wang, Yibin; Nedelman, Jerry
2002-04-01
To examine and quantify bias in the Wagner-Nelson estimate of the fraction of drug absorbed resulting from the estimation error of the elimination rate constant (k), measurement error of the drug concentration, and the truncation error in the area under the curve. Bias in the Wagner-Nelson estimate was derived as a function of post-dosing time (t), k, ratio of absorption rate constant to k (r), and the coefficient of variation for estimates of k (CVk), or CV% for the observed concentration, by assuming a one-compartment model and using an independent estimate of k. The derived functions were used for evaluating the bias with r = 0.5, 3, or 6; k = 0.1 or 0.2; CV, = 0.2 or 0.4; and CV, =0.2 or 0.4; for t = 0 to 30 or 60. Estimation error of k resulted in an upward bias in the Wagner-Nelson estimate that could lead to the estimate of the fraction absorbed being greater than unity. The bias resulting from the estimation error of k inflates the fraction of absorption vs. time profiles mainly in the early post-dosing period. The magnitude of the bias in the Wagner-Nelson estimate resulting from estimation error of k was mainly determined by CV,. The bias in the Wagner-Nelson estimate resulting from to estimation error in k can be dramatically reduced by use of the mean of several independent estimates of k, as in studies for development of an in vivo-in vitro correlation. The truncation error in the area under the curve can introduce a negative bias in the Wagner-Nelson estimate. This can partially offset the bias resulting from estimation error of k in the early post-dosing period. Measurement error of concentration does not introduce bias in the Wagner-Nelson estimate. Estimation error of k results in an upward bias in the Wagner-Nelson estimate, mainly in the early drug absorption phase. The truncation error in AUC can result in a downward bias, which may partially offset the upward bias due to estimation error of k in the early absorption phase. Measurement error of concentration does not introduce bias. The joint effect of estimation error of k and truncation error in AUC can result in a non-monotonic fraction-of-drug-absorbed-vs-time profile. However, only estimation error of k can lead to the Wagner-Nelson estimate of fraction of drug absorbed greater than unity.
Brébion, Gildas; Larøi, Frank; Van der Linden, Martial
2010-10-01
Hallucinations in patients with schizophrenia have been associated with a liberal response bias in signal detection and recognition tasks and with various types of source-memory error. We investigated the associations of hallucination proneness with free-recall intrusions and false recognitions of words in a nonclinical sample. A total of 81 healthy individuals were administered a verbal memory task involving free recall and recognition of one nonorganizable and one semantically organizable list of words. Hallucination proneness was assessed by means of a self-rating scale. Global hallucination proneness was associated with free-recall intrusions in the nonorganizable list and with a response bias reflecting tendency to make false recognitions of nontarget words in both types of list. The verbal hallucination score was associated with more intrusions and with a reduced tendency to make false recognitions of words. The associations between global hallucination proneness and two types of verbal memory error in a nonclinical sample corroborate those observed in patients with schizophrenia and suggest that common cognitive mechanisms underlie hallucinations in psychiatric and nonclinical individuals.
Quas, Jodi A.; Malloy, Lindsay C.; Melinder, Annika; Goodman, Gail S.; D’Mello, Michelle; Schaaf, Jennifer
2010-01-01
The present study investigated developmental differences in the effects of repeated interviews and interviewer bias on children’s memory and suggestibility. Three- and 5-year-olds were singly or repeatedly interviewed about a play event by a highly biased or control interviewer. Children interviewed once by the biased interviewer after a long delay made the most errors. Children interviewed repeatedly, regardless of interviewer bias, were more accurate and less likely to falsely claim that they played with a man. In free recall, among children questioned once after a long delay by the biased interviewer, 5-year-olds were more likely than were 3-year-olds to claim falsely that they played with a man. However, in response to direct questions, 3-year-olds were more easily manipulated into implying that they played with him. Findings suggest that interviewer bias is particularly problematic when children’s memory has weakened. In contrast, repeated interviews that occur a short time after a to-be-remembered event do not necessarily increase children’s errors, even when interviews include misleading questions and interviewer bias. Implications for developmental differences in memory and suggestibility are discussed. PMID:17605517
Hoffmann, Sabine; Laurier, Dominique; Rage, Estelle; Guihenneuc, Chantal; Ancelet, Sophie
2018-01-01
Exposure measurement error represents one of the most important sources of uncertainty in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead to biased risk estimates and a distortion of the shape of the exposure-response relationship. In occupational cohort studies, the time-dependent nature of exposure and changes in the method of exposure assessment may create complex error structures. When a method of group-level exposure assessment is used, individual worker practices and the imprecision of the instrument used to measure the average exposure for a group of workers may give rise to errors that are shared between workers, within workers or both. In contrast to unshared measurement error, the effects of shared errors remain largely unknown. Moreover, exposure uncertainty and magnitude of exposure are typically highest for the earliest years of exposure. We conduct a simulation study based on exposure data of the French cohort of uranium miners to compare the effects of shared and unshared exposure uncertainty on risk estimation and on the shape of the exposure-response curve in proportional hazards models. Our results indicate that uncertainty components shared within workers cause more bias in risk estimation and a more severe attenuation of the exposure-response relationship than unshared exposure uncertainty or exposure uncertainty shared between individuals. These findings underline the importance of careful characterisation and modeling of exposure uncertainty in observational studies.
Laurier, Dominique; Rage, Estelle
2018-01-01
Exposure measurement error represents one of the most important sources of uncertainty in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead to biased risk estimates and a distortion of the shape of the exposure-response relationship. In occupational cohort studies, the time-dependent nature of exposure and changes in the method of exposure assessment may create complex error structures. When a method of group-level exposure assessment is used, individual worker practices and the imprecision of the instrument used to measure the average exposure for a group of workers may give rise to errors that are shared between workers, within workers or both. In contrast to unshared measurement error, the effects of shared errors remain largely unknown. Moreover, exposure uncertainty and magnitude of exposure are typically highest for the earliest years of exposure. We conduct a simulation study based on exposure data of the French cohort of uranium miners to compare the effects of shared and unshared exposure uncertainty on risk estimation and on the shape of the exposure-response curve in proportional hazards models. Our results indicate that uncertainty components shared within workers cause more bias in risk estimation and a more severe attenuation of the exposure-response relationship than unshared exposure uncertainty or exposure uncertainty shared between individuals. These findings underline the importance of careful characterisation and modeling of exposure uncertainty in observational studies. PMID:29408862
Shin, Won-Ho; Yang, Se-Hoon; Kwon, Do-Hoon; Han, Sang-Kook
2016-10-31
We propose a self-reverse-biased solar panel optical receiver for energy harvesting and visible light communication. Since the solar panel converts an optical component into an electrical component, it provides both energy harvesting and communication. The signal component can be separated from the direct current component, and these components are used for communication and energy harvesting. We employed a self-reverse-biased receiver circuit to improve the communication and energy harvesting performance. The reverse bias on the solar panel improves the responsivity and response time. The proposed system achieved 17.05 mbps discrete multitone transmission with a bit error rate of 1.1 x 10-3 and enhanced solar energy conversion efficiency.
On the Limitations of Variational Bias Correction
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Mccarty, Will; Gelaro, Ronald
2018-01-01
Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.
NASA Technical Reports Server (NTRS)
Blucker, T. J.; Ferry, W. W.
1971-01-01
An error model is described for the Apollo 15 sun compass, a contingency navigational device. Field test data are presented along with significant results of the test. The errors reported include a random error resulting from tilt in leveling the sun compass, a random error because of observer sighting inaccuracies, a bias error because of mean tilt in compass leveling, a bias error in the sun compass itself, and a bias error because the device is leveled to the local terrain slope.
Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error
NASA Astrophysics Data System (ADS)
Miller, Austin
In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.
78 FR 45479 - Frequency Response and Frequency Bias Setting Reliability Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... response, and encourages coordinated automatic generation control (AGC) operation.\\6\\ These matters are not... expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the... response withdrawal through secondary control systems.'' 4. While we propose to approve BAL-003-1, we also...
Spatial effects, sampling errors, and task specialization in the honey bee.
Johnson, B R
2010-05-01
Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists.
Predicting switched-bias response from steady-state irradiations
NASA Astrophysics Data System (ADS)
Fleetwood, D. M.; Winokur, P. S.; Riewe, L. C.
1990-12-01
A novel semiempirical model of radiation-induced charge neutralization is presented. This model is combined with 12 heuristic guidelines derived from studies of oxide- and interface-trap charge (Delta Vot and Delta Vit) buildup and annealing to develop a method to predict MOS switched-bias response from steady-state irradiations, with no free parameters. For n-channel MOS devices, predictions of Delta Vot, Delta Vit, and mobility degradation differ from experimental values through irradiation by less than 30 percent in all cases considered. This is demonstrated for gate oxides with widely varying Delta Vot and Delta Vit and for parasitic field oxides. Preliminary results suggest that n-channel MOS Delta Vot annealing and Delta Vit buildup following switched-bias irradiation and through switched-bias annealing also may be predicted with less than 30 percent error. The p-channel MOS response at high frequencies is more difficult to predict.
Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks
Besada, Juan A.
2017-01-01
In this paper, a complete and rigorous mathematical model for secondary surveillance radar systematic errors (biases) is developed. The model takes into account the physical effects systematically affecting the measurement processes. The azimuth biases are calculated from the physical error of the antenna calibration and the errors of the angle determination dispositive. Distance bias is calculated from the delay of the signal produced by the refractivity index of the atmosphere, and from clock errors, while the altitude bias is calculated taking into account the atmosphere conditions (pressure and temperature). It will be shown, using simulated and real data, that adapting a classical bias estimation process to use the complete parametrized model results in improved accuracy in the bias estimation. PMID:28934157
Theoretical and experimental studies of error in square-law detector circuits
NASA Technical Reports Server (NTRS)
Stanley, W. D.; Hearn, C. P.; Williams, J. B.
1984-01-01
Square law detector circuits to determine errors from the ideal input/output characteristic function were investigated. The nonlinear circuit response is analyzed by a power series expansion containing terms through the fourth degree, from which the significant deviation from square law can be predicted. Both fixed bias current and flexible bias current configurations are considered. The latter case corresponds with the situation where the mean current can change with the application of a signal. Experimental investigations of the circuit arrangements are described. Agreement between the analytical models and the experimental results are established. Factors which contribute to differences under certain conditions are outlined.
Magis, David
2014-11-01
In item response theory, the classical estimators of ability are highly sensitive to response disturbances and can return strongly biased estimates of the true underlying ability level. Robust methods were introduced to lessen the impact of such aberrant responses on the estimation process. The computation of asymptotic (i.e., large-sample) standard errors (ASE) for these robust estimators, however, has not yet been fully considered. This paper focuses on a broad class of robust ability estimators, defined by an appropriate selection of the weight function and the residual measure, for which the ASE is derived from the theory of estimating equations. The maximum likelihood (ML) and the robust estimators, together with their estimated ASEs, are then compared in a simulation study by generating random guessing disturbances. It is concluded that both the estimators and their ASE perform similarly in the absence of random guessing, while the robust estimator and its estimated ASE are less biased and outperform their ML counterparts in the presence of random guessing with large impact on the item response process. © 2013 The British Psychological Society.
Fleming, Kevin K; Bandy, Carole L; Kimble, Matthew O
2010-01-01
The decision to shoot a gun engages executive control processes that can be biased by cultural stereotypes and perceived threat. The neural locus of the decision to shoot is likely to be found in the anterior cingulate cortex (ACC), where cognition and affect converge. Male military cadets at Norwich University (N=37) performed a weapon identification task in which they made rapid decisions to shoot when images of guns appeared briefly on a computer screen. Reaction times, error rates, and electroencephalogram (EEG) activity were recorded. Cadets reacted more quickly and accurately when guns were primed by images of Middle-Eastern males wearing traditional clothing. However, cadets also made more false positive errors when tools were primed by these images. Error-related negativity (ERN) was measured for each response. Deeper ERNs were found in the medial-frontal cortex following false positive responses. Cadets who made fewer errors also produced deeper ERNs, indicating stronger executive control. Pupil size was used to measure autonomic arousal related to perceived threat. Images of Middle-Eastern males in traditional clothing produced larger pupil sizes. An image of Osama bin Laden induced the largest pupil size, as would be predicted for the exemplar of Middle East terrorism. Cadets who showed greater increases in pupil size also made more false positive errors. Regression analyses were performed to evaluate predictions based on current models of perceived threat, stereotype activation, and cognitive control. Measures of pupil size (perceived threat) and ERN (cognitive control) explained significant proportions of the variance in false positive errors to Middle-Eastern males in traditional clothing, while measures of reaction time, signal detection response bias, and stimulus discriminability explained most of the remaining variance.
Fleming, Kevin K.; Bandy, Carole L.; Kimble, Matthew O.
2014-01-01
The decision to shoot engages executive control processes that can be biased by cultural stereotypes and perceived threat. The neural locus of the decision to shoot is likely to be found in the anterior cingulate cortex (ACC) where cognition and affect converge. Male military cadets at Norwich University (N=37) performed a weapon identification task in which they made rapid decisions to shoot when images of guns appeared briefly on a computer screen. Reaction times, error rates, and EEG activity were recorded. Cadets reacted more quickly and accurately when guns were primed by images of middle-eastern males wearing traditional clothing. However, cadets also made more false positive errors when tools were primed by these images. Error-related negativity (ERN) was measured for each response. Deeper ERN’s were found in the medial-frontal cortex following false positive responses. Cadets who made fewer errors also produced deeper ERN’s, indicating stronger executive control. Pupil size was used to measure autonomic arousal related to perceived threat. Images of middle-eastern males in traditional clothing produced larger pupil sizes. An image of Osama bin Laden induced the largest pupil size, as would be predicted for the exemplar of Middle East terrorism. Cadets who showed greater increases in pupil size also made more false positive errors. Regression analyses were performed to evaluate predictions based on current models of perceived threat, stereotype activation, and cognitive control. Measures of pupil size (perceived threat) and ERN (cognitive control) explained significant proportions of the variance in false positive errors to middle-eastern males in traditional clothing, while measures of reaction time, signal detection response bias, and stimulus discriminability explained most of the remaining variance. PMID:19813139
Norman, Geoffrey R; Monteiro, Sandra D; Sherbino, Jonathan; Ilgen, Jonathan S; Schmidt, Henk G; Mamede, Silvia
2017-01-01
Contemporary theories of clinical reasoning espouse a dual processing model, which consists of a rapid, intuitive component (Type 1) and a slower, logical and analytical component (Type 2). Although the general consensus is that this dual processing model is a valid representation of clinical reasoning, the causes of diagnostic errors remain unclear. Cognitive theories about human memory propose that such errors may arise from both Type 1 and Type 2 reasoning. Errors in Type 1 reasoning may be a consequence of the associative nature of memory, which can lead to cognitive biases. However, the literature indicates that, with increasing expertise (and knowledge), the likelihood of errors decreases. Errors in Type 2 reasoning may result from the limited capacity of working memory, which constrains computational processes. In this article, the authors review the medical literature to answer two substantial questions that arise from this work: (1) To what extent do diagnostic errors originate in Type 1 (intuitive) processes versus in Type 2 (analytical) processes? (2) To what extent are errors a consequence of cognitive biases versus a consequence of knowledge deficits?The literature suggests that both Type 1 and Type 2 processes contribute to errors. Although it is possible to experimentally induce cognitive biases, particularly availability bias, the extent to which these biases actually contribute to diagnostic errors is not well established. Educational strategies directed at the recognition of biases are ineffective in reducing errors; conversely, strategies focused on the reorganization of knowledge to reduce errors have small but consistent benefits.
Sobel, Michael E; Lindquist, Martin A
2014-07-01
Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.
Rekaya, Romdhane; Smith, Shannon; Hay, El Hamidi; Farhat, Nourhene; Aggrey, Samuel E
2016-01-01
Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS). A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case-control) were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs) and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the proposed method. Additionally, truly misclassified binary records were identified with high probability using the proposed method. The superiority of the proposed method was maintained across different simulation parameters (misclassification rates and odds ratios) attesting to its robustness.
NASA Astrophysics Data System (ADS)
Santer, B. D.; Mears, C. A.; Gleckler, P. J.; Solomon, S.; Wigley, T.; Arblaster, J.; Cai, W.; Gillett, N. P.; Ivanova, D. P.; Karl, T. R.; Lanzante, J.; Meehl, G. A.; Stott, P.; Taylor, K. E.; Thorne, P.; Wehner, M. F.; Zou, C.
2010-12-01
We perform the most comprehensive comparison to date of simulated and observed temperature trends. Comparisons are made for different latitude bands, timescales, and temperature variables, using information from a multi-model archive and a variety of observational datasets. Our focus is on temperature changes in the lower troposphere (TLT), the mid- to upper troposphere (TMT), and at the sea surface (SST). For SST, TLT, and TMT, trend comparisons over the satellite era (1979 to 2009) always yield closest agreement in mid-latitudes of the Northern Hemisphere. There are pronounced discrepancies in the tropics and in the Southern Hemisphere: in both regions, the multi-model average warming is consistently larger than observed. At high latitudes in the Northern Hemisphere, the observed tropospheric warming exceeds multi-model average trends. The similarity in the latitudinal structure of this discrepancy pattern across different temperature variables and observational data sets suggests that these trend differences are real, and are not due to residual inhomogeneities in the observations. The interpretation of these results is hampered by the fact that the CMIP-3 multi-model archive analyzed here convolves errors in key external forcings with errors in the model response to forcing. Under a "forcing error" interpretation, model-average temperature trends in the Southern Hemisphere extratropics are biased warm because many models neglect (and/or inaccurately specify) changes in stratospheric ozone and the indirect effects of aerosols. An alternative "response error" explanation for the model trend errors is that there are fundamental problems with model clouds and ocean heat uptake over the Southern Ocean. When SST changes are compared over the longer period 1950 to 2009, there is close agreement between simulated and observed trends poleward of 50°S. This result is difficult to reconcile with the hypothesis that the trend discrepancies over 1979 to 2009 are primarily attributable to response errors. Our results suggest that biases in multi-model average temperature trends over the satellite era can be plausibly linked to forcing errors. Better partitioning of the forcing and response components of model errors will require a systematic program of numerical experimentation, with a focus on exploring the climate response to uncertainties in key historical forcings.
1980-12-01
Biases in Judged Death Rates Relative to Median Error Ratio in Each Group, Experiment 1 12 Table 5: Direction of Secondary Bias, Experiment 1 14 Table 6...translated into death rates per 100,000 individuals afflicted. The death rate group estimated these rates directly. For the number died group, which was... rates . The four columns differ markedly in the magnitude of the death rates they include. These differences provide an ordering of the response modes by
Estimating Bias Error Distributions
NASA Technical Reports Server (NTRS)
Liu, Tian-Shu; Finley, Tom D.
2001-01-01
This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecasting and climate models simulate a warm surface air temperature (T2m) bias over mid-latitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multi-model intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to T2m bias using a short-term hindcast approach with observations mainly from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during the period of April to August 2011. The present study examines the contributionmore » of surface energy budget errors to the bias. All participating models simulate higher net shortwave and longwave radiative fluxes at the surface but there is no consistency on signs of biases in latent and sensible heat fluxes over the Central U.S. and ARM SGP. Nevertheless, biases in net shortwave and downward longwave fluxes, as well as surface evaporative fraction (EF) are the main contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF is affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis suggests that radiation errors are always an important source of T2m error for long-term climate runs with EF errors either of equal or lesser importance. However, for the short-term hindcasts, EF errors are more important provided a model has a substantial EF bias.« less
Biased interpretation and memory in children with varying levels of spider fear.
Klein, Anke M; Titulaer, Geraldine; Simons, Carlijn; Allart, Esther; de Gier, Erwin; Bögels, Susan M; Becker, Eni S; Rinck, Mike
2014-01-01
This study investigated multiple cognitive biases in children simultaneously, to investigate whether spider-fearful children display an interpretation bias, a recall bias, and source monitoring errors, and whether these biases are specific for spider-related materials. Furthermore, the independent ability of these biases to predict spider fear was investigated. A total of 121 children filled out the Spider Anxiety and Disgust Screening for Children (SADS-C), and they performed an interpretation task, a memory task, and a Behavioural Assessment Test (BAT). As expected, a specific interpretation bias was found: Spider-fearful children showed more negative interpretations of ambiguous spider-related scenarios, but not of other scenarios. We also found specific source monitoring errors: Spider-fearful children made more fear-related source monitoring errors for the spider-related scenarios, but not for the other scenarios. Only limited support was found for a recall bias. Finally, interpretation bias, recall bias, and source monitoring errors predicted unique variance components of spider fear.
[Immortal time bias in pharmacoepidemiological studies: definition, solutions and examples].
Faillie, Jean-Luc; Suissa, Samy
2015-01-01
Among the observational studies of drug effects in chronic diseases, many of them have found effects that were exaggerated or wrong. Among bias responsible for these errors, the immortal time bias, concerning the definition of exposure and exposure periods, is relevantly important as it usually tends to wrongly attribute a significant benefit to the study drug (or exaggerate a real benefit). In this article, we define the mechanism of immortal time bias, we present possible solutions and illustrate its consequences through examples of pharmacoepidemiological studies of drug effects. © 2014 Société Française de Pharmacologie et de Thérapeutique.
Watts, Sarah E; Weems, Carl F
2006-12-01
The purpose of this study was to examine the linkages among selective attention, memory bias, cognitive errors, and anxiety problems by testing a model of the interrelations among these cognitive variables and childhood anxiety disorder symptoms. A community sample of 81 youth (38 females and 43 males) aged 9-17 years and their parents completed measures of the child's anxiety disorder symptoms. Youth completed assessments measuring selective attention, memory bias, and cognitive errors. Results indicated that selective attention, memory bias, and cognitive errors were each correlated with childhood anxiety problems and provide support for a cognitive model of anxiety which posits that these three biases are associated with childhood anxiety problems. Only limited support for significant interrelations among selective attention, memory bias, and cognitive errors was found. Finally, results point towards an effective strategy for moving the assessment of selective attention to younger and community samples of youth.
A signal detection-item response theory model for evaluating neuropsychological measures.
Thomas, Michael L; Brown, Gregory G; Gur, Ruben C; Moore, Tyler M; Patt, Virginie M; Risbrough, Victoria B; Baker, Dewleen G
2018-02-05
Models from signal detection theory are commonly used to score neuropsychological test data, especially tests of recognition memory. Here we show that certain item response theory models can be formulated as signal detection theory models, thus linking two complementary but distinct methodologies. We then use the approach to evaluate the validity (construct representation) of commonly used research measures, demonstrate the impact of conditional error on neuropsychological outcomes, and evaluate measurement bias. Signal detection-item response theory (SD-IRT) models were fitted to recognition memory data for words, faces, and objects. The sample consisted of U.S. Infantry Marines and Navy Corpsmen participating in the Marine Resiliency Study. Data comprised item responses to the Penn Face Memory Test (PFMT; N = 1,338), Penn Word Memory Test (PWMT; N = 1,331), and Visual Object Learning Test (VOLT; N = 1,249), and self-report of past head injury with loss of consciousness. SD-IRT models adequately fitted recognition memory item data across all modalities. Error varied systematically with ability estimates, and distributions of residuals from the regression of memory discrimination onto self-report of past head injury were positively skewed towards regions of larger measurement error. Analyses of differential item functioning revealed little evidence of systematic bias by level of education. SD-IRT models benefit from the measurement rigor of item response theory-which permits the modeling of item difficulty and examinee ability-and from signal detection theory-which provides an interpretive framework encompassing the experimentally validated constructs of memory discrimination and response bias. We used this approach to validate the construct representation of commonly used research measures and to demonstrate how nonoptimized item parameters can lead to erroneous conclusions when interpreting neuropsychological test data. Future work might include the development of computerized adaptive tests and integration with mixture and random-effects models.
Differential sea-state bias: A case study using TOPEX/POSEIDON data
NASA Technical Reports Server (NTRS)
Stewart, Robert H.; Devalla, B.
1994-01-01
We used selected data from the NASA altimeter TOPEX/POSEIDON to calculate differences in range measured by the C and Ku-band altimeters when the satellite overflew 5 to 15 m waves late at night. The range difference is due to free electrons in the ionosphere and to errors in sea-state bias. For the selected data the ionospheric influence on Ku range is less than 2 cm. Any difference in range over short horizontal distances is due only to a small along-track variability of the ionosphere and to errors in calculating the differential sea-state bias. We find that there is a barely detectable error in the bias in the geophysical data records. The wave-induced error in the ionospheric correction is less than 0.2% of significant wave height. The equivalent error in differential range is less than 1% of wave height. Errors in the differential sea-state bias calculations appear to be small even for extreme wave heights that greatly exceed the conditions on which the bias is based. The results also improved our confidence in the sea-state bias correction used for calculating the geophysical data records. Any error in the correction must influence Ku and C-band ranges almost equally.
Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)
NASA Technical Reports Server (NTRS)
Adler, Robert; Gu, Guojun; Huffman, George
2012-01-01
A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a different number of input products. For the globe the calculated relative error estimate from this study is about 9%, which is also probably a slight overestimate. These tropical and global estimated bias errors provide one estimate of the current state of knowledge of the planet's mean precipitation.
Parameter recovery, bias and standard errors in the linear ballistic accumulator model.
Visser, Ingmar; Poessé, Rens
2017-05-01
The linear ballistic accumulator (LBA) model (Brown & Heathcote, , Cogn. Psychol., 57, 153) is increasingly popular in modelling response times from experimental data. An R package, glba, has been developed to fit the LBA model using maximum likelihood estimation which is validated by means of a parameter recovery study. At sufficient sample sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias in parameters. In a second simulation study, two methods for computing parameter standard errors are compared. The Hessian-based method is found to be adequate and is (much) faster than the alternative bootstrap method. The use of parameter standard errors in model selection and inference is illustrated in an example using data from an implicit learning experiment (Visser et al., , Mem. Cogn., 35, 1502). It is shown that typical implicit learning effects are captured by different parameters of the LBA model. © 2017 The British Psychological Society.
Classification based upon gene expression data: bias and precision of error rates.
Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L
2007-06-01
Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp
Agogo, George O.
2017-01-01
Measurement error in exposure variables is a serious impediment in epidemiological studies that relate exposures to health outcomes. In nutritional studies, interest could be in the association between long-term dietary intake and disease occurrence. Long-term intake is usually assessed with food frequency questionnaire (FFQ), which is prone to recall bias. Measurement error in FFQ-reported intakes leads to bias in parameter estimate that quantifies the association. To adjust for bias in the association, a calibration study is required to obtain unbiased intake measurements using a short-term instrument such as 24-hour recall (24HR). The 24HR intakes are used as response in regression calibration to adjust for bias in the association. For foods not consumed daily, 24HR-reported intakes are usually characterized by excess zeroes, right skewness, and heteroscedasticity posing serious challenge in regression calibration modeling. We proposed a zero-augmented calibration model to adjust for measurement error in reported intake, while handling excess zeroes, skewness, and heteroscedasticity simultaneously without transforming 24HR intake values. We compared the proposed calibration method with the standard method and with methods that ignore measurement error by estimating long-term intake with 24HR and FFQ-reported intakes. The comparison was done in real and simulated datasets. With the 24HR, the mean increase in mercury level per ounce fish intake was about 0.4; with the FFQ intake, the increase was about 1.2. With both calibration methods, the mean increase was about 2.0. Similar trend was observed in the simulation study. In conclusion, the proposed calibration method performs at least as good as the standard method. PMID:27704599
Systematic Error Modeling and Bias Estimation
Zhang, Feihu; Knoll, Alois
2016-01-01
This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386
Thyroid cancer following scalp irradiation: a reanalysis accounting for uncertainty in dosimetry.
Schafer, D W; Lubin, J H; Ron, E; Stovall, M; Carroll, R J
2001-09-01
In the 1940s and 1950s, over 20,000 children in Israel were treated for tinea capitis (scalp ringworm) by irradiation to induce epilation. Follow-up studies showed that the radiation exposure was associated with the development of malignant thyroid neoplasms. Despite this clear evidence of an effect, the magnitude of the dose-response relationship is much less clear because of probable errors in individual estimates of dose to the thyroid gland. Such errors have the potential to bias dose-response estimation, a potential that was not widely appreciated at the time of the original analyses. We revisit this issue, describing in detail how errors in dosimetry might occur, and we develop a new dose-response model that takes the uncertainties of the dosimetry into account. Our model for the uncertainty in dosimetry is a complex and new variant of the classical multiplicative Berkson error model, having components of classical multiplicative measurement error as well as missing data. Analysis of the tinea capitis data suggests that measurement error in the dosimetry has only a negligible effect on dose-response estimation and inference as well as on the modifying effect of age at exposure.
Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.
Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia
2017-06-01
Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.
The Consequences of Ignoring Item Parameter Drift in Longitudinal Item Response Models
ERIC Educational Resources Information Center
Lee, Wooyeol; Cho, Sun-Joo
2017-01-01
Utilizing a longitudinal item response model, this study investigated the effect of item parameter drift (IPD) on item parameters and person scores via a Monte Carlo study. Item parameter recovery was investigated for various IPD patterns in terms of bias and root mean-square error (RMSE), and percentage of time the 95% confidence interval covered…
NASA Technical Reports Server (NTRS)
Beutter, Brent R.; Stone, Leland S.
1997-01-01
Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.
NASA Technical Reports Server (NTRS)
Beutter, B. R.; Stone, L. S.
1998-01-01
Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye-movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical, suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.
Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope
Li, Xuyou; Guang, Xingxing; Xu, Zhenlong; Li, Guangchun
2017-01-01
Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG. PMID:28880203
Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.
Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun
2017-09-07
Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
The effects of non-stationary noise on electromagnetic response estimates
NASA Astrophysics Data System (ADS)
Banks, R. J.
1998-11-01
The noise in natural electromagnetic time series is typically non-stationary. Sections of data with high magnetic noise levels bias impedances and generate unreliable error estimates. Sections containing noise that is coherent between electric and magnetic channels also produce inappropriate impedances and errors. The answer is to compute response values for data sections which are as short as is feasible, i.e. which are compatible both with the chosen bandwidth and with the need to over-determine the least-squares estimation of the impedance and coherence. Only those values that are reliable are selected, and the best single measure of the reliability of Earth impedance estimates is their temporal invariance, which is tested by the coherence between the measured and predicted electric fields. Complex demodulation is the method used here to explore the temporal structure of electromagnetic fields in the period range 20-6000 s. For periods above 300 s, noisy sections are readily identified in time series of impedance values. The corresponding estimates deviate strongly from the normal value, are biased towards low impedance values, and are associated with low coherences. Plots of the impedance against coherence are particularly valuable diagnostic aids. For periods below 300 s, impedance bias increases systematically as the coherence falls, identifying input channel noise as the cause. By selecting sections with high coherence (equivalent to the impedance being invariant over the section) unbiased impedances and realistic errors can be determined. The scatter in impedance values among high-coherence sections is due to noise that is coherent between input and output channels, implying the presence of two or more systems for which a consistent response can be defined. Where the Earth and noise responses are significantly different, it may be possible to improve estimates of the former by rejecting sections that do not generate satisfactory values for all the response elements.
Grantham, D Wesley; Ashmead, Daniel H; Haynes, David S; Hornsby, Benjamin W Y; Labadie, Robert F; Ricketts, Todd A
2012-01-01
: One purpose of this investigation was to evaluate the effect of a unilateral bone-anchored hearing aid (Baha) on horizontal plane localization performance in single-sided deaf adults who had either a conductive or sensorineural hearing loss in their impaired ear. The use of a 33-loudspeaker array allowed for a finer response measure than has previously been used to investigate localization in this population. In addition, a detailed analysis of error patterns allowed an evaluation of the contribution of random error and bias error to the total rms error computed in the various conditions studied. A second purpose was to investigate the effect of stimulus duration and head-turning on localization performance. : Two groups of single-sided deaf adults were tested in a localization task in which they had to identify the direction of a spoken phrase on each trial. One group had a sensorineural hearing loss (SNHL group; N = 7), and the other group had a conductive hearing loss (CHL group; N = 5). In addition, a control group of four normal-hearing adults was tested. The spoken phrase was either 1250 msec in duration (a male saying "Where am I coming from now?") or 341 msec in duration (the same male saying "Where?"). For the longer-duration phrase, subjects were tested in conditions in which they either were or were not allowed to move their heads before the termination of the phrase. The source came from one of nine positions in the front horizontal plane (from -79° to +79°). The response range included 33 choices (from -90° to +90°, separated by 5.6°). Subjects were tested in all stimulus conditions, both with and without the Baha device. Overall rms error was computed for each condition. Contributions of random error and bias error to the overall error were also computed. : There was considerable intersubject variability in all conditions. However, for the CHL group, the average overall error was significantly smaller when the Baha was on than when it was off. Further analysis of error patterns indicated that this improvement was primarily based on reduced response bias when the device was on; that is, the average response azimuth was nearer to the source azimuth when the device was on than when it was off. The SNHL group, on the other hand, had significantly greater overall error when the Baha was on than when it was off. Collapsed across listening conditions and groups, localization performance was significantly better with the 1250 msec stimulus than with the 341 msec stimulus. However, for the longer-duration stimulus, there was no significant beneficial effect of head-turning. Error scores in all conditions for both groups were considerably larger than those in the normal-hearing control group. : On average, single-sided deaf adults with CHL showed improved localization ability when using the Baha, whereas single-sided deaf adults with SNHL showed a decrement in performance when using the device. These results may have implications for clinical counseling for patients with unilateral hearing impairment.
Assessment of bias correction under transient climate change
NASA Astrophysics Data System (ADS)
Van Schaeybroeck, Bert; Vannitsem, Stéphane
2015-04-01
Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.
Accounting for measurement error in log regression models with applications to accelerated testing.
Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M
2018-01-01
In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.
Biases in Multicenter Longitudinal PET Standardized Uptake Value Measurements1
Doot, Robert K; Pierce, Larry A; Byrd, Darrin; Elston, Brian; Allberg, Keith C; Kinahan, Paul E
2014-01-01
This study investigates measurement biases in longitudinal positron-emission tomography/computed tomography (PET/CT) studies that are due to instrumentation variability including human error. Improved estimation of variability between patient scans is of particular importance for assessing response to therapy and multicenter trials. We used National Institute of Standards and Technology-traceable calibration methodology for solid germanium-68/gallium-68 (68Ge/68Ga) sources used as surrogates for fluorine-18 (18F) in radionuclide activity calibrators. One cross-calibration kit was constructed for both dose calibrators and PET scanners using the same 9-month half-life batch of 68Ge/68Ga in epoxy. Repeat measurements occurred in a local network of PET imaging sites to assess standardized uptake value (SUV) errors over time for six dose calibrators from two major manufacturers and for six PET/CT scanners from three major manufacturers. Bias in activity measures by dose calibrators ranged from -50% to 9% and was relatively stable over time except at one site that modified settings between measurements. Bias in activity concentration measures by PET scanners ranged from -27% to 13% with a median of 174 days between the six repeat scans (range, 29 to 226 days). Corresponding errors in SUV measurements ranged from -20% to 47%. SUV biases were not stable over time with longitudinal differences for individual scanners ranging from -11% to 59%. Bias in SUV measurements varied over time and between scanner sites. These results suggest that attention should be paid to PET scanner calibration for longitudinal studies and use of dose calibrator and scanner cross-calibration kits could be helpful for quality assurance and control. PMID:24772207
System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality
NASA Technical Reports Server (NTRS)
Buehrle, Ralph David
1997-01-01
The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal approach, a method using measured vibration amplitudes and measured or calculated modal characteristics of the model system is developed to correct for dynamic bias errors in the model attitude measurements. The correction method is verified through dynamic response tests on two model systems and actual wind tunnel test data.
Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie
2015-10-28
Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world. Copyright © 2015 the authors 0270-6474/15/3514491-10$15.00/0.
The cost of adherence mismeasurement in serious mental illness: a claims-based analysis.
Shafrin, Jason; Forma, Felicia; Scherer, Ethan; Hatch, Ainslie; Vytlacil, Edward; Lakdawalla, Darius
2017-05-01
To quantify how adherence mismeasurement affects the estimated impact of adherence on inpatient costs among patients with serious mental illness (SMI). Proportion of days covered (PDC) is a common claims-based measure of medication adherence. Because PDC does not measure medication ingestion, however, it may inaccurately measure adherence. We derived a formula to correct the bias that occurs in adherence-utilization studies resulting from errors in claims-based measures of adherence. We conducted a literature review to identify the correlation between gold-standard and claims-based adherence measures. We derived a bias-correction methodology to address claims-based medication adherence measurement error. We then applied this methodology to a case study of patients with SMI who initiated atypical antipsychotics in 2 large claims databases. Our literature review identified 6 studies of interest. The 4 most relevant ones measured correlations between 0.38 and 0.91. Our preferred estimate implies that the effect of adherence on inpatient spending estimated from claims data would understate the true effect by a factor of 5.3, if there were no other sources of bias. Although our procedure corrects for measurement error, such error also may amplify or mitigate other potential biases. For instance, if adherent patients are healthier than nonadherent ones, measurement error makes the resulting bias worse. On the other hand, if adherent patients are sicker, measurement error mitigates the other bias. Measurement error due to claims-based adherence measures is worth addressing, alongside other more widely emphasized sources of bias in inference.
NASA Technical Reports Server (NTRS)
Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.
2013-01-01
In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
Heuristics and Cognitive Error in Medical Imaging.
Itri, Jason N; Patel, Sohil H
2018-05-01
The field of cognitive science has provided important insights into mental processes underlying the interpretation of imaging examinations. Despite these insights, diagnostic error remains a major obstacle in the goal to improve quality in radiology. In this article, we describe several types of cognitive bias that lead to diagnostic errors in imaging and discuss approaches to mitigate cognitive biases and diagnostic error. Radiologists rely on heuristic principles to reduce complex tasks of assessing probabilities and predicting values into simpler judgmental operations. These mental shortcuts allow rapid problem solving based on assumptions and past experiences. Heuristics used in the interpretation of imaging studies are generally helpful but can sometimes result in cognitive biases that lead to significant errors. An understanding of the causes of cognitive biases can lead to the development of educational content and systematic improvements that mitigate errors and improve the quality of care provided by radiologists.
Radar error statistics for the space shuttle
NASA Technical Reports Server (NTRS)
Lear, W. M.
1979-01-01
Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.
Bergen, Silas; Sheppard, Lianne; Kaufman, Joel D.; Szpiro, Adam A.
2016-01-01
Summary Air pollution epidemiology studies are trending towards a multi-pollutant approach. In these studies, exposures at subject locations are unobserved and must be predicted using observed exposures at misaligned monitoring locations. This induces measurement error, which can bias the estimated health effects and affect standard error estimates. We characterize this measurement error and develop an analytic bias correction when using penalized regression splines to predict exposure. Our simulations show bias from multi-pollutant measurement error can be severe, and in opposite directions or simultaneously positive or negative. Our analytic bias correction combined with a non-parametric bootstrap yields accurate coverage of 95% confidence intervals. We apply our methodology to analyze the association of systolic blood pressure with PM2.5 and NO2 in the NIEHS Sister Study. We find that NO2 confounds the association of systolic blood pressure with PM2.5 and vice versa. Elevated systolic blood pressure was significantly associated with increased PM2.5 and decreased NO2. Correcting for measurement error bias strengthened these associations and widened 95% confidence intervals. PMID:27789915
Greenland, Sander; Gustafson, Paul
2006-07-01
Researchers sometimes argue that their exposure-measurement errors are independent of other errors and are nondifferential with respect to disease, resulting in estimation bias toward the null. Among well-known problems with such arguments are that independence and nondifferentiality are harder to satisfy than ordinarily appreciated (e.g., because of correlation of errors in questionnaire items, and because of uncontrolled covariate effects on error rates); small violations of independence or nondifferentiality may lead to bias away from the null; and, if exposure is polytomous, the bias produced by independent nondifferential error is not always toward the null. The authors add to this list by showing that, in a 2 x 2 table (for which independent nondifferential error produces bias toward the null), accounting for independent nondifferential error does not reduce the p value even though it increases the point estimate. Thus, such accounting should not increase certainty that an association is present.
Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing
2015-01-01
The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188
Determination of Shift/Bias in Digital Aerial Triangulation of UAV Imagery Sequences
NASA Astrophysics Data System (ADS)
Wierzbicki, Damian
2017-12-01
Currently UAV Photogrammetry is characterized a largely automated and efficient data processing. Depicting from the low altitude more often gains on the meaning in the uses of applications as: cities mapping, corridor mapping, road and pipeline inspections or mapping of large areas e.g. forests. Additionally, high-resolution video image (HD and bigger) is more often use for depicting from the low altitude from one side it lets deliver a lot of details and characteristics of ground surfaces features, and from the other side is presenting new challenges in the data processing. Therefore, determination of elements of external orientation plays a substantial role the detail of Digital Terrain Models and artefact-free ortophoto generation. Parallel a research on the quality of acquired images from UAV and above the quality of products e.g. orthophotos are conducted. Despite so fast development UAV photogrammetry still exists the necessity of accomplishment Automatic Aerial Triangulation (AAT) on the basis of the observations GPS/INS and via ground control points. During low altitude photogrammetric flight, the approximate elements of external orientation registered by UAV are burdened with the influence of some shift/bias errors. In this article, methods of determination shift/bias error are presented. In the process of the digital aerial triangulation two solutions are applied. In the first method shift/bias error was determined together with the drift/bias error, elements of external orientation and coordinates of ground control points. In the second method shift/bias error was determined together with the elements of external orientation, coordinates of ground control points and drift/bias error equals 0. When two methods were compared the difference for shift/bias error is more than ±0.01 m for all terrain coordinates XYZ.
Generalized algebraic scene-based nonuniformity correction algorithm.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2005-02-01
A generalization of a recently developed algebraic scene-based nonuniformity correction algorithm for focal plane array (FPA) sensors is presented. The new technique uses pairs of image frames exhibiting arbitrary one- or two-dimensional translational motion to compute compensator quantities that are then used to remove nonuniformity in the bias of the FPA response. Unlike its predecessor, the generalization does not require the use of either a blackbody calibration target or a shutter. The algorithm has a low computational overhead, lending itself to real-time hardware implementation. The high-quality correction ability of this technique is demonstrated through application to real IR data from both cooled and uncooled infrared FPAs. A theoretical and experimental error analysis is performed to study the accuracy of the bias compensator estimates in the presence of two main sources of error.
Bias-field equalizer for bubble memories
NASA Technical Reports Server (NTRS)
Keefe, G. E.
1977-01-01
Magnetoresistive Perm-alloy sensor monitors bias field required to maintain bubble memory. Sensor provides error signal that, in turn, corrects magnitude of bias field. Error signal from sensor can be used to control magnitude of bias field in either auxiliary set of bias-field coils around permanent magnet field, or current in small coils used to remagnetize permanent magnet by infrequent, short, high-current pulse or short sequence of pulses.
Experiential effects on mirror systems and social learning: implications for social intelligence.
Reader, Simon M
2014-04-01
Investigations of biases and experiential effects on social learning, social information use, and mirror systems can usefully inform one another. Unconstrained learning is predicted to shape mirror systems when the optimal response to an observed act varies, but constraints may emerge when immediate error-free responses are required and evolutionary or developmental history reliably predicts the optimal response. Given the power of associative learning, such constraints may be rare.
Perceptual Bias in Speech Error Data Collection: Insights from Spanish Speech Errors
ERIC Educational Resources Information Center
Perez, Elvira; Santiago, Julio; Palma, Alfonso; O'Seaghdha, Padraig G.
2007-01-01
This paper studies the reliability and validity of naturalistic speech errors as a tool for language production research. Possible biases when collecting naturalistic speech errors are identified and specific predictions derived. These patterns are then contrasted with published reports from Germanic languages (English, German and Dutch) and one…
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Ye, M.; Liang, F.
2016-12-01
Due to simplification and/or misrepresentation of the real aquifer system, numerical groundwater flow and solute transport models are usually subject to model structural error. During model calibration, the hydrogeological parameters may be overly adjusted to compensate for unknown structural error. This may result in biased predictions when models are used to forecast aquifer response to new forcing. In this study, we extend a fully Bayesian method [Xu and Valocchi, 2015] to calibrate a real-world, regional groundwater flow model. The method uses a data-driven error model to describe model structural error and jointly infers model parameters and structural error. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models. The surrogate models are constructed using machine learning techniques to emulate the response simulated by the computationally expensive groundwater model. We demonstrate in the real-world case study that explicitly accounting for model structural error yields parameter posterior distributions that are substantially different from those derived by the classical Bayesian calibration that does not account for model structural error. In addition, the Bayesian with error model method gives significantly more accurate prediction along with reasonable credible intervals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.
The Clouds Above the United States and Errors at the Surface (CAUSES) project is aimed at gaining a better understanding of the physical processes that are leading to the creation of warm screen-temperature biases over the American Midwest, which are seen in many numerical models. Here in Part 1, a series of 5-day hindcasts, each initialised from re-analyses and performed by 11 different models, are evaluated against screen-temperature observations. All the models have a warm bias over parts of the Midwest. Several ways of quantifying the impact of the initial conditions on the evolution of the simulations are presented, showingmore » that within a day or so all models have produced a warm bias that is representative of their bias after 5 days, and not closely tied to the conditions at the initial time. Although the surface temperature biases sometimes coincide with locations where the re-analyses themselves have a bias, there are many regions in each of the models where biases grow over the course of 5 days or are larger than the biases present in the reanalyses. At the Southern Great Plains site, the model biases are shown to not be confined to the surface, but extend several kilometres into the atmosphere. In most of the models, there is a strong diurnal cycle in the screen-temperature bias and in some models the biases are largest around midday, while in the others it is largest during the night. While the different physical processes that are contributing to a given model having a screen-temperature error will be discussed in more detail in the companion papers (Parts 2 and 3) the fact that there is a spatial coherence in the phase of the diurnal cycle of the error across wide regions and that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP suggest that the detailed evaluations of the role of different processes in contributing to errors at SGP will be representative of errors that are prevalent over a much larger spatial scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcrette, Cyril J.; Van Weverberg, Kwinten; Ma, H
2018-02-16
The Clouds Above the United States and Errors at the Surface (CAUSES) project is aimed at gaining a better understanding of the physical processes that are leading to the creation of warm screen-temperature biases over the American Midwest, which are seen in many numerical models. Here in Part 1, a series of 5-day hindcasts, each initialised from re-analyses and performed by 11 different models, are evaluated against screen-temperature observations. All the models have a warm bias over parts of the Midwest. Several ways of quantifying the impact of the initial conditions on the evolution of the simulations are presented, showingmore » that within a day or so all models have produced a warm bias that is representative of their bias after 5 days, and not closely tied to the conditions at the initial time. Although the surface temperature biases sometimes coincide with locations where the re-analyses themselves have a bias, there are many regions in each of the models where biases grow over the course of 5 days or are larger than the biases present in the reanalyses. At the Southern Great Plains site, the model biases are shown to not be confined to the surface, but extend several kilometres into the atmosphere. In most of the models, there is a strong diurnal cycle in the screen-temperature bias and in some models the biases are largest around midday, while in the others it is largest during the night. While the different physical processes that are contributing to a given model having a screen-temperature error will be discussed in more detail in the companion papers (Parts 2 and 3) the fact that there is a spatial coherence in the phase of the diurnal cycle of the error across wide regions and that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP suggest that the detailed evaluations of the role of different processes in contributing to errors at SGP will be representative of errors that are prevalent over a much larger spatial scale.« less
Bias estimation for the Landsat 8 operational land imager
Morfitt, Ron; Vanderwerff, Kelly
2011-01-01
The Operational Land Imager (OLI) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM). This instrument is the latest in the line of Landsat imagers, and will continue to expand the archive of calibrated earth imagery. An important step in producing a calibrated image from instrument data is accurately accounting for the bias of the imaging detectors. Bias variability is one factor that contributes to error in bias estimation for OLI. Typically, the bias is simply estimated by averaging dark data on a per-detector basis. However, data acquired during OLI pre-launch testing exhibited bias variation that correlated well with the variation in concurrently collected data from a special set of detectors on the focal plane. These detectors are sensitive to certain electronic effects but not directly to incoming electromagnetic radiation. A method of using data from these special detectors to estimate the bias of the imaging detectors was developed, but found not to be beneficial at typical radiance levels as the detectors respond slightly when the focal plane is illuminated. In addition to bias variability, a systematic bias error is introduced by the truncation performed by the spacecraft of the 14-bit instrument data to 12-bit integers. This systematic error can be estimated and removed on average, but the per pixel quantization error remains. This paper describes the variability of the bias, the effectiveness of a new approach to estimate and compensate for it, as well as the errors due to truncation and how they are reduced.
Improved uncertainty quantification in nondestructive assay for nonproliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, Tom; Croft, Stephen; Jarman, Ken
2016-12-01
This paper illustrates methods to improve uncertainty quantification (UQ) for non-destructive assay (NDA) measurements used in nuclear nonproliferation. First, it is shown that current bottom-up UQ applied to calibration data is not always adequate, for three main reasons: (1) Because there are errors in both the predictors and the response, calibration involves a ratio of random quantities, and calibration data sets in NDA usually consist of only a modest number of samples (3–10); therefore, asymptotic approximations involving quantities needed for UQ such as means and variances are often not sufficiently accurate; (2) Common practice overlooks that calibration implies a partitioningmore » of total error into random and systematic error, and (3) In many NDA applications, test items exhibit non-negligible departures in physical properties from calibration items, so model-based adjustments are used, but item-specific bias remains in some data. Therefore, improved bottom-up UQ using calibration data should predict the typical magnitude of item-specific bias, and the suggestion is to do so by including sources of item-specific bias in synthetic calibration data that is generated using a combination of modeling and real calibration data. Second, for measurements of the same nuclear material item by both the facility operator and international inspectors, current empirical (top-down) UQ is described for estimating operator and inspector systematic and random error variance components. A Bayesian alternative is introduced that easily accommodates constraints on variance components, and is more robust than current top-down methods to the underlying measurement error distributions.« less
Instrumental variables vs. grouping approach for reducing bias due to measurement error.
Batistatou, Evridiki; McNamee, Roseanne
2008-01-01
Attenuation of the exposure-response relationship due to exposure measurement error is often encountered in epidemiology. Given that error cannot be totally eliminated, bias correction methods of analysis are needed. Many methods require more than one exposure measurement per person to be made, but the `group mean OLS method,' in which subjects are grouped into several a priori defined groups followed by ordinary least squares (OLS) regression on the group means, can be applied with one measurement. An alternative approach is to use an instrumental variable (IV) method in which both the single error-prone measure and an IV are used in IV analysis. In this paper we show that the `group mean OLS' estimator is equal to an IV estimator with the group mean used as IV, but that the variance estimators for the two methods are different. We derive a simple expression for the bias in the common estimator which is a simple function of group size, reliability and contrast of exposure between groups, and show that the bias can be very small when group size is large. We compare this method with a new proposal (group mean ranking method), also applicable with a single exposure measurement, in which the IV is the rank of the group means. When there are two independent exposure measurements per subject, we propose a new IV method (EVROS IV) and compare it with Carroll and Stefanski's (CS IV) proposal in which the second measure is used as an IV; the new IV estimator combines aspects of the `group mean' and `CS' strategies. All methods are evaluated in terms of bias, precision and root mean square error via simulations and a dataset from occupational epidemiology. The `group mean ranking method' does not offer much improvement over the `group mean method.' Compared with the `CS' method, the `EVROS' method is less affected by low reliability of exposure. We conclude that the group IV methods we propose may provide a useful way to handle mismeasured exposures in epidemiology with or without replicate measurements. Our finding may also have implications for the use of aggregate variables in epidemiology to control for unmeasured confounding.
Ma, H. -Y.; Klein, S. A.; Xie, S.; ...
2018-02-27
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
NASA Astrophysics Data System (ADS)
Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.
2018-03-01
Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
2015-02-01
WRF ) Model using a Geographic Information System (GIS) by Jeffrey A Smith, Theresa A Foley, John W Raby, and Brian Reen...ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting ( WRF ) Model...SUBTITLE Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) Model using a Geographic Information System (GIS) 5a
Mismeasurement and the resonance of strong confounders: uncorrelated errors.
Marshall, J R; Hastrup, J L
1996-05-15
Greenland first documented (Am J Epidemiol 1980; 112:564-9) that error in the measurement of a confounder could resonate--that it could bias estimates of other study variables, and that the bias could persist even with statistical adjustment for the confounder as measured. An important question is raised by this finding: can such bias be more than trivial within the bounds of realistic data configurations? The authors examine several situations involving dichotomous and continuous data in which a confounder and a null variable are measured with error, and they assess the extent of resultant bias in estimates of the effect of the null variable. They show that, with continuous variables, measurement error amounting to 40% of observed variance in the confounder could cause the observed impact of the null study variable to appear to alter risk by as much as 30%. Similarly, they show, with dichotomous independent variables, that 15% measurement error in the form of misclassification could lead the null study variable to appear to alter risk by as much as 50%. Such bias would result only from strong confounding. Measurement error would obscure the evidence that strong confounding is a likely problem. These results support the need for every epidemiologic inquiry to include evaluations of measurement error in each variable considered.
García-González, Miguel A; Fernández-Chimeno, Mireya; Ramos-Castro, Juan
2009-02-01
An analysis of the errors due to the finite resolution of RR time series in the estimation of the approximate entropy (ApEn) is described. The quantification errors in the discrete RR time series produce considerable errors in the ApEn estimation (bias and variance) when the signal variability or the sampling frequency is low. Similar errors can be found in indices related to the quantification of recurrence plots. An easy way to calculate a figure of merit [the signal to resolution of the neighborhood ratio (SRN)] is proposed in order to predict when the bias in the indices could be high. When SRN is close to an integer value n, the bias is higher than when near n - 1/2 or n + 1/2. Moreover, if SRN is close to an integer value, the lower this value, the greater the bias is.
Autonomous mechanism of internal choice estimate underlies decision inertia.
Akaishi, Rei; Umeda, Kazumasa; Nagase, Asako; Sakai, Katsuyuki
2014-01-08
Our choice is influenced by choices we made in the past, but the mechanism responsible for the choice bias remains elusive. Here we show that the history-dependent choice bias can be explained by an autonomous learning rule whereby an estimate of the likelihood of a choice to be made is updated in each trial by comparing between the actual and expected choices. We found that in perceptual decision making without performance feedback, a decision on an ambiguous stimulus is repeated on the subsequent trial more often than a decision on a salient stimulus. This inertia of decision was not accounted for by biases in motor response, sensory processing, or attention. The posterior cingulate cortex and frontal eye field represent choice prediction error and choice estimate in the learning algorithm, respectively. Interactions between the two regions during the intertrial interval are associated with decision inertia on a subsequent trial. Copyright © 2014 Elsevier Inc. All rights reserved.
Spontaneous mentalizing predicts the fundamental attribution error.
Moran, Joseph M; Jolly, Eshin; Mitchell, Jason P
2014-03-01
When explaining the reasons for others' behavior, perceivers often overemphasize underlying dispositions and personality traits over the power of the situation, a tendency known as the fundamental attribution error. One possibility is that this bias results from the spontaneous processing of others' mental states, such as their momentary feelings or more enduring personality characteristics. Here, we use fMRI to test this hypothesis. Participants read a series of stories that described a target's ambiguous behavior in response to a specific social situation and later judged whether that act was attributable to the target's internal dispositions or to external situational factors. Neural regions consistently associated with mental state inference-especially, the medial pFC-strongly predicted whether participants later made dispositional attributions. These results suggest that the spontaneous engagement of mentalizing may underlie the biased tendency to attribute behavior to dispositional over situational forces.
Ultrahigh Error Threshold for Surface Codes with Biased Noise
NASA Astrophysics Data System (ADS)
Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.
2018-02-01
We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.
Schindler, Simon; Reinhard, Marc-André
2015-01-01
With the present research, we investigated effects of existential threat on veracity judgments. According to several meta-analyses, people judge potentially deceptive messages of other people as true rather than as false (so-called truth bias). This judgmental bias has been shown to depend on how people weigh the error of judging a true message as a lie (error 1) and the error of judging a lie as a true message (error 2). The weight of these errors has been further shown to be affected by situational variables. Given that research on terror management theory has found evidence that mortality salience (MS) increases the sensitivity toward the compliance of cultural norms, especially when they are of focal attention, we assumed that when the honesty norm is activated, MS affects judgmental error weighing and, consequently, judgmental biases. Specifically, activating the norm of honesty should decrease the weight of error 1 (the error of judging a true message as a lie) and increase the weight of error 2 (the error of judging a lie as a true message) when mortality is salient. In a first study, we found initial evidence for this assumption. Furthermore, the change in error weighing should reduce the truth bias, automatically resulting in better detection accuracy of actual lies and worse accuracy of actual true statements. In two further studies, we manipulated MS and honesty norm activation before participants judged several videos containing actual truths or lies. Results revealed evidence for our prediction. Moreover, in Study 3, the truth bias was increased after MS when group solidarity was previously emphasized. PMID:26388815
Agogo, George O; van der Voet, Hilko; van 't Veer, Pieter; Ferrari, Pietro; Muller, David C; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A; Boshuizen, Hendriek C
2016-10-13
Measurement error in self-reported dietary intakes is known to bias the association between dietary intake and a health outcome of interest such as risk of a disease. The association can be distorted further by mismeasured confounders, leading to invalid results and conclusions. It is, however, difficult to adjust for the bias in the association when there is no internal validation data. We proposed a method to adjust for the bias in the diet-disease association (hereafter, association), due to measurement error in dietary intake and a mismeasured confounder, when there is no internal validation data. The method combines prior information on the validity of the self-report instrument with the observed data to adjust for the bias in the association. We compared the proposed method with the method that ignores the confounder effect, and with the method that ignores measurement errors completely. We assessed the sensitivity of the estimates to various magnitudes of measurement error, error correlations and uncertainty in the literature-reported validation data. We applied the methods to fruits and vegetables (FV) intakes, cigarette smoking (confounder) and all-cause mortality data from the European Prospective Investigation into Cancer and Nutrition study. Using the proposed method resulted in about four times increase in the strength of association between FV intake and mortality. For weakly correlated errors, measurement error in the confounder minimally affected the hazard ratio estimate for FV intake. The effect was more pronounced for strong error correlations. The proposed method permits sensitivity analysis on measurement error structures and accounts for uncertainties in the reported validity coefficients. The method is useful in assessing the direction and quantifying the magnitude of bias in the association due to measurement errors in the confounders.
A method of bias correction for maximal reliability with dichotomous measures.
Penev, Spiridon; Raykov, Tenko
2010-02-01
This paper is concerned with the reliability of weighted combinations of a given set of dichotomous measures. Maximal reliability for such measures has been discussed in the past, but the pertinent estimator exhibits a considerable bias and mean squared error for moderate sample sizes. We examine this bias, propose a procedure for bias correction, and develop a more accurate asymptotic confidence interval for the resulting estimator. In most empirically relevant cases, the bias correction and mean squared error correction can be performed simultaneously. We propose an approximate (asymptotic) confidence interval for the maximal reliability coefficient, discuss the implementation of this estimator, and investigate the mean squared error of the associated asymptotic approximation. We illustrate the proposed methods using a numerical example.
Niccum, Brittany A; Lee, Heewook; MohammedIsmail, Wazim; Tang, Haixu; Foster, Patricia L
2018-06-15
When the DNA polymerase that replicates the Escherichia coli chromosome, DNA Pol III, makes an error, there are two primary defenses against mutation: proofreading by the epsilon subunit of the holoenzyme and mismatch repair. In proofreading deficient strains, mismatch repair is partially saturated and the cell's response to DNA damage, the SOS response, may be partially induced. To investigate the nature of replication errors, we used mutation accumulation experiments and whole genome sequencing to determine mutation rates and mutational spectra across the entire chromosome of strains deficient in proofreading, mismatch repair, and the SOS response. We report that a proofreading-deficient strain has a mutation rate 4,000-fold greater than wild-type strains. While the SOS response may be induced in these cells, it does not contribute to the mutational load. Inactivating mismatch repair in a proofreading-deficient strain increases the mutation rate another 1.5-fold. DNA polymerase has a bias for converting G:C to A:T base pairs, but proofreading reduces the impact of these mutations, helping to maintain the genomic G:C content. These findings give an unprecedented view of how polymerase and error-correction pathways work together to maintain E. coli' s low mutation rate of 1 per thousand generations. Copyright © 2018, Genetics.
NASA Astrophysics Data System (ADS)
Roberts, T. J.; Saffell, J. R.; Oppenheimer, C.; Lurton, T.
2014-06-01
There is an increasing scientific interest in the use of miniature electrochemical sensors to detect and quantify atmospheric trace gases. This has led to the development of ‘Multi-Gas' systems applied to measurements of both volcanic gas emissions, and urban air pollution. However, such measurements are subject to uncertainties introduced by sensor response time, a critical issue that has received limited attention to date. Here, a detailed analysis of output from an electrochemical SO2 sensor and two H2S sensors (contrasting in their time responses and cross-sensitivities) demonstrates how instrument errors arise under the conditions of rapidly fluctuating (by dilution) gas abundances, leading to scatter and importantly bias in the reported gas ratios. In a case study at Miyakejima volcano (Japan), electrochemical sensors were deployed at both the crater-rim and downwind locations, thereby exposed to rapidly fluctuating and smoothly varying plume gas concentrations, respectively. Discrepancies in the H2S/SO2 gas mixing ratios derived from these measurements are attributed to the sensors' differing time responses to SO2 and H2S under fluctuating plume conditions, with errors magnified by the need to correct for SO2 interference in the H2S readings. Development of a sensor response model that reproduces sensor t90 behaviour (the time required to reach 90% of the final signal following a step change in gas abundance) during calibration enabled this measurement error to be simulated numerically. The sensor response times were characterised as SO2 sensor (t90 ~ 13 s), H2S sensor without interference (t90 ~ 11 s), and H2S sensor with interference (t90 ~ 20 s to H2S and ~ 32 s to SO2). We show that a method involving data integration between periods of episodic plume exposure identifiable in the sensor output yields a less biased H2S/SO2 ratio estimate than that derived from standard analysis approaches. For the Miyakejima crater-rim dataset this method yields highly correlated H2S and SO2 abundances (R2 > 0.99) and the improved crater-rim data analysis combined with downwind measurements yields H2S/SO2 = 0.11 ± 0.01. Our analysis has significant implications for the reliance that can be placed on ‘Multi-Gas'-derived gas ratios, whether for volcanological or other purposes, in the absence of consideration of the complexities of sensor response times.
Error Biases in Inner and Overt Speech: Evidence from Tongue Twisters
ERIC Educational Resources Information Center
Corley, Martin; Brocklehurst, Paul H.; Moat, H. Susannah
2011-01-01
To compare the properties of inner and overt speech, Oppenheim and Dell (2008) counted participants' self-reported speech errors when reciting tongue twisters either overtly or silently and found a bias toward substituting phonemes that resulted in words in both conditions, but a bias toward substituting similar phonemes only when speech was…
CCD image sensor induced error in PIV applications
NASA Astrophysics Data System (ADS)
Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.
2014-06-01
The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.
Big Data and Large Sample Size: A Cautionary Note on the Potential for Bias
Chambers, David A.; Glasgow, Russell E.
2014-01-01
Abstract A number of commentaries have suggested that large studies are more reliable than smaller studies and there is a growing interest in the analysis of “big data” that integrates information from many thousands of persons and/or different data sources. We consider a variety of biases that are likely in the era of big data, including sampling error, measurement error, multiple comparisons errors, aggregation error, and errors associated with the systematic exclusion of information. Using examples from epidemiology, health services research, studies on determinants of health, and clinical trials, we conclude that it is necessary to exercise greater caution to be sure that big sample size does not lead to big inferential errors. Despite the advantages of big studies, large sample size can magnify the bias associated with error resulting from sampling or study design. Clin Trans Sci 2014; Volume #: 1–5 PMID:25043853
Publication bias was not a good reason to discourage trials with low power.
Borm, George F; den Heijer, Martin; Zielhuis, Gerhard A
2009-01-01
The objective was to investigate whether it is justified to discourage trials with less than 80% power. Trials with low power are unlikely to produce conclusive results, but their findings can be used by pooling then in a meta-analysis. However, such an analysis may be biased, because trials with low power are likely to have a nonsignificant result and are less likely to be published than trials with a statistically significant outcome. We simulated several series of studies with varying degrees of publication bias and then calculated the "real" one-sided type I error and the bias of meta-analyses with a "nominal" error rate (significance level) of 2.5%. In single trials, in which heterogeneity was set at zero, low, and high, the error rates were 2.3%, 4.7%, and 16.5%, respectively. In multiple trials with 80%-90% power and a publication rate of 90% when the results were nonsignificant, the error rates could be as high as 5.1%. When the power was 50% and the publication rate of non-significant results was 60%, the error rates did not exceed 5.3%, whereas the bias was at most 15% of the difference used in the power calculation. The impact of publication bias does not warrant the exclusion of trials with 50% power.
Using Audit Information to Adjust Parameter Estimates for Data Errors in Clinical Trials
Shepherd, Bryan E.; Shaw, Pamela A.; Dodd, Lori E.
2013-01-01
Background Audits are often performed to assess the quality of clinical trial data, but beyond detecting fraud or sloppiness, the audit data is generally ignored. In earlier work using data from a non-randomized study, Shepherd and Yu (2011) developed statistical methods to incorporate audit results into study estimates, and demonstrated that audit data could be used to eliminate bias. Purpose In this manuscript we examine the usefulness of audit-based error-correction methods in clinical trial settings where a continuous outcome is of primary interest. Methods We demonstrate the bias of multiple linear regression estimates in general settings with an outcome that may have errors and a set of covariates for which some may have errors and others, including treatment assignment, are recorded correctly for all subjects. We study this bias under different assumptions including independence between treatment assignment, covariates, and data errors (conceivable in a double-blinded randomized trial) and independence between treatment assignment and covariates but not data errors (possible in an unblinded randomized trial). We review moment-based estimators to incorporate the audit data and propose new multiple imputation estimators. The performance of estimators is studied in simulations. Results When treatment is randomized and unrelated to data errors, estimates of the treatment effect using the original error-prone data (i.e., ignoring the audit results) are unbiased. In this setting, both moment and multiple imputation estimators incorporating audit data are more variable than standard analyses using the original data. In contrast, in settings where treatment is randomized but correlated with data errors and in settings where treatment is not randomized, standard treatment effect estimates will be biased. And in all settings, parameter estimates for the original, error-prone covariates will be biased. Treatment and covariate effect estimates can be corrected by incorporating audit data using either the multiple imputation or moment-based approaches. Bias, precision, and coverage of confidence intervals improve as the audit size increases. Limitations The extent of bias and the performance of methods depend on the extent and nature of the error as well as the size of the audit. This work only considers methods for the linear model. Settings much different than those considered here need further study. Conclusions In randomized trials with continuous outcomes and treatment assignment independent of data errors, standard analyses of treatment effects will be unbiased and are recommended. However, if treatment assignment is correlated with data errors or other covariates, naive analyses may be biased. In these settings, and when covariate effects are of interest, approaches for incorporating audit results should be considered. PMID:22848072
A Strategy for Replacing Sum Scoring
ERIC Educational Resources Information Center
Ramsay, James O.; Wiberg, Marie
2017-01-01
This article promotes the use of modern test theory in testing situations where sum scores for binary responses are now used. It directly compares the efficiencies and biases of classical and modern test analyses and finds an improvement in the root mean squared error of ability estimates of about 5% for two designed multiple-choice tests and…
Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma
NASA Technical Reports Server (NTRS)
Fisher, Brad L.
2004-01-01
The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.
Evaluation of normalization methods for cDNA microarray data by k-NN classification
Wu, Wei; Xing, Eric P; Myers, Connie; Mian, I Saira; Bissell, Mina J
2005-01-01
Background Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Results Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Conclusion Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics. PMID:16045803
Evaluation of normalization methods for cDNA microarray data by k-NN classification.
Wu, Wei; Xing, Eric P; Myers, Connie; Mian, I Saira; Bissell, Mina J
2005-07-26
Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics.
Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers
NASA Technical Reports Server (NTRS)
Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.
2012-01-01
Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.
Calibration of remotely sensed proportion or area estimates for misclassification error
Raymond L. Czaplewski; Glenn P. Catts
1992-01-01
Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...
Correction of stream quality trends for the effects of laboratory measurement bias
Alexander, Richard B.; Smith, Richard A.; Schwarz, Gregory E.
1993-01-01
We present a statistical model relating measurements of water quality to associated errors in laboratory methods. Estimation of the model allows us to correct trends in water quality for long-term and short-term variations in laboratory measurement errors. An illustration of the bias correction method for a large national set of stream water quality and quality assurance data shows that reductions in the bias of estimates of water quality trend slopes are achieved at the expense of increases in the variance of these estimates. Slight improvements occur in the precision of estimates of trend in bias by using correlative information on bias and water quality to estimate random variations in measurement bias. The results of this investigation stress the need for reliable, long-term quality assurance data and efficient statistical methods to assess the effects of measurement errors on the detection of water quality trends.
Are phonological influences on lexical (mis)selection the result of a monitoring bias?
Ratinckx, Elie; Ferreira, Victor S.; Hartsuiker, Robert J.
2009-01-01
A monitoring bias account is often used to explain speech error patterns that seem to be the result of an interactive language production system, like phonological influences on lexical selection errors. A biased monitor is suggested to detect and covertly correct certain errors more often than others. For instance, this account predicts that errors which are phonologically similar to intended words are harder to detect than ones that are phonologically dissimilar. To test this, we tried to elicit phonological errors under the same conditions that show other kinds of lexical selection errors. In five experiments, we presented participants with high cloze probability sentence fragments followed by a picture that was either semantically related, a homophone of a semantically related word, or phonologically related to the (implicit) last word of the sentence. All experiments elicited semantic completions or homophones of semantic completions, but none elicited phonological completions. This finding is hard to reconcile with a monitoring bias account and is better explained with an interactive production system. Additionally, this finding constrains the amount of bottom-up information flow in interactive models. PMID:18942035
NASA Technical Reports Server (NTRS)
James, R.; Brownlow, J. D.
1985-01-01
A study is performed under NASA contract to evaluate data from an AN/FPS-16 radar installed for support of flight programs at Dryden Flight Research Facility of NASA Ames Research Center. The purpose of this study is to provide information necessary for improving post-flight data reduction and knowledge of accuracy of derived radar quantities. Tracking data from six flights are analyzed. Noise and bias errors in raw tracking data are determined for each of the flights. A discussion of an altitude bias error during all of the tracking missions is included. This bias error is defined by utilizing pressure altitude measurements made during survey flights. Four separate filtering methods, representative of the most widely used optimal estimation techniques for enhancement of radar tracking data, are analyzed for suitability in processing both real-time and post-mission data. Additional information regarding the radar and its measurements, including typical noise and bias errors in the range and angle measurements, is also presented. This report is in two parts. This is part 2, a discussion of the modeling of propagation path errors.
A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Sanner, Robert M.
2012-01-01
Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas
2018-07-01
This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.
Assessing the validity of subjective reports in the auditory streaming paradigm.
Farkas, Dávid; Denham, Susan L; Bendixen, Alexandra; Winkler, István
2016-04-01
While subjective reports provide a direct measure of perception, their validity is not self-evident. Here, the authors tested three possible biasing effects on perceptual reports in the auditory streaming paradigm: errors due to imperfect understanding of the instructions, voluntary perceptual biasing, and susceptibility to implicit expectations. (1) Analysis of the responses to catch trials separately promoting each of the possible percepts allowed the authors to exclude participants who likely have not fully understood the instructions. (2) Explicit biasing instructions led to markedly different behavior than the conventional neutral-instruction condition, suggesting that listeners did not voluntarily bias their perception in a systematic way under the neutral instructions. Comparison with a random response condition further supported this conclusion. (3) No significant relationship was found between social desirability, a scale-based measure of susceptibility to implicit social expectations, and any of the perceptual measures extracted from the subjective reports. This suggests that listeners did not significantly bias their perceptual reports due to possible implicit expectations present in the experimental context. In sum, these results suggest that valid perceptual data can be obtained from subjective reports in the auditory streaming paradigm.
ERIC Educational Resources Information Center
Kim, Sooyeon; Moses, Tim; Yoo, Hanwook Henry
2015-01-01
The purpose of this inquiry was to investigate the effectiveness of item response theory (IRT) proficiency estimators in terms of estimation bias and error under multistage testing (MST). We chose a 2-stage MST design in which 1 adaptation to the examinees' ability levels takes place. It includes 4 modules (1 at Stage 1, 3 at Stage 2) and 3 paths…
Self-calibration of photometric redshift scatter in weak-lensing surveys
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less
NASA Astrophysics Data System (ADS)
Collmar, M.; Cook, B. G.; Cowart, R.; Freund, D.; Gavin, J.
2015-10-01
A pool of 240 subjects was exposed to a library of waveforms consisting of example signatures of low boom aircraft. The signature library included intentional variations in both loudness and spectral content, and were auralized using the Gulfstream SASS-II sonic boom simulator. Post-processing was used to quantify the impacts of test design decisions on the "quality" of the resultant database. Specific lessons learned from this study include insight regarding potential for bias error due to variations in loudness or peak over-pressure, sources of uncertainty and their relative importance on objective measurements and robustness of individual metrics to wide variations in spectral content. Results provide clear guidance for design of future large scale community surveys, where one must optimize the complex tradeoffs between the size of the surveyed population, spatial footprint of those participants, and the fidelity/density of objective measurements.
Does target viewing time influence perceived reachability?
Gabbard, Carl; Ammar, Diala
2007-09-01
This study examined the influence of target viewing time on perceived (estimates of) reachability. Right-handed participants were asked to judge the simulated reachability of midline targets using their dominant limb in viewing conditions of 150 ms, 500 ms, 1 s and 2 s. Responses were compared to actual maximum reach. In reference to percent error, interestingly, the 150 ms condition revealed the least error at peripersonal targets and the most inaccuracy with distal (extrapersonal) targets. This condition was also distinct with a significant overestimation bias -- a common observation in earlier studies. However, with increasing viewing time this bias was reduced. These data provide evidence that 150 ms is effective for estimating reach within one's general peripersonal workspace. However, with judgments distal from that point, more time enhanced accuracy, with 500 ms and 1 s being optimal. Overall results are discussed relative to perceptual effectiveness in programming reaching movements.
Schmidt, Frank L; Le, Huy; Ilies, Remus
2003-06-01
On the basis of an empirical study of measures of constructs from the cognitive domain, the personality domain, and the domain of affective traits, the authors of this study examine the implications of transient measurement error for the measurement of frequently studied individual differences variables. The authors clarify relevant reliability concepts as they relate to transient error and present a procedure for estimating the coefficient of equivalence and stability (L. J. Cronbach, 1947), the only classical reliability coefficient that assesses all 3 major sources of measurement error (random response, transient, and specific factor errors). The authors conclude that transient error exists in all 3 trait domains and is especially large in the domain of affective traits. Their findings indicate that the nearly universal use of the coefficient of equivalence (Cronbach's alpha; L. J. Cronbach, 1951), which fails to assess transient error, leads to overestimates of reliability and undercorrections for biases due to measurement error.
Malyarenko, Dariya; Newitt, David; Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G.; Arlinghaus, Lori R.; Jacobs, Michael A.; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E.; Huang, Wei; Chenevert, Thomas L.
2015-01-01
Purpose Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Methods Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ±150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients and eddy currents were assessed independently. The observed bias errors were compared to numerical models. Results The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between −55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (±5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image co-registration of individual gradient directions. Conclusion The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. PMID:25940607
Malyarenko, Dariya I; Newitt, David; J Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G; Arlinghaus, Lori R; Jacobs, Michael A; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E; Huang, Wei; Chenevert, Thomas L
2016-03-01
Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ± 150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients, and eddy currents were assessed independently. The observed bias errors were compared with numerical models. The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between -55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (± 5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image coregistration of individual gradient directions. The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chevuturi, Amulya; Turner, Andrew G.; Woolnoug, Steve J.; Martin, Gill
2017-04-01
In this study we investigate the development of biases over the Indian region in summer hindcasts of the UK Met Office coupled initialised global seasonal forecasting system, GloSea5-GC2. Previous work has demonstrated the rapid evolution of strong monsoon circulation biases over India from seasonal forecasts initialised in early May, together with coupled strong easterly wind biases on the equator. These mean state biases lead to strong precipitation errors during the monsoon over the subcontinent. We analyse a set of three springtime start dates for the 20-year hindcast period (1992-2011) and fifteen total ensemble members for each year. We use comparisons with variety of observations to assess the evolution of the mean state biases over the Indian land surface. All biases within the model develop rapidly, particularly surface heat and radiation flux biases. Strong biases are present within the model climatology from pre-monsoon (May) in the surface heat fluxes over India (higher sensible / lower latent heat fluxes) when compared to observed estimates. The early evolution of such biases prior to onset rains suggests possible problems with the land surface scheme or soil moisture errors. Further analysis of soil moisture over the Indian land surface shows a dry bias present from the beginning of the hindcasts during the pre-monsoon. This lasts until the after the monsoon develops (July) after which there is a wet bias over the region. Soil moisture used for initialization of the model also shows a dry bias when compared against the observed estimates, which may lead to the same in the model. The early dry bias in the model may reduce local moisture availability through surface evaporation and thus may possibly limit precipitation recycling. On this premise, we identify and test the sensitivity of the monsoon in the model against higher soil moisture forcing. We run sensitivity experiments initiated using gridpoint-wise annual soil moisture maxima over the Indian land surface as input for experiments in the atmosphere-only version of the model. We plan to analyse the response of the sensitivity experiments on seasonal forecasting of surface heat fluxes and subsequently monsoon precipitation.
Anderson, N G; Jolley, I J; Wells, J E
2007-08-01
To determine the major sources of error in ultrasonographic assessment of fetal weight and whether they have changed over the last decade. We performed a prospective observational study in 1991 and again in 2000 of a mixed-risk pregnancy population, estimating fetal weight within 7 days of delivery. In 1991, the Rose and McCallum formula was used for 72 deliveries. Inter- and intraobserver agreement was assessed within this group. Bland-Altman measures of agreement from log data were calculated as ratios. We repeated the study in 2000 in 208 consecutive deliveries, comparing predicted and actual weights for 12 published equations using Bland-Altman and percentage error methods. We compared bias (mean percentage error), precision (SD percentage error), and their consistency across the weight ranges. 95% limits of agreement ranged from - 4.4% to + 3.3% for inter- and intraobserver estimates, but were - 18.0% to 24.0% for estimated and actual birth weight. There was no improvement in accuracy between 1991 and 2000. In 2000 only six of the 12 published formulae had overall bias within 7% and precision within 15%. There was greater bias and poorer precision in nearly all equations if the birth weight was < 1,000 g. Observer error is a relatively minor component of the error in estimating fetal weight; error due to the equation is a larger source of error. Improvements in ultrasound technology have not improved the accuracy of estimating fetal weight. Comparison of methods of estimating fetal weight requires statistical methods that can separate out bias, precision and consistency. Estimating fetal weight in the very low birth weight infant is subject to much greater error than it is in larger babies. Copyright (c) 2007 ISUOG. Published by John Wiley & Sons, Ltd.
Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard
2011-01-01
In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.
Complacency and Automation Bias in the Use of Imperfect Automation.
Wickens, Christopher D; Clegg, Benjamin A; Vieane, Alex Z; Sebok, Angelia L
2015-08-01
We examine the effects of two different kinds of decision-aiding automation errors on human-automation interaction (HAI), occurring at the first failure following repeated exposure to correctly functioning automation. The two errors are incorrect advice, triggering the automation bias, and missing advice, reflecting complacency. Contrasts between analogous automation errors in alerting systems, rather than decision aiding, have revealed that alerting false alarms are more problematic to HAI than alerting misses are. Prior research in decision aiding, although contrasting the two aiding errors (incorrect vs. missing), has confounded error expectancy. Participants performed an environmental process control simulation with and without decision aiding. For those with the aid, automation dependence was created through several trials of perfect aiding performance, and an unexpected automation error was then imposed in which automation was either gone (one group) or wrong (a second group). A control group received no automation support. The correct aid supported faster and more accurate diagnosis and lower workload. The aid failure degraded all three variables, but "automation wrong" had a much greater effect on accuracy, reflecting the automation bias, than did "automation gone," reflecting the impact of complacency. Some complacency was manifested for automation gone, by a longer latency and more modest reduction in accuracy. Automation wrong, creating the automation bias, appears to be a more problematic form of automation error than automation gone, reflecting complacency. Decision-aiding automation should indicate its lower degree of confidence in uncertain environments to avoid the automation bias. © 2015, Human Factors and Ergonomics Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Saradwata; Johnson, Timothy D.; Ma, Bing
2012-07-01
Purpose: Assuming that early tumor volume change is a biomarker for response to therapy, accurate quantification of early volume changes could aid in adapting an individual patient's therapy and lead to shorter clinical trials. We investigated an image registration-based approach for tumor volume change quantification that may more reliably detect smaller changes that occur in shorter intervals than can be detected by existing algorithms. Methods and Materials: Variance and bias of the registration-based approach were evaluated using retrospective, in vivo, very-short-interval diffusion magnetic resonance imaging scans where true zero tumor volume change is unequivocally known and synthetic data, respectively. Themore » interval scans were nonlinearly registered using two similarity measures: mutual information (MI) and normalized cross-correlation (NCC). Results: The 95% confidence interval of the percentage volume change error was (-8.93% to 10.49%) for MI-based and (-7.69%, 8.83%) for NCC-based registrations. Linear mixed-effects models demonstrated that error in measuring volume change increased with increase in tumor volume and decreased with the increase in the tumor's normalized mutual information, even when NCC was the similarity measure being optimized during registration. The 95% confidence interval of the relative volume change error for the synthetic examinations with known changes over {+-}80% of reference tumor volume was (-3.02% to 3.86%). Statistically significant bias was not demonstrated. Conclusion: A low-noise, low-bias tumor volume change measurement algorithm using nonlinear registration is described. Errors in change measurement were a function of tumor volume and the normalized mutual information content of the tumor.« less
A new mean estimator using auxiliary variables for randomized response models
NASA Astrophysics Data System (ADS)
Ozgul, Nilgun; Cingi, Hulya
2013-10-01
Randomized response models are commonly used in surveys dealing with sensitive questions such as abortion, alcoholism, sexual orientation, drug taking, annual income, tax evasion to ensure interviewee anonymity and reduce nonrespondents rates and biased responses. Starting from the pioneering work of Warner [7], many versions of RRM have been developed that can deal with quantitative responses. In this study, new mean estimator is suggested for RRM including quantitative responses. The mean square error is derived and a simulation study is performed to show the efficiency of the proposed estimator to other existing estimators in RRM.
Correction for Guessing in the Framework of the 3PL Item Response Theory
ERIC Educational Resources Information Center
Chiu, Ting-Wei
2010-01-01
Guessing behavior is an important topic with regard to assessing proficiency on multiple choice tests, particularly for examinees at lower levels of proficiency due to greater the potential for systematic error or bias which that inflates observed test scores. Methods that incorporate a correction for guessing on high-stakes tests generally rely…
ERIC Educational Resources Information Center
Bamezai, Anil
1995-01-01
Some of the threats to internal validity that arise when evaluating the impact of water conservation programs during a drought are illustrated. These include differential response to the drought, self-selection bias, and measurement error. How to deal with these problems when high-quality disaggregate data are available is discussed. (SLD)
Application of a Method of Estimating DIF for Polytomous Test Items.
ERIC Educational Resources Information Center
Camilli, Gregory; Congdon, Peter
1999-01-01
Demonstrates a method for studying differential item functioning (DIF) that can be used with dichotomous or polytomous items and that is valid for data that follow a partial credit Item Response Theory model. A simulation study shows that positively biased Type I error rates are in accord with results from previous studies. (SLD)
NASA Astrophysics Data System (ADS)
Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.
2011-12-01
Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.
Turrell, Gavin; Patterson, Carla; Oldenburg, Brian; Gould, Trish; Roy, Marie-Andree
2003-04-01
To undertake an assessment of survey participation and non-response error in a population-based study that examined the relationship between socio-economic position and food purchasing behaviour. The study was conducted in Brisbane City (Australia) in 2000. The sample was selected using a stratified two-stage cluster design. Respondents were recruited using a range of strategies that attempted to maximise the involvement of persons from disadvantaged backgrounds: respondents were contacted by personal visit and data were collected using home-based face-to-face interviews; multiple call-backs on different days and at different times were used; and a financial gratuity was provided. Non-institutionalised residents of private dwellings located in 50 small areas that differed in their socio-economic characteristics. Rates of survey participation - measured by non-contacts, exclusions, dropped cases, response rates and completions - were similar across areas, suggesting that residents of socio-economically advantaged and disadvantaged areas were equally likely to be recruited. Individual-level analysis, however, showed that respondents and non-respondents differed significantly in their sociodemographic and food purchasing characteristics: non-respondents were older, less educated and exhibited different purchasing behaviours. Misclassification bias probably accounted for the inconsistent pattern of association between the area- and individual-level results. Estimates of bias due to non-response indicated that although respondents and non-respondents were qualitatively different, the magnitude of error associated with this differential was minimal. Socio-economic position measured at the individual level is a strong and consistent predictor of survey non-participation. Future studies that set out to examine the relationship between socio-economic position and diet need to adopt sampling strategies and data collection methods that maximise the likelihood of recruiting participants from all points on the socio-economic spectrum, and particularly persons from disadvantaged backgrounds. Study designs that are not sensitive to the difficulties associated with recruiting a socio-economically representative sample are likely to produce biased estimates (underestimates) of socio-economic differences in the dietary outcome being investigated.
Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan
2015-07-22
Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation.
Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan
2015-01-01
Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation. PMID:26205276
NASA Astrophysics Data System (ADS)
Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.
2017-12-01
Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub-grid scale physical parameterizations, more accurate discretization of the model dynamics, boundary conditions, radiative transfer codes, and other potential model improvements which can then replace the empirical correction scheme. The analysis increments also provide guidance in testing new physical parameterizations.
Use of the Magnetic Field for Improving Gyroscopes’ Biases Estimation
Munoz Diaz, Estefania; de Ponte Müller, Fabian; García Domínguez, Juan Jesús
2017-01-01
An accurate orientation is crucial to a satisfactory position in pedestrian navigation. The orientation estimation, however, is greatly affected by errors like the biases of gyroscopes. In order to minimize the error in the orientation, the biases of gyroscopes must be estimated and subtracted. In the state of the art it has been proposed, but not proved, that the estimation of the biases can be accomplished using magnetic field measurements. The objective of this work is to evaluate the effectiveness of using magnetic field measurements to estimate the biases of medium-cost micro-electromechanical sensors (MEMS) gyroscopes. We carry out the evaluation with experiments that cover both, quasi-error-free turn rate and magnetic measurements and medium-cost MEMS turn rate and magnetic measurements. The impact of different homogeneous magnetic field distributions and magnetically perturbed environments is analyzed. Additionally, the effect of the successful biases subtraction on the orientation and the estimated trajectory is detailed. Our results show that the use of magnetic field measurements is beneficial to the correct biases estimation. Further, we show that different magnetic field distributions affect differently the biases estimation process. Moreover, the biases are likewise correctly estimated under perturbed magnetic fields. However, for indoor and urban scenarios the biases estimation process is very slow. PMID:28398232
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N spec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N spec is ~10 6 we findmore » that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N spec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z s – z p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less
Hurford, Amy
2009-05-20
Movement data are frequently collected using Global Positioning System (GPS) receivers, but recorded GPS locations are subject to errors. While past studies have suggested methods to improve location accuracy, mechanistic movement models utilize distributions of turning angles and directional biases and these data present a new challenge in recognizing and reducing the effect of measurement error. I collected locations from a stationary GPS collar, analyzed a probabilistic model and used Monte Carlo simulations to understand how measurement error affects measured turning angles and directional biases. Results from each of the three methods were in complete agreement: measurement error gives rise to a systematic bias where a stationary animal is most likely to be measured as turning 180 degrees or moving towards a fixed point in space. These spurious effects occur in GPS data when the measured distance between locations is <20 meters. Measurement error must be considered as a possible cause of 180 degree turning angles in GPS data. Consequences of failing to account for measurement error are predicting overly tortuous movement, numerous returns to previously visited locations, inaccurately predicting species range, core areas, and the frequency of crossing linear features. By understanding the effect of GPS measurement error, ecologists are able to disregard false signals to more accurately design conservation plans for endangered wildlife.
Context-dependent sequential effects of target selection for action.
Moher, Jeff; Song, Joo-Hyun
2013-07-11
Humans exhibit variation in behavior from moment to moment even when performing a simple, repetitive task. Errors are typically followed by cautious responses, minimizing subsequent distractor interference. However, less is known about how variation in the execution of an ultimately correct response affects subsequent behavior. We asked participants to reach toward a uniquely colored target presented among distractors and created two categories to describe participants' responses in correct trials based on analyses of movement trajectories; partial errors referred to trials in which observers initially selected a nontarget for action before redirecting the movement and accurately pointing to the target, and direct movements referred to trials in which the target was directly selected for action. We found that latency to initiate a hand movement was shorter in trials following partial errors compared to trials following direct movements. Furthermore, when the target and distractor colors were repeated, movement time and reach movement curvature toward distractors were greater following partial errors compared to direct movements. Finally, when the colors were repeated, partial errors were more frequent than direct movements following partial-error trials, and direct movements were more frequent following direct-movement trials. The dependence of these latter effects on repeated-task context indicates the involvement of higher-level cognitive mechanisms in an integrated attention-action system in which execution of a partial-error or direct-movement response affects memory representations that bias performance in subsequent trials. Altogether, these results demonstrate that whether a nontarget is selected for action or not has a measurable impact on subsequent behavior.
Guo, Hongbin; Renaut, Rosemary A; Chen, Kewei; Reiman, Eric M
2010-01-01
Graphical analysis methods are widely used in positron emission tomography quantification because of their simplicity and model independence. But they may, particularly for reversible kinetics, lead to bias in the estimated parameters. The source of the bias is commonly attributed to noise in the data. Assuming a two-tissue compartmental model, we investigate the bias that originates from modeling error. This bias is an intrinsic property of the simplified linear models used for limited scan durations, and it is exaggerated by random noise and numerical quadrature error. Conditions are derived under which Logan's graphical method either over- or under-estimates the distribution volume in the noise-free case. The bias caused by modeling error is quantified analytically. The presented analysis shows that the bias of graphical methods is inversely proportional to the dissociation rate. Furthermore, visual examination of the linearity of the Logan plot is not sufficient for guaranteeing that equilibrium has been reached. A new model which retains the elegant properties of graphical analysis methods is presented, along with a numerical algorithm for its solution. We perform simulations with the fibrillar amyloid β radioligand [11C] benzothiazole-aniline using published data from the University of Pittsburgh and Rotterdam groups. The results show that the proposed method significantly reduces the bias due to modeling error. Moreover, the results for data acquired over a 70 minutes scan duration are at least as good as those obtained using existing methods for data acquired over a 90 minutes scan duration. PMID:20493196
Experiences from the testing of a theory for modelling groundwater flow in heterogeneous media
Christensen, S.; Cooley, R.L.
2002-01-01
Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.
Experience gained in testing a theory for modelling groundwater flow in heterogeneous media
Christensen, S.; Cooley, R.L.
2002-01-01
Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift, and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.
Lockhart, Joseph J; Satya-Murti, Saty
2017-11-01
Cognitive effort is an essential part of both forensic and clinical decision-making. Errors occur in both fields because the cognitive process is complex and prone to bias. We performed a selective review of full-text English language literature on cognitive bias leading to diagnostic and forensic errors. Earlier work (1970-2000) concentrated on classifying and raising bias awareness. Recently (2000-2016), the emphasis has shifted toward strategies for "debiasing." While the forensic sciences have focused on the control of misleading contextual cues, clinical debiasing efforts have relied on checklists and hypothetical scenarios. No single generally applicable and effective bias reduction strategy has emerged so far. Generalized attempts at bias elimination have not been particularly successful. It is time to shift focus to the study of errors within specific domains, and how to best communicate uncertainty in order to improve decision making on the part of both the expert and the trier-of-fact. © 2017 American Academy of Forensic Sciences.
Lies, Damned Lies, and Survey Self-Reports? Identity as a Cause of Measurement Bias.
Brenner, Philip S; DeLamater, John
2016-12-01
Explanations of error in survey self-reports have focused on social desirability: that respondents answer questions about normative behavior to appear prosocial to interviewers. However, this paradigm fails to explain why bias occurs even in self-administered modes like mail and web surveys. We offer an alternative explanation rooted in identity theory that focuses on measurement directiveness as a cause of bias. After completing questions about physical exercise on a web survey, respondents completed a text message-based reporting procedure, sending updates on their major activities for five days. Random assignment was then made to one of two conditions: instructions mentioned the focus of the study, physical exercise, or not. Survey responses, text updates, and records from recreation facilities were compared. Direct measures generated bias-overreporting in survey measures and reactivity in the directive text condition-but the nondirective text condition generated unbiased measures. Findings are discussed in terms of identity.
NASA Technical Reports Server (NTRS)
Gracey, William; Jewel, Joseph W., Jr.; Carpenter, Gene T.
1960-01-01
The overall errors of the service altimeter installations of a variety of civil transport, military, and general-aviation airplanes have been experimentally determined during normal landing-approach and take-off operations. The average height above the runway at which the data were obtained was about 280 feet for the landings and about 440 feet for the take-offs. An analysis of the data obtained from 196 airplanes during 415 landing approaches and from 70 airplanes during 152 take-offs showed that: 1. The overall error of the altimeter installations in the landing- approach condition had a probable value (50 percent probability) of +/- 36 feet and a maximum probable value (99.7 percent probability) of +/- 159 feet with a bias of +10 feet. 2. The overall error in the take-off condition had a probable value of +/- 47 feet and a maximum probable value of +/- 207 feet with a bias of -33 feet. 3. The overall errors of the military airplanes were generally larger than those of the civil transports in both the landing-approach and take-off conditions. In the landing-approach condition the probable error and the maximum probable error of the military airplanes were +/- 43 and +/- 189 feet, respectively, with a bias of +15 feet, whereas those for the civil transports were +/- 22 and +/- 96 feet, respectively, with a bias of +1 foot. 4. The bias values of the error distributions (+10 feet for the landings and -33 feet for the take-offs) appear to represent a measure of the hysteresis characteristics (after effect and recovery) and friction of the instrument and the pressure lag of the tubing-instrument system.
Kupek, Emil
2002-01-01
Background Frequent use of self-reports for investigating recent and past behavior in medical research requires statistical techniques capable of analyzing complex sources of bias associated with this methodology. In particular, although decreasing accuracy of recalling more distant past events is commonplace, the bias due to differential in memory errors resulting from it has rarely been modeled statistically. Methods Covariance structure analysis was used to estimate the recall error of self-reported number of sexual partners for past periods of varying duration and its implication for the bias. Results Results indicated increasing levels of inaccuracy for reports about more distant past. Considerable positive bias was found for a small fraction of respondents who reported ten or more partners in the last year, last two years and last five years. This is consistent with the effect of heteroscedastic random error where the majority of partners had been acquired in the more distant past and therefore were recalled less accurately than the partners acquired more recently to the time of interviewing. Conclusions Memory errors of this type depend on the salience of the events recalled and are likely to be present in many areas of health research based on self-reported behavior. PMID:12435276
Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing
Lefebvre, Germain; Blakemore, Sarah-Jayne
2017-01-01
Previous studies suggest that factual learning, that is, learning from obtained outcomes, is biased, such that participants preferentially take into account positive, as compared to negative, prediction errors. However, whether or not the prediction error valence also affects counterfactual learning, that is, learning from forgone outcomes, is unknown. To address this question, we analysed the performance of two groups of participants on reinforcement learning tasks using a computational model that was adapted to test if prediction error valence influences learning. We carried out two experiments: in the factual learning experiment, participants learned from partial feedback (i.e., the outcome of the chosen option only); in the counterfactual learning experiment, participants learned from complete feedback information (i.e., the outcomes of both the chosen and unchosen option were displayed). In the factual learning experiment, we replicated previous findings of a valence-induced bias, whereby participants learned preferentially from positive, relative to negative, prediction errors. In contrast, for counterfactual learning, we found the opposite valence-induced bias: negative prediction errors were preferentially taken into account, relative to positive ones. When considering valence-induced bias in the context of both factual and counterfactual learning, it appears that people tend to preferentially take into account information that confirms their current choice. PMID:28800597
Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing.
Palminteri, Stefano; Lefebvre, Germain; Kilford, Emma J; Blakemore, Sarah-Jayne
2017-08-01
Previous studies suggest that factual learning, that is, learning from obtained outcomes, is biased, such that participants preferentially take into account positive, as compared to negative, prediction errors. However, whether or not the prediction error valence also affects counterfactual learning, that is, learning from forgone outcomes, is unknown. To address this question, we analysed the performance of two groups of participants on reinforcement learning tasks using a computational model that was adapted to test if prediction error valence influences learning. We carried out two experiments: in the factual learning experiment, participants learned from partial feedback (i.e., the outcome of the chosen option only); in the counterfactual learning experiment, participants learned from complete feedback information (i.e., the outcomes of both the chosen and unchosen option were displayed). In the factual learning experiment, we replicated previous findings of a valence-induced bias, whereby participants learned preferentially from positive, relative to negative, prediction errors. In contrast, for counterfactual learning, we found the opposite valence-induced bias: negative prediction errors were preferentially taken into account, relative to positive ones. When considering valence-induced bias in the context of both factual and counterfactual learning, it appears that people tend to preferentially take into account information that confirms their current choice.
Perceived reachability in single- and multiple-degree-of-freedom workspaces.
Gabbard, Carl; Ammar, Diala; Lee, Sunghan
2006-11-01
In comparisons of perceived (imagined) and actual reaches, investigators consistently find a tendency to overestimate. A primary explanation for that phenomenon is that individuals reach as a "whole-body engagement" involving multiple degrees of freedom (m-df). The authors examined right-handers (N = 28) in 1-df and m-df workspaces by having them judge the reachability of targets at midline, right, and left visual fields. Response profiles were similar for total error. Both conditions reflected an overestimation bias, although the bias was significantly greater in the m-df condition. Midline responses differed (greater overestimation) from those of right and left visual fields, which were similar. Although the authors would have predicted better performance in the m-df condition, it seems plausible that if individuals think in terms of m-df, they may feel more confident in that condition and thereby exhibit greater overestimation. Furthermore, the authors speculate that the reduced bias at the side fields may be attributed to a more conservative strategy based in part on perceived reach constraints.
Cognitive bias in clinical practice - nurturing healthy skepticism among medical students.
Bhatti, Alysha
2018-01-01
Errors in clinical reasoning, known as cognitive biases, are implicated in a significant proportion of diagnostic errors. Despite this knowledge, little emphasis is currently placed on teaching cognitive psychology in the undergraduate medical curriculum. Understanding the origin of these biases and their impact on clinical decision making helps stimulate reflective practice. This article outlines some of the common types of cognitive biases encountered in the clinical setting as well as cognitive debiasing strategies. Medical educators should nurture healthy skepticism among medical students by raising awareness of cognitive biases and equipping them with robust tools to circumvent such biases. This will enable tomorrow's doctors to improve the quality of care delivered, thus optimizing patient outcomes.
NASA Astrophysics Data System (ADS)
Zhang, Chengzhu; Xie, Shaocheng; Klein, Stephen A.; Ma, Hsi-yen; Tang, Shuaiqi; Van Weverberg, Kwinten; Morcrette, Cyril J.; Petch, Jon
2018-03-01
All the weather and climate models participating in the Clouds Above the United States and Errors at the Surface project show a summertime surface air temperature (T2 m) warm bias in the region of the central United States. To understand the warm bias in long-term climate simulations, we assess the Atmospheric Model Intercomparison Project simulations from the Coupled Model Intercomparison Project Phase 5, with long-term observations mainly from the Atmospheric Radiation Measurement program Southern Great Plains site. Quantities related to the surface energy and water budget, and large-scale circulation are analyzed to identify possible factors and plausible links involved in the warm bias. The systematic warm season bias is characterized by an overestimation of T2 m and underestimation of surface humidity, precipitation, and precipitable water. Accompanying the warm bias is an overestimation of absorbed solar radiation at the surface, which is due to a combination of insufficient cloud reflection and clear-sky shortwave absorption by water vapor and an underestimation in surface albedo. The bias in cloud is shown to contribute most to the radiation bias. The surface layer soil moisture impacts T2 m through its control on evaporative fraction. The error in evaporative fraction is another important contributor to T2 m. Similar sources of error are found in hindcast from other Clouds Above the United States and Errors at the Surface studies. In Atmospheric Model Intercomparison Project simulations, biases in meridional wind velocity associated with the low-level jet and the 500 hPa vertical velocity may also relate to T2 m bias through their control on the surface energy and water budget.
Roon, David A.; Waits, L.P.; Kendall, K.C.
2005-01-01
Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.
The Extended HANDS Characterization and Analysis of Metric Biases
NASA Astrophysics Data System (ADS)
Kelecy, T.; Knox, R.; Cognion, R.
The Extended High Accuracy Network Determination System (Extended HANDS) consists of a network of low cost, high accuracy optical telescopes designed to support space surveillance and development of space object characterization technologies. Comprising off-the-shelf components, the telescopes are designed to provide sub arc-second astrometric accuracy. The design and analysis team are in the process of characterizing the system through development of an error allocation tree whose assessment is supported by simulation, data analysis, and calibration tests. The metric calibration process has revealed 1-2 arc-second biases in the right ascension and declination measurements of reference satellite position, and these have been observed to have fairly distinct characteristics that appear to have some dependence on orbit geometry and tracking rates. The work presented here outlines error models developed to aid in development of the system error budget, and examines characteristic errors (biases, time dependence, etc.) that might be present in each of the relevant system elements used in the data collection and processing, including the metric calibration processing. The relevant reference frames are identified, and include the sensor (CCD camera) reference frame, Earth-fixed topocentric frame, topocentric inertial reference frame, and the geocentric inertial reference frame. The errors modeled in each of these reference frames, when mapped into the topocentric inertial measurement frame, reveal how errors might manifest themselves through the calibration process. The error analysis results that are presented use satellite-sensor geometries taken from periods where actual measurements were collected, and reveal how modeled errors manifest themselves over those specific time periods. These results are compared to the real calibration metric data (right ascension and declination residuals), and sources of the bias are hypothesized. In turn, the actual right ascension and declination calibration residuals are also mapped to other relevant reference frames in an attempt to validate the source of the bias errors. These results will serve as the basis for more focused investigation into specific components embedded in the system and system processes that might contain the source of the observed biases.
First Impressions of CARTOSAT-1
NASA Technical Reports Server (NTRS)
Lutes, James
2007-01-01
CARTOSAT-1 RPCs need special handling. Absolute accuracy of uncontrolled scenes is poor (biases > 300 m). Noticeable cross-track scale error (+/- 3-4 m across stereo pair). Most errors are either biases or linear in line/sample (These are easier to correct with ground control).
Qualitative modeling of silica plasma etching using neural network
NASA Astrophysics Data System (ADS)
Kim, Byungwhan; Kwon, Kwang Ho
2003-01-01
An etching of silica thin film is qualitatively modeled by using a neural network. The process was characterized by a 23 full factorial experiment plus one center point, in which the experimental factors and ranges include 100-800 W radio-frequency source power, 100-400 W bias power and gas flow rate ratio CHF3/CF4. The gas flow rate ratio varied from 0.2 to 5.0. The backpropagation neural network (BPNN) was trained on nine experiments and tested on six experiments, not pertaining to the original training data. The prediction ability of the BPNN was optimized as a function of the training parameters. Prediction errors are 180 Å/min and 1.33, for the etch rate and anisotropy models, respectively. Physical etch mechanisms were estimated from the three-dimensional plots generated from the optimized models. Predicted response surfaces were consistent with experimentally measured etch data. The dc bias was correlated to the etch responses to evaluate its contribution. Both the source power (plasma density) and bias power (ion directionality) strongly affected the etch rate. The source power was the most influential factor for the etch rate. A conflicting effect between the source and bias powers was noticed with respect to the anisotropy. The dc bias played an important role in understanding or separating physical etch mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.
An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less
Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.
2017-06-13
An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less
Fluency and belief bias in deductive reasoning: new indices for old effects
Trippas, Dries; Handley, Simon J.; Verde, Michael F.
2014-01-01
Models based on signal detection theory (SDT) have occupied a prominent role in domains such as perception, categorization, and memory. Recent work by Dube et al. (2010) suggests that the framework may also offer important insights in the domain of deductive reasoning. Belief bias in reasoning has traditionally been examined using indices based on raw endorsement rates—indices that critics have claimed are highly problematic. We discuss a new set of SDT indices fit for the investigation belief bias and apply them to new data examining the effect of perceptual disfluency on belief bias in syllogisms. In contrast to the traditional approach, the SDT indices do not violate important statistical assumptions, resulting in a decreased Type 1 error rate. Based on analyses using these novel indices we demonstrate that perceptual disfluency leads to decreased reasoning accuracy, contrary to predictions. Disfluency also appears to eliminate the typical link found between cognitive ability and the effect of beliefs on accuracy. Finally, replicating previous work, we demonstrate that cognitive ability leads to an increase in reasoning accuracy and a decrease in the response bias component of belief bias. PMID:25009515
Evaluation of hydrologic components of community land model 4 and bias identification
Du, Enhao; Vittorio, Alan Di; Collins, William D.
2015-04-01
Runoff and soil moisture are two key components of the global hydrologic cycle that should be validated at local to global scales in Earth System Models (ESMs) used for climate projection. Here, we have evaluated the runoff and surface soil moisture output by the Community Climate System Model (CCSM) along with 8 other models from the Coupled Model Intercomparison Project (CMIP5) repository using satellite soil moisture observations and stream gauge corrected runoff products. A series of Community Land Model (CLM) runs forced by reanalysis and coupled model outputs was also performed to identify atmospheric drivers of biases and uncertainties inmore » the CCSM. Results indicate that surface soil moisture simulations tend to be positively biased in high latitude areas by most selected CMIP5 models except CCSM, FGOALS, and BCC, which share similar land surface model code. With the exception of GISS, runoff simulations by all selected CMIP5 models were overestimated in mountain ranges and in most of the Arctic region. In general, positive biases in CCSM soil moisture and runoff due to precipitation input error were offset by negative biases induced by temperature input error. Excluding the impact from atmosphere modeling, the global mean of seasonal surface moisture oscillation was out of phase compared to observations in many years during 1985–2004. The CLM also underestimated runoff in the Amazon, central Africa, and south Asia, where soils all have high clay content. We hypothesize that lack of a macropore flow mechanism is partially responsible for this underestimation. However, runoff was overestimated in the areas covered by volcanic ash soils (i.e., Andisols), which might be associated with poor soil porosity representation in CLM. Finally, our results indicate that CCSM predictability of hydrology could be improved by addressing the compensating errors associated with precipitation and temperature and updating the CLM soil representation.« less
Bolte, John F B
2016-09-01
Personal exposure measurements of radio frequency electromagnetic fields are important for epidemiological studies and developing prediction models. Minimizing biases and uncertainties and handling spatial and temporal variability are important aspects of these measurements. This paper reviews the lessons learnt from testing the different types of exposimeters and from personal exposure measurement surveys performed between 2005 and 2015. Applying them will improve the comparability and ranking of exposure levels for different microenvironments, activities or (groups of) people, such that epidemiological studies are better capable of finding potential weak correlations with health effects. Over 20 papers have been published on how to prevent biases and minimize uncertainties due to: mechanical errors; design of hardware and software filters; anisotropy; and influence of the body. A number of biases can be corrected for by determining multiplicative correction factors. In addition a good protocol on how to wear the exposimeter, a sufficiently small sampling interval and sufficiently long measurement duration will minimize biases. Corrections to biases are possible for: non-detects through detection limit, erroneous manufacturer calibration and temporal drift. Corrections not deemed necessary, because no significant biases have been observed, are: linearity in response and resolution. Corrections difficult to perform after measurements are for: modulation/duty cycle sensitivity; out of band response aka cross talk; temperature and humidity sensitivity. Corrections not possible to perform after measurements are for: multiple signals detection in one band; flatness of response within a frequency band; anisotropy to waves of different elevation angle. An analysis of 20 microenvironmental surveys showed that early studies using exposimeters with logarithmic detectors, overestimated exposure to signals with bursts, such as in uplink signals from mobile phones and WiFi appliances. Further, the possible corrections for biases have not been fully applied. The main findings are that if the biases are not corrected for, the actual exposure will on average be underestimated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Miller, Chad S
2013-01-01
Nearly half of medical errors can be attributed to an error of clinical reasoning or decision making. It is estimated that the correct diagnosis is missed or delayed in between 5% and 14% of acute hospital admissions. Through understanding why and how physicians make these errors, it is hoped that strategies can be developed to decrease the number of these errors. In the present case, a patient presented with dyspnea, gastrointestinal symptoms and weight loss; the diagnosis was initially missed when the treating physicians took mental short cuts and used heuristics as in this case. Heuristics have an inherent bias that can lead to faulty reasoning or conclusions, especially in complex or difficult cases. Affective bias, which is the overinvolvement of emotion in clinical decision making, limited the available information for diagnosis because of the hesitancy to acquire a full history and perform a complete physical examination in this patient. Zebra retreat, another type of bias, is when a rare diagnosis figures prominently on the differential diagnosis but the physician retreats for various reasons. Zebra retreat also factored in the delayed diagnosis. Through the description of these clinical reasoning errors in an actual case, it is hoped that future errors can be prevented or inspiration for additional research in this area will develop.
Estimation of the auto frequency response function at unexcited points using dummy masses
NASA Astrophysics Data System (ADS)
Hosoya, Naoki; Yaginuma, Shinji; Onodera, Hiroshi; Yoshimura, Takuya
2015-02-01
If structures with complex shapes have space limitations, vibration tests using an exciter or impact hammer for the excitation are difficult. Although measuring the auto frequency response function at an unexcited point may not be practical via a vibration test, it can be obtained by assuming that the inertia acting on a dummy mass is an external force on the target structure upon exciting a different excitation point. We propose a method to estimate the auto frequency response functions at unexcited points by attaching a small mass (dummy mass), which is comparable to the accelerometer mass. The validity of the proposed method is demonstrated by comparing the auto frequency response functions estimated at unexcited points in a beam structure to those obtained from numerical simulations. We also consider random measurement errors by finite element analysis and vibration tests, but not bias errors. Additionally, the applicability of the proposed method is demonstrated by applying it to estimate the auto frequency response function of the lower arm in a car suspension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.
Many numerical weather prediction (NWP) and climate models exhibit too warm lower tropospheres near the mid-latitude continents. This warm bias has been extensively studied before, but evidence about its origin remains inconclusive. Some studies point to deficiencies in the deep convective or low clouds. Other studies found an important contribution from errors in the land surface properties. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. Documenting these radiation errors is hence an important step towards understanding and alleviating themore » warm bias. This paper presents an attribution study to quantify the net radiation biases in 9 model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, integrated water vapor (IWV) and aerosols are quantified, using an array of radiation measurement stations near the ARM SGP site. Furthermore, an in depth-analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface SW radiation is overestimated (LW underestimated) in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation in all but one model, which has a dominant albedo issue. Using a cloud regime analysis, it was shown that missing deep cloud events and/or simulating deep clouds with too weak cloud-radiative effects account for most of these cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud, but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly however, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, the deep cloud problem in many models could be related to too weak convective cloud detrainment and too large precipitation efficiencies. This does not rule out that previously documented issues with the evaporative fraction contribute to the warm bias as well, since the majority of the models underestimate the surface rain rates overall, as they miss the observed large nocturnal precipitation peak.« less
The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Rodríguez, José M.; Milton, Sean F.; Marzin, Charline
2017-10-01
In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.
Chancey, Eric T; Bliss, James P; Yamani, Yusuke; Handley, Holly A H
2017-05-01
This study provides a theoretical link between trust and the compliance-reliance paradigm. We propose that for trust mediation to occur, the operator must be presented with a salient choice, and there must be an element of risk for dependence. Research suggests that false alarms and misses affect dependence via two independent processes, hypothesized as trust in signals and trust in nonsignals. These two trust types manifest in categorically different behaviors: compliance and reliance. Eighty-eight participants completed a primary flight task and a secondary signaling system task. Participants evaluated their trust according to the informational bases of trust: performance, process, and purpose. Participants were in a high- or low-risk group. Signaling systems varied by reliability (90%, 60%) within subjects and error bias (false alarm prone, miss prone) between subjects. False-alarm rate affected compliance but not reliance. Miss rate affected reliance but not compliance. Mediation analyses indicated that trust mediated the relationship between false-alarm rate and compliance. Bayesian mediation analyses favored evidence indicating trust did not mediate miss rate and reliance. Conditional indirect effects indicated that factors of trust mediated the relationship between false-alarm rate and compliance (i.e., purpose) and reliance (i.e., process) but only in the high-risk group. The compliance-reliance paradigm is not the reflection of two types of trust. This research could be used to update training and design recommendations that are based upon the assumption that trust causes operator responses regardless of error bias.
Gole, Markus; Köchel, Angelika; Schäfer, Axel; Schienle, Anne
2012-03-01
The goal of the present study was to investigate a threat engagement, disengagement, and sensitivity bias in individuals suffering from pathological worry. Twenty participants high in worry proneness and 16 control participants low in worry proneness completed an emotional go/no-go task with worry-related threat words and neutral words. Shorter reaction times (i.e., threat engagement bias), smaller omission error rates (i.e., threat sensitivity bias), and larger commission error rates (i.e., threat disengagement bias) emerged only in the high worry group when worry-related words constituted the go-stimuli and neutral words the no-go stimuli. Also, smaller omission error rates as well as larger commission error rates were observed in the high worry group relative to the low worry group when worry-related go stimuli and neutral no-go stimuli were used. The obtained results await further replication within a generalized anxiety disorder sample. Also, further samples should include men as well. Our data suggest that worry-prone individuals are threat-sensitive, engage more rapidly with aversion, and disengage harder. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bootstrap Estimates of Standard Errors in Generalizability Theory
ERIC Educational Resources Information Center
Tong, Ye; Brennan, Robert L.
2007-01-01
Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…
Comparing interval estimates for small sample ordinal CFA models
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.
Cova, Florian; Bertoux, Maxime; Bourgeois-Gironde, Sacha; Dubois, Bruno
2012-06-01
Do laypeople think that moral responsibility is compatible with determinism? Recently, philosophers and psychologists trying to answer this question have found contradictory results: while some experiments reveal people to have compatibilist intuitions, others suggest that people could in fact be incompatibilist. To account for this contradictory answers, Nichols and Knobe (2007) have advanced a 'performance error model' according to which people are genuine incompatibilist that are sometimes biased to give compatibilist answers by emotional reactions. To test for this hypothesis, we investigated intuitions about determinism and moral responsibility in patients suffering from behavioural frontotemporal dementia. Patients suffering from bvFTD have impoverished emotional reaction. Thus, the 'performance error model' should predict that bvFTD patients will give less compatibilist answers. However, we found that bvFTD patients give answers quite similar to subjects in control group and were mostly compatibilist. Thus, we conclude that the 'performance error model' should be abandoned in favour of other available model that best fit our data. Copyright © 2012 Elsevier Inc. All rights reserved.
Alderete, John; Davies, Monica
2018-04-01
This work describes a methodology of collecting speech errors from audio recordings and investigates how some of its assumptions affect data quality and composition. Speech errors of all types (sound, lexical, syntactic, etc.) were collected by eight data collectors from audio recordings of unscripted English speech. Analysis of these errors showed that: (i) different listeners find different errors in the same audio recordings, but (ii) the frequencies of error patterns are similar across listeners; (iii) errors collected "online" using on the spot observational techniques are more likely to be affected by perceptual biases than "offline" errors collected from audio recordings; and (iv) datasets built from audio recordings can be explored and extended in a number of ways that traditional corpus studies cannot be.
A minimalist approach to bias estimation for passive sensor measurements with targets of opportunity
NASA Astrophysics Data System (ADS)
Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov
2013-09-01
In order to carry out data fusion, registration error correction is crucial in multisensor systems. This requires estimation of the sensor measurement biases. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. This paper provides a solution for bias estimation for the minimum number of passive sensors (two), when only targets of opportunity are available. The sensor measurements are assumed time-coincident (synchronous) and perfectly associated. Since these sensors provide only line of sight (LOS) measurements, the formation of a single composite Cartesian measurement obtained from fusing the LOS measurements from different sensors is needed to avoid the need for nonlinear filtering. We evaluate the Cramer-Rao Lower Bound (CRLB) on the covariance of the bias estimate, i.e., the quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.
The Effect of Amplifier Bias Drift on Differential Magnitude Estimation in Multiple-Star Systems
NASA Astrophysics Data System (ADS)
Tyler, David W.; Muralimanohar, Hariharan; Borelli, Kathy J.
2007-02-01
We show how the temporal drift of CCD amplifier bias can cause significant relative magnitude estimation error in speckle interferometric observations of multiple-star systems. When amplifier bias varies over time, the estimation error arises if the time between acquisition of dark-frame calibration data and science data is long relative to the timescale over which the bias changes. Using analysis, we show that while detector-temperature drift over time causes a variation in accumulated dark current and a residual bias in calibrated imagery, only amplifier bias variations cause a residual bias in the estimated energy spectrum. We then use telescope data taken specifically to investigate this phenomenon to show that for the detector used, temporal bias drift can cause residual energy spectrum bias as large or larger than the mean value of the noise energy spectrum. Finally, we use a computer simulation to demonstrate the effect of residual bias on differential magnitude estimation. A supplemental calibration technique is described in the appendices.
Credit assignment in movement-dependent reinforcement learning
Boggess, Matthew J.; Crossley, Matthew J.; Parvin, Darius; Ivry, Richard B.; Taylor, Jordan A.
2016-01-01
When a person fails to obtain an expected reward from an object in the environment, they face a credit assignment problem: Did the absence of reward reflect an extrinsic property of the environment or an intrinsic error in motor execution? To explore this problem, we modified a popular decision-making task used in studies of reinforcement learning, the two-armed bandit task. We compared a version in which choices were indicated by key presses, the standard response in such tasks, to a version in which the choices were indicated by reaching movements, which affords execution failures. In the key press condition, participants exhibited a strong risk aversion bias; strikingly, this bias reversed in the reaching condition. This result can be explained by a reinforcement model wherein movement errors influence decision-making, either by gating reward prediction errors or by modifying an implicit representation of motor competence. Two further experiments support the gating hypothesis. First, we used a condition in which we provided visual cues indicative of movement errors but informed the participants that trial outcomes were independent of their actual movements. The main result was replicated, indicating that the gating process is independent of participants’ explicit sense of control. Second, individuals with cerebellar degeneration failed to modulate their behavior between the key press and reach conditions, providing converging evidence of an implicit influence of movement error signals on reinforcement learning. These results provide a mechanistically tractable solution to the credit assignment problem. PMID:27247404
Credit assignment in movement-dependent reinforcement learning.
McDougle, Samuel D; Boggess, Matthew J; Crossley, Matthew J; Parvin, Darius; Ivry, Richard B; Taylor, Jordan A
2016-06-14
When a person fails to obtain an expected reward from an object in the environment, they face a credit assignment problem: Did the absence of reward reflect an extrinsic property of the environment or an intrinsic error in motor execution? To explore this problem, we modified a popular decision-making task used in studies of reinforcement learning, the two-armed bandit task. We compared a version in which choices were indicated by key presses, the standard response in such tasks, to a version in which the choices were indicated by reaching movements, which affords execution failures. In the key press condition, participants exhibited a strong risk aversion bias; strikingly, this bias reversed in the reaching condition. This result can be explained by a reinforcement model wherein movement errors influence decision-making, either by gating reward prediction errors or by modifying an implicit representation of motor competence. Two further experiments support the gating hypothesis. First, we used a condition in which we provided visual cues indicative of movement errors but informed the participants that trial outcomes were independent of their actual movements. The main result was replicated, indicating that the gating process is independent of participants' explicit sense of control. Second, individuals with cerebellar degeneration failed to modulate their behavior between the key press and reach conditions, providing converging evidence of an implicit influence of movement error signals on reinforcement learning. These results provide a mechanistically tractable solution to the credit assignment problem.
1984-12-01
total sum of squares at the center points minus the correction factor for the mean at the center points ( SSpe =Y’Y-nlY), where n1 is the number of...SSlac=SSres- SSpe ). The sum of squares due to pure error estimates 0" and the sum of squares due to lack-of-fit estimates 0’" plus a bias term if...Response Surface Methodology Source d.f. SS MS Regression n b’X1 Y b’XVY/n Residual rn-n Y’Y-b’X’ *Y (Y’Y-b’X’Y)/(n-n) Pure Error ni-i Y’Y-nl1Y SSpe / (ni
Shared Dosimetry Error in Epidemiological Dose-Response Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail
2015-03-23
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less
Outbreak Column 16: Cognitive errors in outbreak decision making.
Curran, Evonne T
2015-01-01
During outbreaks, decisions must be made without all the required information. People, including infection prevention and control teams (IPCTs), who have to make decisions during uncertainty use heuristics to fill the missing data gaps. Heuristics are mental model short cuts that by-and-large enable us to make good decisions quickly. However, these heuristics contain biases and effects that at times lead to cognitive (thinking) errors. These cognitive errors are not made to deliberately misrepresent any given situation; we are subject to heuristic biases when we are trying to perform optimally. The science of decision making is large; there are over 100 different biases recognised and described. Outbreak Column 16 discusses and relates these heuristics and biases to decision making during outbreak prevention, preparedness and management. Insights as to how we might recognise and avoid them are offered.
Bias Reduction and Filter Convergence for Long Range Stereo
NASA Technical Reports Server (NTRS)
Sibley, Gabe; Matthies, Larry; Sukhatme, Gaurav
2005-01-01
We are concerned here with improving long range stereo by filtering image sequences. Traditionally, measurement errors from stereo camera systems have been approximated as 3-D Gaussians, where the mean is derived by triangulation and the covariance by linearized error propagation. However, there are two problems that arise when filtering such 3-D measurements. First, stereo triangulation suffers from a range dependent statistical bias; when filtering this leads to over-estimating the true range. Second, filtering 3-D measurements derived via linearized error propagation leads to apparent filter divergence; the estimator is biased to under-estimate range. To address the first issue, we examine the statistical behavior of stereo triangulation and show how to remove the bias by series expansion. The solution to the second problem is to filter with image coordinates as measurements instead of triangulated 3-D coordinates.
Number-counts slope estimation in the presence of Poisson noise
NASA Technical Reports Server (NTRS)
Schmitt, Juergen H. M. M.; Maccacaro, Tommaso
1986-01-01
The slope determination of a power-law number flux relationship in the case of photon-limited sampling. This case is important for high-sensitivity X-ray surveys with imaging telescopes, where the error in an individual source measurement depends on integrated flux and is Poisson, rather than Gaussian, distributed. A bias-free method of slope estimation is developed that takes into account the exact error distribution, the influence of background noise, and the effects of varying limiting sensitivities. It is shown that the resulting bias corrections are quite insensitive to the bias correction procedures applied, as long as only sources with signal-to-noise ratio five or greater are considered. However, if sources with signal-to-noise ratio five or less are included, the derived bias corrections depend sensitively on the shape of the error distribution.
INCREASING THE ACCURACY OF MAYFIELD ESTIMATES USING KNOWLEDGE OF NEST AGE
This presentation will focus on the error introduced in nest-survival modeling when nest-cycles are assumed to be of constant length. I will present the types of error that may occur, including biases resulting from incorrect estimates of expected values, as well as biases that o...
Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations...
Dippel, Gabriel; Chmielewski, Witold; Mückschel, Moritz; Beste, Christian
2016-11-01
Response inhibition processes are one of the most important executive control functions and have been subject to intense research in cognitive neuroscience. However, knowledge on the neurophysiology and functional neuroanatomy on response inhibition is biased because studies usually employ experimental paradigms (e.g., sustained attention to response task, SART) in which behavior is susceptible to impulsive errors. Here, we investigate whether there are differences in neurophysiological mechanisms and networks depending on the response mode that predominates behavior in a response inhibition task. We do so comparing a SART with a traditionally formatted task paradigm. We use EEG-beamforming in two tasks inducing opposite response modes during action selection. We focus on theta frequency modulations, since these are implicated in cognitive control processes. The results show that a response mode that is susceptible to impulsive errors (response mode used in the SART) is associated with stronger theta band activity in the left temporo-parietal junction. The results suggest that the response modes applied during response inhibition differ in the encoding of surprise signals, or related processes of attentional sampling. Response modes during response inhibition seem to differ in processes necessary to update task representations relevant to behavioral control.
Model Errors in Simulating Precipitation and Radiation fields in the NARCCAP Hindcast Experiment
NASA Astrophysics Data System (ADS)
Kim, J.; Waliser, D. E.; Mearns, L. O.; Mattmann, C. A.; McGinnis, S. A.; Goodale, C. E.; Hart, A. F.; Crichton, D. J.
2012-12-01
The relationship between the model errors in simulating precipitation and radiation fields including the surface insolation and OLR, is examined from the multi-RCM NARCCAP hindcast experiment for the conterminous U.S. region. Findings in this study suggest that the RCM biases in simulating precipitation are related with those in simulating radiation fields. For a majority of RCMs participated in the NARCCAP hindcast experiment as well as their ensemble, the spatial pattern of the insolation bias is negatively correlated with that of the precipitation bias, suggesting that the biases in precipitation and surface insolation are systematically related, most likely via the cloud fields. The relationship varies according to seasons as well with stronger relationship between the simulated precipitation and surface insolation during winter. This suggests that the RCM biases in precipitation and radiation are related via cloud fields. Additional analysis on the RCM errors in OLR is underway to examine more details of this relationship.
NASA Technical Reports Server (NTRS)
Arnold, David; Kong, J. A.
1992-01-01
The electromagnetic bias is an error present in radar altimetry of the ocean due to the non-uniform reflection from wave troughs and crests. A study of the electromagnetic bias became necessary to permit error reduction in mean sea level measurements of satellite radar altimeters. Satellite radar altimeters have been used to find the upper and lower bounds for the electromagnetic bias. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to predict the electromagnetic bias. The predicted electromagnetic bias will be compared to measurements at C and Ku bands.
Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.; ...
2018-02-16
We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.
We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less
NASA Astrophysics Data System (ADS)
Morcrette, C. J.; Van Weverberg, K.; Ma, H.-Y.; Ahlgrimm, M.; Bazile, E.; Berg, L. K.; Cheng, A.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Lee, W.-S.; Liu, Y.; Mellul, L.; Merryfield, W. J.; Qian, Y.; Roehrig, R.; Wang, Y.-C.; Xie, S.; Xu, K.-M.; Zhang, C.; Klein, S.; Petch, J.
2018-03-01
We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally, a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.
Van Weverberg, Kwinten; Morcrette, Cyril J.; Ma, Hsi -Yen; ...
2015-06-17
Many global circulation models (GCMs) exhibit a persistent bias in the 2 m temperature over the midlatitude continents, present in short-range forecasts as well as long-term climate simulations. A number of hypotheses have been proposed, revolving around deficiencies in the soil–vegetation–atmosphere energy exchange, poorly resolved low-level boundary-layer clouds or misrepresentations of deep-convective storms. A common approach to evaluating model biases focuses on the model-mean state. However, this makes difficult an unambiguous interpretation of the origins of a bias, given that biases are the result of the superposition of impacts of clouds and land-surface deficiencies over multiple time steps. This articlemore » presents a new methodology to objectively detect the role of clouds in the creation of a surface warm bias. A unique feature of this study is its focus on temperature-error growth at the time-step level. It is shown that compositing the temperature-error growth by the coinciding bias in total downwelling radiation provides unambiguous evidence for the role that clouds play in the creation of the surface warm bias during certain portions of the day. Furthermore, the application of an objective cloud-regime classification allows for the detection of the specific cloud regimes that matter most for the creation of the bias. We applied this method to two state-of-the-art GCMs that exhibit a distinct warm bias over the Southern Great Plains of the USA. Our analysis highlights that, in one GCM, biases in deep-convective and low-level clouds contribute most to the temperature-error growth in the afternoon and evening respectively. In the second GCM, deep clouds persist too long in the evening, leading to a growth of the temperature bias. In conclusion, the reduction of the temperature bias in both models in the morning and the growth of the bias in the second GCM in the afternoon could not be assigned to a cloud issue, but are more likely caused by a land-surface deficiency.« less
Amorphous Silicon p-i-n Structure Acting as Light and Temperature Sensor
de Cesare, Giampiero; Nascetti, Augusto; Caputo, Domenico
2015-01-01
In this work, we propose a multi-parametric sensor able to measure both temperature and radiation intensity, suitable to increase the level of integration and miniaturization in Lab-on-Chip applications. The device is based on amorphous silicon p-doped/intrinsic/n-doped thin film junction. The device is first characterized as radiation and temperature sensor independently. We found a maximum value of responsivity equal to 350 mA/W at 510 nm and temperature sensitivity equal to 3.2 mV/K. We then investigated the effects of the temperature variation on light intensity measurement and of the light intensity variation on the accuracy of the temperature measurement. We found that the temperature variation induces an error lower than 0.55 pW/K in the light intensity measurement at 550 nm when the diode is biased in short circuit condition, while an error below 1 K/µW results in the temperature measurement when a forward bias current higher than 25 µA/cm2 is applied. PMID:26016913
Deffner, Veronika; Küchenhoff, Helmut; Breitner, Susanne; Schneider, Alexandra; Cyrys, Josef; Peters, Annette
2018-05-01
The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
Fales, Christina L.; Barch, Deanna M.; Rundle, Melissa M.; Mintun, Mark A.; Snyder, Abraham Z.; Cohen, Jonathan D.; Mathews, Jose; Sheline, Yvette I.
2008-01-01
Background Major depression is characterized by a negativity bias: an enhanced responsiveness to, and memory for, affectively negative stimuli. However it is not yet clear whether this bias represents (1) impaired top-down cognitive control over affective responses, potentially linked to deficits in dorsolateral prefrontal cortex function; or (2) enhanced bottom-up responses to affectively-laden stimuli that dysregulate cognitive control mechanisms, potentially linked to deficits in amygdala and anterior cingulate function. Methods We used an attentional interference task using emotional distracters to test for top-down versus bottom-up dysfunction in the interaction of cognitive-control circuitry and emotion-processing circuitry. A total of 27 patients with major depression and 24 controls were tested. Event-related functional magnetic resonance imaging was carried out as participants directly attended to, or attempted to ignore, fear-related stimuli. Results Compared to controls, patients with depression showed an enhanced amygdala response to unattended fear-related stimuli (relative to unattended neutral). By contrast, control participants showed increased activity in right dorsolateral prefrontal cortex (Brodmann areas 46/9) when ignoring fear stimuli (relative to neutral), which the patients with depression did not. In addition, the depressed participants failed to show evidence of error-related cognitive adjustments (increased activity in bilateral dorsolateral prefrontal cortex on post-error trials), but the control group did show them. Conclusions These results suggest multiple sources of dysregulation in emotional and cognitive control circuitry in depression, implicating both top-down and bottom-up dysfunction. PMID:17719567
Selection within households in health surveys
Alves, Maria Cecilia Goi Porto; Escuder, Maria Mercedes Loureiro; Claro, Rafael Moreira; da Silva, Nilza Nunes
2014-01-01
OBJECTIVE To compare the efficiency and accuracy of sampling designs including and excluding the sampling of individuals within sampled households in health surveys. METHODS From a population survey conducted in Baixada Santista Metropolitan Area, SP, Southeastern Brazil, lowlands between 2006 and 2007, 1,000 samples were drawn for each design and estimates for people aged 18 to 59 and 18 and over were calculated for each sample. In the first design, 40 census tracts, 12 households per sector, and one person per household were sampled. In the second, no sampling within the household was performed and 40 census sectors and 6 households for the 18 to 59-year old group and 5 or 6 for the 18 and over age group or more were sampled. Precision and bias of proportion estimates for 11 indicators were assessed in the two final sets of the 1000 selected samples with the two types of design. They were compared by means of relative measurements: coefficient of variation, bias/mean ratio, bias/standard error ratio, and relative mean square error. Comparison of costs contrasted basic cost per person, household cost, number of people, and households. RESULTS Bias was found to be negligible for both designs. A lower precision was found in the design including individuals sampling within households, and the costs were higher. CONCLUSIONS The design excluding individual sampling achieved higher levels of efficiency and accuracy and, accordingly, should be first choice for investigators. Sampling of household dwellers should be adopted when there are reasons related to the study subject that may lead to bias in individual responses if multiple dwellers answer the proposed questionnaire. PMID:24789641
Self-Associations Influence Task-Performance through Bayesian Inference
Bengtsson, Sara L.; Penny, Will D.
2013-01-01
The way we think about ourselves impacts greatly on our behavior. This paper describes a behavioral study and a computational model that shed new light on this important area. Participants were primed “clever” and “stupid” using a scrambled sentence task, and we measured the effect on response time and error-rate on a rule-association task. First, we observed a confirmation bias effect in that associations to being “stupid” led to a gradual decrease in performance, whereas associations to being “clever” did not. Second, we observed that the activated self-concepts selectively modified attention toward one’s performance. There was an early to late double dissociation in RTs in that primed “clever” resulted in RT increase following error responses, whereas primed “stupid” resulted in RT increase following correct responses. We propose a computational model of subjects’ behavior based on the logic of the experimental task that involves two processes; memory for rules and the integration of rules with subsequent visual cues. The model incorporates an adaptive decision threshold based on Bayes rule, whereby decision thresholds are increased if integration was inferred to be faulty. Fitting the computational model to experimental data confirmed our hypothesis that priming affects the memory process. This model explains both the confirmation bias and double dissociation effects and demonstrates that Bayesian inferential principles can be used to study the effect of self-concepts on behavior. PMID:23966937
Estimation of attitude sensor timetag biases
NASA Technical Reports Server (NTRS)
Sedlak, J.
1995-01-01
This paper presents an extended Kalman filter for estimating attitude sensor timing errors. Spacecraft attitude is determined by finding the mean rotation from a set of reference vectors in inertial space to the corresponding observed vectors in the body frame. Any timing errors in the observations can lead to attitude errors if either the spacecraft is rotating or the reference vectors themselves vary with time. The state vector here consists of the attitude quaternion, timetag biases, and, optionally, gyro drift rate biases. The filter models the timetags as random walk processes: their expectation values propagate as constants and white noise contributes to their covariance. Thus, this filter is applicable to cases where the true timing errors are constant or slowly varying. The observability of the state vector is studied first through an examination of the algebraic observability condition and then through several examples with simulated star tracker timing errors. The examples use both simulated and actual flight data from the Extreme Ultraviolet Explorer (EUVE). The flight data come from times when EUVE had a constant rotation rate, while the simulated data feature large angle attitude maneuvers. The tests include cases with timetag errors on one or two sensors, both constant and time-varying, and with and without gyro bias errors. Due to EUVE's sensor geometry, the observability of the state vector is severely limited when the spacecraft rotation rate is constant. In the absence of attitude maneuvers, the state elements are highly correlated, and the state estimate is unreliable. The estimates are particularly sensitive to filter mistuning in this case. The EUVE geometry, though, is a degenerate case having coplanar sensors and rotation vector. Observability is much improved and the filter performs well when the rate is either varying or noncoplanar with the sensors, as during a slew. Even with bad geometry and constant rates, if gyro biases are independently known, the timetag error for a single sensor can be accurately estimated as long as its boresight is not too close to the spacecraft rotation axis.
The accuracy of self-reported pregnancy-related weight: a systematic review.
Headen, I; Cohen, A K; Mujahid, M; Abrams, B
2017-03-01
Self-reported maternal weight is error-prone, and the context of pregnancy may impact error distributions. This systematic review summarizes error in self-reported weight across pregnancy and assesses implications for bias in associations between pregnancy-related weight and birth outcomes. We searched PubMed and Google Scholar through November 2015 for peer-reviewed articles reporting accuracy of self-reported, pregnancy-related weight at four time points: prepregnancy, delivery, over gestation and postpartum. Included studies compared maternal self-report to anthropometric measurement or medical report of weights. Sixty-two studies met inclusion criteria. We extracted data on magnitude of error and misclassification. We assessed impact of reporting error on bias in associations between pregnancy-related weight and birth outcomes. Women underreported prepregnancy (PPW: -2.94 to -0.29 kg) and delivery weight (DW: -1.28 to 0.07 kg), and over-reported gestational weight gain (GWG: 0.33 to 3 kg). Magnitude of error was small, ranged widely, and varied by prepregnancy weight class and race/ethnicity. Misclassification was moderate (PPW: 0-48.3%; DW: 39.0-49.0%; GWG: 16.7-59.1%), and overestimated some estimates of population prevalence. However, reporting error did not largely bias associations between pregnancy-related weight and birth outcomes. Although measured weight is preferable, self-report is a cost-effective and practical measurement approach. Future researchers should develop bias correction techniques for self-reported pregnancy-related weight. © 2017 World Obesity Federation.
Clinical decision-making: heuristics and cognitive biases for the ophthalmologist.
Hussain, Ahsen; Oestreicher, James
Diagnostic errors have a significant impact on health care outcomes and patient care. The underlying causes and development of diagnostic error are complex with flaws in health care systems, as well as human error, playing a role. Cognitive biases and a failure of decision-making shortcuts (heuristics) are human factors that can compromise the diagnostic process. We describe these mechanisms, their role with the clinician, and provide clinical scenarios to highlight the various points at which biases may emerge. We discuss strategies to modify the development and influence of these processes and the vulnerability of heuristics to provide insight and improve clinical outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Working memory and the memory distortion component of hindsight bias.
Calvillo, Dustin P
2012-01-01
One component of hindsight bias is memory distortion: Individuals' recollections of their predictions are biased towards known outcomes. The present study examined the role of working memory in the memory distortion component of hindsight bias. Participants answered almanac-like questions, completed a measure of working memory capacity, were provided with the correct answers, and attempted to recollect their original judgements in two conditions: with and without a concurrent working memory load. Participants' recalled judgements were more biased by feedback when they recalled these judgements with a concurrent memory load and working memory capacity was negatively correlated with memory distortion. These findings are consistent with reconstruction accounts of the memory distortion component of hindsight bias and, more generally, with dual process theories of cognition. These results also relate the memory distortion component of hindsight bias with other cognitive errors, such as source monitoring errors, the belief bias in syllogistic reasoning and anchoring effects. Implications for the separate components view of hindsight bias are discussed.
2012-01-01
Background Adults with anxiety show biased categorization and avoidance of threats. Such biases may emerge through complex interplay between genetics and environments, occurring early in life. Research on threat biases in children has focuses on a restricted range of biases, with insufficient focus on genetic and environmental origins. Here, we explore differences between children with and without anxiety problems in under-studied areas of threat bias. We focused both on associations with anxious phenotype and the underlying gene-environmental correlates for two specific processes: the categorisation of threat faces and avoidance learning. Method Two-hundred and fifty 10-year old MZ and DZ twin pairs (500 individuals) completed tasks assessing accuracy in the labelling of threatening facial expressions and in the acquisition of avoidant responses to a card associated with a masked threatening face. To assess whether participants met criteria for an anxiety disorder, parents of twins completed a self-guided computerized version of the Development and Well-being Assessment (DAWBA). Comparison of MZ and DZ twin correlations using model-fitting were used to compute estimates of genetic, shared and non-shared environmental effects. Results Of the 500 twins assessed, 25 (5%) met diagnostic criteria for a current anxiety disorder. Children with anxiety disorders were more accurate in their ability to recognize disgust faces than those without anxiety disorders, but were commensurate on identifying other threatening face emotions (angry, fearful, sad). Children with anxiety disorders but also more strongly avoided selecting a conditioned stimulus than non-anxious children. While recognition of socially threatening faces was moderately heritable, avoidant responses were heavily influenced by the non-shared environment. Conclusion These data add to other findings on threat biases in anxious children. Specifically, we found biases in the labelling of some negative-valence faces and in the acquisition of avoidant responses. While non-shared environmental effects explained all of the variance on threat avoidance, some of this may be due to measurement error. PMID:22788754
Bias estimation for moving optical sensor measurements with targets of opportunity
NASA Astrophysics Data System (ADS)
Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov
2014-06-01
Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.
Hanson, Sonya M.; Ekins, Sean; Chodera, John D.
2015-01-01
All experimental assay data contains error, but the magnitude, type, and primary origin of this error is often not obvious. Here, we describe a simple set of assay modeling techniques based on the bootstrap principle that allow sources of error and bias to be simulated and propagated into assay results. We demonstrate how deceptively simple operations—such as the creation of a dilution series with a robotic liquid handler—can significantly amplify imprecision and even contribute substantially to bias. To illustrate these techniques, we review an example of how the choice of dispensing technology can impact assay measurements, and show how large contributions to discrepancies between assays can be easily understood and potentially corrected for. These simple modeling techniques—illustrated with an accompanying IPython notebook—can allow modelers to understand the expected error and bias in experimental datasets, and even help experimentalists design assays to more effectively reach accuracy and imprecision goals. PMID:26678597
U.S. Maternally Linked Birth Records May Be Biased for Hispanics and Other Population Groups
LEISS, JACK K.; GILES, DENISE; SULLIVAN, KRISTIN M.; MATHEWS, RAHEL; SENTELLE, GLENDA; TOMASHEK, KAY M.
2010-01-01
Purpose To advance understanding of linkage error in U.S. maternally linked datasets, and how the error may affect results of studies based on the linked data. Methods North Carolina birth and fetal death records for 1988-1997 were maternally linked (n=1,030,029). The maternal set probability, defined as the probability that all records assigned to the same maternal set do in fact represent events to the same woman, was used to assess differential maternal linkage error across race/ethnic groups. Results Maternal set probabilities were lower for records specifying Asian or Hispanic race/ethnicity, suggesting greater maternal linkage error. The lower probabilities for Hispanics were concentrated in women of Mexican origin who were not born in the United States. Conclusions Differential maternal linkage error may be a source of bias in studies using U.S. maternally linked datasets to make comparisons between Hispanics and other groups or among Hispanic subgroups. Methods to quantify and adjust for this potential bias are needed. PMID:20006273
Estimating the Autocorrelated Error Model with Trended Data: Further Results,
1979-11-01
Perhaps the most serious deficiency of OLS in the presence of autocorrelation is not inefficiency but bias in its estimated standard errors--a bias...k for all t has variance var(b) = o2/ Tk2 2This refutes Maeshiro’s (1976) conjecture that "an estimator utilizing relevant extraneous information
Biases and Standard Errors of Standardized Regression Coefficients
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Chan, Wai
2011-01-01
The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…
Mathematical analysis study for radar data processing and enhancement. Part 1: Radar data analysis
NASA Technical Reports Server (NTRS)
James, R.; Brownlow, J. D.
1985-01-01
A study is performed under NASA contract to evaluate data from an AN/FPS-16 radar installed for support of flight programs at Dryden Flight Research Facility of NASA Ames Research Center. The purpose of this study is to provide information necessary for improving post-flight data reduction and knowledge of accuracy of derived radar quantities. Tracking data from six flights are analyzed. Noise and bias errors in raw tracking data are determined for each of the flights. A discussion of an altiude bias error during all of the tracking missions is included. This bias error is defined by utilizing pressure altitude measurements made during survey flights. Four separate filtering methods, representative of the most widely used optimal estimation techniques for enhancement of radar tracking data, are analyzed for suitability in processing both real-time and post-mission data. Additional information regarding the radar and its measurements, including typical noise and bias errors in the range and angle measurements, is also presented. This is in two parts. This is part 1, an analysis of radar data.
A regret-induced status-quo bias
Nicolle, A.; Fleming, S.M.; Bach, D.R.; Driver, J.; Dolan, R. J.
2011-01-01
A suboptimal bias towards accepting the ‘status-quo’ option in decision-making is well established behaviorally, but the underlying neural mechanisms are less clear. Behavioral evidence suggests the emotion of regret is higher when errors arise from rejection rather than acceptance of a status-quo option. Such asymmetry in the genesis of regret might drive the status-quo bias on subsequent decisions, if indeed erroneous status-quo rejections have a greater neuronal impact than erroneous status-quo acceptances. To test this, we acquired human fMRI data during a difficult perceptual decision task that incorporated a trial-to-trial intrinsic status-quo option, with explicit signaling of outcomes (error or correct). Behaviorally, experienced regret was higher after an erroneous status-quo rejection compared to acceptance. Anterior insula and medial prefrontal cortex showed increased BOLD signal after such status-quo rejection errors. In line with our hypothesis, a similar pattern of signal change predicted acceptance of the status-quo on a subsequent trial. Thus, our data link a regret-induced status-quo bias to error-related activity on the preceding trial. PMID:21368043
Wagner, Tyler; DeWeber, Jefferson Tyrell; Tsang, Yin-Phan; Krueger, Damon; Whittier, Joanna B.; Infante, Dana M.; Whelan, Gary
2014-01-01
Flow and water temperature are fundamental properties of stream ecosystems upon which many freshwater resource management decisions are based. U.S. Geological Survey (USGS) gages are the most important source of streamflow and water temperature data available nationwide, but the degree to which gages represent landscape attributes of the larger population of streams has not been thoroughly evaluated. We identified substantial biases for seven landscape attributes in one or more regions across the conterminous United States. Streams with small watersheds (<10 km2) and at high elevations were often underrepresented, and biases were greater for water temperature gages and in arid regions. Biases can fundamentally alter management decisions and at a minimum this potential for error must be acknowledged accurately and transparently. We highlight three strategies that seek to reduce bias or limit errors arising from bias and illustrate how one strategy, supplementing USGS data, can greatly reduce bias.
Low speed phaselock speed control system. [for brushless dc motor
NASA Technical Reports Server (NTRS)
Fulcher, R. W.; Sudey, J. (Inventor)
1975-01-01
A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.
Dowling, N Maritza; Bolt, Daniel M; Deng, Sien; Li, Chenxi
2016-05-26
Patient-reported outcome (PRO) measures play a key role in the advancement of patient-centered care research. The accuracy of inferences, relevance of predictions, and the true nature of the associations made with PRO data depend on the validity of these measures. Errors inherent to self-report measures can seriously bias the estimation of constructs assessed by the scale. A well-documented disadvantage of self-report measures is their sensitivity to response style (RS) effects such as the respondent's tendency to select the extremes of a rating scale. Although the biasing effect of extreme responding on constructs measured by self-reported tools has been widely acknowledged and studied across disciplines, little attention has been given to the development and systematic application of methodologies to assess and control for this effect in PRO measures. We review the methodological approaches that have been proposed to study extreme RS effects (ERS). We applied a multidimensional item response theory model to simultaneously estimate and correct for the impact of ERS on trait estimation in a PRO instrument. Model estimates were used to study the biasing effects of ERS on sum scores for individuals with the same amount of the targeted trait but different levels of ERS. We evaluated the effect of joint estimation of multiple scales and ERS on trait estimates and demonstrated the biasing effects of ERS on these trait estimates when used as explanatory variables. A four-dimensional model accounting for ERS bias provided a better fit to the response data. Increasing levels of ERS showed bias in total scores as a function of trait estimates. The effect of ERS was greater when the pattern of extreme responding was the same across multiple scales modeled jointly. The estimated item category intercepts provided evidence of content independent category selection. Uncorrected trait estimates used as explanatory variables in prediction models showed downward bias. A comprehensive evaluation of the psychometric quality and soundness of PRO assessment measures should incorporate the study of ERS as a potential nuisance dimension affecting the accuracy and validity of scores and the impact of PRO data in clinical research and decision making.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Lee, Xuhui; Liu, Shoudong
2013-09-01
Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Steven Karl
This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.
Orbit error characteristic and distribution of TLE using CHAMP orbit data
NASA Astrophysics Data System (ADS)
Xu, Xiao-li; Xiong, Yong-qing
2018-02-01
Space object orbital covariance data is required for collision risk assessments, but publicly accessible two line element (TLE) data does not provide orbital error information. This paper compared historical TLE data and GPS precision ephemerides of CHAMP to assess TLE orbit accuracy from 2002 to 2008, inclusive. TLE error spatial variations with longitude and latitude were calculated to analyze error characteristics and distribution. The results indicate that TLE orbit data are systematically biased from the limited SGP4 model. The biases can reach the level of kilometers, and the sign and magnitude are correlate significantly with longitude.
Counteracting estimation bias and social influence to improve the wisdom of crowds.
Kao, Albert B; Berdahl, Andrew M; Hartnett, Andrew T; Lutz, Matthew J; Bak-Coleman, Joseph B; Ioannou, Christos C; Giam, Xingli; Couzin, Iain D
2018-04-01
Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across many contexts. However, two sources of error can diminish collective wisdom: individual estimation biases and information sharing between individuals. Here, we measure individual biases and social influence rules in multiple experiments involving hundreds of individuals performing a classic numerosity estimation task. We first investigate how existing aggregation methods, such as calculating the arithmetic mean or the median, are influenced by these sources of error. We show that the mean tends to overestimate, and the median underestimate, the true value for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to collective bias, allows us to develop and validate three new aggregation measures that effectively counter sources of collective estimation error. In addition, we present results from a further experiment that quantifies the social influence rules that individuals employ when incorporating personal estimates with social information. We show that the corrected mean is remarkably robust to social influence, retaining high accuracy in the presence or absence of social influence, across numerosities and across different methods for averaging social information. Using knowledge of estimation biases and social influence rules may therefore be an inexpensive and general strategy to improve the wisdom of crowds. © 2018 The Author(s).
Competitive action video game players display rightward error bias during on-line video game play.
Roebuck, Andrew J; Dubnyk, Aurora J B; Cochran, David; Mandryk, Regan L; Howland, John G; Harms, Victoria
2017-09-12
Research in asymmetrical visuospatial attention has identified a leftward bias in the general population across a variety of measures including visual attention and line-bisection tasks. In addition, increases in rightward collisions, or bumping, during visuospatial navigation tasks have been demonstrated in real world and virtual environments. However, little research has investigated these biases beyond the laboratory. The present study uses a semi-naturalistic approach and the online video game streaming service Twitch to examine navigational errors and assaults as skilled action video game players (n = 60) compete in Counter Strike: Global Offensive. This study showed a significant rightward bias in both fatal assaults and navigational errors. Analysis using the in-game ranking system as a measure of skill failed to show a relationship between bias and skill. These results suggest that a leftward visuospatial bias may exist in skilled players during online video game play. However, the present study was unable to account for some factors such as environmental symmetry and player handedness. In conclusion, video game streaming is a promising method for behavioural research in the future, however further study is required before one can determine whether these results are an artefact of the method applied, or representative of a genuine rightward bias.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.
2015-07-01
Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-01-01
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-06-15
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.
Parkhurst, Justin
2016-07-20
The field of cognitive psychology has increasingly provided scientific insights to explore how humans are subject to unconscious sources of evidentiary bias, leading to errors that can affect judgement and decision-making. Increasingly these insights are being applied outside the realm of individual decision-making to the collective arena of policy-making as well. A recent editorial in this journal has particularly lauded the work of the World Bank for undertaking an open and critical reflection on sources of unconscious bias in its own expert staff that could undermine achievement of its key goals. The World Bank case indeed serves as a remarkable case of a global policy-making agency making its own critical reflections transparent for all to see. Yet the recognition that humans are prone to cognitive errors has been known for centuries, and the scientific exploration of such biases provided by cognitive psychology is now well-established. What still remains to be developed, however, is a widespread body of work that can inform efforts to institutionalise strategies to mitigate the multiple sources and forms of evidentiary bias arising within administrative and policy-making environments. Addressing this gap will require a programme of conceptual and empirical work that supports robust development and evaluation of institutional bias mitigation strategies. The cognitive sciences provides a scientific basis on which to proceed, but a critical priority will now be the application of that science to improve policy-making within those agencies taking responsibility for social welfare and development programmes. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
NASA Technical Reports Server (NTRS)
Mahesh, Ashwin; Spinhirne, James D.; Duda, David P.; Eloranta, Edwin W.; Starr, David O'C (Technical Monitor)
2001-01-01
The altimetry bias in GLAS (Geoscience Laser Altimeter System) or other laser altimeters resulting from atmospheric multiple scattering is studied in relationship to current knowledge of cloud properties over the Antarctic Plateau. Estimates of seasonal and interannual changes in the bias are presented. Results show the bias in altitude from multiple scattering in clouds would be a significant error source without correction. The selective use of low optical depth clouds or cloudfree observations, as well as improved analysis of the return pulse such as by the Gaussian method used here, are necessary to minimize the surface altitude errors. The magnitude of the bias is affected by variations in cloud height, cloud effective particle size and optical depth. Interannual variations in these properties as well as in cloud cover fraction could lead to significant year-to-year variations in the altitude bias. Although cloud-free observations reduce biases in surface elevation measurements from space, over Antarctica these may often include near-surface blowing snow, also a source of scattering-induced delay. With careful selection and analysis of data, laser altimetry specifications can be met.
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Menard, Richard; Ortland, David; Einaudi, Franco (Technical Monitor)
2001-01-01
A new approach to the analysis of systematic and random observation errors is presented in which the error statistics are obtained using forecast data rather than observations from a different instrument type. The analysis is carried out at an intermediate retrieval level, instead of the more typical state variable space. This method is carried out on measurements made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). HRDI, a limb sounder, is the only satellite instrument measuring winds in the stratosphere, and the only instrument of any kind making global wind measurements in the upper atmosphere. HRDI measures doppler shifts in the two different O2 absorption bands (alpha and B) and the retrieved products are tangent point Line-of-Sight wind component (level 2 retrieval) and UV winds (level 3 retrieval). This analysis is carried out on a level 1.9 retrieval, in which the contributions from different points along the line-of-sight have not been removed. Biases are calculated from O-F (observed minus forecast) LOS wind components and are separated into a measurement parameter space consisting of 16 different values. The bias dependence on these parameters (plus an altitude dependence) is used to create a bias correction scheme carried out on the level 1.9 retrieval. The random error component is analyzed by separating the gamma and B band observations and locating observation pairs where both bands are very nearly looking at the same location at the same time. It is shown that the two observation streams are uncorrelated and that this allows the forecast error variance to be estimated. The bias correction is found to cut the effective observation error variance in half.
Reliability and Validity Assessment of a Linear Position Transducer
Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.
2015-01-01
The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300
People newly in love are more responsive to positive feedback.
Brown, Cassandra L; Beninger, Richard J
2012-06-01
Passionate love is associated with increased activity in dopamine-rich regions of the brain. Increased dopamine in these regions is associated with a greater tendency to learn from reward in trial-and-error learning tasks. This study examined the prediction that individuals who were newly in love would be better at responding to reward (positive feedback). In test trials, people who were newly in love selected positive outcomes significantly more often than their single (not in love) counterparts but were no better at the task overall. This suggests that people who are newly in love show a bias toward responding to positive feedback, which may reflect a general bias towards reward-seeking.
Tilgner, Linda; Wertheim, Eleanor H; Paxton, Susan J
2004-03-01
The current study examined whether a social desirability response bias is a source of measurement error in prevention research. Six hundred and seventy-seven female students in Grade 7 (n = 345) and Grade 8 (n = 332) were divided into either an intervention condition, in which participants watched a videotape promoting body acceptance and discouraging dieting and then discussed issues related to the video, or a control condition. Questionnaires were completed at baseline, postintervention, and at 1-month follow-up. Social desirability scores were correlated at a low but significant level with baseline body dissatisfaction, drive for thinness, bulimic tendencies, intention to diet, and size discrepancy for intervention participants. Social desirability did not correlate significantly with change over time in the outcome measures. The findings suggested that changes in girls' self-reports related to a prevention program were relatively free of social desirability response bias. Copyright 2004 by Wiley Periodicals, Inc. Int J Eat Disord 35: 211-216, 2004.
Perceptions of Randomness: Why Three Heads Are Better than Four
ERIC Educational Resources Information Center
Hahn, Ulrike; Warren, Paul A.
2009-01-01
A long tradition of psychological research has lamented the systematic errors and biases in people's perception of the characteristics of sequences generated by a random mechanism such as a coin toss. It is proposed that once the likely nature of people's actual experience of such processes is taken into account, these "errors" and "biases"…
Reducing Bias and Error in the Correlation Coefficient Due to Nonnormality
ERIC Educational Resources Information Center
Bishara, Anthony J.; Hittner, James B.
2015-01-01
It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared…
ERIC Educational Resources Information Center
Henningsen, David Dryden; Henningsen, Mary Lynn Miller
2010-01-01
Research on error management theory indicates that men tend to overestimate women's sexual interest and women underestimate men's interest in committed relationships (Haselton & Buss, 2000). We test the assumptions of the theory in face-to-face, stranger interactions with 111 man-woman dyads. Support for the theory emerges, but potential boundary…
The Weak Spots in Contemporary Science (and How to Fix Them)
2017-01-01
Simple Summary Several fraud cases, widespread failure to replicate or reproduce seminal findings, and pervasive error in the scientific literature have led to a crisis of confidence in the biomedical, behavioral, and social sciences. In this review, the author discusses some of the core findings that point at weak spots in contemporary science and considers the human factors that underlie them. He delves into the human tendencies that create errors and biases in data collection, analyses, and reporting of research results. He presents several solutions to deal with observer bias, publication bias, the researcher’s tendency to exploit degrees of freedom in their analysis of data, low statistical power, and errors in the reporting of results, with a focus on the specific challenges in animal welfare research. Abstract In this review, the author discusses several of the weak spots in contemporary science, including scientific misconduct, the problems of post hoc hypothesizing (HARKing), outcome switching, theoretical bloopers in formulating research questions and hypotheses, selective reading of the literature, selective citing of previous results, improper blinding and other design failures, p-hacking or researchers’ tendency to analyze data in many different ways to find positive (typically significant) results, errors and biases in the reporting of results, and publication bias. The author presents some empirical results highlighting problems that lower the trustworthiness of reported results in scientific literatures, including that of animal welfare studies. Some of the underlying causes of these biases are discussed based on the notion that researchers are only human and hence are not immune to confirmation bias, hindsight bias, and minor ethical transgressions. The author discusses solutions in the form of enhanced transparency, sharing of data and materials, (post-publication) peer review, pre-registration, registered reports, improved training, reporting guidelines, replication, dealing with publication bias, alternative inferential techniques, power, and other statistical tools. PMID:29186879
TRMM On-Orbit Performance Re-Accessed After Control Change
NASA Technical Reports Server (NTRS)
Bilanow, Steve
2006-01-01
The Tropical Rainfall Measuring Mission (TRMM) spacecraft, a joint mission between the U.S. and Japan, launched onboard an HI1 rocket on November 27,1997 and transitioned in August, 2001 from an average operating altitude of 350 kilometers to 402.5 kilometers. Due to problems using the Earth Sensor Assembly (ESA) at the higher altitude, TRMM switched to a backup attitude control mode. Prior to the orbit boost TRMM controlled pitch and roll to the local vertical using ESA measurements while using gyro data to propagate yaw attitude between yaw updates from the Sun sensors. After the orbit boost, a Kalman filter used 3-axis gyro data with Sun sensor and magnetometers to estimate onboard attitude. While originally intended to meet a degraded attitude accuracy of 0.7 degrees, the new control mode met the original 0.2 degree attitude accuracy requirement after improving onboard ephemeris prediction and adjusting the magnetometer calibration onboard. Independent roll attitude checks using a science instrument, the Precipitation Radar (PR) which was built in Japan, provided a novel insight into the pointing performance. The PR data helped identify the pointing errors after the orbit boost, track the performance improvements, and show subtle effects from ephemeris errors and gyro bias errors. It also helped identify average bias trends throughout the mission. Roll errors tracked by the PR from sample orbits pre-boost and post-boost are shown in Figure 1. Prior to the orbit boost the largest attitude errors were due to occasional interference in the ESA. These errors were sometime larger than 0.2 degrees in pitch and roll, but usually less, as estimated from a comprehensive review of the attitude excursions using gyro data. Sudden jumps in the onboard roll show up as spikes in the reported attitude since the control responds within tens of seconds to null the pointing error. The PR estimated roll tracks well with an estimate of the roll history propagated using gyro data. After the orbit boost, the attitude errors shown by the PR roll have a smooth sine-wave type signal because of the way that attitude errors propagate with the use of gyro data. Yaw errors couple at orbit period to roll with '/4 orbit lag. By tracking the amplitude, phase, and bias of the sinusoidal PR roll error signal, it was shown that the average pitch rotation axis tends to be offset from orbit normal in a direction perpendicular to the Sun direction, as shown in Figure 2 for a 200 day period following the orbit boost. This is a result of the higher accuracy and stability of the Sun sensor measurements relative to the magnetometer measurements used in the Kalman filter. In November, 2001 a magnetometer calibration adjustment was uploaded which improved the pointing performance, keeping the roll and yaw amplitudes within about 0.1 degrees. After the boost, onboard ephemeris errors had a direct effect on the pitch pointing, being used to compute the Earth pointing reference frame. Improvements after the orbit boost have kept the the onboard ephemeris errors generally below 20 kilometers. Ephemeris errors have secondary effects on roll and yaw, especially during high beta angle when pitch effects can couple into roll and yaw. This is illustrated in figure 3. The onboard roll bias trends as measured by PR data show correlations with the Kalman filter's gyro bias error. This particularly shows up after yaw turns (every 2 to 4 weeks) as shown in Figure 3, when a slight roll bias is observed while the onboard computed gyro biases settle to new values. As for longer term trends, the PR data shows that the roll bias was influenced by Earth horizon radiance effects prior to the boost, changing values at yaw turns, and indicated a long term drift as shown in Figure 4. After the boost, the bias variations were smaller and showed some possible correlation with solar beta angle, probably due to sun sensor misalignment effects.
Constraints on a scale-dependent bias from galaxy clustering
NASA Astrophysics Data System (ADS)
Amendola, L.; Menegoni, E.; Di Porto, C.; Corsi, M.; Branchini, E.
2017-01-01
We forecast the future constraints on scale-dependent parametrizations of galaxy bias and their impact on the estimate of cosmological parameters from the power spectrum of galaxies measured in a spectroscopic redshift survey. For the latter we assume a wide survey at relatively large redshifts, similar to the planned Euclid survey, as the baseline for future experiments. To assess the impact of the bias we perform a Fisher matrix analysis, and we adopt two different parametrizations of scale-dependent bias. The fiducial models for galaxy bias are calibrated using mock catalogs of H α emitting galaxies mimicking the expected properties of the objects that will be targeted by the Euclid survey. In our analysis we have obtained two main results. First of all, allowing for a scale-dependent bias does not significantly increase the errors on the other cosmological parameters apart from the rms amplitude of density fluctuations, σ8 , and the growth index γ , whose uncertainties increase by a factor up to 2, depending on the bias model adopted. Second, we find that the accuracy in the linear bias parameter b0 can be estimated to within 1%-2% at various redshifts regardless of the fiducial model. The nonlinear bias parameters have significantly large errors that depend on the model adopted. Despite this, in the more realistic scenarios departures from the simple linear bias prescription can be detected with a ˜2 σ significance at each redshift explored. Finally, we use the Fisher matrix formalism to assess the impact od assuming an incorrect bias model and find that the systematic errors induced on the cosmological parameters are similar or even larger than the statistical ones.
Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby; ...
2016-12-05
The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby
The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less
Lies, Damned Lies, and Survey Self-Reports? Identity as a Cause of Measurement Bias
Brenner, Philip S.; DeLamater, John
2017-01-01
Explanations of error in survey self-reports have focused on social desirability: that respondents answer questions about normative behavior to appear prosocial to interviewers. However, this paradigm fails to explain why bias occurs even in self-administered modes like mail and web surveys. We offer an alternative explanation rooted in identity theory that focuses on measurement directiveness as a cause of bias. After completing questions about physical exercise on a web survey, respondents completed a text message–based reporting procedure, sending updates on their major activities for five days. Random assignment was then made to one of two conditions: instructions mentioned the focus of the study, physical exercise, or not. Survey responses, text updates, and records from recreation facilities were compared. Direct measures generated bias—overreporting in survey measures and reactivity in the directive text condition—but the nondirective text condition generated unbiased measures. Findings are discussed in terms of identity. PMID:29038609
Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis
NASA Technical Reports Server (NTRS)
Dee, Dick P.; Todling, Ricardo
1999-01-01
We describe the application of the unbiased sequential analysis algorithm developed by Dee and da Silva (1998) to the GEOS DAS moisture analysis. The algorithm estimates the persistent component of model error using rawinsonde observations and adjusts the first-guess moisture field accordingly. Results of two seasonal data assimilation cycles show that moisture analysis bias is almost completely eliminated in all observed regions. The improved analyses cause a sizable reduction in the 6h-forecast bias and a marginal improvement in the error standard deviations.
Explanation of Two Anomalous Results in Statistical Mediation Analysis.
Fritz, Matthew S; Taylor, Aaron B; Mackinnon, David P
2012-01-01
Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special concern as the bias-corrected bootstrap is often recommended and used due to its higher statistical power compared with other tests. The second result is statistical power reaching an asymptote far below 1.0 and in some conditions even declining slightly as the size of the relationship between X and M , a , increased. Two computer simulations were conducted to examine these findings in greater detail. Results from the first simulation found that the increased Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap are a function of an interaction between the size of the individual paths making up the mediated effect and the sample size, such that elevated Type I error rates occur when the sample size is small and the effect size of the nonzero path is medium or larger. Results from the second simulation found that stagnation and decreases in statistical power as a function of the effect size of the a path occurred primarily when the path between M and Y , b , was small. Two empirical mediation examples are provided using data from a steroid prevention and health promotion program aimed at high school football players (Athletes Training and Learning to Avoid Steroids; Goldberg et al., 1996), one to illustrate a possible Type I error for the bias-corrected bootstrap test and a second to illustrate a loss in power related to the size of a . Implications of these findings are discussed.
Statistical approaches to account for false-positive errors in environmental DNA samples.
Lahoz-Monfort, José J; Guillera-Arroita, Gurutzeta; Tingley, Reid
2016-05-01
Environmental DNA (eDNA) sampling is prone to both false-positive and false-negative errors. We review statistical methods to account for such errors in the analysis of eDNA data and use simulations to compare the performance of different modelling approaches. Our simulations illustrate that even low false-positive rates can produce biased estimates of occupancy and detectability. We further show that removing or classifying single PCR detections in an ad hoc manner under the suspicion that such records represent false positives, as sometimes advocated in the eDNA literature, also results in biased estimation of occupancy, detectability and false-positive rates. We advocate alternative approaches to account for false-positive errors that rely on prior information, or the collection of ancillary detection data at a subset of sites using a sampling method that is not prone to false-positive errors. We illustrate the advantages of these approaches over ad hoc classifications of detections and provide practical advice and code for fitting these models in maximum likelihood and Bayesian frameworks. Given the severe bias induced by false-negative and false-positive errors, the methods presented here should be more routinely adopted in eDNA studies. © 2015 John Wiley & Sons Ltd.
Response Error in Reporting Dental Coverage by Older Americans in the Health and Retirement Study
Manski, Richard J.; Mathiowetz, Nancy A.; Campbell, Nancy; Pepper, John V.
2014-01-01
The aim of this research was to analyze the inconsistency in responses to survey questions within the Health and Retirement Study (HRS) regarding insurance coverage of dental services. Self-reports of dental coverage in the dental services section were compared with those in the insurance section of the 2002 HRS to identify inconsistent responses. Logistic regression identified characteristics of persons reporting discrepancies and assessed the effect of measurement error on dental coverage coefficient estimates in dental utilization models. In 18% of cases, data reported in the insurance section contradicted data reported in the dental use section of the HRS by those who said insurance at least partially covered (or would have covered) their (hypothetical) dental use. Additional findings included distinct characteristics of persons with potential reporting errors and a downward bias to the regression coefficient for coverage in a dental use model without controls for inconsistent self-reports of coverage. This study offers evidence for the need to validate self-reports of dental insurance coverage among a survey population of older Americans to obtain more accurate estimates of coverage and its impact on dental utilization. PMID:25428430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Steven
The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient ofmore » variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.« less
Van Weverberg, K.; Morcrette, C. J.; Petch, J.; ...
2018-02-28
Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.
Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less
NASA Astrophysics Data System (ADS)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.
2018-04-01
Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.
Chasing the TIRS ghosts: calibrating the Landsat 8 thermal bands
NASA Astrophysics Data System (ADS)
Schott, John R.; Gerace, Aaron; Raqueno, Nina; Ientilucci, Emmett; Raqueno, Rolando; Lunsford, Allen W.
2014-10-01
The Thermal Infrared Sensor (TIRS) on board Landsat 8 has exhibited a number of anomalous characteristics that have made it difficult to calibrate. These anomalies include differences in the radiometric appearance across the blackbody pre- and post-launch, variations in the cross calibration ratios between detectors that overlap on adjacent arrays (resulting in banding) and bias errors in the absolute calibration that can change spatially/temporally. Several updates to the TIRS calibration procedures were made in the months after launch to attempt to mitigate the impact of these anomalies on flat fielding (cosmetic removal of banding and striping) and mean level bias correction. As a result, banding and striping variations have been reduced but not eliminated and residual bias errors in band 10 should be less than 2 degrees for most targets but can be significantly more in some cases and are often larger in band 11. These corrections have all been essentially ad hoc without understanding or properly accounting for the source of the anomalies, which were, at the time unknown. This paper addresses the procedures that have been undertaken to; better characterize the nature of these anomalies, attempt to identify the source(s) of the anomalies, quantify the phenomenon responsible for them, and develop correction procedures to more effectively remove the impacts on the radiometric products. Our current understanding points to all of the anomalies being the result of internal reflections of energy from outside the target detector's field-of-view, and often outside the telescope field-of-view, onto the target detector. This paper discusses how various members of the Landsat calibration team discovered the clues that led to how; these "ghosts" were identified, they are now being characterized, and their impact can hopefully eventually be corrected. This includes use of lunar scans to generate initial maps of influence regions, use of long path overlap ratios to explore sources of change and use of variations in bias calculated from truth sites to quantify influences from the surround on absolute bias errors.
Miskowiak, Kamilla W; Kessing, Lars V; Ott, Caroline V; Macoveanu, Julian; Harmer, Catherine J; Jørgensen, Anders; Revsbech, Rasmus; Jensen, Hans M; Paulson, Olaf B; Siebner, Hartwig R; Jørgensen, Martin B
2017-09-01
Negative neurocognitive bias is a core feature of major depressive disorder that is reversed by pharmacological and psychological treatments. This double-blind functional magnetic resonance imaging study investigated for the first time whether electroconvulsive therapy modulates negative neurocognitive bias in major depressive disorder. Patients with major depressive disorder were randomised to one active ( n=15) or sham electroconvulsive therapy ( n=12). The following day they underwent whole-brain functional magnetic resonance imaging at 3T while viewing emotional faces and performed facial expression recognition and dot-probe tasks. A single electroconvulsive therapy session had no effect on amygdala response to emotional faces. Whole-brain analysis revealed no effects of electroconvulsive therapy versus sham therapy after family-wise error correction at the cluster level, using a cluster-forming threshold of Z>3.1 ( p<0.001) to secure family-wise error <5%. Groups showed no differences in behavioural measures, mood and medication. Exploratory cluster-corrected whole-brain analysis ( Z>2.3; p<0.01) revealed electroconvulsive therapy-induced changes in parahippocampal and superior frontal responses to fearful versus happy faces as well as in fear-specific functional connectivity between amygdala and occipito-temporal regions. Across all patients, greater fear-specific amygdala - occipital coupling correlated with lower fear vigilance. Despite no statistically significant shift in neural response to faces after a single electroconvulsive therapy session, the observed trend changes after a single electroconvulsive therapy session point to an early shift in emotional processing that may contribute to antidepressant effects of electroconvulsive therapy.
ERIC Educational Resources Information Center
Watts, Sarah E.; Weems, Carl F.
2006-01-01
The purpose of this study was to examine the linkages among selective attention, memory bias, cognitive errors, and anxiety problems by testing a model of the interrelations among these cognitive variables and childhood anxiety disorder symptoms. A community sample of 81 youth (38 females and 43 males) aged 9-17 years and their parents completed…
ERIC Educational Resources Information Center
de Vries, Jannes; de Graaf, Paul M.
2008-01-01
In this article we study the bias caused by the conventional retrospective measurement of parental high cultural activities in the effects of parental high cultural activities and educational attainment on son's or daughter's high cultural activities. Multi-informant data show that there is both random measurement error and correlated error in the…
Measurement Error and Bias in Value-Added Models. Research Report. ETS RR-17-25
ERIC Educational Resources Information Center
Kane, Michael T.
2017-01-01
By aggregating residual gain scores (the differences between each student's current score and a predicted score based on prior performance) for a school or a teacher, value-added models (VAMs) can be used to generate estimates of school or teacher effects. It is known that random errors in the prior scores will introduce bias into predictions of…
Background• Differing degrees of exposure error acrosspollutants• Previous focus on quantifying and accounting forexposure error in single-pollutant models• Examine exposure errors for multiple pollutantsand provide insights on the potential for bias andattenuation...
Measuring food intake in studies of obesity.
Lissner, Lauren
2002-12-01
The problem of how to measure habitual food intake in studies of obesity remains an enigma in nutritional research. The existence of obesity-specific underreporting was rather controversial until the advent of the doubly labelled water technique gave credence to previously anecdotal evidence that such a bias does in fact exist. This paper reviews a number of issues relevant to interpreting dietary data in studies involving obesity. Topics covered include: participation biases, normative biases,importance of matching method to study, selective underreporting, and a brief discussion of the potential implications of generalised and selective underreporting in analytical epidemiology. It is concluded that selective underreporting of certain food types by obese individuals would produce consequences in analytical epidemiological studies that are both unpredictable and complex. Since it is becoming increasingly acknowledged that selective reporting error does occur, it is important to emphasise that correction for energy intake is not sufficient to eliminate the biases from this type of error. This is true both for obesity-related selective reporting errors and more universal types of selective underreporting, e.g. foods of low social desirability. Additional research is urgently required to examine the consequences of this type of error.
Response analysis of holography-based modal wavefront sensor.
Dong, Shihao; Haist, Tobias; Osten, Wolfgang; Ruppel, Thomas; Sawodny, Oliver
2012-03-20
The crosstalk problem of holography-based modal wavefront sensing (HMWS) becomes more severe with increasing aberration. In this paper, crosstalk effects on the sensor response are analyzed statistically for typical aberrations due to atmospheric turbulence. For specific turbulence strength, we optimized the sensor by adjusting the detector radius and the encoded phase bias for each Zernike mode. Calibrated response curves of low-order Zernike modes were further utilized to improve the sensor accuracy. The simulation results validated our strategy. The number of iterations for obtaining a residual RMS wavefront error of 0.1λ is reduced from 18 to 3. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
McAfee, S. A.; DeLaFrance, A.
2017-12-01
Investigating the impacts of climate change often entails using projections from inherently imperfect general circulation models (GCMs) to drive models that simulate biophysical or societal systems in great detail. Error or bias in the GCM output is often assessed in relation to observations, and the projections are adjusted so that the output from impacts models can be compared to historical or observed conditions. Uncertainty in the projections is typically accommodated by running more than one future climate trajectory to account for differing emissions scenarios, model simulations, and natural variability. The current methods for dealing with error and uncertainty treat them as separate problems. In places where observed and/or simulated natural variability is large, however, it may not be possible to identify a consistent degree of bias in mean climate, blurring the lines between model error and projection uncertainty. Here we demonstrate substantial instability in mean monthly temperature bias across a suite of GCMs used in CMIP5. This instability is greatest in the highest latitudes during the cool season, where shifts from average temperatures below to above freezing could have profound impacts. In models with the greatest degree of bias instability, the timing of regional shifts from below to above average normal temperatures in a single climate projection can vary by about three decades, depending solely on the degree of bias assessed. This suggests that current bias correction methods based on comparison to 20- or 30-year normals may be inappropriate, particularly in the polar regions.
Cirrus Cloud Retrieval Using Infrared Sounding Data: Multilevel Cloud Errors.
NASA Astrophysics Data System (ADS)
Baum, Bryan A.; Wielicki, Bruce A.
1994-01-01
In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-µm CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1 1.0) and cloud-top pressures (850250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud elective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all casts, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300—500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.
Detecting Climate Variability in Tropical Rainfall
NASA Astrophysics Data System (ADS)
Berg, W.
2004-05-01
A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to El Niño is substantially smaller due to decreased rainfall in the west Pacific partially canceling increases in the central and east Pacific. These differences are not limited to the long-term merged rainfall products using infrared data, but are also exist in state-of-the-art rainfall retrievals from the active and passive microwave sensors on board the Tropical Rainfall Measuring Mission (TRMM). For example, large differences exist in the response of tropical mean rainfall retrieved from the TRMM microwave imager (TMI) 2A12 algorithm and the precipitation radar (PR) 2A25 algorithm to the 1997/98 El Niño. To assist scientists attempting to wade through the vast array of climate rainfall products currently available, and to help them determine whether systematic biases in these rainfall products impact the conclusions of a given study, we have developed a Climate Rainfall Data Center (CRDC). The CRDC web site (rain.atmos.colostate.edu/CRDC) provides climate researchers information on the various rainfall datasets available as well as access to experts in the field of satellite rainfall retrievals to assist them in the appropriate selection and use of climate rainfall products.
NASA Astrophysics Data System (ADS)
Kajtar, Jules B.; Santoso, Agus; McGregor, Shayne; England, Matthew H.; Baillie, Zak
2018-02-01
The strengthening of the Pacific trade winds in recent decades has been unmatched in the observational record stretching back to the early twentieth century. This wind strengthening has been connected with numerous climate-related phenomena, including accelerated sea-level rise in the western Pacific, alterations to Indo-Pacific ocean currents, increased ocean heat uptake, and a slow-down in the rate of global-mean surface warming. Here we show that models in the Coupled Model Intercomparison Project phase 5 underestimate the observed range of decadal trends in the Pacific trade winds, despite capturing the range in decadal sea surface temperature (SST) variability. Analysis of observational data suggests that tropical Atlantic SST contributes considerably to the Pacific trade wind trends, whereas the Atlantic feedback in coupled models is muted. Atmosphere-only simulations forced by observed SST are capable of recovering the time-variation and the magnitude of the trade wind trends. Hence, we explore whether it is the biases in the mean or in the anomalous SST patterns that are responsible for the under-representation in fully coupled models. Over interannual time-scales, we find that model biases in the patterns of Atlantic SST anomalies are the strongest source of error in the precipitation and atmospheric circulation response. In contrast, on decadal time-scales, the magnitude of the model biases in Atlantic mean SST are directly linked with the trade wind variability response.
Accommodating Sensor Bias in MRAC for State Tracking
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
The problem of accommodating unknown sensor bias is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor faults can occur during operation, and if the biased state measurements are directly used with a standard MRAC control law, neither closed-loop signal boundedness, nor asymptotic tracking can be guaranteed and the resulting tracking errors may be unbounded or unacceptably large. A modified MRAC law is proposed, which combines a bias estimator with control gain adaptation, and it is shown that signal boundedness can be accomplished, although the tracking error may not go to zero. Further, for the case wherein an asymptotically stable sensor bias estimator is available, an MRAC control law is proposed to accomplish asymptotic tracking and signal boundedness. Such a sensor bias estimator can be designed if additional sensor measurements are available, as illustrated for the case wherein bias is present in the rate gyro and airspeed measurements. Numerical example results are presented to illustrate each of the schemes.
Moisture Forecast Bias Correction in GEOS DAS
NASA Technical Reports Server (NTRS)
Dee, D.
1999-01-01
Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.
Elevation Change of the Southern Greenland Ice Sheet from Satellite Radar Altimeter Data
NASA Technical Reports Server (NTRS)
Haines, Bruce J.
1999-01-01
Long-term changes in the thickness of the polar ice sheets are important indicators of climate change. Understanding the contributions to the global water mass balance from the accumulation or ablation of grounded ice in Greenland and Antarctica is considered crucial for determining the source of the about 2 mm/yr sea-level rise in the last century. Though the Antarctic ice sheet is much larger than its northern counterpart, the Greenland ice sheet is more likely to undergo dramatic changes in response to a warming trend. This can be attributed to the warmer Greenland climate, as well as a potential for amplification of a global warming trend in the polar regions of the Northern Hemisphere. In collaboration with Drs. Curt Davis and Craig Kluever of the University of Missouri, we are using data from satellite radar altimeters to measure changes in the elevation of the Southern Greenland ice sheet from 1978 to the present. Difficulties with systematic altimeter measurement errors, particularly in intersatellite comparisons, beset earlier studies of the Greenland ice sheet thickness. We use altimeter data collected contemporaneously over the global ocean to establish a reference for correcting ice-sheet data. In addition, the waveform data from the ice-sheet radar returns are reprocessed to better determine the range from the satellite to the ice surface. At JPL, we are focusing our efforts principally on the reduction of orbit errors and range biases in the measurement systems on the various altimeter missions. Our approach emphasizes global characterization and reduction of the long-period orbit errors and range biases using altimeter data from NASA's Ocean Pathfinder program. Along-track sea-height residuals are sequentially filtered and backwards smoothed, and the radial orbit errors are modeled as sinusoids with a wavelength equal to one revolution of the satellite. The amplitudes of the sinusoids are treated as exponentially-correlated noise processes with a time-constant of six days. Measurement errors (e.g., altimeter range bias) are simultaneously recovered as constant parameters. The corrections derived from the global ocean analysis are then applied over the Greenland ice sheet. The orbit error and measurement bias corrections for different missions are developed in a single framework to enable robust linkage of ice-sheet measurements from 1978 to the present. In 1998, we completed our re-evaluation of the 1978 Seasat and 1985-1989 Geosat Exact Repeat Mission data. The estimates of ice thickness over Southern Greenland (south of 72N and above 2000 m) from 1978 to 1988 show large regional variations (+/-18 cm/yr), but yield an overall rate of +1.5 +/- 0.5 cm/yr (one standard error). Accounting for systematic errors, the estimate may not be significantly different from the null growth rate. The average elevation change from 1978 to 1988 is too small to assess whether the Greenland ice sheet is undergoing a long-term change.
Aberg, Kristoffer Carl; Doell, Kimberly Crystal; Schwartz, Sophie
2016-08-01
Orienting biases refer to consistent, trait-like direction of attention or locomotion toward one side of space. Recent studies suggest that such hemispatial biases may determine how well people memorize information presented in the left or right hemifield. Moreover, lesion studies indicate that learning rewarded stimuli in one hemispace depends on the integrity of the contralateral striatum. However, the exact neural and computational mechanisms underlying the influence of individual orienting biases on reward learning remain unclear. Because reward-based behavioural adaptation depends on the dopaminergic system and prediction error (PE) encoding in the ventral striatum, we hypothesized that hemispheric asymmetries in dopamine (DA) function may determine individual spatial biases in reward learning. To test this prediction, we acquired fMRI in 33 healthy human participants while they performed a lateralized reward task. Learning differences between hemispaces were assessed by presenting stimuli, assigned to different reward probabilities, to the left or right of central fixation, i.e. presented in the left or right visual hemifield. Hemispheric differences in DA function were estimated through differential fMRI responses to positive vs. negative feedback in the left vs. right ventral striatum, and a computational approach was used to identify the neural correlates of PEs. Our results show that spatial biases favoring reward learning in the right (vs. left) hemifield were associated with increased reward responses in the left hemisphere and relatively better neural encoding of PEs for stimuli presented in the right (vs. left) hemifield. These findings demonstrate that trait-like spatial biases implicate hemisphere-specific learning mechanisms, with individual differences between hemispheres contributing to reinforcing spatial biases. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of bias in simulation of the Indian monsoon and its relationship to predictability
NASA Astrophysics Data System (ADS)
Kelly, P.
2016-12-01
Confidence in future projections of how climate change will affect the Indian monsoon is currently limited by- among other things-model biases. That is, the systematic error in simulating the mean present day climate. An important priority question in seamless prediction involves the role of the mean state. How much of the prediction error in imperfect models stems from a biased mean state (itself a result of many interacting process errors), and how much stems from the flow dependence of processes during an oscillation or variation we are trying to predict? Using simple but effective nudging techniques, we are able to address this question in a clean and incisive framework that teases apart the roles of the mean state vs. transient flow dependence in constraining predictability. The role of bias in model fidelity of simulations of the Indian monsoon is investigated in CAM5, and the relationship to predictability in remote regions in the "free" (non-nudged) domain is explored.
Reducing Bias and Error in the Correlation Coefficient Due to Nonnormality.
Bishara, Anthony J; Hittner, James B
2015-10-01
It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared with its major alternatives, including the Spearman rank-order correlation, the bootstrap estimate, the Box-Cox transformation family, and a general normalizing transformation (i.e., rankit), as well as to various bias adjustments. Nonnormality caused the correlation coefficient to be inflated by up to +.14, particularly when the nonnormality involved heavy-tailed distributions. Traditional bias adjustments worsened this problem, further inflating the estimate. The Spearman and rankit correlations eliminated this inflation and provided conservative estimates. Rankit also minimized random error for most sample sizes, except for the smallest samples ( n = 10), where bootstrapping was more effective. Overall, results justify the use of carefully chosen alternatives to the Pearson correlation when normality is violated.
Reducing Bias and Error in the Correlation Coefficient Due to Nonnormality
Hittner, James B.
2014-01-01
It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared with its major alternatives, including the Spearman rank-order correlation, the bootstrap estimate, the Box–Cox transformation family, and a general normalizing transformation (i.e., rankit), as well as to various bias adjustments. Nonnormality caused the correlation coefficient to be inflated by up to +.14, particularly when the nonnormality involved heavy-tailed distributions. Traditional bias adjustments worsened this problem, further inflating the estimate. The Spearman and rankit correlations eliminated this inflation and provided conservative estimates. Rankit also minimized random error for most sample sizes, except for the smallest samples (n = 10), where bootstrapping was more effective. Overall, results justify the use of carefully chosen alternatives to the Pearson correlation when normality is violated. PMID:29795841
Shades of Gray: Releasing the Cognitive Binds that Blind Us
2016-09-01
The availability heuristic is the cognitive process of problem solving based on learning and experience. This intuitive thinking process requires...describe a person’s systematic but flawed patterns of response to both judgment and decision problems .2 Research on the effects of cognitive bias on the...errors made. The ICArUS sensemaking model currently being developed could provide the IC with software that has the ability to mirror human cognitive
Cognitive aspect of diagnostic errors.
Phua, Dong Haur; Tan, Nigel C K
2013-01-01
Diagnostic errors can result in tangible harm to patients. Despite our advances in medicine, the mental processes required to make a diagnosis exhibits shortcomings, causing diagnostic errors. Cognitive factors are found to be an important cause of diagnostic errors. With new understanding from psychology and social sciences, clinical medicine is now beginning to appreciate that our clinical reasoning can take the form of analytical reasoning or heuristics. Different factors like cognitive biases and affective influences can also impel unwary clinicians to make diagnostic errors. Various strategies have been proposed to reduce the effect of cognitive biases and affective influences when clinicians make diagnoses; however evidence for the efficacy of these methods is still sparse. This paper aims to introduce the reader to the cognitive aspect of diagnostic errors, in the hope that clinicians can use this knowledge to improve diagnostic accuracy and patient outcomes.
The effects of window shape and reticle presence on performance in a vertical alignment task
NASA Technical Reports Server (NTRS)
Rosenberg, Erika L.; Haines, Richard F.; Jordan, Kevin
1989-01-01
This study was conducted to evaluate the effect of selected interior work-station orientational cuing upon the ability to align a target image with local vertical in the frontal plane. Angular error from gravitational vertical in an alignment task was measured for 20 observers viewing through two window shapes (square, round), two initial orientations of a computer-generated space shuttle image, and the presence or absence of a stabilized optical alignment reticle. In terms of overall accuracy, it was found that observer error was significantly smaller for the square window and reticle-present conditions than for the round window and reticle-absent conditions. Response bias data reflected an overall tendency to undershoot and greater variability of response in the round window/no reticle condition. These results suggest that environmental cuing information, such as that provided by square window frames and alignment reticles, may aid in subjective orientation and increase accuracy of response in a Space Station proximity operations alignment task.
Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods
Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun
2016-01-01
This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability. PMID:26751455
Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.
Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun
2016-01-07
This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.
Multivariate Statistics Applied to Seismic Phase Picking
NASA Astrophysics Data System (ADS)
Velasco, A. A.; Zeiler, C. P.; Anderson, D.; Pingitore, N. E.
2008-12-01
The initial effort of the Seismogram Picking Error from Analyst Review (SPEAR) project has been to establish a common set of seismograms to be picked by the seismological community. Currently we have 13 analysts from 4 institutions that have provided picks on the set of 26 seismograms. In comparing the picks thus far, we have identified consistent biases between picks from different institutions; effects of the experience of analysts; and the impact of signal-to-noise on picks. The institutional bias in picks brings up the important concern that picks will not be the same between different catalogs. This difference means less precision and accuracy when combing picks from multiple institutions. We also note that depending on the experience level of the analyst making picks for a catalog the error could fluctuate dramatically. However, the experience level is based off of number of years in picking seismograms and this may not be an appropriate criterion for determining an analyst's precision. The common data set of seismograms provides a means to test an analyst's level of precision and biases. The analyst is also limited by the quality of the signal and we show that the signal-to-noise ratio and pick error are correlated to the location, size and distance of the event. This makes the standard estimate of picking error based on SNR more complex because additional constraints are needed to accurately constrain the measurement error. We propose to extend the current measurement of error by adding the additional constraints of institutional bias and event characteristics to the standard SNR measurement. We use multivariate statistics to model the data and provide constraints to accurately assess earthquake location and measurement errors.
Diagnostic reasoning: where we've been, where we're going.
Monteiro, Sandra M; Norman, Geoffrey
2013-01-01
Recently, clinical diagnostic reasoning has been characterized by "dual processing" models, which postulate a fast, unconscious (System 1) component and a slow, logical, analytical (System 2) component. However, there are a number of variants of this basic model, which may lead to conflicting claims. This paper critically reviews current theories and evidence about the nature of clinical diagnostic reasoning. We begin by briefly discussing the history of research in clinical reasoning. We then focus more specifically on the evidence to support dual-processing models. We conclude by identifying knowledge gaps about clinical reasoning and provide suggestions for future research. In contrast to work on analytical and nonanalytical knowledge as a basis for reasoning, these theories focus on the thinking process, not the nature of the knowledge retrieved. Ironically, this appears to be a revival of an outdated concept. Rather than defining diagnostic performance by problem-solving skills, it is now being defined by processing strategy. The version of dual processing that has received most attention in the literature in medical diagnosis might be labeled a "default/interventionist" model,(17) which suggests that a default system of cognitive processes (System 1) is responsible for cognitive biases that lead to diagnostic errors and that System 2 intervenes to correct these errors. Consequently, from this model, the best strategy for reducing errors is to make students aware of the biases and to encourage them to rely more on System 2. However, an accumulation of evidence suggests that (a) strategies directed at increasing analytical (System 2) processing, by slowing down, reducing distractions, paying conscious attention, and (b) strategies directed at making students aware of the effect of cognitive biases, have no impact on error rates. Conversely, strategies based on increasing application of relevant knowledge appear to have some success and are consistent with basic research on concept formation.
Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements
Terando, Adam J.; Youngsteadt, Elsa; Meineke, Emily K.; Prado, Sara G.
2017-01-01
In light of global climate change, ecological studies increasingly address effects of temperature on organisms and ecosystems. To measure air temperature at biologically relevant scales in the field, ecologists often use small, portable temperature sensors. Sensors must be shielded from solar radiation to provide accurate temperature measurements, but our review of 18 years of ecological literature indicates that shielding practices vary across studies (when reported at all), and that ecologists often invent and construct ad hoc radiation shields without testing their efficacy. We performed two field experiments to examine the accuracy of temperature observations from three commonly used portable data loggers (HOBO Pro, HOBO Pendant, and iButton hygrochron) housed in manufactured Gill shields or ad hoc, custom‐fabricated shields constructed from everyday materials such as plastic cups. We installed this sensor array (five replicates of 11 sensor‐shield combinations) at weather stations located in open and forested sites. HOBO Pro sensors with Gill shields were the most accurate devices, with a mean absolute error of 0.2°C relative to weather stations at each site. Error in ad hoc shield treatments ranged from 0.8 to 3.0°C, with the largest errors at the open site. We then deployed one replicate of each sensor‐shield combination at five sites that varied in the amount of urban impervious surface cover, which presents a further shielding challenge. Bias in sensors paired with ad hoc shields increased by up to 0.7°C for every 10% increase in impervious surface. Our results indicate that, due to variable shielding practices, the ecological literature likely includes highly biased temperature data that cannot be compared directly across studies. If left unaddressed, these errors will hinder efforts to predict biological responses to climate change. We call for greater standardization in how temperature data are recorded in the field, handled in analyses, and reported in publications.
Dynamic characterization of Galfenol
NASA Astrophysics Data System (ADS)
Scheidler, Justin J.; Asnani, Vivake M.; Deng, Zhangxian; Dapino, Marcelo J.
2015-04-01
A novel and precise characterization of the constitutive behavior of solid and laminated research-grade, polycrystalline Galfenol (Fe81:6Ga18:4) under under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings was recently conducted by the authors. This paper summarizes the characterization by focusing on the experimental design and the dynamic sensing response of the solid Galfenol specimen. Mechanical loads are applied using a high frequency load frame. The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa, respectively. Dynamic minor and major loops are measured for the bias condition resulting in maximum, quasi-static sensitivity. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) time delays imposed by conditioning electronics. For dynamic characterization, strain error is kept below 1.2 % of full scale by wiring two collocated gauges in series (noise cancellation) and through lead wire weaving. Inertial force error is kept below 0.41 % by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency increases, the sensing response becomes more linear due to an increase in eddy currents. The location of positive and negative saturation is the same at all frequencies. As frequency increases above about 100 Hz, the elbow in the strain versus stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime.
Dynamic Characterization of Galfenol
NASA Technical Reports Server (NTRS)
Scheidler, Justin; Asnani, Vivake M.; Deng, Zhangxian; Dapino, Marcelo J.
2015-01-01
A novel and precise characterization of the constitutive behavior of solid and laminated research-grade, polycrystalline Galfenol (Fe81:6Ga18:4) under under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings was recently conducted by the authors. This paper summarizes the characterization by focusing on the experimental design and the dynamic sensing response of the solid Galfenol specimen. Mechanical loads are applied using a high frequency load frame. The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa, respectively. Dynamic minor and major loops are measured for the bias condition resulting in maximum, quasi-static sensitivity. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) time delays imposed by conditioning electronics. For dynamic characterization, strain error is kept below 1.2 % of full scale by wiring two collocated gauges in series (noise cancellation) and through lead wire weaving. Inertial force error is kept below 0.41 % by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency increases, the sensing response becomes more linear due to an increase in eddy currents. The location of positive and negative saturation is the same at all frequencies. As frequency increases above about 100 Hz, the elbow in the strain versus stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime.
Historical MOBLAS system characterization
NASA Technical Reports Server (NTRS)
Husson, Van S.
1993-01-01
This paper is written as a direct response to the published NASA Laser Geodynamic Satellite (LAGEOS) orbital solution SL7.1, in order to close the data information loop with an emphasis on the NASA Mobile Laser Ranging System's (MOBLAS) LAGEOS full rate data since November 1, 1983. A preliminary analysis of the supporting information (i.e. satellite laser ranging system eccentricities and system dependent range and time bias corrections) contained in SL7.1 indicated centimeter (cm) level discrepancies. In addition, a preliminary analysis of the computed monthly MOBLAS range biases from SL7.1 appear to show cm level systematic trends, some of which appear to be 'real', particularly in the 1984 to 1987 time period. This paper is intended to be a reference document for known MOBLAS systematic errors (magnitude and direction) and for supporting MOBLAS information (eccentricities, hardware configurations, and potential data problem periods). Therefore, this report is different than your typical system characterization report, but will be more valuable to the user. The MOBLAS error models and supporting information contained in this paper will be easily accessible from the Crustal Dynamics Data Information System (CDDIS).
Rindermann, Heiner; Becker, David; Coyle, Thomas R.
2016-01-01
Following Snyderman and Rothman (1987, 1988), we surveyed expert opinions on the current state of intelligence research. This report examines expert opinions on causes of international differences in student assessment and psychometric IQ test results. Experts were surveyed about the importance of culture, genes, education (quantity and quality), wealth, health, geography, climate, politics, modernization, sampling error, test knowledge, discrimination, test bias, and migration. The importance of these factors was evaluated for diverse countries, regions, and groups including Finland, East Asia, sub-Saharan Africa, Southern Europe, the Arabian-Muslim world, Latin America, Israel, Jews in the West, Roma (gypsies), and Muslim immigrants. Education was rated by N = 71 experts as the most important cause of international ability differences. Genes were rated as the second most relevant factor but also had the highest variability in ratings. Culture, health, wealth, modernization, and politics were the next most important factors, whereas other factors such as geography, climate, test bias, and sampling error were less important. The paper concludes with a discussion of limitations of the survey (e.g., response rates and validity of expert opinions). PMID:27047425
Cognitions and emotions in eating disorders.
Siep, Nicolette; Jansen, Anita; Havermans, Remco; Roefs, Anne
2011-01-01
The cognitive model of eating disorders (EDs) states that the processing of external and internal stimuli might be biased in mental disorders. These biases, or cognitive errors, systematically distort the individual's experiences and, in that way, maintains the eating disorder. This chapter presents an updated literature review of experimental studies investigating these cognitive biases. Results indicate that ED patients show biases in attention, interpretation, and memory when it comes to the processing of food-, weight-, and body shape-related cues. Some recent studies show that they also demonstrate errors in general cognitive abilities such as set shifting, central coherence, and decision making. A future challenge is whether cognitive biases and processes can be manipulated. Few preliminary studies suggest that an attention retraining and training in the cognitive modulation of food reward processing might be effective strategies to change body satisfaction, food cravings, and eating behavior.
Bias in the Counseling Process: How to Recognize and Avoid It.
ERIC Educational Resources Information Center
Morrow, Kelly A.; Deidan, Cecilia T.
1992-01-01
Notes that counselors' vulnerability to inferential bias during counseling process may result in misdiagnosis and improper interventions. Discusses these inferential biases: availability and representativeness heuristics; fundamental attribution error; anchoring, prior knowledge, and labeling; confirmatory hypothesis testing; and reconstructive…
Geolocation and Pointing Accuracy Analysis for the WindSat Sensor
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank J.; Purdy, William E.; Gaiser, Peter W.; Poe, Gene; Uliana, Enzo A.
2006-01-01
Geolocation and pointing accuracy analyses of the WindSat flight data are presented. The two topics were intertwined in the flight data analysis and will be addressed together. WindSat has no unusual geolocation requirements relative to other sensors, but its beam pointing knowledge accuracy is especially critical to support accurate polarimetric radiometry. Pointing accuracy was improved and verified using geolocation analysis in conjunction with scan bias analysis. nvo methods were needed to properly identify and differentiate between data time tagging and pointing knowledge errors. Matchups comparing coastlines indicated in imagery data with their known geographic locations were used to identify geolocation errors. These coastline matchups showed possible pointing errors with ambiguities as to the true source of the errors. Scan bias analysis of U, the third Stokes parameter, and of vertical and horizontal polarizations provided measurement of pointing offsets resolving ambiguities in the coastline matchup analysis. Several geolocation and pointing bias sources were incfementally eliminated resulting in pointing knowledge and geolocation accuracy that met all design requirements.
Smith, Adam L; Villar, Sofía S
2018-01-01
Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a statistically rigorous and unbiased comparison of the different treatments included is highly challenging. In this paper, the theory of Multi-Armed Bandit Problems is used to define near optimal adaptive designs in the context of a clinical trial with a normally distributed endpoint with known variance. We report the operating characteristics (type I error, power, bias) and patient-benefit of these approaches and alternative designs using simulation studies based on an ongoing trial. These results are then compared to those recently published in the context of Bernoulli endpoints. Many limitations and advantages are similar in both cases but there are also important differences, specially with respect to type I error control. This paper proposes a simulation-based testing procedure to correct for the observed type I error inflation that bandit-based and adaptive rules can induce.
NASA Technical Reports Server (NTRS)
Fields, J. M.
1980-01-01
The data from seven surveys of community response to environmental noise are reanalyzed to assess the relative influence of peak noise levels and the numbers of noise events on human response. The surveys do not agree on the value of the tradeoff between the effects of noise level and numbers of events. The value of the tradeoff cannot be confidently specified in any survey because the tradeoff estimate may have a large standard error of estimate and because the tradeoff estimate may be seriously biased by unknown noise measurement errors. Some evidence suggests a decrease in annoyance with very high numbers of noise events but this evidence is not strong enough to lead to the rejection of the conventionally accepted assumption that annoyance is related to a log transformation of the number of noise events.
Bias in error estimation when using cross-validation for model selection.
Varma, Sudhir; Simon, Richard
2006-02-23
Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the CV error estimate of the optimized classifier as an estimate of the true error expected on independent data. We used CV to optimize the classification parameters for two kinds of classifiers; Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created, with no difference in the distribution of the features between the two classes. Using these "null" datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM. Independent test data was created to estimate the true error. With "null" and "non null" (with differential expression between the classes) data, we also tested a nested CV procedure, where an inner CV loop is used to perform the tuning of the parameters while an outer CV is used to compute an estimate of the error. The CV error estimate for the classifier with the optimal parameters was found to be a substantially biased estimate of the true error that the classifier would incur on independent data. Even though there is no real difference between the two classes for the "null" datasets, the CV error estimate for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on 38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was no better than chance. The nested CV procedure reduces the bias considerably and gives an estimate of the error that is very close to that obtained on the independent testing set for both Shrunken Centroids and SVM classifiers for "null" and "non-null" data distributions. We show that using CV to compute an error estimate for a classifier that has itself been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for estimating true error of a classifier developed using a well defined algorithm requires that all steps of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV procedure provides an almost unbiased estimate of the true error.
Attention and memory bias to facial emotions underlying negative symptoms of schizophrenia.
Jang, Seon-Kyeong; Park, Seon-Cheol; Lee, Seung-Hwan; Cho, Yang Seok; Choi, Kee-Hong
2016-01-01
This study assessed bias in selective attention to facial emotions in negative symptoms of schizophrenia and its influence on subsequent memory for facial emotions. Thirty people with schizophrenia who had high and low levels of negative symptoms (n = 15, respectively) and 21 healthy controls completed a visual probe detection task investigating selective attention bias (happy, sad, and angry faces randomly presented for 50, 500, or 1000 ms). A yes/no incidental facial memory task was then completed. Attention bias scores and recognition errors were calculated. Those with high negative symptoms exhibited reduced attention to emotional faces relative to neutral faces; those with low negative symptoms showed the opposite pattern when faces were presented for 500 ms regardless of the valence. Compared to healthy controls, those with high negative symptoms made more errors for happy faces in the memory task. Reduced attention to emotional faces in the probe detection task was significantly associated with less pleasure and motivation and more recognition errors for happy faces in schizophrenia group only. Attention bias away from emotional information relatively early in the attentional process and associated diminished positive memory may relate to pathological mechanisms for negative symptoms.
ERRATUM: 'MAPPING THE GAS TURBULENCE IN THE COMA CLUSTER: PREDICTIONS FOR ASTRO-H'
NASA Technical Reports Server (NTRS)
Zuhone, J. A.; Markevitch, M.; Zhuravleva, I.
2016-01-01
The published version of this paper contained an error in Figure 5. This figure is intended to show the effect on the structure function of subtracting the bias induced by the statistical and systematic errors on the line shift. The filled circles show the bias-subtracted structure function. The positions of these points in the left panel of the original figure were calculated incorrectly. The figure is reproduced below (with the original caption) with the correct values for the bias-subtracted structure function. No other computations or figures in the original manuscript are affected.
NASA Astrophysics Data System (ADS)
Ikeura, Takuro; Nozaki, Takayuki; Shiota, Yoichi; Yamamoto, Tatsuya; Imamura, Hiroshi; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji
2018-04-01
Using macro-spin modeling, we studied the reduction in the write error rate (WER) of voltage-induced dynamic magnetization switching by enhancing the effective thermal stability of the free layer using a voltage-controlled magnetic anisotropy change. Marked reductions in WER can be achieved by introducing reverse bias voltage pulses both before and after the write pulse. This procedure suppresses the thermal fluctuations of magnetization in the initial and final states. The proposed reverse bias method can offer a new way of improving the writing stability of voltage-driven spintronic devices.
Overcoming bias and systematic errors in next generation sequencing data.
Taub, Margaret A; Corrada Bravo, Hector; Irizarry, Rafael A
2010-12-10
Considerable time and effort has been spent in developing analysis and quality assessment methods to allow the use of microarrays in a clinical setting. As is the case for microarrays and other high-throughput technologies, data from new high-throughput sequencing technologies are subject to technological and biological biases and systematic errors that can impact downstream analyses. Only when these issues can be readily identified and reliably adjusted for will clinical applications of these new technologies be feasible. Although much work remains to be done in this area, we describe consistently observed biases that should be taken into account when analyzing high-throughput sequencing data. In this article, we review current knowledge about these biases, discuss their impact on analysis results, and propose solutions.
Hindsight Bias and Developing Theories of Mind
Bernstein, Daniel M.; Atance, Cristina; Meltzoff, Andrew N.; Loftus, Geoffrey R.
2013-01-01
Although hindsight bias (the “I knew it all along” phenomenon) has been documented in adults, its development has not been investigated. This is despite the fact that hindsight bias errors closely resemble the errors children make on theory of mind (ToM) tasks. Two main goals of the present work were to (a) create a battery of hindsight tasks for preschoolers, and (b) assess the relation between children’s performance on these and ToM tasks. In two experiments involving 144 preschoolers, 3-, 4-, and 5-year olds exhibited strong hindsight bias. Performance on hindsight and ToM tasks was significantly correlated independent of age, language ability, and inhibitory control. These findings contribute to a more comprehensive account of perspective taking across the lifespan. PMID:17650144
NASA Astrophysics Data System (ADS)
Hardy, Ryan A.; Nerem, R. Steven; Wiese, David N.
2017-12-01
Systematic errors in Gravity Recovery and Climate Experiment (GRACE) monthly mass estimates over the Greenland and Antarctic ice sheets can originate from low-frequency biases in the European Centre for Medium-Range Weather Forecasts (ECMWF) Operational Analysis model, the atmospheric component of the Atmospheric and Ocean Dealising Level-1B (AOD1B) product used to forward model atmospheric and ocean gravity signals in GRACE processing. These biases are revealed in differences in surface pressure between the ECMWF Operational Analysis model, state-of-the-art reanalyses, and in situ surface pressure measurements. While some of these errors are attributable to well-understood discrete model changes and have published corrections, we examine errors these corrections do not address. We compare multiple models and in situ data in Antarctica and Greenland to determine which models have the most skill relative to monthly averages of the dealiasing model. We also evaluate linear combinations of these models and synthetic pressure fields generated from direct interpolation of pressure observations. These models consistently reveal drifts in the dealiasing model that cause the acceleration of Antarctica's mass loss between April 2002 and August 2016 to be underestimated by approximately 4 Gt yr-2. We find similar results after attempting to solve the inverse problem, recovering pressure biases directly from the GRACE Jet Propulsion Laboratory RL05.1 M mascon solutions. Over Greenland, we find a 2 Gt yr-1 bias in mass trend. While our analysis focuses on errors in Release 05 of AOD1B, we also evaluate the new AOD1B RL06 product. We find that this new product mitigates some of the aforementioned biases.
Where can pixel counting area estimates meet user-defined accuracy requirements?
NASA Astrophysics Data System (ADS)
Waldner, François; Defourny, Pierre
2017-08-01
Pixel counting is probably the most popular way to estimate class areas from satellite-derived maps. It involves determining the number of pixels allocated to a specific thematic class and multiplying it by the pixel area. In the presence of asymmetric classification errors, the pixel counting estimator is biased. The overarching objective of this article is to define the applicability conditions of pixel counting so that the estimates are below a user-defined accuracy target. By reasoning in terms of landscape fragmentation and spatial resolution, the proposed framework decouples the resolution bias and the classifier bias from the overall classification bias. The consequence is that prior to any classification, part of the tolerated bias is already committed due to the choice of the spatial resolution of the imagery. How much classification bias is affordable depends on the joint interaction of spatial resolution and fragmentation. The method was implemented over South Africa for cropland mapping, demonstrating its operational applicability. Particular attention was paid to modeling a realistic sensor's spatial response by explicitly accounting for the effect of its point spread function. The diagnostic capabilities offered by this framework have multiple potential domains of application such as guiding users in their choice of imagery and providing guidelines for space agencies to elaborate the design specifications of future instruments.
Lash, Timothy L
2007-11-26
The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error. For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset. The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval. Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a qualitative description of study limitations. The latter approach is likely to lead to overconfidence regarding the potential for causal associations, whereas the former safeguards against such overinterpretations. Furthermore, such analyses, once programmed, allow rapid implementation of alternative assignments of probability distributions to the bias parameters, so elevate the plane of discussion regarding study bias from characterizing studies as "valid" or "invalid" to a critical and quantitative discussion of sources of uncertainty.
Rabøl, Louise Isager; Andersen, Mette Lehmann; Østergaard, Doris; Bjørn, Brian; Lilja, Beth; Mogensen, Torben
2011-03-01
Poor teamwork and communication between healthcare staff are correlated to patient safety incidents. However, the organisational factors responsible for these issues are unexplored. Root cause analyses (RCA) use human factors thinking to analyse the systems behind severe patient safety incidents. The objective of this study is to review RCA reports (RCAR) for characteristics of verbal communication errors between hospital staff in an organisational perspective. Two independent raters analysed 84 RCARs, conducted in six Danish hospitals between 2004 and 2006, for descriptions and characteristics of verbal communication errors such as handover errors and error during teamwork. Raters found description of verbal communication errors in 44 reports (52%). These included handover errors (35 (86%)), communication errors between different staff groups (19 (43%)), misunderstandings (13 (30%)), communication errors between junior and senior staff members (11 (25%)), hesitance in speaking up (10 (23%)) and communication errors during teamwork (8 (18%)). The kappa values were 0.44-0.78. Unproceduralized communication and information exchange via telephone, related to transfer between units and consults from other specialties, were particularly vulnerable processes. With the risk of bias in mind, it is concluded that more than half of the RCARs described erroneous verbal communication between staff members as root causes of or contributing factors of severe patient safety incidents. The RCARs rich descriptions of the incidents revealed the organisational factors and needs related to these errors.
Omens of coupled model biases in the CMIP5 AMIP simulations
NASA Astrophysics Data System (ADS)
Găinuşă-Bogdan, Alina; Hourdin, Frédéric; Traore, Abdoul Khadre; Braconnot, Pascale
2018-02-01
Despite decades of efforts and improvements in the representation of processes as well as in model resolution, current global climate models still suffer from a set of important, systematic biases in sea surface temperature (SST), not much different from the previous generation of climate models. Many studies have looked at errors in the wind field, cloud representation or oceanic upwelling in coupled models to explain the SST errors. In this paper we highlight the relationship between latent heat flux (LH) biases in forced atmospheric simulations and the SST biases models develop in coupled mode, at the scale of the entire intertropical domain. By analyzing 22 pairs of forced atmospheric and coupled ocean-atmosphere simulations from the CMIP5 database, we show a systematic, negative correlation between the spatial patterns of these two biases. This link between forced and coupled bias patterns is also confirmed by two sets of dedicated sensitivity experiments with the IPSL-CM5A-LR model. The analysis of the sources of the atmospheric LH bias pattern reveals that the near-surface wind speed bias dominates the zonal structure of the LH bias and that the near-surface relative humidity dominates the east-west contrasts.
NASA Astrophysics Data System (ADS)
Grycewicz, Thomas J.; Florio, Christopher J.; Franz, Geoffrey A.; Robinson, Ross E.
2007-09-01
When using Fourier plane digital algorithms or an optical correlator to measure the correlation between digital images, interpolation by center-of-mass or quadratic estimation techniques can be used to estimate image displacement to the sub-pixel level. However, this can lead to a bias in the correlation measurement. This bias shifts the sub-pixel output measurement to be closer to the nearest pixel center than the actual location. The paper investigates the bias in the outputs of both digital and optical correlators, and proposes methods to minimize this effect. We use digital studies and optical implementations of the joint transform correlator to demonstrate optical registration with accuracies better than 0.1 pixels. We use both simulations of image shift and movies of a moving target as inputs. We demonstrate bias error for both center-of-mass and quadratic interpolation, and discuss the reasons that this bias is present. Finally, we suggest measures to reduce or eliminate the bias effects. We show that when sub-pixel bias is present, it can be eliminated by modifying the interpolation method. By removing the bias error, we improve registration accuracy by thirty percent.
Santin-Janin, Hugues; Hugueny, Bernard; Aubry, Philippe; Fouchet, David; Gimenez, Olivier; Pontier, Dominique
2014-01-01
Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in population size estimates.
Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media
Cooley, R.L.; Christensen, S.
2006-01-01
Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis. ?? 2005 Elsevier Ltd. All rights reserved.
Santin-Janin, Hugues; Hugueny, Bernard; Aubry, Philippe; Fouchet, David; Gimenez, Olivier; Pontier, Dominique
2014-01-01
Background Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. Methodology/Principal findings The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. Conclusion/Significance The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in population size estimates. PMID:24489839
Zhao, Huaqing; Rebbeck, Timothy R; Mitra, Nandita
2009-12-01
Confounding due to population stratification (PS) arises when differences in both allele and disease frequencies exist in a population of mixed racial/ethnic subpopulations. Genomic control, structured association, principal components analysis (PCA), and multidimensional scaling (MDS) approaches have been proposed to address this bias using genetic markers. However, confounding due to PS can also be due to non-genetic factors. Propensity scores are widely used to address confounding in observational studies but have not been adapted to deal with PS in genetic association studies. We propose a genomic propensity score (GPS) approach to correct for bias due to PS that considers both genetic and non-genetic factors. We compare the GPS method with PCA and MDS using simulation studies. Our results show that GPS can adequately adjust and consistently correct for bias due to PS. Under no/mild, moderate, and severe PS, GPS yielded estimated with bias close to 0 (mean=-0.0044, standard error=0.0087). Under moderate or severe PS, the GPS method consistently outperforms the PCA method in terms of bias, coverage probability (CP), and type I error. Under moderate PS, the GPS method consistently outperforms the MDS method in terms of CP. PCA maintains relatively high power compared to both MDS and GPS methods under the simulated situations. GPS and MDS are comparable in terms of statistical properties such as bias, type I error, and power. The GPS method provides a novel and robust tool for obtaining less-biased estimates of genetic associations that can consider both genetic and non-genetic factors. 2009 Wiley-Liss, Inc.
Exploring Model Error through Post-processing and an Ensemble Kalman Filter on Fire Weather Days
NASA Astrophysics Data System (ADS)
Erickson, Michael J.
The proliferation of coupling atmospheric ensemble data to models in other related fields requires a priori knowledge of atmospheric ensemble biases specific to the desired application. In that spirit, this dissertation focuses on elucidating atmospheric ensemble model bias and error through a variety of different methods specific to fire weather days (FWDs) over the Northeast United States (NEUS). Other than a handful of studies that use models to predict fire indices for single fire seasons (Molders 2008, Simpson et al. 2014), an extensive exploration of model performance specific to FWDs has not been attempted. Two unique definitions for FWDs are proposed; one that uses pre-existing fire indices (FWD1) and another from a new statistical fire weather index (FWD2) relating fire occurrence and near-surface meteorological observations. Ensemble model verification reveals FWDs to have warmer (> 1 K), moister (~ 0.4 g kg-1) and less windy (~ 1 m s-1) biases than the climatological average for both FWD1 and FWD2. These biases are not restricted to the near surface but exist through the entirety of the planetary boundary layer (PBL). Furthermore, post-processing methods are more effective when previous FWDs are incorporated into the statistical training, suggesting that model bias could be related to the synoptic flow pattern. An Ensemble Kalman Filter (EnKF) is used to explore the effectiveness of data assimilation during a period of extensive FWDs in April 2012. Model biases develop rapidly on FWDs, consistent with the FWD1 and FWD2 verification. However, the EnKF is effective at removing most biases for temperature, wind speed and specific humidity. Potential sources of error in the parameterized physics of the PBL are explored by rerunning the EnKF with simultaneous state and parameter estimation (SSPE) for two relevant parameters within the ACM2 PBL scheme. SSPE helps to reduce the cool temperature bias near the surface on FWDs, with the variability in parameter estimates exhibiting some relationship to model bias for temperature. This suggests the potential for structural model error within the ACM2 PBL scheme and could lead toward the future development of improved PBL parameterizations.
Chou, C P; Bentler, P M; Satorra, A
1991-11-01
Research studying robustness of maximum likelihood (ML) statistics in covariance structure analysis has concluded that test statistics and standard errors are biased under severe non-normality. An estimation procedure known as asymptotic distribution free (ADF), making no distributional assumption, has been suggested to avoid these biases. Corrections to the normal theory statistics to yield more adequate performance have also been proposed. This study compares the performance of a scaled test statistic and robust standard errors for two models under several non-normal conditions and also compares these with the results from ML and ADF methods. Both ML and ADF test statistics performed rather well in one model and considerably worse in the other. In general, the scaled test statistic seemed to behave better than the ML test statistic and the ADF statistic performed the worst. The robust and ADF standard errors yielded more appropriate estimates of sampling variability than the ML standard errors, which were usually downward biased, in both models under most of the non-normal conditions. ML test statistics and standard errors were found to be quite robust to the violation of the normality assumption when data had either symmetric and platykurtic distributions, or non-symmetric and zero kurtotic distributions.
Development of multiple-eye PIV using mirror array
NASA Astrophysics Data System (ADS)
Maekawa, Akiyoshi; Sakakibara, Jun
2018-06-01
In order to reduce particle image velocimetry measurement error, we manufactured an ellipsoidal polyhedral mirror and placed it between a camera and flow target to capture n images of identical particles from n (=80 maximum) different directions. The 3D particle positions were determined from the ensemble average of n C2 intersecting points of a pair of line-of-sight back-projected points from a particle found in any combination of two images in the n images. The method was then applied to a rigid-body rotating flow and a turbulent pipe flow. In the former measurement, bias error and random error fell in a range of ±0.02 pixels and 0.02–0.05 pixels, respectively; additionally, random error decreased in proportion to . In the latter measurement, in which the measured value was compared to direct numerical simulation, bias error was reduced and random error also decreased in proportion to .
Shared dosimetry error in epidemiological dose-response analyses
Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...
2015-03-23
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less
Automated Detection of Heuristics and Biases among Pathologists in a Computer-Based System
ERIC Educational Resources Information Center
Crowley, Rebecca S.; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia
2013-01-01
The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to…
Synchronizing Two AGCMs via Ocean-Atmosphere Coupling (Invited)
NASA Astrophysics Data System (ADS)
Kirtman, B. P.
2009-12-01
A new approach for fusing or synchronizing to very different Atmospheric General Circulation Models (AGCMs) is described. The approach is also well suited for understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.
A New Approach for Coupled GCM Sensitivity Studies
NASA Astrophysics Data System (ADS)
Kirtman, B. P.; Duane, G. S.
2011-12-01
A new multi-model approach for coupled GCM sensitivity studies is presented. The purpose of the sensitivity experiments is to understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.
NASA Astrophysics Data System (ADS)
Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.
2015-10-01
All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. Here, we are applying a consistent approach based on auto- and cross-covariance functions to quantify the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining data sets from several analysers and using simulations, we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time lag eliminates these effects (provided the time lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.
NASA Astrophysics Data System (ADS)
Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.
2015-03-01
All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. We are here applying a consistent approach based on auto- and cross-covariance functions to quantifying the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time-lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time-lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining datasets from several analysers and using simulations we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time-lag eliminates these effects (provided the time-lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time-lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.
Multipath calibration in GPS pseudorange measurements
NASA Technical Reports Server (NTRS)
Kee, Changdon (Inventor); Parkinson, Bradford W. (Inventor)
1998-01-01
Novel techniques are disclosed for eliminating multipath errors, including mean bias errors, in pseudorange measurements made by conventional global positioning system receivers. By correlating the multipath signals of different satellites at their cross-over points in the sky, multipath mean bias errors are effectively eliminated. By then taking advantage of the geometrical dependence of multipath, a linear combination of spherical harmonics are fit to the satellite multipath data to create a hemispherical model of the multipath. This calibration model can then be used to compensate for multipath in subsequent measurements and thereby obtain GPS positioning to centimeter accuracy.
Thirty Years of Improving the NCEP Global Forecast System
NASA Astrophysics Data System (ADS)
White, G. H.; Manikin, G.; Yang, F.
2014-12-01
Current eight day forecasts by the NCEP Global Forecast System are as accurate as five day forecasts 30 years ago. This revolution in weather forecasting reflects increases in computer power, improvements in the assimilation of observations, especially satellite data, improvements in model physics, improvements in observations and international cooperation and competition. One important component has been and is the diagnosis, evaluation and reduction of systematic errors. The effect of proposed improvements in the GFS on systematic errors is one component of the thorough testing of such improvements by the Global Climate and Weather Modeling Branch. Examples of reductions in systematic errors in zonal mean temperatures and winds and other fields will be presented. One challenge in evaluating systematic errors is uncertainty in what reality is. Model initial states can be regarded as the best overall depiction of the atmosphere, but can be misleading in areas of few observations or for fields not well observed such as humidity or precipitation over the oceans. Verification of model physics is particularly difficult. The Environmental Modeling Center emphasizes the evaluation of systematic biases against observations. Recently EMC has placed greater emphasis on synoptic evaluation and on precipitation, 2-meter temperatures and dew points and 10 meter winds. A weekly EMC map discussion reviews the performance of many models over the United States and has helped diagnose and alleviate significant systematic errors in the GFS, including a near surface summertime evening cold wet bias over the eastern US and a multi-week period when the GFS persistently developed bogus tropical storms off Central America. The GFS exhibits a wet bias for light rain and a dry bias for moderate to heavy rain over the continental United States. Significant changes to the GFS are scheduled to be implemented in the fall of 2014. These include higher resolution, improved physics and improvements to the assimilation. These changes significantly improve the tropospheric flow and reduce a tropical upper tropospheric warm bias. One important error remaining is the failure of the GFS to maintain deep convection over Indonesia and in the tropical west Pacific. This and other current systematic errors will be presented.
Comparison of methods of temperature measurement in swine.
Hanneman, S K; Jesurum-Urbaitis, J T; Bickel, D R
2004-07-01
The purpose of these experiments was to test the equivalence of pulmonary artery, urinary bladder, tympanic, rectal and femoral artery methods of temperature measurement in healthy and critically ill swine under clinical intensive care unit (ICU) conditions using a prospective, time series design. First, sensors were tested for error and sensitivity to change in temperature with a precision-controlled water bath and a laboratory-certified digital thermometer for temperatures 34-42 degrees C. There was virtually no systematic (bias) or random (precision) error (<0.2 degrees C). The bladder sensor had the slowest response time to change in temperature (105-120 s). Next, testing was done in an experimental porcine ICU in a non-profit research institution with four male, sedated, and mechanically ventilated domestic farm pigs. The in vivo experiments were conducted over periods of 41-168 h with temperatures measured every 1-5 s. The bladder, tympanic and rectal methods had unacceptable bias (>or=0.5 degrees C) and/or precision (>or=0.2 degrees C). Response time varied from 7 s with the femoral artery method to 280 s (4.7 min) with the tympanic method. We concluded that equivalence of the methods was insufficient for them to be used interchangeably in the porcine ICU. Intravascular monitoring of core body temperature produces optimal measurement of porcine temperature under varying conditions of physiological stability.
Johnson, R.H.; Poeter, E.P.
2007-01-01
Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B.V. All rights reserved.
Attitude errors arising from antenna/satellite altitude errors - Recognition and reduction
NASA Technical Reports Server (NTRS)
Godbey, T. W.; Lambert, R.; Milano, G.
1972-01-01
A review is presented of the three basic types of pulsed radar altimeter designs, as well as the source and form of altitude bias errors arising from antenna/satellite attitude errors in each design type. A quantitative comparison of the three systems was also made.
How unrealistic optimism is maintained in the face of reality.
Sharot, Tali; Korn, Christoph W; Dolan, Raymond J
2011-10-09
Unrealistic optimism is a pervasive human trait that influences domains ranging from personal relationships to politics and finance. How people maintain unrealistic optimism, despite frequently encountering information that challenges those biased beliefs, is unknown. We examined this question and found a marked asymmetry in belief updating. Participants updated their beliefs more in response to information that was better than expected than to information that was worse. This selectivity was mediated by a relative failure to code for errors that should reduce optimism. Distinct regions of the prefrontal cortex tracked estimation errors when those called for positive update, both in individuals who scored high and low on trait optimism. However, highly optimistic individuals exhibited reduced tracking of estimation errors that called for negative update in right inferior prefrontal gyrus. These findings indicate that optimism is tied to a selective update failure and diminished neural coding of undesirable information regarding the future.
Aydin, Denis; Feychting, Maria; Schüz, Joachim; Andersen, Tina Veje; Poulsen, Aslak Harbo; Prochazka, Michaela; Klaeboe, Lars; Kuehni, Claudia E; Tynes, Tore; Röösli, Martin
2011-07-01
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents. Copyright © 2011 Wiley-Liss, Inc.
Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting.
Khan, Tarik A; Friedensohn, Simon; Gorter de Vries, Arthur R; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T
2016-03-01
High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion-the intraclonal diversity index-which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology.
Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting
Khan, Tarik A.; Friedensohn, Simon; de Vries, Arthur R. Gorter; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T.
2016-01-01
High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion—the intraclonal diversity index—which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518
Rosenbaum, Paul R
2016-03-01
A common practice with ordered doses of treatment and ordered responses, perhaps recorded in a contingency table with ordered rows and columns, is to cut or remove a cross from the table, leaving the outer corners--that is, the high-versus-low dose, high-versus-low response corners--and from these corners to compute a risk or odds ratio. This little remarked but common practice seems to be motivated by the oldest and most familiar method of sensitivity analysis in observational studies, proposed by Cornfield et al. (1959), which says that to explain a population risk ratio purely as bias from an unobserved binary covariate, the prevalence ratio of the covariate must exceed the risk ratio. Quite often, the largest risk ratio, hence the one least sensitive to bias by this standard, is derived from the corners of the ordered table with the central cross removed. Obviously, the corners use only a portion of the data, so a focus on the corners has consequences for the standard error as well as for bias, but sampling variability was not a consideration in this early and familiar form of sensitivity analysis, where point estimates replaced population parameters. Here, this cross-cut analysis is examined with the aid of design sensitivity and the power of a sensitivity analysis. © 2015, The International Biometric Society.
Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L
2014-03-01
Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.
Space-based IR tracking bias removal using background star observations
NASA Astrophysics Data System (ADS)
Clemons, T. M., III; Chang, K. C.
2009-05-01
This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.
Analysis and correction of gradient nonlinearity bias in ADC measurements
Malyarenko, Dariya I.; Ross, Brian D.; Chenevert, Thomas L.
2013-01-01
Purpose Gradient nonlinearity of MRI systems leads to spatially-dependent b-values and consequently high non-uniformity errors (10–20%) in ADC measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. Methods All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Results Spatial dependence of nonlinearity correction terms accounts for the bulk (75–95%) of ADC bias for FA = 0.3–0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. Conclusions The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. PMID:23794533
Goldman, Gretchen T; Mulholland, James A; Russell, Armistead G; Strickland, Matthew J; Klein, Mitchel; Waller, Lance A; Tolbert, Paige E
2011-06-22
Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta. Daily measures of twelve ambient air pollutants were analyzed: NO2, NOx, O3, SO2, CO, PM10 mass, PM2.5 mass, and PM2.5 components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits. Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed. For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling instrument imprecision and spatial variability as different error types, we estimate direction and magnitude of the effects of error over a range of error types.
Luman, Elizabeth T; Sablan, Mariana; Stokley, Shannon; McCauley, Mary M; Shaw, Kate M
2008-01-01
Background Lack of methodological rigor can cause survey error, leading to biased results and suboptimal public health response. This study focused on the potential impact of 3 methodological "shortcuts" pertaining to field surveys: relying on a single source for critical data, failing to repeatedly visit households to improve response rates, and excluding remote areas. Methods In a vaccination coverage survey of young children conducted in the Commonwealth of the Northern Mariana Islands in July 2005, 3 sources of vaccination information were used, multiple follow-up visits were made, and all inhabited areas were included in the sampling frame. Results are calculated with and without these strategies. Results Most children had at least 2 sources of data; vaccination coverage estimated from any single source was substantially lower than from all sources combined. Eligibility was ascertained for 79% of households after the initial visit and for 94% of households after follow-up visits; vaccination coverage rates were similar with and without follow-up. Coverage among children on remote islands differed substantially from that of their counterparts on the main island indicating a programmatic need for locality-specific information; excluding remote islands from the survey would have had little effect on overall estimates due to small populations and divergent results. Conclusion Strategies to reduce sources of survey error should be maximized in public health surveys. The impact of the 3 strategies illustrated here will vary depending on the primary outcomes of interest and local situations. Survey limitations such as potential for error should be well-documented, and the likely direction and magnitude of bias should be considered. PMID:18371195
Experimental and theoretical determination of sea-state bias in radar altimetry
NASA Technical Reports Server (NTRS)
Stewart, Robert H.
1991-01-01
The major unknown error in radar altimetry is due to waves on the sea surface which cause the mean radar-reflecting surface to be displaced from mean sea level. This is the electromagnetic bias. The primary motivation for the project was to understand the causes of the bias so that the error it produces in radar altimetry could be calculated and removed from altimeter measurements made from space by the Topex/Poseidon altimetric satellite. The goals of the project were: (1) observe radar scatter at vertical incidence using a simple radar on a platform for a wide variety of environmental conditions at the same time wind and wave conditions were measured; (2) calculate electromagnetic bias from the radar observations; (3) investigate the limitations of the present theory describing radar scatter at vertical incidence; (4) compare measured electromagnetic bias with bias calculated from theory using measurements of wind and waves made at the time of the radar measurements; and (5) if possible, extend the theory so bias can be calculated for a wider range of environmental conditions.
Bias correction of bounded location errors in presence-only data
Hefley, Trevor J.; Brost, Brian M.; Hooten, Mevin B.
2017-01-01
Location error occurs when the true location is different than the reported location. Because habitat characteristics at the true location may be different than those at the reported location, ignoring location error may lead to unreliable inference concerning species–habitat relationships.We explain how a transformation known in the spatial statistics literature as a change of support (COS) can be used to correct for location errors when the true locations are points with unknown coordinates contained within arbitrary shaped polygons.We illustrate the flexibility of the COS by modelling the resource selection of Whooping Cranes (Grus americana) using citizen contributed records with locations that were reported with error. We also illustrate the COS with a simulation experiment.In our analysis of Whooping Crane resource selection, we found that location error can result in up to a five-fold change in coefficient estimates. Our simulation study shows that location error can result in coefficient estimates that have the wrong sign, but a COS can efficiently correct for the bias.
NASA Astrophysics Data System (ADS)
Chegwidden, O.; Nijssen, B.; Pytlak, E.
2017-12-01
Any model simulation has errors, including errors in meteorological data, process understanding, model structure, and model parameters. These errors may express themselves as bias, timing lags, and differences in sensitivity between the model and the physical world. The evaluation and handling of these errors can greatly affect the legitimacy, validity and usefulness of the resulting scientific product. In this presentation we will discuss a case study of handling and communicating model errors during the development of a hydrologic climate change dataset for the Pacific Northwestern United States. The dataset was the result of a four-year collaboration between the University of Washington, Oregon State University, the Bonneville Power Administration, the United States Army Corps of Engineers and the Bureau of Reclamation. Along the way, the partnership facilitated the discovery of multiple systematic errors in the streamflow dataset. Through an iterative review process, some of those errors could be resolved. For the errors that remained, honest communication of the shortcomings promoted the dataset's legitimacy. Thoroughly explaining errors also improved ways in which the dataset would be used in follow-on impact studies. Finally, we will discuss the development of the "streamflow bias-correction" step often applied to climate change datasets that will be used in impact modeling contexts. We will describe the development of a series of bias-correction techniques through close collaboration among universities and stakeholders. Through that process, both universities and stakeholders learned about the others' expectations and workflows. This mutual learning process allowed for the development of methods that accommodated the stakeholders' specific engineering requirements. The iterative revision process also produced a functional and actionable dataset while preserving its scientific merit. We will describe how encountering earlier techniques' pitfalls allowed us to develop improved methods for scientists and practitioners alike.
Hernaus, Dennis; Gold, James M; Waltz, James A; Frank, Michael J
2018-04-03
While many have emphasized impaired reward prediction error signaling in schizophrenia, multiple studies suggest that some decision-making deficits may arise from overreliance on stimulus-response systems together with a compromised ability to represent expected value. Guided by computational frameworks, we formulated and tested two scenarios in which maladaptive representations of expected value should be most evident, thereby delineating conditions that may evoke decision-making impairments in schizophrenia. In a modified reinforcement learning paradigm, 42 medicated people with schizophrenia and 36 healthy volunteers learned to select the most frequently rewarded option in a 75-25 pair: once when presented with a more deterministic (90-10) pair and once when presented with a more probabilistic (60-40) pair. Novel and old combinations of choice options were presented in a subsequent transfer phase. Computational modeling was employed to elucidate contributions from stimulus-response systems (actor-critic) and expected value (Q-learning). People with schizophrenia showed robust performance impairments with increasing value difference between two competing options, which strongly correlated with decreased contributions from expected value-based learning (Q-learning). Moreover, a subtle yet consistent contextual choice bias for the probabilistic 75 option was present in people with schizophrenia, which could be accounted for by a context-dependent reward prediction error in the actor-critic. We provide evidence that decision-making impairments in schizophrenia increase monotonically with demands placed on expected value computations. A contextual choice bias is consistent with overreliance on stimulus-response learning, which may signify a deficit secondary to the maladaptive representation of expected value. These results shed new light on conditions under which decision-making impairments may arise. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, A. L.; Feldman, D. R.; Freidenreich, S.
A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. Thesemore » diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited (~1 W/m 2) and also varies spatially and with intrinsic aerosol optical properties. The findings presented here underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.« less
Jones, A. L.; Feldman, D. R.; Freidenreich, S.; ...
2017-12-07
A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. Thesemore » diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited (~1 W/m 2) and also varies spatially and with intrinsic aerosol optical properties. The findings presented here underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.« less
Sani, Susan Raouf Hadadi; Tabibi, Zahra; Fadardi, Javad Salehi; Stavrinos, Despina
2017-12-01
The present study explored whether aggression, emotional regulation, cognitive inhibition, and attentional bias towards emotional stimuli were related to risky driving behavior (driving errors, and driving violations). A total of 117 applicants for taxi driver positions (89% male, M age=36.59years, SD=9.39, age range 24-62years) participated in the study. Measures included the Ahwaz Aggression Inventory, the Difficulties in emotion regulation Questionnaire, the emotional Stroop task, the Go/No-go task, and the Driving Behavior Questionnaire. Correlation and regression analyses showed that aggression and emotional regulation predicted risky driving behavior. Difficulties in emotion regulation, the obstinacy and revengeful component of aggression, attentional bias toward emotional stimuli, and cognitive inhibition predicted driving errors. Aggression was the only significant predictive factor for driving violations. In conclusion, aggression and difficulties in regulating emotions may exacerbate risky driving behaviors. Deficits in cognitive inhibition and attentional bias toward negative emotional stimuli can increase driving errors. Predisposition to aggression has strong effect on making one vulnerable to violation of traffic rules and crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the sea-state bias of the Geosat altimeter
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Koblinsky, Chester J.
1991-01-01
The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.
On the sea-state bias of the Geosat altimeter
NASA Astrophysics Data System (ADS)
Ray, Richard D.; Koblinsky, Chester J.
1991-06-01
The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.
Loeber, Sabine; Grosshans, Martin; Herpertz, Stephan; Kiefer, Falk; Herpertz, Sabine C
2013-12-01
Overeating, weight gain and obesity are considered as a major health problem in Western societies. At present, an impairment of response inhibition and a biased salience attribution to food-associated stimuli are considered as important factors associated with weight gain. However, recent findings suggest that the association between an impaired response inhibition and salience attribution and weight gain might be modulated by other factors. Thus, hunger might cause food-associated cues to be perceived as more salient and rewarding and might be associated with an impairment of response inhibition. However, at present, little is known how hunger interacts with these processes. Thus, the aim of the present study was to investigate whether hunger modulates response inhibition and attention allocation towards food-associated stimuli in normal-weight controls. A go-/nogo task with food-associated and control words and a visual dot-probe task with food-associated and control pictures were administered to 48 normal-weight participants (mean age 24.5 years, range 19-40; mean BMI 21.6, range 18.5-25.4). Hunger was assessed twofold using a self-reported measure of hunger and a measurement of the blood glucose level. Our results indicated that self-reported hunger affected behavioral response inhibition in the go-/nogo task. Thus, hungry participants committed significantly more commission errors when food-associated stimuli served as distractors compared to when control stimuli were the distractors. This effect was not observed in sated participants. In addition, we found that self-reported hunger was associated with a lower number of omission errors in response to food-associated stimuli indicating a higher salience of these stimuli. Low blood glucose level was not associated with an impairment of response inhibition. However, our results indicated that the blood glucose level was associated with an attentional bias towards food-associated cues in the visual dot probe task. In conclusion our results suggest that hunger induces an approach bias and is associated with an impairment of response inhibition when normal-weight participants are confronted with food-associated cues. These findings are important as these processes play a crucial role with regard to the control of food-intake and weight gain and are assumed to contribute to obesity. Thus, individualized treatment approaches taking into account the experience of hunger in everyday-life situations should be considered in addition to a training of response inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Batistatou, Evridiki; McNamee, Roseanne
2012-12-10
It is known that measurement error leads to bias in assessing exposure effects, which can however, be corrected if independent replicates are available. For expensive replicates, two-stage (2S) studies that produce data 'missing by design', may be preferred over a single-stage (1S) study, because in the second stage, measurement of replicates is restricted to a sample of first-stage subjects. Motivated by an occupational study on the acute effect of carbon black exposure on respiratory morbidity, we compare the performance of several bias-correction methods for both designs in a simulation study: an instrumental variable method (EVROS IV) based on grouping strategies, which had been recommended especially when measurement error is large, the regression calibration and the simulation extrapolation methods. For the 2S design, either the problem of 'missing' data was ignored or the 'missing' data were imputed using multiple imputations. Both in 1S and 2S designs, in the case of small or moderate measurement error, regression calibration was shown to be the preferred approach in terms of root mean square error. For 2S designs, regression calibration as implemented by Stata software is not recommended in contrast to our implementation of this method; the 'problematic' implementation of regression calibration although substantially improved with use of multiple imputations. The EVROS IV method, under a good/fairly good grouping, outperforms the regression calibration approach in both design scenarios when exposure mismeasurement is severe. Both in 1S and 2S designs with moderate or large measurement error, simulation extrapolation severely failed to correct for bias. Copyright © 2012 John Wiley & Sons, Ltd.
Reduced backscattering cross section (Sigma degree) data from the Skylab S-193 radar altimeter
NASA Technical Reports Server (NTRS)
Brown, G. S.
1975-01-01
Backscattering cross section per unit scattering area data, reduced from measurements made by the Skylab S-193 radar altimeter over the ocean surface are presented. Descriptions of the altimeter are given where applicable to the measurement process. Analytical solutions are obtained for the flat surface impulse response for the case of a nonsymmetrical antenna pattern. Formulations are developed for converting altimeter AGC outputs into values for the backscattering cross section. Reduced data are presented for Missions SL-2, 3 and 4 for all modes of the altimeter where sufficient calibration existed. The problem of interpreting land scatter data is also discussed. Finally, a comprehensive error analysis of the measurement is presented and worst case random and bias errors are estimated.
Improving power and robustness for detecting genetic association with extreme-value sampling design.
Chen, Hua Yun; Li, Mingyao
2011-12-01
Extreme-value sampling design that samples subjects with extremely large or small quantitative trait values is commonly used in genetic association studies. Samples in such designs are often treated as "cases" and "controls" and analyzed using logistic regression. Such a case-control analysis ignores the potential dose-response relationship between the quantitative trait and the underlying trait locus and thus may lead to loss of power in detecting genetic association. An alternative approach to analyzing such data is to model the dose-response relationship by a linear regression model. However, parameter estimation from this model can be biased, which may lead to inflated type I errors. We propose a robust and efficient approach that takes into consideration of both the biased sampling design and the potential dose-response relationship. Extensive simulations demonstrate that the proposed method is more powerful than the traditional logistic regression analysis and is more robust than the linear regression analysis. We applied our method to the analysis of a candidate gene association study on high-density lipoprotein cholesterol (HDL-C) which includes study subjects with extremely high or low HDL-C levels. Using our method, we identified several SNPs showing a stronger evidence of association with HDL-C than the traditional case-control logistic regression analysis. Our results suggest that it is important to appropriately model the quantitative traits and to adjust for the biased sampling when dose-response relationship exists in extreme-value sampling designs. © 2011 Wiley Periodicals, Inc.
Domain-Level Assessment of the Weather Running Estimate-Nowcast (WREN) Model
2016-11-01
Added by Decreased Grid Spacing 14 4.4 Performance Comparison of 2 WRE–N Configurations 18 4.5 Performance Comparison: Dumais WRE–N with FDDA vs. the...FDDA for 2 -m-AGL TMP (K) ..................................................... 15 Fig. 11 Bias and RMSE errors for the 3 grids for Dumais and Passner...WRE–N with FDDA for 2 -m-AGL DPT (K) ...................................................... 16 Fig. 12 Bias and RMSE errors for the 3 grids for Dumais
Allicat magnetoresistive head design and performance
NASA Astrophysics Data System (ADS)
Hannon, David; Krounbi, Mohamed; Christner, Jodie
1994-03-01
The general design features of the magnetoresistive (MR) merged head are described and compared to the earlier MR piggy-back head called Corsair. Examples of static, magnetic, and error rate testing are given. Dual track profiles show the read-narrow feature of the MR head. Stability of the signal with write disturbance shows the effectiveness of the hard-bias longitudinal biasing. Error rate versus off-track position indicates the robustness of the file design.
Verification bias an underrecognized source of error in assessing the efficacy of medical imaging.
Petscavage, Jonelle M; Richardson, Michael L; Carr, Robert B
2011-03-01
Diagnostic tests are validated by comparison against a "gold standard" reference test. When the reference test is invasive or expensive, it may not be applied to all patients. This can result in biased estimates of the sensitivity and specificity of the diagnostic test. This type of bias is called "verification bias," and is a common problem in imaging research. The purpose of our study is to estimate the prevalence of verification bias in the recent radiology literature. All issues of the American Journal of Roentgenology (AJR), Academic Radiology, Radiology, and European Journal of Radiology (EJR) between November 2006 and October 2009 were reviewed for original research articles mentioning sensitivity or specificity as endpoints. Articles were read to determine whether verification bias was present and searched for author recognition of verification bias in the design. During 3 years, these journals published 2969 original research articles. A total of 776 articles used sensitivity or specificity as an outcome. Of these, 211 articles demonstrated potential verification bias. The fraction of articles with potential bias was respectively 36.4%, 23.4%, 29.5%, and 13.4% for AJR, Academic Radiology, Radiology, and EJR. The total fraction of papers with potential bias in which the authors acknowledged this bias was 17.1%. Verification bias is a common and frequently unacknowledged source of error in efficacy studies of diagnostic imaging. Bias can often be eliminated by proper study design. When it cannot be eliminated, it should be estimated and acknowledged. Published by Elsevier Inc.
Correcting Memory Improves Accuracy of Predicted Task Duration
ERIC Educational Resources Information Center
Roy, Michael M.; Mitten, Scott T.; Christenfeld, Nicholas J. S.
2008-01-01
People are often inaccurate in predicting task duration. The memory bias explanation holds that this error is due to people having incorrect memories of how long previous tasks have taken, and these biased memories cause biased predictions. Therefore, the authors examined the effect on increasing predictive accuracy of correcting memory through…
Mismeasurement and the resonance of strong confounders: correlated errors.
Marshall, J R; Hastrup, J L; Ross, J S
1999-07-01
Confounding in epidemiology, and the limits of standard methods of control for an imperfectly measured confounder, have been understood for some time. However, most treatments of this problem are based on the assumption that errors of measurement in confounding and confounded variables are independent. This paper considers the situation in which a strong risk factor (confounder) and an inconsequential but suspected risk factor (confounded) are each measured with errors that are correlated; the situation appears especially likely to occur in the field of nutritional epidemiology. Error correlation appears to add little to measurement error as a source of bias in estimating the impact of a strong risk factor: it can add to, diminish, or reverse the bias induced by measurement error in estimating the impact of the inconsequential risk factor. Correlation of measurement errors can add to the difficulty involved in evaluating structures in which confounding and measurement error are present. In its presence, observed correlations among risk factors can be greater than, less than, or even opposite to the true correlations. Interpretation of multivariate epidemiologic structures in which confounding is likely requires evaluation of measurement error structures, including correlations among measurement errors.
Schumacher, Robin F; Malone, Amelia S
2017-09-01
The goal of the present study was to describe fraction-calculation errors among 4 th -grade students and determine whether error patterns differed as a function of problem type (addition vs. subtraction; like vs. unlike denominators), orientation (horizontal vs. vertical), or mathematics-achievement status (low- vs. average- vs. high-achieving). We specifically addressed whether mathematics-achievement status was related to students' tendency to operate with whole number bias. We extended this focus by comparing low-performing students' errors in two instructional settings that focused on two different types of fraction understandings: core instruction that focused on part-whole understanding vs. small-group tutoring that focused on magnitude understanding. Results showed students across the sample were more likely to operate with whole number bias on problems with unlike denominators. Students with low or average achievement (who only participated in core instruction) were more likely to operate with whole number bias than students with low achievement who participated in small-group tutoring. We suggest instruction should emphasize magnitude understanding to sufficiently increase fraction understanding for all students in the upper elementary grades.
Error propagation in energetic carrying capacity models
Pearse, Aaron T.; Stafford, Joshua D.
2014-01-01
Conservation objectives derived from carrying capacity models have been used to inform management of landscapes for wildlife populations. Energetic carrying capacity models are particularly useful in conservation planning for wildlife; these models use estimates of food abundance and energetic requirements of wildlife to target conservation actions. We provide a general method for incorporating a foraging threshold (i.e., density of food at which foraging becomes unprofitable) when estimating food availability with energetic carrying capacity models. We use a hypothetical example to describe how past methods for adjustment of foraging thresholds biased results of energetic carrying capacity models in certain instances. Adjusting foraging thresholds at the patch level of the species of interest provides results consistent with ecological foraging theory. Presentation of two case studies suggest variation in bias which, in certain instances, created large errors in conservation objectives and may have led to inefficient allocation of limited resources. Our results also illustrate how small errors or biases in application of input parameters, when extrapolated to large spatial extents, propagate errors in conservation planning and can have negative implications for target populations.
Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A
2011-06-30
Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.
Asquith, William H.; Thompson, David B.
2008-01-01
The U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, investigated a refinement of the regional regression method and developed alternative equations for estimation of peak-streamflow frequency for undeveloped watersheds in Texas. A common model for estimation of peak-streamflow frequency is based on the regional regression method. The current (2008) regional regression equations for 11 regions of Texas are based on log10 transformations of all regression variables (drainage area, main-channel slope, and watershed shape). Exclusive use of log10-transformation does not fully linearize the relations between the variables. As a result, some systematic bias remains in the current equations. The bias results in overestimation of peak streamflow for both the smallest and largest watersheds. The bias increases with increasing recurrence interval. The primary source of the bias is the discernible curvilinear relation in log10 space between peak streamflow and drainage area. Bias is demonstrated by selected residual plots with superimposed LOWESS trend lines. To address the bias, a statistical framework based on minimization of the PRESS statistic through power transformation of drainage area is described and implemented, and the resulting regression equations are reported. Compared to log10-exclusive equations, the equations derived from PRESS minimization have PRESS statistics and residual standard errors less than the log10 exclusive equations. Selected residual plots for the PRESS-minimized equations are presented to demonstrate that systematic bias in regional regression equations for peak-streamflow frequency estimation in Texas can be reduced. Because the overall error is similar to the error associated with previous equations and because the bias is reduced, the PRESS-minimized equations reported here provide alternative equations for peak-streamflow frequency estimation.
More on Systematic Error in a Boyle's Law Experiment
ERIC Educational Resources Information Center
McCall, Richard P.
2012-01-01
A recent article in "The Physics Teacher" describes a method for analyzing a systematic error in a Boyle's law laboratory activity. Systematic errors are important to consider in physics labs because they tend to bias the results of measurements. There are numerous laboratory examples and resources that discuss this common source of error.
NASA Astrophysics Data System (ADS)
Solazzo, Efisio; Hogrefe, Christian; Colette, Augustin; Garcia-Vivanco, Marta; Galmarini, Stefano
2017-09-01
The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case
simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) of the base case and of the sensitivity runs are analysed in conjunction with timescale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study), allowing the detection of the timescale and the fields that the two models are most sensitive to. The representation of planetary boundary layer (PBL) dynamics is pivotal to both models. In particular, (i) the fluctuations slower than ˜ 1.5 days account for 70-85 % of the mean square error of the full (undecomposed) ozone time series; (ii) a recursive, systematic error with daily periodicity is detected, responsible for 10-20 % of the quadratic total error; (iii) errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network-average ozone observations in summer in both Europe and North America); (iv) the CMAQ ozone error has a weak/negligible dependence on the errors in NO2, while the error in NO2 significantly impacts the ozone error produced by Chimere; (v) the response of the models to variations of anthropogenic emissions and boundary conditions show a pronounced spatial heterogeneity, while the seasonal variability of the response is found to be less marked. Only during the winter season does the zeroing of boundary values for North America produce a spatially uniform deterioration of the model accuracy across the majority of the continent.
Accurate Magnetometer/Gyroscope Attitudes Using a Filter with Correlated Sensor Noise
NASA Technical Reports Server (NTRS)
Sedlak, J.; Hashmall, J.
1997-01-01
Magnetometers and gyroscopes have been shown to provide very accurate attitudes for a variety of spacecraft. These results have been obtained, however, using a batch-least-squares algorithm and long periods of data. For use in onboard applications, attitudes are best determined using sequential estimators such as the Kalman filter. When a filter is used to determine attitudes using magnetometer and gyroscope data for input, the resulting accuracy is limited by both the sensor accuracies and errors inherent in the Earth magnetic field model. The Kalman filter accounts for the random component by modeling the magnetometer and gyroscope errors as white noise processes. However, even when these tuning parameters are physically realistic, the rate biases (included in the state vector) have been found to show systematic oscillations. These are attributed to the field model errors. If the gyroscope noise is sufficiently small, the tuned filter 'memory' will be long compared to the orbital period. In this case, the variations in the rate bias induced by field model errors are substantially reduced. Mistuning the filter to have a short memory time leads to strongly oscillating rate biases and increased attitude errors. To reduce the effect of the magnetic field model errors, these errors are estimated within the filter and used to correct the reference model. An exponentially-correlated noise model is used to represent the filter estimate of the systematic error. Results from several test cases using in-flight data from the Compton Gamma Ray Observatory are presented. These tests emphasize magnetometer errors, but the method is generally applicable to any sensor subject to a combination of random and systematic noise.
Daboul, Amro; Ivanovska, Tatyana; Bülow, Robin; Biffar, Reiner; Cardini, Andrea
2018-01-01
Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'.
Ivanovska, Tatyana; Bülow, Robin; Biffar, Reiner; Cardini, Andrea
2018-01-01
Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'. PMID:29787586
Ruva, Christine L; Guenther, Christina C
2015-06-01
This 2-part study explored how exposure to negative pretrial publicity (Neg-PTP) influences the jury process, as well as possible mechanisms responsible for its biasing effects on decisions. Study Part A explored how PTP and jury deliberations affect juror/jury verdicts, memory, and impressions of the defendant and attorneys. One week before viewing a criminal trial mock-jurors (N = 320 university students) were exposed to Neg-PTP or unrelated crime stories (No-PTP). Two days later deliberating jurors came to a group decision, whereas nondeliberating jurors completed an unrelated task before making an individual decision. Neg-PTP jurors were more likely to vote guilty, make memory errors, and rate the defendant lower in credibility. Deliberation reduced Neg-PTP jurors' memory accuracy and No-PTP jurors' guilty verdicts (leniency bias). Jurors' memory and ratings of the defendant and prosecuting attorney significantly mediated the effect of PTP on guilt ratings. Study Part B content analyzed 30 mock-jury deliberations and explored how PTP influenced deliberations and ultimately jury decisions. Neg-PTP juries were more likely than No-PTP juries to discuss ambiguous trial evidence in a proprosecution manner and less likely to discuss judicial instructions and lack of evidence. All Neg-PTP juries mentioned PTP, after instructed otherwise, and rarely corrected jury members who mentioned PTP. Discussion of ambiguous trial evidence in a proprosecution manner and lack of evidence significantly mediated the effect of PTP on jury-level guilt ratings. Together the findings suggest that judicial admonishments and deliberations may not be sufficient to reduce PTP bias, because of memory errors, biased impressions, and predecisional distortion. (c) 2015 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Seasholtz, R. G.
1977-01-01
A laser Doppler velocimeter (LDV) built for use in the Lewis Research Center's turbine stator cascade facilities is described. The signal processing and self contained data processing are based on a computing counter. A procedure is given for mode matching the laser to the probe volume. An analysis is presented of biasing errors that were observed in turbulent flow when the mean flow was not normal to the fringes.
Error biases in inner and overt speech: evidence from tongue twisters.
Corley, Martin; Brocklehurst, Paul H; Moat, H Susannah
2011-01-01
To compare the properties of inner and overt speech, Oppenheim and Dell (2008) counted participants' self-reported speech errors when reciting tongue twisters either overtly or silently and found a bias toward substituting phonemes that resulted in words in both conditions, but a bias toward substituting similar phonemes only when speech was overt. Here, we report 3 experiments revisiting their conclusion that inner speech remains underspecified at the subphonemic level, which they simulated within an activation-feedback framework. In 2 experiments, participants recited tongue twisters that could result in the errorful substitutions of similar or dissimilar phonemes to form real words or nonwords. Both experiments included an auditory masking condition, to gauge the possible impact of loss of auditory feedback on the accuracy of self-reporting of speech errors. In Experiment 1, the stimuli were composed entirely from real words, whereas, in Experiment 2, half the tokens used were nonwords. Although masking did not have any effects, participants were more likely to report substitutions of similar phonemes in both experiments, in inner as well as overt speech. This pattern of results was confirmed in a 3rd experiment using the real-word materials from Oppenheim and Dell (in press). In addition to these findings, a lexical bias effect found in Experiments 1 and 3 disappeared in Experiment 2. Our findings support a view in which plans for inner speech are indeed specified at the feature level, even when there is no intention to articulate words overtly, and in which editing of the plan for errors is implicated. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1985-01-01
The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.
Analysis of case-only studies accounting for genotyping error.
Cheng, K F
2007-03-01
The case-only design provides one approach to assess possible interactions between genetic and environmental factors. It has been shown that if these factors are conditionally independent, then a case-only analysis is not only valid but also very efficient. However, a drawback of the case-only approach is that its conclusions may be biased by genotyping errors. In this paper, our main aim is to propose a method for analysis of case-only studies when these errors occur. We show that the bias can be adjusted through the use of internal validation data, which are obtained by genotyping some sampled individuals twice. Our analysis is based on a simple and yet highly efficient conditional likelihood approach. Simulation studies considered in this paper confirm that the new method has acceptable performance under genotyping errors.
Unsupervised visual discrimination learning of complex stimuli: Accuracy, bias and generalization.
Montefusco-Siegmund, Rodrigo; Toro, Mauricio; Maldonado, Pedro E; Aylwin, María de la L
2018-07-01
Through same-different judgements, we can discriminate an immense variety of stimuli and consequently, they are critical in our everyday interaction with the environment. The quality of the judgements depends on familiarity with stimuli. A way to improve the discrimination is through learning, but to this day, we lack direct evidence of how learning shapes the same-different judgments with complex stimuli. We studied unsupervised visual discrimination learning in 42 participants, as they performed same-different judgments with two types of unfamiliar complex stimuli in the absence of labeling or individuation. Across nine daily training sessions with equiprobable same and different stimuli pairs, participants increased the sensitivity and the criterion by reducing the errors with both same and different pairs. With practice, there was a superior performance for different pairs and a bias for different response. To evaluate the process underlying this bias, we manipulated the proportion of same and different pairs, which resulted in an additional proportion-induced bias, suggesting that the bias observed with equal proportions was a stimulus processing bias. Overall, these results suggest that unsupervised discrimination learning occurs through changes in the stimulus processing that increase the sensory evidence and/or the precision of the working memory. Finally, the acquired discrimination ability was fully transferred to novel exemplars of the practiced stimuli category, in agreement with the acquisition of a category specific perceptual expertise. Copyright © 2018 Elsevier Ltd. All rights reserved.
Field evaluation of distance-estimation error during wetland-dependent bird surveys
Nadeau, Christopher P.; Conway, Courtney J.
2012-01-01
Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point-count surveys. Evaluating distance-estimation errors will allow investigators to better evaluate the accuracy of avian density and trend estimates. Moreover, investigators who evaluate distance-estimation errors could employ recently developed models to incorporate distance-estimation error into analyses. We encourage further development of such models, including the inclusion of such models into distance-analysis software.
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-09-18
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms.
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-01-01
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms. PMID:26393606
Localization of virtual sound at 4 Gz.
Sandor, Patrick M B; McAnally, Ken I; Pellieux, Lionel; Martin, Russell L
2005-02-01
Acceleration directed along the body's z-axis (Gz) leads to misperception of the elevation of visual objects (the "elevator illusion"), most probably as a result of errors in the transformation from eye-centered to head-centered coordinates. We have investigated whether the location of sound sources is misperceived under increased Gz. Visually guided localization responses were made, using a remotely controlled laser pointer, to virtual auditory targets under conditions of 1 and 4 Gz induced in a human centrifuge. As these responses would be expected to be affected by the elevator illusion, we also measured the effect of Gz on the accuracy with which subjects could point to the horizon. Horizon judgments were lower at 4 Gz than at 1 Gz, so sound localization responses at 4 Gz were corrected for this error in the transformation from eye-centered to head-centered coordinates. We found that the accuracy and bias of sound localization are not significantly affected by increased Gz. The auditory modality is likely to provide a reliable means of conveying spatial information to operators in dynamic environments in which Gz can vary.
Bias, Confounding, and Interaction: Lions and Tigers, and Bears, Oh My!
Vetter, Thomas R; Mascha, Edward J
2017-09-01
Epidemiologists seek to make a valid inference about the causal effect between an exposure and a disease in a specific population, using representative sample data from a specific population. Clinical researchers likewise seek to make a valid inference about the association between an intervention and outcome(s) in a specific population, based upon their randomly collected, representative sample data. Both do so by using the available data about the sample variable to make a valid estimate about its corresponding or underlying, but unknown population parameter. Random error in an experiment can be due to the natural, periodic fluctuation or variation in the accuracy or precision of virtually any data sampling technique or health measurement tool or scale. In a clinical research study, random error can be due to not only innate human variability but also purely chance. Systematic error in an experiment arises from an innate flaw in the data sampling technique or measurement instrument. In the clinical research setting, systematic error is more commonly referred to as systematic bias. The most commonly encountered types of bias in anesthesia, perioperative, critical care, and pain medicine research include recall bias, observational bias (Hawthorne effect), attrition bias, misclassification or informational bias, and selection bias. A confounding variable is a factor associated with both the exposure of interest and the outcome of interest. A confounding variable (confounding factor or confounder) is a variable that correlates (positively or negatively) with both the exposure and outcome. Confounding is typically not an issue in a randomized trial because the randomized groups are sufficiently balanced on all potential confounding variables, both observed and nonobserved. However, confounding can be a major problem with any observational (nonrandomized) study. Ignoring confounding in an observational study will often result in a "distorted" or incorrect estimate of the association or treatment effect. Interaction among variables, also known as effect modification, exists when the effect of 1 explanatory variable on the outcome depends on the particular level or value of another explanatory variable. Bias and confounding are common potential explanations for statistically significant associations between exposure and outcome when the true relationship is noncausal. Understanding interactions is vital to proper interpretation of treatment effects. These complex concepts should be consistently and appropriately considered whenever one is not only designing but also analyzing and interpreting data from a randomized trial or observational study.
ERIC Educational Resources Information Center
Morsanyi, Kinga; Primi, Caterina; Chiesi, Francesca; Handley, Simon
2009-01-01
In three studies we looked at two typical misconceptions of probability: the representativeness heuristic, and the equiprobability bias. The literature on statistics education predicts that some typical errors and biases (e.g., the equiprobability bias) increase with education, whereas others decrease. This is in contrast with reasoning theorists'…
Explanation of Two Anomalous Results in Statistical Mediation Analysis
ERIC Educational Resources Information Center
Fritz, Matthew S.; Taylor, Aaron B.; MacKinnon, David P.
2012-01-01
Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special…
Is There a Lexical Bias Effect in Comprehension Monitoring?
ERIC Educational Resources Information Center
Severens, Els; Hartsuiker, Robert J.
2009-01-01
Event-related potentials were used to investigate if there is a lexical bias effect in comprehension monitoring. The lexical bias effect in language production (the tendency of phonological errors to result in existing words rather than nonwords) has been attributed to an internal self-monitoring system, which uses the comprehension system, and…
A Theoretical Foundation for the Study of Inferential Error in Decision-Making Groups.
ERIC Educational Resources Information Center
Gouran, Dennis S.
To provide a theoretical base for investigating the influence of inferential error on group decision making, current literature on both inferential error and decision making is reviewed and applied to the Watergate incident. Although groups tend to make fewer inferential errors because members' inferences are generally not biased in the same…
Meta-regression approximations to reduce publication selection bias.
Stanley, T D; Doucouliagos, Hristos
2014-03-01
Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.
Verification of unfold error estimates in the UFO code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Biggs, F.
Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral source information from a set of tabulated response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the UFO (UnFold Operator) code. In addition to an unfolded spectrum, UFO also estimates the unfold uncertainty (error) induced by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have anmore » imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetemined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-Pinch and ion-beam driven hohlraums.« less
Bias error reduction using ratios to baseline experiments. Heat transfer case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakroun, W.; Taylor, R.P.; Coleman, H.W.
1993-10-01
Employing a set of experiments devoted to examining the effect of surface finish (riblets) on convective heat transfer as an example, this technical note seeks to explore the notion that precision uncertainties in experiments can be reduced by repeated trials and averaging. This scheme for bias error reduction can give considerable advantage when parametric effects are investigated experimentally. When the results of an experiment are presented as a ratio with the baseline results, a large reduction in the overall uncertainty can be achieved when all the bias limits in the variables of the experimental result are fully correlated with thosemore » of the baseline case. 4 refs.« less
Climate model biases in seasonality of continental water storage revealed by satellite gravimetry
Swenson, Sean; Milly, P.C.D.
2006-01-01
Satellite gravimetric observations of monthly changes in continental water storage are compared with outputs from five climate models. All models qualitatively reproduce the global pattern of annual storage amplitude, and the seasonal cycle of global average storage is reproduced well, consistent with earlier studies. However, global average agreements mask systematic model biases in low latitudes. Seasonal extrema of low‐latitude, hemispheric storage generally occur too early in the models, and model‐specific errors in amplitude of the low‐latitude annual variations are substantial. These errors are potentially explicable in terms of neglected or suboptimally parameterized water stores in the land models and precipitation biases in the climate models.
Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN
NASA Astrophysics Data System (ADS)
Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.
2016-12-01
In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.
Estes, Lyndon; Chen, Peng; Debats, Stephanie; Evans, Tom; Ferreira, Stefanus; Kuemmerle, Tobias; Ragazzo, Gabrielle; Sheffield, Justin; Wolf, Adam; Wood, Eric; Caylor, Kelly
2018-01-01
Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high-resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel-wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative "downstream" (map-based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps' spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ∼45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National-scale maps derived from higher-resolution imagery were most accurate, followed by multi-map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland-adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%-500% greater than in input cropland maps, but ∼40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land cover map users. © 2017 John Wiley & Sons Ltd.
Quantum Error Correction with Biased Noise
NASA Astrophysics Data System (ADS)
Brooks, Peter
Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security. At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level. In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations. In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction. In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.
How many drinks did you have on September 11, 2001?
Perrine, M W Bud; Schroder, Kerstin E E
2005-07-01
This study tested the predictability of error in retrospective self-reports of alcohol consumption on September 11, 2001, among 80 Vermont light, medium and heavy drinkers. Subjects were 52 men and 28 women participating in daily self-reports of alcohol consumption for a total of 2 years, collected via interactive voice response technology (IVR). In addition, retrospective self-reports of alcohol consumption on September 11, 2001, were collected by telephone interview 4-5 days following the terrorist attacks. Retrospective error was calculated as the difference between the IVR self-report of drinking behavior on September 11 and the retrospective self-report collected by telephone interview. Retrospective error was analyzed as a function of gender and baseline drinking behavior during the 365 days preceding September 11, 2001 (termed "the baseline"). The intraclass correlation (ICC) between daily IVR and retrospective self-reports of alcohol consumption on September 11 was .80. Women provided, on average, more accurate self-reports (ICC = .96) than men (ICC = .72) but displayed more underreporting bias in retrospective responses. Amount and individual variability of alcohol consumption during the 1-year baseline explained, on average, 11% of the variance in overreporting (r = .33), 9% of the variance in underreporting (r = .30) and 25% of the variance in the overall magnitude of error (r = .50), with correlations up to .62 (r2 = .38). The size and direction of error were clearly predictable from the amount and variation in drinking behavior during the 1-year baseline period. The results demonstrate the utility and detail of information that can be derived from daily IVR self-reports in the analysis of retrospective error.
Can Family Planning Service Statistics Be Used to Track Population-Level Outcomes?
Magnani, Robert J; Ross, John; Williamson, Jessica; Weinberger, Michelle
2018-03-21
The need for annual family planning program tracking data under the Family Planning 2020 (FP2020) initiative has contributed to renewed interest in family planning service statistics as a potential data source for annual estimates of the modern contraceptive prevalence rate (mCPR). We sought to assess (1) how well a set of commonly recorded data elements in routine service statistics systems could, with some fairly simple adjustments, track key population-level outcome indicators, and (2) whether some data elements performed better than others. We used data from 22 countries in Africa and Asia to analyze 3 data elements collected from service statistics: (1) number of contraceptive commodities distributed to clients, (2) number of family planning service visits, and (3) number of current contraceptive users. Data quality was assessed via analysis of mean square errors, using the United Nations Population Division World Contraceptive Use annual mCPR estimates as the "gold standard." We also examined the magnitude of several components of measurement error: (1) variance, (2) level bias, and (3) slope (or trend) bias. Our results indicate modest levels of tracking error for data on commodities to clients (7%) and service visits (10%), and somewhat higher error rates for data on current users (19%). Variance and slope bias were relatively small for all data elements. Level bias was by far the largest contributor to tracking error. Paired comparisons of data elements in countries that collected at least 2 of the 3 data elements indicated a modest advantage of data on commodities to clients. None of the data elements considered was sufficiently accurate to be used to produce reliable stand-alone annual estimates of mCPR. However, the relatively low levels of variance and slope bias indicate that trends calculated from these 3 data elements can be productively used in conjunction with the Family Planning Estimation Tool (FPET) currently used to produce annual mCPR tracking estimates for FP2020. © Magnani et al.
2018-04-01
Reports an error in "The impact of uncertain threat on affective bias: Individual differences in response to ambiguity" by Maital Neta, Julie Cantelon, Zachary Haga, Caroline R. Mahoney, Holly A. Taylor and F. Caroline Davis ( Emotion , 2017[Dec], Vol 17[8], 1137-1143). In this article, the copyright attribution was incorrectly listed under the Creative Commons CC-BY license due to production-related error. The correct copyright should be "In the public domain." The online version of this article has been corrected. (The following abstract of the original article appeared in record 2017-40275-001.) Individuals who operate under highly stressful conditions (e.g., military personnel and first responders) are often faced with the challenge of quickly interpreting ambiguous information in uncertain and threatening environments. When faced with ambiguity, it is likely adaptive to view potentially dangerous stimuli as threatening until contextual information proves otherwise. One laboratory-based paradigm that can be used to simulate uncertain threat is known as threat of shock (TOS), in which participants are told that they might receive mild but unpredictable electric shocks while performing an unrelated task. The uncertainty associated with this potential threat induces a state of emotional arousal that is not overwhelmingly stressful, but has widespread-both adaptive and maladaptive-effects on cognitive and affective function. For example, TOS is thought to enhance aversive processing and abolish positivity bias. Importantly, in certain situations (e.g., when walking home alone at night), this anxiety can promote an adaptive state of heightened vigilance and defense mobilization. In the present study, we used TOS to examine the effects of uncertain threat on valence bias, or the tendency to interpret ambiguous social cues as positive or negative. As predicted, we found that heightened emotional arousal elicited by TOS was associated with an increased tendency to interpret ambiguous cues negatively. Such negative interpretations are likely adaptive in situations in which threat detection is critical for survival and should override an individual's tendency to interpret ambiguity positively in safe contexts. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Lorente-Plazas, Raquel; Hacker, Josua P.; Collins, Nancy; Lee, Jared A.
2017-04-01
The impact of assimilating surface observations has been shown in several publications, for improving weather prediction inside of the boundary layer as well as the flow aloft. However, the assimilation of surface observations is often far from optimal due to the presence of both model and observation biases. The sources of these biases can be diverse: an instrumental offset, errors associated to the comparison of point-based observations and grid-cell average, etc. To overcome this challenge, a method was developed using the ensemble Kalman filter. The approach consists on representing each observation bias as a parameter. These bias parameters are added to the forward operator and they extend the state vector. As opposed to the observation bias estimation approaches most common in operational systems (e.g. for satellite radiances), the state vector and parameters are simultaneously updated by applying the Kalman filter equations to the augmented state. The method to estimate and correct the observation bias is evaluated using observing system simulation experiments (OSSEs) with the Weather Research and Forecasting (WRF) model. OSSEs are constructed for the conventional observation network including radiosondes, aircraft observations, atmospheric motion vectors, and surface observations. Three different kinds of biases are added to 2-meter temperature for synthetic METARs. From the simplest to more sophisticated, imposed biases are: (1) a spatially invariant bias, (2) a spatially varying bias proportional to topographic height differences between the model and the observations, and (3) bias that is proportional to the temperature. The target region characterized by complex terrain is the western U.S. on a domain with 30-km grid spacing. Observations are assimilated every 3 hours using an 80-member ensemble during September 2012. Results demonstrate that the approach is able to estimate and correct the bias when it is spatially invariant (experiment 1). More complex bias structure in experiments (2) and (3) are more difficult to estimate, but still possible. Estimated the parameter in experiments with unbiased observations results in spatial and temporal parameter variability about zero, and establishes a threshold on the accuracy of the parameter in further experiments. When the observations are biased, the mean parameter value is close to the true bias, but temporal and spatial variability in the parameter estimates is similar to the parameters used when estimating a zero bias in the observations. The distributions are related to other errors in the forecasts, indicating that the parameters are absorbing some of the forecast error from other sources. In this presentation we elucidate the reasons for the resulting parameter estimates, and their variability.
Verification of unfold error estimates in the unfold operator code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Biggs, F.
Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashionmore » with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}« less
Karim, Mohammad Ehsanul; Gustafson, Paul; Petkau, John; Tremlett, Helen
2016-01-01
In time-to-event analyses of observational studies of drug effectiveness, incorrect handling of the period between cohort entry and first treatment exposure during follow-up may result in immortal time bias. This bias can be eliminated by acknowledging a change in treatment exposure status with time-dependent analyses, such as fitting a time-dependent Cox model. The prescription time-distribution matching (PTDM) method has been proposed as a simpler approach for controlling immortal time bias. Using simulation studies and theoretical quantification of bias, we compared the performance of the PTDM approach with that of the time-dependent Cox model in the presence of immortal time. Both assessments revealed that the PTDM approach did not adequately address immortal time bias. Based on our simulation results, another recently proposed observational data analysis technique, the sequential Cox approach, was found to be more useful than the PTDM approach (Cox: bias = −0.002, mean squared error = 0.025; PTDM: bias = −1.411, mean squared error = 2.011). We applied these approaches to investigate the association of β-interferon treatment with delaying disability progression in a multiple sclerosis cohort in British Columbia, Canada (Long-Term Benefits and Adverse Effects of Beta-Interferon for Multiple Sclerosis (BeAMS) Study, 1995–2008). PMID:27455963
A variational regularization of Abel transform for GPS radio occultation
NASA Astrophysics Data System (ADS)
Wee, Tae-Kwon
2018-04-01
In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity deserting the first guess. In the lowest few kilometers that AI produces large negative refractivity bias, VR reduces the refractivity bias substantially with the aid of the background, which in this study is the operational forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). It is concluded based on the results presented in this study that VR offers a definite advantage over AI in the quality of refractivity.
Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines
NASA Astrophysics Data System (ADS)
Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya
2017-11-01
Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1.093 pixels, which were respectively 42.1%, 48.3%, and 54.8% better than those achieved before the nonlinear bias compensation.
Use of Two-Way Time Transfer Measurements to Improve Geostationary Satellite Navigation
2007-03-01
lo ck E rro r ( m et er s...clock measurement blackouts. 2 4 6 8 10 12 14 16 18 20 22 -100 -50 0 50 100 GEO Clock Bias Error Time (hours) C lo ck E rro r ( m et er s...20 GEO Clock Bias Error Time (hours) C lo ck E rro r ( m et er s) Filter-Computed Covariance 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20 GEO
Verification of sex from harvested sea otters using DNA testing
Scribner, Kim T.; Green, Ben A.; Gorbics, Carol; Bodkin, James L.
2005-01-01
We used molecular genetic methods to determine the sex of 138 sea otters (Enhydra lutris) harvested from 3 regions of Alaska from 1994 to 1997, to assess the accuracy of post‐harvest field‐sexing. We also tested each of a series of factors associated with errors in field‐sexing of sea otters, including male or female bias, age‐class bias, regional bias, and bias associated with hunt characteristics. Blind control results indicated that sex was determined with 100% accuracy using polymerase chain reaction (PCR) amplification using primers that co‐amplify the zinc finger‐Y‐X gene, located on both the mammalian Y‐ and X‐chromosomes, and Testes Determining Factor (TDF), located on the mammalian Y‐chromosome. DNA‐based sexing revealed that 12.3% of the harvested sea otters were incorrectly sexed in the field, with most errors (13 of 17) occurring as males incorrectly reported as females. Thus, female harvest was overestimated. Using logistic regression analysis, we detected no statistical association of incorrect determination of sex in the field with age class, hunt region, or hunt type. The error in field‐sexing appears to be random, at least with respect to the variables evaluated in this study.
Uses and biases of volunteer water quality data
Loperfido, J.V.; Beyer, P.; Just, C.L.; Schnoor, J.L.
2010-01-01
State water quality monitoring has been augmented by volunteer monitoring programs throughout the United States. Although a significant effort has been put forth by volunteers, questions remain as to whether volunteer data are accurate and can be used by regulators. In this study, typical volunteer water quality measurements from laboratory and environmental samples in Iowa were analyzed for error and bias. Volunteer measurements of nitrate+nitrite were significantly lower (about 2-fold) than concentrations determined via standard methods in both laboratory-prepared and environmental samples. Total reactive phosphorus concentrations analyzed by volunteers were similar to measurements determined via standard methods in laboratory-prepared samples and environmental samples, but were statistically lower than the actual concentration in four of the five laboratory-prepared samples. Volunteer water quality measurements were successful in identifying and classifying most of the waters which violate United States Environmental Protection Agency recommended water quality criteria for total nitrogen (66%) and for total phosphorus (52%) with the accuracy improving when accounting for error and biases in the volunteer data. An understanding of the error and bias in volunteer water quality measurements can allow regulators to incorporate volunteer water quality data into total maximum daily load planning or state water quality reporting. ?? 2010 American Chemical Society.
Measurement effects of seasonal and monthly variability on pedometer-determined data.
Kang, Minsoo; Bassett, David R; Barreira, Tiago V; Tudor-Locke, Catrine; Ainsworth, Barbara E
2012-03-01
The seasonal and monthly variability of pedometer-determined physical activity and its effects on accurate measurement have not been examined. The purpose of the study was to reduce measurement error in step-count data by controlling a) the length of the measurement period and b) the season or month of the year in which sampling was conducted. Twenty-three middle-aged adults were instructed to wear a Yamax SW-200 pedometer over 365 consecutive days. The step-count measurement periods of various lengths (eg, 2, 3, 4, 5, 6, 7 days, etc.) were randomly selected 10 times for each season and month. To determine accurate estimates of yearly step-count measurement, mean absolute percentage error (MAPE) and bias were calculated. The year-round average was considered as a criterion measure. A smaller MAPE and bias represent a better estimate. Differences in MAPE and bias among seasons were trivial; however, they varied among different months. The months in which seasonal changes occur presented the highest MAPE and bias. Targeting the data collection during certain months (eg, May) may reduce pedometer measurement error and provide more accurate estimates of year-round averages.
Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
Kos, Anton; Tomažič, Sašo; Umek, Anton
2016-02-27
This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas.
Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications
Kos, Anton; Tomažič, Sašo; Umek, Anton
2016-01-01
This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas. PMID:26927125
Measurement error in epidemiologic studies of air pollution based on land-use regression models.
Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino
2013-10-15
Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.
NASA Astrophysics Data System (ADS)
Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan
2005-04-01
The reasons for biases in regional climate simulations were investigated in an attempt to discern whether they arise from deficiencies in the model parameterizations or are due to dynamical problems. Using the Regional Atmospheric Modeling System (RAMS) forced by the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, the detailed climate over North America at 50-km resolution for June 2000 was simulated. First, the RAMS equations were modified to make them applicable to a large region, and its turbulence parameterization was corrected. The initial simulations showed large biases in the location of precipitation patterns and surface air temperatures. By implementing higher-resolution soil data, soil moisture and soil temperature initialization, and corrections to the Kain-Fritch convective scheme, the temperature biases and precipitation amount errors could be removed, but the precipitation location errors remained. The precipitation location biases could only be improved by implementing spectral nudging of the large-scale (wavelength of 2500 km) dynamics in RAMS. This corrected for circulation errors produced by interactions and reflection of the internal domain dynamics with the lateral boundaries where the model was forced by the reanalysis.
Space based optical staring sensor LOS determination and calibration using GCPs observation
NASA Astrophysics Data System (ADS)
Chen, Jun; An, Wei; Deng, Xinpu; Yang, Jungang; Sha, Zhichao
2016-10-01
Line of sight (LOS) attitude determination and calibration is the key prerequisite of tracking and location of targets in space based infrared (IR) surveillance systems (SBIRS) and the LOS determination and calibration of staring sensor is one of the difficulties. This paper provides a novel methodology for removing staring sensor bias through the use of Ground Control Points (GCPs) detected in the background field of the sensor. Based on researching the imaging model and characteristics of the staring sensor of SBIRS geostationary earth orbit part (GEO), the real time LOS attitude determination and calibration algorithm using landmark control point is proposed. The influential factors (including the thermal distortions error, assemble error, and so on) of staring sensor LOS attitude error are equivalent to bias angle of LOS attitude. By establishing the observation equation of GCPs and the state transition equation of bias angle, and using an extend Kalman filter (EKF), the real time estimation of bias angle and the high precision sensor LOS attitude determination and calibration are achieved. The simulation results show that the precision and timeliness of the proposed algorithm meet the request of target tracking and location process in space based infrared surveillance system.
Brutality under cover of ambiguity: activating, perpetuating, and deactivating covert retributivism.
Fincher, Katrina M; Tetlock, Philip E
2015-05-01
Five studies tested four hypotheses on the drivers of punitive judgments. Study 1 showed that people imposed covertly retributivist physical punishments on extreme norm violators when they could plausibly deny that is what they were doing (attributional ambiguity). Studies 2 and 3 showed that covert retributivism could be suppressed by subtle accountability manipulations that cue people to the possibility that they might be under scrutiny. Studies 4 and 5 showed how covert retributivism can become self-sustaining by biasing the lessons people learn from experience. Covert retributivists did not scale back punitiveness in response to feedback that the justice system makes false-conviction errors but they did ramp up punitiveness in response to feedback that the system makes false-acquittal errors. Taken together, the results underscore the paradoxical nature of covert retributivism: It is easily activated by plausible deniability and persistent in the face of false-conviction feedback but also easily deactivated by minimalist forms of accountability. © 2015 by the Society for Personality and Social Psychology, Inc.
Racial bias in implicit danger associations generalizes to older male targets.
Lundberg, Gustav J W; Neel, Rebecca; Lassetter, Bethany; Todd, Andrew R
2018-01-01
Across two experiments, we examined whether implicit stereotypes linking younger (~28-year-old) Black versus White men with violence and criminality extend to older (~68-year-old) Black versus White men. In Experiment 1, participants completed a sequential priming task wherein they categorized objects as guns or tools after seeing briefly-presented facial images of men who varied in age (younger versus older) and race (Black versus White). In Experiment 2, we used different face primes of younger and older Black and White men, and participants categorized words as 'threatening' or 'safe.' Results consistently revealed robust racial biases in object and word identification: Dangerous objects and words were identified more easily (faster response times, lower error rates), and non-dangerous objects and words were identified less easily, after seeing Black face primes than after seeing White face primes. Process dissociation procedure analyses, which aim to isolate the unique contributions of automatic and controlled processes to task performance, further indicated that these effects were driven entirely by racial biases in automatic processing. In neither experiment did prime age moderate racial bias, suggesting that the implicit danger associations commonly evoked by younger Black versus White men appear to generalize to older Black versus White men.
Obesity bias, medical technology, and the hormonal hypothesis: should we stop demonizing fat people?
deShazo, Richard D; Hall, John E; Skipworth, Leigh Baldwin
2015-05-01
There is adequate evidence to demonstrate that bias toward obese individuals by health professionals is common. Bias predisposes to errors in medical judgment and care. There is also evidence to show that the pathophysiology of obesity is more complex than eating too much and moving too little. Widespread obesity is a new phenomenon in the United States and reflects changes in culture, including food, at many levels. The modern abundance of low-cost, available, palatable, energy-dense processed foods and the ability of these foods to activate central nervous system centers that drive food preference and overeating appear to play an important role in the obesity epidemic. The usual hormonal systems that promote body weight homeostasis appear to have been counterbalanced by pleasurable (hedonic) influences these foods generate in higher neurologic networks, including the limbic system. The use of medical technology, such as functional magnetic resonance imaging, to quantitate hedonic responses to food, enhance taste, and effectively develop and market commercial food products has produced new areas of ethical concern and opportunities to better understand eating and satiety. These developments further demonstrate the urgency to address the bias that exists toward obese patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Weeland, Martine M; Nijhof, Karin S; Otten, R; Vermaes, Ignace P R; Buitelaar, Jan K
2017-10-01
This study tests the validity of Beck's cognitive theory and Nolen-Hoeksema's response style theory of depression in adolescents with and without MBID. The relationship between negative cognitive errors (Beck), response styles (Nolen-Hoeksema) and depressive symptoms was examined in 135 adolescents using linear regression. The cognitive error 'underestimation of the ability to cope' was more prevalent among adolescents with MBID than among adolescents with average intelligence. This was the only negative cognitive error that predicted depressive symptoms. There were no differences between groups in the prevalence of the three response styles. In line with the theory, ruminating was positively and problem-solving was negatively related to depressive symptoms. Distractive response styles were not related to depressive symptoms. The relationship between response styles, cognitive errors and depressive symptoms were similar for both groups. The main premises of both theories of depression are equally applicable to adolescents with and without MBID. The cognitive error 'Underestimation of the ability to cope' poses a specific risk factor for developing a depression for adolescents with MBID and requires special attention in treatment and prevention of depression. WHAT THIS PAPER ADDS?: Despite the high prevalence of depression among adolescents with MBID, little is known about the etiology and cognitive processes that play a role in the development of depression in this group. The current paper fills this gap in research by examining the core tenets of two important theories on the etiology of depression (Beck's cognitive theory and Nolen-Hoeksema's response style theory) in a clinical sample of adolescents with and without MBID. This paper demonstrated that the theories are equally applicable to adolescents with MBID, as to adolescents with average intellectual ability. However, the cognitive bias 'underestimation of the ability to cope' was the only cognitive error related to depressive symptoms, and was much more prevalent among adolescents with MBID than among adolescents with average intellectual ability. This suggests that underestimating one's coping skills may be a unique risk factor for depression among adolescents with MBID. This knowledge is important in understanding the causes and perpetuating mechanisms of depression in adolescents with MBID, and for the development of prevention- and treatment programs for adolescents with MBID. Copyright © 2017 Elsevier Ltd. All rights reserved.
Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers
NASA Technical Reports Server (NTRS)
Ha, Eunho; North, Gerald R.
1995-01-01
Low-frequency (less than 20 GHz) single-channel microwave retrievals of rain rate encounter the problem of beam-filling error. This error stems from the fact that the relationship between microwave brightness temperature and rain rate is nonlinear, coupled with the fact that the field of view is large or comparable to important scales of variability of the rain field. This means that one may not simply insert the area average of the brightness temperature into the formula for rain rate without incurring both bias and random error. The statistical heterogeneity of the rain-rate field in the footprint of the instrument is key to determining the nature of these errors. This paper makes use of a series of random rain-rate fields to study the size of the bias and random error associated with beam filling. A number of examples are analyzed in detail: the binomially distributed field, the gamma, the Gaussian, the mixed gamma, the lognormal, and the mixed lognormal ('mixed' here means there is a finite probability of no rain rate at a point of space-time). Of particular interest are the applicability of a simple error formula due to Chiu and collaborators and a formula that might hold in the large field of view limit. It is found that the simple formula holds for Gaussian rain-rate fields but begins to fail for highly skewed fields such as the mixed lognormal. While not conclusively demonstrated here, it is suggested that the notionof climatologically adjusting the retrievals to remove the beam-filling bias is a reasonable proposition.
NASA Astrophysics Data System (ADS)
Gao, Jing; Burt, James E.
2017-12-01
This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for understanding and improving spatially-explicit data-driven models of continuous variables in environmental remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping land imperviousness (0-100%) using Landsat images, our results showed that BVD can reveal sources of estimation errors, map how these sources vary across space, reveal the effects of various model characteristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically, BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sample allocation - training samples should capture the full complexity of the modeled process, and more samples should be allocated to regions with more complex underlying processes rather than regions covering larger areas. Through examining the relationships between model characteristics and their effects on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or the squared value of the difference between observation and estimate), we found that the two error metrics embody different diagnostic emphases, can lead to different conclusions about the same model, and may suggest different solutions for performance improvement. We emphasize BVD's strength in revealing the connection between model characteristics and estimation accuracy, as understanding this relationship empowers analysts to effectively steer performance through model adjustments.
Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States
Gesch, Dean B.; Oimoen, Michael J.; Zhang, Zheng; Meyer, David J.; Danielson, Jeffrey J.
2012-01-01
The ASTER Global Digital Elevation Model Version 2 (GDEM v2) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of -0.20 meters is a significant improvement over the GDEM v1 mean error of -3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures) cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height), GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.
How does bias correction of RCM precipitation affect modelled runoff?
NASA Astrophysics Data System (ADS)
Teng, J.; Potter, N. J.; Chiew, F. H. S.; Zhang, L.; Vaze, J.; Evans, J. P.
2014-09-01
Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the difference between the tested methods is small in the modelling experiments here (and as reported in the literature), mainly because of the substantial corrections required and inconsistent errors over time (non-stationarity). The errors remaining in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitation of RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.
CORRECTING FOR MEASUREMENT ERROR IN LATENT VARIABLES USED AS PREDICTORS*
Schofield, Lynne Steuerle
2015-01-01
This paper represents a methodological-substantive synergy. A new model, the Mixed Effects Structural Equations (MESE) model which combines structural equations modeling and item response theory is introduced to attend to measurement error bias when using several latent variables as predictors in generalized linear models. The paper investigates racial and gender disparities in STEM retention in higher education. Using the MESE model with 1997 National Longitudinal Survey of Youth data, I find prior mathematics proficiency and personality have been previously underestimated in the STEM retention literature. Pre-college mathematics proficiency and personality explain large portions of the racial and gender gaps. The findings have implications for those who design interventions aimed at increasing the rates of STEM persistence among women and under-represented minorities. PMID:26977218
Decision Making In A High-Tech World: Automation Bias and Countermeasures
NASA Technical Reports Server (NTRS)
Mosier, Kathleen L.; Skitka, Linda J.; Burdick, Mark R.; Heers, Susan T.; Rosekind, Mark R. (Technical Monitor)
1996-01-01
Automated decision aids and decision support systems have become essential tools in many high-tech environments. In aviation, for example, flight management systems computers not only fly the aircraft, but also calculate fuel efficient paths, detect and diagnose system malfunctions and abnormalities, and recommend or carry out decisions. Air Traffic Controllers will soon be utilizing decision support tools to help them predict and detect potential conflicts and to generate clearances. Other fields as disparate as nuclear power plants and medical diagnostics are similarly becoming more and more automated. Ideally, the combination of human decision maker and automated decision aid should result in a high-performing team, maximizing the advantages of additional cognitive and observational power in the decision-making process. In reality, however, the presence of these aids often short-circuits the way that even very experienced decision makers have traditionally handled tasks and made decisions, and introduces opportunities for new decision heuristics and biases. Results of recent research investigating the use of automated aids have indicated the presence of automation bias, that is, errors made when decision makers rely on automated cues as a heuristic replacement for vigilant information seeking and processing. Automation commission errors, i.e., errors made when decision makers inappropriately follow an automated directive, or automation omission errors, i.e., errors made when humans fail to take action or notice a problem because an automated aid fails to inform them, can result from this tendency. Evidence of the tendency to make automation-related omission and commission errors has been found in pilot self reports, in studies using pilots in flight simulations, and in non-flight decision making contexts with student samples. Considerable research has found that increasing social accountability can successfully ameliorate a broad array of cognitive biases and resultant errors. To what extent these effects generalize to performance situations is not yet empirically established. The two studies to be presented represent concurrent efforts, with student and professional pilot samples, to determine the effects of accountability pressures on automation bias and on the verification of the accurate functioning of automated aids. Students (Experiment 1) and commercial pilots (Experiment 2) performed simulated flight tasks using automated aids. In both studies, participants who perceived themselves as accountable for their strategies of interaction with the automation were significantly more likely to verify its correctness, and committed significantly fewer automation-related errors than those who did not report this perception.
Biased relevance filtering in the auditory system: A test of confidence-weighted first-impressions.
Mullens, D; Winkler, I; Damaso, K; Heathcote, A; Whitson, L; Provost, A; Todd, J
2016-03-01
Although first-impressions are known to impact decision-making and to have prolonged effects on reasoning, it is less well known that the same type of rapidly formed assumptions can explain biases in automatic relevance filtering outside of deliberate behavior. This paper features two studies in which participants have been asked to ignore sequences of sound while focusing attention on a silent movie. The sequences consisted of blocks, each with a high-probability repetition interrupted by rare acoustic deviations (i.e., a sound of different pitch or duration). The probabilities of the two different sounds alternated across the concatenated blocks within the sequence (i.e., short-to-long and long-to-short). The sound probabilities are rapidly and automatically learned for each block and a perceptual inference is formed predicting the most likely characteristics of the upcoming sound. Deviations elicit a prediction-error signal known as mismatch negativity (MMN). Computational models of MMN generally assume that its elicitation is governed by transition statistics that define what sound attributes are most likely to follow the current sound. MMN amplitude reflects prediction confidence, which is derived from the stability of the current transition statistics. However, our prior research showed that MMN amplitude is modulated by a strong first-impression bias that outweighs transition statistics. Here we test the hypothesis that this bias can be attributed to assumptions about predictable vs. unpredictable nature of each tone within the first encountered context, which is weighted by the stability of that context. The results of Study 1 show that this bias is initially prevented if there is no 1:1 mapping between sound attributes and probability, but it returns once the auditory system determines which properties provide the highest predictive value. The results of Study 2 show that confidence in the first-impression bias drops if assumptions about the temporal stability of the transition-statistics are violated. Both studies provide compelling evidence that the auditory system extrapolates patterns on multiple timescales to adjust its response to prediction-errors, while profoundly distorting the effects of transition-statistics by the assumptions formed on the basis of first-impressions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Huang, Jingfeng; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Zhang, Hai; Superczynski, Stephen; Ciren, Pubu; Holben, Brent N.; Petrenko, Maksym
2016-01-01
The new-generation polar-orbiting operational environmental sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite, provides critical daily global aerosol observations. As older satellite sensors age out, the VIIRS aerosol product will become the primary observational source for global assessments of aerosol emission and transport, aerosol meteorological and climatic effects, air quality monitoring, and public health. To prove their validity and to assess their maturity level, the VIIRS aerosol products were compared to the spatiotemporally matched Aerosol Robotic Network (AERONET)measurements. Over land, the VIIRS aerosol optical thickness (AOT) environmental data record (EDR) exhibits an overall global bias against AERONET of 0.0008 with root-mean-square error(RMSE) of the biases as 0.12. Over ocean, the mean bias of VIIRS AOT EDR is 0.02 with RMSE of the biases as 0.06.The mean bias of VIIRS Ocean Angstrom Exponent (AE) EDR is 0.12 with RMSE of the biases as 0.57. The matchups between each product and its AERONET counterpart allow estimates of expected error in each case. Increased uncertainty in the VIIRS AOT and AE products is linked to specific regions, seasons, surface characteristics, and aerosol types, suggesting opportunity for future modifications as understanding of algorithm assumptions improves. Based on the assessment, the VIIRS AOT EDR over land reached Validated maturity beginning 23 January 2013; the AOT EDR and AE EDR over ocean reached Validated maturity beginning 2 May 2012, excluding the processing error period 15 October to 27 November 2012. These findings demonstrate the integrity and usefulness of the VIIRS aerosol products that will transition from S-NPP to future polar-orbiting environmental satellites in the decades to come and become the standard global aerosol data set as the previous generations missions come to an end.
Accounting for unknown foster dams in the genetic evaluation of embryo transfer progeny.
Suárez, M J; Munilla, S; Cantet, R J C
2015-02-01
Animals born by embryo transfer (ET) are usually not included in the genetic evaluation of beef cattle for preweaning growth if the recipient dam is unknown. This is primarily to avoid potential bias in the estimation of the unknown age of dam. We present a method that allows including records of calves with unknown age of dam. Assumptions are as follows: (i) foster cows belong to the same breed being evaluated, (ii) there is no correlation between the breeding value (BV) of the calf and the maternal BV of the recipient cow, and (iii) cows of all ages are used as recipients. We examine the issue of bias for the fixed level of unknown age of dam (AOD) and propose an estimator of the effect based on classical measurement error theory (MEM) and a Bayesian approach. Using stochastic simulation under random mating or selection, the MEM estimating equations were compared with BLUP in two situations as follows: (i) full information (FI); (ii) missing AOD information on some dams. Predictions of breeding value (PBV) from the FI situation had the smallest empirical average bias followed by PBV obtained without taking measurement error into account. In turn, MEM displayed the highest bias, although the differences were small. On the other hand, MEM showed the smallest MSEP, for either random mating or selection, followed by FI, whereas ignoring measurement error produced the largest MSEP. As a consequence from the smallest MSEP with a relatively small bias, empirical accuracies of PBV were larger for MEM than those for full information, which in turn showed larger accuracies than the situation ignoring measurement error. It is concluded that MEM equations are a useful alternative for analysing weaning weight data when recipient cows are unknown, as it mitigates the effects of bias in AOD by decreasing MSEP. © 2014 Blackwell Verlag GmbH.
Moerbeek, Mirjam; van Schie, Sander
2016-07-11
The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Pendergraft, Odis C., Jr.
2000-01-01
Results from three wind tunnel tests in the National Transonic Facility of a model of an advanced-technology, subsonic-transport wing-body configuration have been analyzed to assess the test-to-test repeatability of several aerodynamic parameters. The scatter, as measured by the prediction interval, in the longitudinal force and moment coefficients increases as the Mach number increases. Residual errors with and without the ESP tubes installed suggest a bias leading to lower drag with the tubes installed. Residual errors as well as average values of the longitudinal force and moment coefficients show that there are small bias errors between the different tests.
Memory Errors Reveal a Bias to Spontaneously Generalize to Categories
Sutherland, Shelbie L.; Cimpian, Andrei; Leslie, Sarah-Jane; Gelman, Susan A.
2014-01-01
Much evidence suggests that, from a young age, humans are able to generalize information learned about a subset of a category to the category itself. Here, we propose that—beyond simply being able to perform such generalizations—people are biased to generalize to categories, such that they routinely make spontaneous, implicit category generalizations from information that licenses such generalizations. To demonstrate the existence of this bias, we asked participants to perform a task in which category generalizations would distract from the main goal of the task, leading to a characteristic pattern of errors. Specifically, participants were asked to memorize two types of novel facts: quantified facts about sets of kind members (e.g., facts about all or many stups) and generic facts about entire kinds (e.g., facts about zorbs as a kind). Moreover, half of the facts concerned properties that are typically generalizable to an animal kind (e.g., eating fruits and vegetables), and half concerned properties that are typically more idiosyncratic (e.g., getting mud in their hair). We predicted that—because of the hypothesized bias—participants would spontaneously generalize the quantified facts to the corresponding kinds, and would do so more frequently for the facts about generalizable (rather than idiosyncratic) properties. In turn, these generalizations would lead to a higher rate of quantified-to-generic memory errors for the generalizable properties. The results of four experiments (N = 449) supported this prediction. Moreover, the same generalizable-versus-idiosyncratic difference in memory errors occurred even under cognitive load, which suggests that the hypothesized bias operates unnoticed in the background, requiring few cognitive resources. In sum, this evidence suggests the presence of a powerful bias to draw generalizations about kinds. PMID:25327964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, D; Badano, A; Sempau, J
Purpose: Variance reduction techniques (VRTs) are employed in Monte Carlo simulations to obtain estimates with reduced statistical uncertainty for a given simulation time. In this work, we study the bias and efficiency of a VRT for estimating the response of imaging detectors. Methods: We implemented Directed Sampling (DS), preferentially directing a fraction of emitted optical photons directly towards the detector by altering the isotropic model. The weight of each optical photon is appropriately modified to maintain simulation estimates unbiased. We use a Monte Carlo tool called fastDETECT2 (part of the hybridMANTIS open-source package) for optical transport, modified for VRT. Themore » weight of each photon is calculated as the ratio of original probability (no VRT) and the new probability for a particular direction. For our analysis of bias and efficiency, we use pulse height spectra, point response functions, and Swank factors. We obtain results for a variety of cases including analog (no VRT, isotropic distribution), and DS with 0.2 and 0.8 optical photons directed towards the sensor plane. We used 10,000, 25-keV primaries. Results: The Swank factor for all cases in our simplified model converged fast (within the first 100 primaries) to a stable value of 0.9. The root mean square error per pixel for DS VRT for the point response function between analog and VRT cases was approximately 5e-4. Conclusion: Our preliminary results suggest that DS VRT does not affect the estimate of the mean for the Swank factor. Our findings indicate that it may be possible to design VRTs for imaging detector simulations to increase computational efficiency without introducing bias.« less
Distortion Representation of Forecast Errors for Model Skill Assessment and Objective Analysis
NASA Technical Reports Server (NTRS)
Hoffman, Ross N.; Nehrkorn, Thomas; Grassotti, Christopher
1996-01-01
We study a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and will be required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and a bias correction of forecast anomalies. In brief, the distortion is determined by minimizing the objective function by varying the displacement and bias correction fields. In the present project we use a global or hemispheric domain, and spherical harmonics to represent these fields. In this project we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically we study the forecast errors of the 500 hPa geopotential height field for forecasts of the short and medium range. The forecasts are those of the Goddard Earth Observing System data assimilation system. Results presented show that the methodology works, that a large part of the total error may be explained by a distortion limited to triangular truncation at wavenumber 10, and that the remaining residual error contains mostly small spatial scales.
The inference of atmospheric ozone using satellite horizon measurements in the 1042 per cm band.
NASA Technical Reports Server (NTRS)
Russell, J. M., III; Drayson, S. R.
1972-01-01
Description of a method for inferring atmospheric ozone information using infrared horizon radiance measurements in the 1042 per cm band. An analysis based on this method proves the feasibility of the horizon experiment for determining ozone information and shows that the ozone partial pressure can be determined in the altitude range from 50 down to 25 km. A comprehensive error study is conducted which considers effects of individual errors as well as the effect of all error sources acting simultaneously. The results show that in the absence of a temperature profile bias error, it should be possible to determine the ozone partial pressure to within an rms value of 15 to 20%. It may be possible to reduce this rms error to 5% by smoothing the solution profile. These results would be seriously degraded by an atmospheric temperature bias error of only 3 K; thus, great care should be taken to minimize this source of error in an experiment. It is probable, in view of recent technological developments, that these errors will be much smaller in future flight experiments and the altitude range will widen to include from about 60 km down to the tropopause region.
ERIC Educational Resources Information Center
Dougherty, Michael R.; Sprenger, Amber
2006-01-01
This article introduces 2 new sources of bias in probability judgment, discrimination failure and inhibition failure, which are conceptualized as arising from an interaction between error prone memory processes and a support theory like comparison process. Both sources of bias stem from the influence of irrelevant information on participants'…
Cultural and Ethnic Bias in Teacher Ratings of Behavior: A Criterion-Focused Review
ERIC Educational Resources Information Center
Mason, Benjamin A.; Gunersel, Adalet Baris; Ney, Emilie A.
2014-01-01
Behavior rating scales are indirect measures of emotional and social functioning used for assessment purposes. Rater bias is systematic error that may compromise the validity of behavior rating scale scores. Teacher bias in ratings of behavior has been investigated in multiple studies, but not yet assessed in a research synthesis that focuses on…
Electrocortical measures of information processing biases in social anxiety disorder: A review.
Harrewijn, Anita; Schmidt, Louis A; Westenberg, P Michiel; Tang, Alva; van der Molen, Melle J W
2017-10-01
Social anxiety disorder (SAD) is characterized by information processing biases, however, their underlying neural mechanisms remain poorly understood. The goal of this review was to give a comprehensive overview of the most frequently studied EEG spectral and event-related potential (ERP) measures in social anxiety during rest, anticipation, stimulus processing, and recovery. A Web of Science search yielded 35 studies reporting on electrocortical measures in individuals with social anxiety or related constructs. Social anxiety was related to increased delta-beta cross-frequency correlation during anticipation and recovery, and information processing biases during early processing of faces (P1) and errors (error-related negativity). These electrocortical measures are discussed in relation to the persistent cycle of information processing biases maintaining SAD. Future research should further investigate the mechanisms of this persistent cycle and study the utility of electrocortical measures in early detection, prevention, treatment and endophenotype research. Copyright © 2017 Elsevier B.V. All rights reserved.
An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path
NASA Astrophysics Data System (ADS)
Greenwald, Thomas J.; Bennartz, Ralf; Lebsock, Matthew; Teixeira, João.
2018-04-01
The first extended comprehensive data set of the retrieval uncertainties in passive microwave observations of cloud liquid water path (CLWP) for warm oceanic clouds has been created for practical use in climate applications. Four major sources of systematic errors were considered over the 9-year record of the Advanced Microwave Scanning Radiometer-EOS (AMSR-E): clear-sky bias, cloud-rain partition (CRP) bias, cloud-fraction-dependent bias, and cloud temperature bias. Errors were estimated using a unique merged AMSR-E/Moderate resolution Imaging Spectroradiometer Level 2 data set as well as observations from the Cloud-Aerosol Lidar with Orthogonal Polarization and the CloudSat Cloud Profiling Radar. To quantify the CRP bias more accurately, a new parameterization was developed to improve the inference of CLWP in warm rain. The cloud-fraction-dependent bias was found to be a combination of the CRP bias, an in-cloud bias, and an adjacent precipitation bias. Globally, the mean net bias was 0.012 kg/m2, dominated by the CRP and in-cloud biases, but with considerable regional and seasonal variation. Good qualitative agreement between a bias-corrected AMSR-E CLWP climatology and ship observations in the Northeast Pacific suggests that the bias estimates are reasonable. However, a possible underestimation of the net bias in certain conditions may be due in part to the crude method used in classifying precipitation, underscoring the need for an independent method of detecting rain in warm clouds. This study demonstrates the importance of combining visible-infrared imager data and passive microwave CLWP observations for estimating uncertainties and improving the accuracy of these observations.
Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent
2016-04-01
Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Evaluation and Applications of the Prediction of Intensity Model Error (PRIME) Model
NASA Astrophysics Data System (ADS)
Bhatia, K. T.; Nolan, D. S.; Demaria, M.; Schumacher, A.
2015-12-01
Forecasters and end users of tropical cyclone (TC) intensity forecasts would greatly benefit from a reliable expectation of model error to counteract the lack of consistency in TC intensity forecast performance. As a first step towards producing error predictions to accompany each TC intensity forecast, Bhatia and Nolan (2013) studied the relationship between synoptic parameters, TC attributes, and forecast errors. In this study, we build on previous results of Bhatia and Nolan (2013) by testing the ability of the Prediction of Intensity Model Error (PRIME) model to forecast the absolute error and bias of four leading intensity models available for guidance in the Atlantic basin. PRIME forecasts are independently evaluated at each 12-hour interval from 12 to 120 hours during the 2007-2014 Atlantic hurricane seasons. The absolute error and bias predictions of PRIME are compared to their respective climatologies to determine their skill. In addition to these results, we will present the performance of the operational version of PRIME run during the 2015 hurricane season. PRIME verification results show that it can reliably anticipate situations where particular models excel, and therefore could lead to a more informed protocol for hurricane evacuations and storm preparations. These positive conclusions suggest that PRIME forecasts also have the potential to lower the error in the original intensity forecasts of each model. As a result, two techniques are proposed to develop a post-processing procedure for a multimodel ensemble based on PRIME. The first approach is to inverse-weight models using PRIME absolute error predictions (higher predicted absolute error corresponds to lower weights). The second multimodel ensemble applies PRIME bias predictions to each model's intensity forecast and the mean of the corrected models is evaluated. The forecasts of both of these experimental ensembles are compared to those of the equal-weight ICON ensemble, which currently provides the most reliable forecasts in the Atlantic basin.
Time determination for spacecraft users of the Navstar Global Positioning System /GPS/
NASA Technical Reports Server (NTRS)
Grenchik, T. J.; Fang, B. T.
1977-01-01
Global Positioning System (GPS) navigation is performed by time measurements. A description is presented of a two body model of spacecraft motion. Orbit determination is the process of inferring the position, velocity, and clock offset of the user from measurements made of the user motion in the Newtonian coordinate system. To illustrate the effect of clock errors and the accuracy with which the user spacecraft time and orbit may be determined, a low-earth-orbit spacecraft (Seasat) as tracked by six Phase I GPS space vehicles is considered. The obtained results indicate that in the absence of unmodeled dynamic parameter errors clock biases may be determined to the nanosecond level. There is, however, a high correlation between the clock bias and the uncertainty in the gravitational parameter GM, i.e., the product of the universal gravitational constant and the total mass of the earth. It is, therefore, not possible to determine clock bias to better than 25 nanosecond accuracy in the presence of a gravitational error of one part per million.
Improving Photometry and Stellar Signal Preservation with Pixel-Level Systematic Error Correction
NASA Technical Reports Server (NTRS)
Kolodzijczak, Jeffrey J.; Smith, Jeffrey C.; Jenkins, Jon M.
2013-01-01
The Kepler Mission has demonstrated that excellent stellar photometric performance can be achieved using apertures constructed from optimally selected CCD pixels. The clever methods used to correct for systematic errors, while very successful, still have some limitations in their ability to extract long-term trends in stellar flux. They also leave poorly correlated bias sources, such as drifting moiré pattern, uncorrected. We will illustrate several approaches where applying systematic error correction algorithms to the pixel time series, rather than the co-added raw flux time series, provide significant advantages. Examples include, spatially localized determination of time varying moiré pattern biases, greater sensitivity to radiation-induced pixel sensitivity drops (SPSDs), improved precision of co-trending basis vectors (CBV), and a means of distinguishing the stellar variability from co-trending terms even when they are correlated. For the last item, the approach enables physical interpretation of appropriately scaled coefficients derived in the fit of pixel time series to the CBV as linear combinations of various spatial derivatives of the pixel response function (PRF). We demonstrate that the residuals of a fit of soderived pixel coefficients to various PRF-related components can be deterministically interpreted in terms of physically meaningful quantities, such as the component of the stellar flux time series which is correlated with the CBV, as well as, relative pixel gain, proper motion and parallax. The approach also enables us to parameterize and assess the limiting factors in the uncertainties in these quantities.
Bias correction for selecting the minimal-error classifier from many machine learning models.
Ding, Ying; Tang, Shaowu; Liao, Serena G; Jia, Jia; Oesterreich, Steffi; Lin, Yan; Tseng, George C
2014-11-15
Supervised machine learning is commonly applied in genomic research to construct a classifier from the training data that is generalizable to predict independent testing data. When test datasets are not available, cross-validation is commonly used to estimate the error rate. Many machine learning methods are available, and it is well known that no universally best method exists in general. It has been a common practice to apply many machine learning methods and report the method that produces the smallest cross-validation error rate. Theoretically, such a procedure produces a selection bias. Consequently, many clinical studies with moderate sample sizes (e.g. n = 30-60) risk reporting a falsely small cross-validation error rate that could not be validated later in independent cohorts. In this article, we illustrated the probabilistic framework of the problem and explored the statistical and asymptotic properties. We proposed a new bias correction method based on learning curve fitting by inverse power law (IPL) and compared it with three existing methods: nested cross-validation, weighted mean correction and Tibshirani-Tibshirani procedure. All methods were compared in simulation datasets, five moderate size real datasets and two large breast cancer datasets. The result showed that IPL outperforms the other methods in bias correction with smaller variance, and it has an additional advantage to extrapolate error estimates for larger sample sizes, a practical feature to recommend whether more samples should be recruited to improve the classifier and accuracy. An R package 'MLbias' and all source files are publicly available. tsenglab.biostat.pitt.edu/software.htm. ctseng@pitt.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Estimation and correction of visibility bias in aerial surveys of wintering ducks
Pearse, A.T.; Gerard, P.D.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.
2008-01-01
Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to wetland cover type (open vs. forested), group size (1?100 decoys), and interaction of these variables. Observers who detected decoy groups reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36?42%, and associated standard errors increased 38?55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of sampling problems for other locations and species.
Method for guessing the response of a physical system to an arbitrary input
Wolpert, David H.
1996-01-01
Stacked generalization is used to minimize the generalization errors of one or more generalizers acting on a known set of input values and output values representing a physical manifestation and a transformation of that manifestation, e.g., hand-written characters to ASCII characters, spoken speech to computer command, etc. Stacked generalization acts to deduce the biases of the generalizer(s) with respect to a known learning set and then correct for those biases. This deduction proceeds by generalizing in a second space whose inputs are the guesses of the original generalizers when taught with part of the learning set and trying to guess the rest of it, and whose output is the correct guess. Stacked generalization can be used to combine multiple generalizers or to provide a correction to a guess from a single generalizer.
NASA Astrophysics Data System (ADS)
Song, Z.; Lee, S. K.; Wang, C.; Kirtman, B. P.; Qiao, F.
2016-02-01
In order to identify and quantify intrinsic errors in the atmosphere-land and ocean-sea ice model components of the Community Earth System Model version 1 (CESM1) and their contributions to the tropical Atlantic sea surface temperature (SST) bias in CESM1, we propose a new method of diagnosis and apply it to a set of CESM1 simulations. Our analyses of the model simulations indicate that both the atmosphere-land and ocean-sea ice model components of CESM1 contain large errors in the tropical Atlantic. When the two model components are fully coupled, the intrinsic errors in the two components emerge quickly within a year with strong seasonality in their growth rates. In particular, the ocean-sea ice model contributes significantly in forcing the eastern equatorial Atlantic warm SST bias in early boreal summer. Further analysis shows that the upper thermocline water underneath the eastern equatorial Atlantic surface mixed layer is too warm in a stand-alone ocean-sea ice simulation of CESM1 forced with observed surface flux fields, suggesting that the mixed layer cooling associated with the entrainment of upper thermocline water is too weak in early boreal summer. Therefore, although we acknowledge the potential importance of the westerly wind bias in the western equatorial Atlantic and the low-level stratus cloud bias in the southeastern tropical Atlantic, both of which originate from the atmosphere-land model, we emphasize here that solving those problems in the atmosphere-land model alone does not resolve the equatorial Atlantic warm bias in CESM1.
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.
2018-03-01
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
Improvement of VLBI EOP Accuracy and Precision
NASA Technical Reports Server (NTRS)
MacMillan, Daniel; Ma, Chopo
2000-01-01
In the CORE program, EOP measurements will be made with several different networks, each operating on a different day. It is essential that systematic differences between EOP derived by the different networks be minimized. Observed biases between the simultaneous CORE-A and NEOS-A sessions are about 60-130 micro(as) for PM, UT1 and nutation parameters. After removing biases, the observed rms differences are consistent with an increase in the formal precision of the measurements by factors ranging from 1.05 to 1.4. We discuss the possible sources of unmodeled error that account for these factors and the biases and the sensitivities of the network differences to modeling errors. We also discuss differences between VLBI and GPS PM measurements.
Diagnostic Reasoning and Cognitive Biases of Nurse Practitioners.
Lawson, Thomas N
2018-04-01
Diagnostic reasoning is often used colloquially to describe the process by which nurse practitioners and physicians come to the correct diagnosis, but a rich definition and description of this process has been lacking in the nursing literature. A literature review was conducted with theoretical sampling seeking conceptual insight into diagnostic reasoning. Four common themes emerged: Cognitive Biases and Debiasing Strategies, the Dual Process Theory, Diagnostic Error, and Patient Harm. Relevant cognitive biases are discussed, followed by debiasing strategies and application of the dual process theory to reduce diagnostic error and harm. The accuracy of diagnostic reasoning of nurse practitioners may be improved by incorporating these items into nurse practitioner education and practice. [J Nurs Educ. 2018;57(4):203-208.]. Copyright 2018, SLACK Incorporated.
Venturella, Irene; Finocchiaro, Roberta
2017-01-01
The present research explored rewarding bias and attentional deficits in Internet addiction (IA) based on the IAT (Internet Addiction Test) construct, during an attentional inhibitory task (Go/NoGo task). Event-related Potentials (ERPs) effects (Feedback Related Negativity (FRN) and P300) were monitored in concomitance with Behavioral Activation System (BAS) modulation. High-IAT young participants showed specific responses to IA-related cues (videos representing online gambling and videogames) in terms of cognitive performance (decreased Response Times, RTs; and Error Rates, ERs) and ERPs modulation (decreased FRN and increased P300). Consistent reward and attentional biases was adduced to explain the cognitive “gain” effect and the anomalous response in terms of both feedback behavior (FRN) and attentional (P300) mechanisms in high-IAT. In addition, BAS and BAS-Reward subscales measures were correlated with both IAT and ERPs variations. Therefore, high sensitivity to IAT may be considered as a marker of dysfunctional reward processing (reduction of monitoring) and cognitive control (higher attentional values) for specific IA-related cues. More generally, a direct relationship among reward-related behavior, Internet addiction and BAS attitude was suggested. PMID:28704978
Planck 2013 results. VII. HFI time response and beams
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors. The effective beam is theangular response including the effect of the optics, detectors, data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5°) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100 GHz up to multipole ℓ ~ 1500, and below 0.5% at 143 and 217 GHz up to ℓ ~ 2000.
MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard
2016-01-01
Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600
Error Model and Compensation of Bell-Shaped Vibratory Gyro
Su, Zhong; Liu, Ning; Li, Qing
2015-01-01
A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement. PMID:26393593
An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path
Bennartz, Ralf; Lebsock, Matthew; Teixeira, João
2018-01-01
Abstract The first extended comprehensive data set of the retrieval uncertainties in passive microwave observations of cloud liquid water path (CLWP) for warm oceanic clouds has been created for practical use in climate applications. Four major sources of systematic errors were considered over the 9‐year record of the Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E): clear‐sky bias, cloud‐rain partition (CRP) bias, cloud‐fraction‐dependent bias, and cloud temperature bias. Errors were estimated using a unique merged AMSR‐E/Moderate resolution Imaging Spectroradiometer Level 2 data set as well as observations from the Cloud‐Aerosol Lidar with Orthogonal Polarization and the CloudSat Cloud Profiling Radar. To quantify the CRP bias more accurately, a new parameterization was developed to improve the inference of CLWP in warm rain. The cloud‐fraction‐dependent bias was found to be a combination of the CRP bias, an in‐cloud bias, and an adjacent precipitation bias. Globally, the mean net bias was 0.012 kg/m2, dominated by the CRP and in‐cloud biases, but with considerable regional and seasonal variation. Good qualitative agreement between a bias‐corrected AMSR‐E CLWP climatology and ship observations in the Northeast Pacific suggests that the bias estimates are reasonable. However, a possible underestimation of the net bias in certain conditions may be due in part to the crude method used in classifying precipitation, underscoring the need for an independent method of detecting rain in warm clouds. This study demonstrates the importance of combining visible‐infrared imager data and passive microwave CLWP observations for estimating uncertainties and improving the accuracy of these observations. PMID:29938146
Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data
NASA Technical Reports Server (NTRS)
Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn
1989-01-01
Techniques for extraction boundary layer parameters from measurements of a short-pulse CO2 Doppler lidar are described. The measurements are those collected during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). By continuously operating the lidar for about an hour, stable statistics of the radial velocities can be extracted. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. Combining many measurements would normally reduce the error provided that, it is unbiased and uncorrelated. The nature of some of the algorithms however, is such that, biased and correlated errors may be generated even though the raw measurements are not. Data processing procedures were developed that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is shown to reduce the errors substantially. The principal features of the derived turbulence statistics for two case studied are presented.
Multiple-rule bias in the comparison of classification rules
Yousefi, Mohammadmahdi R.; Hua, Jianping; Dougherty, Edward R.
2011-01-01
Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule. Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the expected true error of the classification rule possessing minimum estimated error and it characterizes the bias from estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21546390
Characterizing the impact of model error in hydrologic time series recovery inverse problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.
Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less
Characterizing the impact of model error in hydrologic time series recovery inverse problems
Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.
2017-10-28
Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less
NASA Astrophysics Data System (ADS)
Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.
2016-04-01
A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project, CPC Merged Analysis of Precipitation and the India Meteorological Department precipitation dataset respectively for L3. Despite significant El-Niño Southern Oscillation (ENSO) spring predictability barrier at L3, the ISMR skill score is highest at L3. Further, large scale zonal wind shear (Webster-Yang index) and SST over Niño3.4 region is best at L1 and L0. This implies that predictability aspect of ISMR is controlled by factors other than ENSO and Indian Ocean Dipole. Also, the model error (forecast error) outruns the error acquired by the inadequacies in the initial conditions (predictability error). Thus model deficiency is having more serious consequences as compared to the initial condition error for the seasonal forecast. All the model parameters show the increase in the predictability error as the lead decreases over the equatorial eastern Pacific basin and peaks at L2, then it further decreases. The dynamical consistency of both the forecast and the predictability error among all the variables indicates that these biases are purely systematic in nature and improvement of the physical processes in the CFSv2 may enhance the overall predictability.
An empirical model for estimating solar radiation in the Algerian Sahara
NASA Astrophysics Data System (ADS)
Benatiallah, Djelloul; Benatiallah, Ali; Bouchouicha, Kada; Hamouda, Messaoud; Nasri, Bahous
2018-05-01
The present work aims to determine the empirical model R.sun that will allow us to evaluate the solar radiation flues on a horizontal plane and in clear-sky on the located Adrar city (27°18 N and 0°11 W) of Algeria and compare with the results measured at the localized site. The expected results of this comparison are of importance for the investment study of solar systems (solar power plants for electricity production, CSP) and also for the design and performance analysis of any system using the solar energy. Statistical indicators used to evaluate the accuracy of the model where the mean bias error (MBE), root mean square error (RMSE) and coefficient of determination. The results show that for global radiation, the daily correlation coefficient is 0.9984. The mean absolute percentage error is 9.44 %. The daily mean bias error is -7.94 %. The daily root mean square error is 12.31 %.
Measures of model performance based on the log accuracy ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Steven Karl; Brito, Thiago Vasconcelos; Welling, Daniel T.
Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio, and derive from it two metrics: the median symmetric accuracy; and the symmetric signed percentage bias. Robustmore » methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely-used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.« less
Measures of model performance based on the log accuracy ratio
Morley, Steven Karl; Brito, Thiago Vasconcelos; Welling, Daniel T.
2018-01-03
Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio, and derive from it two metrics: the median symmetric accuracy; and the symmetric signed percentage bias. Robustmore » methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely-used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.« less
The assessment of cognitive errors using an observer-rated method.
Drapeau, Martin
2014-01-01
Cognitive Errors (CEs) are a key construct in cognitive behavioral therapy (CBT). Integral to CBT is that individuals with depression process information in an overly negative or biased way, and that this bias is reflected in specific depressotypic CEs which are distinct from normal information processing. Despite the importance of this construct in CBT theory, practice, and research, few methods are available to researchers and clinicians to reliably identify CEs as they occur. In this paper, the author presents a rating system, the Cognitive Error Rating Scale, which can be used by trained observers to identify and assess the cognitive errors of patients or research participants in vivo, i.e., as they are used or reported by the patients or participants. The method is described, including some of the more important rating conventions to be considered when using the method. This paper also describes the 15 cognitive errors assessed, and the different summary scores, including valence of the CEs, that can be derived from the method.
Estimation of an Occupational Choice Model when Occupations Are Misclassified
ERIC Educational Resources Information Center
Sullivan, Paul
2009-01-01
This paper develops an empirical occupational choice model that corrects for misclassification in occupational choices and measurement error in occupation-specific work experience. The model is used to estimate the extent of measurement error in occupation data and quantify the bias that results from ignoring measurement error in occupation codes…
A Unified Approach to Measurement Error and Missing Data: Overview and Applications
ERIC Educational Resources Information Center
Blackwell, Matthew; Honaker, James; King, Gary
2017-01-01
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…
BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of a...
O'Brien, D J; León-Vintró, L; McClean, B
2016-01-01
The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.
Hypothesis Testing Using Factor Score Regression: A Comparison of Four Methods
ERIC Educational Resources Information Center
Devlieger, Ines; Mayer, Axel; Rosseel, Yves
2016-01-01
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and…
USDA-ARS?s Scientific Manuscript database
Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...
NASA Astrophysics Data System (ADS)
Plazas, A. A.; Shapiro, C.; Kannawadi, A.; Mandelbaum, R.; Rhodes, J.; Smith, R.
2016-10-01
Weak gravitational lensing (WL) is one of the most powerful techniques to learn about the dark sector of the universe. To extract the WL signal from astronomical observations, galaxy shapes must be measured and corrected for the point-spread function (PSF) of the imaging system with extreme accuracy. Future WL missions—such as NASA’s Wide-Field Infrared Survey Telescope (WFIRST)—will use a family of hybrid near-infrared complementary metal-oxide-semiconductor detectors (HAWAII-4RG) that are untested for accurate WL measurements. Like all image sensors, these devices are subject to conversion gain nonlinearities (voltage response to collected photo-charge) that bias the shape and size of bright objects such as reference stars that are used in PSF determination. We study this type of detector nonlinearity (NL) and show how to derive requirements on it from WFIRST PSF size and ellipticity requirements. We simulate the PSF optical profiles expected for WFIRST and measure the fractional error in the PSF size (ΔR/R) and the absolute error in the PSF ellipticity (Δe) as a function of star magnitude and the NL model. For our nominal NL model (a quadratic correction), we find that, uncalibrated, NL can induce an error of ΔR/R = 1 × 10-2 and Δe 2 = 1.75 × 10-3 in the H158 bandpass for the brightest unsaturated stars in WFIRST. In addition, our simulations show that to limit the bias of ΔR/R and Δe in the H158 band to ˜10% of the estimated WFIRST error budget, the quadratic NL model parameter β must be calibrated to ˜1% and ˜2.4%, respectively. We present a fitting formula that can be used to estimate WFIRST detector NL requirements once a true PSF error budget is established.
Towards process-informed bias correction of climate change simulations
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Shepherd, Theodore G.; Widmann, Martin; Zappa, Giuseppe; Walton, Daniel; Gutiérrez, José M.; Hagemann, Stefan; Richter, Ingo; Soares, Pedro M. M.; Hall, Alex; Mearns, Linda O.
2017-11-01
Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2006-01-01
Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.
Lewandowska, Koryna; Wachowicz, Barbara; Marek, Tadeusz; Oginska, Halszka; Fafrowicz, Magdalena
2018-01-01
Across a wide range of tasks, cognitive functioning is affected by circadian fluctuations. In this study, we investigated diurnal variations of working memory performance, taking into account not only hits and errors rates, but also sensitivity (d') and response bias (c) indexes (established by signal detection theory). Fifty-two healthy volunteers performed four experimental tasks twice - in the morning and in the evening (approximately 1 and 10 h after awakening). All tasks were based on Deese-Roediger-McDermott paradigm version dedicated to study working/short-term memory distortions. Participants were to memorize sets of stimuli characterized by either conceptual or perceptual similarity, and to answer if they recognized subsequent stimulus (probe) as an "old" one (i.e. presented in the preceding memory set). The probe was of three types: positive, negative or related lure. In two verbal tasks, memory sets were characterized by semantic or phonological similarity. In two visual tasks, abstract objects were characterized by a number of overlapping similarities or differed in only one detail. The type of experimental material and the participants' diurnal preference were taken into account. The analysis showed significant effect of time of day on false alarms rate (F (1,50) = 5.29, p = 0.03, η p 2 = 0.1) and response bias (F (1,50) = 11.16, p = 0.002, η p 2 = 0.18). In other words, in the evening participants responded in more liberal way than in the morning (answering "yes" more often). As the link between variations in false alarms rate, response bias and locus coeruleus activity was indicated in literature before, we believe that our data may be interpreted as supporting the hypothesis that diurnal fluctuations in norepinephrine release have effect on cognitive functioning in terms of decision threshold.
Consistent evaluation of GOSAT, SCIAMACHY, carbontracker, and MACC through comparisons to TCCON
Kulawik, S. S.; Wunch, D.; O'Dell, C.; ...
2015-06-22
Consistent validation of satellite CO 2 estimates is a prerequisite for using multiple satellite CO 2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO 2 data record. We focus on validating model and satellite observation attributes that impact flux estimates and CO 2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry air mole fraction (X CO 2) for GOSAT (ACOS b3.5) and SCIAMACHY (BESD v2.00.08) as wellmore » as the CarbonTracker (CT2013b) simulated CO 2 mole fraction fields and the MACC CO 2 inversion system (v13.1) and compare these to TCCON observations (GGG2014). We find standard deviations of 0.9 ppm, 0.9, 1.7, and 2.1 ppm versus TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single target errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. When satellite data are averaged and interpreted according to error 2 = a 2+ b 2 / n (where n are the number of observations averaged, a are the systematic (correlated) errors, and b are the random (uncorrelated) errors), we find that the correlated error term a = 0.6 ppm and the uncorrelated error term b = 1.7 ppm for GOSAT and a = 1.0 ppm, b = 1.4 ppm for SCIAMACHY regional averages. Biases at individual stations have year-to-year variability of ~ 0.3 ppm, with biases larger than the TCCON predicted bias uncertainty of 0.4 ppm at many stations. Using fitting software, we find that GOSAT underpredicts the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46–53° N. In the Southern Hemisphere (SH), CT2013b underestimates the seasonal cycle amplitude. Biases are calculated for 3-month intervals and indicate the months that contribute to the observed amplitude differences. The seasonal cycle phase indicates whether a dataset or model lags another dataset in time. We calculate this at a subset of stations where there is adequate satellite data, and find that the GOSAT retrieved phase improves substantially over the prior and the SCIAMACHY retrieved phase improves substantially for 2 of 7 sites. The models reproduce the measured seasonal cycle phase well except for at Lauder125 (CT2013b), Darwin (MACC), and Izana (+ 10 days, CT2013b), as for Bremen and Four Corners, which are highly influenced by local effects. We compare the variability within one day between TCCON and models in JJA; there is correlation between 0.2 and 0.8 in the NH, with models showing 10–100 % the variability of TCCON at different stations (except Bremen and Four Corners which have no variability compared to TCCON) and CT2013b showing more variability than MACC. This paper highlights findings that provide inputs to estimate flux errors in model assimilations, and places where models and satellites need further investigation, e.g. the SH for models and 45–67° N for GOSAT« less
Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers.
Bickler, Philip E; Feiner, John R; Rollins, Mark D
2013-10-01
Cerebral oximetry is a noninvasive optical technology that measures frontal cortex blood hemoglobin-oxygen saturation. Commercially available cerebral oximeters have not been evaluated independently. Unlike pulse oximeters, there are currently no Food and Drug Administration standards for performance or accuracy. We tested the hypothesis that cerebral oximeters accurately measure a fixed ratio of the oxygen saturation in cerebral mixed venous and arterial blood. We evaluated the performance of 5 commercially available cerebral oximeters: the EQUANOX® 7600 in 3- and 4-wavelength versions (Nonin Medical, Plymouth, MN), FORE-SIGHT® (Casmed, Branford, CT), INVOS® 5100C (Covidien, Boulder, CO), and the NIRO-200NX® (Hamamatsu Photonics, Hamamatsu City, Japan) during stable isocapnic hypoxia in volunteers. Twenty-three healthy adults (14 men, 9 women) had sensors placed on each side of the forehead. The subject's inspired oxygen (FIO2) was then changed to produce 6 steady-state arterial oxygen saturation (SaO2) levels between 100% and 70%, while end-tidal CO2 was maintained constant. At each plateau, simultaneous blood samples from the jugular bulb and radial artery were analyzed with a hemoximeter (OSM-3, Radiometer Medical A/S, Copenhagen, Denmark). Each cerebral oximeter's bias was calculated as the difference between the instrument's reading (cerebral saturation, ScO2) with the weighted saturation of venous and arterial blood (Sa/vO2), as specified by each manufacturer (INVOS: 25% arterial/75% venous; FORE-SIGHT, EQUANOX, and NIRO: 30% arterial/70% venous). Five hundred forty-two comparisons between paired blood samples and oximeter readings were analyzed. The pooled root mean square error was 8.06%, a value higher than for pulse oximeters, which is ±3% by Food and Drug Administration standards. The mean % bias ± SD (precision) and root mean square errors were: FORE-SIGHT 1.76 ± 3.92 and 4.28; INVOS 0.05 ± 9.72 and 9.69; NIRO-200NX -1.13 ± 9.64 and 9.68; EQUANOX-3 λ 2.48 ± 8.12 and 8.47; EQUANOX-4 λ 2.84 ± 6.27 and 6.86. The FORE-SIGHT, NIRO-200NX, and EQUANOX-3 λ had significantly more positive bias at lower SaO2. The amount of bias during hypoxia was reduced when the bias was calculated on the basis of difference between oximeter reading and the arterial and mixed venous saturation difference rather than the weighted average of blood saturation, indicating that differences in the ratio between arterial and venous blood volumes account for some of the positive bias at low saturation. Dark skin pigment tended to produce more negative bias in all instruments but bias was significantly larger than zero only for the FORE-SIGHT oximeter. Bias was significantly more negative in women for INVOS and EQUANOX devices but not for the FORE-SIGHT device. While responsive to desaturation, cerebral oximeters exhibited large variation in reading errors between subjects, with mean bias possibly related to variations in the ratio of arterial and venous blood in the sampling area of the brain. This ratio is probably not fixed, as assumed by the manufacturers, but dynamically changes with hypoxia. Better understanding these factors could improve the performance of cerebral oximeters and help establish saturation or blood flow thresholds for brain well-being.
Altimeter error sources at the 10-cm performance level
NASA Technical Reports Server (NTRS)
Martin, C. F.
1977-01-01
Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.
The discrete-time compensated Kalman filter
NASA Technical Reports Server (NTRS)
Lee, W. H.; Athans, M.
1978-01-01
A suboptimal dynamic compensator to be used in conjunction with the ordinary discrete time Kalman filter was derived. The resultant compensated Kalman Filter has the property that steady state bias estimation errors, resulting from modelling errors, were eliminated.
Error Detection and Correction in Spelling.
ERIC Educational Resources Information Center
Lydiatt, Steve
1984-01-01
Teachers can discover students' means of dealing with spelling as a problem through investigations of their error detection and correction skills. Approaches for measuring sensitivity and bias are described, as are means of developing appropriate instructional activities. (CL)
Influence of satellite vibration on radio over IsOWC system
NASA Astrophysics Data System (ADS)
Zong, Kang; Zhu, Jiang
2017-07-01
In this paper, we analyze the influence of satellite vibration on radio over intersatellite optical wireless communication (IsOWC) system with an optical booster amplifier (OBA) and an optical preamplifier. The closed-form expressions of radio frequency (RF) gain, noise figure (NF) and spurious-free dynamic range (SFDR) are derived in the presence of pointing jitter taking consideration of bias error. Numerical results for RF gain, NF and SFDR are given for demonstration. Results indicate that the bias error obviously deteriorates the performance of the radio over IsOWC system.
NASA Technical Reports Server (NTRS)
Chang, Alfred T. C.; Chiu, Long S.; Wilheit, Thomas T.
1993-01-01
Global averages and random errors associated with the monthly oceanic rain rates derived from the Special Sensor Microwave/Imager (SSM/I) data using the technique developed by Wilheit et al. (1991) are computed. Accounting for the beam-filling bias, a global annual average rain rate of 1.26 m is computed. The error estimation scheme is based on the existence of independent (morning and afternoon) estimates of the monthly mean. Calculations show overall random errors of about 50-60 percent for each 5 deg x 5 deg box. The results are insensitive to different sampling strategy (odd and even days of the month). Comparison of the SSM/I estimates with raingage data collected at the Pacific atoll stations showed a low bias of about 8 percent, a correlation of 0.7, and an rms difference of 55 percent.
Correcting for particle counting bias error in turbulent flow
NASA Technical Reports Server (NTRS)
Edwards, R. V.; Baratuci, W.
1985-01-01
An ideal seeding device is proposed generating particles that exactly follow the flow out are still a major source of error, i.e., with a particle counting bias wherein the probability of measuring velocity is a function of velocity. The error in the measured mean can be as much as 25%. Many schemes have been put forward to correct for this error, but there is not universal agreement as to the acceptability of any one method. In particular it is sometimes difficult to know if the assumptions required in the analysis are fulfilled by any particular flow measurement system. To check various correction mechanisms in an ideal way and to gain some insight into how to correct with the fewest initial assumptions, a computer simulation is constructed to simulate laser anemometer measurements in a turbulent flow. That simulator and the results of its use are discussed.
Systematic error of diode thermometer.
Iskrenovic, Predrag S
2009-08-01
Semiconductor diodes are often used for measuring temperatures. The forward voltage across a diode decreases, approximately linearly, with the increase in temperature. The applied method is mainly the simplest one. A constant direct current flows through the diode, and voltage is measured at diode terminals. The direct current that flows through the diode, putting it into operating mode, heats up the diode. The increase in temperature of the diode-sensor, i.e., the systematic error due to self-heating, depends on the intensity of current predominantly and also on other factors. The results of systematic error measurements due to heating up by the forward-bias current have been presented in this paper. The measurements were made at several diodes over a wide range of bias current intensity.
NASA Astrophysics Data System (ADS)
Tesfagiorgis, Kibrewossen B.
Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products in mountainous regions. The present work develops an approach to seamlessly blend satellite, available radar, climatological and gauge precipitation products to fill gaps in ground-based radar precipitation field. To mix different precipitation products, the error of any of the products relative to each other should be removed. For bias correction, the study uses a new ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar-gauge precipitation product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. In addition to biases, sometimes there is also spatial error between the radar and satellite precipitation estimates; one of them has to be geometrically corrected with reference to the other. A set of corresponding raining points between SPE and radar products are selected to apply linear registration using a regularized least square technique to minimize the dislocation error in SPEs with respect to available radar products. A weighted Successive Correction Method (SCM) is used to make the merging between error corrected satellite and radar precipitation estimates. In addition to SCM, we use a combination of SCM and Bayesian spatial method for merging the rain gauges and climatological precipitation sources with radar and SPEs. We demonstrated the method using two satellite-based, CPC Morphing (CMORPH) and Hydro-Estimator (HE), two radar-gauge based, Stage-II and ST-IV, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over different geographical locations of the United States. Results show that: (a) the method of ensembles helped reduce biases in SPEs significantly; (b) the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements .The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the operational meteorology and hydrology community.
Towards Removing the Southern Ocean Short Wave Bias in HadGEM3: Mixed-phase Cloud Improvements.
NASA Astrophysics Data System (ADS)
Field, P.; Furtado, K.
2014-12-01
Many IPCC models suffer from significant Sea Surface Temperature (SST) biases in the Southern Ocean that adversely affects the representation of the cryosphere and global circulation in these models. Evidence suggests that much of this error is linked to Short Wave (SW) radiation, sensible and latent heat biases. Flaws in the representation of clouds and a deficit of supercooled liquid water in mixed-phase clouds are suspected as a likely source of the SW error. A physically based method that uses subgrid turbulence to control a new liquid production term has been developed. Comparisons between theory, based on a stochastic differential equation used to represent supersaturation fluctuations, and decametre resolution Large Eddy Simulations will be presented. An implementation of this approach in a GCM shows an increased prevalance of supercooled liquid water and a reduction in the magnitude of the Southern Ocean SW bias. To conclude, we will summarize the complete package of changes that have been made to tackle the Southern Ocean SST bias in a physically meaningful way.
How does bias correction of regional climate model precipitation affect modelled runoff?
NASA Astrophysics Data System (ADS)
Teng, J.; Potter, N. J.; Chiew, F. H. S.; Zhang, L.; Wang, B.; Vaze, J.; Evans, J. P.
2015-02-01
Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the differences between the methods are small in the modelling experiments here (and as reported in the literature), mainly due to the substantial corrections required and inconsistent errors over time (non-stationarity). The errors in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.
Toward isolating the role of dopamine in the acquisition of incentive salience attribution.
Chow, Jonathan J; Nickell, Justin R; Darna, Mahesh; Beckmann, Joshua S
2016-10-01
Stimulus-reward learning has been heavily linked to the reward-prediction error learning hypothesis and dopaminergic function. However, some evidence suggests dopaminergic function may not strictly underlie reward-prediction error learning, but may be specific to incentive salience attribution. Utilizing a Pavlovian conditioned approach procedure consisting of two stimuli that were equally reward-predictive (both undergoing reward-prediction error learning) but functionally distinct in regard to incentive salience (levers that elicited sign-tracking and tones that elicited goal-tracking), we tested the differential role of D1 and D2 dopamine receptors and nucleus accumbens dopamine in the acquisition of sign- and goal-tracking behavior and their associated conditioned reinforcing value within individuals. Overall, the results revealed that both D1 and D2 inhibition disrupted performance of sign- and goal-tracking. However, D1 inhibition specifically prevented the acquisition of sign-tracking to a lever, instead promoting goal-tracking and decreasing its conditioned reinforcing value, while neither D1 nor D2 signaling was required for goal-tracking in response to a tone. Likewise, nucleus accumbens dopaminergic lesions disrupted acquisition of sign-tracking to a lever, while leaving goal-tracking in response to a tone unaffected. Collectively, these results are the first evidence of an intraindividual dissociation of dopaminergic function in incentive salience attribution from reward-prediction error learning, indicating that incentive salience, reward-prediction error, and their associated dopaminergic signaling exist within individuals and are stimulus-specific. Thus, individual differences in incentive salience attribution may be reflective of a differential balance in dopaminergic function that may bias toward the attribution of incentive salience, relative to reward-prediction error learning only. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models
NASA Astrophysics Data System (ADS)
Lagman, Karl B.; Fennel, Katja; Thompson, Keith R.; Bianucci, Laura
2014-09-01
Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator-prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.
Campos, Nicole G.; Castle, Philip E.; Schiffman, Mark; Kim, Jane J.
2013-01-01
Background Although the randomized controlled trial (RCT) is widely considered the most reliable method for evaluation of health care interventions, challenges to both internal and external validity exist. Thus, the efficacy of an intervention in a trial setting does not necessarily represent the real-world performance that decision makers seek to inform comparative effectiveness studies and economic evaluations. Methods Using data from the ASCUS-LSIL Triage Study (ALTS), we performed a simplified economic evaluation of age-based management strategies to detect cervical intraepithelial neoplasia grade 3 (CIN3) among women who were referred to the study with low-grade squamous intraepithelial lesions (LSIL). We used data from the trial itself to adjust for 1) potential lead time bias and random error that led to variation in the observed prevalence of CIN3 by study arm, and 2) potential ascertainment bias among providers in the most aggressive management arm. Results We found that using unadjusted RCT data may result in counterintuitive cost-effectiveness results when random error and/or bias are present. Following adjustment, the rank order of management strategies changed for two of the three age groups we considered. Conclusion Decision analysts need to examine study design, available trial data and cost-effectiveness results closely in order to detect evidence of potential bias. Adjustment for random error and bias in RCTs may yield different policy conclusions relative to unadjusted trial data. PMID:22147881
Daws, Richard E.; Hampshire, Adam
2017-01-01
It is well established that religiosity correlates inversely with intelligence. A prominent hypothesis states that this correlation reflects behavioral biases toward intuitive problem solving, which causes errors when intuition conflicts with reasoning. We tested predictions of this hypothesis by analyzing data from two large-scale Internet-cohort studies (combined N = 63,235). We report that atheists surpass religious individuals in terms of reasoning but not working-memory performance. The religiosity effect is robust across sociodemographic factors including age, education and country of origin. It varies significantly across religions and this co-occurs with substantial cross-group differences in religious dogmatism. Critically, the religiosity effect is strongest for tasks that explicitly manipulate conflict; more specifically, atheists outperform the most dogmatic religious group by a substantial margin (0.6 standard deviations) during a color-word conflict task but not during a challenging matrix-reasoning task. These results support the hypothesis that behavioral biases rather than impaired general intelligence underlie the religiosity effect. PMID:29312057
Han, Sanghoon; Dobbins, Ian G.
2009-01-01
Recognition models often assume that subjects use specific evidence values (decision criteria) to adaptively parse continuous memory evidence into response categories (e.g., “old” or “new”). Although explicit pre-test instructions influence criterion placement, these criteria appear extremely resistant to change once testing begins. We tested criterion sensitivity to local feedback using a novel, biased feedback technique designed to tacitly encourage certain errors by indicating they were correct choices. Experiment 1 demonstrated that fully correct feedback had little effect on criterion placement, whereas biased feedback during Experiments 2 and 3 yielded prominent, durable, and adaptive criterion shifts, with observers reporting they were unaware of the manipulation in Experiment 3. These data suggest recognition criteria can be easily modified during testing through a form of feedback learning that operates independent of stimulus characteristics and observer awareness of the nature of the manipulation. This mechanism may be fundamentally different than criterion shifts following explicit instructions and warnings, or shifts linked to manipulations of stimulus characteristics combined with feedback highlighting those manipulations. PMID:18604954
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Cooper, J. E.; Wright, J. R.
1987-01-01
A modification to the Eigensystem Realization Algorithm (ERA) for modal parameter identification is presented in this paper. The ERA minimum order realization approach using singular value decomposition is combined with the philosophy of the Correlation Fit method in state space form such that response data correlations rather than actual response values are used for modal parameter identification. This new method, the ERA using data correlations (ERA/DC), reduces bias errors due to noise corruption significantly without the need for model overspecification. This method is tested using simulated five-degree-of-freedom system responses corrupted by measurement noise. It is found for this case that, when model overspecification is permitted and a minimum order solution obtained via singular value truncation, the results from the two methods are of similar quality.
What errors do peer reviewers detect, and does training improve their ability to detect them?
Schroter, Sara; Black, Nick; Evans, Stephen; Godlee, Fiona; Osorio, Lyda; Smith, Richard
2008-10-01
To analyse data from a trial and report the frequencies with which major and minor errors are detected at a general medical journal, the types of errors missed and the impact of training on error detection. 607 peer reviewers at the BMJ were randomized to two intervention groups receiving different types of training (face-to-face training or a self-taught package) and a control group. Each reviewer was sent the same three test papers over the study period, each of which had nine major and five minor methodological errors inserted. BMJ peer reviewers. The quality of review, assessed using a validated instrument, and the number and type of errors detected before and after training. The number of major errors detected varied over the three papers. The interventions had small effects. At baseline (Paper 1) reviewers found an average of 2.58 of the nine major errors, with no notable difference between the groups. The mean number of errors reported was similar for the second and third papers, 2.71 and 3.0, respectively. Biased randomization was the error detected most frequently in all three papers, with over 60% of reviewers rejecting the papers identifying this error. Reviewers who did not reject the papers found fewer errors and the proportion finding biased randomization was less than 40% for each paper. Editors should not assume that reviewers will detect most major errors, particularly those concerned with the context of study. Short training packages have only a slight impact on improving error detection.
Identifying and addressing the limitations of safety climate surveys.
O'Connor, Paul; Buttrey, Samuel E; O'Dea, Angela; Kennedy, Quinn
2011-08-01
There are a variety of qualitative and quantitative tools for measuring safety climate. However, questionnaires are by far the most commonly used methodology. This paper reports the descriptive analysis of a large sample of safety climate survey data (n=110,014) collected over 10 years from U.S. Naval aircrew using the Command Safety Assessment Survey (CSAS). The analysis demonstrated that there was substantial non-random response bias associated with the data (the reverse worded items had a unique pattern of responses, there was a increasing tendency over time to only provide a modal response, the responses to the same item towards the beginning and end of the questionnaire did not correlate as highly as might be expected, and the faster the questionnaire was completed the higher the frequency of modal responses). It is suggested that the non-random responses bias was due to the negative effect on participant motivation of a number of factors (questionnaire design, lack of a belief in the importance of the response, participant fatigue, and questionnaire administration). Researchers must consider the factors that increase the likelihood of non-random measurement error in safety climate survey data and cease to rely on data that are solely collected using a long and complex questionnaire. In the absence of valid and reliable data it will not be possible for organizations to take the measures required to improve safety climate. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluation of the CEAS model for barley yields in North Dakota and Minnesota
NASA Technical Reports Server (NTRS)
Barnett, T. L. (Principal Investigator)
1981-01-01
The CEAS yield model is based upon multiple regression analysis at the CRD and state levels. For the historical time series, yield is regressed on a set of variables derived from monthly mean temperature and monthly precipitation. Technological trend is represented by piecewise linear and/or quadriatic functions of year. Indicators of yield reliability obtained from a ten-year bootstrap test (1970-79) demonstrated that biases are small and performance as indicated by the root mean square errors are acceptable for intended application, however, model response for individual years particularly unusual years, is not very reliable and shows some large errors. The model is objective, adequate, timely, simple and not costly. It considers scientific knowledge on a broad scale but not in detail, and does not provide a good current measure of modeled yield reliability.
Parametric study of statistical bias in laser Doppler velocimetry
NASA Technical Reports Server (NTRS)
Gould, Richard D.; Stevenson, Warren H.; Thompson, H. Doyle
1989-01-01
Analytical studies have often assumed that LDV velocity bias depends on turbulence intensity in conjunction with one or more characteristic time scales, such as the time between validated signals, the time between data samples, and the integral turbulence time-scale. These parameters are presently varied independently, in an effort to quantify the biasing effect. Neither of the post facto correction methods employed is entirely accurate. The mean velocity bias error is found to be nearly independent of data validation rate.
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2012-01-01
Measurement error significantly biases interaction effects and distorts researchers' inferences regarding interactive hypotheses. This article focuses on the single-indicator case and shows how to accurately estimate group slope differences by disattenuating interaction effects with errors-in-variables (EIV) regression. New analytic findings were…
Detecting genotyping errors and describing black bear movement in northern Idaho
Michael K. Schwartz; Samuel A. Cushman; Kevin S. McKelvey; Jim Hayden; Cory Engkjer
2006-01-01
Non-invasive genetic sampling has become a favored tool to enumerate wildlife. Genetic errors, caused by poor quality samples, can lead to substantial biases in numerical estimates of individuals. We demonstrate how the computer program DROPOUT can detect amplification errors (false alleles and allelic dropout) in a black bear (Ursus americanus) dataset collected in...
Armijo-Olivo, Susan; Cummings, Greta G.; Amin, Maryam; Flores-Mir, Carlos
2017-01-01
Objectives To examine the risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions and the development of these aspects over time. Methods We included 540 randomized clinical trials from 64 selected systematic reviews. We extracted, in duplicate, details from each of the selected randomized clinical trials with respect to publication and trial characteristics, reporting and methodologic characteristics, and Cochrane risk of bias domains. We analyzed data using logistic regression and Chi-square statistics. Results Sequence generation was assessed to be inadequate (at unclear or high risk of bias) in 68% (n = 367) of the trials, while allocation concealment was inadequate in the majority of trials (n = 464; 85.9%). Blinding of participants and blinding of the outcome assessment were judged to be inadequate in 28.5% (n = 154) and 40.5% (n = 219) of the trials, respectively. A sample size calculation before the initiation of the study was not performed/reported in 79.1% (n = 427) of the trials, while the sample size was assessed as adequate in only 17.6% (n = 95) of the trials. Two thirds of the trials were not described as double blinded (n = 358; 66.3%), while the method of blinding was appropriate in 53% (n = 286) of the trials. We identified a significant decrease over time (1955–2013) in the proportion of trials assessed as having inadequately addressed methodological quality items (P < 0.05) in 30 out of the 40 quality criteria, or as being inadequate (at high or unclear risk of bias) in five domains of the Cochrane risk of bias tool: sequence generation, allocation concealment, incomplete outcome data, other sources of bias, and overall risk of bias. Conclusions The risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions have improved over time; however, further efforts that contribute to the development of more stringent methodology and detailed reporting of trials are still needed. PMID:29272315