Sample records for response factor substrate

  1. Substrate-dependent temperature sensitivity of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Myachina, Olga; Blagodatskaya, Evgenia

    2015-04-01

    Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.

  2. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling

    PubMed Central

    Bethke, Gerit; Unthan, Tino; Uhrig, Joachim F.; Pöschl, Yvonne; Gust, Andrea A.; Scheel, Dierk; Lee, Justin

    2009-01-01

    Mitogen-activated protein kinase (MAPK)–mediated responses are in part regulated by the repertoire of MAPK substrates, which is still poorly elucidated in plants. Here, the in vivo enzyme–substrate interaction of the Arabidopsis thaliana MAP kinase, MPK6, with an ethylene response factor (ERF104) is shown by fluorescence resonance energy transfer. The interaction was rapidly lost in response to flagellin-derived flg22 peptide. This complex disruption requires not only MPK6 activity, which also affects ERF104 stability via phosphorylation, but also ethylene signaling. The latter points to a novel role of ethylene in substrate release, presumably allowing the liberated ERF104 to access target genes. Microarray data show enrichment of GCC motifs in the promoters of ERF104–up-regulated genes, many of which are stress related. ERF104 is a vital regulator of basal immunity, as altered expression in both erf104 and overexpressors led to more growth inhibition by flg22 and enhanced susceptibility to a non-adapted bacterial pathogen. PMID:19416906

  3. Complexities in barrier island response to sea level rise: Insights from numerical model experiments, North Carolina Outer Banks

    USGS Publications Warehouse

    Moore, Laura J.; List, Jeffrey H.; Williams, S. Jeffress; Stolper, David

    2010-01-01

    Using a morphological-behavior model to conduct sensitivity experiments, we investigate the sea level rise response of a complex coastal environment to changes in a variety of factors. Experiments reveal that substrate composition, followed in rank order by substrate slope, sea level rise rate, and sediment supply rate, are the most important factors in determining barrier island response to sea level rise. We find that geomorphic threshold crossing, defined as a change in state (e.g., from landward migrating to drowning) that is irreversible over decadal to millennial time scales, is most likely to occur in muddy coastal systems where the combination of substrate composition, depth-dependent limitations on shoreface response rates, and substrate erodibility may prevent sand from being liberated rapidly enough, or in sufficient quantity, to maintain a subaerial barrier. Analyses indicate that factors affecting sediment availability such as low substrate sand proportions and high sediment loss rates cause a barrier to migrate landward along a trajectory having a lower slope than average barrier island slope, thereby defining an “effective” barrier island slope. Other factors being equal, such barriers will tend to be smaller and associated with a more deeply incised shoreface, thereby requiring less migration per sea level rise increment to liberate sufficient sand to maintain subaerial exposure than larger, less incised barriers. As a result, the evolution of larger/less incised barriers is more likely to be limited by shoreface erosion rates or substrate erodibility making them more prone to disintegration related to increasing sea level rise rates than smaller/more incised barriers. Thus, the small/deeply incised North Carolina barriers are likely to persist in the near term (although their long-term fate is less certain because of the low substrate slopes that will soon be encountered). In aggregate, results point to the importance of system history (e.g., previous slopes, sediment budgets, etc.) in determining migration trajectories and therefore how a barrier island will respond to sea level rise. Although simple analytical calculations may predict barrier response in simplified coastal environments (e.g., constant slope, constant sea level rise rate, etc.), our model experiments demonstrate that morphological-behavior modeling is necessary to provide critical insights regarding changes that may occur in environments having complex geometries, especially when multiple parameters change simultaneously.

  4. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns

    USGS Publications Warehouse

    Haack, S.K.; Garchow, H.; Klug, M.J.; Forney, L.J.

    1995-01-01

    We determined factors that affect responses of bacterial isolates and model bacterial communities to the 95 carbon substrates in Biolog microliter plates. For isolates and communities of three to six bacterial strains, substrate oxidation rates were typically nonlinear and were delayed by dilution of the inoculum. When inoculum density was controlled, patterns of positive and negative responses exhibited by microbial communities to each of the carbon sources were reproducible. Rates and extents of substrate oxidation by the communities were also reproducible but were not simply the sum of those exhibited by community members when tested separately. Replicates of the same model community clustered when analyzed by principal- components analysis (PCA), and model communities with different compositions were clearly separated un the first PCA axis, which accounted for >60% of the dataset variation. PCA discrimination among different model communities depended on the extent to which specific substrates were oxidized. However, the substrates interpreted by PCA to be most significant in distinguishing the communities changed with reading time, reflecting the nonlinearity of substrate oxidation rates. Although whole-community substrate utilization profiles were reproducible signatures for a given community, the extent of oxidation of specific substrates and the numbers or activities of microorganisms using those substrates in a given community were not correlated. Replicate soil samples varied significantly in the rate and extent of oxidation of seven tested substrates, suggesting microscale heterogeneity in composition of the soil microbial community.

  5. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells.

    PubMed

    Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A

    1993-05-01

    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1.

  6. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells.

    PubMed Central

    Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A

    1993-01-01

    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7683417

  7. Enhanced Raman scattering in porous silicon grating.

    PubMed

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  8. Barrier Island Sensitivity to Sea-Level Rise: Insights from Numerical Model Experiments, North Carolina Outer Banks and Chandeleur Islands, LA U.S.A

    NASA Astrophysics Data System (ADS)

    Moore, L. J.; List, J. H.; Williams, S.; Patsch, K.

    2009-12-01

    As dynamic and low-lying coastal landforms, barrier islands are especially vulnerable to sea level rise, changes in sediment supply and coastal storms. Changes in these factors may ultimately result in new conditions that are sufficiently different from present to cause a shift in equilibrium state from landward-migrating to submerging, i.e., a threshold crossing. Because the loss of barrier islands would be extremely disruptive of human activities, an understanding of how barrier islands evolve under conditions of rising sea level is vital to the development of wise coastal management practices. To advance understanding of barrier island response to changing conditions, we apply the morphological-behavior model GEOMBEST (GEOmorphic Model of Barrier and EStuarine Translations; Stolper et al., 2005, Moore et al., 2007 and Moore et al., accepted pending minor revisions) to field sites in the North Carolina Outer Banks and the Chandeleur Islands of southeastern Louisiana. Sensitivity analyses reveal that, in general, substrate sand proportion, substrate slope, sea-level rise rate and sediment-supply rate are the most important factors in determining barrier island response to sea-level rise while shoreface erosion rates, substrate erodibility, and shoreface depth are often less important. More specifically, substrate composition appears to be the most important factor in muddy coastal environments, such as the Chandeleur Islands, where model results suggest that a threshold crossing may occur on the order of decades to a century from present, while the other three factors appear to be most important in North Carolina and other similar environments. When substrate sand proportions are low and/or sediment-loss rates are high, shoreface erosion rate and substrate erodibility may become important in limiting the rate at which sand can be liberated from the substrate, thereby increasing barrier island vulnerability to threshold crossing. Barrier system history (e.g., previous sediment supply rates, substrate slope) determines barrier island volume and the degree to which the shoreface extends into the substrate, and is therefore of critical importance in determining whether or not a barrier will persist as sea-level rises. Surprisingly, larger barriers, which are associated with little incision into the substrate, are more vulnerable to sea-level rise than smaller barriers that have been losing sand in the past, or that have encountered rapidly changing substrate slopes. Overall, our results indicate that barrier islands with muddy substrates, and barriers which are in near-equilibrium with substrate slope, will be most vulnerable to geomorphic threshold crossing as sea level rises. Plans to merge GEOMBEST with a marsh progradation model will allow a more detailed assessment of barrier island response where co-evolution of back-barrier marsh and barrier environments is critical in determining the conditions under which threshold crossings are most likely.

  9. Stand Structure and Substrate Diversity as Two Major Drivers for Bryophyte Distribution in a Temperate Montane Ecosystem

    PubMed Central

    Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang

    2017-01-01

    Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation. PMID:28603535

  10. Stand Structure and Substrate Diversity as Two Major Drivers for Bryophyte Distribution in a Temperate Montane Ecosystem.

    PubMed

    Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang

    2017-01-01

    Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m 2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation.

  11. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    PubMed

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting molecules that are traditionally not easily detected with SERS due to the perceived weak molecule-metal interaction of substrates.

  12. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  13. Interleukin 4 signals through two related pathways.

    PubMed

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-08-15

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

  14. On the influence of substrate morphology and surface area on phytofauna

    USGS Publications Warehouse

    Becerra-Munoz, S.; Schramm, H.L.

    2007-01-01

    The independent effects and interactions between substrate morphology and substrate surface area on invertebrate density or biomass colonizing artificial plant beds were assessed in a clear-water and a turbid playa lake in Castro County, Texas, USA. Total invertebrate density and biomass were consistently greater on filiform substrates than on laminar substrates with equivalent substrate surface areas. The relationship among treatments (substrates with different morphologies and surface areas) and response (invertebrate density or biomass) was assessed with equally spaced surface areas. Few statistically significant interactions between substrate morphology and surface area were detected, indicating that these factors were mostly independent from each other in their effect on colonizing invertebrates. Although infrequently, when substrate morphology and surface area were not independent, the effects of equally spaced changes in substrate surface area on the rate of change of phytofauna density or biomass per unit of substrate surface area were dependent upon substrate morphology. The absence of three-way interactions indicated that effects of substrate morphology and substrate area on phytofauna density or biomass were independent of environmental conditions outside and inside exclosures. ?? 2006 Springer Science+Business Media B.V.

  15. Gender differences in substrate utilisation during exercise.

    PubMed

    Ruby, B C; Robergs, R A

    1994-06-01

    The selection and utilisation of metabolic substrates during endurance exercise are regulated by a complex array of effectors. These factors include, but are not limited to, endurance training and cardiorespiratory fitness, exercise intensity and duration, muscle morphology and histology, hormonal factors and diet. Although the effects of these factors on substrate utilisation patterns are well understood, the variation in substrate utilisation during endurance exercise between males and females is not. Because of the extreme heterogeneity in exercise protocols and individuals studied, the differences in substrate utilisation between males and females remain somewhat inconclusive. Regardless of heterogeneity, if the results from studies are interpreted collectively, an apparent gender difference in the selection and metabolism of substrates can be seen in sedentary individuals. However, this difference between genders diminishes as the level of cardiorespiratory fitness is increased to that of highly trained individuals. During rest and lower intensity exercise, the preferential metabolism of lipid occurs with a concomitant sparing of muscle glycogen. However, as the intensity of exercise is increased, the relative contribution of carbohydrate also increases. The exercise intensity at which the shift from lipid to carbohydrate is determined and regulated by the previously mentioned factors. Because the intensity and duration of exercise play a predominant role, the variation in exercise protocols poses a methodological concern when interpreting previous research. When attempting to compare the metabolism of substrates during endurance exercise, appropriate selection and interpretation of measurement techniques are necessary. Measurement techniques include the nonprotein respiratory exchange ratio, muscle and fat biopsies and the measurement of various blood metabolites, such as free fatty acids and glycerol. Similarly, in vitro analysis of lipolytic activity has also been demonstrated in males and females in response to varying levels of female gonadotrophic hormones. When comparing the substrate utilisation patterns between males and females, the area of hormonal regulation has received less attention. Often the catecholamine response to endurance exercise is measured; however, the gonadotrophic hormones, particularly those of the female, have received less attention when comparing genders. Indeed, the regulatory nature of the female gonadotrophic hormones has been demonstrated. Collectively, the effects of elevated estrogen, as in the luteal phase of menstruation, appear to promote lipolytic activity. Estrogen-mediated lipolytic activation occurs by apparently altering the sensitivity to lipoprotein lipase and by increasing the levels of human growth hormone (somatotropin), an activator of lipolysis.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams.

    PubMed

    Fenoy, Encarnación; Casas, J Jesús; Díaz-López, Manuel; Rubio, Juan; Guil-Guerrero, J Luís; Moyano-López, Francisco J

    2016-11-01

    Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Osteogenic Response to BMP-2 of hMSCs Grown on Apatite-Coated Scaffolds

    PubMed Central

    Davis, Hillary E.; Case, Erin M.; Miller, Stephanie L.; Genetos, Damian C.; Leach, J. Kent

    2011-01-01

    Osteoconductive materials play a critical role in promoting integration with surrounding bone tissue and resultant bone repair in vivo. However, the impact of 3D osteoconductive substrates coupled with soluble signals on progenitor cell differentiation is not clear. In this study, we investigated the influence of bone morphogenetic protein-2 (BMP-2) concentration on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) when seeded in carbonated apatite-coated polymer scaffolds. Mineralized scaffolds were more hydrophilic and adsorbed more BMP-2 compared to nonmineralized scaffolds. Changes in alkaline phosphatase (ALP) activity within stimulated hMSCs were dependent on the dose of BMP-2 and the scaffold composition. We detected more cell-secreted calcium on mineralized scaffolds at all time points, and higher BMP-2 concentrations resulted in increased ALP and calcium levels. RUNX2 and IBSP gene expression within hMSCs was affected by both substrate and soluble signals, SP7 by soluble factors, and SPARC by substrate-mediated cues. The present data indicate that a combination of apatite and BMP-2 do not simply enhance the osteogenic response of hMSCs, but act through multiple pathways that may be both substrate- and growth factor-mediated. Thus, multiple signaling strategies will likely be necessary to achieve optimal bone regeneration. PMID:21656707

  18. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeledmore » DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.« less

  19. Identification of MAPK Substrates Using Quantitative Phosphoproteomics.

    PubMed

    Zhang, Tong; Schneider, Jacqueline D; Zhu, Ning; Chen, Sixue

    2017-01-01

    Activation of mitogen-activated protein kinases (MAPKs) under diverse biotic and abiotic factors and identification of an array of downstream MAPK target proteins are hot topics in plant signal transduction. Through interactions with a plethora of substrate proteins, MAPK cascades regulate many physiological processes in the course of plant growth, development, and response to environmental factors. Identification and quantification of potential MAPK substrates are essential, but have been technically challenging. With the recent advancement in phosphoproteomics, here we describe a method that couples metal dioxide for phosphopeptide enrichment with tandem mass tags (TMT) mass spectrometry (MS) for large-scale MAPK substrate identification and quantification. We have applied this method to a transient expression system carrying a wild type (WT) and a constitutive active (CA) version of a MAPK. This combination of genetically engineered MAPKs and phosphoproteomics provides a high-throughput, unbiased analysis of MAPK-triggered phosphorylation changes on the proteome scale. Therefore, it is a robust method for identifying potential MAPK substrates and should be applicable in the study of other kinase cascades in plants as well as in other organisms.

  20. Differences in the response of soil dehydrogenase activity to Cd contamination are determined by the different substrates used for its determination.

    PubMed

    Tan, Xiangping; Liu, Yanju; Yan, Kaihong; Wang, Ziquan; Lu, Guannan; He, Yike; He, Wenxiang

    2017-02-01

    Dehydrogenase activity (DHA) is an important indicator of heavy metal toxicity in contaminated soils. Different instances of DHA were determined using various substrates and which could affect the description of heavy metal toxicity. Currently, too few investigations have been done on selecting appropriate substrates. This study employed indoor simulation to determine soil DHA and its response to external cadmium (Cd) using two substrates (TTC and INT). Hormesis for DHA obtained using the TTC method (DHA-TTC) in low Cd concentration was observed which was quickly inhibited in high Cd concentration. While DHA obtained using the INT method (DHA-INT) decreased slowly when Cd concentration increased. The DHA-TTC and DHA-INT in soils at Cd concentration of 500 mg kg -1 decreased 86% and 53%, respectively, compared to the control. The dose-response relationship of Cd to DHA can be well simulated using the logistic model (p < 0.01), which indicated DHA could be used to indicate soil Cd toxicity. Multiple stepwise regression analysis revealed that total organic matter (TOC) is the major factor influencing the toxicity of Cd to DHA-TTC, while TOC, pH and cation exchange capacity (CEC) are major factors influencing the toxicity of Cd to DHA-INT. The different responses of soil DHA-TTC and DHA-INT to Cd are due to the differences in electron transport chain characteristics between TTC and INT, as well as the influence of soil properties. Although both DHA-TTC and DHA-INT can monitor soil Cd contamination, DHA-INT is recommended as a superior bio-indicator to indicate and assess contamination of Cd in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Interleukin 4 signals through two related pathways.

    PubMed Central

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-01-01

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7544011

  2. Surface laser marking optimization using an experimental design approach

    NASA Astrophysics Data System (ADS)

    Brihmat-Hamadi, F.; Amara, E. H.; Lavisse, L.; Jouvard, J. M.; Cicala, E.; Kellou, H.

    2017-04-01

    Laser surface marking is performed on a titanium substrate using a pulsed frequency doubled Nd:YAG laser ( λ= 532 nm, τ pulse=5 ns) to process the substrate surface under normal atmospheric conditions. The aim of the work is to investigate, following experimental and statistical approaches, the correlation between the process parameters and the response variables (output), using a Design of Experiment method (DOE): Taguchi methodology and a response surface methodology (RSM). A design is first created using MINTAB program, and then the laser marking process is performed according to the planned design. The response variables; surface roughness and surface reflectance were measured for each sample, and incorporated into the design matrix. The results are then analyzed and the RSM model is developed and verified for predicting the process output for the given set of process parameters values. The analysis shows that the laser beam scanning speed is the most influential operating factor followed by the laser pumping intensity during marking, while the other factors show complex influences on the objective functions.

  3. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.

    PubMed

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo

    2013-06-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.

  4. Placental Adaptations in Growth Restriction

    PubMed Central

    Zhang, Song; Regnault, Timothy R.H.; Barker, Paige L.; Botting, Kimberley J.; McMillen, Isabella C.; McMillan, Christine M.; Roberts, Claire T.; Morrison, Janna L.

    2015-01-01

    The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions. PMID:25580812

  5. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprowles, Amy; Robinson, Dan; Wu Yimi

    2005-08-15

    The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis tomore » define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli.« less

  6. Efficiency of vibrational sounding in parasitoid host location depends on substrate density.

    PubMed

    Fischer, S; Samietz, J; Dorn, S

    2003-10-01

    Parasitoids of concealed hosts have to drill through a substrate with their ovipositor for successful parasitization. Hymenopteran species in this drill-and-sting guild locate immobile pupal hosts by vibrational sounding, i.e., echolocation on solid substrate. Although this host location strategy is assumed to be common among the Orussidae and Ichneumonidae there is no information yet whether it is adapted to characteristics of the host microhabitat. This study examined the effect of substrate density on responsiveness and host location efficiency in two pupal parasitoids, Pimpla turionellae and Xanthopimpla stemmator (Hymenoptera: Ichneumonidae), with different host-niche specialization and corresponding ovipositor morphology. Location and frequency of ovipositor insertions were scored on cylindrical plant stem models of various densities. Substrate density had a significant negative effect on responsiveness, number of ovipositor insertions, and host location precision in both species. The more niche-specific species X. stemmator showed a higher host location precision and insertion activity. We could show that vibrational sounding is obviously adapted to the host microhabitat of the parasitoid species using this host location strategy. We suggest the attenuation of pulses during vibrational sounding as the energetically costly limiting factor for this adaptation.

  7. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  8. The MAP kinase substrate MKS1 is a regulator of plant defense responses

    PubMed Central

    Andreasson, Erik; Jenkins, Thomas; Brodersen, Peter; Thorgrimsen, Stephan; Petersen, Nikolaj H T; Zhu, Shijiang; Qiu, Jin-Long; Micheelsen, Pernille; Rocher, Anne; Petersen, Morten; Newman, Mari-Anne; Bjørn Nielsen, Henrik; Hirt, Heribert; Somssich, Imre; Mattsson, Ole; Mundy, John

    2005-01-01

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA-related defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors. PMID:15990873

  9. Intersexual and temporal variation in foraging ecology of prothonotary warblers during the breeding season

    USGS Publications Warehouse

    Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.

    1990-01-01

    We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) over four breeding seasons to determine if this species exhibited sex-specific or temporal variation in foraging behavior. Significant differences between sexes during the prenestling period were found for foraging height and substrate height (foraging method, plant species/substrate, perch diameter, horizontal location from trunk, and prey location were not significantly different). During the nestling period, this divergence between sexes was evident for foraging height, substrate height, substrate / tree species, and prey location. Additionally, male warblers significantly altered their behavior for all seven foraging variables between the two periods, whereas females exhibited changes similar to those of males for five of the foraging variables. This parallel shift suggests a strong behavioral response by both sexes to proximate factors (such as vegetation structure, and prey abundance and distribution) that varied throughout the breeding season. Sex-specific foraging behavior during the prenestling period was best explained by differences in reproductive responsibilities rather than by the theory of intersexual competition for limited resources. During the nestling period, neither hypothesis by itself explained foraging divergences adequately. However, when integrated with the temporal responses of the warblers to changes in prey availability, reproductive responsibilities seemed to be of primary importance in explaining intersexual niche partitioning during the nestling period. We emphasize the importance of considering both intersexual and intraseasonal variation when quantifying a species' foraging ecology.

  10. Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis.

    PubMed

    Jeya, Marimuthu; Nguyen, Ngoc-Phuong-Thao; Moon, Hee-Jung; Kim, Sang-Hwan; Lee, Jung-Kul

    2010-11-01

    Agaricus arvensis, a newly isolated basidiomycetous fungus, was found to secrete efficient cellulases. The strain produced the highest endoglucanase (EG), cellobiohydrolase (CBH) and beta-glucosidase (BGL) activities of 0.3, 3.2 and 8U/mg-protein, respectively, with rice straw as the carbon source. Saccharification of the woody biomass with A. arvensis cellulase as the enzyme source released a high level of fermentable sugars. Enzymatic hydrolysis of the poplar biomass was optimized using the response surface methodology in order to study the influence of the variables (pH, temperature, cellulases concentration and substrate concentration). The enzyme and substrate concentrations were identified as the limiting factors for the saccharification of poplar wood biomass. A total reducing sugar level of 29g/L (293mg/g-substrate) was obtained at an enzyme concentration of 65FPU/g-substrate after optimization of the hydrolysis parameters. The model validation showed a good agreement between the experimental results and the predicted responses. A. arvensis could be a good candidate for the production of reducing sugars from a cellulosic biomass.

  11. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates

    DOE PAGES

    Jubb, A. M.; Jiao, Y.; Eres, Gyula; ...

    2016-02-15

    Here we demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The significantly enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates aremore » also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10±2 nm gaps exhibit uniform SERS enhancement factors on the order of 10 9 for adsorbed p-mercaptoaniline molecules.« less

  12. Distinct respiratory responses of soils to complex organic substrate are governed predominantly by soil architecture and its microbial community.

    PubMed

    Fraser, F C; Todman, L C; Corstanje, R; Deeks, L K; Harris, J A; Pawlett, M; Whitmore, A P; Ritz, K

    2016-12-01

    Factors governing the turnover of organic matter (OM) added to soils, including substrate quality, climate, environment and biology, are well known, but their relative importance has been difficult to ascertain due to the interconnected nature of the soil system. This has made their inclusion in mechanistic models of OM turnover or nutrient cycling difficult despite the potential power of these models to unravel complex interactions. Using high temporal-resolution respirometery (6 min measurement intervals), we monitored the respiratory response of 67 soils sampled from across England and Wales over a 5 day period following the addition of a complex organic substrate (green barley powder). Four respiratory response archetypes were observed, characterised by different rates of respiration as well as different time-dependent patterns. We also found that it was possible to predict, with 95% accuracy, which type of respiratory behaviour a soil would exhibit based on certain physical and chemical soil properties combined with the size and phenotypic structure of the microbial community. Bulk density, microbial biomass carbon, water holding capacity and microbial community phenotype were identified as the four most important factors in predicting the soils' respiratory responses using a Bayesian belief network. These results show that the size and constitution of the microbial community are as important as physico-chemical properties of a soil in governing the respiratory response to OM addition. Such a combination suggests that the 'architecture' of the soil, i.e. the integration of the spatial organisation of the environment and the interactions between the communities living and functioning within the pore networks, is fundamentally important in regulating such processes.

  13. Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants[W

    PubMed Central

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R.; Hellmann, Hanjo

    2013-01-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that CULLIN3-based E3 ligases have the potential to interact with a broad range of ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 (AP2) transcription factors, mediated by MATH-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the WRINKLED1 ERF/AP2 protein. Furthermore, loss of MATH-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members. PMID:23792371

  14. Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death.

    PubMed

    Anania, Veronica G; Yu, Kebing; Gnad, Florian; Pferdehirt, Rebecca R; Li, Han; Ma, Taylur P; Jeon, Diana; Fortelny, Nikolaus; Forrest, William; Ashkenazi, Avi; Overall, Christopher M; Lill, Jennie R

    2016-07-01

    Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the "unfolded protein response" (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  16. Investigation of hydrophobic substrates for solution residue analysis utilizing an ambient desorption liquid sampling-atmospheric pressure glow discharge microplasma.

    PubMed

    Paing, Htoo W; Marcus, R Kenneth

    2018-03-12

    A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.

  17. Co-factors Required for TLR7- and TLR9- dependent Innate Immune Responses

    PubMed Central

    Chiang, Chih-yuan; Engel, Alex; Opaluch, Amanda M.; Ramos, Irene; Maestre, Ana M.; Secundino, Ismael; De Jesus, Paul D.; Nguyen, Quy T.; Welch, Genevieve; Bonamy, Ghislain M.C.; Miraglia, Loren J.; Orth, Anthony P.; Nizet, Victor; Fernandez-Sesma, Ana; Zhou, Yingyao; Barton, Gregory M.; Chanda, Sumit K.

    2012-01-01

    SUMMARY Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent pro-inflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis we identify 190 co-factors required for TLR7- and TLR9-directed signaling responses. A set of co-factors were cross-profiled for their activities downstream of several immunoreceptors, and then functionally mapped based on the known architecture of NF-κB signaling pathways. Protein complexes and pathways involved in ubiquitin-protein ligase activities, sphingolipid metabolism, chromatin modifications, and ancient stress responses were found to modulate innate recognition of endosomal nucleic acids. Additionally, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was characterized as necessary for ubiquitin-dependent TLR9 targeting to the endolysosome. Proteins and pathways identified here should prove useful in delineating strategies to manipulate innate responses for treatment of autoimmune disorders and microbial infection. PMID:22423970

  18. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.

    PubMed

    Smith, Jennifer N; Emlen, Douglas J; Pearson, Dean E

    2016-01-01

    Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe's architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.

  19. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion

    PubMed Central

    Emlen, Douglas J.; Pearson, Dean E.

    2016-01-01

    Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders’ web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe’s architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations. PMID:27082240

  20. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  1. Geomorphic Response of a Low-Gradient Channel to Modern, Progressive Base-Level Lowering: Nahal HaArava, the Dead Sea

    NASA Astrophysics Data System (ADS)

    Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda

    2017-12-01

    The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta progradation, and lithologic variations in the channel substrate.

  2. [Research on the preparative method of Arctigenin].

    PubMed

    Zhang, Li-Ying; Yang, Yi-Shun; Zhang, Tong; Ding, Yue; Cai, Zhen-Zhen; Tao, Jian-Sheng

    2012-03-01

    To research on the preparation of Arctigenin in vitro. Took enzyme concentration, time course and substrate concentration as investigation factors, used Box-Behnken design-response surface methodology to optimize the enzyme hydrolysis path of Arctigenin. The best operational path for Arctigenin was as follows: the temperature was 50 degrees C, pH was 4.8, enzyme concentration was 0.44 U/mL, time course was 46.81 min, substrate concentration was 0.29 mg/mL, the conversion rate was 90.94%. This research can be regarded as a referencein preparing Arctigenin in vitro.

  3. Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates.

    PubMed

    Xu, Ping; Mack, Nathan H; Jeon, Sea-Ho; Doorn, Stephen K; Han, Xijiang; Wang, Hsing-Lin

    2010-06-01

    We report a facile synthesis of large-area homogeneous three-dimensional (3D) Ag nanostructures on Au-supported polyaniline (PANI) membranes through a direct chemical reduction of metal ions by PANI. The citric acid absorbed on the Au nuclei that are prefabricated on PANI membranes directs Ag nanoaprticles (AgNPs) to self-assemble into 3D Ag nanosheet structures. The fabricated hybrid metal nanostructures display uniform surface-enhanced Raman scattering (SERS) responses throughout the whole surface area, with an average enhancement factor of 10(6)-10(7). The nanocavities formed by the stereotypical stacking of these Ag nanosheets and the junctions and gaps between two neighboring AgNPs are believed to be responsible for the strong SERS response upon plasmon absorption. These homogeneous metal nanostructure decorated PANI membranes can be used as highly efficient SERS substrates for sensitive detection of chemical and biological analytes.

  4. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.

    PubMed

    Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H

    2010-05-01

    The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.

  5. Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response

    DOE PAGES

    Logan, Jonathan M.; Rosenmann, Daniel; Sangpo, Tenzin; ...

    2017-07-03

    Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islandsmore » grown on a sapphire substrate exceed those of high-quality Gd thin films.« less

  6. Disposable gold coated pyramidal SERS sensor on the plastic platform.

    PubMed

    Oo, S Z; Siitonen, S; Kontturi, V; Eustace, D A; Charlton, M D B

    2016-01-11

    In this paper we investigate suitability of arrays of gold coated pyramids for surface-enhanced Raman scattering (SERS) sensing applications. Pyramidarrays composed of 1000 nm pit size with 1250 nm pitch lengthwerereplicated on a plastic substrate by roll-to-roll (R2R) ultraviolet (UV) embossing. The level of SERS enhancement, and qualitative performance provided by the new substrate is investigated by comparing Raman spectrum of benzenethiol (BTh) test molecules to the benchmark Klarite SERS substrate which comprises inverted pyramid arrays(1500 nm pit size with 2000 nm pitch length) fabricated on a silicon substrate. The new substrate is found to provide upto 11 times increase in signal in comparison to the inverted pyramid (IV-pyramid) arrays fabricated on an identical plastic substrate. Numerical simulation and experimental evidence suggest that strongly confined electromagnetic fields close to the base of the pyramids, are mainly responsible for the Raman enhancement factor, instead of the fields localized around the tip. Unusually strong plasmon fields are projected upto 200nm from the sidewalls at the base of the pyramid increasing the cross sectional sensing volume.

  7. Elasticity modulated Electrowetting of a sessile liquid droplet

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Subramanian, Sri Ganesh; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    The sessile liquid droplets on the elastic and soft deformable surface produce strong deformation near the three-phase contact line (TPCL). The capillary and elastic forces play an important role during this deformation, and deteriorate the wetting behaviour of a sessile drop. The present work combines the effects of liquid viscosity and substrate elasticity on the dynamics of EWOD. The influence of decreasing film elasticity and viscosity on the electrowetting response of a sessile drop is experimentally investigated by delineating the changes in equilibrium apparent contact angles on substrates with varying Young's modulus of elasticity. The increase in viscosity of the liquid leads to greater electrowetting for non-deformable substrates whereas; the dynamics are not greatly affected in case of soft substrates. Although the viscosity appears to be an influential factor, the dynamics are more skewed towards the substrate rigidity. The vertical component of Young's force creates a wetting ridge at the three-phase contact line, the height of which is a direct function of the substrate rigidity. The produced ridges reduce the overall wettability of the droplet.

  8. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    USDA-ARS?s Scientific Manuscript database

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  9. Cyclic voltammetry of fast conducting electrocatalytic films.

    PubMed

    Costentin, Cyrille; Savéant, Jean-Michel

    2015-07-15

    In the framework of contemporary energy challenges, cyclic voltammetry is a particularly useful tool for deciphering the kinetics of catalytic films. The case of fast conducting films is analyzed, whether conduction is of the ohmic type or proceeds through rapid electron hopping. The rate-limiting factors are then the diffusion of the substrate in solution and through the film as well as the catalytic reaction itself. The dimensionless combination of the characteristics of these factors allows reducing the number of actual parameters to a maximum of two. The kinetics of the system may then be fully analyzed with the help of a kinetic zone diagram. Observing the variations of the current-potential responses with operational parameters such as film thickness, the potential scan rate and substrate concentration allows a precise assessment of the interplay between these factors and of the values of the rate controlling factors. A series of thought experiments is described in order to render the kinetic analysis more palpable.

  10. Factors inducing in-stent restenosis: an in-vitro model.

    PubMed

    Santin, M; Morris, C; Harrison, M; Mikhalovska, L; Lloyd, A W; Mikhalovsky, S

    2004-05-01

    In-stent restenosis is caused by the proliferation of the smooth muscle cells (SMCs) following a host response towards the implanted device. However, the precise biochemical and cellular mechanisms are still not completely understood. In this paper, the behaviour of SMCs has been investigated by an in vitro model where the cells were stimulated by platelet derived growth factor (PDGF) on tissue-like substrates as well as on biomaterials such as stainless steel (St) and diamond-like carbon (DLC)-coated St. The results demonstrated that SMCs have a completely different adhesion mode on St and become particularly prone to proliferation and pro-inflammatory cytokine secretion under PDGF stimulus. This would suggest that restenosis may caused by the accidental contact of the SMC with the St substrate under an inflammatory insult.

  11. Substrate bias induced synthesis of flowered-like bunched carbon nanotube directly on bulk nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Atul; Academy of Scientific and Innovative Research; Chockalingam, S.

    2016-02-15

    Highlights: • Flowered-like bunched MWCNTs have been synthesized by MW PECVD technique. • Effect of substrate bias on the properties of MWCNT has been studied. • Minimum E{sub T} = 1.9 V/μm with β = 4770 has been obtained in the film deposited at −350 V. - Abstract: This paper reports the effect of substrate bias on the multiwalled carbon nanotube (MWCNT) deposited on nickel foil by microwave plasma enhanced chemical vapor deposition technique. The MWCNTs have been characterized by the scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, field emission and current–voltage characteristic of themore » heterojunction diode. The SEM images exhibit unique hierarchical flowered-like bunched and conformally coated MWCNTs. Substrate bias induced ion bombardment helps in the enhancement of hydrocarbon dissociation and is responsible for flowered-like MWCNTs growth. The HRTEM micrographs show the base growth mechanism for MWCNTs. The value of turn on field for emission decreases from 5.5 to 1.9 V/μm and field enhancement factor increases from 927 to 4770, respectively, with the increase of substrate bias. The diode ideality factor of CNT/ n-Si heterojunction is evaluated as 2.4 and the on/off current ratio is found to be 7 at ±2 V, respectively.« less

  12. Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death

    PubMed Central

    Anania, Veronica G.; Yu, Kebing; Gnad, Florian; Pferdehirt, Rebecca R.; Li, Han; Ma, Taylur P.; Jeon, Diana; Fortelny, Nikolaus; Forrest, William; Ashkenazi, Avi; Overall, Christopher M.; Lill, Jennie R.

    2016-01-01

    Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the “unfolded protein response” (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases. PMID:27125827

  13. In vivo phosphorylation of WRKY transcription factor by MAPK.

    PubMed

    Ishihama, Nobuaki; Adachi, Hiroaki; Yoshioka, Miki; Yoshioka, Hirofumi

    2014-01-01

    Plants activate signaling networks in response to diverse pathogen-derived signals, facilitating transcriptional reprogramming through mitogen-activated protein kinase (MAPK) cascades. Identification of phosphorylation targets of MAPK and in vivo detection of the phosphorylated substrates are important processes to elucidate the signaling pathway in plant immune responses. We have identified a WRKY transcription factor, which is phosphorylated by defense-related MAPKs, SIPK and WIPK. Recent evidence demonstrated that some group I WRKY transcription factors, which contain a conserved motif in the N-terminal region, are activated by MAPK-dependent phosphorylation. In this chapter, we describe protocols for preparation of anti-phosphopeptide antibodies, detection of activated MAPKs using anti-phospho-MAPK antibody, and activated WRKY using anti-phospho-WRKY antibody, respectively.

  14. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction.

    PubMed

    Wang, L M; Michieli, P; Lie, W R; Liu, F; Lee, C C; Minty, A; Sun, X J; Levine, A; White, M F; Pierce, J H

    1995-12-01

    Interleukin-13 (IL-13) induced a potent mitogenic response in IL-3-dependent TF-1 cells and DNA synthesis to a lesser extent in MO7E and FDC-P1 cells. IL-13 stimulation of these lines, like IL-4 and insulin-like growth factor-1 (IGF-1), resulted in tyrosine phosphorylation of a 170-kD substrate. The tyrosine-phosphorylated 170-kD substrate strongly associated with the 85-kD subunit of phosphoinositol-3 (PI-3) kinase and with Grb-2. Anti-4PS serum readily detected the 170-kD substrate in lysates from both TF-1 and FDC-P1 cells stimulated with IL-13 or IL-4. These data provide evidence that IL-13 induces tyrosine phosphorylation of the 4PS substrate, providing an essential interface between the IL-13 receptor and signaling molecules containing SH2 domains. IL-13 and IL-4 stimulation of murine L cell fibroblasts, which endogenously express the IL-4 receptor (IL-4R alpha) and lack expression of the IL-2 receptor gamma subunit (IL-2R gamma), resulted in tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1)/4PS. Enhanced tyrosine phosphorylation of IRS-1/4PS was observed in response to IL-4, but not IL-13 treatment of L cells transfected with the IL-2R gamma chain. These results indicate that IL-13 does not use the IL-2R gamma subunit in its receptor complex and that expression of IL-2R gamma enhances, but is not absolutely required for mediating IL-4-induced tyrosine phosphorylation of IRS-1/4PS.

  15. Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis.

    PubMed

    Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Fang, Fang; Li, Wen-Wei; Zeng, Raymond J; Tong, Zhong-Hua; Yu, Han-Qing

    2011-01-01

    Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH(4)(+)-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature>substrate concentration > aeration rate > NH(4)(+)-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. The Akt1-eNOS axis illustrates the specificity of kinase-substrate relationships in vivo.

    PubMed

    Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Di Lorenzo, Annarita; Harrison, Kenneth D; Huang, Paul L; Sessa, William C

    2009-08-04

    Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1(-/-) mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme "constitutively active" or "less active." The eNOS mutations did not influence several phenotypes in Akt1(-/-) mice; however, the defective postnatal angiogenesis characteristic of Akt1(-/-) mice was rescued by crossing the Akt1(-/-) mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) and increased production of HIF-1alpha-responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling.

  17. Optimization of CMCase production from sorghum straw by Aspergillus terreus SUK-1 under solid substrate fermentation using response surface methodology

    NASA Astrophysics Data System (ADS)

    Tibin, El Mubarak Musa; Al-Shorgani, Najeeb Kaid Naseer; Abuelhassan, Nawal Noureldaim; Hamid, Aidil Abdul; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan

    2013-11-01

    The cellulase production using sorghum straw as substrate by fungal culture of Aspergillus terreus SUK-1 was investigated in solid substrate fermentation (SSF). The optimum CMCase was achieved by testing most effective fermentation parameters which were: incubation temperature, pH and moisture content using Response Surface Methodology (RSM) based on Central Composite Design (CCD). The carboxymethyl cellulase activity (CMCase) was measured as the defining factor. The results were analysed by analysis of variance (ANOVA) and the regression quadratic model was obtained. The model was found to be significant (p<0.05) and the effect of temperature (25-40°C) and pH (4-7) was found to be not significant on CMCase activity whereas the moisture content was significant in the SSF conditions employed. The high yield of predicted CMCase activity (0.2 U/ml) was obtained under the optimized conditions (temperature 40 □C, pH 5.4 and moisture content of 80%). The model was validated by applying the optimized conditions and it was found that the model was valid.

  18. Tannase production by Penicillium purpurogenum PAF6 in solid state fermentation of tannin-rich plant residues following OVAT and RSM.

    PubMed

    Jana, Arijit; Maity, Chiranjit; Halder, Suman Kumar; Mondal, Keshab Chandra; Pati, Bikash Ranjan; Mohapatra, Pradeep Kumar Das

    2012-07-01

    Tannase production by newly isolated Penicillium purpurogenum PAF6 was investigated by 'one variable at a time' (OVAT) approach followed by response surface methodology (RSM). Tannin-rich plant residues were used as supporting solid substrate and sole carbon source and, among them, tamarind seed was found to be the most favorable substrate than haritaki, pomegranate, tea leaf waste and arjun fruit. Physicochemical parameters were initially optimized using OVAT methodology and some important factors like incubation time, incubation temperature, substrate:moisture ratio as well as carbon, nitrogen and phosphate concentrations were verified with Box-Behken design of response surface methodology. Phosphate source, nitrogen source and temperature were found as the most favorable variables in the maximization of production. Tannase production was enhanced from 1.536 U/g to 5.784 U/g using tamarind seed OVAT optimization and further enhancement up to 6.15 U/g following RSM. An overall 3.76- and 4.0-fold increases in tannase production were achieved in OVAT and RSM, respectively.

  19. First-principles simulations of doping-dependent mesoscale screening of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Mostofi, Arash; Corsetti, Fabiano; Wong, Dillon; Crommie, Michael; Lischner, Johannes

    Adsorbed atoms and molecules play an important role in controlling and tuning the functional properties of 2D materials. Understanding and predicting this phenomenon from theory is challenging because of the need to capture both the local chemistry of the adsorbate-substrate interaction and its complex interplay with the long-range screening response of the substrate. To address this challenge, we have developed a first-principles multi-scale approach that combines linear-scaling density-functional theory, continuum screening theory and large-scale tight-binding simulations. Focussing on the case of a calcium adatom on graphene, we draw comparison between the effect of (i) non-linearity, (ii) intraband and interband transitions, and (iii) the exchange-correlation potential, thus providing insight into the relative importance of these different factors on the screening response. We also determine the charge transfer from the adatom to the graphene substrate (the key parameter used in continuum screening models), showing it to be significantly larger than previous estimates. AM and FC acknowledge support of the EPSRC under Grant EP/J015059/1, and JL under Grant EP/N005244/1.

  20. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments

    PubMed Central

    Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir

    2017-01-01

    For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying. PMID:28977023

  1. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments.

    PubMed

    de Farias-Martins, Fernando; Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir

    2017-01-01

    For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying.

  2. G-actin provides substrate-specificity to eukaryotic initiation factor 2α holophosphatases

    PubMed Central

    Chen, Ruming; Rato, Cláudia; Yan, Yahui; Crespillo-Casado, Ana; Clarke, Hanna J; Harding, Heather P; Marciniak, Stefan J; Read, Randy J; Ron, David

    2015-01-01

    Dephosphorylation of eukaryotic translation initiation factor 2a (eIF2a) restores protein synthesis at the waning of stress responses and requires a PP1 catalytic subunit and a regulatory subunit, PPP1R15A/GADD34 or PPP1R15B/CReP. Surprisingly, PPP1R15-PP1 binary complexes reconstituted in vitro lacked substrate selectivity. However, selectivity was restored by crude cell lysate or purified G-actin, which joined PPP1R15-PP1 to form a stable ternary complex. In crystal structures of the non-selective PPP1R15B-PP1G complex, the functional core of PPP1R15 made multiple surface contacts with PP1G, but at a distance from the active site, whereas in the substrate-selective ternary complex, actin contributes to one face of a platform encompassing the active site. Computational docking of the N-terminal lobe of eIF2a at this platform placed phosphorylated serine 51 near the active site. Mutagenesis of predicted surface-contacting residues enfeebled dephosphorylation, suggesting that avidity for the substrate plays an important role in imparting specificity on the PPP1R15B-PP1G-actin ternary complex. DOI: http://dx.doi.org/10.7554/eLife.04871.001 PMID:25774600

  3. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities.

    PubMed

    Deuerling, Elke; Patzelt, Holger; Vorderwülbecke, Sonja; Rauch, Thomas; Kramer, Günter; Schaffitzel, Elke; Mogk, Axel; Schulze-Specking, Agnes; Langen, Hanno; Bukau, Bernd

    2003-03-01

    Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37 degrees C. A similar population of proteins aggregated in DnaK depleted tig+ cells, albeit to a much lower extent. Ninety-four aggregated proteins isolated from DnaK- and DnaJ-depleted deltatig cells were identified by mass spectrometry and found to include essential cytosolic proteins. Four potential in vivo substrates were screened for chaperone binding sites using peptide libraries. Although TF and DnaK recognize different binding motifs, 77% of TF binding peptides also associated with DnaK. In the case of the nascent polypeptides TF and DnaK competed for binding, however, with competitive advantage for TF. In vivo, the loss of TF is compensated by the induction of the heat shock response and thus enhanced levels of DnaK. In summary, our results demonstrate that the co-operation of the two mechanistically distinct chaperones in protein folding is based on their overlap in substrate specificities.

  4. Palm-based medium-and-long-chain triacylglycerol (P-MLCT): production via enzymatic interesterification and optimization using response surface methodology (RSM).

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Karim, Nur Azwani Ab; Alwi, Siti Maslina Mohd; Lai, Oi-Ming

    2015-02-01

    Structured lipid such as medium-and long-chain triacylglycerol (MLCT) is claimed to be able to suppress body fat accumulation and be used to manage obesity. Response surface methodology (RSM) with four factors and three levels (+1,0,-1) faced centered composite design (FCCD) was employed for optimization of the enzymatic interesterification conditions of palm-based MLCT (P-MLCT) production. The effect of the four variables namely: substrate ratio palm kernel oil: palm oil, PKO:PO (40:60-100:0 w/w), temperature (50-70 °C), reaction time (0.5-7.5 h) and enzyme load (5-15 % w/w) on the P-MLCT yield (%) and by products (%) produced were investigated. The responses were determined via acylglycerol composition obtained from high performance liquid chromatography. Well-fitted models were successfully established for both responses: P-MLCT yield (R (2) = 0.9979) and by-products (R (2) = 0.9892). The P-MLCT yield was significantly (P < 0.05) affected by substrate ratio, reaction time and reaction temperature but not enzyme load (P > 0.05). Substrate ratio PKO: PO (100:0 w/w) gave the highest yield of P-MLCT (61 %). Nonetheless, substrate ratio of PKO: PO (90:10w/w) was chosen to improve the fatty acid composition of the P-MLCT. The optimized conditions for substrate ratio PKO: PO (90:10 w/w) was 7.26 h, 50 °C and 5 % (w/w) Lipozyme TLIM lipase, which managed to give 60 % yields of P-MLCT. Up scaled results in stirred tank batch reactor gave similar yields as lab scale. A 20 % increase in P-MLCT yield was obtained via RSM. The effect of enzymatic interesterification on the physicochemical properties of PKO:PO (90:10 w/w) were also studied. Thermoprofile showed that the P-MLCT oil melted below body temperature of 37 °C.

  5. p18(Hamlet) mediates different p53-dependent responses to DNA-damage inducing agents.

    PubMed

    Lafarga, Vanesa; Cuadrado, Ana; Nebreda, Angel R

    2007-10-01

    Cells organize appropriate responses to environmental cues by activating specific signaling networks. Two proteins that play key roles in coordinating stress responses are the kinase p38alpha (MAPK14) and the transcription factor p53 (TP53). Depending on the nature and the extent of the stress-induced damage, cells may respond by arresting the cell cycle or by undergoing cell death, and these responses are usually associated with the phosphorylation of particular substrates by p38alpha as well as the activation of specific target genes by p53. We recently characterized a new p38alpha substrate, named p18(Hamlet) (ZNHIT1), which mediates p53-dependent responses to different genotoxic stresses. Thus, cisplatin or UV light induce stabilization of the p18(Hamlet) protein, which then enhances the ability of p53 to bind to and activate the promoters of pro-apoptotic genes such as NOXA and PUMA leading to apoptosis induction. In a similar way, we report here that p18(Hamlet) can also mediate the cell cycle arrest induced in response to gamma-irradiation, by participating in the p53-dependent upregulation of the cell cycle inhibitor p21(Cip1) (CDKN1A).

  6. Platelet response heterogeneity in thrombus formation.

    PubMed

    Munnix, Imke C A; Cosemans, Judith M E M; Auger, Jocelyn M; Heemskerk, Johan W M

    2009-12-01

    Vascular injury leads to formation of a structured thrombus as a consequence of platelet activation and aggregation, thrombin and fibrin formation, and trapping of leukocytes and red cells. This review summarises current evidence for heterogeneity of platelet responses and functions in the thrombus-forming process. Environmental factors contribute to response heterogeneity, as the platelets in a thrombus adhere to different substrates, and sense specific (ant)agonists and rheological conditions. Contraction of platelets and interaction with fibrin and other blood cells cause further response variation. On the other hand, response heterogeneity can also be due to intrinsic differences between platelets in age and in receptor and signalling proteins. As a result, at least three subpopulations of platelets are formed in a thrombus: aggregating platelets with (reversible) integrin activation, procoagulant (coated) platelets exposing phosphatidylserine and binding coagulation factors, and contracting platelets with cell-cell contacts. This recognition of thrombus heterogeneity has implications for the use and development of antiplatelet medication.

  7. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects

    NASA Astrophysics Data System (ADS)

    Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto

    2017-08-01

    The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.

  8. ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage

    PubMed Central

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki

    2014-01-01

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010

  9. Realistic absorption coefficient of ultrathin films

    NASA Astrophysics Data System (ADS)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2012-10-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film-substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film-substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films.

  10. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.

  11. Cellular Links between Neuronal Activity and Energy Homeostasis.

    PubMed

    Shetty, Pavan K; Galeffi, Francesca; Turner, Dennis A

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply.

  12. Piezoresistive boron doped diamond nanowire

    DOEpatents

    Sumant, Anirudha V.; Wang, Xinpeng

    2017-07-04

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  13. Piezoresistive boron doped diamond nanowire

    DOEpatents

    Sumant, Anirudha V.; Wang, Xinpeng

    2016-09-13

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissa, Shivangi; Naruka, Preeti; Bishnoi, Nidhi

    In the present study the dielectric optical response of various nanostructures of ZnO deposited on silica substrate has been studied using Maxwell-Garnett Effective Medium Theory. Using the volume filling factors for different nanostructures of ZnO the effective dielectric constant has been evaluated. The variation of this effective dielectric constant with the frequency of applied signal has been investigated. Moreover, the reflectance of the film, power absorption and variation of refractive index with frequency has been studied. The results obtained show that the quantum confinement effects in ZnO nano-structural films deposited on silica substrate give rise to distinct optical properties makingmore » it an ideal choice for high power THz generation.« less

  15. Human Protein Kinases and Obesity.

    PubMed

    Engin, Atilla

    2017-01-01

    The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity, and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified by the target amino acid in their substrates. Some protein kinases can phosphorylate both serine/threonine, as well as tyrosine residues. This group of kinases has been known as dual specificity kinases. Unlike the dual specificity kinases, a heterogeneous group of protein phosphatases are known as dual-specificity phosphatases. These phosphatases remove phosphate groups from tyrosine and serine/threonine residues on their substrate. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases. The protein kinase-phosphoproteins interactions play an important role in obesity . In obesity, the pro- and anti-inflammatory effects of adipokines and cytokines through intracellular signaling pathways mainly involve the nuclear factor kappa B (NF-kappaB) and the c-Jun N-terminal kinase (JNK) systems as well as the inhibitor of kappaB-kinase beta (IKK beta). Impairment of insulin signaling in obesity is largely mediated by the activation of the IKKbeta and the JNK. Furthermore, oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2alpha kinase (PERK) and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. Increase in intracellular oxidative stress can promote PKC-beta activation. Activated PKC-beta induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhances triglyceride accumulation. Obesity is fundamentally caused by cellular energy imbalance and dysregulation. Like adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), N-terminal Per-ARNT-Sim (PAS) kinase are nutrient responsive protein kinases and important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular level. Defective responses of AMPK to leptin may contribute to resistance to leptin action on food intake and energy expenditure in obese states.

  16. Substrate affinity of photosensitizers derived from chlorophyll-a: The ABCG2 transporter affects the phototoxic response of side population stem cell-like cancer cells to photodynamic therapy

    PubMed Central

    Morgan, Janet; Jackson, Jennifer D.; Zheng, Xiang; Pandey, Suresh K.; Pandey, Ravindra K.

    2010-01-01

    Photosensitizers (PS) synthesized with the aim of optimizing photodynamic therapy (PDT) of tumors do not always fulfill their potential when tested in vitro and in vivo in different tumor models. The ATP-dependent transporter ABCG2 a multi-drug resistant pump expressed at variable levels in cancerous cells, can bind and efflux a wide range of structurally different classes of compounds including several PS used pre-clinically and clinically such as porphyrins and chlorins. ABCG2 may lower intracellular levels of substrate PS below the threshold for cell death in tumors treated by PDT, leaving resistant cells to re-populate the tumor. To determine some of the structural factors that affect substrate affinity of PS for ABCG2, we used an ABCG2 expressing cell line (HEK 293 482R) and its non-expressing counterpart, and tyrosine kinase ABCG2 inhibitors in a simple flow cytometric assay to identify PS effluxed by the ABCG2 pump. We tested a series of conjugates of substrate PS with different groups attached at different positions on the tetrapyrrole macrocycle to examine whether a change in affinity for the pump occurred and whether such changes depended on the position or the structure/type of the attached group. PS without substitutions including pyropheophorbides and purpurinimides were generally substrates for ABCG2, but carbohydrate groups conjugated at positions 8, 12, 13 and 17 but not at position 3 abrogated ABCG2 affinity regardless of structure or linking moiety. At position 3, affinity was retained with the addition of iodobenzene, alkyl chains and monosaccharides, but not with disaccharides. This suggests that structural characteristics at position 3 may offer important contributions to requirements for binding to ABCG2. We examined several tumor cell lines for ABCG2 activity, and found that although some cell lines had negligible ABCG2 activity in bulk, they contained a small ABCG2-expressing side population (SP) thought to contain cells which are responsible for initiating tumor regrowth. We examined the relevance of the SP to PDT resistance with ABCG2 substrates in vitro and in vivo in the murine mammary tumor 4T1. We show for the first time in vivo that the substrate PS HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) but not the non-substrate PS HPPH-Gal (a galactose conjugate of HPPH) selectively preserved the SP which was primarily responsible for regrowth in vitro. The SP could be targeted by addition of imatinib mesylate, a tyrosine kinase inhibitor which inhibits the ATPase activity of ABCG2, and prevents efflux of substrates. A PDT resistant SP may be responsible for recurrences observed both pre-clinically and clinically. To prevent ABCG2 mediated resistance, choosing non-substrate PS or administering an ABCG2 inhibitor alongside a substrate PS might be advantageous when treating ABCG2 expressing tumors with PDT. PMID:20684544

  17. Kinetic characterization of factor Xa binding using a quenched fluorescent substrate based on the reactive site of factor Xa inhibitor from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L V; Andrade, S A; Juliano, M A; Sallai, R C; Torquato, R J; Sampaio, M U; Pott, V J; Sampaio, C A M

    2003-07-01

    The specific Kunitz Bauhinia ungulata factor Xa inhibitor (BuXI) and the Bauhinia variegata trypsin inhibitor (BvTI) blocked the activity of trypsin, chymotrypsin, plasmin, plasma kallikrein and factor XIIa, and factor Xa inhibition was achieved only by BuXI (K(i) 14 nM). BuXI and BvTI are highly homologous (70%). The major differences are the methionine residues at BuXI reactive site, which are involved in the inhibition, since the oxidized protein no longer inhibits factor Xa but maintains the trypsin inhibition. Quenched fluorescent substrates based on the reactive site sequence of the inhibitors were synthesized and the kinetic parameters of the hydrolysis were determined using factor Xa and trypsin. The catalytic efficiency k(cat)/K(m) 4.3 x 10(7) M(-1)sec(>-1) for Abz-VMIAALPRTMFIQ-EDDnp (lead peptide) hydrolysis by factor Xa was 10(4)-fold higher than that of Boc-Ile-Glu-Gly-Arg-AMC, widely used as factor Xa substrate. Lengthening of the substrate changed its susceptibility to factor Xa hydrolysis. Both methionine residues in the substrate influence the binding to factor Xa. Serine replacement of threonine (P(1)') decreases the catalytic efficiency by four orders of magnitude. Factor Xa did not hydrolyze the substrate containing the reactive site sequence of BvTI, that inhibits trypsin inhibitor but not factor Xa. Abz-VMIAALPRTMFIQ-EDDnp prolonged both the prothrombin time and the activated partial thromboplastin time, and the other modified substrates used in this experiment altered blood-clotting assays.

  18. Subjective Responses to Alcohol Consumption as Endophenotypes: Advancing Behavioral Genetics in Etiological and Treatment Models of Alcoholism

    PubMed Central

    Ray, Lara A.; MacKillop, James; Monti, Peter M.

    2015-01-01

    Individual differences in subjective responses to alcohol consumption represent genetically-mediated biobehavioral mechanisms of alcoholism risk (i.e., endophenotype). The objective of this review is three-fold: (1) to provide a critical review the literature on subjective response to alcohol and to discuss the rationale for its conceptualization as an endophenotype for alcoholism; (2) to examine the literature on the neurobiological substrates and associated genetic factors subserving individual differences in subjective response to alcohol; and (3) to discuss the treatment implications of this approach and to propose a framework for conceptualizing, and systematically integrating, endophenotypes into alcoholism treatment. PMID:20590398

  19. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    PubMed Central

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  20. [Optimization of process of icraiin be hydrolyzed to Baohuoside I by cellulase based on Plackett-Burman design combined with CCD response surface methodology].

    PubMed

    Song, Chuan-xia; Chen, Hong-mei; Dai, Yu; Kang, Min; Hu, Jia; Deng, Yun

    2014-11-01

    To optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase by Plackett-Burman design combined with Central Composite Design (CCD) response surface methodology. To select the main influencing factors by Plackett-Burman design, using CCD response surface methodology to optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase. Taking substrate concentration, the pH of buffer and reaction time as independent variables, with conversion rate of icariin as dependent variable,using regression fitting of completely quadratic response surface between independent variable and dependent variable,the optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase was intuitively analyzed by 3D surface chart, and taking verification tests and predictive analysis. The best enzymatic hydrolytic process was as following: substrate concentration 8. 23 mg/mL, pH 5. 12 of buffer,reaction time 35. 34 h. The optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase is determined by Plackett-Burman design combined with CCD response surface methodology. The optimized enzymatic hydrolytic process is simple, convenient, accurate, reproducible and predictable.

  1. Neutron-detecting apparatuses and methods of fabrication

    DOEpatents

    Dahal, Rajendra P.; Huang, Jacky Kuan-Chih; Lu, James J. Q.; Danon, Yaron; Bhat, Ishwara B.

    2015-10-06

    Neutron-detecting structures and methods of fabrication are provided which include: a substrate with a plurality of cavities extending into the substrate from a surface; a p-n junction within the substrate and extending, at least in part, in spaced opposing relation to inner cavity walls of the substrate defining the plurality of cavities; and a neutron-responsive material disposed within the plurality of cavities. The neutron-responsive material is responsive to neutrons absorbed for releasing ionization radiation products, and the p-n junction within the substrate spaced in opposing relation to and extending, at least in part, along the inner cavity walls of the substrate reduces leakage current of the neutron-detecting structure.

  2. Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers.

    PubMed

    Codreanu, Iulian; Boreman, Glenn D

    2002-04-01

    We report on the influence of the dielectric substrate on the performance of microstrip dipole-antenna-coupled microbolometers. The location, the width, and the magnitude of the resonance of a printed dipole are altered when the dielectric substrate is backed by a ground plane. A thicker dielectric substrate shifts the antenna resonance toward shorter dipole lengths and leads to a stronger and slower detector response. The incorporation of an air layer into the antenna substrate further increases thermal impedance, leading to an even stronger response and shifting the antenna resonance toward longer dipole lengths.

  3. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells

    PubMed Central

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu

    2016-01-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium–yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium–yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200–500 nm in the long axis and 100–300 nm in the short axis, and a Ca/P atomic ratio of 1.5–1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor. PMID:25917827

  4. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells.

    PubMed

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu; Liu, Huinan

    2015-05-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium-yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium-yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200-500 nm in the long axis and 100-300 nm in the short axis, and a Ca/P atomic ratio of 1.5-1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor.

  5. Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family.

    PubMed

    Weber, Henriette; Hellmann, Hanjo

    2009-11-01

    In Arabidopsis thaliana, the BTB/POZ-MATH (BPM) proteins comprise a small family of six members. They have been described previously to use their broad complex, tram track, bric-a-brac/POX virus and zinc finger (BTB/POZ) domain to assemble with CUL3a and CUL3b and potentially to serve as substrate adaptors to cullin-based E3-ligases in plants. In this article, we show that BPMs can also assemble with members of the ethylene response factor/Apetala2 transcription factor family, and that this is mediated by their meprin and TRAF (tumor necrosis factor receptor-associated factor) homology (MATH) domain. In addition, we provide a detailed description of BPM gene expression patterns in different tissues and on abiotic stress treatments, as well as their subcellular localization. This work connects, for the first time, BPM proteins with ethylene response factor/Apetala2 family members, which is likely to represent a novel regulatory mechanism of transcriptional control.

  6. Bauhinia proteinase inhibitor-based synthetic fluorogenic substrates for enzymes isolated from insect midgut and caterpillar bristles.

    PubMed

    Andrade, Sonia A; Santomauro-Vaz, Eugênio M; Lopes, Adriana R; Chudzinski-Tavassi, Ana M; Juliano, Maria A; Terra, Walter R; Sampaio, Misako U; Sampaio, Claudio A M; Oliva, Maria Luiza V

    2003-03-01

    Bauhinia ungulata factor Xa inhibitor (BuXI) inactivates factor Xa and LOPAP, a prothrombin activator proteinase isolated from the venom of Lonomia obliqua caterpillar bristles. The reactive site of the enzyme-inhibitor interaction was explored to design specific substrates for both enzymes. Methionine is crucial for LOPAP and factor Xa substrate interaction, since the change of both Met residues in the substrates abolished the hydrolysis. Synthetic substrates containing the sequence around the reactive site of BbKI, a plasma kallikrein inhibitor, were shown to be specific for trypsin hydrolysis. Therefore, these substrates may be an alternative in studies aiming at a characterization of trypsin-like enzyme activities, especially non-mammalian enzymes.

  7. Optimized synthesis of lipase-catalyzed hexyl acetate in n-hexane by response surface methodology.

    PubMed

    Shieh, C J; Chang, S W

    2001-03-01

    Hexyl acetate, a short-chain ester with fruity odor, is a significant green note flavor compound and widely used in the food industry. The ability for immobilized lipase from Mucor miehei (Lipozyme IM-77) to catalyze the transesterification of hexanol with triacetin was investigated in this study. Response surface methodology and five-level-five-factor central composite rotatable design were adopted to evaluate the effects of synthesis variables, such as reaction time (2-10 h), temperature (25-65 degrees C), enzyme amount (10-50%; 0.024-0.118 BAUN), substrate molar ratio of triacetin to hexanol (1:1 to 3:1), and added water content (0-20%) on percentage molar conversion of hexyl acetate. The results showed that reaction temperature and substrate molar ratio were the most important parameters and that added water content had less of an effect on percent molar conversion. On the basis of canonical analysis, optimum synthesis conditions were as follows: reaction time, 7.7 h; temperature, 52.6 degrees C; enzyme amount, 37.1% (0.089 BAUN); substrate molar ratio, 2.7:1; and added water, 12.5%. The predicted value was 88.9% molar conversion, and the actual experimental value was 86.6% molar conversion.

  8. Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Xu, Chunxiang; Lu, Junfeng; Zhu, Zhu; Zhu, Qiuxiang; Manohari, A. Gowri; Shi, Zengliang

    2018-01-01

    The porous structured zinc oxide (ZnO) microspheres decorated with silver nanoparticles (Ag NPs) have been fabricated as surface-enhanced Raman scattering (SERS) substrate for ultra-sensitive, highly reproducible and stable biological/chemical sensing of various organic molecules. The ZnO microspheres were hydrothermally synthesized without any template, and the Ag NPs decorated on microspheres via photochemical reaction in situ, which provided stable Ag/ZnO contact to achieve a sensitive SERS response. It demonstrates a higher enhancement factor (EF) of 2.44 × 1011 and a lower detection limit of 10-11 M-10-12 M. This porous SERS substrate could also be self-cleaned through a photocatalytic process and then further recycled for the detection of same or different molecules, such as phenol red (PhR), dopamine (DA) and glucose (GLU) with ultra-low concentration and it possessed a sensitive response. The excellent performances are attributed to morphology of porous microspheres, hybrid structure of semiconductor/metal and corresponding localized field enhancement of surface plasmons. Therefore, it is expected to design the recyclable ultra-sensitive SERS sensors for the detection of biological molecules and organic pollutant monitoring.

  9. The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo

    PubMed Central

    Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Lorenzo, Annarita Di; Harrison, Kenneth D.; Huang, Paul L.; Sessa, William C.

    2016-01-01

    Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1−/− mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme “constitutively active” or “less active.” The eNOS mutations did not influence several phenotypes in Akt1−/− mice; however, the defective postnatal angiogenesis characteristic of Akt1−/− mice was rescued by crossing the Akt1−/− mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1α (HIF-1α) and increased production of HIF-1α–responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling. PMID:19654415

  10. An in vitro evaluation of guanfacine as a substrate for P-glycoprotein

    PubMed Central

    Gillis, Nancy K; Zhu, Hao-Jie; Markowitz, John S

    2011-01-01

    Background With a US Food and Drug Administration-labeled indication to treat attention-deficit/hyperactivity disorder (ADHD), the nonstimulant guanfacine has become the preferred α2-agonist for ADHD treatment. However, significant interindividual variability has been observed in response to guanfacine. Consequently, hypotheses of a contributing interaction with the ubiquitously expressed drug transporter, P-glycoprotein (P-gp), have arisen. We performed an in vitro study to determine if guanfacine is indeed a substrate of P-gp. Methods Intracellular accumulation of guanfacine was compared between P-gp expressing LLC-PK1/MDR1 cells and P-gp-negative LLC-PK1 cells to evaluate the potential interaction between P-gp and guanfacine. Cellular retention of guanfacine was analyzed using a high-performance liquid chromatographic-ultraviolet method. Rhodamine6G, a known P-gp substrate, was included in the study as a positive control. Results At guanfacine concentrations of 50 μM and 5 μM, intracellular accumulation of guanfacine in LLC-PK1/MDR1 cells was, 35.9% ± 4.8% and 49.0% ± 28.3% respectively, of that in LLC-PK1 cells. In comparison, the concentration of rhodamine6G, the positive P-gp substrate, in LLC-PK1/MDR1 cells was only 5% of that in LLC-PK1 cells. Conclusion The results of the intracellular accumulation study suggest that guanfacine is, at best, a weak P-gp substrate. Therefore, it is unlikely that P-gp, or any genetic variants thereof, are a determining factor in the interindividual variability of response observed with guanfacine therapy. PMID:21931492

  11. Nanoplasmonic-gold-cylinder-array-enhanced terahertz source

    NASA Astrophysics Data System (ADS)

    Zhiguang, Ao; Jinhai, Sun; He, Cai; Guofeng, Song; Jiakun, Song; Yuzhi, Song; Yun, Xu

    2016-12-01

    Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been proposed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the average photo-generated carrier transport path to the photoconductor contact electrodes was previously considered the dominant mechanism to improve PCAs' power. However, considering the bias in a real device, the electric field between gratings is limited and the role of surface plasmonic resonance (SPR) field enhancement is more important in improving THz radiation. This paper, based on SPR, analyzes the interaction between incident light and substrate in nano cylinder array PCAs and clearly shows that the SPR can enhance the light absorption in the substrate. After the optimization of the structure size, the proposed structure can offer 87% optical transmission into GaAs substrate. Compared with conventional PCAs, the optical transmission into the substrate will increase 5.8 times and the enhancement factor of substrate absorption will reach 13.7 respectively. Project supported by the National Basic Research Program of China (Nos. 2015CB351902, 2015CB932402), the National Key Research Program of China (No. 2011ZX01015-001), and the National Natural Science Foundation of China (No. U143231).

  12. Impact of substrate etching on plasmonic elements and metamaterials: preventing red shift and improving refractive index sensitivity.

    PubMed

    Moritake, Yuto; Tanaka, Takuo

    2018-02-05

    We propose and demonstrate the elimination of substrate influence on plasmon resonance by using selective and isotropic etching of substrates. Preventing the red shift of the resonance due to substrates and improving refractive index sensitivity were experimentally demonstrated by using plasmonic nanostructures fabricated on silicon substrates. Applying substrate etching decreases the effective refractive index around the metal nanostructures, resulting in elimination of the red shift. Improvement of sensitivity to the refractive index environment was demonstrated by using plasmonic metamaterials with Fano resonance based on far field interference. Change in quality factors (Q-factors) of the Fano resonance by substrate etching was also investigated in detail. The presence of a closely positioned substrate distorts the electric field distribution and degrades the Q-factors. Substrate etching dramatically increased the refractive index sensitivity reaching to 1532 nm/RIU since the electric fields under the nanostructures became accessible through substrate etching. The FOM was improved compared to the case without the substrate etching. The method presented in this paper is applicable to a variety of plasmonic structures to eliminate the influence of substrates for realizing high performance plasmonic devices.

  13. Coupling between apical tension and basal adhesion allow epithelia to collectively sense and respond to substrate topography over long distances.

    PubMed

    Broaders, Kyle E; Cerchiari, Alec E; Gartner, Zev J

    2015-12-01

    Epithelial sheets fold into complex topographies that contribute to their function in vivo. Cells can sense and respond to substrate topography in their immediate vicinity by modulating their interfacial mechanics, but the extent to which these mechanical properties contribute to their ability to sense substrate topography across length scales larger than a single cell has not been explored in detail. To study the relationship between the interfacial mechanics of single cells and their collective behavior as tissues, we grew cell-sheets on substrates engraved with surface features spanning macroscopic length-scales. We found that many epithelial cell-types sense and respond to substrate topography, even when it is locally nearly planar. Cells clear or detach from regions of local negative curvature, but not from regions with positive or no curvature. We investigated this phenomenon using a finite element model where substrate topography is coupled to epithelial response through a balance of tissue contractility and adhesive forces. The model correctly predicts the focal sites of cell-clearing and epithelial detachment. Furthermore, the model predicts that local tissue response to substrate curvature is a function of the surrounding topography of the substrate across long distances. Analysis of cell-cell and cell-substrate contact angles suggests a relationship between these single-cell interfacial properties, epithelial interfacial properties, and collective epithelial response to substrate topography. Finally, we show that contact angles change upon activation of oncogenes or inhibition of cell-contractility, and that these changes correlate with collective epithelial response. Our results demonstrate that in mechanically integrated epithelial sheets, cell contractility can be transmitted through multiple cells and focused by substrate topography to affect a behavioral response at distant sites.

  14. Holocene Substrate Influences on Plant and Fire Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Briles, C.; Whitlock, C. L.

    2011-12-01

    The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil fertility.

  15. Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues.

    PubMed

    Allen, Justine J; Mäthger, Lydia M; Barbosa, Alexandra; Buresch, Kendra C; Sogin, Emilia; Schwartz, Jillian; Chubb, Charles; Hanlon, Roger T

    2010-04-07

    Prey camouflage is an evolutionary response to predation pressure. Cephalopods have extensive camouflage capabilities and studying them can offer insight into effective camouflage design. Here, we examine whether cuttlefish, Sepia officinalis, show substrate or camouflage pattern preferences. In the first two experiments, cuttlefish were presented with a choice between different artificial substrates or between different natural substrates. First, the ability of cuttlefish to show substrate preference on artificial and natural substrates was established. Next, cuttlefish were offered substrates known to evoke three main camouflage body pattern types these animals show: Uniform or Mottle (function by background matching); or Disruptive. In a third experiment, cuttlefish were presented with conflicting visual cues on their left and right sides to assess their camouflage response. Given a choice between substrates they might encounter in nature, we found no strong substrate preference except when cuttlefish could bury themselves. Additionally, cuttlefish responded to conflicting visual cues with mixed body patterns in both the substrate preference and split substrate experiments. These results suggest that differences in energy costs for different camouflage body patterns may be minor and that pattern mixing and symmetry may play important roles in camouflage.

  16. Impact of processing parameters on the haemocompatibility of Bombyx mori silk films.

    PubMed

    Seib, F Philipp; Maitz, Manfred F; Hu, Xiao; Werner, Carsten; Kaplan, David L

    2012-02-01

    Silk has traditionally been used for surgical sutures due to its lasting strength and durability; however, the use of purified silk proteins as a scaffold material for vascular tissue engineering goes beyond traditional use and requires application-orientated biocompatibility testing. For this study, a library of Bombyx mori silk films was generated and exposed to various solvents and treatment conditions to reflect current silk processing techniques. The films, along with clinically relevant reference materials, were exposed to human whole blood to determine silk blood compatibility. All substrates showed an initial inflammatory response comparable to polylactide-co-glycolide (PLGA), and a low to moderate haemostasis response similar to polytetrafluoroethylene (PTFE) substrates. In particular, samples that were water annealed at 25 °C for 6 h demonstrated the best blood compatibility based on haemostasis parameters (e.g. platelet decay, thrombin-antithrombin complex, platelet factor 4, granulocytes-platelet conjugates) and inflammatory parameters (e.g. C3b, C5a, CD11b, surface-associated leukocytes). Multiple factors such as treatment temperature and solvent influenced the biological response, though no single physical parameter such as β-sheet content, isoelectric point or contact angle accurately predicted blood compatibility. These findings, when combined with prior in vivo data on silk, support a viable future for silk-based vascular grafts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Strontium-90 concentration factors of lake plankton, macrophytes, and substrates.

    PubMed

    Kalnina, Z; Polikarpov, G

    1969-06-27

    The ratio of concentration of strontium-90 in living and inert lake components to that in lake water (concentration factors) was determined for plankton, macrophytes, and substrates in eutrophic, mesotropric-eutrophic, and dystrophic Latgalian lakes. Concentration factors of strontium-90 in aquatic organisms and substrates are higher in a dystrophic lake than in the other types.

  18. Differentiating responses to contaminants from responses to other environmental factors for benthic biota in freshwater ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, K.E.; Reynoldson, T.B.; Rosenberg, D.M.

    1995-12-31

    Many ecological risk assessments (ERAS) of lakes, rivers and streams compare measurements of benthic community structure in specific areas of contamination to similar measurements in reference or ``clean`` areas as a basis for determining impact. However, despite numerous studies documenting alterations of benthic communities as a result of stress, the success of correctly assessing the ``health`` or degradation of these communities depends on how well responses to contamination can be discriminated from responses to other environmental factors. It is important in the ERA process to adequately describe benthic communities and to determine how natural environmental factors (e.g., substrate particle sizemore » and texture, organic content, water quality, pH, seston, etc.) may be driving benthic community structure. This knowledge is particularly important when reference areas are distant from stressed areas. This presentation will provide an overview of the environmental factors that are important in structuring natural benthic communities in rivers and lakes and discuss approaches that may be useful in differentiating between natural variability and anthropogenic stress in ERA. Several case studies from the Laurentian Great Lakes and the Fraser River watershed in British Columbia will be discussed.« less

  19. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells.

    PubMed

    Wang, L M; Myers, M G; Sun, X J; Aaronson, S A; White, M; Pierce, J H

    1993-09-17

    Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.

  20. The Red Light Receptor Phytochrome B Directly Enhances Substrate-E3 Ligase Interactions to Attenuate Ethylene Responses.

    PubMed

    Shi, Hui; Shen, Xing; Liu, Renlu; Xue, Chang; Wei, Ning; Deng, Xing Wang; Zhong, Shangwei

    2016-12-05

    Plants germinating under subterranean darkness assume skotomorphogenesis, a developmental program strengthened by ethylene in response to mechanical pressure of soil. Upon reaching the surface, light triggers a dramatic developmental transition termed de-etiolation that requires immediate termination of ethylene responses. Here, we report that light activation of photoreceptor phyB results in rapid degradation of EIN3, the master transcription factor in the ethylene signaling pathway. As a result, light rapidly and efficiently represses ethylene actions. Specifically, phyB directly interacts with EIN3 in a light-dependent manner and also physically associates with F box protein EBFs. The light-activated association of phyB, EIN3, and EBF1/EBF2 proteins stimulates robust EIN3 degradation by SCF EBF1/EBF2 E3 ligases. We reveal that phyB manipulates substrate-E3 ligase interactions in a light-dependent manner, thus directly controlling the stability of EIN3. Our findings illustrate a mechanistic model of how plants transduce light information to immediately turn off ethylene signaling for de-etiolation initiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Nanoscale definition of substrate materials to direct human adult stem cells towards tissue specific populations.

    PubMed

    Curran, Judith M; Chen, Rui; Stokes, Robert; Irvine, Eleanor; Graham, Duncan; Gubbins, Earl; Delaney, Deany; Amro, Nabil; Sanedrin, Raymond; Jamil, Haris; Hunt, John A

    2010-03-01

    The development of homogenously nano-patterned chemically modified surfaces that can be used to initiate a cellular response, particularly stem cell differentiation, in a highly controlled manner without the need for exogenous biological factors has never been reported, due to that fact that precisely defined and reproducible systems have not been available that can be used to study cell/material interactions and unlock the potential of a material driven cell response. Until now material driven stem cell (furthermore any cell) responses have been variable due to the limitations in definition and reproducibility of the underlying substrate and the lack of true homogeneity of modifications that can dictate a cellular response at a sub-micron level that can effectively control initial cell interactions of all cells that contact the surface. Here we report the successful design and use of homogenously molecularly nanopatterned surfaces to control initial stem cell adhesion and hence function. The highly specified nano-patterned arrays were compared directly to silane modified bulk coated substrates that have previously been proven to initiate mesenchymal stem cell (MSC) differentiation in a heterogenous manner, the aim of this study was to prove the efficiency of these previously observed cell responses could be enhanced by the incorporation of nano-patterns. Nano-patterned surfaces were prepared by Dip Pen Nanolithography (DPN) to produce arrays of 70 nm sized dots separated by defined spacings of 140, 280 and 1000 nm with terminal functionalities of carboxyl, amino, methyl and hydroxyl and used to control cell growth. These nanopatterned surfaces exhibited unprecedented control of initial cell interactions and will change the capabilities for stem cell definition in vitro and then cell based medical therapies. In addition to highlighting the ability of the materials to control stem cell functionality on an unprecedented scale this research also introduces the successful scale-up of DPN and the novel chemistries and systems to facilitate the production of homogeneously patterned substrates (5 mm2) that are applicable for use in in vitro cell conditions over prolonged periods for complete control of material driven cell responses.

  2. Electrostatic Ratchet in the Protective Antigen Channel Promotes Anthrax Toxin Translocation*

    PubMed Central

    Wynia-Smith, Sarah L.; Brown, Michael J.; Chirichella, Gina; Kemalyan, Gigi; Krantz, Bryan A.

    2012-01-01

    Central to the power-stroke and Brownian-ratchet mechanisms of protein translocation is the process through which nonequilibrium fluctuations are rectified or ratcheted by the molecular motor to transport substrate proteins along a specific axis. We investigated the ratchet mechanism using anthrax toxin as a model. Anthrax toxin is a tripartite toxin comprised of the protective antigen (PA) component, a homooligomeric transmembrane translocase, which translocates two other enzyme components, lethal factor (LF) and edema factor (EF), into the cytosol of the host cell under the proton motive force (PMF). The PA-binding domains of LF and EF (LFN and EFN) possess identical folds and similar solution stabilities; however, EFN translocates ∼10–200-fold slower than LFN, depending on the electrical potential (Δψ) and chemical potential (ΔpH) compositions of the PMF. From an analysis of LFN/EFN chimera proteins, we identified two 10-residue cassettes comprised of charged sequence that were responsible for the impaired translocation kinetics of EFN. These cassettes have nonspecific electrostatic requirements: one surprisingly prefers acidic residues when driven by either a Δψ or a ΔpH; the second requires basic residues only when driven by a Δψ. Through modeling and experiment, we identified a charged surface in the PA channel responsible for charge selectivity. The charged surface latches the substrate and promotes PMF-driven transport. We propose an electrostatic ratchet in the channel, comprised of opposing rings of charged residues, enforces directionality by interacting with charged cassettes in the substrate, thereby generating forces sufficient to drive unfolding. PMID:23115233

  3. Casein kinase 2 and the cell response to growth factors.

    PubMed

    Filhol-Cochet, O; Loue-Mackenbach, P; Cochet, C; Chambaz, E M

    1994-01-01

    Different approaches have been followed with the aim of delineating a possible role of casein kinase 2 (CK2) in the mitogenic signalling in response to cell growth factors. (a) Immunocytochemical detection of CK2 showed that while the kinase is evenly distributed throughout cycle arrested cells, it becomes preferentially associated with the nuclear compartment in activity growing cells; (b) CK2 biosynthesis is activated as an early response of quiescent cells to growth factors. The newly synthesized CK2 steadily accumulates as the cells progress through the G1 phase. This growth factor-induced CK2 biosynthesis involves in parallel the two alpha and beta subunits of the kinase, with no detectable preferential subcellular localization of the newly synthesized enzyme; and (c) In addition to substrate phosphorylation, CK2 may form molecular complexes with cell components of functional significance. Such is the case with the protein p53, a major negative regulator of the cell cycle. CK2 forms a high affinity association (Kd 70 nM) with p53, through its beta subunit. The complex dissociates in the presence of adenosine triphosphate (ATP). These observations suggest that CK2 and p53 may play a coordinated regulatory role in the cell response to growth factors.

  4. Enzymatic production of infant milk fat analogs containing palmitic acid: optimization of reactions by response surface methodology.

    PubMed

    Maduko, C O; Akoh, C C; Park, Y W

    2007-05-01

    Infant milk fat analogs resembling human milk fat were synthesized by an enzymatic interesterification between tripalmitin, coconut oil, safflower oil, and soybean oil in hexane. A commercially immobilized 1,3-specific lipase, Lipozyme RM IM, obtained from Rhizomucor miehei was used as a biocatalyst. The effects of substrate molar ratio, reaction time, and incubation temperature on the incorporation of palmitic acid at the sn-2 position of the triacylglycerols were investigated. A central composite design with 5 levels and 3 factors consisting of substrate ratio, reaction temperature, and incubation time was used to model and optimize the reaction conditions using response surface methodology. A quadratic model using multiple regressions was then obtained for the incorporation of palmitic acid at the sn-2 positions of glycerols as the response. The coefficient of determination (R2) value for the model was 0.845. The incorporation of palmitic acid appeared to increase with the decrease in substrate molar ratio and increase in reaction temperature, and optimum incubation time occurred at 18 h. The optimal conditions generated from the model for the targeted 40% palmitic acid incorporation at the sn-2 position were 3 mol/mol, 14.4 h, and 55 degrees C; and 2.8 mol/mol, 19.6 h, and 55 degrees C for substrate ratio (moles of total fatty acid/moles of tripalmitin), time, and temperature, respectively. Infant milk fat containing fatty acid composition and sn-2 fatty acid profile similar to human milk fat was successfully produced. The fat analogs produced under optimal conditions had total and sn-2 positional palmitic acid levels comparable to that of human milk fat.

  5. Differential effects of phosphotyrosine phosphatase expression on hormone-dependent and independent pp60c-src activity.

    PubMed

    Way, B A; Mooney, R A

    1994-10-26

    pp60c-src kinase activity can be increased by phosphotyrosine dephosphorylation or growth factor-dependent phosphorylation reactions. Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit growth factor receptor signal transduction (Mooney, RA, Freund, GG, Way, BA and Bordwell, KL (1992) J Biol Chem 267, 23443-23446). Here it is shown that PTPase expression decreased platelet-derived growth factor (PDGF)-dependent activation of pp60c-src but failed to increase hormone independent (basal) pp60c-src activity. PDGF-dependent tyrosine phosphorylation of its receptor was reduced by approximately 60% in cells expressing the PTPase. In contrast, a change in phosphotyrosine content of pp60c-src was not detected in response to PDGF or in PTPase+ cells. PDGF increased the intrinsic tyrosine kinase activity of pp60c-src in both control and PTPase+ cells, but the effect was smaller in PTPase+ cells. In an in vitro assay, hormone-stimulated pp60c-src autophosphorylation from PTPase+ cells was decreased 64 +/- 22%, and substrate phosphorylation by pp60c-src was reduced 54 +/- 16% compared to controls. Hormone-independent pp60c-src kinase activity was unchanged by expression of the PTPase. pp60c-src was, however, an in vitro substrate for CD45, being dephosphorylated at both the regulatory (Tyr527) and kinase domain (Tyr416) residues. In addition, in vitro dephosphorylation by CD45 increased pp60c-src activity. These findings suggest that the PDGF receptor was an in vivo substrate of CD45 but pp60c-src was not. The lack of activation of pp60c-src in the presence of expressed PTPase may demonstrate the importance of compartmentalization and/or accessory proteins to PTPase-substrate interactions.

  6. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Min; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009; Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses,more » including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.« less

  7. Sphingomonas wittichii Strain RW1 Genome-Wide Gene Expression Shifts in Response to Dioxins and Clay

    PubMed Central

    Tsoi, Tamara V.; Iwai, Shoko; Liu, Cun; Fish, Jordan A.; Gu, Cheng; Johnson, Timothy A.; Zylstra, Gerben; Teppen, Brian J.; Li, Hui; Hashsham, Syed A.; Boyd, Stephen A.; Cole, James R.; Tiedje, James M.

    2016-01-01

    Sphingomonas wittichii strain RW1 (RW1) is one of the few strains that can grow on dibenzo-p-dioxin (DD). We conducted a transcriptomic study of RW1 using RNA-Seq to outline transcriptional responses to DD, dibenzofuran (DF), and the smectite clay mineral saponite with succinate as carbon source. The ability to grow on DD is rare compared to growth on the chemically similar DF even though the same initial dioxygenase may be involved in oxidation of both substrates. Therefore, we hypothesized the reason for this lies beyond catabolic pathways and may concern genes involved in processes for cell-substrate interactions such as substrate recognition, transport, and detoxification. Compared to succinate (SUC) as control carbon source, DF caused over 240 protein-coding genes to be differentially expressed, whereas more than 300 were differentially expressed with DD. Stress response genes were up-regulated in response to both DD and DF. This effect was stronger with DD than DF, suggesting a higher toxicity of DD compared to DF. Both DD and DF caused changes in expression of genes involved in active cross-membrane transport such as TonB-dependent receptor proteins, but the patterns of change differed between the two substrates. Multiple transcription factor genes also displayed expression patterns distinct to DD and DF growth. DD and DF induced the catechol ortho- and the salicylate/gentisate pathways, respectively. Both DD and DF induced the shared down-stream aliphatic intermediate compound pathway. Clay caused category-wide down-regulation of genes for cell motility and chemotaxis, particularly those involved in the synthesis, assembly and functioning of flagella. This is an environmentally important finding because clay is a major component of soil microbes’ microenvironment influencing local chemistry and may serve as a geosorbent for toxic pollutants. Similar to clay, DD and DF also affected expression of genes involved in motility and chemotaxis. PMID:27309357

  8. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    NASA Astrophysics Data System (ADS)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and detritivore communities in the soil. The kinetics (Km and Vmax) of four extracellular hydrolytic enzymes responsible for C- and phosphorous-cycle (β-glucosidase, β-xylosidase, β-cellobiohydrolase and acid phosphatase), microbial biomass, basal respiration (BR) and substrate-induced respiration (SIR) were measured in rhizosphere, detritusphere and control from 0 - 10 and 10 - 20 cm. The metabolic quotient (qCO2) was calculated as specific indicator for efficiency of microbial substrate utilization. We observed clear differences in enzymes activities at low and high concentrations of substrate. At substrate saturation enzyme activity rates of were significantly higher in rooted plots compared to litter amended plots, whereas at lower concentration no treatment effect could be found. The BR, SIR and qCO2 values were significantly higher at 0 - 10 cm of the planted treatment compared to litter and control plots, revealing a significantly higher respiration at lower efficiency of microbial substrate utilization in the rhizosphere. The Michaelis-Menten constant (Km) decreased with depth, especially for β-glucosidase, acid phosphatase and β-xylosidase, indicating higher substrate affinity of microorganisms in deeper soil and therefore different enzyme systems functioning. The substrate affinity factor (Vmax/Km) increased 2-fold with depth for various enzymes, reflecting a switch of predominantly occurring microbial strategies. Vmax/Km ratio indicated relative domination of zymogenous microbial communities (r-strategists) in 0 - 10 cm depth as compared with 10 - 20 cm depth where the K-strategists dominated.

  9. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucena, P.; Gaona, I.; Moros, J.; Laserna, J. J.

    2013-07-01

    Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed.

  10. Expression and purification of functional JNK2beta2: perspectives on high-level production of recombinant MAP kinases.

    PubMed

    Savopoulos, John W; Dowd, Stephen; Armour, Carolyn; Carter, Paul S; Greenwood, Catherine J; Mills, David; Powell, David; Pettman, Gary R; Jenkins, Owen; Walsh, Frank S; Philpott, Karen L

    2002-02-01

    The mitogen-activated protein (MAP) kinases are a group of serine/threonine kinases that mediate intracellular signal transduction in response to environmental stimuli including stress, growth factors, and various cytokines. Of this family, the c-Jun N-terminal kinases (JNKs) are members which, depending on cell type, have been shown to activate the transcription of genes involved in the inflammatory response, apoptosis, and hypertrophy. Here we report the use Baculovirus/Sf9 cells to produce milligram quantities of recombinant JNK2beta2 substrate which could be purified to >90% as judged by SDS-PAGE. In addition, we report a novel method for the site-specific biotinylation for this enzyme and demonstrate that the biotinylated product is an authentic substrate of the upstream kinases MKK4 and 7 and can phosphorylate a downstream target, ATF-2. We also show that the phosphorylated product can be captured efficiently on streptavidin-coated beads for use in scintillation proximity assays. Copyright 2002 Elsevier Science (USA).

  11. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework

    NASA Astrophysics Data System (ADS)

    Bach, Lennart Thomas; Riebesell, Ulf; Gutowska, Magdalena A.; Federwisch, Luisa; Schulz, Kai Georg

    2015-06-01

    Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable attention during the last years as coccolithophores have been identified to be particularly sensitive to ocean acidification. Despite intense research in this area, a general concept harmonizing the numerous and sometimes (seemingly) contradictory responses of coccolithophores to changing carbonate chemistry is still lacking to date. Here, we present the "substrate-inhibitor concept" which describes the dependence of calcification rates on carbonate chemistry speciation. It is based on observations that calcification rate scales positively with bicarbonate (HCO3-), the primary substrate for calcification, and carbon dioxide (CO2), which can limit cell growth, whereas it is inhibited by protons (H+). This concept was implemented in a model equation, tested against experimental data, and then applied to understand and reconcile the diverging responses of coccolithophorid calcification rates to ocean acidification obtained in culture experiments. Furthermore, we (i) discuss how other important calcification-influencing factors (e.g. temperature and light) could be implemented in our concept and (ii) embed it in Hutchinson's niche theory, thereby providing a framework for how carbonate chemistry-induced changes in calcification rates could be linked with changing coccolithophore abundance in the oceans. Our results suggest that the projected increase of H+ in the near future (next couple of thousand years), paralleled by only a minor increase of inorganic carbon substrate, could impede calcification rates if coccolithophores are unable to fully adapt. However, if calcium carbonate (CaCO3) sediment dissolution and terrestrial weathering begin to increase the oceans' HCO3- and decrease its H+ concentrations in the far future (10-100 kyears), coccolithophores could find themselves in carbonate chemistry conditions which may be more favorable for calcification than they were before the Anthropocene.

  12. Study of single nucleotide polymorphisms of FBW7 and its substrate genes revealed a predictive factor for paclitaxel plus cisplatin chemotherapy in Chinese patients with advanced esophageal squamous cell carcinoma.

    PubMed

    Liu, Ying; Xu, Shu Ning; Chen, Yong Shun; Wu, Xiao Yuan; Qiao, Lei; Li, Ke; Yuan, Long

    2016-07-12

    Paclitaxel plays a major role in the treatment of advanced esophageal squamous cell carcinoma. However, there is no biomarker that could be used to predict the clinical response of paclitaxel. This work was conducted to investigate the association of genetic polymorphisms in FBW7 and its substrate genes and the clinical response of paclitaxel. Patients with advanced esophageal squamous cell carcinoma were treated with paclitaxel 175 mg/m2 over 3 hours day 1 and cisplatin 75 mg/m2 day 1, every 3 weeks. The genotypes of 11 FBW7 and its substrate gene polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Statistical analysis revealed that patients with mTOR rs1057079 AG (ORadjusted: 4.59; 95% CI: 1.78-11.86) genotype had significant correlation with the clinical response of paclitaxel when compared with AA genotype after adjustment for sex, age, and chemotherapy cycle. The median progression-free survival (PFS) of patients with advanced ESCC who received paclitaxel plus cisplatin (TP) as first-line treatment is 14.3 months (95% CI: 9.0-19.60 months). The median PFS (mPFS) of AG genotypes and AA genotypes in mTOR rs1057079 were 17.31 months (95% CI: 15.9-18.67 months) and 9.8 months (95% CI: 8.58-11.02 months) (p=0.019), respectively.

  13. A Comparison of Polysaccharide Substrates and Reducing Sugar Methods for the Measurement of endo-1,4-β-Xylanase.

    PubMed

    McCleary, Barry V; McGeough, Paraic

    2015-11-01

    The most commonly used method for the measurement of the level of endo-xylanase in commercial enzyme preparations is the 3,5-dinitrosalicylic acid (DNS) reducing sugar method with birchwood xylan as substrate. It is well known that with the DNS method, much higher enzyme activity values are obtained than with the Nelson-Somogyi (NS) reducing sugar method. In this paper, we have compared the DNS and NS reducing sugar assays using a range of xylan-type substrates and accurately compared the molar response factors for xylose and a range of xylo-oligosaccharides. Purified beechwood xylan or wheat arabinoxylan is shown to be a suitable replacement for birchwood xylan which is no longer commercially available, and it is clearly demonstrated that the DNS method grossly overestimates endo-xylanase activity. Unlike the DNS assay, the NS assay gave the equivalent colour response with equimolar amounts of xylose, xylobiose, xylotriose and xylotetraose demonstrating that it accurately measures the quantity of glycosidic bonds cleaved by the endo-xylanase. The authors strongly recommend cessation of the use of the DNS assay for measurement of endo-xylanase due to the fact that the values obtained are grossly overestimated due to secondary reactions in colour development.

  14. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate.

    PubMed

    Mutti, Navdeep S; Dolezal, Adam G; Wolschin, Florian; Mutti, Jasdeep S; Gill, Kulvinder S; Amdam, Gro V

    2011-12-01

    Regardless of genetic makeup, a female honey bee becomes a queen or worker depending on the food she receives as a larva. For decades, it has been known that nutrition and juvenile hormone (JH) signaling determine the caste fate of the individual bee. However, it is still largely unclear how these factors are connected. To address this question, we suppressed nutrient sensing by RNA interference (RNAi)-mediated gene knockdown of IRS (insulin receptor substrate) and TOR (target of rapamycin) in larvae reared on queen diet. The treatments affected several layers of organismal organization that could play a role in the response to differential nutrition between castes. These include transcript profiles, proteomic patterns, lipid levels, DNA methylation response and morphological features. Most importantly, gene knockdown abolished a JH peak that signals queen development and resulted in a worker phenotype. Application of JH rescued the queen phenotype in either knockdown, which demonstrates that the larval response to JH remains intact and can drive normal developmental plasticity even when IRS or TOR transcript levels are reduced. We discuss our results in the context of other recent findings on honey bee caste and development and propose that IRS is an alternative substrate for the Egfr (epidermal growth factor receptor) in honey bees. Overall, our study describes how the interplay of nutritional and hormonal signals affects many levels of organismal organization to build different phenotypes from identical genotypes.

  15. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate

    PubMed Central

    Mutti, Navdeep S.; Dolezal, Adam G.; Wolschin, Florian; Mutti, Jasdeep S.; Gill, Kulvinder S.; Amdam, Gro V.

    2011-01-01

    SUMMARY Regardless of genetic makeup, a female honey bee becomes a queen or worker depending on the food she receives as a larva. For decades, it has been known that nutrition and juvenile hormone (JH) signaling determine the caste fate of the individual bee. However, it is still largely unclear how these factors are connected. To address this question, we suppressed nutrient sensing by RNA interference (RNAi)-mediated gene knockdown of IRS (insulin receptor substrate) and TOR (target of rapamycin) in larvae reared on queen diet. The treatments affected several layers of organismal organization that could play a role in the response to differential nutrition between castes. These include transcript profiles, proteomic patterns, lipid levels, DNA methylation response and morphological features. Most importantly, gene knockdown abolished a JH peak that signals queen development and resulted in a worker phenotype. Application of JH rescued the queen phenotype in either knockdown, which demonstrates that the larval response to JH remains intact and can drive normal developmental plasticity even when IRS or TOR transcript levels are reduced. We discuss our results in the context of other recent findings on honey bee caste and development and propose that IRS is an alternative substrate for the Egfr (epidermal growth factor receptor) in honey bees. Overall, our study describes how the interplay of nutritional and hormonal signals affects many levels of organismal organization to build different phenotypes from identical genotypes. PMID:22071189

  16. Enzyme That Makes You Cry-Crystal Structure of Lachrymatory Factor Synthase from Allium cepa.

    PubMed

    Silvaroli, Josie A; Pleshinger, Matthew J; Banerjee, Surajit; Kiser, Philip D; Golczak, Marcin

    2017-09-15

    The biochemical pathway that gives onions their savor is part of the chemical warfare against microbes and animals. This defense mechanism involves formation of a volatile lachrymatory factor (LF) ((Z)-propanethial S-oxide) that causes familiar eye irritation associated with onion chopping. LF is produced in a reaction catalyzed by lachrymatory factor synthase (LFS). The principles by which LFS facilitates conversion of a sulfenic acid substrate into LF have been difficult to experimentally examine owing to the inherent substrate reactivity and lability of LF. To shed light on the mechanism of LF production in the onion, we solved crystal structures of LFS in an apo-form and in complex with a substrate analogue, crotyl alcohol. The enzyme closely resembles the helix-grip fold characteristic for plant representatives of the START (star-related lipid transfer) domain-containing protein superfamily. By comparing the structures of LFS to that of the abscisic acid receptor, PYL10, a representative of the START protein superfamily, we elucidated structural adaptations underlying the catalytic activity of LFS. We also delineated the architecture of the active site, and based on the orientation of the ligand, we propose a mechanism of catalysis that involves sequential proton transfer accompanied by formation of a carbanion intermediate. These findings reconcile chemical and biochemical information regarding thioaldehyde S-oxide formation and close a long-lasting gap in understanding of the mechanism responsible for LF production in the onion.

  17. Enzyme That Makes You Cry–Crystal Structure of Lachrymatory Factor Synthase from Allium cepa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvaroli, Josie A.; Pleshinger, Matthew J.; Banerjee, Surajit

    The biochemical pathway that gives onions their savor is part of the chemical warfare against microbes and animals. This defense mechanism involves formation of a volatile lachrymatory factor (LF) ((Z)-propanethial S-oxide) that causes familiar eye irritation associated with onion chopping. LF is produced in a reaction catalyzed by lachrymatory factor synthase (LFS). The principles by which LFS facilitates conversion of a sulfenic acid substrate into LF have been difficult to experimentally examine owing to the inherent substrate reactivity and lability of LF. To shed light on the mechanism of LF production in the onion, we solved crystal structures of LFSmore » in an apo-form and in complex with a substrate analogue, crotyl alcohol. The enzyme closely resembles the helix-grip fold characteristic for plant representatives of the START (star-related lipid transfer) domain-containing protein superfamily. By comparing the structures of LFS to that of the abscisic acid receptor, PYL10, a representative of the START protein superfamily, we elucidated structural adaptations underlying the catalytic activity of LFS. We also delineated the architecture of the active site, and based on the orientation of the ligand, we propose a mechanism of catalysis that involves sequential proton transfer accompanied by formation of a carbanion intermediate. These findings reconcile chemical and biochemical information regarding thioaldehyde S-oxide formation and close a long-lasting gap in understanding of the mechanism responsible for LF production in the onion.« less

  18. Surface presentation of biochemical cues for stem cell expansion - Spatial distribution of growth factors and self-assembly of extracellular matrix

    NASA Astrophysics Data System (ADS)

    Liu, Xingyu

    Despite its great potential applications to stem cell technology and tissue engineering, matrix presentation of biochemical cues such as growth factors and extracellular matrix (ECM) components remains undefined. This is largely due to the difficulty in preserving the bioactivities of signaling molecules and in controlling the spatial distribution, cellular accessibility, molecular orientation and intermolecular assembly of the biochemical cues. This dissertation comprises of two parts that focuses on understanding surface presentation of a growth factor and ECM components, respectively. This dissertation addresses two fundamental questions in stem cell biology using two biomaterials platforms. How does nanoscale distribution of growth factor impact signaling activation and cellular behaviors of adult neural stem cells? How does ECM self-assembly impact human embryonic stem cell survival and proliferation? The first question was addressed by the design of a novel quantitative platform that allows the control of FGF-2 molecular presentation locally as either monomers or clusters when tethered to a polymeric substrate. This substrate-tethered FGF-2 enables a switch-like signaling activation in response to dose titration of FGF-2. This is in contrast to a continuous MAPK activation pattern elicited by soluble FGF-2. Consequently, cell proliferation, and spreading were also consistent with this FGF-2 does-response pattern. We demonstrated that the combination of FGF-2 concentration and its cluster size, rather than concentration alone, serves as the determinants to govern its biological effect on neural stem cells. The second part of this dissertation was inspired by the challenge that hESCs have extremely low clonal efficiency and hESC survival is critically dependent on cell substrate adhesion. We postulated that ECM integrity is a critical factor in preventing hESC anchorage-dependent apoptosis, and that the matrix for feeder-free culture need to be properly assembled in order to mimic the stem cell niche in vivo. First, we established assays that allow high-throughput quantification of hESC proliferation and ECM deposition. Human ESC survival was found to be highly sensitive to ECM assembly, and was improved by at least 20 times on substrates with well-assembled ECM. ECM polymerization alone improves clonal efficiency by at least 20 fold, from less than 0.1% to be 3-5%. This ratio is further improved to greater than 35% when combined with ROCK inhibitor, suggesting ECM polymerization underlines another critical factor in dictating hESC survival and growth. Given that many important signaling molecules including growth factors and extracellular matrix are highly enriched and restricted at the stem cell niche, we anticipate that our investigation into these questions provides better insight into the physiological roles of the stem cell niche components, and helps us to rationally direct stem cell fates in future stem cell-based therapeutic interventions.

  19. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle.

    PubMed

    West, Adrian R; Zaman, Nishat; Cole, Darren J; Walker, Matthew J; Legant, Wesley R; Boudou, Thomas; Chen, Christopher S; Favreau, John T; Gaudette, Glenn R; Cowley, Elizabeth A; Maksym, Geoffrey N

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell "microtissues" capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma.

  20. Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach.

    PubMed

    Kumar, Mukesh; Singh, Amrinder; Beniwal, Vikas; Salar, Raj Kumar

    2016-12-01

    Tannase (tannin acyl hydrolase E.C 3.1.1.20) is an inducible, largely extracellular enzyme that causes the hydrolysis of ester and depside bonds present in various substrates. Large scale industrial application of this enzyme is very limited owing to its high production costs. In the present study, cost effective production of tannase by Klebsiella pneumoniae KP715242 was studied under submerged fermentation using different tannin rich agro-residues like Indian gooseberry leaves (Phyllanthus emblica), Black plum leaves (Syzygium cumini), Eucalyptus leaves (Eucalyptus glogus) and Babul leaves (Acacia nilotica). Among all agro-residues, Indian gooseberry leaves were found to be the best substrate for tannase production under submerged fermentation. Sequential optimization approach using Taguchi orthogonal array screening and response surface methodology was adopted to optimize the fermentation variables in order to enhance the enzyme production. Eleven medium components were screened primarily by Taguchi orthogonal array design to identify the most contributing factors towards the enzyme production. The four most significant contributing variables affecting tannase production were found to be pH (23.62 %), tannin extract (20.70 %), temperature (20.33 %) and incubation time (14.99 %). These factors were further optimized with central composite design using response surface methodology. Maximum tannase production was observed at 5.52 pH, 39.72 °C temperature, 91.82 h of incubation time and 2.17 % tannin content. The enzyme activity was enhanced by 1.26 fold under these optimized conditions. The present study emphasizes the use of agro-residues as a potential substrate with an aim to lower down the input costs for tannase production so that the enzyme could be used proficiently for commercial purposes.

  1. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper

    NASA Astrophysics Data System (ADS)

    Xiao, Guina; Li, Yunxiang; Shi, Wangzhou; Shen, Leo; Chen, Qi; Huang, Lei

    2017-05-01

    Paper-based surface-enhanced Raman scattering (SERS) substrates receive a great deal of attention due to low cost and high flexibility. Herein, we developed an efficient SERS substrate by gravure printing of sulfonated reduced graphene-oxide (S-RGO) thin film and inkjet printing of silver nanoparticles (AgNPs) on weighing paper successively. Malachite green (MG) and rhodamine 6G (R6G) were chosen as probe molecules to evaluate the enhanced performance of the fabricated SERS-active substrates. It was found that the S-RGO/AgNPs composite structure possessed higher enhancement ability than the pure AgNPs. The Raman enhancement factor of S-RGO/AgNPs was calculated to be as large as 109. The minimum detection limit for MG and R6G was down to 10-7 M with good linear responses (R2 = 0.9996, 0.9983) range from 10-4 M to 10-7 M. In addition, the S-RGO/AgNPs exhibited good uniformity with a relative standard deviation (RSD) of 7.90% measured by 572 points, excellent reproducibility with RSD smaller than 3.36%, and long-term stability with RSD less than 7.19%.

  2. Conversion of the sensor kinase DcuS of Escherichia coli of the DcuB/DcuS sensor complex to the C4 -dicarboxylate responsive form by the transporter DcuB.

    PubMed

    Wörner, Sebastian; Strecker, Alexander; Monzel, Christian; Zeltner, Matthias; Witan, Julian; Ebert-Jung, Andrea; Unden, Gottfried

    2016-12-01

    The sensor kinase DcuS of Escherichia coli co-operates under aerobic conditions with the C 4 -dicarboxylate transporter DctA to form the DctA/DcuS sensor complex. Under anaerobic conditions C 4 -dicarboxylate transport in fumarate respiration is catalyzed by C 4 -dicarboxylate/fumarate antiporter DcuB. (i) DcuB interacted with DcuS as demonstrated by a bacterial two-hybrid system (BACTH) and by co-chromatography of the solubilized membrane-proteins (mHPINE assay). (ii) In the DcuB/DcuS complex only DcuS served as the sensor since mutations in the substrate site of DcuS changed substrate specificity of sensing, and substrates maleate or 3-nitropropionate induced DcuS response without affecting the fumarate site of DcuB. (iii) The half-maximal concentration for induction of DcuS by fumarate (1 to 2 mM) and the corresponding K m for transport (50 µM) differ by a factor of 20 to 40. Therefore, the fumarate sites are different in transport and sensing. (iv) Increasing levels of DcuB converted DcuS from the permanent ON (DcuB deficient) state to the fumarate responsive form. Overall, the data show that DcuS and DcuB form a DcuB/DcuS complex representing the C 4 -dicarboxylate responsive form, and that the sensory site of the complex is located in DcuS whereas DcuB is required for converting DcuS to the sensory competent state. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Gab1 Mediates Hepatocyte Growth Factor-Stimulated Mitogenicity and Morphogenesis in Multipotent Myeloid Cells

    PubMed Central

    Felici, Angelina; Giubellino, Alessio; Bottaro, Donald P.

    2012-01-01

    Hepatocyte growth factor (HGF)-stimulated mitogenesis, motogenesis and morphogenesis in various cell types begins with activation of the Met receptor tyrosine kinase and the recruitment of intracellular adaptors and kinase substrates. The adapter protein Gab1 is a critical effector and substrate of activated Met, mediating morphogenesis, among other activities, in epithelial cells. To define its role downstream of Met in hematopoietic cells, Gab1 was expressed in the HGF-responsive, Gab1-negative murine myeloid cell line 32D. Interestingly, the adhesion and motility of Gab1-expressing cells were significantly greater than parental cells, independent of growth factor treatment. Downstream of activated Met, Gab1 expression was specifically associated with rapid Shp-2 recruitment and activation, increased mitogenic potency, suppression of GATA-1 expression and concomitant upregulation of GATA-2 transcription. In addition to enhanced proliferation, continuous culture of Gab1-expressing 32D cells in HGF resulted in cell attachment, filopodia extension and phenotypic changes suggestive of monocytic differentiation. Our results suggest that in myeloid cells, Gab1 is likely to enhance HGF mitogenicity by coupling Met to Shp-2 and GATA-2 expression, thereby potentially contributing to normal myeloid differentiation as well as oncogenic transformation. PMID:20506405

  4. Substrate-Related Factors Affecting Enzymatic Saccharification of Lignocelluloses: Our Recent Understanding

    Treesearch

    Shao-Yuan Leu; J.Y. Zhu

    2013-01-01

    Enzymatic saccharification of cellulose is a key step in conversion of plant biomass to advanced biofuel and chemicals. Many substrate-related factors affect saccharification. Rather than examining the role of each individual factor on overall saccharification efficiency, this study examined how each factor affects the three basic processes of a heterogeneous...

  5. Substrate Curvature Restricts Spreading and Induces Differentiation of Human Mesenchymal Stem Cells.

    PubMed

    Lee, Sang Joo; Yang, Shengyuan

    2017-09-01

    While cells attach, spread, migrate, proliferate, and differentiate in three-dimensional (3D) micromechanical environments, the mechanical factors of these environments influence the shapes, sizes, and adhesion forces of the cells. Here, the authors culture human mesenchymal stem cells (hMSCs) on a unique class of curvature-defined substrates, micro glass ball embedded polyacrylamide gels, prepared with an improved protocol, and investigate the spreading responses of the hMSCs on the glass balls to study the effects of substrate curvature on the spreading of hMSCs. The authors find that, among the used diameters of glass balls, the minimum diameter of a glass ball on which an hMSC can attach and spread is 500 μm. In contrast to the well-spread morphologies with randomly-multiple lamellipodia for the hMSCs growing on the flat glass plates, the morphologies of the hMSCs growing on the glass balls are almost uniformly spindle-shaped with two lamellipodia. The sensitivities of the attachment and spreading morphology of an hMSC to substrate curvature are very different from those of a fibroblast. The RT-PCR analysis reveals that the substrate curvature alone can induce adipogenesis of the hMSCs. These findings imply that substrate curvature has profound effects on stem cell behaviors, and detailed and in-depth studies on these effects and their underlying biophysical mechanisms are necessary. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Schottky x-ray detectors based on a bulk β-Ga2O3 substrate

    NASA Astrophysics Data System (ADS)

    Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili

    2018-03-01

    β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.

  7. Cell Elasticity Determines Macrophage Function

    PubMed Central

    Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry

    2012-01-01

    Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423

  8. Substrate analysis of the Pneumocystis carinii protein kinases PcCbk1 and PcSte20 using yeast proteome microarrays provides a novel method for Pneumocystis signalling biology.

    PubMed

    Kottom, Theodore J; Limper, Andrew H

    2011-10-01

    Pneumocystis carinii (Pc) undergoes morphological transitions between cysts and trophic forms. We have previously described two Pc serine/threonine kinases, termed PcCbk1 and PcSte20, with PcSte20 belonging to a family of kinases involved in yeast mating, while PcCbk1 is a member of a group of protein kinases involved in regulation of cell cycle, shape, and proliferation. As Pc remains genetically intractable, knowledge on specific substrates phosphorylated by these kinases remains limited. Utilizing the phylogenetic relatedness of Pc to Saccharomyces cerevisiae, we interrogated a yeast proteome microarray containing >4000 purified protein based peptides, leading to the identification of 18 potential PcCbk1 and 15 PcSte20 substrates (Z-score > 3.0). A number of these potential protein substrates are involved in bud site selection, polarized growth, and response to mating α factor and pseudohyphal and invasive growth. Full-length open reading frames suggested by the PcCbk1 and PcSte20 protoarrays were amplified and expressed. These five proteins were used as substrates for PcCbk1 or PcSte20, with each being highly phosphorylated by the respective kinase. Finally, to demonstrate the utility of this method to identify novel PcCbk1 and PcSte20 substrates, we analysed DNA sequence data from the partially complete Pc genome database and detected partial sequence information of potential PcCbk1 kinase substrates PcPxl1 and PcInt1. We additionally identified the potential PcSte20 kinase substrate PcBdf2. Full-length Pc substrates were cloned and expressed in yeast, and shown to be phosphorylated by the respective Pc kinases. In conclusion, the yeast protein microarray represents a novel crossover technique for identifying unique potential Pc kinase substrates. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Hysteresis in the Cell Response to Time-Dependent Substrate Stiffness

    PubMed Central

    Besser, Achim; Schwarz, Ulrich S.

    2010-01-01

    Abstract Mechanical cues like the rigidity of the substrate are main determinants for the decision-making of adherent cells. Here we use a mechano-chemical model to predict the cellular response to varying substrate stiffnesses. The model equations combine the mechanics of contractile actin filament bundles with a model for the Rho-signaling pathway triggered by forces at cell-matrix contacts. A bifurcation analysis of cellular contractility as a function of substrate stiffness reveals a bistable response, thus defining a lower threshold of stiffness, below which cells are not able to build up contractile forces, and an upper threshold of stiffness, above which cells are always in a strongly contracted state. Using the full dynamical model, we predict that rate-dependent hysteresis will occur in the cellular traction forces when cells are exposed to substrates of time-dependent stiffness. PMID:20655823

  10. Investigation of antenna-coupled Nb5N6 microbolometer THz detector with substrate resonant cavity.

    PubMed

    Tu, Xuecou; Jiang, Chengtao; Xiao, Peng; Kang, Lin; Zhai, Shimin; Jiang, Zhou; Feng Su, Run; Jia, Xiaoqing; Zhang, Labao; Chen, Jian; Wu, Peiheng

    2018-04-02

    Fabricating resonant cavities with conventional methods to improve the coupling efficiency of a detector in the terahertz (THz) region is difficult for the wavelength is too long. Here, we propose a solution by using the substrate cavity effect given that the substrate wavelength and thickness of the preparation device are in the same order. The planar dipole antenna-coupled Nb 5 N 6 microbolometers with different substrate thicknesses were fabricated. The interference effect of the substrate cavity on the optical voltage response of the detector is analyzed experimentally and theoretically. The experimental results show that the optical response of the detector is determined by the length of the substrate cavity. Thus, the THz devices with different detection frequencies can be designed by changing the substrate cavity length. Furthermore, on the basis of this substrate cavity effect, an asymmetric coupled Fabry-Pérot (FP) cavity is constituted by simply placing a movable metallic planar mirror at the backside of the Si substrate. The incident THz radiation on the Nb 5 N 6 microbolometer can be effectively manipulated by changing the substrate-mirror distance to modulate the phase relation between the reflect wave and the incident wave. The distinct radiation control can be observed, and the experiments can be well explained by numerically analyzing the responsivity dynamics that highlights the role of the FP cavity effect during radiation. All of the results discussed here can be extended to a broad range of frequency and other type of THz detectors.

  11. Degradomic and yeast 2-hybrid inactive catalytic domain substrate trapping identifies new membrane-type 1 matrix metalloproteinase (MMP14) substrates: CCN3 (Nov) and CCN5 (WISP2).

    PubMed

    Butler, Georgina S; Connor, Andrea R; Sounni, Nor Eddine; Eckhard, Ulrich; Morrison, Charlotte J; Noël, Agnès; Overall, Christopher M

    2017-05-01

    Members of the CCN family of matricellular proteins are cytokines linking cells to the extracellular matrix. We report that CCN3 (Nov) and CCN5 (WISP2) are novel substrates of MMP14 (membrane-type 1-matrix metalloproteinase, MT1-MMP) that we identified using MMP14 "inactive catalytic domain capture" (ICDC) as a yeast two-hybrid protease substrate trapping platform in parallel with degradomics mass spectrometry screens for MMP14 substrates. CCN3 and CCN5, previously unknown substrates of MMPs, were biochemically validated as substrates of MMP14 and other MMPs in vitro-CCN5 was processed in the variable region by MMP14 and MMP2, as well as by MMP1, 3, 7, 8, 9 and 15. CCN1, 2 and 3 are proangiogenic factors yet we found novel opposing activity of CCN5 that was potently antiangiogenic in an aortic ring vessel outgrowth model. MMP14, a known regulator of angiogenesis, cleaved CCN5 and abrogated the angiostatic activity. CCN3 was also processed in the variable region by MMP14 and MMP2, and by MMP1, 8 and 9. In addition to the previously reported cleavages of CCN1 and CCN2 by several MMPs we found that MMPs 8, 9, and 1 process CCN1, and MMP8 and MMP9 also process CCN2. Thus, our study reveals additional and pervasive family-wide processing of CCN matricellular proteins/cytokines by MMPs. Furthermore, CCN5 cleavage by proangiogenic MMPs results in removal of an angiogenic brake held by CCN5. This highlights the importance of thorough dissection of MMP substrates that is needed to reveal higher-level control mechanisms beyond type IV collagen and other extracellular matrix protein remodelling in angiogenesis. We find CCN family member cleavage by MMPs is more pervasive than previously reported and includes CCN3 (Nov) and CCN5 (WISP2). CCN5 is a novel antiangiogenic factor, whose function is abrogated by proangiogenic MMP cleavage. By processing CCN proteins, MMPs regulate cell responses angiogenesis in connective tissues. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast.

    PubMed

    Yin, Chengcheng; Zhang, Yanjing; Cai, Qing; Li, Baosheng; Yang, Hua; Wang, Heling; Qi, Hua; Zhou, Yanmin; Meng, Weiyan

    2017-03-01

    In clinical applications, osseointegration is essential for the long-term stability of dental implants. Inspired by the hierarchical structure of natural bone, we applied the electrochemical etching (EC) technique to form a micro-nano structure on a titanium alloy (Ti6Al4V) substrate, called EC surface. Sand blasting and acid etching (SLA) and machined (M) methods were employed to generate micro and smooth textures, respectively, as the control groups. The surface topographies of the three substrates were characterized using scanning electron microscopy (SEM). Then, human osteoblast-like cells (MG63) were cultured on substrates, and adhesion, proliferation, morphology, alkaline phosphatase activity (ALP), and gene expression levels of Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COLIA 1) were analyzed. MG63 cells cultured on the EC Ti alloy substrates displayed better cell adhesion, significant proliferation, and a higher production level of ALP, gene expressions of RUNX2, OCN, OPN and COLIA 1 (p < 0.01 or p < 0.05) compared with those of SLA and M substrates. These results indicate that the micro-nano structure fabricated by electrochemical etching method is beneficial for the biological functions of MG63 cells and may be a promising candidate in dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 757-769, 2017. © 2016 Wiley Periodicals, Inc.

  13. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40.

    PubMed

    Yang, Haijuan; Jiang, Xiaolu; Li, Buren; Yang, Hyo J; Miller, Meredith; Yang, Angela; Dhar, Ankita; Pavletich, Nikola P

    2017-12-21

    The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to nutrients, energy levels, and growth factors. It contains the atypical kinase mTOR and the RAPTOR subunit that binds to the Tor signalling sequence (TOS) motif of substrates and regulators. mTORC1 is activated by the small GTPase RHEB (Ras homologue enriched in brain) and inhibited by PRAS40. Here we present the 3.0 ångström cryo-electron microscopy structure of mTORC1 and the 3.4 ångström structure of activated RHEB-mTORC1. RHEB binds to mTOR distally from the kinase active site, yet causes a global conformational change that allosterically realigns active-site residues, accelerating catalysis. Cancer-associated hyperactivating mutations map to structural elements that maintain the inactive state, and we provide biochemical evidence that they mimic RHEB relieving auto-inhibition. We also present crystal structures of RAPTOR-TOS motif complexes that define the determinants of TOS recognition, of an mTOR FKBP12-rapamycin-binding (FRB) domain-substrate complex that establishes a second substrate-recruitment mechanism, and of a truncated mTOR-PRAS40 complex that reveals PRAS40 inhibits both substrate-recruitment sites. These findings help explain how mTORC1 selects its substrates, how its kinase activity is controlled, and how it is activated by cancer-associated mutations.

  14. Experimental analysis of green roof substrate detention characteristics.

    PubMed

    Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni

    2013-01-01

    Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.

  15. Stable Isotope Metabolic Labeling-based Quantitative Phosphoproteomic Analysis of Arabidopsis Mutants Reveals Ethylene-regulated Time-dependent Phosphoproteins and Putative Substrates of Constitutive Triple Response 1 Kinase*

    PubMed Central

    Yang, Zhu; Guo, Guangyu; Zhang, Manyu; Liu, Claire Y.; Hu, Qin; Lam, Henry; Cheng, Han; Xue, Yu; Li, Jiayang; Li, Ning

    2013-01-01

    Ethylene is an important plant hormone that regulates numerous cellular processes and stress responses. The mode of action of ethylene is both dose- and time-dependent. Protein phosphorylation plays a key role in ethylene signaling, which is mediated by the activities of ethylene receptors, constitutive triple response 1 (CTR1) kinase, and phosphatase. To address how ethylene alters the cellular protein phosphorylation profile in a time-dependent manner, differential and quantitative phosphoproteomics based on 15N stable isotope labeling in Arabidopsis was performed on both one-minute ethylene-treated Arabidopsis ethylene-overly-sensitive loss-of-function mutant rcn1-1, deficient in PP2A phosphatase activity, and a pair of long-term ethylene-treated wild-type and loss-of-function ethylene signaling ctr1-1 mutants, deficient in mitogen-activated kinase kinase kinase activity. In total, 1079 phosphopeptides were identified, among which 44 were novel. Several one-minute ethylene-regulated phosphoproteins were found from the rcn1-1. Bioinformatic analysis of the rcn1-1 phosphoproteome predicted nine phosphoproteins as the putative substrates for PP2A phosphatase. In addition, from CTR1 kinase-enhanced phosphosites, we also found putative CTR1 kinase substrates including plastid transcriptionally active protein and calcium-sensing receptor. These regulatory proteins are phosphorylated in the presence of ethylene. Analysis of ethylene-regulated phosphosites using the group-based prediction system with a protein–protein interaction filter revealed a total of 14 kinase–substrate relationships that may function in both CTR1 kinase- and PP2A phosphatase-mediated phosphor-relay pathways. Finally, several ethylene-regulated post-translational modification network models have been built using molecular systems biology tools. It is proposed that ethylene regulates the phosphorylation of arginine/serine-rich splicing factor 41, plasma membrane intrinsic protein 2A, light harvesting chlorophyll A/B binding protein 1.1, and flowering bHLH 3 proteins in a dual-and-opposing fashion. PMID:24043427

  16. Resolution of an apparent hook effect in Roche partner DRI oxycodone immunoassay.

    PubMed

    Colón-Franco, Jessica M; Cox, Elbert T; Crosby, David B; Dawling, Sheila

    2013-01-01

    A presumed hook effect in the semiquantitative DRI Oxycodone immunoassay, OXY3S (Cobas Integra, Roche Diagnostics), was investigated in 14 urine samples with gas chromatography/mass spectrometry (GC-MS) >10,000 ng/mL but OXY3S <1,000 ng/mL. These samples included the index case, a false-negative OXY3S result with >75,000 ng/mL oxycodone + oxymorphone by GC-MS confirmation. Patient samples needed 2- to 16-fold dilution to obtain the correct OXY3S response. The OXY3S test did not hook at high-spiked concentrations of oxycodone, oxymorphone or oxymorphone-3β-d-glucuronide in drug-free urine. The OXY3S test parameters were replicated in a development channel on the Cobas using DRI Reagents (Microgenics, CA, USA) and were subsequently modified. Delayed sample addition or doubling of Reagent 1 (R1: antibody/substrate/co-factor) yielded maximal immunoassay response (>10,000 ng/mL) in 12 of 14 and 14 of 14 undiluted patient samples, respectively. Supplementation of R1 with substrate alone did not correctly recover oxycodone from any of the samples, while co-factor supplementation resulted a maximal OXY3S response in 13 of 14 samples. The remaining (index) sample could only be corrected by supplemental R1. The semiquantitative utility of the DRI Oxycodone assay is questionable. Although the precise cause of the under-recovery could not be determined, the modification presented permits reliable oxycodone determination at the high concentrations frequently seen in clinical urine samples.

  17. The molecular mechanisms of plant plasma membrane intrinsic proteins trafficking and stress response.

    PubMed

    Wang, Xing; Zhang, Ji-long; Feng, Xiu-xiu; Li, Hong-jie; Zhang, Gen-fa

    2017-04-20

    Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO 2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.

  18. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic). American Oyster.

    DTIC Science & Technology

    1986-07-01

    umbones are usually straight. extends to the Yucatan Peninsula Single oysters from hard substrates of Mexico and the West Indies to are rounded and...season (Merrill and Boss postulated that phytoplankton blooms 1966). Kennedy and Krantz (1982) and nutrition may be responsible for documented the... nutritional factors which affect tidal American oyster Crassostrea the growth and setting of the virygnica (Gmelin). Ph.D. Thesis. larvae of the oyster

  19. Attraction, Oviposition Preferences, and Olfactory Responses of Corn-Infesting Ulidiidae (Diptera) to Various Host-Based Substrates.

    PubMed

    Owens, D; Nuessly, G S; Kendra, P E; Colquhoun, T A; Seal, D R

    2017-08-01

    Fresh market sweet corn (Zea mays L., convar. saccharata var. rugosa, Poales: Poaceae) ears produced in Florida are damaged by the larvae of Euxesta stigmatias Loew, Euxesta eluta Loew, and Chaetopsis massyla Walker (Diptera: Ulidiidae) that renders ears unmarketable. No standard lure exists for monitoring these pests. Oviposition substrate and attractant bioassays were designed to identify attractive substrates for further semiochemical investigation. Frass from the fall armyworm, Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae), was more attractive than other ovipositional substrates tested for E. eluta and C. massyla, and resulted in greater ovipositional output. Tassel-derived armyworm frass was more attractive than leaf-derived frass for oviposition. Frass also resulted in greater oviposition output by two species. In attraction bioassays, frass was generally preferred over the corresponding corn tissue, and only C. massyla demonstrated a preference for silk-frass over tassel-frass. The most promising substrates were then evaluated by electroantennography (EAG) to quantify olfactory responses. Frass volatiles also elicited greater antennal responses than corn volatiles. With tassel-frass, greater amplitude EAG responses were recorded from immature E. eluta female antennae, while mature female E. stigmatias exhibited greater responses. Equivalent antennal response to silk-frass was observed from E. eluta. Overall, silk-frass elicited the greatest EAG responses among all three fly species. Our results indicate that armyworm frass is an important resource in the chemical ecology of corn-infesting silk flies, and this substrate warrants further investigation for potential attractants that may facilitate development of novel management tools for these pests. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

    PubMed Central

    Yang, Shixuan; Lu, Nanshu

    2013-01-01

    Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed. PMID:23881128

  1. Influence of the CYP2D6 Isoenzyme in Patients Treated with Venlafaxine for Major Depressive Disorder: Clinical and Economic Consequences

    PubMed Central

    Sicras-Mainar, Antoni; Guijarro, Pablo; Armada, Beatriz; Blanca-Tamayo, Milagrosa; Navarro-Artieda, Ruth

    2014-01-01

    Background Antidepressant drugs are the mainstay of drug therapy for sustained remission of symptoms. However, the clinical results are not encouraging. This lack of response could be due, among other causes, to factors that alter the metabolism of the antidepressant drug. Objective: to evaluate the impact of concomitant administration of CYP2D6 inhibitors or substrates on the efficacy, tolerability and costs of patients treated with venlafaxine for major depressive disorder in clinical practice. Methods We designed an observational study using the medical records of outpatients. Subjects aged ≥18 years who started taking venlafaxine during 2008–2010 were included. Three study groups were considered: no combinations (reference), venlafaxine-substrate, and venlafaxine-inhibitor. The follow-up period was 12 months. The main variables were: demographic data, comorbidity, remission (Hamilton <7), response to treatment, adverse events and costs. The statistical analysis included logistic regression models and ANCOVA, with p values <0.05 considered significant. Results A total of 1,115 subjects were recruited. The mean age was 61.7 years and 75.1% were female. Approximately 33.3% (95% CI: 30.5 to 36.1) were receiving some kind of drug combination (venlafaxine-substrate: 23.0%, and venlafaxine-inhibitor: 10.3%). Compared with the venlafaxine-substrate and venlafaxine-inhibitor groups, patients not taking concomitant drugs had a better response to therapy (49.1% vs. 39.9% and 34.3%, p<0.01), greater remission of symptoms (59.9% vs. 50.2% and 43.8%, p<0.001), fewer adverse events (1.9% vs. 7.0% and 6.1%, p<0.05) and a lower mean adjusted cost (€2,881.7 vs. €4,963.3 and €7,389.1, p<0.001), respectively. All cost components showed these differences. Conclusions The patients treated with venlafaxine alone showed a better response to anti-depressant treatment, greater remission of symptoms, a lower incidence of adverse events and lower healthcare costs. PMID:25369508

  2. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination.

    PubMed

    Surtees, Jennifer A; Alani, Eric

    2006-07-14

    Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.

  3. Investigating Commercial Cellulase Performances Toward Specific Biomass Recalcitrance Factors Using Reference Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.

    Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates didmore » not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.« less

  4. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates.

    PubMed

    Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao

    2014-05-01

    Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  5. High-performance flexible microwave passives on plastic

    NASA Astrophysics Data System (ADS)

    Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong

    2014-06-01

    We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.

  6. Loss of an actin crosslinker uncouples cell spreading from cell stiffening on gels with a gradient of stiffness

    NASA Astrophysics Data System (ADS)

    Wen, Qi; Byfield, Fitzroy J.; Nordstrom, Kerstin; Arratia, Paulo E.; Miller, R. Tyler; Janmey, Paul A.

    2009-03-01

    We use microfluidics techniques to produce gels with a gradient of stiffness to show the essential function of the actin crosslinker filamin A in cell responses to mechanical stimuli. M2 melanoma cells null for filamin A do not alter their adherent area in response to increased substrate stiffness when they link to the substrate only through collagen receptors, but change adherent area normally when bound through fibronectin receptors. In contrast, filamin A-replete A7 cells change adherent area on both substrates and respond more strongly to collagen 1-coated gels than to fibronectin-coated gels. A7 cells alter their stiffness, as measured by atomic force microscopy, to match the elastic modulus of the substrate immediately adjacent to them on the gradient. M2 cells, in contrast, maintain a constant stiffness on all substrates that is as low as that of A7 cells on the softest gels achievable (1000 Pa). By contrasting the responses of these cell types to different adhesive substrates, cell spreading can be dissociated from stiffening.

  7. Cell-like features imprinted in the physical nano- and micro-topography of the environment modify the responses to anti-cancer drugs of endometrial cancer cells.

    PubMed

    Tan, Li Hui; Sykes, Peter H; Alkaisi, Maan M; Evans, John J

    2017-02-14

    Topographical features of cells at nanometre resolution were fabricated in polystyrene. The study investigated the effect of physical topography on the response of cancer cells to the common anticancer drugs, paclitaxel and doxorubicin. Human endometrial cancer cells (Ishikawa) were incubated on substrates containing cell-like features that had been fabricated using our bioimprint methodology to create moulds of cells with positive (convex) and negative (concave) topography. Control cultures were performed on flat substrates. Effects of the drugs on caspase-3 expression, proliferating nuclear antigen (PCNA) expression, cell number and vascular endothelial growth factor (VEGF) secretion were determined. Results revealed that the topography influenced the cell responses in a drug-dependent manner i.e. paclitaxel effects were sensitive to topography differently to those of doxorubicin. In addition, function signalling pathways were sensitive to the detailed topography i.e. positive imprint and negative imprint induced distinct response patterns. The results in this study show for the first time that a culture surface with cell-like topography, that has both nano- and micro-resolution, influences endometrial cancer cell responses to chemotherapy drugs. The effects are dependent on the topography and also on the chemotherapy drug. In particular, the platforms described have potential to provide substrates with high physical relevancy on which to undertake preclinical testing of new drugs. The method also allows for use of different cell types to provide cell-specific topography. The results imply that physical architecture of the cancer cell environment may be a suitable prospective target to enhance clinical activity of traditional drugs. Additionally or alternatively we provide compelling support for the notion that understanding the physical component of the nano- and micro-environment may encourage a redirection of drug development. Further, our observation that the cells distinguish between the different cell-like topographies (positive and negative bioimprints) indicates that a realistic topography is advantageous as growth platforms in experiment design.

  8. Visible-blind ultraviolet photodetectors on porous silicon carbide substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naderi, N.; Hashim, M.R., E-mail: roslan@usm.my

    2013-06-01

    Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. Themore » optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation.« less

  9. Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae.

    PubMed

    Buck, Teresa M; Jordan, Rick; Lyons-Weiler, James; Adelman, Joshua L; Needham, Patrick G; Kleyman, Thomas R; Brodsky, Jeffrey L

    2015-06-01

    Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to ER-associated degradation, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α-subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR was expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and compared with previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses. Copyright © 2015 the American Physiological Society.

  10. A Review of the Foreign-body Response to Subcutaneously-implanted Devices: The Role of Macrophages and Cytokines in Biofouling and Fibrosis

    PubMed Central

    Kenneth Ward, W.

    2008-01-01

    The biological response to implanted biomaterials in mammals is a complex series of events that involves many biochemical pathways. Shortly after implantation, fibrinogen and other proteins bind to the device surface, a process known as biofouling. Macrophages then bind to receptors on the proteins, join into multinucleated giant cells, and release transforming growth factor β and other inflammatory cytokines. In response to these signals, quiescent fibroblasts are transformed into myofibroblasts, which synthesize procollagen via activation of Smad mediators. The procollagen becomes crosslinked after secretion into the extracellular space. Mature crosslinked collagen and other extracellular matrix proteins gradually contribute to formation of a hypocellular dense fibrous capsule that becomes impermeable or hypopermeable to many compounds. Porous substrates and angiogenic growth factors can stimulate formation of microvessels, which to some extent can maintain analyte delivery to implanted sensors. However, stimulation by vascular endothelial growth factor alone may lead to formation of leaky, thin-walled, immature vessels. Other growth factors are most probably needed to act upon these immature structures to create more robust vessels. During implantation of foreign bodies, the foreign-body response is difficult to overcome, and thousands of biomaterials have been tested. Biomimicry (i.e., creating membranes whose chemical structure mimics natural cellular compounds) may diminish the response, but as of this writing, it has not been possible to create a stealth material that circumvents the ability of the mammalian surveillance systems to distinguish foreign from self. PMID:19885259

  11. Effects of Combinations of Substrates on Maximum Growth Rates of Several Rumen Bacteria

    PubMed Central

    Russell, James B.; Delfino, Frank J.; Baldwin, R. L.

    1979-01-01

    Five rumen bacteria, Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Butyrivibrio fibrisolvens, and Streptococcus bovis were grown in media containing nonlimiting concentrations of glucose, sucrose, maltose, cellobiose, xylose and/or lactate. Each bacterium was grown with every substrate that it could ferment in every possible two-way combination. Only once did a combination of substrates result in a higher maximum growth rate than that observed with either substrate alone. Such stimulations of growth rate would be expected if specific factors unique to individual substrates (transport proteins and/or enzymes) were limiting. Since such synergisms were rare, it was concluded that more general factors limit maximum growth rates in these five bacteria. PMID:16345360

  12. Seasonal variation in functional properties of microbial communities in beech forest soil

    PubMed Central

    Koranda, Marianne; Kaiser, Christina; Fuchslueger, Lucia; Kitzler, Barbara; Sessitsch, Angela; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2013-01-01

    Substrate quality and the availability of nutrients are major factors controlling microbial decomposition processes in soils. Seasonal alteration in resource availability, which is driven by plants via belowground C allocation, nutrient uptake and litter fall, also exerts effects on soil microbial community composition. Here we investigate if seasonal and experimentally induced changes in microbial community composition lead to alterations in functional properties of microbial communities and thus microbial processes. Beech forest soils characterized by three distinct microbial communities (winter and summer community, and summer community from a tree girdling plot, in which belowground carbon allocation was interrupted) were incubated with different 13C-labeled substrates with or without inorganic N supply and analyzed for substrate use and various microbial processes. Our results clearly demonstrate that the three investigated microbial communities differed in their functional response to addition of various substrates. The winter communities revealed a higher capacity for degradation of complex C substrates (cellulose, plant cell walls) than the summer communities, indicated by enhanced cellulase activities and reduced mineralization of soil organic matter. In contrast, utilization of labile C sources (glucose) was lower in winter than in summer, demonstrating that summer and winter community were adapted to the availability of different substrates. The saprotrophic community established in girdled plots exhibited a significantly higher utilization of complex C substrates than the more plant root associated community in control plots if additional nitrogen was provided. In this study we were able to demonstrate experimentally that variation in resource availability as well as seasonality in temperate forest soils cause a seasonal variation in functional properties of soil microorganisms, which is due to shifts in community structure and physiological adaptations of microbial communities to altered resource supply. PMID:23645937

  13. Amending pine bark with alternative substrates

    USDA-ARS?s Scientific Manuscript database

    Due to a number of factors, pine bark supplies have significantly decreased over the past few years. While alternative substrates are being evaluated, many growers are asking if these alternative substrates can be used to stretch existing PB supplies. In this study, two alternative substrates, “Cl...

  14. Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates.

    PubMed

    Rodrigues, Daniel C; de Souza, Michele L; Souza, Klester S; dos Santos, Diego P; Andrade, Gustavo F S; Temperini, Marcia L A

    2015-09-07

    The SERS enhancement factor (SERS-EF) is one of the most important parameters that characterizes the ability of a given substrate to enhance the Raman signal for SERS applications. The comparison of SERS intensities and SERS-EF values across different substrates is a common practice to unravel the performance of a given substrate. In this study, it is shown that such a comparison may lack significance if we compare substrates of very distinct nature and optical properties. It is specifically shown that the SERS-EF values for static substrates (e.g. immobilized metallic nanostructures) cannot be compared to those of dynamic ones (e.g. colloidal metal nanoparticle solutions), and that the optical properties for the latter show strong dependence on the metal-molecule interaction dynamics. The most representative experimental results concerning the dynamic substrates have been supported by generalized Mie theory simulations, which are tools used to describe the substrate complexity and the microscopic information not usually taken into account.

  15. Enzymatic Saccharification of Lignocelluloses Should be Conducted at Elevated pH 5.2-6.2

    Treesearch

    T.Q. Lan; Hongming Lou; J.Y. Zhu

    2013-01-01

    This study revealed that cellulose enzymatic saccharification response curves of lignocellulosic substrates were very different from those of pure cellulosic substrates in terms of optimal pH and pH operating window. The maximal enzymatic cellulose saccharification of lignocellulosic substrates occurs at substrate suspension

  16. Recovery of EUVL substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, S.P.; Baker, S.L.

    1995-01-19

    Mo/Si multilayers, were removed from superpolished zerodur and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  17. Effect of Warm-Up on Plasma Free Fatty Acid Response and Substrate Utilization During Submaximal Exercise.

    ERIC Educational Resources Information Center

    Hetzler, Ronald K.; And Others

    1986-01-01

    This study examined the effect of preliminary walking on free fatty acid responses and substrate utilization during a 40-minute treadmill run by experienced male distance runners. Conclusions are presented. (Author/MT)

  18. Substrate micropatterns produced by polymer demixing regulate focal adhesions, actin anisotropy, and lineage differentiation of stem cells.

    PubMed

    Vega, Sebastián L; Arvind, Varun; Mishra, Prakhar; Kohn, Joachim; Sanjeeva Murthy, N; Moghe, Prabhas V

    2018-06-12

    Stem cells are adherent cells whose multipotency and differentiation can be regulated by numerous microenvironmental signals including soluble growth factors and surface topography. This study describes a simple method for creating distinct micropatterns via microphase separation resulting from polymer demixing of poly(desaminotyrosyl-tyrosine carbonate) (PDTEC) and polystyrene (PS). Substrates with co-continuous (ribbons) or discontinuous (islands and pits) PDTEC regions were obtained by varying the ratio of PDTEC and sacrificial PS. Human mesenchymal stem cells (MSCs) cultured on co-continuous PDTEC substrates for 3 days in bipotential adipogenic/osteogenic (AD/OS) induction medium showed no change in cell morphology but exhibited increased anisotropic cytoskeletal organization and larger focal adhesions when compared to MSCs cultured on discontinuous micropatterns. After 14 days in bipotential AD/OS induction medium, MSCs cultured on co-continuous micropatterns exhibited increased expression of osteogenic markers, whereas MSCs on discontinuous PDTEC substrates showed a low expression of adipogenic and osteogenic differentiation markers. Substrates with graded micropatterns were able to reproduce the influence of local underlying topography on MSC differentiation, thus demonstrating their potential for high throughput analysis. This work presents polymer demixing as a simple, non-lithographic technique to produce a wide range of micropatterns on surfaces with complex geometries to influence cellular and tissue regenerative responses. Gaining a better understanding of how engineered microenvironments influence stem cell differentiation is integral to increasing the use of stem cells and materials in a wide range of tissue engineering applications. In this study, we show the range of topography obtained by polymer demixing is sufficient for investigating how surface topography affects stem cell morphology and differentiation. Our findings show that co-continuous topographies favor early (3-day) cytoskeletal anisotropy and focal adhesion maturation as well as long-term (14-day) expression of osteogenic differentiation markers. Taken together, this study presents a simple approach to pattern topographies that induce divergent responses in stem cell morphology and differentiation. Copyright © 2018. Published by Elsevier Ltd.

  19. Glucose Oxidase-Mediated Polymerization as a Platform for Dual-Mode Signal Amplification and Biodetection

    PubMed Central

    Berron, Brad J; Johnson, Leah M; Ba, Xiao; McCall, Joshua D; Alvey, Nicholas J; Anseth, Kristi S; Bowman, Christopher N

    2011-01-01

    We report the first use of a polymerization-based ELISA substrate solution employing enzymatically mediated radical polymerization as a dual-mode amplification strategy. Enzymes are selectively coupled to surfaces to generate radicals that subsequently lead to polymerization-based amplification (PBA) and biodetection. Sensitivity and amplification of the polymerization-based detection system were optimized in a microwell strip format using a biotinylated microwell surface with a glucose oxidase (GOx)–avidin conjugate. The immobilized GOx is used to initiate polymerization, enabling the detection of the biorecognition event visually or through the use of a plate reader. Assay response is compared to that of an enzymatic substrate utilizing nitroblue tetrazolium in a simplified assay using biotinylated wells. The polymerization substrate exhibits equivalent sensitivity (2 µg/mL of GOx-avidin) and over three times greater signal amplification than this traditional enzymatic substrate since each radical that is enzymatically generated leads to a large number of polymerization events. Enzyme-mediated polymerization proceeds in an ambient atmosphere without the need for external energy sources, which is an improvement upon previous PBA platforms. Substrate formulations are highly sensitive to both glucose and iron concentrations at the lowest enzyme concentrations. Increases in amplification time correspond to higher assay sensitivities with no increase in non-specific signal. Finally, the polymerization substrate generated a signal to noise ratio of 14 at the detection limit (156 ng/mL) in an assay of transforming growth factor-beta. Biotechnol. Bioeng. 2011; 108:1521–1528. © 2011 Wiley Periodicals, Inc. PMID:21337335

  20. Cupriavidus metallidurans biomineralization ability and its application as a bioconsolidation enhancer for ornamental marble stone.

    PubMed

    Daskalakis, Markos I; Magoulas, Antonis; Kotoulas, Georgios; Katsikis, Ioannis; Bakolas, Asterios; Karageorgis, Aristomenis P; Mavridou, Athena; Doulia, Danae; Rigas, Fotis

    2014-08-01

    Bacterially induced calcium carbonate precipitation of a Cupriavidus metallidurans isolate was investigated to develop an environmentally friendly method for restoration and preservation of ornamental stones. Biomineralization performance was carried out in a growth medium via a Design of Experiments (DoE) approach using, as design factors, the temperature, growth medium concentration, and inoculum concentration. The optimum conditions were determined with the aid of consecutive experiments based on response surface methodology (RSM) and were successfully validated thereafter. Statistical analysis can be utilized as a tool for screening bacterial bioprecipitation as it considerably reduced the experimental time and effort needed for bacterial evaluation. Analytical methods provided an insight to the biomineral characteristics, and sonication tests proved that our isolate could create a solid new layer of vaterite on marble substrate withstanding sonication forces. C. metallidurans ACA-DC 4073 provided a compact vaterite layer on the marble substrate with morphological characteristics that assisted in its differentiation. The latter proved valuable during spraying minimum amount of inoculated media on marble substrate under conditions close to an in situ application. A sufficient and clearly distinguishable layer was identified.

  1. Capsicum annuum transcription factor WRKYa positively regulates defense response upon TMV infection and is a substrate of CaMK1 and CaMK2.

    PubMed

    Huh, Sung Un; Lee, Gil-Je; Jung, Ji Hoon; Kim, Yunsik; Kim, Young Jin; Paek, Kyung-Hee

    2015-01-23

    Plants are constantly exposed to pathogens and environmental stresses. To minimize damage caused by these potentially harmful factors, plants respond by massive transcriptional reprogramming of various stress-related genes via major transcription factor families. One of the transcription factor families, WRKY, plays an important role in diverse stress response of plants and is often useful to generate genetically engineered crop plants. In this study, we carried out functional characterization of CaWRKYa encoding group I WRKY member, which is induced during hypersensitive response (HR) in hot pepper (Capsicum annuum) upon Tobacco mosaic virus (TMV) infection. CaWRKYa was involved in L-mediated resistance via transcriptional reprogramming of pathogenesis-related (PR) gene expression and affected HR upon TMV-P0 infection. CaWRKYa acts as a positive regulator of this defense system and could bind to the W-box of diverse PR genes promoters. Furthermore, we found Capsicum annuum mitogen-activated protein kinase 1 (CaMK1) and 2 (CaMK2) interacted with CaWRKYa and phosphorylated the SP clusters but not the MAPK docking (D)-domain of CaWRKYa. Thus, these results demonstrated that CaWRKYa was regulated by CaMK1 and CaMK2 at the posttranslational level in hot pepper.

  2. Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase

    PubMed Central

    Shaheen, Samina; Wan, Zhengpeng; Li, Zongyu; Chau, Alicia; Li, Xinxin; Zhang, Shaosen; Liu, Yang; Yi, Junyang; Zeng, Yingyue; Wang, Jing; Chen, Xiangjun; Xu, Liling; Chen, Wei; Wang, Fei; Lu, Yun; Zheng, Wenjie; Shi, Yan; Sun, Xiaolin; Li, Zhanguo; Xiong, Chunyang; Liu, Wanli

    2017-01-01

    The mechanosensing ability of lymphocytes regulates their activation in response to antigen stimulation, but the underlying mechanism remains unexplored. Here, we report that B cell mechanosensing-governed activation requires BCR signaling molecules. PMA-induced activation of PKCβ can bypass the Btk and PLC-γ2 signaling molecules that are usually required for B cells to discriminate substrate stiffness. Instead, PKCβ-dependent activation of FAK is required, leading to FAK-mediated potentiation of B cell spreading and adhesion responses. FAK inactivation or deficiency impaired B cell discrimination of substrate stiffness. Conversely, adhesion molecules greatly enhanced this capability of B cells. Lastly, B cells derived from rheumatoid arthritis (RA) patients exhibited an altered BCR response to substrate stiffness in comparison with healthy controls. These results provide a molecular explanation of how initiation of B cell activation discriminates substrate stiffness through a PKCβ-mediated FAK activation dependent manner. DOI: http://dx.doi.org/10.7554/eLife.23060.001 PMID:28755662

  3. Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.

    PubMed

    Sugi, Keiki; Hsieh, Paishiun N; Ilkayeva, Olga; Shelkay, Shamanthika; Moroney, Bridget; Baadh, Palvir; Haynes, Browning; Pophal, Megan; Fan, Liyan; Newgard, Christopher B; Prosdocimo, Domenick A; Jain, Mukesh K

    2018-01-01

    Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.

  4. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations†

    PubMed Central

    Rettie, Allan E.; Fowler, Douglas M.; Miners, John O.

    2017-01-01

    CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare ‘variants of uncertain significance’, which are increasingly detected as more exome and genome sequencing of diverse populations is conducted. PMID:29283396

  5. Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*

    PubMed Central

    Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela

    2009-01-01

    Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686

  6. In situ carbon turnover dynamics and the role of soil microorganisms therein: a climate warming study in an Alpine ecosystem.

    PubMed

    Djukic, Ika; Zehetner, Franz; Watzinger, Andrea; Horacek, Micha; Gerzabek, Martin H

    2013-01-01

    Litter decomposition represents one of the largest fluxes in the global terrestrial carbon cycle. The aim of this study was to improve our understanding of the factors governing decomposition in alpine ecosystems and how their responses to changing environmental conditions change over time. Our study area stretches over an elevation gradient of 1000 m on the Hochschwab massif in the Northern Limestone Alps of Austria. We used high-to-low elevation soil translocation to simulate the combined effects of changing climatic conditions, shifting vegetation zones, and altered snow cover regimes. In original and translocated soils, we conducted in situ decomposition experiments with maize litter and studied carbon turnover dynamics as well as temporal response patterns of the pathways of carbon during microbial decomposition over a 2-year incubation period. A simulated mean annual soil warming (through down-slope translocation) of 1.5 and 2.7 °C, respectively, resulted in a significantly accelerated turnover of added maize carbon. Changes in substrate quantity and quality in the course of the decomposition appeared to have less influence on the microbial community composition and its substrate utilization than the prevailing environmental/site conditions, to which the microbial community adapted quickly upon change. In general, microbial community composition and function significantly affected substrate decomposition rates only in the later stage of decomposition when the differentiation in substrate use among the microbial groups became more evident. Our study demonstrated that rising temperatures in alpine ecosystems may accelerate decomposition of litter carbon and also lead to a rapid adaptation of the microbial communities to the new environmental conditions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals.

    PubMed

    Wang, Jian; Yang, Pan; Wei, Xiaowei

    2015-02-18

    NiO nanocones decorated with ZnO nanothorns on NiO foil substrates are shown to be an ammonia sensor with excellent comprehensive performance, which could, in real-time, detect and monitor NH3 in the surrounding environment. Gas-sensing measurements indicate that assembling nanocones decorated with nanothorns on NiO foil substrate is an effective strategy for simultaneously promoting the stability, reproducibility, and sensitivity of the sensor, because the NiO foil substrate as a whole can quickly and stably transfer electrons between the gas molecules and the sensing materials and the large specific surface area of both nanocones and nanothorns provide good accessibility of the gas molecules to the sensing materials. Moreover, p-type NiO, with majority charge carriers of holes, has higher binding affinity for the electron-donating ammonia, resulting in a significant increase in selectivity toward NH3 over other organic gases. Compared with the NiO nanowires and pure NiO nanocones, the heterogeneous NiO nanocones/ZnO nanothorns exhibit less dependence on the temperature and humidity in response/recovery speed and sensitivity of sensing NH3. Our investigation indicates that two factors are responsible for reducing the dependence on the gas sensing characteristics under various environmental conditions. One is that the n-type ZnO nanothorns growing on the surface of nanocones, with majority charge carriers of electrons, speed up adsorption and desorption of gas molecules. The other is that the abundant cone-shaped and thornlike superstructures on the substrate are favorable for constructing a hydrophobic surface, which prevents the gas sensing material from being wetted.

  8. Response of nematode-trapping fungi to organic substrates in a coastal grassland soil.

    PubMed

    Nguyen, Vi L; Bastow, Justin L; Jaffee, Bruce A; Strong, Don R

    2007-07-01

    To understand why Arthrobotrys oligospora and other nematode-trapping fungi are common and sometimes abundant in the coastal grassland soils of the Bodega Marine Reserve (BMR, Sonoma County, CA), we examined how resident trapping fungi responded to the addition of eight organic substrates (lupine leaves, grass leaves, dead isopods, dead moth larvae, isopod faeces, deer faeces, shrimp shells, and powdered chitin). We were especially interested in the effects of dead isopods because isopods are abundant at BMR and because previous studies had documented strong responses of A. oligospora to other arthropods (dead moth larvae). Soil from BMR was packed into vials (40 g dry mass equivalent per vial with water potential at -230 kPa and bulk density at 0.9 gcm(-3)), and one substrate or no substrate was added to the soil surface. After 30 d at 20 degrees C, trapping fungi were quantified by dilution plating and most probable number procedures. The response of A. oligospora was inversely related to substrate carbon:nitrogen (C:N) ratio: substrates with low C:N ratios (dead isopods, lupine leaves, dead moth larvae) usually caused large increases in A. oligospora whereas those with higher C:N ratios (isopod faeces, deer faeces, grass leaves) did not. An exception was chitin powder, which had a low C:N ratio, but which did not cause A. oligospora to proliferate. Responses of A. oligospora were directly related to the quantity of nitrogen added with each substrate, and those substrates that caused large increases in resident nematodes usually caused large increases in A. oligospora. Other trapping fungi did not respond as strongly as A. oligospora.

  9. Enhancement of local piezoelectric properties of a perforated ferroelectric thin film visualized via piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Ivanov, M. S.; Sherstyuk, N. E.; Mishina, E. D.; Khomchenko, V. A.; Tselev, A.; Mukhortov, V. M.; Paixão, J. A.; Kholkin, A. L.

    2017-10-01

    The local piezoresponse in a Ba0.8Sr0.2TiO3 epitaxial ferroelectric film perforated by cylindrical channels has been investigated experimentally by means of piezoresponse force microscopy (PFM). A large enhancement of the effective values for both lateral and vertical components of piezoelectric tensor was experimentally detected in the perforated film as compared to non-perforated structure—by a factor of 8 for the lateral and by a factor 2 for the vertical piezoresponse. This result is consistent with the previously reported enhancement of the optical second harmonic generation over perforated films observed in macroscopic experiments. We assume that a possible mechanism for the increased PFM response is due to reduction of stress and clamping in the film imposed by the substrate. The obtained insight is critical for understanding nanoscale piezo- and ferroelectric responses in photonic crystals fabricated by focused ion beam milling.

  10. Enhancement of fructosyltransferase and fructooligosaccharides production by A. oryzae DIA-MF in Solid-State Fermentation using aguamiel as culture medium.

    PubMed

    Muñiz-Márquez, Diana B; Contreras, Juan C; Rodríguez, Raúl; Mussatto, Solange I; Teixeira, José A; Aguilar, Cristóbal N

    2016-08-01

    The aim of this work was to improve the production of fructosyltransferase (FTase) by Solid-State Fermentation (SSF) using aguamiel (agave sap) as culture medium and Aspergillus oryzae DIA-MF as producer strain. SSF was carried out evaluating the following parameters: inoculum rate, incubation temperature, initial pH and packing density to determine the most significant factors through Box-Hunter and Hunter design. The significant factors were then further optimized using a Box-Behnken design and response surface methodology. The maximum FTase activity (1347U/L) was obtained at 32°C, using packing density of 0.7g/cm(3). Inoculum rate and initial pH had no significant influence on the response. FOS synthesis applying the enzyme produced by A. oryzae DIA-MF was also studied using aguamiel as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Acute suppression of spontaneous neurotransmission drives synaptic potentiation.

    PubMed

    Nosyreva, Elena; Szabla, Kristen; Autry, Anita E; Ryazanov, Alexey G; Monteggia, Lisa M; Kavalali, Ege T

    2013-04-17

    The impact of spontaneous neurotransmission on neuronal plasticity remains poorly understood. Here, we show that acute suppression of spontaneous NMDA receptor-mediated (NMDAR-mediated) neurotransmission potentiates synaptic responses in the CA1 regions of rat and mouse hippocampus. This potentiation requires protein synthesis, brain-derived neurotrophic factor expression, eukaryotic elongation factor-2 kinase function, and increased surface expression of AMPA receptors. Our behavioral studies link this same synaptic signaling pathway to the fast-acting antidepressant responses elicited by ketamine. We also show that selective neurotransmitter depletion from spontaneously recycling vesicles triggers synaptic potentiation via the same pathway as NMDAR blockade, demonstrating that presynaptic impairment of spontaneous release, without manipulation of evoked neurotransmission, is sufficient to elicit postsynaptic plasticity. These findings uncover an unexpectedly dynamic impact of spontaneous glutamate release on synaptic efficacy and provide new insight into a key synaptic substrate for rapid antidepressant action.

  12. Ecm33 is a novel factor involved in efficient glucose uptake for nutrition-responsive TORC1 signaling in yeast.

    PubMed

    Umekawa, Midori; Ujihara, Masato; Nakai, Daiki; Takematsu, Hiromu; Wakayama, Mamoru

    2017-11-01

    Glucose uptake is crucial for providing both an energy source and a signal that regulates cell proliferation. Therefore, it is important to clarify the mechanisms underlying glucose uptake and its transmission to intracellular signaling pathways. In this study, we searched for a novel regulatory factor involved in glucose-induced signaling by using Saccharomyces cerevisiae as a eukaryotic model. Requirement of the extracellular protein Ecm33 in efficient glucose uptake and full activation of the nutrient-responsive TOR kinase complex 1 (TORC1) signaling pathway is shown. Cells lacking Ecm33 elicit a series of starvation-induced pathways even in the presence of extracellular high glucose concentration. This results in delayed cell proliferation, reduced ATP, induction of autophagy, and dephosphorylation of the TORC1 substrates Atg13 and Sch9. © 2017 Federation of European Biochemical Societies.

  13. Microbial 7α-Hydroxylation of 3-Ketobisnorcholenol

    PubMed Central

    Despreaux, Carl W.; Rittweger, Karen R.; Palleroni, Norberto J.

    1986-01-01

    The transformation of 22-hydroxy-23,24-bisnorchol-4-en-3-one to 7α-22-dihydroxy-23,24-bisnorchol-4-en-3-one by Botryodiploida theobromae, Lasiodiplodia theobromae, and various Botryosphaeria strains is described. Factors affecting the reaction were incubation temperature, sonication of the substrate, and addition of 2,2′-dipyridyl, extra carbohydrate, and Amberlite XAD-7. The enzyme responsible for the reaction appeared to be very specific and was not characteristic of all members of the genera listed above. PMID:16347069

  14. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants.

    PubMed

    Abdulmajeed, Aous A; Kokkari, Anne K; Käpylä, Jarmo; Massera, Jonathan; Hupa, Leena; Vallittu, Pekka K; Närhi, Timo O

    2014-01-01

    This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.

  15. Trait Characteristics Determine Pyrethroid Sensitivity in Nonstandard Test Species of Freshwater Macroinvertebrates: A Reality Check.

    PubMed

    Wiberg-Larsen, Peter; Graeber, Daniel; Kristensen, Esben A; Baattrup-Pedersen, Annette; Friberg, Nikolai; Rasmussen, Jes J

    2016-05-17

    We exposed 34 species of stream macroinvertebrates, representing 29 families, to a 90 min pulse of the pyrethroid λ-cyhalothrin. For 28 of these species, no pyrethroid ecotoxicity data exist. We recorded mortality rates 6 days post-exposure, and the behavioral response to pyrethroid exposure was recorded using automated video tracking. Most arthropod species showed mortality responses to the exposure concentrations (0.01-10 μg L(-1)), whereas nonarthropod species remained unaffected. LC50 varied by at least a factor of 1000 among arthropod species, even within the same family. This variation could not be predicted using ecotoxicity data from closely related species, nor using species-specific indicator values from traditional ecological quality indices. Moreover, LC50 was not significantly correlated to effect thresholds for behavioral responses. Importantly, however, the measured surface area-weight ratio and the preference for coarse substrates significantly influenced the LC50 for arthropod species, with the combination of small individuals and strong preference for coarse substrates indicating higher pyrethroid sensitivity. Our study highlights that existing pesticide ecotoxicity data should be extrapolated to untested species with caution and that actual body size (not maximum potential body size, as is usually available in traits databases) and habitat preference are central parameters determining species sensitivities to pyrethroids.

  16. Automated cassette-to-cassette substrate handling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and amore » processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.« less

  17. Investigating the interplay between substrate stiffness and ligand chemistry in directing mesenchymal stem cell differentiation within 3D macro-porous substrates.

    PubMed

    Haugh, Matthew G; Vaughan, Ted J; Madl, Christopher M; Raftery, Rosanne M; McNamara, Laoise M; O'Brien, Fergal J; Heilshorn, Sarah C

    2018-07-01

    Dimensionality can have a profound impact on stiffness-mediated differentiation of mesenchymal stem cells (MSCs). However, while we have begun to understand cellular response when encapsulated within 3D substrates, the behavior of cells within macro-porous substrates is relatively underexplored. The goal of this study was to determine the influence of macro-porous topographies on stiffness-mediated differentiation of MSCs. We developed macro-porous recombinant elastin-like protein (ELP) substrates that allow independent control of mechanical properties and ligand chemistry. We then used computational modeling to probe the impact of pore topography on the mechanical stimulus that cells are exposed to within these substrates, and finally we investigated stiffness induced biases towards adipogenic and osteogenic differentiation of MSCs within macro-porous substrates. Computational modeling revealed that there is significant heterogeneity in the mechanical stimuli that cells are exposed to within porous substrates and that this heterogeneity is predominantly due to the wide range of possible cellular orientations within the pores. Surprisingly, MSCs grown within 3D porous substrates respond to increasing substrate stiffness by up-regulating both osteogenesis and adipogenesis. These results demonstrate that within porous substrates the behavior of MSCs diverges from previously observed responses to substrate stiffness, emphasizing the importance of topography as a determinant of cellular behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Catalytic Function of Enzymes.

    ERIC Educational Resources Information Center

    Splittgerber, Allan G.

    1985-01-01

    Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…

  19. Lithography-Free Fabrication of Reconfigurable Substrate Topography For Contact Guidance

    PubMed Central

    Pholpabu, Pitirat; Kustra, Stephen; Wu, Haosheng; Balasubramanian, Aditya; Bettinger, Christopher J.

    2014-01-01

    Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bi-layer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm, Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A|| = 483.6 ± 7.8 nm and λ|| = 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥ = 429.3 ± 5.8 nm; λ⊥ = 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions. PMID:25468368

  20. Gravity Persistent Signal 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism.

    PubMed

    Withers, John C; Shipp, Matthew J; Rupasinghe, Sanjeewa G; Sukumar, Poornima; Schuler, Mary A; Muday, Gloria K; Wyatt, Sarah E

    2013-01-01

    Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions. Thermal asymmetric interlaced (TAIL) PCR was used to identify the gene defective in gps1. Gene expression data, molecular modeling and computational substrate dockings, quantitative RT-PCR analyses, reporter gene fusions, and physiological analyses of knockout mutants were used to characterize the genes identified. Cloning of the gene defective in gps1 and genetic complementation revealed that GPS1 encodes CYP705A22, a cytochrome P450 monooxygenase (P450). CYP705A5, a closely related family member, was identified as expressed specifically in roots in response to gravistimulation, and a mutation affecting its expression resulted in a delayed gravity response, increased flavonol levels, and decreased basipetal auxin transport. Molecular modeling coupled with in silico substrate docking and diphenylboric acid 2-aminoethyl ester (DBPA) staining indicated that these P450s are involved in biosynthesis of flavonoids potentially involved in auxin transport. The characterization of two novel P450s (CYP705A22 and CYP705A5) and their role in the gravity response has offered new insights into the regulation of the genetic and physiological controls of plant gravitropism.

  1. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates

    PubMed Central

    Syed, Sana; Schober, Joseph; Blanco, Alexandra

    2017-01-01

    Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP) dishes, which are flat, 2-dimensional (2D) and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments. In particular, biomaterial stiffness has emerged as a key property that greatly affects cell behaviors such as adhesion, morphology, proliferation and motility among others. Here we ask whether cells that have been conditioned to TCP, would still show significant dependence on substrate stiffness if they are first pre-adapted to a more physiologically relevant environment. We used two commonly utilized breast cancer cell lines, namely MDA-MB-231 and MCF-7, and examined the effect of prolonged cell culturing on polyacrylamide substrates of varying compliance. We followed changes in cell adhesion, proliferation, shape factor, spreading area and spreading rate. After pre-adaptation, we noted diminished differences in cell behaviors when comparing between soft (1 kPa) and stiff (103 kPa) gels as well as rigid TCP control. Prolonged culturing of cells on complaint substrates further influenced responses of pre-adapted cells when transferred back to TCP. Our results have implications for the study of stiffness-dependent cell behaviors and indicate that cell pre-adaptation to the substrate needs consideration. PMID:29136040

  2. Dipeptidyl peptidase IV activity and/or structure homologs: Contributing factors in the pathogenesis of rheumatoid arthritis?

    PubMed Central

    Sedo, Aleksi; Duke-Cohan, Jonathan S; Balaziova, Eva; Sedova, Liliana R

    2005-01-01

    Several of the proinflammatory peptides involved in rheumatoid arthritis pathogenesis, including peptides induced downstream of tumor necrosis factor-α as well as the monocyte/T cell-attracting chemokines RANTES and stromal cell-derived factor (SDF)-1α and the neuropeptides vasoactive intestinal peptide (VIP) and substance P, have their biological half-lives controlled by dipeptidyl peptidase IV (DPPIV). Proteolysis by DPPIV regulates not only the half-life but also receptor preference and downstream signaling. In this article, we examine the role of DPPIV homologs, including CD26, the canonical DPPIV, and their substrates in the pathogenesis of rheumatoid arthritis. The differing specific activities of the DPPIV family members and their differential inhibitor response provide new insights into therapeutic design. PMID:16277701

  3. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    NASA Astrophysics Data System (ADS)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  4. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less

  5. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE PAGES

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...

    2015-07-07

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less

  6. Peptides derived from transcription factor EB bind to calcineurin at a similar region as the NFAT-type motif

    PubMed Central

    Song, Ruiwen; Li, Jing; Zhang, Jin; Wang, Lu; Tong, Li; Wang, Ping; Yang, Huan; Wei, Qun; Cai, Huaibin; Luo, Jing

    2018-01-01

    Calcineurin (CN) is involved in many physiological processes and interacts with multiple substrates. Most of the substrates contain similar motifs recognized by CN. Recent studies revealed a new CN substrate, transcription factor EB (TFEB), which is involved in autophagy. We showed that a 15-mer QSYLENPTSYHLQQS peptide from TFEB (TFEB-YLENP) bound to CN. When the TFEB-YLENP peptide was changed to YLAVP, its affinity for CN increased and it had stronger CN inhibitory activity. Molecular dynamics simulations revealed that the TFEB-YLENP peptide has the same docking sites in CN as the 15-mer DQYLAVPQHPYQWAK motif of the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1-YLAVP). Moreover expression of the NFATc1-YLAVP peptide suppressed the TFEB activation in starved Hela cells. Our studies first identified a CN binding site in TFEB and compared the inhibitory capability of various peptides derived from CN substrates. The data uncovered a diversity in recognition sequences that underlies the CN signaling within the cell. Studies of CN-substrate interactions should lay the groundwork for developing selective CN peptide inhibitors that target CN-substrate interaction in vitro experiments. PMID:28890387

  7. A critical review on factors influencing fermentative hydrogen production.

    PubMed

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  8. Plastic Responses of a Sessile Prey to Multiple Predators: A Field and Experimental Study

    PubMed Central

    Hirsch, Philipp Emanuel; Cayon, David; Svanbäck, Richard

    2014-01-01

    Background Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs. Principal Findings We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish) and a gape-size-limited (roach) predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength) against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density. Conclusions Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild. PMID:25517986

  9. Effects of temperature on microbial transformation of organic matter - comparing stories told by purified enzyme assays, chemostat experiments and soils

    NASA Astrophysics Data System (ADS)

    Lehmeier, C.; Min, K.; Good, H. J.; Billings, S. A.

    2015-12-01

    Temperature (T) is a major determinant of microbial decomposition of soil organic matter (SOM). Quantifying T responses of microbial C fluxes is crucial to improve predictions of SOM dynamics and atmospheric CO2 concentrations, but interpretation of experimental data is complicated by many properties inherent to soils. Comparing such data with complementary, reductionist experiments can help to identify basic mechanisms and interpret soil measurements. We quantified T effects on activity levels (i.e., rates of substrate cleavage) of microbial extracellular enzymes β-glucosidase (BGase) and β-N-acetyl glucosaminidase (NAGase), and on rates of CO2 efflux in soil incubations. We compare the results to those derived from purified enzyme assays, and to measurements of microbial respiration rates in continuous-flow chemostat culture in which a population of the soil bacterium Pseudomonas fluorescens was grown on medium with similar C:N ratio as the incubated SOM (10:1). Activity levels of both BGase and NAGase decreased by 80% between 25 and 5 °C. These T responses were higher than predictions from intrinsic (i.e., maximum) T responses in purified assays of BGase (minus 50%) and NAGase (minus 67%). This suggests that factors like physical access to substrate or reduced microbial production of enzymes constrained substrate decomposition rates in the soils relatively more at low than at high T. In chemostats, (mass-)specific bacterial respiration rate at T 14.5 °C was 50% of the rate observed at 26.5 °C; in contrast, CO2 efflux from the soil incubations decreased by only ~25% from 25 to 15 °C. The reason for this discrepancy can be manifold, including changes in microbial community composition, but results from ongoing measurements of microbial biomass in the soil samples will allow a closer comparison of these respiration rate responses. Our efforts highlight the significance of experimenting across scales and complexity for a better understanding of SOM dynamics.

  10. An allosteric disulfide bond is involved in enhanced activation of factor XI by protein disulfide isomerase.

    PubMed

    Zucker, M; Seligsohn, U; Yeheskel, A; Mor-Cohen, R

    2016-11-01

    Essentials Reduction of three disulfide bonds in factor (F) XI enhances chromogenic substrate cleavage. We measured FXI activity upon reduction and identified a bond involved in the enhanced activity. Reduction of FXI augments FIX cleavage, probably by faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is responsible for FXI enhanced activation upon its reduction. Background Reduction of factor (F) XI by protein disulfide isomerase (PDI) has been shown to enhance the ability of FXI to cleave its chromogenic substrate. Three disulfide bonds in FXI (Cys118-Cys147, Cys362-Cys482, and Cys321-Cys321) are involved in this augmented activation. Objectives To characterize the mechanisms by which PDI enhances FXI activity. Methods FXI activity was measured following PDI reduction. Thiols that were exposed in FXI after PDI reduction were labeled with 3-(N-maleimidopropionyl)-biocytin (MPB) and detected with avidin. The rate of conversion of FXI to activated FXI (FXIa) following thrombin activation was assessed with western blotting. FXI molecules harboring mutations that disrupt the three disulfide bonds (C147S, C321S, and C482S) were expressed in cells. The antigenicity of secreted FXI was measured with ELISA, and its activity was assessed by the use of a chromogenic substrate. The effect of disulfide bond reduction was analyzed by the use of molecular dynamics. Results Reduction of FXI by PDI enhanced cleavage of both its chromogenic substrate, S2366, and its physiologic substrate, FIX, and resulted in opening of the Cys362-Cys482 bond. The rate of conversion of FXI to FXIa was increased following its reduction by PDI. C482S-FXI showed enhanced activity as compared with both wild-type FXI and C321S-FXI. MD showed that disruption of the Cys362-Cys482 bond leads to a broader thrombin-binding site in FXI. Conclusions Reduction of FXI by PDI enhances its ability to cleave FIX, probably by causing faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is involved in enhancing FXI activation following its reduction, possibly by increasing thrombin accessibility to FXI. © 2016 International Society on Thrombosis and Haemostasis.

  11. Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen

    2016-01-01

    Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.

  12. Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography.

    PubMed

    Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen

    2016-01-08

    Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.

  13. Experimental Identification of Ultrafast Reverse Hole Transfer at the Interface of the Photoexcited Methanol/Graphitic Carbon Nitride System.

    PubMed

    Chen, Zongwei; Zhang, Qun; Luo, Yi

    2018-05-04

    An experimental scrutiny of the photoexcited hole dynamics in a prototypical system is presented in which hole-scavenging methanol molecules are chemisorbed on a graphitic carbon nitride (g-C 3 N 4 ) substrate. A set of comparison and control experiments by means of femtosecond time-resolved transient absorption (fs-TA) spectroscopy were conducted. The elusive reverse hole transfer (RHT) process was identified, which occurs on a timescale of a few hundred picoseconds. The critical role of interfacially chemisorbed methoxy (instead of methanol) as the dominant species responsible for hole scavenging was confirmed by a control experiment using protonated g-C 3 N 4 as the substrate. A hot-hole transfer effect was revealed by implementing different interband photoexcitation scenarios. The RHT rate is the key factor governing the hole-scavenging ability of different hole scavengers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process

    PubMed Central

    Zhang, Qiuzhuo; Weng, Chen; Huang, Huiqin; Achal, Varenyam; Wang, Duanchao

    2016-01-01

    Water hyacinth was used as substrate for bioethanol production in the present study. Combination of acid pretreatment and enzymatic hydrolysis was the most effective process for sugar production that resulted in the production of 402.93 mg reducing sugar at optimal condition. A regression model was built to optimize the fermentation factors according to response surface method in saccharification and fermentation (SSF) process. The optimized condition for ethanol production by SSF process was fermented at 38.87°C in 81.87 h when inoculated with 6.11 ml yeast, where 1.291 g/L bioethanol was produced. Meanwhile, 1.289 g/L ethanol was produced during experimentation, which showed reliability of presented regression model in this research. The optimization method discussed in the present study leading to relatively high bioethanol production could provide a promising way for Alien Invasive Species with high cellulose content. PMID:26779125

  15. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria

    PubMed Central

    Tsai, Yi-Chin Candace; Lapina, Maria Claribel; Bhushan, Shashi; Mueller-Cajar, Oliver

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans. Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco's shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation. PMID:26567524

  16. Seedling regeneration in the alpine treeline ecotone: Comparison of wood microsites and adjacent soil substrates

    Treesearch

    Adelaide Chapman Johnson; J. Alan Yeakley

    2016-01-01

    Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates...

  17. Towards Predicting Basin-Wide Invertebrate Organic Biomass and Production in Marine Sediments from a Coastal Sea

    PubMed Central

    Burd, Brenda J.; Macdonald, Tara A.; van Roodselaar, Albert

    2012-01-01

    Detailed knowledge of environmental conditions is required to understand faunal production in coastal seas with topographic and hydrographic complexity. We test the hypothesis that organic biomass and production of subtidal sediment invertebrates throughout the Strait of Georgia, west coast of Canada, can be predicted by depth, substrate type and organic flux modified to reflect lability and age of material. A basin-wide database of biological, geochemical and flux data was analysed using an empirical production/biomass (P/B) model to test this hypothesis. This analysis is unique in the spatial extent and detail of P/B and concurrent environmental measurements over a temperate coastal region. Modified organic flux was the most important predictor of organic biomass and production. Depth and substrate type were secondary modifiers. Between 69–74% of variability in biomass and production could be explained by the combined environmental factors. Organisms <1 mm were important contributors to biomass and production primarily in shallow, sandy sediments, where high P/B values were found despite low organic flux. Low biomass, production, and P/B values were found in the deep, northern basin and mainland fjords, which had silty sediments, low organic flux, low biomass of organisms <1 mm, and dominance by large, slow-growing macrofauna. In the highest organic flux and biomass areas near the Fraser River discharge, production did not increase beyond moderate flux levels. Although highly productive, this area had low P/B. Clearly, food input is insufficient to explain the complex patterns in faunal production revealed here. Additional environmental factors (depth, substrate type and unmeasured factors) are important modifiers of these patterns. Potential reasons for the above patterns are explored, along with a discussion of unmeasured factors possibly responsible for unexplained (30%) variance in biomass and production. We now have the tools for basin-wide first-order estimates of sediment invertebrate production. PMID:22792267

  18. Giant Dirac point shift of graphene phototransistors by doped silicon substrate current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimatani, Masaaki; Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke

    2016-03-15

    Graphene is a promising new material for photodetectors due to its excellent optical properties and high-speed response. However, graphene-based phototransistors have low responsivity due to the weak light absorption of graphene. We have observed a giant Dirac point shift upon white light illumination in graphene-based phototransistors with n-doped Si substrates, but not those with p-doped substrates. The source-drain current and substrate current were investigated with and without illumination for both p-type and n-type Si substrates. The decay time of the drain-source current indicates that the Si substrate, SiO{sub 2} layer, and metal electrode comprise a metal-oxide-semiconductor (MOS) capacitor due tomore » the presence of defects at the interface between the Si substrate and SiO{sub 2} layer. The difference in the diffusion time of the intrinsic major carriers (electrons) and the photogenerated electron-hole pairs to the depletion layer delays the application of the gate voltage to the graphene channel. Therefore, the giant Dirac point shift is attributed to the n-type Si substrate current. This phenomenon can be exploited to realize high-performance graphene-based phototransistors.« less

  19. Bacterial Polymertropism, the Response to Strain-Induced Alignment of Polymers

    NASA Astrophysics Data System (ADS)

    Lemon, David J.

    In nature, bacteria often live in surface-associated communities known as biofilms. Biofilm-forming bacteria deposit a layer of polysaccharide on the surfaces they inhabit; hence, polysaccharide is their immediate environment on any surface. In this study, we examined how the physical characteristics of polysaccharide substrates influence the behavior of the biofilm-forming bacterium Myxococcus xanthus. M. xanthus colonies, and indeed those of the majority of biofilm-forming species tested, respond to the compression-induced deformation of polysaccharide substrates by preferentially spreading across the surface perpendicular to the axis of compression. This response is conserved across multiple distantly related phyla and is found in species with an array of distinct motility apparatuses.The birefringence and small angle X-ray scattering patterns of compressed polysaccharide substrates indicate that the directed surface movements of these bacteria consistently match the orientation of the long axes of aligned and tightly packed polysaccharide fibers in compressed substrates. Therefore, we refer to this behavior as polymertropism to denote that the directed movements are a response to the physical arrangement of the change in packing and alignment of the polymers in the substrate. In addition to altering the colony morphology we find the behavior of groups of cells, called flares, is also affected in several species resulting in increased flare speed, duration, and displacement on compressed gel substrates.We suggest that polymertropism, which requires a downward-facing motility apparatus in M. xanthus, may be responsible for the observed tendency of bacterial cells to follow trails of extruded and presumably aligned polysaccharides, which their neighbors secrete and deposit on the substrate as they move across it. Polymertropism may also play a role in the organization of bacteria in a biofilm, as the iterative process of polysaccharide trail deposition and following is proposed to yield aggregates of cells.

  20. Identification of linear and threshold responses in streams along a gradient of urbanization in Anchorage, Alaska

    USGS Publications Warehouse

    Ourso, R.T.; Frenzel, S.A.

    2003-01-01

    We examined biotic and physiochemical responses in urbanized Anchorage, Alaska, to the percent of impervious area within stream basins, as determined by high-resolution IKONOS satellite imagery and aerial photography. Eighteen of the 86 variables examined, including riparian and instream habitat, macroinvertebrate communities, and water/sediment chemistry, were significantly correlated with percent impervious area. Variables related to channel condition, instream substrate, water chemistry, and residential and transportation right-of-way land uses were identified by principal components analysis as significant factors separating site groups. Detrended canonical correspondence analysis indicated that the macroinvertebrate communities responded to an urbanization gradient closely paralleling the percent of impervious area within the subbasin. A sliding regression analysis of variables significantly correlated with percent impervious area revealed 8 variables exhibiting threshold responses that correspond to a mean of 4.4-5.8% impervious area, much lower than mean values reported in other, similar investigations. As contributing factors to a subbasin's impervious area, storm drains and roads appeared to be important elements influencing the degradation of water quality with respect to the biota.

  1. Enzymatic mechanisms of soil-carbon response to temperature on Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov

    2016-04-01

    Short-term acceleration of soil organic matter (SOM) decomposition by increasing temperature contradicts the acclimation observed in long-term studies. We used the unique altitudinal gradient (from colline tropical zone to subalpine zone) on Mt. Kilimanjaro to demonstrate the mechanisms of short- and long-term acclimation of extra- and intracellular enzymes that decompose polymers (cellulose, chitin, phytate) and oxidize monomers (14C-glucose). Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation

  2. Effects of multiple enzyme-substrate interactions in basic units of cellular signal processing

    NASA Astrophysics Data System (ADS)

    Seaton, D. D.; Krishnan, J.

    2012-08-01

    Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme-substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme-substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein-protein interactions are important in determining the signalling properties of enzymatic signalling pathways.

  3. Swimming behaviour of the upside-down swimming catfish ( Synodontis nigriventris) at high-quality microgravity - A drop-tower experiment

    NASA Astrophysics Data System (ADS)

    Anken, R.; Hilbig, R.

    2009-07-01

    The catfish Synodontis nigriventris often shows a unique swimming behaviour in being oriented upside-down. When swimming near a (e.g., vertical) substrate, however, the animals orient themselves with their ventral side towards this substrate. This tendency is called ventral substrate response (VSR). The VSR does not only override the upside-down swimming behaviour but also the dorsal light response and the ventral light response. In the course of an earlier drop-tower experiment performed at ZARM (Bremen, Germany) using cichlid fish ( Oreochromis mossambicus), we had observed that about 90% of the animals revealed sensorimotor disorders (kinetotic swimming) due to the almost complete lack of gravity as a cue for orientation. In order to further assess the importance of the VSR for postural control in S. nigriventris when being located near a substrate, we subjected catfish in relatively small chambers to drop-tower flights. In contrast to our results regarding cichlid fish, S. nigriventris showed no kinetotic behaviour. This clearly suggests that the VSR overrides even vestibular input and possibly represents the most important single behavioural response in this species.

  4. Plastid intramembrane proteolysis.

    PubMed

    Adam, Zach

    2015-09-01

    Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has not surpassed plant biology. Nevertheless, reports on RIP in plants, and especially in chloroplasts, are still scarce. Of the four different families of intramembrane proteases, only two have been linked to chloroplasts so far, rhomboids and site-2 proteases (S2Ps). The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology, probably due to perturbations in jasmonic acid biosynthesis, which occurs in chloroplasts. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development, through a yet unknown mechanism. To date, the only known substrate of RIP in chloroplasts is a PHD transcription factor, located in the envelope. Upon proteolytic cleavage by an unknown protease, the soluble N-terminal domain of this protein is released from the membrane and relocates to the nucleus, where it activates the transcription of the ABA response gene ABI4. Continuing studies on these proteases and substrates, as well as identification of the genes responsible for different chloroplast mutant phenotypes, are expected to shed more light on the roles of intramembrane proteases in chloroplast biology. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bi-functional, substrate mimicking RNA inhibits MSK1-mediated cAMP-response element-binding protein phosphorylation and reveals magnesium ion-dependent conformational changes of the kinase.

    PubMed

    Hamm, Jorg; Alessi, Dario R; Biondi, Ricardo M

    2002-11-29

    The design of specific inhibitors for protein kinases is an important step toward elucidation of intracellular signal transduction pathways and to guide drug discovery programs. We devised a model approach to generate specific, competitive kinase inhibitors by isolating substrate mimics containing two independent binding sites with an anti-idiotype strategy from combinatorial RNA libraries. As a general test for the ability to generate highly specific kinase inhibitors, we selected the transcription factor cAMP-response element-binding protein (CREB) that is phosphorylated on the same serine residue by the protein kinase MSK1 as well as by RSK1. The sequences and structures of these kinases are very similar, about 60% of their amino acids are identical. Nevertheless, we can demonstrate that the selected RNA inhibitors inhibit specifically CREB phosphorylation by MSK1 but do not affect CREB phosphorylation by RSK1. The inhibitors interact preferentially with the inactive form of MSK1. Furthermore, we demonstrate that RNA ligands can be conformation-specific probes, and this feature allowed us to describe magnesium ion-dependent conformational changes of MSK1 upon activation.

  6. Improved cellulase production by Botryosphaeria rhodina from OPEFB at low level moisture condition through statistical optimization.

    PubMed

    Bahrin, E K; Ibrahim, M F; Abd Razak, M N; Abd-Aziz, S; Shah, U K Md; Alitheen, N; Salleh, M Md

    2012-01-01

    The response surface method was applied in this study to improve cellulase production from oil palm empty fruit bunch (OPEFB) by Botryosphaeria rhodina. An experimental design based on a two-level factorial was employed to screen the significant environmental factors for cellulase production. The locally isolated fungus Botryosphaeria rhodina was cultivated on OPEFB under solid-state fermentation (SSF). From the analysis of variance (ANOVA), the initial moisture content, amount of substrate, and initial pH of nutrient supplied in the SSF system significantly influenced cellulase production. Then the optimization of the variables was done using the response surface method according to central composite design (CCD). Botryosphaeria rhodina exhibited its best performance with a high predicted value of FPase enzyme production (17.95 U/g) when the initial moisture content was at 24.32%, initial pH of nutrient was 5.96, and 3.98 g of substrate was present. The statistical optimization from actual experiment resulted in a significant increment of FPase production from 3.26 to 17.91 U/g (5.49-fold). High cellulase production at low moisture content is a very rare condition for fungi cultured in solid-state fermentation.

  7. Response of sago pondweed, a submerged aquatic macrophyte, to herbicides in three laboratory culture systems

    USGS Publications Warehouse

    Fleming, W.J.; Ailstock, M.S.; Momot, J.J.; Norman, C.M.; Gorsuch, Joseph W.; Lower, William R.; Wang, Wun-cheng; Lewis, M.A.

    1991-01-01

    The phytotoxicity of atrazine, paraquat, glyphosate, and alachlor to sago pondweed (Potamogeton pectinatus), a submerged aquatic macrophyte, was tested under three types of laboratory culture conditions. In each case, tests were conducted in static systems, the test period was four weeks, and herbicide exposure was chronic, resulting from a single addition of herbicide to the test vessels at the beginning of the test period. The three sets of test conditions employed were(1) axenic cultures in 125-mL flasks containing a nutrient media and sucrose; (2) a microcosm system employing 18.9-L buckets containing a sand, shell, and peat substrate; and (3) an algae-free system employing O.95-L jars containing reconstituted freshwater and a nutrient agar substrate. The primary variable measured was biomass production. Plants grew well in all three test systems, with biomass of untreated plants increasing by a factor of about 5 to 6.5 during the four-week test period. Biomass production in response to herbicide exposure differed significantly among culture systems, which demonstrates the need for a standardized testing protocol for evaluating the effects of toxics on submerged aquatic plants.

  8. In Vitro Screening of Synthetic Fluorogenic Substrates for Detection of Cancer Procoagulant Activity.

    PubMed

    Krause, Jason; Frost, Carminita L

    2018-04-01

    Cancer procoagulant (CP), a direct activator of coagulation factor X, is among one of the tumour cell products or activities which may promote fibrin formation and has been suggested to be selectively associated with the malignant phenotype. At present, the most reliable assay for the quantification of CP activity is the three-stage chromogenic assay which utilises the ability of CP to activate factor X. In this assay, the activation of factor X leads to the formation of activated thrombin from prothrombin and the eventual hydrolyses of a thrombin chromogenic substrate which contains a p-nitroaniline leaving group. The complexity of the three-stage chromogenic assay suggests a need for a direct method of assaying CP activity. This study focuses on the design of a fluorogenic substrate that would enable the direct quantification of CP activity. The results of the study show two promising substrates for the determination of CP activity: Boc-PQVR-AMC and PQVR-AMC. Further analysis showed that Boc-PQVR-AMC could be excluded as a potential substrate for CP since it was also cleaved by collagenase.

  9. Fibroblast Growth Factor 8 Deficiency Compromises the Functional Response of the Serotonergic System to Stress

    PubMed Central

    Brooks, Leah R.; Pals, Heide L.; Enix, Courtney L.; Woolaver, Rachel A.; Paul, Evan D.; Lowry, Christopher A.; Tsai, Pei-San

    2014-01-01

    Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR), play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8). In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1) an exaggerated response of DR anxiety-promoting circuits and 2) a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity. PMID:24992493

  10. Fibroblast growth factor 8 deficiency compromises the functional response of the serotonergic system to stress.

    PubMed

    Brooks, Leah R; Pals, Heide L; Enix, Courtney L; Woolaver, Rachel A; Paul, Evan D; Lowry, Christopher A; Tsai, Pei-San

    2014-01-01

    Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR), play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8). In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1) an exaggerated response of DR anxiety-promoting circuits and 2) a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity.

  11. Net growth rate of continuum heterogeneous biofilms with inhibition kinetics.

    PubMed

    Gonzo, Elio Emilio; Wuertz, Stefan; Rajal, Veronica B

    2018-01-01

    Biofilm systems can be modeled using a variety of analytical and numerical approaches, usually by making simplifying assumptions regarding biofilm heterogeneity and activity as well as effective diffusivity. Inhibition kinetics, albeit common in experimental systems, are rarely considered and analytical approaches are either lacking or consider effective diffusivity of the substrate and the biofilm density to remain constant. To address this obvious knowledge gap an analytical procedure to estimate the effectiveness factor (dimensionless substrate mass flux at the biofilm-fluid interface) was developed for a continuum heterogeneous biofilm with multiple limiting-substrate Monod kinetics to different types of inhibition kinetics. The simple perturbation technique, previously validated to quantify biofilm activity, was applied to systems where either the substrate or the inhibitor is the limiting component, and cases where the inhibitor is a reaction product or the substrate also acts as the inhibitor. Explicit analytical equations are presented for the effectiveness factor estimation and, therefore, the calculation of biomass growth rate or limiting substrate/inhibitor consumption rate, for a given biofilm thickness. The robustness of the new biofilm model was tested using kinetic parameters experimentally determined for the growth of Pseudomonas putida CCRC 14365 on phenol. Several additional cases have been analyzed, including examples where the effectiveness factor can reach values greater than unity, characteristic of systems with inhibition kinetics. Criteria to establish when the effectiveness factor can reach values greater than unity in each of the cases studied are also presented.

  12. Intraspecific ploidy variation: A hidden, minor player in plant-soil-mycorrhizal fungi interactions.

    PubMed

    Sudová, Radka; Pánková, Hana; Rydlová, Jana; Münzbergová, Zuzana; Suda, Jan

    2014-01-01

    Genome duplication and arbuscular mycorrhizal (AM) symbiosis are ubiquitous in angiosperms. While the significance of each of these phenomena separately has been intensively studied, their interaction remains to be understood. Three diploid and three hexaploid populations of Aster amellus (Asteraceae) were characterized in terms of the soil conditions in situ and mycorrhizal root colonization. In a greenhouse experiment, the effects of ploidy level, substrate conditions, and AM fungi on plant performance were then separated by growing noninoculated plants or plants inoculated with AM fungi in substrates native to either the diploids or hexaploids. The diploids inhabited nutritionally richer sites but did not differ from hexaploid plants in the level of mycorrhizal root colonization in situ. In the experiment, hexaploids generally performed better than the diploids. This intercytotype growth difference was enhanced by soil fertility, with hexaploids benefiting more from nutritionally richer substrate than the diploids. AM inoculation was crucial for plant growth and phosphorus uptake. The interaction between ploidy level and AM inoculation significantly influenced only dry mass of roots, phosphorus concentrations in shoot biomass, and the length of the extraradical mycelium in the nonsterile substrates. Our results support the idea that polyploidy can affect the mycorrhizal growth response of host plants. Nevertheless, the effects of the interaction between ploidy and inoculation were weaker than the main effects of these factors.

  13. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior*

    PubMed Central

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki

    2016-01-01

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  14. Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2

    PubMed Central

    Andresen, Louise C.; Dungait, Jennifer A. J.; Bol, Roland; Selsted, Merete B.; Ambus, Per; Michelsen, Anders

    2014-01-01

    It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future changes in substrate availability and climatic factors. PMID:24454793

  15. User’s Guide for Biodegradation Reactions in TMVOCBio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yoojin; Battistelli, Alfredo

    TMVOCBio is an extended version of the TMVOC numerical reservoir simulator, with the capability of simulating multiple biodegradation reactions mediated by different microbial populations or based on different redox reactions, thus involving different electron acceptors. This modeling feature is implemented within the existing TMVOC module in iTOUGH2. TMVOCBio, originally developed by Battistelli (2003; 2004), uses a general modified form of the Monod kinetic rate equation to simulate biodegradation reactions, which effectively simulates the uptake of a substrate while accounting for various limiting factors (i.e., the limitation by substrate, electron acceptor, or nutrients). Two approaches are included: 1) a multiple Monodmore » kinetic rate equation, which assumes all the limiting factors simultaneously affect the substrate uptake rate, and 2) a minimum Monod model, which assumes that the substrate uptake rate is controlled by the most limiting factor among those acting for the specific substrate. As the limiting factors, biomass growth inhibition, toxicity effects, as well as competitive and non-competitive inhibition effects are included. The temperature and moisture dependence of biodegradation reactions is also considered. This report provides mathematical formulations and assumptions used for modeling the biodegradation reactions, and describes additional modeling capabilities. Detailed description of input format for biodegradation reactions is presented along with sample problems.« less

  16. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    PubMed

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  17. Gene expression of tumour necrosis factor and insulin signalling-related factors in subcutaneous adipose tissue during the dry period and in early lactation in dairy cows.

    PubMed

    Sadri, H; Bruckmaier, R M; Rahmani, H R; Ghorbani, G R; Morel, I; van Dorland, H A

    2010-10-01

    Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFα), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, β-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFα concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement. © 2010 Blackwell Verlag GmbH.

  18. The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate shift

    PubMed Central

    Gaya, Ester; Fernández-Brime, Samantha; Vargas, Reinaldo; Lachlan, Robert F.; Gueidan, Cécile; Ramírez-Mejía, Martín; Lutzoni, François

    2015-01-01

    Adaptive radiations play key roles in the generation of biodiversity and biological novelty, and therefore understanding the factors that drive them remains one of the most important challenges of evolutionary biology. Although both intrinsic innovations and extrinsic ecological opportunities contribute to diversification bursts, few studies have looked at the synergistic effect of such factors. Here we investigate the Teloschistales (Ascomycota), a group of >1,000 lichenized species with variation in species richness and phenotypic traits that hinted at a potential adaptive radiation. We found evidence for a dramatic increase in diversification rate for one of four families within this order—Teloschistaceae—which occurred ∼100 Mya (Late Cretaceous) and was associated with a switch from bark to rock and from shady to sun-exposed habitats. This adaptation to sunny habitats is likely to have been enabled by a contemporaneous key novel phenotypic innovation: the production in both vegetative structure (thallus) and fruiting body (apothecia) of anthraquinones, secondary metabolites known to protect against UV light. We found that the two ecological factors (sun exposure and rock substrate) and the phenotypic innovation (anthraquinones in the thallus) were all significant when testing for state-dependent shifts in diversification rates, and together they seem likely to be responsible for the success of the Teloschistaceae, one of the largest lichen-forming fungal lineages. Our results support the idea that adaptive radiations are driven not by a single factor or key innovation, but require a serendipitous combination of both intrinsic biotic and extrinsic abiotic and ecological factors. PMID:26324894

  19. [Preliminary assessment of habitat of juvenile Collichthys lucidus in the Yangtze estuary].

    PubMed

    Yang, Gang; Zhang, Tao; Zhuang, Ping; Hou, Jun-Li; Wang, Yu; Song, Chao; Zhang, Long-Zhen

    2014-08-01

    To evaluate the choice preference of fish habitat in the Yangtze estuary, juvenile Collichthys lucidus which is the dominant species in spring was selected. The 4 indicator factors, including abundance of Pseudograpsus albus, salinity, substrate type and water depth, were selected from 19 environmental factors. Then, the indices of the habitat suitability curves of the 4 indicator factors were established, and the HSI of juvenile C. lucidus at each site was calculated. The results indicated that HSI was almost more than 0.5 in North Branch, and less than 0.2 in South Branch. It showed that the North Branch of Yangtze estuary was the main nursery area of C. lucidus. The most suitable growth sector was the area with salinity more than 14, mean grain size of substrate less than 29 μm and water depth 2 to 5 m, which was consistent with the distribution of HSI. The study demonstrated that biological factors could be characterized by the response of juvenile C. lucidus to the environment. Chemical oxygen demand, ammonium nitrogen, total phosphorus and volatile phenol did not have significant correlation with the fish abundance, with which nitrite nitrogen, nitrate nitrogen and total nitrogen had significant positive correlation. It suggested that the eutrophication of the survey area had not damaged the habitat of C. lucidus. However, copper ion and cadmium ion had significant negative correlation with the fish abundance, which indicated that the heavy metal pollution had harmed the growth and distribution of juvenile C. lucidus. It was inferred that the heavy metal pollution was the restrictive factor influencing the fish habitat in Yangtze estuary.

  20. The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate shift.

    PubMed

    Gaya, Ester; Fernández-Brime, Samantha; Vargas, Reinaldo; Lachlan, Robert F; Gueidan, Cécile; Ramírez-Mejía, Martín; Lutzoni, François

    2015-09-15

    Adaptive radiations play key roles in the generation of biodiversity and biological novelty, and therefore understanding the factors that drive them remains one of the most important challenges of evolutionary biology. Although both intrinsic innovations and extrinsic ecological opportunities contribute to diversification bursts, few studies have looked at the synergistic effect of such factors. Here we investigate the Teloschistales (Ascomycota), a group of >1,000 lichenized species with variation in species richness and phenotypic traits that hinted at a potential adaptive radiation. We found evidence for a dramatic increase in diversification rate for one of four families within this order--Teloschistaceae--which occurred ∼ 100 Mya (Late Cretaceous) and was associated with a switch from bark to rock and from shady to sun-exposed habitats. This adaptation to sunny habitats is likely to have been enabled by a contemporaneous key novel phenotypic innovation: the production in both vegetative structure (thallus) and fruiting body (apothecia) of anthraquinones, secondary metabolites known to protect against UV light. We found that the two ecological factors (sun exposure and rock substrate) and the phenotypic innovation (anthraquinones in the thallus) were all significant when testing for state-dependent shifts in diversification rates, and together they seem likely to be responsible for the success of the Teloschistaceae, one of the largest lichen-forming fungal lineages. Our results support the idea that adaptive radiations are driven not by a single factor or key innovation, but require a serendipitous combination of both intrinsic biotic and extrinsic abiotic and ecological factors.

  1. The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments.

    PubMed Central

    Goldsmith, G H; Saito, H; Ratnoff, O S

    1978-01-01

    Activation of plasminogen through surface-mediated reactions is well recognized. In the presence of kaolin, purified Hageman factor (Factor XII) changed plasminogen to plasmin, as assayed upon a synthetic amide substrate and by fibrinolysis. Kinetic studies suggested an enzymatic action of Hageman factor upon its substrate, plasminogen. Hageman factor fragments, at a protein concentration equivalent to whole Hageman factor, activated plasminogen to a lesser extent. These protein preparations were not contaminated with other agents implicated in surface-mediated fibrinolysis. Diisopropyl fluorophosphate treatment of plasminogen did not inhibit its activation by Hageman factor. These studies indicate that Hageman factor has a hitherto unsuspected function, the direct activation of plasminogen. PMID:659637

  2. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates.

    PubMed

    Khadempour, Lily; Burnum-Johnson, Kristin E; Baker, Erin S; Nicora, Carrie D; Webb-Robertson, Bobbie-Jo M; White, Richard A; Monroe, Matthew E; Huang, Eric L; Smith, Richard D; Currie, Cameron R

    2016-11-01

    Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants' fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats or a mixture of all three. Across all treatments, our analysis identified and quantified 1766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of subcolonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores. © 2016 John Wiley & Sons Ltd.

  3. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    PubMed Central

    Khadempour, Lily; Burnum-Johnson, Kristin E.; Baker, Erin S.; Nicora, Carrie D.; Webb-Robertson, Bobbie-Jo M.; White, Richard A.; Monroe, Matthew E.; Huang, Eric L.; Smith, Richard D.; Currie, Cameron R.

    2016-01-01

    Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants’ fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats, or a mixture of all three. Across all treatments, our analysis identified and quantified 1,766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of sub-colonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase, and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores. PMID:27696597

  4. Intelligence moderates reinforcement learning: a mini-review of the neural evidence

    PubMed Central

    2014-01-01

    Our understanding of the neural basis of reinforcement learning and intelligence, two key factors contributing to human strivings, has progressed significantly recently. However, the overlap of these two lines of research, namely, how intelligence affects neural responses during reinforcement learning, remains uninvestigated. A mini-review of three existing studies suggests that higher IQ (especially fluid IQ) may enhance the neural signal of positive prediction error in dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, and striatum, several brain substrates of reinforcement learning or intelligence. PMID:25185818

  5. Intelligence moderates reinforcement learning: a mini-review of the neural evidence.

    PubMed

    Chen, Chong

    2015-06-01

    Our understanding of the neural basis of reinforcement learning and intelligence, two key factors contributing to human strivings, has progressed significantly recently. However, the overlap of these two lines of research, namely, how intelligence affects neural responses during reinforcement learning, remains uninvestigated. A mini-review of three existing studies suggests that higher IQ (especially fluid IQ) may enhance the neural signal of positive prediction error in dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, and striatum, several brain substrates of reinforcement learning or intelligence. Copyright © 2015 the American Physiological Society.

  6. Influence of hormonal status on substrate utilization at rest and during exercise in the female population.

    PubMed

    Isacco, Laurie; Duché, Pascale; Boisseau, Nathalie

    2012-04-01

    During exercise, substrate utilization plays a major role in performance and disease prevention. The contribution of fat and carbohydrates to energy expenditure during exercise is modulated by several factors, including intensity and duration of exercise, age, training and diet, but also gender. Because sex hormone levels change throughout a woman's lifetime (in connection with puberty, the menstrual cycle, use of oral contraceptives and menopause), the female population has to be considered specifically in terms of substrate utilization, and metabolic and hormonal responses to exercise. Before puberty, there is no difference between males and females when it comes to substrate oxidation during exercise. This is not the case during adulthood, since women are known to rely more on fat than men for the same relative intensity of exercise. Among adult women, the menstrual cycle and use of oral contraceptives may influence substrate oxidation. While some authors have noted that the luteal phase of the menstrual cycle is connected with greater lipid oxidation, compared with the follicular stage, other authors have found no difference. Among oral contraceptive users, fat oxidation is sometimes increased during prolonged exercise with a concomitant rise in lipolytic hormones, as well as growth hormone. If this result is not always observed, the type of oral contraceptive (monophasic vs triphasic) and hormone doses may be implicated. Menopause represents a hormonal transition in a woman's life, leading to a decline in ovarian hormone production. A decrease in fat oxidation is consequently observed, and some studies have demonstrated a similar respiratory exchange ratio during prolonged exercise in postmenopausal women and in men. As is the case during puberty, no sex difference should thus appear after menopause in the absence of hormonal replacement therapy (HRT). Results concerning women who take HRT remain conflicting. HRT may act on fat loss by increasing lipid metabolism, but this depends on how the treatment is administered (orally vs transdermally). To better understand the role of ovarian hormones in substrate oxidation, studies have made use of animal protocols to investigate cellular mechanisms. Estradiol and progesterone seem to have opposite effects, with greater lipid oxidation when estradiol is used alone. However, the concentrations used (physiological levels or pharmacological doses) may considerably modify fuel selection. In cases where conflicting data are observed in studies of substrate utilization and prolonged exercise in women, methodological reasons must be called into question. Too many parameters, which oftentimes are not specified, may modulate substrate utilization and metabolic and hormonal responses to prolonged exercise. Although information is generally provided about the type of exercise, its duration and the subjects' training level, detailed information is not always given about the subjects' nutritional state and, more specifically, the hormonal status of female subjects. The primary purpose of this review was to identify the impact of hormonal status on substrate oxidation among female subjects at rest and during exercise. A second aim was to describe gender differences in substrate utilization during exercise.

  7. Increased expression of both insulin receptor substrates 1 and 2 confers increased sensitivity to IGF-1 stimulated cell migration.

    PubMed

    de Blaquière, Gail E; May, Felicity E B; Westley, Bruce R

    2009-06-01

    Insulin-like growth factors (IGFs) are thought to promote tumour progression and metastasis in part by stimulating cell migration. Insulin receptor substrate-1 (IRS-1) and IRS-2 are multisite docking proteins positioned immediately downstream from the type I IGF and insulin receptors. IRS-2 but not IRS-1 has been reported to be involved in the migratory response of breast cancer cells to IGFs. The purpose of this investigation was to determine if IRS-1 is involved in, and to assess the contributions of IRS-1 and IRS-2 to, the migratory response of breast cancer cells to IGFs. The expression of IRS-1 and IRS-2 varied considerably between ten breast cancer cell lines. Oestrogen increases expression of the type I IGF receptor, IRS-1 and IRS-2 in MCF-7 and ZR-75 cells. Oestrogens may control the sensitivity of breast cancer cells to IGFs by regulating the expression of components of the IGF signal transduction pathway. The migratory response to a range of IGF-1 concentrations was measured in MCF-7 and MDA-MB-231 breast cancer cells in which IRS-1 and IRS-2 levels were modulated using a doxycycline-inducible expression system. Induction of both IRS-1 and IRS-2 expression increased the sensitivity of the migratory response to IGF-1 but did not increase the magnitude of the response stimulated at higher concentrations of IGF-1. Knockdown of IRS-1, IRS-2 and the type I IGF receptor in MCF-7 and MDA-MB-2231 cells decreased sensitivity to IGF-1. We conclude that both IRS-1 and IRS-2 control the migratory response of breast cancer cells to IGF-1 and may, therefore, be key molecules in determining breast cancer spread.

  8. Advances in silicon carbide Chemical Vapor Deposition (CVD) for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Petit, Jeremy B.; Matus, Lawrence G.

    1991-01-01

    Improved SiC chemical vapor deposition films of both 3C and 6H polytypes were grown on vicinal (0001) 6H-SiC wafers cut from single-crystal boules. These films were produced from silane and propane in hydrogen at one atmosphere at a temperature of 1725 K. Among the more important factors which affected the structure and morphology of the grown films were the tilt angle of the substrate, the polarity of the growth surface, and the pregrowth surface treatment of the substrate. With proper pregrowth surface treatment, 6H films were grown on 6H substrates with tilt angles as small as 0.1 degrees. In addition, 3C could be induced to grow within selected regions on a 6H substrate. The polarity of the substrate was a large factor in the incorporation of dopants during epitaxial growth. A new growth model is discussed which explains the control of SiC polytype in epitaxial growth on vicinal (0001) SiC substrates.

  9. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer.

    PubMed

    Hong, HuiQi; An, Omer; Chan, Tim H M; Ng, Vanessa H E; Kwok, Hui Si; Lin, Jaymie S; Qi, Lihua; Han, Jian; Tay, Daryl J T; Tang, Sze Jing; Yang, Henry; Song, Yangyang; Bellido Molias, Fernando; Tenen, Daniel G; Chen, Leilei

    2018-05-18

    Adenosine-to-inosine (A-to-I) RNA editing entails the enzymatic deamination of adenosines to inosines by adenosine deaminases acting on RNA (ADARs). Dysregulated A-to-I editing has been implicated in various diseases, including cancers. However, the precise factors governing the A-to-I editing and their physiopathological implications remain as a long-standing question. Herein, we unravel that DEAH box helicase 9 (DHX9), at least partially dependent of its helicase activity, functions as a bidirectional regulator of A-to-I editing in cancer cells. Intriguingly, the ADAR substrate specificity determines the opposing effects of DHX9 on editing as DHX9 silencing preferentially represses editing of ADAR1-specific substrates, whereas augments ADAR2-specific substrate editing. Analysis of 11 cancer types from The Cancer Genome Atlas (TCGA) reveals a striking overexpression of DHX9 in tumors. Further, tumorigenicity studies demonstrate a helicase-dependent oncogenic role of DHX9 in cancer development. In sum, DHX9 constitutes a bidirectional regulatory mode in A-to-I editing, which is in part responsible for the dysregulated editome profile in cancer.

  10. Frequency and Temperature Dependent Dielectric Properties of Free-standing Strontium Titanate Thin Films.

    NASA Astrophysics Data System (ADS)

    Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.

    1998-03-01

    We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.

  11. Process Optimization on Micro-Aeration Supply for High Production Yield of 2,3-Butanediol from Maltodextrin by Metabolically-Engineered Klebsiella oxytoca

    PubMed Central

    Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2016-01-01

    An optimization process with a cheap and abundant substrate is considered one of the factors affecting the price of the production of economical 2,3-Butanediol (2,3-BD). A combination of the conventional method and response surface methodology (RSM) was applied in this study. The optimized levels of pH, aeration rate, agitation speed, and substrate concentration (maltodextrin) were investigated to determine the cost-effectiveness of fermentative 2,3-BD production by metabolically-engineered Klebsiella oxytoca KMS005. Results revealed that pH, aeration rate, agitation speed, and maltodextrin concentration at levels of 6.0, 0.8 vvm, 400 rpm, and 150 g/L respectively were the optimal conditions. RSM also indicated that the agitation speed was the most influential parameter when either agitation and aeration interaction or agitation and substrate concentration interaction played important roles for 2,3-BD production by the strain from maltodextrin. Under interim fed-batch fermentation, 2,3-BD concentration, yield, and productivity were obtained at 88.1±0.2 g/L, 0.412±0.001 g/g, and 1.13±0.01 g/L/h respectively within 78 h. PMID:27603922

  12. A Characteristic Mode Analysis of Conductive Nanowires and Microwires Above a Lossy Dielectric Half-Space

    NASA Astrophysics Data System (ADS)

    Kiddle, Daniel S.

    Nanowires possess extraordinary mechanical, thermoelectric and electromagnetic properties which led to their incorporation in a wide variety of applications. The purpose of this study is to investigate the effect of material on the electromagnetic response of these nanowires. We used the Method of Moments (MOM) for Arbitrarily Thin Wire (ATW) formulation as an efficient computational technique for calculating the electromagnetic response of nanowires. To explain the calculated electromagnetic response, we evoked the Characteristic Mode Analysis (CMA) which decomposes the current on the wire into a superposition of fundamental current modes. These modes are weighted by two coefficients: (i) the relative importance of each mode at a certain frequency, termed Modal Significance, and (ii) the level of coupling between the incident field and the mode termed the Modal Excitation Coefficient. In this, work we study how the wire's material affect the Modal Significance and the Modal Excitation Coefficient of nanowires. Our results show that the material of the nanowire has a strong effect on the resonance frequency, the bandwidth, and the overlap of the modes showing that the material of the nanowire can be used as a tuning factor to develop sensors with desired radiation characteristics. Nanowires are commonly grown vertically on a substrate and, therefore, we also study the effect of the presence of a lossy dielectric half-space on their electromagnetic response. To efficiently account for this interface, we utilize a modified Green's function using the rigorous Sommerfeld integrals. Our results show that the relative permittivity of the substrate decreases the resonance frequencies of the nanowires and significantly alters their radiation patterns. Most importantly, we find that, if the nanowire is near the interface, its evanescent field's couple to the dielectric half space leading to the majority of the scattered power radiated into the substrate with high directivity. The results of this thesis has the potential to quantify the electromagnetic response of vertical nanowires in their realistic environment as well as facilitate the incorporation of nanowires in novel sensing applications.

  13. Structural insight into mechanism and diverse substrate selection strategy of L-ribulokinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal R.; Swaminathan S.; Burley, S. K.

    2012-01-01

    The araBAD operon encodes three different enzymes required for catabolism of L-arabinose, which is one of the most abundant monosaccharides in nature. L-ribulokinase, encoded by the araB gene, catalyzes conversion of L-ribulose to L-ribulose-5-phosphate, the second step in the catabolic pathway. Unlike other kinases, ribulokinase exhibits diversity in substrate selectivity and catalyzes phosphorylation of all four 2-ketopentose sugars with comparable k{sub cat} values. To understand ribulokinase recognition and phosphorylation of a diverse set of substrates, we have determined the X-ray structure of ribulokinase from Bacillus halodurans bound to L-ribulose and investigated its substrate and ATP co-factor binding properties. The polypeptidemore » chain is folded into two domains, one small and the other large, with a deep cleft in between. By analogy with related sugar kinases, we identified {sup 447}{und GG}LPQ{und K}{sup 452} as the ATP-binding motif within the smaller domain. L-ribulose binds in the cleft between the two domains via hydrogen bonds with the side chains of highly conserved Trp126, Lys208, Asp274, and Glu329 and the main chain nitrogen of Ala96. The interaction of L-ribulokinase with L-ribulose reveals versatile structural features that help explain recognition of various 2-ketopentose substrates and competitive inhibition by L-erythrulose. Comparison of our structure to that of the structures of other sugar kinases revealed conformational variations that suggest domain-domain closure movements are responsible for establishing the observed active site environment.« less

  14. Hierarchy of cellular decisions in collective behavior: Implications for wound healing.

    PubMed

    Wickert, Lisa E; Pomerenke, Shaun; Mitchell, Isaiah; Masters, Kristyn S; Kreeger, Pamela K

    2016-02-02

    Collective processes such as wound re-epithelialization result from the integration of individual cellular decisions. To determine which individual cell behaviors represent the most promising targets to engineer re-epithelialization, we examined collective and individual responses of HaCaT keratinocytes seeded upon polyacrylamide gels of three stiffnesses (1, 30, and 100 kPa) and treated with a range of epidermal growth factor (EGF) doses. Wound closure was found to increase with substrate stiffness, but was responsive to EGF treatment only above a stiffness threshold. Individual cell behaviors were used to create a partial least squares regression model to predict the hierarchy of factors driving wound closure. Unexpectedly, cell area and persistence were found to have the strongest correlation to the observed differences in wound closure. Meanwhile, the model predicted a relatively weak correlation between wound closure with proliferation, and the unexpectedly minor input from proliferation was successfully tested with inhibition by aphidicolin. Combined, these results suggest that the poor clinical results for growth factor-based therapies for chronic wounds may result from a disconnect between the individual cellular behaviors targeted in these approaches and the resulting collective response. Additionally, the stiffness-dependency of EGF sensitivity suggests that therapies matched to microenvironmental characteristics will be more efficacious.

  15. Methods and systems for positioning micro elements

    DOEpatents

    Stalford, Harold L

    2015-04-28

    A micro device may comprise a substrate, a first micro structure coupled to the substrate, a second micro structure coupled to the substrate, and port configured to receive an input. The first micro structure is configured to move into engagement with the second micro structure in response to the input.

  16. Effects of topography on the functional development of human neural progenitor cells.

    PubMed

    Wu, Ze-Zhi; Kisaalita, William S; Wang, Lina; Zachman, Angela L; Zhao, Yiping; Hasneen, Kowser; Machacek, Dave; Stice, Steven L

    2010-07-01

    We have fabricated a topographical substrate with a packed polystyrene bead array for the development of cell-based assay systems targeting voltage-gated calcium channels (VGCCs). Human neural progenitor cells (H945RB.3) cultured on both flat and topographical substrates were analyzed in terms of morphological spreading, neuronal commitment, resting membrane potential (V(m)) establishment and VGCC function development. We found, by SEM imaging, that arrayed substrates, formed with both sub-micrometer (of 0.51 microm in mean diameter) and micrometer (of 1.98 microm in mean diameter) beads, were capable of promoting the spreading of the progenitor cells as compared with the flat polystyrene surfaces. With the micrometer beads, it was found that arrayed substrates facilitated the neural progenitor cells' maintenance of less negative V(m) values upon differentiation with bFGF starvation, which favored predominant neuronal commitment. Almost all the progenitor cells were responsive to 50 mM K(+) depolarization with an increase in [Ca(2+)](i) either before or upon differentiation, suggesting the expression of functional VGCCs. Compared to the flat polystyrene surfaces, microbead arrayed substrates facilitated the development of higher VGCC responsiveness by the progenitor cells upon differentiation. The enhancement of both VGCC responsiveness and cell spreading by arrays of micrometer beads was most significant on day 14 into differentiation, which was the latest time point of measurement in this study. This study thus rationalized the possibility for future substrate topography engineering to manipulate ion channel function and to meet the challenge of low VGCC responsiveness found in early drug discovery.

  17. Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Min; He, Shih-Ming; Huang, Chi-Hsien; Huang, Cheng-Chun; Shih, Wen-Pin; Chu, Chun-Lin; Kong, Jing; Li, Ju; Su, Ching-Yuan

    2016-02-01

    In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra-large suspended graphene retains the intrinsic features of graphene, including phonon response and an enhanced carrier mobility (200% higher than that of graphene on a substrate). The highly elastic mechanical properties of the graphene membrane are demonstrated, and the Q-factor under 2 MHz stimulation is measured to be 200-300. A graphene-based capacitive pressure sensor is fabricated, where it shows a linear response and a high sensitivity of 15.15 aF Pa-1, which is 770% higher than that of frequently used silicon-based membranes. The reported approach is universal, which could be employed to fabricate other suspended 2D materials with macro-scale sizes on versatile support substrates, such as arrays of Si nano-pillars and deep trenches.In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra-large suspended graphene retains the intrinsic features of graphene, including phonon response and an enhanced carrier mobility (200% higher than that of graphene on a substrate). The highly elastic mechanical properties of the graphene membrane are demonstrated, and the Q-factor under 2 MHz stimulation is measured to be 200-300. A graphene-based capacitive pressure sensor is fabricated, where it shows a linear response and a high sensitivity of 15.15 aF Pa-1, which is 770% higher than that of frequently used silicon-based membranes. The reported approach is universal, which could be employed to fabricate other suspended 2D materials with macro-scale sizes on versatile support substrates, such as arrays of Si nano-pillars and deep trenches. Electronic supplementary information (ESI) available: The detailed process/recipe for CVD-grown graphene and the transferring process, SEM and TEM images, contact angles, force curves, and movie clips. See DOI: 10.1039/c5nr08668j

  18. Substrate Topography Induces a Crossover from 2D to 3D Behavior in Fibroblast Migration

    PubMed Central

    Ghibaudo, Marion; Trichet, Léa; Le Digabel, Jimmy; Richert, Alain; Hersen, Pascal; Ladoux, Benoît

    2009-01-01

    Abstract In a three-dimensional environment, cells migrate through complex topographical features. Using microstructured substrates, we investigate the role of substrate topography in cell adhesion and migration. To do so, fibroblasts are plated on chemically identical substrates composed of microfabricated pillars. When the dimensions of the pillars (i.e., the diameter, length, and spacing) are varied, migrating cells encounter alternating flat and rough surfaces that depend on the spacing between the pillars. Consequently, we show that substrate topography affects cell shape and migration by modifying cell-to-substrate interactions. Cells on micropillar substrates exhibit more elongated and branched shapes with fewer actin stress fibers compared with cells on flat surfaces. By analyzing the migration paths in various environments, we observe different mechanisms of cell migration, including a persistent type of migration, that depend on the organization of the topographical features. These responses can be attributed to a spatial reorganization of the actin cytoskeleton due to physical constraints and a preferential formation of focal adhesions on the micropillars, with an increased lifetime compared to that observed on flat surfaces. By changing myosin II activity, we show that actomyosin contractility is essential in the cellular response to micron-scale topographic signals. Finally, the analysis of cell movements at the frontier between flat and micropillar substrates shows that cell transmigration through the micropillar substrates depends on the spacing between the pillars. PMID:19580774

  19. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture1[OPEN

    PubMed Central

    Rogers, Eric D.; Monaenkova, Daria; Mijar, Medhavinee; Goldman, Daniel I.

    2016-01-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. PMID:27208237

  20. A field study to evaluate the impact of different factors on the nutrient pollutant concentrations in green roof runoff.

    PubMed

    Wang, Xiaochen; Zhao, Xinhua; Peng, Chenrui; Zhang, Xinbo; Wang, Jianghai

    2013-01-01

    The objectives of this study are to investigate the impact of different factors on the nutrient pollutant concentrations in green roof runoff and to provide reference data for the engineering design of dual substrate layer green roofs. The data were collected from eight different trays under three kinds of artificial rains. The results showed that except for total phosphorus, dual substrate layer green roofs behaved as a sink for most of the nutrient pollutants (significant at p < 0.05), and the first-flush effect did not occur during the 27 simulated rain events. The results also revealed that the concentration of these nutrient pollutants in the runoff strongly depended on the features of the nutrient substrates used in the green roof and the depth of the adsorption substrates. Compared with the influence of the substrates, the influence of the plant density and drainage systems was small.

  1. The role of the substrate in micro-scale scratching of epoxy-polyester films

    NASA Astrophysics Data System (ADS)

    Barletta, M.; Gisario, A.

    2011-02-01

    The present investigation analyzes the deformation response of electrostatically sprayed epoxy-polyester powder coatings by 'in situ' micro-mechanical tests. The characterization of the performance of the coatings was carried out by micro-scale scratching, by varying the indenter type, the applied load and the sliding speed. The tests were carried out on polymeric coatings deposited on as-received, micro and macro-corrugated AISI 304 stainless steel substrates and 'rigidly adhered' to them. Further tests were performed on 'free-standing' coatings, that is, on the as-received metal substrates pre-coated with an intermediate layer of silicon-based heat curable release coating. Experimental data allow us to evaluate the influence of the contact conditions between substrate and indenter and the role of the loading conditions on the scratch and penetration resistance of the epoxy-polyester coatings. The different responses of the polymeric coatings when deposited on untreated or pre-treated substrates as well as on an intermediate layer of release coating, contribute to a better understanding of the intrinsic roles of the polymeric material and substrate as well as the influence of the interfacial adhesion between coating and substrate.

  2. Historical trends in salinity and substrate in central Florida Bay: A paleoecological reconstruction using modern analogue data

    USGS Publications Warehouse

    Brewster-Wingard, G. L.; Ishman, S.E.

    1999-01-01

    Understanding the natural spatial and temporal variability that exists within an ecosystem is a critical component of efforts to restore systems to their natural state. Analysis of benthic foraminifers and molluscs from modern monitoring sites within Florida Bay allows us to determine what environmental parameters control spatial and temporal variability of their assemblages. Faunal assemblages associated with specific environmental parameters, including salinity and substrate, serve as proxies for an interpretation of paleoecologic data. The faunal record preserved in two shallow (< 2 m) cores in central Florida Bay (Russell Bank and Bob Allen Bank) provides a record of historical trends in environmental parameters for those sites. Analysis of these two cores has revealed two distinct patterns of salinity change at these sites: 1) a long-term trend of slightly increasing average salinity; and 2) a relatively rapid change to salinity fluctuations of greater frequency and amplitude, beginning around the turn of the century and becoming most pronounced after 1940. The degree of variability in substrate types at each locality limits interpretations of substrate trends to specific sites. A common sequence of change is present in the Russell Bank and Bob Allen Bank cores: from mixed grass and bare-sediment indicators at the bottom of the cores, to bare-sediment dwellers in the center, to a dominance of vegetative-cover indicators at the top of the cores. Changes in interpreted salinity patterns around the turn of the century are consistent with the timing of the construction of the Flagler Railroad from 1905 to 1912, and the Tamiami Trail and the canal and levee systems between 1915 and 1928. Beginning around 1940, the changes in the frequency and amplitude of salinity fluctuations may be related to changes in water management practices, meteorologic events (frequent hurricanes coupled with severe droughts in 1943 and 1944), or a combination of factors. The correspondence of these changes in Florida Bay with changes in the terrestrial Everglades suggests factors affecting the entire ecosystem are responsible for the salinity and substrate patterns seen in Florida Bay.

  3. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    PubMed

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an inexpensive yet non-ideal Raman substrate. The assay sensitivity, which is in the low pM range, suggests that these SERS probe particles could be used for Raman labeling of cell or tissue samples in a polystyrene tissue culture plate. With continued development, this approach could be used for direct labeling of multiple cell surface biomarkers on strongly interfering substrate platforms.

  4. The limitations of seedling growth and drought tolerance to novel soil substrates in arid systems: Implications for restoration success

    NASA Astrophysics Data System (ADS)

    Bateman, Amber; Lewandrowski, Wolfgang; Stevens, Jason; Muñoz-Rojas, Miriam

    2016-04-01

    Introduction With the limited knowledge available regarding the impact of drought on seedling growth, an understanding of seedling tolerance to arid conditions is crucial for restoration success (James et al., 2013; Muñoz-Rojas et al., 2014). However, restoration in semi-arid areas faces the challenge of re-establishing plant communities on altered soil substrates (Muñoz-Rojas et al., 2015). These substrates are a result of anthropogenic disturbances such as mining which have altered the plant-soil-water dynamics of the ecosystem (Machado et al., 2013). The aim of this study was to assess the impact of mining on the plant-soil-water dynamics of an arid ecosystem of Western Australia (Pilbara region, North Western Australia) and the implications these altered relationships have on seedling growth and their responses to drought. Methods Drought responses of native plant species were assessed through a series of glasshouse experiments. Firstly, 21 species dominant to the Pilbara region were subjected to drought in a topsoil growth media to assess variation in responses (leaf water potential at the time of stomatal closure) across species and identify traits associated with drought tolerance. Secondly, four species ranging in their drought tolerance identified previously, were grown to two leaf stages (second and fourth leaf stage) in three mining substrates (topsoil, a topsoil and waste mix and waste) to assess seedling drought responses to various potential restoration substrates and how that varied with plant development stage. Results and discussion Four morphological traits were found to be significantly associated with drought indicators (leaf mass ratio, stem area, stem length, stem weight), however, these were weak correlations. Waste substrate and its addition to topsoil reduced plant total biomass but did not alter species responses to drought. However, the soil physical properties of the waste reduced water retention and water availability for plant uptake resulting in seedling mortality at less negative soil water potential. Finally, no significant differences in drought tolerance were observed between the two leaf stages across the four species tested. Analysis of plant desiccation curves found the advanced leaf stage to be less tolerant of drought as shown by a decrease in soil water potential at the time of stomatal closure. Species possess a range of morphological traits, some of which are associated with drought tolerance. However, these traits on their own may not be main drivers for drought resilience and other factors play a role, for example soil nutrient availability. Materials tested in this study that may be available to create novel restoration substrates hinder plant growth but not necessarily plant responses to drought. These findings go a long way to defining some of the limitations of seedling growth and the degree of drought tolerance which will assist in the management of post-mining restoration. References James, J.J., Sheley, R.L., Erickson,T., Rollins, K.S., Taylor, M.H., Dixon, K.W. (2013) A systems approach to restoring degraded drylands. Journal of Applied Ecology 50:730-739. Machado, N. A. M., Leite, M. G. P., Figueiredo, M. A., Kozovits, A. R. (2013) Growing Ereman-thus erythropappus in crushed laterite: A promising alternative to topsoil for baux¬ite-mine revegetation. Journal of Environmental Management 129: 149-156. Muñoz-Rojas, M., Erickson, T., Merritt, D., Dixon, K. (2014) Optimising post-mining soil conditions to maximise restoration success in a biodiverse semiarid environment. Geophysical Research. Abstracts Vol. 16, EGU2014-2069-1, EGU General Assembly. Muñoz-Rojas, M., Erickson, T., Merritt, D., Dixon, K. (2015) Applying soil science for restoration of post mining degraded landscapes in semi-arid Australia: challenges and opportunities. Geophysical Research. Abstracts Vol. 17, EGU2015-3967-1, EGU General Assembly.

  5. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis

    PubMed Central

    Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio

    2015-01-01

    Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163

  6. BIGH3 modulates adhesion and migration of hematopoietic stem and progenitor cells

    PubMed Central

    Klamer, Sofieke E; Kuijk, Carlijn GM; Hordijk, Peter L; van der Schoot, C Ellen; von Lindern, Marieke; van Hennik, Paula B; Voermans, Carlijn

    2013-01-01

    Cell adhesion and migration are important determinants of homing and development of hematopoietic stem and progenitor cells (HSPCs) in bone marrow (BM) niches. The extracellular matrix protein transforming growth factor-β (TGF-β) inducible gene H3 (BIGH3) is involved in adhesion and migration, although the effect of BIGH3 is highly cell type-dependent. BIGH3 is abundantly expressed by mesenchymal stromal cells, while its expression in HSPCs is relatively low unless induced by certain BM stressors. Here, we set out to determine how BIGH3 modulates HSPC adhesion and migration. We show that primary HSPCs adhere to BIGH3-coated substrates, which is, in part, integrin-dependent. Overexpression of BIGH3 in HSPCs and HL60 cells reduced the adhesion to the substrate fibronectin in adhesion assays, which was even more profound in electrical cell-substrate impedance sensing (ECIS) assays. Accordingly, the CXCL12 induced migration over fibronectin-coated surface was reduced in BIGH3-expressing HSPCs. The integrin expression profile of HSPCs was not altered upon BIGH3 expression. Although expression of BIGH3 did not alter actin polymerization in response to CXCL12, it inhibited the PMA-induced activation of the small GTPase RAC1 as well as the phosphorylation and activation of extracellular-regulated kinases (ERKs). Reduced activation of ERK and RAC1 may be responsible for the inhibition of cell adhesion and migration by BIGH3 in HSPCs. Induced BIGH3 expression upon BM stress may contribute to the regulation of BM homeostasis. PMID:24152593

  7. Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence.

    PubMed

    Barczak, Amy K; Avraham, Roi; Singh, Shantanu; Luo, Samantha S; Zhang, Wei Ran; Bray, Mark-Anthony; Hinman, Amelia E; Thompson, Matthew; Nietupski, Raymond M; Golas, Aaron; Montgomery, Paul; Fitzgerald, Michael; Smith, Roger S; White, Dylan W; Tischler, Anna D; Carpenter, Anne E; Hung, Deborah T

    2017-05-01

    A key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction. Based on a combination of imaging features, we identified mutants impaired for intracellular survival. We then characterized the phenotype of infection with each mutant by profiling the induced macrophage cytokine response. Taking a systems-level approach to understanding the biology of identified mutants, we performed a multiparametric analysis combining pathogen and host phenotypes to predict functional relationships between mutants based on clustering. Strikingly, mutants defective in two well-known virulence factors, the ESX-1 protein secretion system and the virulence lipid phthiocerol dimycocerosate (PDIM), clustered together. Building upon the shared phenotype of loss of the macrophage type I interferon (IFN) response to infection, we found that PDIM production and export are required for coordinated secretion of ESX-1-substrates, for phagosomal permeabilization, and for downstream induction of the type I IFN response. Multiparametric clustering also identified two novel genes that are required for PDIM production and induction of the type I IFN response. Thus, multiparametric analysis combining host and pathogen infection phenotypes can be used to identify novel functional relationships between genes that play a role in infection.

  8. Evaluating Factor XIII Specificity for Glutamine-Containing Substrates Using a MALDI-TOF Mass Spectrometry Assay

    PubMed Central

    Doiphode, Prakash G.; Malovichko, Marina V.; Mouapi, Kelly Njine; Maurer, Muriel C.

    2014-01-01

    Activated Factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF MS) based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetics assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting the final deacylation portion of the transglutaminase reaction. With the MALDI-TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, S. Aureus fibronectin binding protein A, and thrombin activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P-1 substrate position is sensitive to charge character and the P-2 and P-3 to the broad FXIIIa substrate specificity pockets. The more distant P-8 to P-11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase. PMID:24751466

  9. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    PubMed

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities

    PubMed Central

    Clark, Graeme F.; Stark, Jonathan S.; Palmer, Anne S.; Riddle, Martin J.; Johnston, Emma L.

    2017-01-01

    On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics. PMID:28076438

  11. The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities.

    PubMed

    Clark, Graeme F; Stark, Jonathan S; Palmer, Anne S; Riddle, Martin J; Johnston, Emma L

    2017-01-01

    On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics.

  12. Waste vinegar residue as substrate for phytase production.

    PubMed

    Wang, Zhi-Hong; Dong, Xiao-Fang; Zhang, Guo-Qing; Tong, Jian-Ming; Zhang, Qi; Xu, Shang-Zhong

    2011-12-01

    Waste vinegar residue, the by-product of vinegar processing, was used as substrate for phytase production from Aspergillus ficuum NTG-23 in solid-state fermentation to investigate the potential for the efficient re-utilization or recycling of waste vinegar residue. Statistical designs were applied in the processing of phytase production. First, a Plackett-Burman (PB) design was used to evaluate eleven parameters: glucose, starch, wheat bran, (NH(4))(2)SO(4), NH(4)NO(3), tryptone, soybean meal, MgSO(4)·7H(2)O, CaCl(2)·7H(2)O, FeSO(4)·7H(2)O, incubation time. The PB experiments showed that there were three significant factors: glucose, soybean meal and incubation time. The closest values to the optimum point were then derived by steepest ascent path. Finally, a mathematical model was created and validated to explain the behavioural process after these three significant factors were optimized using response surface methodology (RSM). The best phytase activity was attained using the following conditions: glucose (7.2%), soybean meal (5.1%), and incubation time (271 h). The phytase activity was 7.34-fold higher due to optimization by PB design, steepest ascent path design and RSM. The phytase activity was enhanced 0.26-fold in comparison with the results by the second step of steepest ascent path design. The results indicate that with waste vinegar residue as a substrate higher production of phytase from Aspergillus ficuum NTG-23 could be obtained through an optimization process and that this method might be applied to an integrated system for recycling of the waste vinegar residue.

  13. Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells

    PubMed Central

    Lembong, Josephine; Sabass, Benedikt; Sun, Bo; Rogers, Matthew E.; Stone, Howard A.

    2015-01-01

    Cells constantly sense their chemical and mechanical environments. We study the effect of mechanics on the ATP-induced collective calcium response of fibroblast cells in experiments that mimic various tissue environments. We find that closely packed two-dimensional cell cultures on a soft polyacrylamide gel (Young's modulus E = 690 Pa) contain more cells exhibiting calcium oscillations than cultures on a rigid substrate (E = 36 000 Pa). Calcium responses of cells on soft substrates show a slower decay of calcium level relative to those on rigid substrates. Actin enhancement and disruption experiments for the cell cultures allow us to conclude that actin filaments determine the collective Ca2+ oscillatory behaviour in the culture. Inhibition of gap junctions results in a decrease of the oscillation period and reduced correlation of calcium responses, which suggests additional complexity of signalling upon cell–cell contact. Moreover, the frequency of calcium oscillations is independent of the rigidity of the substrate but depends on ATP concentration. We compare our results with those from similar experiments on individual cells. Overall, our observations show that collective chemical signalling in cell cultures via calcium depends critically on the mechanical environment. PMID:26063818

  14. Development of reproducible assays for polygalacturonase and pectinase.

    PubMed

    Li, Qian; Coffman, Anthony M; Ju, Lu-Kwang

    2015-05-01

    Polygalacturonase and pectinase activities reported in the literature were measured by several different procedures. These procedures do not give comparable results, partly owing to the complexity of the substrates involved. This work was aimed at developing consistent and efficient assays for polygalacturonase and pectinase activities, using polygalacturonic acid and citrus pectin, respectively, as the substrate. Different enzyme mixtures produced by Aspergillus niger and Trichoderma reesei with different inducing carbon sources were used for the method development. A series of experiments were conducted to evaluate the incubation time, substrate concentration, and enzyme dilution. Accordingly, for both assays the recommended (optimal) hydrolysis time is 30min and substrate concentration is 5g/L. For polygalacturonase, the sample should be adjusted to have 0.3-0.8U/mL polygalacturonase activity, because in this range the assay outcomes were consistent (independent of dilution factors). Such a range did not exist for the pectinase assay. The recommended procedure is to assay the sample at multiple (at least 2) dilution factors and determine, by linear interpolation, the dilution factor that would release reducing sugar equivalent to 0.4g/L d-galacturonic acid, and then calculate the activity of the sample accordingly (dilution factor×0.687U/mL). Validation experiments showed consistent results using these assays. Effects of substrate preparation methods were also examined. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Evaluation of three growing media substrates for western larch seedling production at the USDA Forest Service Coeur d'Alene Nursery

    Treesearch

    Anthony S. Davis; Kent Eggleston; Jeremy R. Pinto; R. Kasten Dumroese

    2009-01-01

    In response to concerns regarding growing media substrate costs, and the impact of growing media on seedling quality, we evaluated three peat-based growing media substrates at the USDA Forest Service Coeur d'Alene Nursery in Idaho. Current medium consists of 80:20 peat:fresh Douglas-fir sawdust (v:v). Two other substrates, 75:25 peat:fine screened Douglas-fir bark...

  16. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.

    PubMed

    Chou, Szu-Yuan; Cheng, Chao-Min; LeDuc, Philip R

    2009-06-01

    At the interface between extracellular substrates and biological materials, substrate elasticity strongly influences cell morphology and function. The associated biological ramifications comprise a diversity of critical responses including apoptosis, differentiation, and motility, which can affect medical devices such as stents. The interactions of the extracellular environment with the substrate are also affected by local properties wherein cells sense and respond to different physical inputs. To investigate the effects of having localized elasticity control of substrate microenvironments on cell response, we have developed a method to control material interface interactions with cells by dictating local substrate elasticity. This system is created by generating a composite material system with alternating, linear regions of polymers that have distinct stiffness characteristics. This approach was used to examine cytoskeletal and morphological changes in NIH 3T3 fibroblasts with emphasis on both local and global properties, noting that cells sense and respond to distinct material elasticities. Isolated cells sense and respond to these local differences in substrate elasticity by extending processes along the interface. Also, cells grown on softer elastic regions at higher densities (in contact with each other) have a higher projected area than isolated cells. Furthermore, when using chemical agents such as cytochalasin-D to disrupt the actin cytoskeleton, there is a significant increase in projected area for cells cultured on softer elastic regions This method has the potential to promote understanding of biomaterial-affected responses in a diversity of areas including morphogenesis, mechanotransduction, stents, and stem cell differentiation.

  17. Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling.

    PubMed

    Guo, R; Merkel, A R; Sterling, J A; Davidson, J M; Guelcher, S A

    2015-12-01

    The growing need for therapies to treat large cutaneous defects has driven recent interest in the design of scaffolds that stimulate regenerative wound healing. While many studies have investigated local delivery of biologics as a restorative approach, an increasing body of evidence highlights the contribution of the mechanical properties of implanted scaffolds to wound healing. In the present study, we designed poly(ester urethane) scaffolds using a templated-Fused Deposition Modeling (t-FDM) process to test the hypothesis that scaffolds with substrate modulus comparable to that of collagen fibers enhance a regenerative versus a fibrotic response. We fabricated t-FDM scaffolds with substrate moduli varying from 5 to 266 MPa to investigate the effects of substrate modulus on healing in a rat subcutaneous implant model. Angiogenesis, cellular infiltration, collagen deposition, and directional variance of collagen fibers were maximized for wounds treated with scaffolds having a substrate modulus (Ks = 24 MPa) comparable to that of collagen fibers. The enhanced regenerative response in these scaffolds was correlated with down-regulation of Wnt/β-catenin signaling in fibroblasts, as well as increased polarization of macrophages toward the restorative M2 phenotype. These observations highlight the substrate modulus of the scaffold as a key parameter regulating the regenerative versus scarring phenotype in wound healing. Our findings further point to the potential use of scaffolds with substrate moduli tuned to that of the native matrix as a therapeutic approach to improve cutaneous healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates.

    PubMed Central

    Wilusz, J; Shenk, T; Takagaki, Y; Manley, J L

    1990-01-01

    A 64-kilodalton (kDa) polypeptide that is cross-linked by UV light specifically to polyadenylation substrate RNAs containing a functional AAUAAA element has been identified previously. Fractionated HeLa nuclear components that can be combined to regenerate efficient and accurate polyadenylation in vitro have now been screened for the presence of the 64-kDa protein. None of the individual components contained an activity which could generate the 64-kDa species upon UV cross-linking in the presence of substrate RNA. It was necessary to mix two components, cleavage stimulation factor and specificity factor, to reconstitute 64-kDa protein-RNA cross-linking. The addition of cleavage factors to this mixture very efficiently reconstituted the AAUAAA-specific 64-kDa protein-RNA interaction. The 64-kDa protein, therefore, is present in highly purified, reconstituted polyadenylation reactions. However, it is necessary to form a multicomponent complex to efficiently cross-link the protein to a substrate RNA. Images PMID:2304466

  19. Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Tiemann, L. K.; Ballantyne, F., IV; Lehmeier, C. A.; Min, K.

    2015-04-01

    Discerning why some soil organic matter (SOM) leaves soil profiles relatively quickly while other compounds, especially at depth, can be retained for decades to millennia is challenging for a multitude of reasons. Simultaneous with soil-specific advances, multiple other disciplines have enhanced their knowledge bases in ways potentially useful for future investigations of SOM decay. In this article, we highlight observations highly relevant for those investigating SOM decay and retention but often emanating from disparate fields and residing in literature seldom cited in SOM research. We focus on recent work in two key areas. First, we turn to experimental approaches using natural and artificial aquatic environments to investigate patterns of microbially mediated OM transformations as environmental conditions change, and highlight how aquatic microbial responses to environmental change can reveal processes likely important to OM decay and retention in soils. Second, we emphasize the importance of establishing intrinsic patterns of decay kinetics for purified substrates commonly found in soils to develop baseline rates. These decay kinetics - which represent the upper limit of the reaction rates - can then be compared to substrate decay kinetics observed in natural samples, which integrate intrinsic decay reaction rates and edaphic factors essential to the site under study but absent in purified systems. That comparison permits the site-specific factors to be parsed from the fundamental decay kinetics, an important advance in our understanding of SOM decay (and thus persistence) in natural systems. We then suggest ways in which empirical observations from aquatic systems and purified substrate-enzyme reaction kinetics can be used to advance recent theoretical efforts in SOM-focused research. Finally, we suggest how the observations in aquatic and purified substrate-enzyme systems could be used to help unravel the puzzles presented by oft-observed patterns of SOM characteristics with depth, as one example of the many perplexing SOM-related problems.

  20. Neuropsychological Correlates of Normal Variation in Emotional Response to Visual Stimuli

    PubMed Central

    Robinson, Robert G.; Paradiso, Sergio; Mizrahi, Romina; Fiedorowicz, Jess G.; Kouzoukas, Dimitrios E.; Moser, David J.

    2007-01-01

    Although the neural substrates of induced emotion have been the focus of numerous investigations, the factors related to individual variation in emotional experience have rarely been investigated in older adults. Twenty-six older normal subjects (mean age, 54) were shown color slides to elicit emotions of sadness, fear, or happiness and asked to rate the intensity of their emotional responses. Subjects who experienced negative emotion most intensely showed relative impairment on every aspect of the Wisconsin Card Sorting Test. Intense positive emotion was associated with relatively impaired performance on the Rey Complex Figure Test. The volume of frontal brain structures, however, was not associated with emotion responses. Hemisphere-specific executive dysfunction was associated with greater intensity of emotional experience in normal older subjects. The role of these differences in intensity of induced emotion and impairment in executive function in daily social and vocational activity should be investigated. PMID:17299297

  1. Mechanistic Insights in Ethylene Perception and Signal Transduction1

    PubMed Central

    Ju, Chuanli; Chang, Caren

    2015-01-01

    The gaseous hormone ethylene profoundly affects plant growth, development, and stress responses. Ethylene perception occurs at the endoplasmic reticulum membrane, and signal transduction leads to a transcriptional cascade that initiates diverse responses, often in conjunction with other signals. Recent findings provide a more complete picture of the components and mechanisms in ethylene signaling, now rendering a more dynamic view of this conserved pathway. This includes newly identified protein-protein interactions at the endoplasmic reticulum membrane, as well as the major discoveries that the central regulator ETHYLENE INSENSITIVE2 (EIN2) is the long-sought phosphorylation substrate for the CONSTITUTIVE RESPONSE1 protein kinase, and that cleavage of EIN2 transmits the signal to the nucleus. In the nucleus, hundreds of potential gene targets of the EIN3 master transcription factor have been identified and found to be induced in transcriptional waves, and transcriptional coregulation has been shown to be a mechanism of ethylene cross talk. PMID:26246449

  2. ASCIZ/ATMIN is dispensable for ATM signaling in response to replication stress.

    PubMed

    Liu, Rui; King, Ashleigh; Hoch, Nicolas C; Chang, Catherine; Kelly, Gemma L; Deans, Andrew J; Heierhorst, Jörg

    2017-09-01

    The ATM kinase plays critical roles in the response to DNA double-strand breaks, and can also be activated by prolonged DNA replication blocks. It has recently been proposed that replication stress-dependent ATM activation is mediated by ASCIZ (also known as ATMIN, ZNF822), an essential developmental transcription factor. In contrast, we show here that ATM activation, and phosphorylation of its substrates KAP1, p53 and H2AX in response to the replication blocking agent aphidicolin was unaffected in both immortalized and primary ASCIZ/ATMIN-deficient murine embryonic fibroblasts compared to control cells. Similar results were also obtained in human ASCIZ/ATMIN-deleted lymphoma cells. The results demonstrate that ASCIZ/ATMIN is dispensable for ATM activation, and contradict the previously reported dependence of ATM on ASCIZ/ATMIN. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Influence of pine bark particle size and pH on cation exchange capacity

    USDA-ARS?s Scientific Manuscript database

    Cation exchange capacity (CEC) describes the maximum quantity of cations a soil or substrate can hold while being exchangeable with the soil solution. While CEC has been studied for peat-based substrates, relatively little work has documented factors that affect CEC of pine bark substrates. The ob...

  4. Visualizing cellulase activity.

    PubMed

    Bubner, Patricia; Plank, Harald; Nidetzky, Bernd

    2013-06-01

    Commercial exploitation of lignocellulose for biotechnological production of fuels and commodity chemicals requires efficient-usually enzymatic-saccharification of the highly recalcitrant insoluble substrate. A key characteristic of cellulose conversion is that the actual hydrolysis of the polysaccharide chains is intrinsically entangled with physical disruption of substrate morphology and structure. This "substrate deconstruction" by cellulase activity is a slow, yet markedly dynamic process that occurs at different length scales from and above the nanometer range. Little is currently known about the role of progressive substrate deconstruction on hydrolysis efficiency. Application of advanced visualization techniques to the characterization of enzymatic degradation of different celluloses has provided important new insights, at the requisite nano-scale resolution and down to the level of single enzyme molecules, into cellulase activity on the cellulose surface. Using true in situ imaging, dynamic features of enzyme action and substrate deconstruction were portrayed at different morphological levels of the cellulose, thus providing new suggestions and interpretations of rate-determining factors. Here, we review the milestones achieved through visualization, the methods which significantly promoted the field, compare suitable (model) substrates, and identify limiting factors, challenges and future tasks. Copyright © 2013 Wiley Periodicals, Inc.

  5. Direct microfabrication of oxide patterns by local electrodeposition of precisely positioned electrolyte: the case of Cu2O

    PubMed Central

    Wang, P.; Roberts, R. C.; Ngan, A. H. W.

    2016-01-01

    An efficient technique for writing 2D oxide patterns on conductive substrates is proposed and demonstrated in this paper. The technique concerns a novel concept for selective electrodeposition, in which a minimum quantity of liquid electrolyte, through an extrusion nozzle, is delivered and manipulated into the desired shape on the substrate, meanwhile being electrodeposited into the product by an applied voltage across the nozzle and substrate. Patterns of primarily Cu2O with 80~90% molar fraction are successfully fabricated on stainless steel substrates using this method. A key factor that allows the solid product to be primarily oxide Cu2O instead of metal Cu – the product predicted by the equilibrium Pourbaix diagram given the unusually large absolute deposition voltage used in this method, is the non-equilibrium condition involved in the process due to the short deposition time. Other factors including the motion of the extrusion nozzle relative to the substrate and the surface profile of the substrate that influence the electrodeposition performance are also discussed. PMID:27255188

  6. Human plasma kallikrein and tissue kallikrein binding to a substrate based on the reactive site of a factor Xa inhibitor isolated from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L; Andrade, S A; Batista, I F; Sampaio, M U; Juliano, M; Fritz, H; Auerswald, E A; Sampaio, C A

    1999-12-01

    Kunitz type Bauhinia ungulata factor Xa inhibitor (BuXI) was purified from B. ungulata seeds. BuXI inactivates factor Xa and human plasma kallikrein (HuPK) with Ki values of 18.4 and 6.9 nM, respectively. However, Bauhinia variegata trypsin inhibitor (BvTI) which is 70% homologous to BuXI does not inhibit factor Xa and is less efficient on HuPK (Ki = 80 nM). The comparison between BuXI and BvTI reactive site structure indicates differences at Met59, Thr66 and Met67 residues. The hydrolysis rate of quenched fluorescence peptide substrates based on BuXI reactive site sequence, Abz-VMIAALPRTMFIQ-EDDnp (leading peptide), by HuPK and porcine pancreatic kallikrein (PoPK) is low, but hydrolysis is enhanced with Abz-VMIAALPRTMQ-EDDnp, derived from the leading peptide shortened by removing the dipeptide Phe-Ileu from the C-terminal portion, for HuPK (Km = 0.68 microM, k(cat)/Km = 1.3 x 10(6) M(-1) s(-1)), and the shorter substrate Abz-LPRTMQ-EDDnp is better for PoPK (Km = 0.66 microM, k(cat)/Km = 2.2 x 10(3) M(-1) s(-1)). The contribution of substrate methionine residues to HuPK and PoPK hydrolysis differs from that observed with factor Xa. The determined Km and k(cat) values suggest that the substrates interact with kallikreins the same as an enzyme and inhibitor interacts to form complexes.

  7. The role of added feed enzymes in promoting gut health in swine and poultry.

    PubMed

    Kiarie, Elijah; Romero, Luis F; Nyachoti, Charles M

    2013-06-01

    The value of added feed enzymes (FE) in promoting growth and efficiency of nutrient utilisation is well recognised in single-stomached animal production. However, the effects of FE on the microbiome of the gastrointestinal tract (GIT) are largely unrecognised. A critical role in host nutrition, health, performance and quality of the products produced is played by the intestinal microbiota. FE can make an impact on GIT microbial ecology by reducing undigested substrates and anti-nutritive factors and producing oligosaccharides in situ from dietary NSP with potential prebiotic effects. Investigations with molecular microbiology techniques have demonstrated FE-mediated responses on energy utilisation in broiler chickens that were associated with certain clusters of GIT bacteria. Furthermore, investigations using specific enteric pathogen challenge models have demonstrated the efficacy of FE in modulating gut health. Because FE probably change the substrate characteristics along the GIT, subsequent microbiota responses will vary according to the populations present at the time of administration and their reaction to such changes. Therefore, the microbiota responses to FE administration, rather than being absolute, are a continuum or a population of responses. However, recognition that FE can make an impact on the gut microbiota and thus gut health will probably stimulate development of FE capable of modulating gut microbiota to the benefit of host health under specific production conditions. The present review brings to light opportunities and challenges for the role of major FE (carbohydrases and phytase) on the gut health of poultry and swine species with a specific focus on the impact on GIT microbiota.

  8. Power Flow Angles for Slanted Finger Surface Acoustic Wave Filters on Langasite Substrate

    NASA Astrophysics Data System (ADS)

    Goto, Mikihiro; Yatsuda, Hiromi; Chiba, Takao

    2007-07-01

    Power flow angles (PFAs) on a langasite (LGS) substrate with Euler angles of (0{\\degree}, 138.5{\\degree}, \\psi), \\psi=25.7 to 27.7° are investigated for slanted finger interdigital transducer (SFIT) surface acoustic wave (SAW) filters by an electrical and optical methods. In the electrical method, several tilted SFIT SAW filters with different tilt angles for (0{\\degree}, 138.5{\\degree}, \\psi) LGS substrates were designed, and the frequency responses of the filters were measured. In the optical method, the PFAs were directly measured by optical probing for a parallel interdigital transducer (IDT) with wide propagation area on the substrate. As a result, a good correlation between electrical and optical measurements of the PFAs is obtained, but the calculated PFAs are slightly different from the measured PFAs. A good frequency response of a tilted 380 MHz SFIT SAW filter with an appropriate tilt angle corresponding to the PFA on the substrate is obtained even though the aperture is small.

  9. Advanced Wide-Field Interferometric Microscopy for Nanoparticle Sensing and Characterization

    NASA Astrophysics Data System (ADS)

    Avci, Oguzhan

    Nanoparticles have a key role in today's biotechnological research owing to the rapid advancement of nanotechnology. While metallic, polymer, and semiconductor based artificial nanoparticles are widely used as labels or targeted drug delivery agents, labeled and label-free detection of natural nanoparticles promise new ways for viral diagnostics and therapeutic applications. The increasing impact of nanoparticles in bio- and nano-technology necessitates the development of advanced tools for their accurate detection and characterization. Optical microscopy techniques have been an essential part of research for visualizing micron-scale particles. However, when it comes to the visualization of individual nano-scale particles, they have shown inadequate success due to the resolution and visibility limitations. Interferometric microscopy techniques have gained significant attention for providing means to overcome the nanoparticle visibility issue that is often the limiting factor in the imaging techniques based solely on the scattered light. In this dissertation, we develop a rigorous physical model to simulate the single nanoparticle optical response in a common-path wide-field interferometric microscopy (WIM) system. While the fundamental elements of the model can be used to analyze nanoparticle response in any generic wide-field imaging systems, we focus on imaging with a layered substrate (common-path interferometer) where specular reflection of illumination provides the reference light for interferometry. A robust physical model is quintessential in realizing the full potential of an optical system, and throughout this dissertation, we make use of it to benchmark our experimental findings, investigate the utility of various optical configurations, reconstruct weakly scattering nanoparticle images, as well as to characterize and discriminate interferometric nanoparticle responses. This study investigates the integration of advanced optical schemes in WIM with two main goals in mind: (i) increasing the visibility of low-index nanoscale particles via pupil function engineering, pushing the limit of sensitivity; (ii) improving the resolution of sub-diffraction-limited, low-index particle images in WIM via reconstruction strategies for shape and orientation information. We successfully demonstrate an overall ten-fold improvement in the visibility of the low-index sub-wavelength nanoparticles as well as up to two-fold extended spatial resolution of the interference-enhanced nanoparticle images. We also systematically examine the key factors that determine the signal in WIM. These factors include the particle type, size, layered substrate design, defocus and nanoparticle polarizability. We use the physical model to demonstrate how these factors determine the signal levels, and demonstrate how the layered substrate can be designed to optimize the overall signal, while defocus scan can be used to maximize it, as well as its signature can be utilized for particle discrimination purposes for both dielectric particles and resonant metallic particles. We introduce a machine learning based particle characterization algorithm that relies on supervised learning from model. The particle characterization is limited to discrimination based on nanosphere size and type in the scope of this dissertation.

  10. Evaluation of flue-gas desulfurization gypsum in poultry litter as a substrate component for greenhouse horticultural crops

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the growth response and consumer preference of three plant species to substrate blends containing flue gas desulfurization gypsum (FGDG). Substrate blends used in this study were derived from a previous experiment that evaluated the use of FGD Gas a bedding material...

  11. Microfabricated pressure and shear stress sensors

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2009-01-01

    A microfabricated pressure sensor. The pressure sensor comprises a raised diaphragm disposed on a substrate. The diaphragm is configured to bend in response to an applied pressure difference. A strain gauge of a conductive material is coupled to a surface of the raised diaphragm and to at least one of the substrate and a piece rigidly connected to the substrate.

  12. Updates on smart polymeric carrier systems for protein delivery.

    PubMed

    El-Sherbiny, Ibrahim; Khalil, Islam; Ali, Isra; Yacoub, Magdi

    2017-10-01

    Smart materials are those materials that are responsive to chemical (organic molecules, chemical agents or specific agents), biochemical (protein, enzymes, growth factors, substrates or ligands), physical (electric field, magnetic field, temperature, pH, ionic strength or radiation) or mechanical (pressure or mechanical stress) signals. These responsive materials interact with the stimuli by changing their properties or conformational structures in a predictable manner. Recently, smart polymers have been utilized in various biomedical applications. Particularly, they have been used as a platform to synthesize stimuli-responsive systems that could deliver therapeutics to a specific site for a specific period with minimal adverse effects. For instance, stimuli-responsive polymers-based systems have been recently reported to deliver different bioactive molecules such as carbohydrates (heparin), chemotherapeutic agents (doxorubicin), small organic molecules (anti-coagulants), nucleic acids (siRNA), and proteins (growth factors and hormones). Protein therapeutics played a fundamental role in treatment of various chronic and some autoimmune diseases. For instance insulin has been used in treatment of diabetes. However, being a protein in nature, insulin delivery is limited by its instability, short half-life, and easy denaturation when administered orally. To overcome these challenges, and as highlighted in this review article, much research efforts have been recently devoted to design and develop convenient smart controlled nanosystems for protein therapeutics delivery.

  13. Cytosolic sensing of immuno-stimulatory DNA, the enemy within.

    PubMed

    Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia

    2018-02-01

    In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.

  14. Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.

    2015-11-01

    This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.

  15. Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces.

    PubMed

    Ware, Taylor; Simon, Dustin; Hearon, Keith; Liu, Clive; Shah, Sagar; Reeder, Jonathan; Khodaparast, Navid; Kilgard, Michael P; Maitland, Duncan J; Rennaker, Robert L; Voit, Walter E

    2012-12-01

    Planar electronics processing methods have enabled neural interfaces to become more precise and deliver more information. However, this processing paradigm is inherently 2D and rigid. The resulting mechanical and geometrical mismatch at the biotic-abiotic interface can elicit an immune response that prevents effective stimulation. In this work, a thiol-ene/acrylate shape memory polymer is utilized to create 3D softening substrates for stimulation electrodes. This substrate system is shown to soften in vivo from more than 600 to 6 MPa. A nerve cuff electrode that coils around the vagus nerve in a rat and that drives neural activity is demonstrated.

  16. Substrate Cooperativity in Marine Luciferases

    PubMed Central

    Tzertzinis, George; Schildkraut, Ezra; Schildkraut, Ira

    2012-01-01

    Marine luciferases are increasingly used as reporters to study gene regulation. These luciferases have utility in bioluminescent assay development, although little has been reported on their catalytic properties in response to substrate concentration. Here, we report that the two marine luciferases from the copepods, Gaussia princeps (GLuc) and Metridia longa (MLuc) were found, surprisingly, to produce light in a cooperative manner with respect to their luciferin substrate concentration; as the substrate concentration was decreased 10 fold the rate of light production decreased 1000 fold. This positive cooperative effect is likely a result of allostery between the two proposed catalytic domains found in Gaussia and Metridia. In contrast, the marine luciferases from Renilla reniformis (RLuc) and Cypridina noctiluca (CLuc) demonstrate a linear relationship between the concentration of their respective luciferin and the rate of light produced. The consequences of these enzyme responses are discussed. PMID:22768230

  17. Effects of surface topography on SERS response: Correlating nanoscopy with spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Sumit Kumar; Ghosh, Manash; Chowdhury, Joydeep

    2018-05-01

    This paper reports for the first time the hidden correlation between the topographical features of the bilayer Langmuir-Blodgett (LB) film substrates of stearic acid (SA) incubated in Au@Ag nanocolloids over various dipping times (DTs) with their corresponding SERS responses. The topographies of the as prepared substrates are investigated from the statistical considerations in terms of lateral correlation length, interface width, Hurst and Lyapnov exponents. The real space of the substrates are mapped directly from the FESEM and AFM images of the bilayer LB film of SA immersed in Au@Ag nanocolloids over various DTs ranging between 6 and 72 h. The SERS spectra of the Rhodamine 6G molecules adsorbed on the as prepared substrates have been reported. The statistical parameters of the substrates that exhibit maximum SERS efficacy have been suggested. The far field distributions in presence and in absence of Raman dipole together with spatial distribution of the near field from the hottest spot of the as prepared substrate have also been reported. To our knowledge, this is the first report that links nanoscopy with SERS spectroscopy from statistical considerations and is expected to open a new window towards the fabrication of more efficient and reproducible SERS active substrates in future endeavours.

  18. Size Matters: Observed and Modeled Camouflage Response of European Cuttlefish (Sepia officinalis) to Different Substrate Patch Sizes during Movement

    PubMed Central

    Josef, Noam; Berenshtein, Igal; Rousseau, Meghan; Scata, Gabriella; Fiorito, Graziano; Shashar, Nadav

    2017-01-01

    Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2–12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes—which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement. PMID:28144221

  19. Size Matters: Observed and Modeled Camouflage Response of European Cuttlefish (Sepia officinalis) to Different Substrate Patch Sizes during Movement.

    PubMed

    Josef, Noam; Berenshtein, Igal; Rousseau, Meghan; Scata, Gabriella; Fiorito, Graziano; Shashar, Nadav

    2016-01-01

    Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2-12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes-which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement.

  20. Evidence for a role of transporter-mediated currents in the depletion of brain serotonin induced by serotonin transporter substrates.

    PubMed

    Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H

    2014-05-01

    Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [(3)H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [(3)H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT.

  1. Evidence for a Role of Transporter-Mediated Currents in the Depletion of Brain Serotonin Induced by Serotonin Transporter Substrates

    PubMed Central

    Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H

    2014-01-01

    Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [3H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [3H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT. PMID:24287719

  2. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    PubMed

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Proteolytic inactivation of tissue factor pathway inhibitor by bacterial omptins

    PubMed Central

    Yun, Thomas H.; Cott, Jessica E.; Tapping, Richard I.; Slauch, James M.

    2009-01-01

    The immune response to infection includes activation of the blood clotting system, leading to extravascular fibrin deposition to limit the spread of invasive microorganisms. Some bacteria have evolved mechanisms to counteract this host response. Pla, a member of the omptin family of Gram-negative bacterial proteases, promotes the invasiveness of the plague bacterium, Yersinia pestis, by activating plasminogen to plasmin to digest fibrin. We now show that the endogenous anticoagulant tissue factor pathway inhibitor (TFPI) is also highly sensitive to proteolysis by Pla and its orthologs OmpT in Escherichia coli and PgtE in Salmonella enterica serovar Typhimurium. Using gene deletions, we demonstrate that bacterial inactivation of TFPI requires omptin expression. TFPI inactivation is mediated by proteolysis since Western blot analysis showed that TFPI cleavage correlated with loss of anticoagulant function in clotting assays. Rates of TFPI inactivation were much higher than rates of plasminogen activation, indicating that TFPI is a better substrate for omptins. We hypothesize that TFPI has evolved sensitivity to proteolytic inactivation by bacterial omptins to potentiate procoagulant responses to bacterial infection. This may contribute to the hemostatic imbalance in disseminated intravascular coagulation and other coagulopathies accompanying severe sepsis. PMID:18988866

  4. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule.

    PubMed

    Tsai, Jordan C; Miller-Vedam, Lakshmi E; Anand, Aditya A; Jaishankar, Priyadarshini; Nguyen, Henry C; Renslo, Adam R; Frost, Adam; Walter, Peter

    2018-03-30

    Regulation by the integrated stress response (ISR) converges on the phosphorylation of translation initiation factor eIF2 in response to a variety of stresses. Phosphorylation converts eIF2 from a substrate to a competitive inhibitor of its dedicated guanine nucleotide exchange factor, eIF2B, thereby inhibiting translation. ISRIB, a drug-like eIF2B activator, reverses the effects of eIF2 phosphorylation, and in rodents it enhances cognition and corrects cognitive deficits after brain injury. To determine its mechanism of action, we solved an atomic-resolution structure of ISRIB bound in a deep cleft within decameric human eIF2B by cryo-electron microscopy. Formation of fully active, decameric eIF2B holoenzyme depended on the assembly of two identical tetrameric subcomplexes, and ISRIB promoted this step by cross-bridging a central symmetry interface. Thus, regulation of eIF2B assembly emerges as a rheostat for eIF2B activity that tunes translation during the ISR and that can be further modulated by ISRIB. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Inhibitory effect of morphine on granulocyte stimulation by tumor necrosis factor and substance P.

    PubMed

    Stefano, G B; Kushnerik, V; Rodriquez, M; Bilfinger, T V

    1994-04-01

    We demonstrate that morphine, at higher concentrations than that effective in the inhibition of spontaneously active cells, can antagonize stimulation of human granulocytes by tumor necrosis factor (TNF) or substance P. The antagonistic effect appears to occur indirectly by way of downregulation of the cells' responsiveness to these stimulatory substances. We have previously shown that neutral endopeptidase 24.11 (NEP) is an important enzyme in neuro- and autoimmunoregulation of both vertebrates and invertebrates, and that activation of human granulocytes by monokines and neuropeptides results in regulation of NEP. Exposure of intact human granulocytes to morphine increases NEP by a naloxone-sensitive mechanism. The increased expression of NEP downregulates the stimulatory effect of substance P and TNF. In the case of substance P, we demonstrate the significance of NEP in modulating the process of downregulation by use of a specific NEP inhibitor, phosphoramidon. These results indicate that morphine is a significant factor in downregulating immunocyte responsiveness to NEP substrates and also to those signal molecules (i.e. cytokines) not metabolized by it. In summary, we infer that opiates may be endogenous signal molecules, a status that appears to be amply supported by their immunosuppressive actions.

  6. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2more » and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.« less

  7. On The Development of Biophysical Models for Space Radiation Risk Assessment

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Dicello, J. F.

    1999-01-01

    Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and GI inhibitors we show that simulations of cell cycle populations and GI arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.

  8. Hyper-G stress-induced hyperglycemia in rats mediated by glucoregulatory hormones

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.

    1985-01-01

    The present investigation is concerned with possible relations of the hyperglycemic response of rats exposed to hyper-G stress to (1) alterations in blood levels of the glucoregulatory hormones and gluconeogenic substrates, and (2) changes in insulin response on muscle glucose uptake. Male Sprague-Dawley rats weighing 250-300 g were used in the study. The results of the experiments indicate that the initial rapid rise in blood glucose of rats exposed to hyper-G stress is mediated by increases in circulating catecholamines and glucagon, both potent stimulators of hepatic gluconeogenesis. Lactate, derived from epinephrine stimulation of muscle glycogenolysis, appears to be a major precursor for the initial rise in blood glucose. The inhibition of the insulin-stimulated glucose uptake by muscle tissues may be a factor in the observed sustained hyperglycemia.

  9. Ipsilesional motor-evoked potential absence in pediatric hemiparesis impacts tracking accuracy of the less affected hand.

    PubMed

    Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T

    2015-12-01

    This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Diagnosis and Management of Rumen Acidosis and Bloat in Feedlots.

    PubMed

    Meyer, Nathan F; Bryant, Tony C

    2017-11-01

    Ruminal acidosis and ruminal bloat represent the most common digestive disorders in feedlot cattle. Ruminants are uniquely adapted to digest and metabolize a large range of feedstuffs. Although cattle have the ability to handle various feedstuffs, disorders associated with altered ruminal fermentation can occur. Proper ruminal microorganism adaptation and a consistent substrate (ration) help prevent digestive disorders. Feed bunk management, sufficient ration fiber, consistent feed milling, and appropriate response to abnormal weather are additional factors important in prevention of digestive disorders. When digestive disorders are suspected, timely diagnosis is imperative. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture.

    PubMed

    Rogers, Eric D; Monaenkova, Daria; Mijar, Medhavinee; Nori, Apoorva; Goldman, Daniel I; Benfey, Philip N

    2016-07-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates

    PubMed Central

    Nguyen, Thang Van; Li, Jing; Lu, Chin-Chun (Jean); Mamrosh, Jennifer L.; Lu, Gang; Cathers, Brian E.; Deshaies, Raymond J.

    2017-01-01

    Glutamine synthetase (GS) plays an essential role in metabolism by catalyzing the synthesis of glutamine from glutamate and ammonia. Our recent study showed that CRBN, a direct protein target for the teratogenic and antitumor activities of immunomodulatory drugs such as thalidomide, lenalidomide, and pomalidomide, recognizes an acetyl degron of GS, resulting in ubiquitylation and degradation of GS in response to glutamine. Here, we report that valosin-containing protein (VCP)/p97 promotes the degradation of ubiquitylated GS, resulting in its accumulation in cells with compromised p97 function. Notably, p97 is also required for the degradation of all four known CRBN neo-substrates [Ikaros family zinc finger proteins 1 (IKZF1) and 3 (IKZF3), casein kinase 1α (CK1α), and the translation termination factor GSPT1] whose ubiquitylation is induced by immunomodulatory drugs. Together, these data point to an unexpectedly intimate relationship between the E3 ubiquitin ligase CRL4CRBN and p97 pathways. PMID:28320958

  13. Response of Pleurotus ostreatus to cadmium exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favero, N.; Bressa, G.; Costa, P.

    1990-08-01

    The possibility of utilizing agroindustrial wastes in the production of edible, high-quality products (e.g., mushrooms) implies the risk of bringing toxic substances, such as heavy metals, into the human food chain. Thus, growth in the presence of cadmium and cadmium accumulation limits have been studied in the industrially cultivated fungus P. ostreatus. Fruit body production is substantially unaffected in the presence of 25, 139, and 285 mg Cd/kg of dried substrate. Cadmium concentration in fruit bodies is related to cadmium substrate level, the metal being present at higher levels in caps (22-56 mg/kg dry wt) than in stems (13-36 mg/kgmore » dry wt). Concentration factor (CF), very low in the controls (about 2), further decreases in treated specimens. The presence of a cadmium control mechanism in this fungi species is suggested. Fruit body cadmium levels could, however, represent a risk for P. ostreatus consumers, according to FAO/WHO limits related to weekly cadmium intake.« less

  14. Development of high-sensitive, reproducible colloidal surface-enhanced Raman spectroscopy active substrate using silver nanocubes for potential biosensing applications

    NASA Astrophysics Data System (ADS)

    Hasna, Kudilatt; Lakshmi, Kiran; Ezhuthachan Jayaraj, Madambi Kunjukuttan; Kumar, Kumaran Rajeev; Matham, Murukeshan Vadakke

    2016-04-01

    Surface-enhanced Raman spectroscopy (SERS) has emerged as one of the thrust research areas that could find potential applications in bio and chemical sensing. We developed colloidal SERS active substrate with excellent sensitivity and high reproducibility using silver nanocube (AgNC) synthesized via the solvothermal method. Finite-difference time-domain simulation was carried out in detail to visualize dipole generation in the nanocube during localized surface plasmon resonance and to locate the respective hot spots in AgNC responsible for the huge Raman enhancement. The prediction is verified by the SERS analysis of the synthesized nanocubes using Rhodamine 6G molecule. An excellent sensitivity with a detection limit of 10-17 M and a very high enhancement factor of 1.2×108 confirms the "hot spots" in the nanocube. SERS activity is also carried out for crystal violet and for food adulterant Sudan I molecule. Finally, label-free DNA detection is performed to demonstrate the versatility of SERS as a potential biosensor.

  15. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Yina; Li, Cong; Zhang, Hui; Yang, Rui

    2017-10-01

    It is quite important to clearly understand the dynamic and freezing process of water droplets impacting a cold substrate for the prevention of ice accretion. In this study, a three-dimensional model including an extended phase change method was developed on OpenFOAM platform to simulate the impact, spreading and freezing of a water droplet on a cooled solid substrate. Both normal and oblique impact conditions were studied numerically. The evolution of the droplet shape and dynamic characteristics such as area ratio and spread factor were compared between numerical and experimental results. Good agreements were obtained. The effects of Weber number and Ohnersorge number on the oblique impact and freezing process were investigated. A regime map which depicts the different responses of droplets as a function of normal Weber number and Ohnesorge number was obtained. Moreover, the impact, spreading and freezing behaviour of water droplets were analyzed in detail from the numerical results.

  16. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease.

    PubMed

    Townley-Tilson, W H Davin; Pi, Xinchun; Xie, Liang

    2015-01-01

    Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  17. Carbon Nanotube Patterning on a Metal Substrate

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor)

    2016-01-01

    A CNT electron source, a method of manufacturing a CNT electron source, and a solar cell utilizing a CNT patterned sculptured substrate are disclosed. Embodiments utilize a metal substrate which enables CNTs to be grown directly from the substrate. An inhibitor may be applied to the metal substrate to inhibit growth of CNTs from the metal substrate. The inhibitor may be precisely applied to the metal substrate in any pattern, thereby enabling the positioning of the CNT groupings to be more precisely controlled. The surface roughness of the metal substrate may be varied to control the density of the CNTs within each CNT grouping. Further, an absorber layer and an acceptor layer may be applied to the CNT electron source to form a solar cell, where a voltage potential may be generated between the acceptor layer and the metal substrate in response to sunlight exposure.

  18. Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology.

    PubMed

    Chang, Cheng; Chen, Jiann-Hwa; Chang, Chieh-Ming J; Wu, Tsung-Ta; Shieh, Chwen-Jen

    2009-10-31

    Isopropanolysis reactions were performed using triglycerides with immobilized lipase in a solvent-free environment. This study modeled the degree of isopropanolysis of soybean oil in a continuous packed-bed reactor when Novozym 435 was used as the biocatalyst. Response surface methodology (RSM) and three-level-three-factor Box-Behnken design were employed to evaluate the effects of synthesis parameters, reaction temperature ( degrees C), flow rate (mL/min) and substrate molar ratio of isopropanol to soybean oil, on the percentage molar conversion of biodiesel by transesterification. The results show that flow rate and temperature have a significant effect on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions for synthesis were as follows: flow rate 0.1 mL/min, temperature 51.5 degrees C and substrate molar ratio 1:4.14. The predicted value was 76.62+/-1.52% and actual experimental value was 75.62+/-0.81% molar conversion. Moreover, continuous enzymatic process for seven days did not show any appreciable decrease in the percent of molar conversion (75%). This work demonstrates the applicability of lipase catalysis to prepare isopropyl esters by transesterification in solvent-free system with a continuous packed-bed reactor for industrial production.

  19. Changes in the substrate of rivers in historic mining districts

    USGS Publications Warehouse

    Milhous, R.T.

    2004-01-01

    The restoration of rivers in watersheds with historic mining districts has become a topic of interest during the last decade. Rivers restoration in these areas is difficult because the mines and mills can be scattered over a wide area and often small. Many have also been abandoned. This paper presents two substrate related factors that are important in the evaluation of river restoration alternatives in watersheds with significance impacts from mines and mills most of which are old and abandoned. The two factors are 1) changes in the size distribution and specific weights of the substrate, and 2) the changes in quality of the interstecial waters caused by metals associated with the tailings in the substrate. The most important impacts of tailings from mills may be on the physical characteristics of the substrate (porosity) and on the quality of the pore waters. The measurements presented in this paper do show significant variation in the porosity in gravel bed rivers and in the quality of the pore waters. Copyright ASCE 2004.

  20. Fish protein substrates can substitute effectively for poultry by-product meal when incorporated in high-quality senior dog diets.

    PubMed

    Zinn, K E; Hernot, D C; Fastinger, N D; Karr-Lilienthal, L K; Bechtel, P J; Swanson, K S; Fahey, G C

    2009-08-01

    An experiment was conducted to analytically define several novel fish substrates and determine the effects of feeding diets containing these substrates on total tract nutrient digestibilities and on immune status of senior dogs. The control diet contained poultry by-product meal while test diets contained 20% milt meal (MM), pink salmon hydrolysate (PSH) and white fish meal (WFM) added at the expense of poultry by-product meal. Concentrations of lymphocytes positive for CD3, CD4, CD8 and CD21 cell-surface markers and immunoglobulin concentrations were measured. Gene expression of cytokines tumour necrosis factor (TNF)-, interleukin (IL)-6, interferon (IFN)-, IL-10 and transforming growth factor (TGF)-β was determined by quantitative real-time polymerase chain reaction. Major compositional differences were noted among fish substrates but apparent nutrient digestibility coefficients and immune indices were not affected by treatment. Fish protein substrates were found to be effective substitutes for poultry by-product meal, providing diets of high nutritive value for senior dogs.

  1. Factors conditioning the habitat and the density of Biomphalaria tenagophila (Orbigny, 1835) in an isolated schistosomiasis focus in Rio de Janeiro city.

    PubMed

    Baptista, D F; Jurberg, P

    1993-01-01

    The present work was carried out in a watercress garden in Alto da Boa Vista, in the city of Rio de Janeiro, Brazil. The investigation was carried out in two phases. The first one (1985-86) involved the sampling of Biomphalaria tenegophila in two areas to determine its relative populational densities. The results showed that the populations presented similar densities and dynamics. The second phase (1988-89) involved the study of the influence of some environmental factors on the establishment of B. tenagophila in watercress garden. Two factors were identified as responsible for the establishment of B. tenagophila in the garden: (1) the quality of the water entering the irrigation system, to which domestic sewage is added, and (2) alterations in the nature of the substrate, due to inadequate fertilization techniques, which employ organic matter from adjacent pigsties. Aquatic plants and hydrological parameters of the irrigation system were subsidiary factors to the establishment of B. tenagophila in the garden.

  2. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  3. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  4. Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae

    DOE PAGES

    Moon, Andrea F.; Gaudu, Philippe; Pedersen, Lars C.

    2014-11-01

    The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae , facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structuremore » of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. Lastly, these structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.« less

  5. Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae.

    PubMed

    Moon, Andrea F; Gaudu, Philippe; Pedersen, Lars C

    2014-11-01

    The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae, facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structure of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. These structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.

  6. Implementation of anion-receptor macrocycles in supramolecular tandem assays for enzymes involving nucleotides as substrates, products, and cofactors.

    PubMed

    Florea, Mara; Nau, Werner M

    2010-03-07

    A supramolecular tandem assay for direct continuous monitoring of nucleotide triphosphate-dependent enzymes such as potato apyrase is described. The underlying principle of the assay relies on the use of anion-receptor macrocycles in combination with fluorescent dyes as reporter pairs. A combinatorial approach was used to identify two complementary reporter pairs, i.e. an amino-gamma-cyclodextrin with 2-anilinonaphtalene-6-sulfonate (ANS) as dye (fluorescence enhancement factor of 17 upon complexation) and a polycationic cyclophane with 8-hydroxy-1,3,6-pyrene trisulfonate (HPTS) as dye (fluorescence decrease by a factor of more than 2000), which allow the kinetic monitoring of potato apyrase activity at different ATP concentration ranges (microM and mM) with different types of photophysical responses (switch-ON and switch-OFF). Competitive fluorescence titrations revealed a differential binding of ATP (strongest competitor) versus ADP and AMP, which constitutes the prerequisite for monitoring enzymatic conversions (dephosphorylation or phosphorylation) involving nucleotides. The assay was tested for different enzyme and substrate concentrations and exploited for the screening of activating additives, namely divalent transition metal ions (Ni(2+), Mg(2+), Mn(2+), and Ca(2+)). The transferability of the assay could be demonstrated by monitoring the dephosphorylation of other nucleotide triphosphates (GTP, TTP, and CTP).

  7. Studies of the stability of water-soluble polypeptoid helices and investigation of synthetic, biomimetic substrates for the development of a thermally triggered, enzymatically crosslinked hydrogel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanborn, Tracy Joella

    Due to the unique 3D structures of proteins, these biopolymers are able to perform a myriad of vital functions and activities in vivo. Peptidomimetic oligomers are being synthesized to mimic the structure and function of natural peptides. We have examined the stability of secondary structure of a poly-N-substituted glycine (peptoid) and developed synthetic substrates for transglutaminase enzymes. We synthesized an amphipathic, helical, 36 residue peptoid to study the stability of peptoid secondary structure using circular dichroism. We saw no significant dependence of helical structure on concentration, solvent, or temperature. The extraordinary resistance of these peptoid helices to denaturation is consistent with a dominant role, of steric forces in their structural stabilization. The structured polypeptoids studied here have potential as robust mimics of helical polypeptides of therapeutic interest. The ability of transglutaminases to crosslink peptidomimetic substrates was also investigated. There is a medical need for robust, biocompatible hydrogels that can be rapidly crosslinked in situ, for application as surgical adhesives, bone-inductive materials, or for drug delivery. We have taken an enzymatic approach to the creation of a novel gelation system that fits these requirements, utilizing transglutaminase enzymes, thermo-responsive liposomes, and a biomimetic enzyme substrate based on a peptide-polymer conjugate. At room temperature, the hydrogel system is a solution. Upon heating to 37°C, the calcium-loaded liposomes release calcium that activates Factor XIII in the presence of thrombin, producing a gel within 9 minutes. Rheological studies demonstrated that the hydrogel behaves as a robust, elastic solid, while scanning electron microscopy studies revealed that the hydrogel has a very dense morphology overall. We also investigated the ability of transglutaminases to crosslink non-natural, peptoid-based substrates. The activity of five lysine-containing peptoid substrates and two glutamine-containing peptoid substrates with proteinogenic side chains were compared to their peptide analogs. Lysine-containing peptoid substrates were crosslinked by the transglutaminase but at a much lower rate, producing at most 28% of the crosslinked product that its peptide counterpart produced. Of the two glutamine-containing peptoid substrates investigated, one did not show any crosslinked product formation, while the other was insoluble in aqueous solution.

  8. Relationship between energy dense diets and white adipose tissue inflammation in metabolic syndrome.

    PubMed

    Alemany, Marià

    2013-01-01

    Metabolic syndrome (MS) is a widespread pathologic state that manifests as multiple intertwined diseases affecting the entire body. This review analyzes the contribution of adipose tissue inflammation to its development. The main factor in the appearance of MS is an excess of dietary energy (largely fats), eliciting insulin resistance and creating the problem of excess energy disposal. Under these conditions, amino acid catabolism is diminished, which indirectly alters the production of nitric oxide and affects blood flow regulation. The oxidation of nitric oxide to nitrite and nitrate affects microbiota composition and functions. Adipose tissue cannot incorporate excessive nutrients after cell enlargement and loss of function. Tissue damage is a form of aggression, and the response is proinflammatory cytokine release. Cytokines favor the massive penetration of immune system cells, such as macrophages, which unsuccessfully try to fight an elusive danger for which they are not prepared. The consequence is low-level maintenance of the inflammatory state, which affects endoplasmic reticulum function and the endothelial response to excess regulatory mechanisms affecting blood flow and substrate/oxygen supply. When inflammation becomes chronic, the pathologic consequences are disseminated throughout the body because unused substrates and signals from adipose tissue affect energy partitioning and organ function. This maintenance of an unbalanced state ultimately results in the establishment of MS and associated pathologies. New research should focus on identifying ways to disarm the inflammatory response of adipose tissue when the dangers of dietary excess have already been controlled. Copyright © 2013. Published by Elsevier Inc.

  9. Silicon nanomembranes as a means to evaluate stress evolution in deposited thin films

    Treesearch

    Anna M. Clausen; Deborah M. Paskiewicz; Alireza Sadeghirad; Joseph Jakes; Donald E. Savage; Donald S. Stone; Feng Liu; Max G. Lagally

    2014-01-01

    Thin-film deposition on ultra-thin substrates poses unique challenges because of the potential for a dynamic response to the film stress during deposition. While theoretical studies have investigated film stress related changes in bulk substrates, little has been done to learn how stress might evolve in a film growing on a compliant substrate. We use silicon...

  10. Multiaxis sensing using metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Allendorf, Mark D.; Leonard, Francois

    2017-01-17

    A sensor device including a sensor substrate; and a thin film comprising a porous metal organic framework (MOF) on the substrate that presents more than one transduction mechanism when exposed to an analyte. A method including exposing a porous metal organic framework (MOF) on a substrate to an analyte; and identifying more than one transduction mechanism in response to the exposure to the analyte.

  11. Thermal stress in flexible interdigital transducers with anisotropic electroactive cellulose substrates

    NASA Astrophysics Data System (ADS)

    Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan

    2017-12-01

    Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.

  12. A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates.

    PubMed

    Bengtsson, Oskar; Arntzen, Magnus Ø; Mathiesen, Geir; Skaugen, Morten; Eijsink, Vincent G H

    2016-01-10

    Analysis of the secretomes of filamentous fungi growing on insoluble lignocellulosic substrates is of major current interest because of the industrial potential of secreted fungal enzymes. Importantly, such studies can help identifying key enzymes from a large arsenal of bioinformatically detected candidates in fungal genomes. We describe a simple, plate-based method to analyze the secretome of Hypocrea jecorina growing on insoluble substrates that allows harsh sample preparation methods promoting desorption, and subsequent identification, of substrate-bound proteins, while minimizing contamination with non-secreted proteins from leaking or lysed cells. The validity of the method was demonstrated by comparative secretome analysis of wild-type H.jecorina strain QM6a growing on bagasse, birch wood, spruce wood or pure cellulose, using label-fee quantification. The proteomic data thus obtained were consistent with existing data from transcriptomics and proteomics studies and revealed clear differences in the responses to complex lignocellulosic substrates and the response to pure cellulose. This easy method is likely to be generally applicable to filamentous fungi and to other microorganisms growing on insoluble substrates. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases.

    PubMed

    Ghaddar, Kassem; Merhi, Ahmad; Saliba, Elie; Krammer, Eva-Maria; Prévost, Martine; André, Bruno

    2014-12-01

    Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. In utero fuel homeostasis: Lessons for a clinician.

    PubMed

    Rao, P N Suman; Shashidhar, A; Ashok, C

    2013-01-01

    Fetus exists in a complex, dynamic, and yet intriguing symbiosis with its mother as far as fuel metabolism is concerned. Though the dependence on maternal fuel is nearly complete to cater for its high requirement, the fetus is capable of some metabolism of its own. The first half of gestation is a period of maternal anabolism and storage whereas the second half results in exponential fetal growth where maternal stores are mobilized. Glucose is the primary substrate for energy production in the fetus though capable of utilizing alternate sources like lactate, ketoacids, amino acids, fatty acids, and glycogen as fuel under special circumstances. Key transporters like glucose transporters (GLUT) are responsible for preferential transfers, which are in turn regulated by complex interaction of maternal and fetal hormones. Amino acids are preferentially utilized for growth and essential fatty acids for development of brain and retina. Insulin, insulin like growth factors, glucagon, catecholamines, and letpin are the hormones implicated in this fascinating process. Hormonal regulation of metabolic substrate utilization and anabolism in the fetus is secondary to the supply of nutrient substrates. The knowledge of fuel homeostasis is crucial for a clinician caring for pregnant women and neonates to manage disorders of metabolism (diabetes), growth (intrauterine growth restriction), and transitional adaptation (hypoglycemia).

  15. Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution.

    PubMed

    Avramova, Marta; Cibrario, Alice; Peltier, Emilien; Coton, Monika; Coton, Emmanuel; Schacherer, Joseph; Spano, Giuseppe; Capozzi, Vittorio; Blaiotta, Giuseppe; Salin, Franck; Dols-Lafargue, Marguerite; Grbin, Paul; Curtin, Chris; Albertin, Warren; Masneuf-Pomarede, Isabelle

    2018-03-07

    Brettanomyces bruxellensis is a unicellular fungus of increasing industrial and scientific interest over the past 15 years. Previous studies revealed high genotypic diversity amongst B. bruxellensis strains as well as strain-dependent phenotypic characteristics. Genomic assemblies revealed that some strains harbour triploid genomes and based upon prior genotyping it was inferred that a triploid population was widely dispersed across Australian wine regions. We performed an intraspecific diversity genotypic survey of 1488 B. bruxellensis isolates from 29 countries, 5 continents and 9 different fermentation niches. Using microsatellite analysis in combination with different statistical approaches, we demonstrate that the studied population is structured according to ploidy level, substrate of isolation and geographical origin of the strains, underlying the relative importance of each factor. We found that geographical origin has a different contribution to the population structure according to the substrate of origin, suggesting an anthropic influence on the spatial biodiversity of this microorganism of industrial interest. The observed clustering was correlated to variable stress response, as strains from different groups displayed variation in tolerance to the wine preservative sulfur dioxide (SO 2 ). The potential contribution of the triploid state for adaptation to industrial fermentations and dissemination of the species B. bruxellensis is discussed.

  16. Priming cells for their final destination: microenvironment controlled cell culture by a modular ECM-mimicking feeder film.

    PubMed

    Barthes, Julien; Vrana, Nihal E; Özçelik, Hayriye; Gahoual, Rabah; François, Yannis N; Bacharouche, Jalal; Francius, Grégory; Hemmerlé, Joseph; Metz-Boutigue, Marie-Hélène; Schaaf, Pierre; Lavalle, Philippe

    2015-09-01

    Mammalian cell culture is the starting point in many research studies focusing on biomedical applications. However, researchers have little control over the standardized cell microenvironment parameters. Here a modular ECM-mimicking surface coating for cell culture environment is designed. This substrate is a new and versatile thin film obtained by spin-coating of concentrated gelatin crosslinked by transglutaminase. It can be modified with respect to the biochemical and biophysical needs of the final cell destination, i.e. it delivers loaded multi-growth factors and serum components and allows for cell culture in a serum-free culture medium. Also, a well-known cell behavior modulator, the substrate stiffness, is controlled exogenously by addition of nanoparticles. In addition to growth factors, antimicrobial agents such as natural peptides are added to the substrate for limiting the repeated addition of antimicrobial agents to the culture medium and to prevent the increase of resistant bacterial strains in the culture environment. Finally, this substrate contains simultaneously ECM components, growth factors, stiffening elements and antimicrobial agents. It provides a favorable microenvironment and sterile conditions. It is a free-of-maintenance system, as cells will grow without addition of serum or antimicrobial cocktails. This low cost and easy-to-use substrate could emerge as a new standard for cell culture.

  17. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect?

    NASA Astrophysics Data System (ADS)

    Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo

    2013-03-01

    Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.

  18. Substrate effects in high gain, low operating voltage SnSe2 photoconductor

    NASA Astrophysics Data System (ADS)

    Krishna, Murali; Kallatt, Sangeeth; Majumdar, Kausik

    2018-01-01

    High gain photoconductive devices find wide spread applications in low intensity light detection. Ultra-thin layered materials have recently drawn a lot of attention from researchers in this regard. However, in general, a large operating voltage is required to obtain large responsivity in these devices. In addition, the characteristics are often confounded by substrate induced trap effects. Here we report multi-layer SnSe2 based photoconductive devices using two different structures: (1) SiO2 substrate supported inter-digitated electrode (IDE), and (2) suspended channel. The IDE device exhibits a responsivity of ≈ {10}3 A W-1 and ≈ 8.66× {10}4 A W-1 at operating voltages of 1 mV and 100 mV, respectively—a superior low voltage performance over existing literature on planar 2D structures. However, the responsivity reduces by more than two orders of magnitude, while the transient response improves for the suspended device—providing insights into the critical role played by the channel-substrate interface in the gain mechanism. The results, on one hand, are promising for highly sensitive photoconductive applications consuming ultra-low power, and on the other hand, show a generic methodology that could be applied to other layered material based photoconductive devices as well for extracting the intrinsic behavior.

  19. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    NASA Astrophysics Data System (ADS)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  20. Motor-substrate interactions in mycoplasma motility explains non-Arrhenius temperature dependence.

    PubMed

    Chen, Jing; Neu, John; Miyata, Makoto; Oster, George

    2009-12-02

    Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by approximately 400 "leg" proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40 degrees C. This corresponds to an Arrhenius factor that decreases from approximately 45 k(B)T at 10 degrees C to approximately 10 k(B)T at 40 degrees C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.

  1. Motor-Substrate Interactions in Mycoplasma Motility Explains Non-Arrhenius Temperature Dependence

    PubMed Central

    Chen, Jing; Neu, John; Miyata, Makoto; Oster, George

    2009-01-01

    Abstract Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by ∼400 “leg” proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10–40°C. This corresponds to an Arrhenius factor that decreases from ∼45 kBT at 10°C to ∼10 kBT at 40°C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction. PMID:19948122

  2. Promotion of pro-osteogenic responses by a bioactive ceramic coating.

    PubMed

    Aniket; Young, Amy; Marriott, Ian; El-Ghannam, Ahmed

    2012-12-01

    The objective of this study was to analyze the responses of bone-forming osteoblasts to Ti-6Al-4V implant material coated with silica-calcium phosphate nanocomposite (SCPC50). Osteoblast differentiation at the interface with SCPC50-coated Ti-6Al-4V was correlated to the adsorption of high amount of serum proteins, high surface affinity to fibronectin, Ca uptake from and P and Si release into the medium. SCPC50-coated Ti-6Al-4V adsorbed significantly more serum protein (p < 0.05) than control uncoated substrates. Moreover, Western blot analysis showed that the SCPC50 coating had a high affinity for serum fibronectin. Protein conformation analyses by FTIR showed that the ratio of the area under the peak for amide I/amide II bands was significantly higher (p < 0.05) on the surface of SCPC50-coated substrates than that on the surface of the control uncoated substrates. Moreover, ICP - OES analyses indicated that SCPC50-coated substrates withdrew Ca ions from, and released P and Si ions into, the tissue culture medium, respectively. In conjunction with the favorable protein adsorption and modifications in medium composition, MC3T3-E1 osteoblast-like cells attached to SCPC50-coated substrates expressed 10-fold higher level of mRNA encoding osteocalcin and had significantly higher production of osteopontin and osteocalcin proteins than cells attached to the uncoated Ti-6A1-4V substrates. In addition, osteoblast-like cells attached to the SCPC50-coated substrates produced significantly lower levels of the inflammatory and osteoclastogenic cytokines, IL-6, IL-12p40, and RANKL than those attached to uncoated Ti-6Al-4V substrates. These results suggest that SCPC50 coating could enhance bone integration with orthopedic and maxillofacial implants while minimizing the induction of inflammatory bone cell responses. Copyright © 2012 Wiley Periodicals, Inc.

  3. Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate

    PubMed Central

    2010-01-01

    We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038

  4. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals.

    PubMed

    Hohnholt, Michaela C; Andersen, Vibe H; Bak, Lasse K; Waagepetersen, Helle S

    2017-01-01

    Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.

  5. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection.

    PubMed

    O'Daniels, Sean T; Kesler, Dylan C; Mihail, Jeanne D; Webb, Elisabeth B; Werner, Scott J

    2017-05-15

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms. Published by Elsevier Inc.

  6. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection

    USGS Publications Warehouse

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2017-01-01

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.

  7. An algorithm for temperature correcting substrate moisture measurements: aligning substrate moisture responses with environmental drivers in polytunnel-grown strawberry plants

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Janes, Stuart; Jenkins, Malcolm; Nicholl, Chris; Kühn, Karl

    2015-04-01

    The aim of this work is to assess the use of temperature corrected substrate moisture data to improve the relationship between environmental drivers and the measurement of substrate moisture content in high porosity soil-free growing environments such as coir. Substrate moisture sensor data collected from strawberry plants grown in coir bags installed in a table-top system under a polytunnel illustrates the impact of temperature on capacitance-based moisture measurements. Substrate moisture measurements made in our coir arrangement possess the negative temperature coefficient of the permittivity of water where diurnal changes in moisture content oppose those of substrate temperature. The diurnal substrate temperature variation was seen to range from 7° C to 25° C resulting in a clearly observable temperature effect in substrate moisture content measurements during the 23 day test period. In the laboratory we measured the ML3 soil moisture sensor (ThetaProbe) response to temperature in Air, dry glass beads and water saturated glass beads and used a three-phase alpha (α) mixing model, also known as the Complex Refractive Index Model (CRIM), to derive the permittivity temperature coefficients for glass and water. We derived the α value and estimated the temperature coefficient for water - for sensors operating at 100MHz. Both results are good agreement with published data. By applying the CRIM equation with the temperature coefficients of glass and water the moisture temperature coefficient of saturated glass beads has been reduced by more than an order of magnitude to a moisture temperature coefficient of

  8. The Role of Factor XIa (FXIa) Catalytic Domain Exosite Residues in Substrate Catalysis and Inhibition by the Kunitz Protease Inhibitor Domain of Protease Nexin 2*

    PubMed Central

    Su, Ya-Chi; Miller, Tara N.; Navaneetham, Duraiswamy; Schoonmaker, Robert T.; Sinha, Dipali; Walsh, Peter N.

    2011-01-01

    To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu98, Tyr143, Ile151, Arg3704, Lys192, and Tyr5901) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal Km values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of kcat for S-2366 hydrolysis. All six Ala mutants displayed deficient kcat values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of Ki except for K192A, and Y5901A, which displayed increased values of Ki. The integrity of the S1 binding site residue, Asp189, utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr143, Ile151, Arg3704, and Tyr5901) are important for S-2366 hydrolysis; Glu98 and Lys192 are essential for FIX but not S-2366 hydrolysis; and Lys192 and Tyr5901 are required for both inhibitor and macromolecular substrate interactions. PMID:21778227

  9. BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis.

    PubMed

    Morimoto, Kyoko; Ohama, Naohiko; Kidokoro, Satoshi; Mizoi, Junya; Takahashi, Fuminori; Todaka, Daisuke; Mogami, Junro; Sato, Hikaru; Qin, Feng; Kim, June-Sik; Fukao, Yoichiro; Fujiwara, Masayuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2017-10-03

    DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2A (DREB2A) acts as a key transcription factor in both drought and heat stress tolerance in Arabidopsis and induces the expression of many drought- and heat stress-inducible genes. Although DREB2A expression itself is induced by stress, the posttranslational regulation of DREB2A, including protein stabilization, is required for its transcriptional activity. The deletion of a 30-aa central region of DREB2A known as the negative regulatory domain (NRD) transforms DREB2A into a stable and constitutively active form referred to as DREB2A CA. However, the molecular basis of this stabilization and activation has remained unknown for a decade. Here we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the Cullin3 (CUL3)-based E3 ligase, as DREB2A-interacting proteins. We observed that DREB2A and BPMs interact in the nuclei, and that the NRD of DREB2A is sufficient for its interaction with BPMs. BPM -knockdown plants exhibited increased DREB2A accumulation and induction of DREB2A target genes under heat and drought stress conditions. Genetic analysis indicated that the depletion of BPM expression conferred enhanced thermotolerance via DREB2A stabilization. Thus, the BPM-CUL3 E3 ligase is likely the long-sought factor responsible for NRD-dependent DREB2A degradation. Through the negative regulation of DREB2A stability, BPMs modulate the heat stress response and prevent an adverse effect of excess DREB2A on plant growth. Furthermore, we found the BPM recognition motif in various transcription factors, implying a general contribution of BPM-mediated proteolysis to divergent cellular responses via an accelerated turnover of transcription factors.

  10. Response of fish communities to cropland density and natural environmental setting in the Eastern Highland Rim Ecoregion of the lower Tennessee River basin, Alabama and Tennessee, 1999

    USGS Publications Warehouse

    Powell, Jeffrey R.

    2003-01-01

    Response of fish communities to cropland density and natural environmental setting were evaluated at 20 streams in the Eastern Highland Rim Ecoregion of the lower Tennessee River Basin during the spring of 1999. Sites were selected to represent a gradient of cropland densities in basins draining about 30 to 100 square miles. Fish communities were sampled by using a combination of seining and electrofishing techniques. A total of 10,550 individual fish, representing 63 species and 15 families, were collected during the study and included the families Cyprinidae (minnows), 18 species; Percidae (perch and darters), 12 species; and Centrarchidae (sunfish), 12 species. Assessments of environmental characteristics, including instream and terrestrial data and land-cover data, were conducted for each site. Instream measurements, such as depth, velocity, substrate type, and embeddedness, were recorded at 3 points across 11 equidistant transects at each site. Terrestrial measurements, such as bank angle, canopy angle, and canopy closure percentage, were made along the stream bank and midchannel areas. Water-quality data collected included pH, dissolved oxygen, specific conductivity, water temperature, nutrients, and fecal-indicator bacteria. Substrate embeddedness was the only variable correlated with both cropland density and fish communities (as characterized by ordination scores and several community level metrics). Multivariate and nonparametric correlation techniques were used to evaluate fish-community responses to physical and chemical factors associated with a cropland-density gradient, where the gradient was defined as the percentage of the basin in row crops. Principal component analysis and correspondence analysis suggest that the Eastern Highland Rim Ecoregion is composed of three subgroups of sites based on inherent physical and biological differences. Data for the subgroup containing the largest number of sites were then re-analyzed, revealing that several environmental variables, such as nutrient concentrations, stream gradient, bankfull width, and substrate embeddedness, were related to cropland density; however, only a subset of those variables (substrate embeddedness, elevation, and streamflow) were related to fish communities. Results from this analysis suggest that although many water-quality and habitat variables are covariant with cropland density, most of the variables do not significantly affect fish-community composition; instead, fish communities primarily respond to the cumulative effects of sedimentation.

  11. High-efficiency, deep-junction, epitaxial InP solar cells on (100) and (111)B InP substrates

    NASA Technical Reports Server (NTRS)

    Venkatasubramanian, R.; Timmons, M. L.; Hutchby, J. A.; Walters, Robert J.; Summers, Geoffrey P.

    1994-01-01

    We report on the development and performance of deep-junction (approximately 0.25 micron), graded-emitter-doped, n(sup +)-p InP solar cells grown by metallorganic chemical vapor deposition (MOCVD). A novel, diffusion-transport process for obtaining lightly-doped p-type base regions of the solar cell is described. The I-V data and external quantum-efficiency response of these cells are presented. The best active-area AMO efficiency for these deep-junction cells on (100)-oriented InP substrates is 16.8 percent, with a J(sub SC) of 31.8 mA/sq cm, a V(sub OC) of 0.843 V, and a fill-factor of 0.85. By comparison, the best cell efficiency on the (111)B-oriented InP substrates was 15.0 percent. These efficiency values for deep-junction cells are encouraging and compare favorably with performance of thin-emitter (0.03 micron) epitaxial cells as well as that of deep-emitter diffused cells. The cell performance and breakdown voltage characteristics of a batch of 20 cells on each of the orientations are presented, indicating the superior breakdown voltage properties and other characteristics of InP cells on the (111)B orientation. Spectral response, dark I-V data, and photoluminescence (PL) measurements on the InP cells are presented with an analysis on the variation in J(sub SC) and V(sub OC) of the cells. It is observed, under open-circuit conditions, that lower-V(sub OC) cells exhibit higher band-edge PL intensity for both the (100) and (111)B orientations. This anomalous behavior suggests that radiative recombination in the heavily-doped n(sup +)-InP emitter may be detrimental to achieving higher V(sub OC) in n(sup +)-p InP solar cells.

  12. A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors

    PubMed Central

    Ratcliff, Erin L.; Veneman, P. Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel

    2010-01-01

    We present a simple chip-based refractometer with a central organic light emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence emission from an Alq3/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) and light detection with planar heterojunction pentacene/C60 OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin film OLEDs that is coupled into guided modes in the IRE instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions, a “sample” and “reference” channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) which might influence sensor response. The dual beam configuration permits significantly enhanced sensitivity to refractive index changes relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (ΔR.I.) between 10−2 and 10−3 R.I. units could be detected for single channel operation, with sensitivity increased to ΔR.I. ≈ 10−4 units when the dual beam configuration is employed. PMID:20218580

  13. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    PubMed

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  14. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khadempour, Lily; Burnum-Johnson, Kristin E.; Baker, Erin S.

    Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles weremore » significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.« less

  15. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays.

    PubMed

    Ferhan, Abdul Rahim; Jackman, Joshua A; Sut, Tun Naw; Cho, Nam-Joon

    2018-04-22

    Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.

  16. Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors

    PubMed Central

    Whisenant, Thomas C.; Ho, David T.; Benz, Ryan W.; Rogers, Jeffrey S.; Kaake, Robyn M.; Gordon, Elizabeth A.; Huang, Lan; Baldi, Pierre; Bardwell, Lee

    2010-01-01

    In order to fully understand protein kinase networks, new methods are needed to identify regulators and substrates of kinases, especially for weakly expressed proteins. Here we have developed a hybrid computational search algorithm that combines machine learning and expert knowledge to identify kinase docking sites, and used this algorithm to search the human genome for novel MAP kinase substrates and regulators focused on the JNK family of MAP kinases. Predictions were tested by peptide array followed by rigorous biochemical verification with in vitro binding and kinase assays on wild-type and mutant proteins. Using this procedure, we found new ‘D-site’ class docking sites in previously known JNK substrates (hnRNP-K, PPM1J/PP2Czeta), as well as new JNK-interacting proteins (MLL4, NEIL1). Finally, we identified new D-site-dependent MAPK substrates, including the hedgehog-regulated transcription factors Gli1 and Gli3, suggesting that a direct connection between MAP kinase and hedgehog signaling may occur at the level of these key regulators. These results demonstrate that a genome-wide search for MAP kinase docking sites can be used to find new docking sites and substrates. PMID:20865152

  17. Super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on an Au substrate for plasmon lasers.

    PubMed

    Dong, H M; Yang, Y H; Yang, G W

    2015-03-05

    We demonstrate an individual ZnO hexagonal microrod on the surface of an Au substrate which can become new sources for manufacturing miniature ZnO plasmon lasers by surface plasmon polariton coupling to whispering-gallery modes (WGMs). We also demonstrate that the rough surface of Au substrates can acquire a more satisfied enhancement of ZnO emission if the surface geometry of Au substrates is appropriate. Furthermore, we achieve high Q factor and super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on the surface of the Au substrate, in which Q factor can reach 5790 and threshold is 0.45 KW/cm(2) which is the lowest value reported to date for ZnO nanostructures lasing, at least 10 times smaller than that of ZnO at the nanometer. Electron transfer mechanisms are proposed to understand the physical origin of quenching and enhancement of ZnO emission on the surface of Au substrates. These investigations show that this novel coupling mode holds a great potential of ZnO hexagonal micro- and nanorods for data storage, bio-sensing, optical communications as well as all-optic integrated circuits.

  18. Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis.

    PubMed

    English, Andrew; Azeem, Ayesha; Spanoudes, Kyriakos; Jones, Eleanor; Tripathi, Bhawana; Basu, Nandita; McNamara, Karrina; Tofail, Syed A M; Rooney, Niall; Riley, Graham; O'Riordan, Alan; Cross, Graham; Hutmacher, Dietmar; Biggs, Manus; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-11-01

    Controlling the cell-substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Nemesia Root Hair Response to Paper Pulp Substrate for Micropropagation

    PubMed Central

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp. PMID:22312323

  20. Nemesia root hair response to paper pulp substrate for micropropagation.

    PubMed

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp.

  1. Impact of Medium and Substrate on Growth of Pseudomonas Fluorescens Biofilms on Polyurethane Paint

    DTIC Science & Technology

    2011-02-01

    biofilm formation on polyurethane (PU) coatings, and to define how those parameters contribute to polyurethane biodegradation. We used a batch flow system...determine which factors best support the growth and persistence of Pseudomonas fluorescens biofilms . Factors that enhance biofilm formation and...AFRL-RX-WP-TP-2011-4131 IMPACT OF MEDIUM AND SUBSTRATE ON GROWTH OF PSEUDOMONAS FLUORESCENS BIOFILMS ON POLYURETHANE PAINT Wendy L. Goodson

  2. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  3. Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: Different responses in two reactors with different operating regimes.

    PubMed

    Jung, Heejung; Kim, Jaai; Lee, Changsoo

    2016-12-01

    The feasibility of co-digestion of Ulva with whey was investigated at varying substrate mixing ratios in two continuous reactors run with increasing and decreasing proportions of Ulva, respectively. Co-digestion with whey proved beneficial to the biomethanation of Ulva, with the methane yield being greater by up to 1.6-fold in co-digestion phases than in the Ulva mono-digestion phases. The experimental reactors responded differently, in terms of process performance and community structure, to the changes in the substrate mixing ratio. This can be attributed to the different operating regimes between two reactors, which may have caused the microbial communities to develop in different ways to acclimate. Methanosaeta-related populations were the predominant methanogens responsible for the production of methane regardless of different substrate mixing ratios in both reactors. Considering the methane recovery and the Ulva treatment capacity, the optimal fraction of Ulva in the substrate mixture is suggested to be 50-75%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying

    NASA Astrophysics Data System (ADS)

    Henao, John; Concustell, Amadeu; Dosta, Sergi; Cinca, Núria; Cano, Irene G.; Guilemany, Josep M.

    2016-06-01

    Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s-1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.

  5. Review of Angiotensin-converting Enzyme Inhibitory Assay: Rapid Method in Drug Discovery of Herbal Plants

    PubMed Central

    Ahmad, Islamudin; Yanuar, Arry; Mulia, Kamarza; Mun’im, Abdul

    2017-01-01

    The renin-angiotensin-aldosterone system is a signaling pathway which responsible in the blood pressure regulation. Angiotensin-converting enzyme (ACE) is one of the key elements responsible for the hypertensive mechanism. It converts angiotensin-I to angiotensin-II. The discovery history of the ACE inhibitory activity assay method has been through a long stage for decades and development continues until today. The ACE inhibitory activity has become an effective screening method in the search for new antihypertensive agents from herbal plants. Some of in vitro assay methods were used to examine the activity of ACE inhibitors based on the substrate usage, such as; Cushman and Cheung Method using a substrate hippuryl-histidyl-leucine (HHL), Holmquist method using a substrate furanacryloyl-tripeptide, Elbl and Wagner method using a substrate benzoil-[l-14C] glicyl-L-histidine-L-leucine, Carmel and Yaron method using a substrate o-aminobenzoylglycyl-p-nitrophenylalanilproline, and Lam method using 3-hydroxybutyrylglycyl-glycyl-glycine as substrate. Several different methods to measure the results of enzymatic reactions or separating substrate with products, including spectrophotometric, fluorometric, high-performance liquid chromatography, electrophoresis, and radiochemistry. Application of the test method for screening the ACE inhibitors activity and investigation of active compounds from natural products can be done easily with this method, it is very helpful in research because the results obtained are simple, accurate, and rapid. PMID:28503045

  6. Toward practical SERS sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping

    2012-06-01

    Since its discovery more than 30 years ago, surface-enhanced Raman scattering (SERS) has been recognized as a highly sensitive detection technique for chemical and biological sensing and medical diagnostics. However, the practical application of this remarkably sensitive technique has not been widely accepted as a viable diagnostic method due to the difficulty in preparing robust and reproducible substrates that provide maximum SERS enhancement. Here, we demonstrate that the aligned silver nanorod (AgNR) array substrates engineered by the oblique angle deposition method are capable of providing extremely high SERS enhancement factors (>108). The substrates are large area, uniform, reproducible, and compatible with general microfabrication process. The enhancement factor depends strongly on the length and shape of the Ag nanorods and the underlying substrate coating. By optimizing AgNR SERS substrates, we show that SERS is able to detect trace amount of toxins, virus, bacteria, or other chemical and biological molecules, and distinguish different viruses/bacteria and virus/bacteria strains. The substrate can be tailored into a multi-well chip for high throughput screening, integrated into fiber tip for portable sensing, incorporated into fluid/microfluidic devices for in situ real-time monitoring, fabricated onto a flexible substrate for tracking and identification, or used as on-chip separation device for ultra-thin layer chromatography and diagnostics. By combining the unique SERS substrates with a handheld Raman system, it can become a practical and portable sensor system for field applications. All these developments have demonstrated that AgNR SERS substrates could play an important role in the future for practical clinical, industrial, defense, and security sensing applications.

  7. Mechanisms of Deformation and Fracture of Thin Coatings on Different Substrates in Instrumented Indentation

    NASA Astrophysics Data System (ADS)

    Eremina, G. M.; Smolin, A. Yu.; Psakhie, S. G.

    2018-04-01

    Mechanical properties of thin surface layers and coatings are commonly studied using instrumented indentation and scratch testing, where the mechanical response of the coating - substrate system essentially depends on the substrate material. It is quite difficult to distinguish this dependence and take it into account in the course of full-scale experiments due to a multivariative and nonlinear character of the influence. In this study the process of instrumented indentation of a hardening coating formed on different substrates is investigated numerically by the method of movable cellular automata. As a result of modeling, we identified the features of the substrate material influence on the derived mechanical characteristics of the coating - substrate systems and the processes of their deformation and fracture.

  8. Micro transport machine and methods for using same

    DOEpatents

    Stalford, Harold

    2015-10-13

    A micro transport machine may include a substrate and a movable device comprising a drive component responsive to a wireless power source. The movable device is operable to move between a plurality of disparate areas on the substrate.

  9. Aligned Silver Nanorod Array as SERS Substrates for Viral Sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping; Shanmukh, Saratchandra; Chaney, Stephen B.; Jones, Les; Dluhy, Richard A.; Tripp, Ralph A.

    2006-03-01

    The aligned silver nanorod array substrates prepared by the oblique angle deposition method are capable of providing extremely high enhancement factors (˜10^9) at near-infrared wavelengths (785 nm) for a standard reporter molecule 1,2 trans-(bis)pyridyl-ethene (BPE). The enhancement factor depends strongly on the length of the Ag nanorods, the substrate coating, as well as the polarization of the excitation laser beam. With the current optimum structure, we demonstrate that the detection limit for BPE can be lower than 0.1 fM. The applicability of this substrate to the detection of bioagents has been investigated by looking several viruses, such as Adenovirus, HIV, Rhinovirus and Respiratory Syncytial Virus (RSV), at low quantities (˜0.5uL). Different viruses have different fingerprint Raman spectrum. The detection of virus presented in infected cells has also been demonstrated.

  10. Pollinator shifts as triggers of speciation in painted petal irises (Lapeirousia: Iridaceae)

    PubMed Central

    Forest, Félix; Goldblatt, Peter; Manning, John C.; Baker, David; Colville, Jonathan F.; Devey, Dion S.; Jose, Sarah; Kaye, Maria; Buerki, Sven

    2014-01-01

    Background and Aims Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences. Methods Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia. Key Results Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types. Conclusions The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes. PMID:24323246

  11. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis.

    PubMed

    Watanabe, Yoshihisa; Tsujimura, Atsushi; Taguchi, Katsutoshi; Tanaka, Masaki

    2017-01-02

    Proteostasis is important for protecting cells from harmful proteins and is mainly controlled by the HSF1 (heat shock transcription factor 1) stress response pathway. This pathway facilitates protein refolding by molecular chaperones; however, it is unclear whether it functions in autophagy or inclusion formation. The autophagy receptor SQSTM1/p62 is involved in selective autophagic clearance and inclusion formation by harmful proteins, and its phosphorylation at S349, S403, and S407 is required for binding to substrates. Here, we demonstrate that casein kinase 1 phosphorylates the SQSTM1 S349 residue when harmful proteins accumulate. Investigation of upstream factors showed that both SQSTM1 S349 and SQSTM1 S403 residues were phosphorylated in an HSF1 dependent manner. Inhibition of SQSTM1 phosphorylation suppressed inclusion formation by ubiquitinated proteins and prevented colocalization of SQSTM1 with aggregation-prone proteins. Moreover, HSF1 inhibition impaired aggregate-induced autophagosome formation and elimination of protein aggregates. Our findings indicate that HSF1 triggers SQSTM1-mediated proteostasis.

  12. Chemotaxing and haptotaxing random walkers having directional persistence

    NASA Astrophysics Data System (ADS)

    Kwon, Tae Goo; Kyoungjin Lee Team; Taeseok Daniel Yang Team

    2015-03-01

    Biological cell crawling is a rather complex process involving various bio-chemical and bio-mechanical processes, many of which are still not well understood. The difficulties in understanding the crawling are originating not just from cell-intrinsic factors but from their complex social interactions, cell-to-substrate interactions and nonlinear responses toward extrinsic factors. Here, in this report we investigate chemotactic behavior of mathematical model cells that naturally have directional persistence. A cell density is measured as a function of time and space, then the resulting steady state is compared with that of the well-known Keller-Segal model, which describes a population of chemotactic random walker. Then, we add a cell-to-cell interaction, mimicking a ``haptotaxis'' mediated interaction, to the model and access its role as for altering the steady-state cell density profile. This mathematical model system, which we have developed and considered in this work, can be quite relevant to the chemotactic responses of interacting immune cells, like microglia, moving toward and around a site of wound, as for an example. We conclude by discussing some relevant recent experimental findings.

  13. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis

    PubMed Central

    Watanabe, Yoshihisa; Tsujimura, Atsushi; Taguchi, Katsutoshi; Tanaka, Masaki

    2017-01-01

    ABSTRACT Proteostasis is important for protecting cells from harmful proteins and is mainly controlled by the HSF1 (heat shock transcription factor 1) stress response pathway. This pathway facilitates protein refolding by molecular chaperones; however, it is unclear whether it functions in autophagy or inclusion formation. The autophagy receptor SQSTM1/p62 is involved in selective autophagic clearance and inclusion formation by harmful proteins, and its phosphorylation at S349, S403, and S407 is required for binding to substrates. Here, we demonstrate that casein kinase 1 phosphorylates the SQSTM1 S349 residue when harmful proteins accumulate. Investigation of upstream factors showed that both SQSTM1 S349 and SQSTM1 S403 residues were phosphorylated in an HSF1 dependent manner. Inhibition of SQSTM1 phosphorylation suppressed inclusion formation by ubiquitinated proteins and prevented colocalization of SQSTM1 with aggregation-prone proteins. Moreover, HSF1 inhibition impaired aggregate-induced autophagosome formation and elimination of protein aggregates. Our findings indicate that HSF1 triggers SQSTM1-mediated proteostasis. PMID:27846364

  14. Complex interactions in EML cell stimulation by stem cell factor and IL-3.

    PubMed

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M

    2011-03-22

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34- cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone.

  15. Complex interactions in EML cell stimulation by stem cell factor and IL-3

    PubMed Central

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M.

    2011-01-01

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34− cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone. PMID:21383156

  16. Low Friction Droplet Transportation on a Substrate with a Selective Leidenfrost Effect.

    PubMed

    Dodd, Linzi E; Wood, David; Geraldi, Nicasio R; Wells, Gary G; McHale, Glen; Xu, Ben B; Stuart-Cole, Simone; Martin, James; Newton, Michael I

    2016-08-31

    An energy saving Leidenfrost levitation method is introduced to transport microdroplets with virtually frictionless contact between the liquid and solid substrate. Through microengineering of the heating units, selective areas of the whole substrate can be electrothermally activated. A droplet can be levitated as a result of the Leidenfrost effect and further transported when the substrate is tilted slightly. Selective electroheating produces a uniform temperature distribution on the heating units within 1 s in response to a triggering voltage. Alongside these experimental observations, finite element simulations were conducted to understand the role of substrate thermal conductivity on the temperature profile of the selectively heated substrate. We also generated phase diagrams to verify the Leidenfrost regime for different substrate materials. Finally, we demonstrated the possibility of controlling low friction high speed droplet transportation (∼65 mm/s) when the substrate is tilted (∼7°) by structurally designing the substrate. This work establishes the basis for an entirely new approach to droplet microfluidics.

  17. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger

    PubMed Central

    van Munster, Jolanda M.; Daly, Paul; Delmas, Stéphane; Pullan, Steven T.; Blythe, Martin J.; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C.M.; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B.

    2014-01-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6 h of exposure to wheat straw was very different from the response at 24 h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24 h of exposure to wheat straw, were also induced after 6 h exposure. Importantly, over a third of the genes induced after 6 h of exposure to wheat straw were also induced during 6 h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. PMID:24792495

  18. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.

    PubMed

    van Munster, Jolanda M; Daly, Paul; Delmas, Stéphane; Pullan, Steven T; Blythe, Martin J; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C M; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B

    2014-11-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Effects of agri-environmental schemes on farmland birds: do food availability measurements improve patterns obtained from simple habitat models?

    PubMed Central

    Ponce, Carlos; Bravo, Carolina; Alonso, Juan Carlos

    2014-01-01

    Studies evaluating agri-environmental schemes (AES) usually focus on responses of single species or functional groups. Analyses are generally based on simple habitat measurements but ignore food availability and other important factors. This can limit our understanding of the ultimate causes determining the reactions of birds to AES. We investigated these issues in detail and throughout the main seasons of a bird's annual cycle (mating, postfledging and wintering) in a dry cereal farmland in a Special Protection Area for farmland birds in central Spain. First, we modeled four bird response parameters (abundance, species richness, diversity and “Species of European Conservation Concern” [SPEC]-score), using detailed food availability and vegetation structure measurements (food models). Second, we fitted new models, built using only substrate composition variables (habitat models). Whereas habitat models revealed that both, fields included and not included in the AES benefited birds, food models went a step further and included seed and arthropod biomass as important predictors, respectively, in winter and during the postfledging season. The validation process showed that food models were on average 13% better (up to 20% in some variables) in predicting bird responses. However, the cost of obtaining data for food models was five times higher than for habitat models. This novel approach highlighted the importance of food availability-related causal processes involved in bird responses to AES, which remained undetected when using conventional substrate composition assessment models. Despite their higher costs, measurements of food availability add important details to interpret the reactions of the bird community to AES interventions and thus facilitate evaluating the real efficiency of AES programs. PMID:25165523

  20. RING finger and WD repeat domain 3 (RFWD3) associates with replication protein A (RPA) and facilitates RPA-mediated DNA damage response.

    PubMed

    Liu, Shangfeng; Chu, Jessica; Yucer, Nur; Leng, Mei; Wang, Shih-Ya; Chen, Benjamin P C; Hittelman, Walter N; Wang, Yi

    2011-06-24

    DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.

  1. A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hung; Chang, Shoou-Jinn; Hsueh, Ting-Jen

    2016-09-01

    In this work, a low-temperature ZnO nanowire ethanol gas sensor was prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using ultraviolet illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60 °C. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve sensor response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.

  2. Purification and properties of the glutathione S-transferases from the anoxia-tolerant turtle, Trachemys scripta elegans.

    PubMed

    Willmore, William G; Storey, Kenneth B

    2005-07-01

    Glutathione S-transferases (GSTs) play critical roles in detoxification, response to oxidative stress, regeneration of S-thiolated proteins, and catalysis of reactions in nondetoxification metabolic pathways. Liver GSTs were purified from the anoxia-tolerant turtle, Trachemys scripta elegans. Purification separated a homodimeric (subunit relative molecular mass =34 kDa) and a heterodimeric (subunit relative molecular mass = 32.6 and 36.8 kDa) form of GST. The enzymes were purified 23-69-fold and 156-174-fold for homodimeric and heterodimeric GSTs, respectively. Kinetic data gathered using a variety of substrates and inhibitors suggested that both homodimeric and heterodimeric GSTs were of the alpha class although they showed significant differences in substrate affinities and responses to inhibitors. For example, homodimeric GST showed activity with known alpha class substrates, cumene hydroperoxide and p-nitrobenzylchloride, whereas heterodimeric GST showed no activity with cumene hydroperoxide. The specific activity of liver GSTs with chlorodinitrobenzene (CDNB) as the substrate was reduced by 2.6- and 8.7-fold for homodimeric and heterodimeric GSTs isolated from liver of anoxic turtles as compared with aerobic controls, suggesting an anoxia-responsive stable modification of the protein that may alter its function during natural anaerobiosis.

  3. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures.

    PubMed

    Misra, R D K; Thein-Han, W W; Pesacreta, T C; Hasenstein, K H; Somani, M C; Karjalainen, L P

    2009-06-01

    Metallic materials with submicron- to nanometer-sized grains provide surfaces that are different from conventional polycrystalline materials because of the large proportion of grain boundaries with high free energy. In the study described here, the combination of cellular and molecular biology, materials science and engineering advances our understanding of cell-substrate interactions, especially the cellular activity between preosteoblasts and nanostructured metallic surfaces. Experiments on the effect of nano-/ultrafine grains have shown that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from conventional coarse-grained structures. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on nanograined/ultrafine-grained substrate. These observations suggest enhanced cell-substrate interaction and activity. The differences in the cellular response on nanograined/ultrafine-grained and coarse-grained substrates are attributed to grain size and degree of hydrophilicity. The outcomes of the study are expected to reduce challenges to engineer bulk nanostructured materials with specific physical and surface properties for medical devices with improved cellular attachment and response. The data lay the foundation for a new branch of nanostructured materials for biomedical applications.

  4. Roughness of Ti Substrates for Control of the Preferred Orientation of TiO 2 Nanotube Arrays as a New Orientation Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Won Mo; Kim, Dong Hoe; Park, Ik Jae

    2015-06-11

    We report the surface roughness of a Ti substrate as a critical factor for controlling the degree of the preferred orientation of anatase TiO2 nanotube arrays (NTAs) which are synthesized by anodization and a subsequent annealing process. The degree of the preferred orientation to the (004) plane of the anatase crystal structure has a strong dependency on the root-mean-square roughness (Sq) of the initial Ti substrate when the roughness-controlled substrates are anodized in an ethylene glycol-based electrolyte containing ~2 wt % of water. Highly preferred oriented NTAs were obtained from low-Sq (<10 nm) substrates, which were accompanied by uniform poremore » distribution and low concentration of hydroxyl ions in as-anodized amorphous NTAs. The mechanism of the preferred oriented crystallization of nanometer-scaled tube walls is explained considering the microscopic geometrical uniformity of the oxide barrier and nanopores at the early stage of anodization, which affected the local electric field and thus the insertion of the hydroxyl group into the amorphous TiO2 tube walls.« less

  5. Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride.

    PubMed

    Choi, David; Poudel, Nirakar; Park, Saungeun; Akinwande, Deji; Cronin, Stephen B; Watanabe, Kenji; Taniguchi, Takashi; Yao, Zhen; Shi, Li

    2018-04-04

    Scanning thermal microscopy measurements reveal a significant thermal benefit of including a high thermal conductivity hexagonal boron nitride (h-BN) heat-spreading layer between graphene and either a SiO 2 /Si substrate or a 100 μm thick Corning flexible Willow glass (WG) substrate. At the same power density, an 80 nm thick h-BN layer on the silicon substrate can yield a factor of 2.2 reduction of the hot spot temperature, whereas a 35 nm thick h-BN layer on the WG substrate is sufficient to obtain a factor of 4.1 reduction. The larger effect of the h-BN heat spreader on WG than on SiO 2 /Si is attributed to a smaller effective heat transfer coefficient per unit area for three-dimensional heat conduction into the thick, low-thermal conductivity WG substrate than for one-dimensional heat conduction through the thin oxide layer on silicon. Consequently, the h-BN lateral heat-spreading length is much larger on WG than on SiO 2 /Si, resulting in a larger degree of temperature reduction.

  6. Big River Benthos: Linking Year Round Biological Response to Altered Hydrological Regimes

    DTIC Science & Technology

    2017-04-02

    is also home to a diversity of organisms adapted to large river habitats. Macroinvertebrates have long been used as habitat/water quality indicators...substrates, but lower abundances (Figure 5). Sand was the most frequently encountered substrate (n=52, Figure 6), and comprises approximately 80% of the...June sampling represented as percentages. 8 Because sand is predominant in the LMR, habitats containing a variety of substrates, including silt

  7. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.

    PubMed

    Melcher, Tobias; Gruber, Oliver

    2009-02-01

    In the current event-related functional magnetic resonance imaging (fMRI) study, we sought to trace back Stroop-interference to circumscribed properties of task-irrelevant word information - response-incompatibility, semantic incongruency and task-reference - that we conceive as conflict factors. Thereby, we particularly wanted to disentangle intermingled contributions of semantic conflict and response conflict to the overall Stroop-interference effect. To delineate neural substrates of single factors, we referred to the logics of cognitive subtraction and cognitive conjunction. Moreover, in a second step, we conducted correlation analyses to determine the relationship between neural activations and behavioral interference costs (i.e., conflict-related reaction time (RT) slowing) so as to further elucidate the functional role of the respective brain regions in conflict processing. Response-incompatibility was associated with activation in the left premotor cortex which can be interpreted as indicating motor competition or conflict, i.e., the presence of competing response tendencies. Accordingly, this activation was positively correlated with behavioral conflict costs. Semantic incongruency exhibited specific activation in the anterior cingulate cortex (ACC), the bilateral insula, and thalamus as well as in left somatosensory cortex. As supported by the consistent negative correlation with behavioral conflict costs, these activations most probably reflect strengthened control efforts to overcome interference and to ensure adequate task performance. Finally, task-reference elicited activation in the left temporo-polar cortex (TPC) and the right medial superior as well as in left rostroventral prefrontal cortex (rvPFC, sub-threshold activation). As strongly supported by prior studies' findings, this neural activation pattern may underlie residual semantic processing of the task-irrelevant word information.

  8. Engineering Design Handbook: Environmental Series. Part Two. Natural Environmental Factors

    DTIC Science & Technology

    1975-04-01

    pockets of air trapped between the substrate and the film produces blisters. These eventually break and peel off. Resins containing active...paint films and the surface. The most undesirable failure of paint is peeling , which occurs upon the loss of ad- hesion between the paint ftlm and...the sub- strate to which it has been applied. Peeling is related to several factors, including the nature of the substrate, the amount of moisture

  9. Fast and Sensitive Solution-Processed Visible-Blind Perovskite UV Photodetectors.

    PubMed

    Adinolfi, Valerio; Ouellette, Olivier; Saidaminov, Makhsud I; Walters, Grant; Abdelhady, Ahmed L; Bakr, Osman M; Sargent, Edward H

    2016-09-01

    The first visible-blind UV photodetector based on MAPbCl3 integrated on a substrate exhibits excellent performance, with responsivities reaching 18 A W(-1) below 400 nm and imaging-compatible response times of 1 ms. This is achieved by using substrate-integrated single crystals, thus overcoming the severe limitations affecting thin films and offering a new application of efficient, solution-processed, visible-transparent perovskite optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. WNK1 Promotes PIP2 Synthesis to Coordinate Growth Factor and GPCR-Gq Signaling

    PubMed Central

    An, Sung-Wan; Cha, Seung-Kuy; Yoon, Joonho; Chang, Seungwoo; Ross, Elliott M.; Huang, Chou-Long

    2011-01-01

    Summary Background PLC-β signaling is generally thought to be mediated by allosteric activation by G proteins and Ca2+. While availability of the PIP2 substrate is limiting in some cases, its production has not been shown to be independently regulated as a signaling mechanism. WNK1 protein kinase is known to regulate ion homeostasis and cause hypertension when expression is increased by gene mutations. However, its signaling functions remain largely elusive. Results Using diacylglycerol-stimulated TRPC6 and inositol trisphosphate-mediated Ca2+ transients as cellular biosensors, we show that WNK1 stimulates PLC-β signaling in cells by promoting the synthesis of PIP2 via stimulation of phosphatidylinositol 4-kinase IIIα. WNK1 kinase activity is not required. Stimulation of PLC-β by WNK1 and by Gαq are synergistic; WNK1 activity is essential for regulation of PLC-β signaling by Gq-coupled receptors and basal input from Gq is necessary for WNK1 signaling via PLC-β. WNK1 further amplifies PLC-β signaling when it is phosphorylated by Akt kinase in response to insulin-like growth factor. Conclusions WNK1 is a novel regulator of PLC-β that acts by controlling substrate availability. WNK1 thereby coordinates signaling between G protein and Akt kinase pathways. Because PIP2 is itself a signaling molecule, regulation of PIP2 synthesis by WNK1 also allows the cell to initiate PLC signaling while independently controlling the effects of PIP2 on other targets. These findings describe a new signaling pathway for Akt-activating growth factors, a mechanism for G protein-growth factor crosstalk and a means to independently control PLC signaling and PIP2 availability. PMID:22119528

  11. Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis.

    PubMed

    Sugden, P H; Fuller, S J; Weiss, S C; Clerk, A

    2008-03-01

    Glycogen synthase kinase 3 (GSK3, of which there are two isoforms, GSK3alpha and GSK3beta) was originally characterized in the context of regulation of glycogen metabolism, though it is now known to regulate many other cellular processes. Phosphorylation of GSK3alpha(Ser21) and GSK3beta(Ser9) inhibits their activity. In the heart, emphasis has been placed particularly on GSK3beta, rather than GSK3alpha. Importantly, catalytically-active GSK3 generally restrains gene expression and, in the heart, catalytically-active GSK3 has been implicated in anti-hypertrophic signalling. Inhibition of GSK3 results in changes in the activities of transcription and translation factors in the heart and promotes hypertrophic responses, and it is generally assumed that signal transduction from hypertrophic stimuli to GSK3 passes primarily through protein kinase B/Akt (PKB/Akt). However, recent data suggest that the situation is far more complex. We review evidence pertaining to the role of GSK3 in the myocardium and discuss effects of genetic manipulation of GSK3 activity in vivo. We also discuss the signalling pathways potentially regulating GSK3 activity and propose that, depending on the stimulus, phosphorylation of GSK3 is independent of PKB/Akt. Potential GSK3 substrates studied in relation to myocardial hypertrophy include nuclear factors of activated T cells, beta-catenin, GATA4, myocardin, CREB, and eukaryotic initiation factor 2Bvarepsilon. These and other transcription factor substrates putatively important in the heart are considered. We discuss whether cardiac pathologies could be treated by therapeutic intervention at the GSK3 level but conclude that any intervention would be premature without greater understanding of the precise role of GSK3 in cardiac processes.

  12. Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis

    PubMed Central

    Sugden, P H; Fuller, S J; Weiss, S C; Clerk, A

    2008-01-01

    Glycogen synthase kinase 3 (GSK3, of which there are two isoforms, GSK3α and GSK3β) was originally characterized in the context of regulation of glycogen metabolism, though it is now known to regulate many other cellular processes. Phosphorylation of GSK3α(Ser21) and GSK3β(Ser9) inhibits their activity. In the heart, emphasis has been placed particularly on GSK3β, rather than GSK3α. Importantly, catalytically-active GSK3 generally restrains gene expression and, in the heart, catalytically-active GSK3 has been implicated in anti-hypertrophic signalling. Inhibition of GSK3 results in changes in the activities of transcription and translation factors in the heart and promotes hypertrophic responses, and it is generally assumed that signal transduction from hypertrophic stimuli to GSK3 passes primarily through protein kinase B/Akt (PKB/Akt). However, recent data suggest that the situation is far more complex. We review evidence pertaining to the role of GSK3 in the myocardium and discuss effects of genetic manipulation of GSK3 activity in vivo. We also discuss the signalling pathways potentially regulating GSK3 activity and propose that, depending on the stimulus, phosphorylation of GSK3 is independent of PKB/Akt. Potential GSK3 substrates studied in relation to myocardial hypertrophy include nuclear factors of activated T cells, β-catenin, GATA4, myocardin, CREB, and eukaryotic initiation factor 2Bɛ. These and other transcription factor substrates putatively important in the heart are considered. We discuss whether cardiac pathologies could be treated by therapeutic intervention at the GSK3 level but conclude that any intervention would be premature without greater understanding of the precise role of GSK3 in cardiac processes. PMID:18204489

  13. Local piezoelectric behavior in PZT-based thin films for ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Griggio, Flavio

    Piezoelectric microelectromechanical systems (MEMS) are currently used in inkjet printers and precision resonators; numerous additional applications are being investigated for sensors, low-voltage actuators, and transducers. This work was aimed at improving piezoelectric MEMS by taking two approaches: 1) identifying factors affecting the piezoelectric response of ferroelectric thin films and 2) demonstrating integration of these films into a high frequency array transducer. It was found that there are several key factors influencing the piezoelectric response of thin films for a given material composition. First, large grain size improves the piezoelectric response. This was demonstrated using chemical solution deposited lead nickel niobate -- lead zirconate titanate (0.3)Pb(Ni 0.33Nb0.67)O3 - (0.7)Pb(Zr0.45Ti 0.55O3), (PNN-PZT) ferroelectric thin films. It was shown that this composition allows greater microstructural control than does PZT. Dielectric permittivities ranging from 1350 to 1520 and a transverse piezoelectric coefficient e31,f as high as -- 9.7 C/m 2 were observed for films of about 0.25 mum in thickness. The permittivity and piezoelectric response as well as extrinsic contributions to the dielectric constant increased by 14 and 12 % respectively for samples with grain sizes ranging from 110 to 270 nm. A second factor influencing the piezoelectric response is film composition with respect to the morphotropic phase boundary (MPB). The composition dependence of the dielectric and piezoelectric nonlinearities was characterized in epitaxially grown (0.3)Pb(Ni0.33Nb0.67)O3-(0.7)Pb(Zr xTi1-xO3) thin films deposited on SrTiO 3 to minimize the influence of large-angle grain boundaries. Tetragonal, MPB and rhombohedral films were prepared by changing the Zr/Ti ratio. The largest dielectric and piezoelectric nonlinearities were observed for the rhombohedral sample; this resulted from a higher domain wall mobility due to a smaller ferroelectric distortion and superior crystal quality. Thirdly, changes in the mechanical boundary conditions experienced by a ferroelectric thin film were found to influence both the properties and the length scale for correlated motion of domain walls. Microfabrication was employed to release the PZT films from the Si substrate. Nonlinear piezoelectric maps, by band excitation piezoforce microscopy, showed formation of clusters of higher nonlinear activities of similar size for clamped PZT films with different microstructures. However PZT films that had been released from the Si substrate showed a distinct increase in the correlation length associated with coupled domain wall motion, suggesting that the local mechanical boundary conditions, more than microstructure or composition govern the domain wall dynamics. Release of both the local and the global stress states in films produced dielectric nonlinearities comparable to those of bulk ceramics. The second research direction was targeted at demonstrating the functionality of a one dimensional transducer array. A diaphragm geometry was used for the transducer arrays in order to benefit from the unimorph-type displacement of the PZT-SiO2 layers. For this purpose, the PZT and remaining films in the stack were patterned using reactive ion etching and partially released from the underlying silicon substrate by XeF2 etching from the top. Admittance measurements on the fabricated structures showed resonance frequencies at ˜40 MHz for a 80 mum diameter-wide diaphragms with a PZT thickness of 1.74 mum. In-water transmit and receive functionalities were demonstrated. A bandwidth on receive of 80 % centered at 40 MHz was determined during pitch-mode tests.

  14. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandhuvula, Padmavathi; Li Zaiguo; Bittman, Robert

    2009-03-06

    Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an {omega}-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K{sub m} ofmore » 35 {mu}M for BODIPY-sphingosine 1-phosphate.« less

  15. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response.

    PubMed

    Geandier, G; Thiaudière, D; Randriamazaoro, R N; Chiron, R; Djaziri, S; Lamongie, B; Diot, Y; Le Bourhis, E; Renault, P O; Goudeau, P; Bouaffad, A; Castelnau, O; Faurie, D; Hild, F

    2010-10-01

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  16. Surface wave chemical detector using optical radiation

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  17. Photoluminescent nanofiber composites, methods for fabrication, and related lighting devices

    DOEpatents

    Guzan, Kimberly A.; Mills, Karmann C.; Han, Li; Davis, James Lynn; Hoertz, Paul G.

    2015-08-04

    A photoluminescent nanofiber composite includes a nanofiber substrate, first luminescent particles, and second luminescent particles. The first luminescent particles are supported by the nanofibers and span at least a portion of a substrate surface, as a layer on the substrate surface, or with some particles located in a bulk of the substrate, or both. The second luminescent particles are disposed on the substrate. The second luminescent particles may be disposed directly on the substrate surface or on the first luminescent particles. The second luminescent particles may be deposited in a pattern of deposition units. The first and second luminescent particles are configured for emitting light of different respective wavelengths in response to excitation by a light beam. One or more surface treatment coatings may be provided at different locations.

  18. High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate.

    PubMed

    Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming

    2016-06-09

    Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer.

  19. High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate

    PubMed Central

    Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming

    2016-01-01

    Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer. PMID:27279426

  20. Holt film wall shear instrumentation for boundary layer transition research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1994-01-01

    Measurements of the performance of hot-film wall-shear sensors were performed to aid development of improved sensors. The effect of film size and substrate properties on the sensor performance was quantified through parametric studies carried out both electronically and in a shock tube. The results show that sensor frequency response increases with decreasing sensor size, while at the same time sensitivity decreases. Substrate effects were also studied, through parametric variation of thermal conductivity and heat capacity. Early studies used complex dual-layer substrates, while later studies were designed for both single-layer and dual-layer substrates. Sensor failures and funding limitations have precluded completion of the substrate thermal-property tests.

  1. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  2. The effect of micro-ECoG substrate footprint on the meningeal tissue response

    NASA Astrophysics Data System (ADS)

    Schendel, Amelia A.; Nonte, Michael W.; Vokoun, Corinne; Richner, Thomas J.; Brodnick, Sarah K.; Atry, Farid; Frye, Seth; Bostrom, Paige; Pashaie, Ramin; Thongpang, Sanitta; Eliceiri, Kevin W.; Williams, Justin C.

    2014-08-01

    Objective. There is great interest in designing implantable neural electrode arrays that maximize function while minimizing tissue effects and damage. Although it has been shown that substrate geometry plays a key role in the tissue response to intracortically implanted, penetrating neural interfaces, there has been minimal investigation into the effect of substrate footprint on the tissue response to surface electrode arrays. This study investigates the effect of micro-electrocorticography (micro-ECoG) device geometry on the longitudinal tissue response. Approach. The meningeal tissue response to two micro-ECoG devices with differing geometries was evaluated. The first device had each electrode site and trace individually insulated, with open regions in between, while the second device had a solid substrate, in which all 16 electrode sites were embedded in a continuous insulating sheet. These devices were implanted bilaterally in rats, beneath cranial windows, through which the meningeal tissue response was monitored for one month after implantation. Electrode site impedance spectra were also monitored during the implantation period. Main results. It was observed that collagenous scar tissue formed around both types of devices. However, the distribution of the tissue growth was different between the two array designs. The mesh devices experienced thick tissue growth between the device and the cranial window, and minimal tissue growth between the device and the brain, while the solid device showed the opposite effect, with thick tissue forming between the brain and the electrode sites. Significance. These data suggest that an open architecture device would be more ideal for neural recording applications, in which a low impedance path from the brain to the electrode sites is critical for maximum recording quality.

  3. Estrogen response of MCF-7 cells grown on diverse substrates and in suspension culture: promotion of morphological heterogeneity, modulation of progestin receptor induction; cell-substrate interactions on collagen gels.

    PubMed

    Pourreau-Schneider, N; Berthois, Y; Mittre, H; Charpin, C; Jacquemier, J; Martin, P M

    1984-12-01

    In this study we observed the incidence of hormone sensitivity in the response of MCF-7 cells to estrogen stimulation when the cells were cultured in different contact environments (hydrophilic plastic, bovine corneal extracellular matrix, type I collagen and in suspension culture). The major purpose was to describe the influence of cell to cell and cell to substrate contacts on the morphological response to estrogen treatment. However, other parameters including growth and induction of progestin receptor were also explored, keeping in mind that the MCF-7 cell line, although representative of normal mammary epithelium in that it contains a similar hormone receptivity, was selected in vitro from a metastatic population in a pleural effusion. Although substrate conditions did not modify growth enhancement by estrogens, progestin receptor levels were significantly higher in three-dimensional spheroid cultures in which cell to cell contacts were optimal due to elimination of basal contact. A careful morphological survey of large surfaces lead to an objective opinion of the overall effect of the hormone treatment on the non-cloned cell line in which a marked heterogeneity in the response of individual cells was observed. In terms of morphofunctional differentiation, the edification of acini with dense microvillus coating was best in suspension culture. When sections were made perpendicular to the plane of cultures on collagen gel rafts two other phenomena were noted: decrease in intercellular junctions, resulting in reduced cell to cell cohesion, and accumulation biodegradation products in the collagen lattice. This suggested a hormone-mediated interaction between the metastatic cells and the fibrillar substrate, collagen I, one of the major constituents of tissue stroma. This estrogen response might be related to the metastatic phenotype and must be distinct from their hormone sensitivity in terms of growth and differentiation since hormone receptivity is generally considered to be a favorable prognosis for breast cancer.

  4. Optimization of sol-gel technique for coating of metallic substrates by hydroxyapatite using the Taguchi method

    NASA Astrophysics Data System (ADS)

    Pourbaghi-Masouleh, M.; Asgharzadeh, H.

    2013-08-01

    In this study, the Taguchi method of design of experiment (DOE) was used to optimize the hydroxyapatite (HA) coatings on various metallic substrates deposited by sol-gel dip-coating technique. The experimental design consisted of five factors including substrate material (A), surface preparation of substrate (B), dipping/withdrawal speed (C), number of layers (D), and calcination temperature (E) with three levels of each factor. An orthogonal array of L18 type with mixed levels of the control factors was utilized. The image processing of the micrographs of the coatings was conducted to determine the percentage of coated area ( PCA). Chemical and phase composition of HA coatings were studied by XRD, FT-IR, SEM, and EDS techniques. The analysis of variance (ANOVA) indicated that the PCA of HA coatings was significantly affected by the calcination temperature. The optimum conditions from signal-to-noise ( S/N) ratio analysis were A: pure Ti, B: polishing and etching for 24 h, C: 50 cm min-1, D: 1, and E: 300 °C. In the confirmation experiment using the optimum conditions, the HA coating with high PCA of 98.5 % was obtained.

  5. Functional characterization of the Mycobacterium tuberculosis zinc metallopeptidase Zmp1 and identification of potential substrates.

    PubMed

    Petrera, Agnese; Amstutz, Beat; Gioia, Magda; Hähnlein, Janine; Baici, Antonio; Selchow, Petra; Ferraris, Davide M; Rizzi, Menico; Sbardella, Diego; Marini, Stefano; Coletta, Massimo; Sander, Peter

    2012-07-01

    Zinc metallopeptidases of bacterial pathogens are widely distributed virulence factors and represent promising pharmacological targets. In this work, we have characterized Zmp1, a zinc metallopeptidase identified as a virulence factor of Mycobacterium tuberculosis and belonging to the neprilysin (NEP; M13) family, whose X-ray structure has been recently solved. Interestingly, this enzyme shows an optimum activity toward a fluorogenic substrate at moderately acidic pH values (i.e., 6.3), which corresponds to those reported for the Mtb phagosome where this enzyme should exert its pathological activity. Substrate specificity of Zmp1 was investigated by screening a peptide library. Several sequences derived from biologically relevant proteins were identified as possible substrates, including the neuropeptides bradykinin, neurotensin, and neuropeptide FF. Further, subsequences of other small bioactive peptides were found among most frequently cleaved sites, e.g., apelin-13 and substance P. We determined the specific cleavage site within neuropeptides by mass spectrometry, observing that hydrophobic amino acids, mainly phenylalanine and isoleucine, are overrepresented at position P1'. In addition, the enzymatic mechanism of Zmp1 toward these neuropeptides has been characterized, displaying some differences with respect to the synthetic fluorogenic substrate and indicating that the enzyme adapts its enzymatic action to different substrates.

  6. Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.

    2018-02-01

    The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.

  7. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation

    PubMed Central

    Preston, G. Michael; Brodsky, Jeffrey L.

    2017-01-01

    The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. PMID:28159894

  8. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation.

    PubMed

    Preston, G Michael; Brodsky, Jeffrey L

    2017-02-15

    The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  9. Designing PolyHEMA Substrates that Mimic the Viscoelastic Response of Soft Tissue

    PubMed Central

    Holt, Brian; Tripathi, Anubhav; Morgan, Jeffrey R.

    2011-01-01

    Matching the mechanical properties of a biomaterial to soft tissue is often overlooked despite the fact that it’s well known that cells respond to and are capable of changing their mechanical environment. In this paper, we used NaCl and alginate beads as porogens to make a series of micro- and macro-porous pHEMA substrates [poly(2-hydroxyethly methacrylate)] and quantified their mechanical behavior under low-magnitude shear loads over physiologically relevant frequencies. Using a stress-controlled rheometer, we performed isothermal (37°C) frequency response experiments between 0.628 and 75.4 rad/s [0.01–12Hz] at 0.1% strain. Both micro- and macro-porous pHEMA substrates were predominately elastic in nature with a narrow range of G′ and G″ values that mimicked the response of human skin. The magnitude of the G′ and G″ values of the macro-porous substrates were designed to closely match human skin. To determine how cell growth might alter their mechanical properties, pHEMA substrates were functionalized and human skin fibroblasts grown on them for fourteen days. As a result of cell growth, the magnitude of G′ and G″ increased at low frequencies while also altering the degree of high frequency dependence, indicating that cellular interactions with the micro-pore infrastructure has a profound effect on the viscoelastic behavior of the substrates. These data could be fit to a mathematical model describing a soft solid. A quantitative understanding of the mechanical behavior of biomaterials in regimes that are physiologically relevant and how these mechanics may change after implantation may aid in the design of new materials. PMID:21496821

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almus, F.E.; Rao, L.V.; Fleck, R.A.

    An umbilical vein model was designed in which washed vein segments are filled with a reaction mixture containing factor VIIa, Ca(+)+, and a substrate, either 3H-factor IX or 3H-factor X. The vein wall provides the tissue factor (TF) for factor VIIa/TF complexes that activate the substrates as measured by activation peptide release. The model was developed to study TF induced on venous endothelium in situ. However, unlike previous studies with TF expressed on cultured umbilical vein endothelial cells, factors IX and X were activated without first having to expose the vein wall to a perturbing stimulus. Histologic studies revealed thatmore » washing the vein and mixing the reaction mixture before subsampling had disrupted the endothelium. Immunostaining with anti-TF antibodies revealed no staining of endothelium but intense staining in extensions of Wharton's jelly penetrating fenestrations of the muscularis media of the vein. Thus, the model provided data on factor VIIa/TF formed, not on endothelium, but within the mucoid connective tissue of Wharton's jelly. It is known that factor VIIa/TF formed with TF in suspension or with TF expressed on the surface of cultured cells activates factor X more rapidly than factor IX. In contrast, in the umbilical vein model, when each substrate was present in an 88 nmol/L concentration, factors IX and X were activated at equivalent rates (mean activation rate for factor IX, 18.8 +/- 3.6 nmol/L/h; for factor X, 17.8 +/- 2.9 nmol/L/h; n = 9 paired vein segments). These data strengthen the evidence that factor VIIa/TF activation of factor IX represents a key initial reaction of coagulation in tissues. These results also show that data obtained with factor VIIa/TF complexes formed on the surface of cultured cells need not hold for factor VIIa/TF complexes formed in extracellular matrix.« less

  11. Chemiluminometric Immuno-Analysis of Innate Immune Response against Repetitive Bacterial Stimulations for the Same Mammalian Cells

    PubMed Central

    Jeon, Jin-Woo; Cho, Il-Hoon; Ha, Un-Hwan; Seo, Sung-Kyu; Paek, Se-Hwan

    2014-01-01

    For monitoring of human cellular response to repetitive bacterial stimulations (e.g., Pseudomonas aeruginosa in a lysate form), we devised a chemiluminescent immuno-analytical system for toll-like receptor 1 (TLR1) as marker present on cell surfaces (e.g., A549). Upon stimulation, TLR1 recognizes pathogen-associated molecular patterns of the infectious agent and are then up-regulated via activation of the nuclear factor-κB (NF-κB) pathway. In this study, the receptor density was quantified by employing an antibody specific to the target receptor and by producing a chemiluminometric signal from an enzyme labeled to the binder. The activated status was then switched back to normal down-regulated stage, by changing the culture medium to one containing animal serum. The major factors affecting activation were the stimulation dose of the bacterial lysate, stimulation timing during starvation, and up- and down-regulation time intervals. Reiterative TLR regulation switching up to three times was not affected by either antibody remained after immunoassay or enzyme substrate (e.g., hydrogen peroxide) in solution. This immuno-analysis for TLRs could be unique to acquire accumulated response of the human cells to repeated stimulations and, therefore, can eventually apply to persistency testing of the cellular regulation in screening of anti-inflammatory substances. PMID:25109895

  12. Temperature and Nutrients Interact to Control Nitrogen Fixation in a Subalpine Stream: An Experimental Examination

    NASA Astrophysics Data System (ADS)

    Marcarelli, A. M.

    2005-05-01

    To test the importance of factors controlling N-fixation in subalpine streams, I conducted a stream-side mesocosm experiment with epilithic communities and nutrient diffusing substrates (NDS) to test how temperature and nutrients interact to influence algal communities. Within two days, warm temperature (18°C) stimulated N-fixation by Calothrix in the epilithic community 2X above cold temperature (13°C), indicating a strong physiological response. Community responses measured on NDS indicated that cold-water diatoms dominated by day 45 in the cold treatment, while diatoms containing N-fixing endosymbionts dominated only in warm treatments with added phosphorus. There was a significant interaction between nutrient supply and temperature on N-fixation rates in the experiment. On nutrient controls, warm temperature boosted fixation 2X above cold temperature, but when P was added, temperature increased fixation 20X. This study indicates that N-fixation is stimulated both by temperature and nutrients in this stream, but the magnitude of response to phosphorus was much greater than to temperature. Furthermore, our results support the hypothesis that biological characteristics in streams, including community structure and biogeochemical processes, can be altered in complex ways by disturbances like grazing and logging that alter multiple controlling factors simultaneously.

  13. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    PubMed

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  14. Physical Form of Dietary Fat Alters Postprandial Substrate Utilization and Glycemic Response in Healthy Chinese Men.

    PubMed

    Tan, Sze-Yen; Peh, Elaine; Lau, Evelyn; Marangoni, Alejandro G; Henry, Christiani Jeyakumar

    2017-06-01

    Background: Dietary fats elicit various physiological responses, with the physical form of fat reported to alter fat digestion and absorption. Objectives: The primary aims were to compare the effects of dietary fat in 2 physical forms (liquid and oleogel) and 2 degrees of saturation (saturated and polyunsaturated) on postprandial energy expenditure (EE) and substrate oxidation, glycemia, and appetite. Methods: The study was a randomized, controlled crossover trial. Sixteen normal-weight, healthy Chinese men completed the study [mean ± SD age: 28 ± 6 y; body mass index (in kg/m 2 ): 22.9 ± 3.1]. After an overnight fast, participants had their body weight measured and entered an indirect whole-room calorimeter (WRC). After baseline measurements, participants consumed orange juice and rice porridge alone (control), with 22.25 g coconut oil or sunflower oil or with 25 g coconut oleogel or sunflower oleogel in random order with a 5-d washout period between treatments. EE, substrate oxidation, capillary blood glucose, and appetite were measured over 195 min in a WRC. Participants completed a meal challenge to assess appetite. Test meals effects were compared by using repeated-measures ANOVA. Results: Fat saturation did not affect all study outcomes significantly. When data were pooled based on the physical form of dietary fat, EE did not differ. However, significantly higher carbohydrate oxidation ( P = 0.03) and a trend of lower fat oxidation ( P = 0.07) were found after the liquid oil than after the oleogel or control treatments. Postprandial capillary glucose was also significantly lower after the liquid oil than after the oleogel or control treatments ( P < 0.001). Appetite was not affected by the physical form and the saturation of dietary fats. Conclusions: The saturation of dietary fat did not affect postprandial glucose, EE, substrate oxidation, or appetite. However, oleogel prevented the glycemic-lowering and fat-oxidation effects induced by liquid oil in Chinese men. Future work on oleogel should focus on cardiometabolic risk factors. This study was registered at clinicaltrials.gov as NCT02702726. © 2017 American Society for Nutrition.

  15. NEPRILYSIN REGULATES PULMONARY ARTERY SMOOTH MUSCLE CELL PHENOTYPE THROUGH A PDGF RECEPTOR DEPENDENT MECHANISM

    PubMed Central

    Karoor, Vijaya; Oka, Masahiko; Walchak, Sandra J.; Hersh, Louis B.; Miller, York E.; Dempsey, Edward C.

    2013-01-01

    Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates pro-inflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells (PASMCs) results in increased migration and proliferation. PASMCs isolated from NEP−/− mice exhibited enhanced migration and proliferation in response to serum and PDGF, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by siRNA in NEP+/+ cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN resulting in activation of the PDGF receptor (PDGFR). Knockdown of Src kinase with siRNA or inhibition with PP2 a src kinase inhibitor decreased PDGFRY751 phosphorylation and attenuated migration and proliferation in NEP−/− SMCs. NEP substrates, endothelin-1(ET-1) or fibroblast growth factor-2 (FGF2), increased activation of Src and PDGFR in NEP+/+ cells, which was decreased by an ETAR antagonist, neutralizing antibody to FGF2 and Src inhibitor. Similar to the observations in PASMCs levels of p-PDGFR, p-Src and p-PTEN were elevated in NEP−/− lungs. ETAR antagonist also attenuated the enhanced responses in NEP−/−PASMCs and lungs. Taken together our results suggest a novel mechanism for regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN or PDGFR, may be of therapeutic benefit in pulmonary vascular disease. PMID:23381789

  16. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.

    PubMed

    Zhdanov, Alexander V; Waters, Alicia H C; Golubeva, Anna V; Dmitriev, Ruslan I; Papkovsky, Dmitri B

    2014-01-01

    Active glycolysis and glutaminolysis provide bioenergetic stability of cancer cells in physiological conditions. Under hypoxia, metabolic and mitochondrial disorders, or pharmacological treatment, a deficit of key metabolic substrates may become life-threatening to cancer cells. We analysed the effects of mitochondrial uncoupling by FCCP on the respiration of cells fed by different combinations of Glc, Gal, Gln and Pyr. In cancer PC12 and HCT116 cells, a large increase in O2 consumption rate (OCR) upon uncoupling was only seen when Gln was combined with either Glc or Pyr. Inhibition of glutaminolysis with BPTES abolished this effect. Despite the key role of Gln, addition of FCCP inhibited respiration and induced apoptosis in cells supplied with Gln alone or Gal/Gln. For all substrate combinations, amplitude of respiratory responses to FCCP did not correlate with Akt, Erk and AMPK phosphorylation, cellular ATP, and resting OCR, mitochondrial Ca(2+) or membrane potential. However, we propose that proton motive force could modulate respiratory response to FCCP by regulating mitochondrial transport of Gln and Pyr, which decreases upon mitochondrial depolarisation. As a result, an increase in respiration upon uncoupling is abolished in cells, deprived of Gln or Pyr (Glc). Unlike PC12 or HCT116 cells, mouse embryonic fibroblasts were capable of generating pronounced response to FCCP when deprived of Gln, thus exhibiting lower dependence on glutaminolysis. Overall, the differential regulation of the respiratory response to FCCP by metabolic environment suggests that mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function, and can be explored for selective cancer treatment. © 2013.

  17. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: A comprehensive meta-analysis.

    PubMed

    Noori, Hamid R; Cosa Linan, Alejandro; Spanagel, Rainer

    2016-09-01

    Cue reactivity to natural and social rewards is essential for motivational behavior. However, cue reactivity to drug rewards can also elicit craving in addicted subjects. The degree to which drug and natural rewards share neural substrates is not known. The objective of this study is to conduct a comprehensive meta-analysis of neuroimaging studies on drug, gambling and natural stimuli (food and sex) to identify the common and distinct neural substrates of cue reactivity to drug and natural rewards. Neural cue reactivity studies were selected for the meta-analysis by means of activation likelihood estimations, followed by sensitivity and clustering analyses of averaged neuronal response patterns. Data from 176 studies (5573 individuals) suggests largely overlapping neural response patterns towards all tested reward modalities. Common cue reactivity to natural and drug rewards was expressed by bilateral neural responses within anterior cingulate gyrus, insula, caudate head, inferior frontal gyrus, middle frontal gyrus and cerebellum. However, drug cues also generated distinct activation patterns in medial frontal gyrus, middle temporal gyrus, posterior cingulate gyrus, caudate body and putamen. Natural (sexual) reward cues induced unique activation of the pulvinar in thalamus. Neural substrates of cue reactivity to alcohol, drugs of abuse, food, sex and gambling are largely overlapping and comprise a network that processes reward, emotional responses and habit formation. This suggests that cue-mediated craving involves mechanisms that are not exclusive for addictive disorders but rather resemble the intersection of information pathways for processing reward, emotional responses, non-declarative memory and obsessive-compulsive behavior. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  18. Developmental and light regulation of tumor suppressor protein PP2A in the retina

    PubMed Central

    Rajala, Ammaji; Wang, Yuhong; Abcouwer, Steven F.; Gardner, Thomas W.; Rajala, Raju V.S.

    2018-01-01

    Protein phosphatases are a group of universal enzymes that are responsible for the dephosphorylation of various proteins and enzymes in cells. Cellular signal transduction events are largely governed by the phosphorylation of key proteins. The length of cellular response depends on the activation of protein phosphatase that dephosphorylates the phosphate groups to halt a biological response, and fine-tune the defined cellular outcome. Dysregulation of these phosphatase(s) results in various disease phenotypes. The retina is a post-mitotic tissue, and oncogenic tyrosine and serine/ threonine kinase activities are important for retinal neuron survival. Aberrant activation of protein phosphatase(s) may have a negative effect on retinal neurons. In the current study, we characterized tumor suppressor protein phosphatase 2 (PP2A), a major serine/ threonine kinase with a broad substrate specificity. Our data suggest that PP2A is developmentally regulated in the retina, localized predominantly in the inner retina, and expressed in photoreceptor inner segments. Our findings indicate that PKCα and mTOR may serve as PP2A substrates. We found that light regulates PP2A activity. Our studies also suggest that rhodopsin regulates PP2A and its substrate(s) dephosphorylation. PP2A substrate phosphorylation is increased in mice lacking the A-subunit of PP2A. However, there is no accompanying effect on retina structure and function. Together, our findings suggest that controlling the activity of PP2A in the retina may be neuroprotective. PMID:29416710

  19. Semicarbazide-sensitive amine oxidase substrates potentiate hydralazine hypotension: possible role of hydrogen peroxide.

    PubMed

    Vidrio, Horacio; Medina, Martha; González-Romo, Pilar; Lorenzana-Jiménez, Marte; Díaz-Arista, Patricia; Baeza, Alejandro

    2003-11-01

    The relation between inhibition of semicarbazide-sensitive amine oxidase (SSAO) and vasodilation by hydralazine (HYD) was evaluated in chloralose/urethane-anesthetized rats pretreated with various substrates of the enzyme and subsequently administered a threshold hypotensive dose of the vasodilator. The SSAO substrates benzylamine, phenethylamine, and methylamine potentiate the hypotensive response to HYD. Methylamine, which was studied in greater detail because of its status as a possible endogenous SSAO substrate, does not influence the response to the reference vasodilator pinacidil; it does enhance HYD relaxation in aortic rings obtained from pretreated rats. Experiments designed to identify the product of SSAO activity responsible for potentiation by methylamine suggest involvement of hydrogen peroxide (H2O2), as evidenced by the findings that such potentiation is abolished by additional pretreatment with the H2O2-metabolizing enzyme catalase, and that the plasma concentration of H2O2 is increased by methylamine and decreased by HYD. These results are interpreted as a substantiation of the relation between the known SSAO inhibitory effect of HYD and its vasodilator activity. Pretreatment with the SSAO substrates would increase production of H2O2 in vascular smooth muscle and thus magnify the influence of this vasoconstrictor agent on vascular tone. In these conditions, the decrease in H2O2 production and hence in vascular tone caused by SSAO inhibition by HYD would also be magnified. It is speculated that inhibition of vascular SSAO could represent a novel mechanism of vasodilation.

  20. Gait characteristics and spatio-temporal variables of climbing in bonobos (Pan paniscus).

    PubMed

    Schoonaert, Kirsten; D'Août, Kristiaan; Samuel, Diana; Talloen, Willem; Nauwelaerts, Sandra; Kivell, Tracy L; Aerts, Peter

    2016-11-01

    Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate. Our results show greater variation in footfall patterns with increasing incline, resulting in more lateral gait sequences. During climbing on arboreal inclines, smaller steps and strides but higher stride frequencies and duty factors are found compared to horizontal arboreal walking. This may facilitate better balance control and dynamic stability on the arboreal substrate. We found no gradual change in spatio-temporal variables with increasing incline; instead, the results for all inclines were clustered together. Bonobos take larger strides at lower stride frequencies and lower duty factors on a horizontal arboreal substrate than on a flat terrestrial substrate. We suggest that these changes are the result of the better grip of the grasping feet on an arboreal substrate. Speed modulation of the spatio-temporal variables is similar across substrate inclinations and between substrate types, suggesting a comparable underlying motor control. Finally, we contrast these variables of arboreal inclined climbing with those of terrestrial bipedal locomotion, and briefly discuss the results with respect to the origin of habitual bipedalism. Am. J. Primatol. 78:1165-1177, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. The Neural Substrates of Cognitive Control Deficits in Autism Spectrum Disorders

    PubMed Central

    Solomon, Marjorie; Ozonoff, Sally; Ursu, Stefan; Ravizza, Susan; Cummings, Neil; Ly, Stanford; Carter, Cameron

    2009-01-01

    Executive functions deficits are among the most frequently reported symptoms of autism spectrum disorders (ASDs), however, there have been few functional magnetic resonance imaging (fMRI) studies that investigate the neural substrates of executive functions deficits in ASDs, and only one in adolescents. The current study examined cognitive control –the ability to maintain task context online to support adaptive functioning in the face of response competition—in 22 adolescents aged 12–18 with autism spectrum disorders and 23 age, gender, and IQ matched typically developing subjects. During the cue phase of the task, where subjects must maintain information online to overcome a prepotent response tendency, typically developing subjects recruited significantly more anterior frontal (BA 10), parietal (BA 7, 40), and occipital regions (BA 18) for high control trials (25% of trials) versus low control trials (75% of trials). Both groups showed similar activation for low control cues, however the ASD group exhibited significantly less activation for high control cues. Functional connectivity analysis using time series correlation, factor analysis, and beta series correlation methods provided convergent evidence that the ASD group exhibited lower levels of functional connectivity and less network integration between frontal, parietal, and occipital regions. In the typically developing group, fronto-parietal connectivity was related to lower error rates on high control trials. In the autism group, reduced fronto-parietal connectivity was related to attention deficit hyperactivity disorder symptoms. PMID:19410583

  2. Ectodomain Shedding by ADAM17: Its Role in Neutrophil Recruitment and the Impairment of This Process during Sepsis.

    PubMed

    Mishra, Hemant K; Ma, Jing; Walcheck, Bruce

    2017-01-01

    Neutrophils are specialized at killing bacteria and are recruited from the blood in a rapid and robust manner during infection. A cascade of adhesion events direct their attachment to the vascular endothelium and migration into the underlying tissue. A disintegrin and metalloproteinase 17 (ADAM17) functions in the cell membrane of neutrophils and endothelial cells by cleaving its substrates, typically in a cis manner, at an extracellular site proximal to the cell membrane. This process is referred to as ectodomain shedding and it results in the downregulation of various adhesion molecules and receptors, and the release of immune regulating factors. ADAM17 sheddase activity is induced upon cell activation and rapidly modulates intravascular adhesion events in response to diverse environmental stimuli. During sepsis, an excessive systemic inflammatory response against infection, neutrophil migration becomes severely impaired. This involves ADAM17 as indicated by increased levels of its cleaved substrates in the blood of septic patients, and that ADAM17 inactivation improves neutrophil recruitment and bacterial clearance in animal models of sepsis. Excessive ADAM17 sheddase activity during sepsis thus appears to undermine in a direct and indirect manner the necessary balance between intravascular adhesion and de-adhesion events that regulate neutrophil migration into sites of infection. This review provides an overview of ADAM17 function and regulation and its potential contribution to neutrophil dysfunction during sepsis.

  3. Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology.

    PubMed

    Kavitha, Ganapathy; Kurinjimalar, Chidambaram; Sivakumar, Krishnan; Kaarthik, Muthukumar; Aravind, Rajamani; Palani, Perumal; Rengasamy, Ramasamy

    2016-12-01

    Investigations have been made to optimize various factors including pH, temperature, and substrate for enhanced polyhydroxybutyrate (PHB) production in Botryococcus braunii which serves as a pioneer for production of bioplastic (PHB). Polyhydroxybutyrate is a natural, decomposable polymers accumulated by the microorganism under different nutritional condition. Strain selection was done by staining method using Sudan black and Nile red dye. Using response surface methodology (RSM), three level- three variables Box Behnken design (BBD), the best potential combination of pH (4-11), temperature (30-50°C) and sewage waste water as substrate fed at different concentrations at 20%-100% for maximum PHB production was investigated. Maximum yield (247±0.42mg/L) of PHB dry weight was achieved from the 60% concentration of sewage waste water as a growth medium at pH 7.5 at 40°C. It was well in close agreement with the value predicted by RSM model yield (246± 0.32mg/L). Thus the study shows the production of PHB by B. braunii along with the basic characterization of PHB by using FTIR and TEM analysis. These preliminary studies indicated that PHB can also be produced by B. braunii utilizing waste water. There is no report on the optimization of PHB production in this microalgae have been documented. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases*

    PubMed Central

    Tinti, Michele; Paoluzi, Serena; Santonico, Elena; Masch, Antonia; Schutkowski, Mike

    2017-01-01

    Reversible tyrosine phosphorylation is a widespread post-translational modification mechanism underlying cell physiology. Thus, understanding the mechanisms responsible for substrate selection by kinases and phosphatases is central to our ability to model signal transduction at a system level. Classical protein-tyrosine phosphatases can exhibit substrate specificity in vivo by combining intrinsic enzymatic specificity with the network of protein-protein interactions, which positions the enzymes in close proximity to their substrates. Here we use a high throughput approach, based on high density phosphopeptide chips, to determine the in vitro substrate preference of 16 members of the protein-tyrosine phosphatase family. This approach helped identify one residue in the substrate binding pocket of the phosphatase domain that confers specificity for phosphopeptides in a specific sequence context. We also present a Bayesian model that combines intrinsic enzymatic specificity and interaction information in the context of the human protein interaction network to infer new phosphatase substrates at the proteome level. PMID:28159843

  5. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis.

    PubMed

    Mao, Guohong; Meng, Xiangzong; Liu, Yidong; Zheng, Zuyu; Chen, Zhixiang; Zhang, Shuqun

    2011-04-01

    Plant sensing of invading pathogens triggers massive metabolic reprogramming, including the induction of secondary antimicrobial compounds known as phytoalexins. We recently reported that MPK3 and MPK6, two pathogen-responsive mitogen-activated protein kinases, play essential roles in the induction of camalexin, the major phytoalexin in Arabidopsis thaliana. In search of the transcription factors downstream of MPK3/MPK6, we found that WRKY33 is required for MPK3/MPK6-induced camalexin biosynthesis. In wrky33 mutants, both gain-of-function MPK3/MPK6- and pathogen-induced camalexin production are compromised, which is associated with the loss of camalexin biosynthetic gene activation. WRKY33 is a pathogen-inducible transcription factor, whose expression is regulated by the MPK3/MPK6 cascade. Chromatin immunoprecipitation assays reveal that WRKY33 binds to its own promoter in vivo, suggesting a potential positive feedback regulatory loop. Furthermore, WRKY33 is a substrate of MPK3/MPK6. Mutation of MPK3/MPK6 phosphorylation sites in WRKY33 compromises its ability to complement the camalexin induction in the wrky33 mutant. Using a phospho-protein mobility shift assay, we demonstrate that WRKY33 is phosphorylated by MPK3/MPK6 in vivo in response to Botrytis cinerea infection. Based on these data, we conclude that WRKY33 functions downstream of MPK3/MPK6 in reprogramming the expression of camalexin biosynthetic genes, which drives the metabolic flow to camalexin production in Arabidopsis challenged by pathogens.

  6. The hepatic transcriptome of young suckling and aging intrauterine growth restricted male rats

    PubMed Central

    Freije, William A.; Thamotharan, Shanthie; Lee, Regina; Shin, Bo-Chul; Devaskar, Sherin U.

    2015-01-01

    Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non-alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray-based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin-like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non-transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. PMID:25371150

  7. The hepatic transcriptome of young suckling and aging intrauterine growth restricted male rats.

    PubMed

    Freije, William A; Thamotharan, Shanthie; Lee, Regina; Shin, Bo-Chul; Devaskar, Sherin U

    2015-04-01

    Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non-alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray-based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin-like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non-transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. © 2014 Wiley Periodicals, Inc.

  8. Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia.

    PubMed

    Krishnamurthy, Sateesh; Behlke, Mark A; Apicella, Michael A; McCray, Paul B; Davidson, Beverly L

    2014-07-15

    Well-differentiated human airway epithelia present formidable barriers to efficient siRNA delivery. We previously reported that treatment of airway epithelia with specific small molecules improves oligonucleotide uptake and facilitates RNAi responses. Here, we exploited the platelet activating factor receptor (PAFR) pathway, utilized by specific bacteria to transcytose into epithelia, as a trigger for internalization of Dicer-substrate siRNAs (DsiRNA). PAFR is a G-protein coupled receptor which can be engaged and activated by phosphorylcholine residues on the lipooligosaccharide (LOS) of nontypeable Haemophilus influenzae and the teichoic acid of Streptococcus pneumoniae as well as by its natural ligand, platelet activating factor (PAF). When well-differentiated airway epithelia were simultaneously treated with either nontypeable Haemophilus influenzae LOS or PAF and transduced with DsiRNA formulated with the peptide transductin, we observed silencing of both endogenous and exogenous targets. PAF receptor antagonists prevented LOS or PAF-assisted DsiRNA silencing, demonstrating that ligand engagement of PAFR is essential for this process. Additionally, PAF-assisted DsiRNA transfection decreased CFTR protein expression and function and reduced exogenous viral protein levels and titer in human airway epithelia. Treatment with spiperone, a small molecule identified using the Connectivity map database to correlate gene expression changes in response to drug treatment with those associated with PAFR stimulation, also induced silencing. These results suggest that the signaling pathway activated by PAFR binding can be manipulated to facilitate siRNA entry and function in difficult to transfect well-differentiated airway epithelial cells.

  9. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli

    PubMed Central

    Zimanyi, Christina M; Chen, Percival Yang-Ting; Kang, Gyunghoon; Funk, Michael A; Drennan, Catherine L

    2016-01-01

    Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR ‘reads’ the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell. DOI: http://dx.doi.org/10.7554/eLife.07141.001 PMID:26754917

  10. Short-term effects of triiodothyronine on the bowfin, Amia calva (Holostei), and the lake char, Salvelinus namaycush (Teleostei).

    PubMed

    Ballantyne, J S; John, T M; Singer, T D; Oommen, O V

    1992-01-01

    To assess the role of triiodothyronine (T3) in mediating short-term changes in metabolism, such as those occurring in circadian patterns, we examined the effects of intraperitoneal injection of T3 on the oxidation of substrates by isolated mitochondria from liver of the bowfin, Amia calva, and red muscle and liver of the lake char, Salvelinus namaycush. Selected enzymes were measured in red muscle and liver of the lake char. Three hours after intraperitoneal injection of T3, oxidation of some substrates by mitochondria isolated from the liver of the bowfin was reduced. Similar treatment had no effect on substrate oxidation in liver mitochondria isolated from lake char. Oxidation of substrates by lake char red muscle mitochondria was stimulated by T3 injection. Citrate synthase levels were increased in red muscle suggesting that changes in enzyme activity may be in part responsible for the short-term mitochondrial responses to T3 injection.

  11. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    PubMed

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.

  12. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    PubMed

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  13. Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Tiemann, L. K.; Ballantyne, F., IV; Lehmeier, C.; Min, K.

    2014-12-01

    Investigators of soil organic matter (SOM) transformations struggle with a deceptively simple-sounding question: "Why does some SOM leave the soil profile relatively quickly, while other compounds, especially those at depth, appear to be retained on timescales ranging from the decadal to the millennial?" This question is important on both practical and academic levels, but addressing it is challenging for a multitude of reasons. Simultaneous with soil-specific advances, multiple other disciplines have enhanced their knowledge bases in ways potentially useful for future investigations of SOM decay. In this article, we highlight observations highly relevant for those investigating SOM decay and retention but often emanating from disparate fields and residing in literature seldom cited in SOM research. We focus on recent work in two key areas. First, we turn to experimental approaches using natural and artificial aquatic environments to investigate patterns of microbially-mediated OM transformations as environmental conditions change, and highlight how aquatic microbial responses to environmental change can reveal processes likely important to OM decay and retention in soils. Second, we emphasize the importance of establishing intrinsic patterns of decay kinetics for purified substrates commonly found in soils to develop baseline rates. These decay kinetics - which represent the upper limit of the reaction rates - can then be compared to substrate decay kinetics observed in natural samples, which integrate intrinsic decay reaction rates and edaphic factors essential to the site under study but absent in purified systems. That comparison permits the site-specific factors to be parsed from the fundamental decay kinetics, an important advance in our understanding of SOM decay (and thus persistence) in natural systems. We then suggest ways in which empirical observations from aquatic systems and purified enzyme-substrate reaction kinetics can be used to advance recent theoretical efforts in SOM-focused research. Finally, we suggest how the observations in aquatic and purified enzyme-substrate systems could be used to help unravel the puzzles presented by oft-observed patterns of SOM characteristics with depth, as one example of the many perplexing SOM-related problems.

  14. Predation risk modifies behaviour by shaping the response of identified brain neurons.

    PubMed

    Magani, Fiorella; Luppi, Tomas; Nuñez, Jesus; Tomsic, Daniel

    2016-04-15

    Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs ITALIC! Neohelice granulatafrom two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome. © 2016. Published by The Company of Biologists Ltd.

  15. High thermoelectricpower factor in graphene/hBN devices

    PubMed Central

    Duan, Junxi; Wang, Xiaoming; Lai, Xinyuan; Li, Guohong; Taniguchi, Takashi; Zebarjadi, Mona; Andrei, Eva Y.

    2016-01-01

    Fast and controllable cooling at nanoscales requires a combination of highly efficient passive cooling and active cooling. Although passive cooling in graphene-based devices is quite effective due to graphene’s extraordinary heat conduction, active cooling has not been considered feasible due to graphene’s low thermoelectric power factor. Here, we show that the thermoelectric performance of graphene can be significantly improved by using hexagonal boron nitride (hBN) substrates instead of SiO2. We find the room temperature efficiency of active cooling in the device, as gauged by the power factor times temperature, reaches values as high as 10.35 W⋅m−1⋅K−1, corresponding to more than doubling the highest reported room temperature bulk power factors, 5 W⋅m−1⋅K−1, in YbAl3, and quadrupling the best 2D power factor, 2.5 W⋅m−1⋅K−1, in MoS2. We further show that the Seebeck coefficient provides a direct measure of substrate-induced random potential fluctuations and that their significant reduction for hBN substrates enables fast gate-controlled switching of the Seebeck coefficient polarity for applications in integrated active cooling devices. PMID:27911824

  16. Microbial community composition along a 50 000-year lacustrine sediment sequence

    PubMed Central

    Ariztegui, Daniel; Horn, Fabian; Kallmeyer, Jens; Orsi, William D

    2018-01-01

    Abstract For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth. PMID:29471361

  17. Self-face recognition in children with autism spectrum disorders: a near-infrared spectroscopy study.

    PubMed

    Kita, Yosuke; Gunji, Atsuko; Inoue, Yuki; Goto, Takaaki; Sakihara, Kotoe; Kaga, Makiko; Inagaki, Masumi; Hosokawa, Toru

    2011-06-01

    It is assumed that children with autism spectrum disorders (ASD) have specificities for self-face recognition, which is known to be a basic cognitive ability for social development. In the present study, we investigated neurological substrates and potentially influential factors for self-face recognition of ASD patients using near-infrared spectroscopy (NIRS). The subjects were 11 healthy adult men, 13 normally developing boys, and 10 boys with ASD. Their hemodynamic activities in the frontal area and their scanning strategies (eye-movement) were examined during self-face recognition. Other factors such as ASD severities and self-consciousness were also evaluated by parents and patients, respectively. Oxygenated hemoglobin levels were higher in the regions corresponding to the right inferior frontal gyrus than in those corresponding to the left inferior frontal gyrus. In two groups of children these activities reflected ASD severities, such that the more serious ASD characteristics corresponded with lower activity levels. Moreover, higher levels of public self-consciousness intensified the activities, which were not influenced by the scanning strategies. These findings suggest that dysfunction in the right inferior frontal gyrus areas responsible for self-face recognition is one of the crucial neural substrates underlying ASD characteristics, which could potentially be used to evaluate psychological aspects such as public self-consciousness. Copyright © 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores.

    PubMed

    Lass, Achim; Zimmermann, Robert; Oberer, Monika; Zechner, Rudolf

    2011-01-01

    Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic "lipolytic machinery". Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the "lipolysome". This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein

    PubMed Central

    Rehm, Markus; Huber, Heinrich J; Dussmann, Heiko; Prehn, Jochen H M

    2006-01-01

    Activation of effector caspases is a final step during apoptosis. Single-cell imaging studies have demonstrated that this process may occur as a rapid, all-or-none response, triggering a complete substrate cleavage within 15 min. Based on biochemical data from HeLa cells, we have developed a computational model of apoptosome-dependent caspase activation that was sufficient to remodel the rapid kinetics of effector caspase activation observed in vivo. Sensitivity analyses predicted a critical role for caspase-3-dependent feedback signalling and the X-linked-inhibitor-of-apoptosis-protein (XIAP), but a less prominent role for the XIAP antagonist Smac. Single-cell experiments employing a caspase fluorescence resonance energy transfer substrate verified these model predictions qualitatively and quantitatively. XIAP was predicted to control this all-or-none response, with concentrations as high as 0.15 μM enabling, but concentrations >0.30 μM significantly blocking substrate cleavage. Overexpression of XIAP within these threshold concentrations produced cells showing slow effector caspase activation and submaximal substrate cleavage. Our study supports the hypothesis that high levels of XIAP control caspase activation and substrate cleavage, and may promote apoptosis resistance and sublethal caspase activation in vivo. PMID:16932741

  20. LAND USE AND NATURAL HYDRAULIC CONTROLS ON STREAM SUBSTRATE AND MACROINVERTEBRATE ASSEMBLAGES IN REGIONAL SURVEYS

    EPA Science Inventory

    In large regions, human land uses typically overlay wide ranges of natural geomorphic factors that control stream habitat characteristics and benthic macroinvertebrate assemblages. Many macroinvertebrate measures of stream "health" show strong association with substrate size, a ...

  1. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo

    PubMed Central

    Sapkota, Gopal P.; Cummings, Lorna; Newell, Felicity S.; Armstrong, Christopher; Bain, Jennifer; Frodin, Morten; Grauert, Matthias; Hoffmann, Matthias; Schnapp, Gisela; Steegmaier, Martin; Cohen, Philip; Alessi, Dario R.

    2006-01-01

    Hormones and growth factors induce the activation of a number of protein kinases that belong to the AGC subfamily, including isoforms of PKA, protein kinase B (also known as Akt), PKC, S6K p70 (ribosomal S6 kinase), RSK (p90 ribosomal S6 kinase) and MSK (mitogen- and stress-activated protein kinase), which then mediate many of the physiological processes that are regulated by these extracellular agonists. It can be difficult to assess the individual functions of each AGC kinase because their substrate specificities are similar. Here we describe the small molecule BI-D1870, which inhibits RSK1, RSK2, RSK3 and RSK4 in vitro with an IC50 of 10–30 nM, but does not signi-ficantly inhibit ten other AGC kinase members and over 40 other protein kinases tested at 100-fold higher concentrations. BI-D1870 is cell permeant and prevents the RSK-mediated phorbol ester- and EGF (epidermal growth factor)-induced phosphoryl-ation of glycogen synthase kinase-3β and LKB1 in human embry-onic kidney 293 cells and Rat-2 cells. In contrast, BI-D1870 does not affect the agonist-triggered phosphorylation of substrates for six other AGC kinases. Moreover, BI-D1870 does not suppress the phorbol ester- or EGF-induced phosphorylation of CREB (cAMP-response-element-binding protein), consistent with the genetic evidence indicating that MSK, and not RSK, isoforms mediate the mitogen-induced phosphorylation of this transcription factor. PMID:17040210

  2. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing.

    PubMed

    Yang, Tong; Ma, Jun; Zhen, Shu Jun; Huang, Cheng Zhi

    2016-06-15

    Surface-enhanced Raman scattering (SERS) has shown high promise in analysis and bioanalysis, wherein noble metal nanoparticles (NMNPs) such as silver nanoparticles were employed as substrates because of their strong localized surface plasmon resonance (LSPR) properties. However, SERS-based pH sensing was restricted because of the aggregation of NMNPs in acidic medium or biosamples with high ionic strength. Herein, by using the electrostatic interaction as a driving force, AgNPs are assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofibers, which are then applied as highly sensitive and reproducible SERS substrate with an enhancement factor (EF) of 10(7)-10(8). When p-aminothiophenol (p-ATP) is used as an indicator with its b2 mode, a good and wide linear response to pH ranging from 2.56 to 11.20 could be available, and the as-prepared nanocomposite fibers then could be fabricated as excellent pH sensors in complicated biological samples such as urine, considering that the pH of urine could reflect the acid-base status of a person. This work not only emerges a cost-effective, direct, and convenient approach to homogeneously decorate AgNPs on the surface of polymer nanofibers but also supplies a route for preparing other noble metal nanofibrous sensing membranes.

  3. High-Quality AZO/Au/AZO Sandwich Film with Ultralow Optical Loss and Resistivity for Transparent Flexible Electrodes.

    PubMed

    Zhou, Hua; Xie, Jing; Mai, Manfang; Wang, Jing; Shen, Xiangqian; Wang, Shuying; Zhang, Lihua; Kisslinger, Kim; Wang, Hui-Qiong; Zhang, Jinxing; Li, Yu; Deng, Junhong; Ke, Shanming; Zeng, Xierong

    2018-05-09

    Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.g., an average transmittance of about 81.7% (including the substrate contribution) over the visible range, a sheet resistance of 5 Ω/sq, and a figure-of-merit (FoM) factor of ∼55.1. These values are well ahead of those previously reported for sandwich-film-electrodes. Additionally, the interference behaviors of light modulated by the coat and metal layers have been explored with the employment of transmittance spectra and numerical simulations. In particular, a heater device based on an AZO/Au/AZO sandwich film exhibits high performance such as short response time (∼5 s) and uniform temperature field. This work provides a deep insight into the improvement of the film quality of the sandwich electrodes and the design of high-performance transparent flexible devices by the application of a flexible substrate with an atomically smooth surface.

  4. The ESX-5 System of Pathogenic Mycobacteria Is Involved In Capsule Integrity and Virulence through Its Substrate PPE10

    PubMed Central

    Ates, Louis S.; van der Woude, Aniek D.; Bestebroer, Jovanka; van Stempvoort, Gunny; Musters, René J. P.; Garcia-Vallejo, Juan J.; Picavet, Daisy I.; van de Weerd, Robert; Maletta, Massimiliano; Kuijl, Coenraad P.; van der Wel, Nicole N.; Bitter, Wilbert

    2016-01-01

    Mycobacteria produce a capsule layer, which consists of glycan-like polysaccharides and a number of specific proteins. In this study, we show that, in slow-growing mycobacteria, the type VII secretion system ESX-5 plays a major role in the integrity and stability of the capsule. We have identified PPE10 as the ESX-5 substrate responsible for this effect. Mutants in esx-5 and ppe10 both have impaired capsule integrity as well as reduced surface hydrophobicity. Electron microscopy, immunoblot and flow cytometry analyses demonstrated reduced amounts of surface localized proteins and glycolipids, and morphological differences in the capsular layer. Since capsular proteins secreted by the ESX-1 system are important virulence factors, we tested the effect of the mutations that cause capsular defects on virulence mechanisms. Both esx-5 and ppe10 mutants of Mycobacterium marinum were shown to be impaired in ESX-1-dependent hemolysis. In agreement with this, the ppe10 and esx5 mutants showed reduced recruitment of ubiquitin in early macrophage infection and intermediate attenuation in zebrafish embryos. These results provide a pivotal role for the ESX-5 secretion system and its substrate PPE10, in the capsular integrity of pathogenic mycobacteria. These findings open up new roads for research on the mycobacterial capsule and its role in virulence and immune modulation. PMID:27280885

  5. Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection

    PubMed Central

    Pokhriyal, Anusha; Lu, Meng; Chaudhery, Vikram; Huang, Cheng-Sheng; Schulz, Stephen; Cunningham, Brian T.

    2010-01-01

    A Photonic Crystal (PC) surface fabricated upon a quartz substrate using nanoimprint lithography has been demonstrated to enhance light emission from fluorescent molecules in close proximity to the PC surface. Quartz was selected for its low autofluorescence characteristics compared to polymer-based PCs, improving the detection sensitivity and signal-to-noise ratio (SNR) of PC Enhanced Fluorescence (PCEF). Nanoimprint lithography enables economical fabrication of the subwavelength PCEF surface structure over entire 1x3 in2 quartz slides. The demonstrated PCEF surface supports a transverse magnetic (TM) resonant mode at a wavelength of λ = 632.8 nm and an incident angle of θ = 11°, which amplifies the electric field magnitude experienced by surface-bound fluorophores. Meanwhile, another TM mode at a wavelength of λ = 690 nm and incident angle of θ = 0° efficiently directs the fluorescent emission toward the detection optics. An enhancement factor as high as 7500 × was achieved for the detection of LD-700 dye spin-coated upon the PC, compared to detecting the same material on an unpatterned glass surface. The detection of spotted Alexa-647 labeled polypeptide on the PC exhibits a 330 × SNR improvement. Using dose-response characterization of deposited fluorophore-tagged protein spots, the PCEF surface demonstrated a 140 × lower limit of detection compared to a conventional glass substrate. PMID:21164826

  6. Carbon tetrachloride degradation: Effect of microbial growth substrate and vitamin B{sub 12} content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, S.; Stensel, H.D.; Ferguson, J.F.

    2000-05-01

    Microbial degradation kinetics of carbon tetrachloride (CT) under reducing conditions were investigated for different cultures, fed with 1,2-propanediol, dextrose, propionalde-hyde, or acetate and nitrate, in the anaerobic step of an anaerobic/aerobic operation sequence. Methanogenesis was inhibited due to the aerobic step. CT biodegradation rates followed first-order kinetics with respect to CT concentration and biomass and were not affected by the presence of growth substrate. CT degradation rates increased linearly with higher intracellular vitamin B{sub 12} content. The culture fed 1,2-propanediol had the highest vitamin B{sub 12} content, which was 3.8, 4.7, and 16 times that of the propionaldehyde-,dextrose-, and acetate-fedmore » cultures, respectively, and its first-order degradation rate constant was 2.8, 4.5, 6.0 times that for those cultures, respectively. No CT degradation occurred with culture liquid, suggesting that intracellular factors were responsible for CT degradation. The propanediol culture was able to sustain a constant CT degradation rate for a 16-day test period without substrate addition. Compared to a propanediol-fed culture grown only under anaerobic conditions, the propanediol culture grown under the sequential anaerobic/aerobic condition resulted in more biomass growth and a greater CT degradation rate per unit of propanediol fed, although its CT degradation rate per unit of biomass was lower.« less

  7. Monocyte Tumor Necrosis Factor-α–Converting Enzyme Catalytic Activity and Substrate Shedding in Sepsis and Noninfectious Systemic Inflammation*

    PubMed Central

    O’Callaghan, David J. P.; O’Dea, Kieran P.; Scott, Alasdair J.; Takata, Masao

    2015-01-01

    Objectives: To determine the effect of severe sepsis on monocyte tumor necrosis factor-α–converting enzyme baseline and inducible activity profiles. Design: Observational clinical study. Setting: Mixed surgical/medical teaching hospital ICU. Patients: Sixteen patients with severe sepsis, 15 healthy volunteers, and eight critically ill patients with noninfectious systemic inflammatory response syndrome. Interventions: None. Measurements and Main Results: Monocyte expression of human leukocyte antigen-D-related peptide, sol-tumor necrosis factor production, tumor necrosis factor-α–converting enzyme expression and catalytic activity, tumor necrosis factor receptor 1 and 2 expression, and shedding at 48-hour intervals from day 0 to day 4, as well as p38-mitogen activated protein kinase expression. Compared with healthy volunteers, both sepsis and systemic inflammatory response syndrome patients’ monocytes expressed reduced levels of human leukocyte antigen-D-related peptide and released less sol-tumor necrosis factor on in vitro lipopolysaccharide stimulation, consistent with the term monocyte deactivation. However, patients with sepsis had substantially elevated levels of basal tumor necrosis factor-α–converting enzyme activity that were refractory to lipopolysaccharide stimulation and this was accompanied by similar changes in p38-mitogen activated protein kinase signaling. In patients with systemic inflammatory response syndrome, monocyte basal tumor necrosis factor-α–converting enzyme, and its induction by lipopolysaccharide, appeared similar to healthy controls. Changes in basal tumor necrosis factor-α–converting enzyme activity at day 0 for sepsis patients correlated with Acute Physiology and Chronic Health Evaluation II score and the attenuated tumor necrosis factor-α–converting enzyme response to lipopolysaccharide was associated with increased mortality. Similar changes in monocyte tumor necrosis factor-α–converting enzyme activity could be induced in healthy volunteer monocytes using an in vitro two-hit inflammation model. Patients with sepsis also displayed reduced shedding of monocyte tumor necrosis factor receptors upon stimulation with lipopolysaccharide. Conclusions: Monocyte tumor necrosis factor-α–converting enzyme catalytic activity appeared altered by sepsis and may result in reduced shedding of tumor necrosis factor receptors. Changes seemed specific to sepsis and correlated with illness severity. A better understanding of how tumor necrosis factor-α–converting enzyme function is altered during sepsis will enhance our understanding of sepsis pathophysiology, which will help in the assessment of patient inflammatory status and ultimately may provide new strategies to treat sepsis. PMID:25867908

  8. Effects of Gel Thickness on Microscopic Indentation Measurements of Gel Modulus

    PubMed Central

    Long, Rong; Hall, Matthew S.; Wu, Mingming; Hui, Chung-Yuen

    2011-01-01

    In vitro, animal cells are mostly cultured on a gel substrate. It was recently shown that substrate stiffness affects cellular behaviors in a significant way, including adhesion, differentiation, and migration. Therefore, an accurate method is needed to characterize the modulus of the substrate. In situ microscopic measurements of the gel substrate modulus are based on Hertz contact mechanics, where Young's modulus is derived from the indentation force and displacement measurements. In Hertz theory, the substrate is modeled as a linear elastic half-space with an infinite depth, whereas in practice, the thickness of the substrate, h, can be comparable to the contact radius and other relevant dimensions such as the radius of the indenter or steel ball, R. As a result, measurements based on Hertz theory overestimate the Young's modulus. In this work, we discuss the limitations of Hertz theory and then modify it, taking into consideration the nonlinearity of the material and large deformation using a finite-element method. We present our results in a simple correction factor, ψ, the ratio of the corrected Young's modulus and the Hertz modulus in the parameter regime of δ/h ≤ min (0.6, R/h) and 0.3 ≤ R/h ≤ 12.7. The ψ factor depends on two dimensionless parameters, R/h and δ/h (where δ is the indentation depth), both of which are easily accessible to experiments. This correction factor agrees with experimental observations obtained with the use of polyacrylamide gel and a microsphere indentation method in the parameter range of 0.1 ≤ δ/h ≤ 0.4 and 0.3 ≤ R/h ≤ 6.2. The effect of adhesion on the use of Hertz theory for small indentation depth is also discussed. PMID:21806932

  9. Molecular Basis for the Recognition and Cleavages of IGF-II, TGF-[alpha], and Amylin by Human Insulin-Degrading Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Qing; Manolopoulou, Marika; Bian, Yao

    2010-02-11

    Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-{beta}, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-{alpha} (TGF-{alpha}) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-{alpha}, amylin, reduced amylin, and amyloid-{beta} bymore » human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-{alpha} at 2.3 {angstrom} and IDE-amylin at 2.9 {angstrom}. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.« less

  10. Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments.

    PubMed

    Vijayaraghavan, K; Arockiaraj, Jesu; Kamala-Kannan, Seralathan

    2017-06-03

    Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m 3 ) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.

  11. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  12. Terahertz Difference-Frequency Quantum Cascade Laser Sources on Silicon

    DTIC Science & Technology

    2016-12-22

    temperature. The introduction of the Cherenkov waveguide scheme in these devices grown on semi- insulating InP substrates enabled generation of tens...room temperature, a factor of 5 improvement over the best reference devices on a native semi- insulating InP substrate. © 2016 Optical Society of America...implementation of the Cherenkov emission scheme [10]. Cherenkov THz DFG-QCLs reported so far use a semi- insulating (SI) InP substrate. SI InP

  13. Experimental study of a SINIS detector response time at 350 GHz signal frequency

    NASA Astrophysics Data System (ADS)

    Lemzyakov, S.; Tarasov, M.; Mahashabde, S.; Yusupov, R.; Kuzmin, L.; Edelman, V.

    2018-03-01

    Response time constant of a SINIS bolometer integrated in an annular ring antenna was measured at a bath temperature of 100 mK. Samples comprising superconducting aluminium electrodes and normal-metal Al/Fe strip connected to electrodes via tunnel junctions were fabricated on oxidized Si substrate using shadow evaporation. The bolometer was illuminated by a fast black-body radiation source through a band-pass filter centered at 350 GHz with a passband of 7 GHz. Radiation source is a thin NiCr film on sapphire substrate. For rectangular 10÷100 μs current pulse the radiation front edge was rather sharp due to low thermal capacitance of NiCr film and low thermal conductivity of substrate at temperatures in the range 1-4 K. The rise time of the response was ~1-10 μs. This time presumably is limited by technical reasons: high dynamic resistance of series array of bolometers and capacitance of a long twisted pair wiring from SINIS bolometer to a room-temperature amplifier.

  14. Photoelectrochemical molecular comb

    DOEpatents

    Thundat, Thomas G.; Ferrell, Thomas L.; Brown, Gilbert M.

    2006-08-15

    A method and apparatus for separating molecules. The apparatus includes a substrate having a surface. A film in contact with the surface defines a substrate/film interface. An electrode electrically connected to the film applies a voltage potential between the electrode and the substrate to form a depletion region in the substrate at the substrate/film interface. A photon energy source having an energy level greater than the potential is directed at the depletion region to form electron-hole pairs in the depletion region. At least one of the electron-hole pairs is separated by the potential into an independent electron and an independent hole having opposite charges and move in opposing directions. One of the electron and hole reach the substrate/film interface to create a photopotential in the film causing charged molecules in the film to move in response to the localized photovoltage.

  15. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes

    NASA Astrophysics Data System (ADS)

    Jouaville, Laurence S.; Ichas, François; Holmuhamedov, Ekhson L.; Camacho, Patricia; Lechleiter, James D.

    1995-10-01

    INXenopus oocytes, as well as other cells, inositol-l,4,5-tris-phosphate (Ins(l,4,5)P3)-induced Ca2+ release1-4 is an excitable process that generates propagating Ca2+ waves5-7 that annihilate upon collision8-12. The fundamental property responsible for excitability13 appears to be the Ca2+ dependency of the Ins(l,4,5)P3 receptor9. Here we report that Ins(l,4,5)P3-induced Ca2+ wave activity is strengthened by oxidizable substrates that energize mitochondria, increasing Ca2+ wave amplitude, velocity and interwave period. The effects of pyruvate/malate are blocked by ruthenium red at the Ca2+ uniporter, by rotenone at complex I, and by antimycin A at complex III, and are subsequently rescued at complex IV by ascorbate tetramethylphenylenediamine (TMPD)14. Our data reveal that potential-driven mitochondrial Ca2+ uptake is a major factor in the regulation of Ins(l,4,5)P3-induced Ca2+ release and clearly demonstrate a physiological role of mitochondria in intracellular Ca2+ signalling.

  16. Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wei, W.; Lankford, J.

    1987-01-01

    An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.

  17. mTOR kinase structure, mechanism and regulation by the rapamycin-binding domain

    PubMed Central

    Yang, Haijuan; Rudge, Derek G.; Koos, Joseph D.; Vaidialingam, Bhamini; Yang, Hyo J.; Pavletich, Nikola P.

    2015-01-01

    The mammalian target of rapamycin (mTOR), a phosphoinositide 3-kinase related protein kinase, controls cell growth in response to nutrients and growth factors and is frequently deregulated in cancer. Here we report co-crystal structures of a truncated mTOR-mLST8 complex with an ATP transition state mimic and with ATP-site inhibitors. The structures reveal an intrinsically active kinase conformation, with catalytic residues and mechanism remarkably similar to canonical protein kinases. The active site is highly recessed due to the FKBP12-Rapamycin binding (FRB) domain and an inhibitory helix protruding from the catalytic cleft. mTOR activating mutations map to the structural framework that holds these elements in place, indicating the kinase is controlled by restricted access. In vitro biochemistry indicates that the FRB domain acts as a gatekeeper, with its rapamycin-binding site interacting with substrates to grant them access to the restricted active site. FKBP12-rapamycin inhibits by directly blocking substrate recruitment and by further restricting active site access. The structures also reveal active site residues and conformational changes that underlie inhibitor potency and specificity. PMID:23636326

  18. Quantitative analysis of the TNF-α-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKβ substrate

    PubMed Central

    Krishnan, Ramesh K.; Nolte, Hendrik; Sun, Tianliang; Kaur, Harmandeep; Sreenivasan, Krishnamoorthy; Looso, Mario; Offermanns, Stefan; Krüger, Marcus; Swiercz, Jakub M.

    2015-01-01

    The inhibitor of the nuclear factor-κB (IκB) kinase (IKK) complex is a key regulator of the canonical NF-κB signalling cascade and is crucial for fundamental cellular functions, including stress and immune responses. The majority of IKK complex functions are attributed to NF-κB activation; however, there is increasing evidence for NF-κB pathway-independent signalling. Here we combine quantitative mass spectrometry with random forest bioinformatics to dissect the TNF-α-IKKβ-induced phosphoproteome in MCF-7 breast cancer cells. In total, we identify over 20,000 phosphorylation sites, of which ∼1% are regulated up on TNF-α stimulation. We identify various potential novel IKKβ substrates including kinases and regulators of cellular trafficking. Moreover, we show that one of the candidates, AEG-1/MTDH/LYRIC, is directly phosphorylated by IKKβ on serine 298. We provide evidence that IKKβ-mediated AEG-1 phosphorylation is essential for IκBα degradation as well as NF-κB-dependent gene expression and cell proliferation, which correlate with cancer patient survival in vivo. PMID:25849741

  19. Electromagnetic wave propagation along T and Y-splitters composed of silicon nanorods, gold slots, and silica substrate

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Pala, Nezih; Golmohammadi, Saeed

    2015-05-01

    Silicon nanorods in arrays on a glass substrate that are situated through a gap between two gold slots have been utilized to design efficient long-range optical nanostructures as splitters to function at near infrared spectrum. Designing silicon arrays in T and Y-shape regimes, we examined the optical responses of the proposed devices during guiding of transverse and longitudinal electric modes (TE and LE-modes). Transmission loss factors, group velocity of guided waves, the ratio of transmitted power, and the decay length for both of the devices have been reported using numerical methods. We showed that the proposed structures have strong potentials to employ in designing photonic structures with lower ratio of energy extinction and low radiation losses. The overall length of the structures is 2.2 μm which verifies its compaction in comparison to analogous splitters that are designed based on DLSPPWs and nanoparticle-based waveguides devices. Proposed subwavelength optical power transportation mechanisms are highly compatible to employ in photonic integration circuit (PIC) systems.

  20. Exploring physical and chemical factors influencing the properties of recombinant prion protein and the real-time quaking-induced conversion (RT-QuIC) assay.

    PubMed

    Cheng, Keding; Sloan, Angela; Avery, Kristen M; Coulthart, Michael; Carpenter, Michael; Knox, J David

    2014-01-01

    Real-time quaking-induced conversion (RT-QuIC), a highly specific and sensitive assay able to detect low levels of the disease-inducing isoform of the prion protein (PrP(d)) in brain tissue biopsies and cerebral spinal fluid, has great potential to become a method for diagnosing prion disease ante mortem. In order to standardize the assay method for routine analysis, an understanding of how physical and chemical factors affect the stability of the recombinant prion protein (rPrP) substrate and the RT-QuIC assay's sensitivity, specificity, and reproducibility is required. In this study, using sporadic Creutzfeldt-Jakob Disease brain homogenate to seed the reactions and an in vitro-expressed recombinant prion protein, hamster rPrP, as the substrate, the following factors affecting the RT-QuIC assay were examined: salt and substrate concentrations, substrate storage, and pH. Results demonstrated that both the generation of the quality and quantities of rPrP substrate critical to the reaction, as well as the RT-QuIC reaction itself required strict adherence to specific physical and chemical conditions. Once optimized, the RT-QuIC assay was confirmed to be a very specific and sensitive assay method for sCJD detection. Findings in this study indicate that further optimization and standardization of RT-QuIC assay is required before it can be adopted as a routine diagnostic test.

  1. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R.; Polosky, Marc A.

    2007-10-30

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  2. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R [Albuquerque, NM; Polosky, Marc A [Tijeras, NM

    2009-12-15

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  3. Construction and performance of a high-temperature-superconductor composite bolometer

    NASA Technical Reports Server (NTRS)

    Brasunas, J. C.; Moseley, S. H.; Lakew, B.; Ono, R. H.; Mcdonald, D. G.

    1989-01-01

    A high-Tc superconducting bolometer has been constructed using a YBa2Cu3O(x) thin-film meander line 20 microns wide and 76,000 microns long, deposited on a SrTiO3 substrate. Radiation is absorbed by a thin film of Bi with well-characterized absorption properties deposited on a Si substrate in contact with the SrTiO3. At 1.8 Hz the measured bolometer response to a 500-K blackbody is 5.2 V/W (820 V/W extrapolated to dc). The impact of apparent nonohmic behavior at the transition is discussed, as are ways of reducing the observed 1/f noise. The response time is 32 s and is dominated by the heat capacity of the SrTiO3 substrate.

  4. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geandier, G.; Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette; LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse

    2010-10-15

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains usingmore » x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.« less

  5. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.

  6. Molecular Basis of Signaling Specificity of Insulin and IGF Receptors: Neglected Corners and Recent Advances

    PubMed Central

    Siddle, Kenneth

    2011-01-01

    Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of “metabolic” and “mitogenic” responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to “metabolic” and “mitogenic” responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in “metabolic” or “mitogenic” signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears to be the major determinant of whether responses to insulin and IGFs are perceived as “metabolic” or “mitogenic.” PMID:22649417

  7. An analytical model to predict and minimize the residual stress of laser cladding process

    NASA Astrophysics Data System (ADS)

    Tamanna, N.; Crouch, R.; Kabir, I. R.; Naher, S.

    2018-02-01

    Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses generate in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a one-dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.

  8. Effects of inorganic amendments (urea, gypsum) on seed germination and seedling recruitment of 20 native plant species used in dryland restoration

    NASA Astrophysics Data System (ADS)

    Bateman, Amber; E Erickson, Todd; Merritt, David J.; Muñoz-Rojas, Miriam

    2017-04-01

    Introduction Soil health and functionality are major determining factors for restoration of degraded arid and semi-arid ecosystems. These highly nutrient impoverished soil substrates with low water retention capabilities dictate plant growth and survival in these landscapes that are subject to variable rainfall event and high temperatures (Muñoz-Rojas et al., 2016). Anthropogenic disturbances derived from mining activities have contributed to the degradation of soil functionality and have altered plant-soil-water interactions. With unknown positive or negative rehabilitation outcomes, inorganic amendments in the form of urea and gypsum are commonly added to reconstructed soil substrates disturbed by mining to replenish soil nutrients (nitrogen) and improve soil water holding capacity to improve seedling establishment and survival. Methods Using existing protocols for amendment addition to soil substrates, two experiments assessed the effects of urea and gypsum at multiple doses in reconstructed soil substrates (topsoil (TS), waste (W) and, 50:50 blend of both materials (TW) to evaluate its effectiveness as a supplement to improve seed germination, seedling recruitment and plant growth. In the first experiment, 20 species native to the resource-rich biodiverse Pilbara region of Western Australia were grown in 30 °C glasshouse facilities under well-watered conditions for three weeks with seedling emergence scored daily. At the end of the trial, seedlings were harvested and biomass was assessed. In the second experiment, five of the original 20 species (e.g. Acacia bivenosa, Gossypium robinsonii, Eucalyptus gamophylla, Triodia wiseana and, Senna notabilis) were assessed for germination in amended soils by burying nylon sachets in the reconstructed substrates. After three weeks, the sachets were retrieved and seeds were assessed for germination (i.e. radicle emergence was evident). Results and Discussion Total emergence and biomass of seedlings was negatively affected by higher doses of gypsum and urea amendments. In the lower dose treatments, however, the total biomass of seedlings showed a positive effect for species from the Amaranthaceae. There was no apparent effect on species from the Fabaceae, Malvaeceae, Myrtaceae, and Poaceae families. Small doses of the amendments had a positive impact on the seed germination for three of the five evaluated species (Acacia bivenosa, Triodia wiseana and, Senna notabilis). Yet, despite the addition of soil amendments there was a high rate of mortality between the germination and emergence phases, a common occurrence in arid zone species subject to extreme environmental conditions (James et al., 2011). Seedling emergence of Acacia bivenosa and Triodia wiseana in TW and W substrates with low doses of urea achieved levels comparable to emergence in topsoil. Overall, responses to the inorganic amendments varied considerably across species and long-term field studies are required to assess plant responses in a restoration setting. Nevertheless, the findings of this suggest that the addition of these N-based inorganic amendments at low concentrations will benefit some plant species and improve arid zone restoration. References James JJ, Svejcar TJ, Rinella MJ. 2011. Demographic processes limiting seedling recruitment in arid grassland restoration. Journal of Applied Ecology, 48, 961-969 Muñoz-Rojas M, Erickson TE, Martini D, Dixon KW, Merritt DJ. 2016. Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration. SOIL, 2, 1-11, DOI: 10.5194/soil-2016-25

  9. Direct transfer of graphene onto flexible substrates.

    PubMed

    Martins, Luiz G P; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S; Kong, Jing; Araujo, Paulo T

    2013-10-29

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.

  10. Methods for the Determination of Rates of Glucose and Fatty Acid Oxidation in the Isolated Working Rat Heart

    PubMed Central

    Bakrania, Bhavisha; Granger, Joey P.; Harmancey, Romain

    2016-01-01

    The mammalian heart is a major consumer of ATP and requires a constant supply of energy substrates for contraction. Not surprisingly, alterations of myocardial metabolism have been linked to the development of contractile dysfunction and heart failure. Therefore, unraveling the link between metabolism and contraction should shed light on some of the mechanisms governing cardiac adaptation or maladaptation in disease states. The isolated working rat heart preparation can be used to follow, simultaneously and in real time, cardiac contractile function and flux of energy providing substrates into oxidative metabolic pathways. The present protocol aims to provide a detailed description of the methods used in the preparation and utilization of buffers for the quantitative measurement of the rates of oxidation for glucose and fatty acids, the main energy providing substrates of the heart. The methods used for sample analysis and data interpretation are also discussed. In brief, the technique is based on the supply of 14C- radiolabeled glucose and a 3H- radiolabeled long-chain fatty acid to an ex vivo beating heart via normothermic crystalloid perfusion. 14CO2 and 3H2O, end byproducts of the enzymatic reactions involved in the utilization of these energy providing substrates, are then quantitatively recovered from the coronary effluent. With knowledge of the specific activity of the radiolabeled substrates used, it is then possible to individually quantitate the flux of glucose and fatty acid in the oxidation pathways. Contractile function of the isolated heart can be determined in parallel with the appropriate recording equipment and directly correlated to metabolic flux values. The technique is extremely useful to study the metabolism/contraction relationship in response to various stress conditions such as alterations in pre and after load and ischemia, a drug or a circulating factor, or following the alteration in the expression of a gene product. PMID:27768055

  11. Control of stem cell fate and function by engineering physical microenvironments

    PubMed Central

    Kshitiz; Park, Jinseok; Kim, Peter; Helen, Wilda; Engler, Adam J; Levchenko, Andre; Kim, Deok-Ho

    2012-01-01

    The phenotypic expression and function of stem cells are regulated by their integrated response to variable microenvironmental cues, including growth factors and cytokines, matrix-mediated signals, and cell-cell interactions. Recently, growing evidence suggests that matrix-mediated signals include mechanical stimuli such as strain, shear stress, substrate rigidity and topography, and these stimuli have a more profound impact on stem cell phenotypes than had previously been recognized, e.g. self-renewal and differentiation through the control of gene transcription and signaling pathways. Using a variety of cell culture models enabled by micro and nanoscale technologies, we are beginning to systematically and quantitatively investigate the integrated response of cells to combinations of relevant mechanobiological stimuli. This paper reviews recent advances in engineering physical stimuli for stem cell mechanobiology and discusses how micro- and nanoscale engineered platforms can be used to control stem cell niches environment and regulate stem cell fate and function. PMID:23077731

  12. Neurobiological consequences of childhood trauma.

    PubMed

    Nemeroff, Charles B

    2004-01-01

    There is considerable evidence to suggest that adverse early-life experiences have a profound effect on the developing brain. Neurobiological changes that occur in response to untoward early-life stress can lead to lifelong psychiatric sequelae. Children who are exposed to sexual or physical abuse or the death of a parent are at higher risk for development of depressive and anxiety disorders later in life. Preclinical and clinical studies have shown that repeated early-life stress leads to alterations in central neurobiological systems, particularly in the corticotropin-releasing factor system, leading to increased responsiveness to stress. Clearly, exposure to early-life stressors leads to neurobiological changes that increase the risk of psychopathology in both children and adults. Identification of the neurobiological substrates that are affected by adverse experiences in early life should lead to the development of more effective treatments for these disorders. The preclinical and clinical studies evaluating the consequences of early-life stress are reviewed.

  13. Oxygen sensing and signaling.

    PubMed

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.

  14. The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants.

    PubMed

    Vicente, Jorge; Mendiondo, Guillermina M; Movahedi, Mahsa; Peirats-Llobet, Marta; Juan, Yu-Ting; Shen, Yu-Yen; Dambire, Charlene; Smart, Katherine; Rodriguez, Pedro L; Charng, Yee-Yung; Gray, Julie E; Holdsworth, Michael J

    2017-10-23

    Abiotic stresses impact negatively on plant growth, profoundly affecting yield and quality of crops. Although much is known about plant responses, very little is understood at the molecular level about the initial sensing of environmental stress. In plants, hypoxia (low oxygen, which occurs during flooding) is directly sensed by the Cys-Arg/N-end rule pathway of ubiquitin-mediated proteolysis, through oxygen-dependent degradation of group VII Ethylene Response Factor transcription factors (ERFVIIs) via amino-terminal (Nt-) cysteine [1, 2]. Using Arabidopsis (Arabidopsis thaliana) and barley (Hordeum vulgare), we show that the pathway regulates plant responses to multiple abiotic stresses. In Arabidopsis, genetic analyses revealed that response to these stresses is controlled by N-end rule regulation of ERFVII function. Oxygen sensing via the Cys-Arg/N-end rule in higher eukaryotes is linked through a single mechanism to nitric oxide (NO) sensing [3, 4]. In plants, the major mechanism of NO synthesis is via NITRATE REDUCTASE (NR), an enzyme of nitrogen assimilation [5]. Here, we identify a negative relationship between NR activity and NO levels and stabilization of an artificial Nt-Cys substrate and ERFVII function in response to environmental changes. Furthermore, we show that ERFVIIs enhance abiotic stress responses via physical and genetic interactions with the chromatin-remodeling ATPase BRAHMA. We propose that plants sense multiple abiotic stresses through the Cys-Arg/N-end rule pathway either directly (via oxygen sensing) or indirectly (via NO sensing downstream of NR activity). This single mechanism can therefore integrate environment and response to enhance plant survival. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors

    DOEpatents

    Liu, Ping [Denver, CO; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Lee, Se-Hee [Lakewood, CO

    2011-03-22

    An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

  16. Macroinvertebrate palaeo-communities from the Jurassic succession of Gebel Maghara (Sinai, Egypt)

    NASA Astrophysics Data System (ADS)

    Abdelhady, Ahmed Awad; Fürsich, Franz Theodor

    2014-09-01

    Macrobenthic palaeo-communities of the Middle and Upper Jurassic strata of G. Maghara, Egypt, were investigated to identify relationships with environmental parameters and to trace the temporal changes of the ecosystem associated with sea-level fluctuations. The quantitative analysis of a data matrix comprising 198 macrobenthic taxa in 138 samples collected from four sections identified nine associations and three assemblages, interpreted to be representative of their original environment. Non-Metric Multidimensional Scaling (NMDS) delineated the same degree of habitat partitioning as hierarchical clusters with very little overlap. Detrended Correspondence Analysis (DCA) identified water depth as the primary environmental gradient controlling the distribution of the fauna, while Axis 2 reflects substrate consistency. Community structure is related to the various ramp environments. Based on diversities, the associations and assemblages have been divided into two major groups, low-stress polyspecific associations and high-stress paucispecific associations. The low-stress polyspecific associations were interpreted to represent two different habitats, a high-energy, firm substrate habitat, in which epifaunal bivalves and brachiopods in addition to solitary corals dominated during advanced stages of transgression, and a low-energy, soft substrate habitat dominated by infaunal bivalves during the maximum flooding. The high-stress paucispecific associations are dominated by one or few taxa and occurred (1) in an oligotrophic setting that developed during episodes of sediment starvation in restricted inner ramp environments or during early transgression, (2) in a setting characterized by high sedimentation rates which developed during advanced regression, (3) in a distal prodelta setting with soft substrate and dysoxia during sea-level lowstand, and (4) in a high-energy shoal environment during peak regression. A combined stress involving a shortage in food supply, episodic dysoxia, in addition to a soupy substrate may have developed during maximum flooding episodes. Hydrodynamic conditions were most likely the main factor controlling the benthic communities. Hydrodynamic conditions influenced the substrate type, redistributed nutrients and were responsible for stratified water masses and hypoxia. Animal-sediment relationships in addition to replacement between bivalves and brachiopods are also discussed. Middle ramp settings were found to provide the best conditions for macrobenthos.

  17. Effects of long-term nutrient additions on Arctic tundra, stream, and lake ecosystems: beyond NPP.

    PubMed

    Gough, Laura; Bettez, Neil D; Slavik, Karie A; Bowden, William B; Giblin, Anne E; Kling, George W; Laundre, James A; Shaver, Gaius R

    2016-11-01

    Primary producers form the base of food webs but also affect other ecosystem characteristics, such as habitat structure, light availability, and microclimate. Here, we examine changes caused by 5-30+ years of nutrient addition and resulting increases in net primary productivity (NPP) in tundra, streams, and lakes in northern Alaska. The Arctic provides an important opportunity to examine how ecosystems characterized by low diversity and low productivity respond to release from nutrient limitation. We review how responses of algae and plants affect light availability, perennial biotic structures available for consumers, oxygen levels, and temperature. Sometimes, responses were similar across all three ecosystems; e.g., increased NPP significantly reduced light to the substrate following fertilization. Perennial biotic structures increased in tundra and streams but not in lakes, and provided important new habitat niches for consumers as well as other producers. Oxygen and temperature responses also differed. Life history traits (e.g., longevity) of the primary producers along with the fate of detritus drove the responses and recovery. As global change persists and nutrients become more available in the Arctic and elsewhere, incorporating these factors as response variables will enable better prediction of ecosystem changes and feedbacks in this biome and others.

  18. A specific colorimetric assay for measuring transglutaminase 1 and factor XIII activities.

    PubMed

    Hitomi, Kiyotaka; Kitamura, Miyako; Alea, Mileidys Perez; Ceylan, Ismail; Thomas, Vincent; El Alaoui, Saïd

    2009-11-15

    Transglutaminase (TGase) is an enzyme that catalyzes both isopeptide cross-linking and incorporation of primary amines into proteins. Eight TGases have been identified in humans, and each of these TGases has a unique tissue distribution and physiological significance. Although several assays for TGase enzymatic activity have been reported, it has been difficult to establish an assay for discriminating each of these different TGase activities. Using a random peptide library, we recently identified the preferred substrate sequences for three major TGases: TGase 1, TGase 2, and factor XIII. In this study, we use these substrates in specific tests for measuring the activities of TGase 1 and factor XIII.

  19. Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1995-01-01

    The influence of selected environmental factors on microbial TNT mineralization in soils collected from a TNT-contaminated site at Weldon Spring, MO, was examined using uniformly ring-labeled [14C]TNT. Microbial TNT mineralization was significantly inhibited by the addition of cellobiose and syringate. This response suggests that the indigenous microorganisms are capable of metabolizing TNT but preferentially utilize less recalcitrant substrates when available. The observed inhibition of TNT mineralization by TNT concentrations higher than 100 ??mol/kg of soil and by dry soil conditions suggests that toxic inhibition of microbial activity at high TNT concentrations and the periodic drying of these soils have contributed to the long-term persistence of TNT at Weldon Spring. In comparison to aerobic microcosms, mineralization was inhibited in anaerobic microcosms and in microcosms with a headspace of air amended with oxygen, suggesting that a mosaic of aerobic and anaerobic conditions may optimize TNT degradation at this site.

  20. Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome

    USDA-ARS?s Scientific Manuscript database

    We sought to determine whether a low fermentable substrate diet (LFSD) decreases abdominal pain frequency in children with irritable bowel syndrome (IBS) and to identify potential microbial factors related to diet efficacy. Pain symptoms, stooling characteristics, breath hydrogen and methane, whole ...

  1. Mapping protease substrates using a biotinylated phage substrate library.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholle, M. D.; Kriplani, U.; Pabon, A.

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobicmore » is the scissile bond.« less

  2. Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J

    2013-08-13

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a substrate having a crystalline surface with a known lattice parameter (a). The method further includes growing a crystalline semiconductor layer on the crystalline substrate surface by coincident site lattice matched epitaxy, without any buffer layer between the crystalline semiconductor layer and the crystalline surface of the substrate. The crystalline semiconductor layer will be prepared to have a lattice parameter (a') that is related to the substrate lattice parameter (a). The lattice parameter (a') maybe related to the lattice parameter (a) by a scaling factor derived from a geometric relationship between the respective crystal lattices.

  3. The IRS-1 signaling system.

    PubMed

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  4. The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

    USGS Publications Warehouse

    Munn, M.D.; Waite, I.R.; Larsen, D.P.; Herlihy, A.T.

    2009-01-01

    The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 taxa were collected with the highest richness associated with ecoregions dominated by streams with coarse substrate (19-29 taxa per site). Lowest richness (seven to eight taxa per site) was associated with ecoregions dominated by fine-grain substrate. Principle component analysis (PCA) on reach-scale habitat separated the six ecoregions into those in high-gradient mountainous areas (Coast Range, Cascades, and Southern Rockies) and those in lower-gradient ecoregions (Central Great Plains and Central California Valley). Nonmetric multidimensional scaling (NMS) models performed best in ecoregions dominated by coarse-grain substrate and high taxa richness, along with coarse-grain substrates sites combined from multiple ecoregions regardless of location. In contrast, ecoregions or site combinations dominated by fine-grain substrate had poor model performance (high stress). Four NMS models showed that geographic location (i.e. latitude and longitude) was important for: (1) all ecoregions combined, (2) all sites dominated by coarse-grain sub strate combined, (3) Cascades Ecoregion, and (4) Columbia Ecoregion. Local factors (i.e. substrate or water temperature) seem to be overriding factors controlling invertebrate composition across the West, regardless of geographic location. ?? The Author(s) 2008.

  5. Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and In Vitro.

    PubMed

    Parrell, Daniel; Zhang, Yang; Olenic, Sandra; Kroos, Lee

    2017-10-01

    RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli , we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli , including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His 6 -MBP-RsiW(73-118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His 6 -MBP-FtsL(23-117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL. IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are typically inferred from genetic studies in the native bacterium. Evidence for direct effects has come sometimes from coexpression of the enzyme and potential substrate in a heterologous host and rarely from biochemical reconstitution of cleavage in vitro We applied these two approaches to the B. subtilis enzyme RasP and its proposed substrates RsiW and FtsL. We discovered potential pitfalls and solutions in heterologous coexpression experiments in E. coli , providing evidence that both substrates are cleaved by RasP in vivo but, surprisingly, that only RsiW was cleaved in vitro , suggesting that FtsL has an additional requirement. Copyright © 2017 American Society for Microbiology.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houtz, Robert, L.

    This project focused on a molecular and biochemical characterization of the protein methyltransferases responsible for methylation of the LS and SS in Rubisco, and the associated functional consequences accompanying these modifications. Our results provided some of the most informative structural and mechanistic understandings of SET domain protein methyltransferases. These results also positioned us to provide the first unambiguous assignment of the kinetic reaction mechanism for SET-domain protein methyltransferases, and to design and engineer an alternative substrate for Rubisco LSMT, enabling substrate specificity and functional significance studies. We demonstrated that the minimal substrate recognized by Rubisco LSMT is free lysine asmore » well as monomethyllysine, an observation corroborated both by structural analyses as well as enzymatic activity and subsequent product distribution analyses. Ternary complexes between Rubisco LSMT and free lysine compared to complexes with monomethyllysine demonstrated that the structural basis for multiple methyl group additions is a consequence of hydrogen-bond driven spatial shifts in the amino group of Lys-14, which maintains the direct in-line geometry necessary for SN2 nucleophilic attack. The structural observations are also consistent with the previous proposal that the multiplicity of methyl group additions takes place through a processive mechanism, with successive methyl group additions to an enzyme protein complex which does not disassociate prior to the formation of trimethyllysine. This mechanism has important implications, since the regulation of gene expression by SET domain histone methyltransferases is not only dependent on site-specific lysine methylation, but also the degree of methylation. We examined the kinetic reaction mechanism for three different types of SET domain protein methyltransferases, each under conditions supporting mono-, di-, or trimethyllysine formation corroborated by product analyses. Additionally, the tight initial binding of Rubisco LSMT to Rubisco also allowed us to design a novel immobilized complex between Rubisco and Rubisco LSMT, which allowed for an unambiguous demonstration of the requirement for trimethyllysine formation prior to disassociation of the Rubisco LSMT:Rubisco complex, and therefore proof of the processive mechanism for methyl group transfer. These kinetic studies also demonstrated that an important factor has been overlooked in all kinetic analyses of SET domain protein methyltransferases reported to date. This factor is the influence of the low turnover number for SET domain protein methyltransferases and how, relative to the time-frame of kinetic enzyme assays, this can generate changes in kinetic profiles shifting reciprocal plot patterns from random/ordered bi-bi to the real kinetic reaction mechanism plots of ping-pong. Although the ternary complexes of Rubisco LSMT with S-Adenosylhomocysteine and lysine and monomethyllysine were informative in regard to reaction mechanism, they were not helpful in identifying the mechanism used by Rubisco LSMT for determining substrate specificity. We were unsuccessful at obtaining ternary complexes of Rubisco LSMT with bound synthetic polypeptide substrates, as has been reported for several histone methyltransferases. However, we were able to model a polypeptide sequence corresponding to the N-terminal region of the LS of Rubisco into the apparent substrate binding cleft in Rubisco LSMT. Knowledge of the determinants of polypeptide substrate specificity are important for identifying possible alternate substrates, as well as the possibility of generating more desirable substrates amenable to site-directed mutagenesis experiments unlike Rubisco. We determined that Rubisco LSMT is capable of methylating synthetic polypeptide mimics of the N-terminal region of the LS, both free as well as conjugated to keyhole limpet hemacyanin, but with considerable less efficiency than intact holoenzyme.« less

  7. Some Surprising Implications of NMR-directed Simulations of Substrate Recognition and Binding by Cytochrome P450cam (CYP101A1).

    PubMed

    Asciutto, Eliana K; Pochapsky, Thomas C

    2018-04-27

    Cytochrome P450 cam (CYP101A1) catalyzes the stereospecific 5-exo hydroxylation of d-camphor by molecular oxygen. Previously, residual dipolar couplings measured for backbone amide 1 H- 15 N correlations in both substrate-free and bound forms of CYP101A1 were used as restraints in soft annealing molecular dynamic simulations in order to identify average conformations of the enzyme with and without substrate bound. Multiple substrate-dependent conformational changes remote from the enzyme active site were identified, and site-directed mutagenesis and activity assays confirmed the importance of these changes in substrate recognition. The current work makes use of perturbation response scanning (PRS) and umbrella sampling molecular dynamic of the residual dipolar coupling-derived CYP101A1 structures to probe the roles of remote structural features in enforcing the regio- and stereospecific nature of the hydroxylation reaction catalyzed by CYP101A1. An improper dihedral angle Ψ was defined and used to maintain substrate orientation in the CYP101A1 active site, and it was observed that different values of Ψ result in different PRS response maps. Umbrella sampling methods show that the free energy of the system is sensitive to Ψ, and bound substrate forms an important mechanical link in the transmission of mechanical coupling through the enzyme structure. Finally, a qualitative approach to interpreting PRS maps in terms of the roles of secondary structural features is proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  9. The Structure and Specificity of the Type III Secretion System Effector NleC Suggest a DNA Mimicry Mechanism of Substrate Recognition

    PubMed Central

    2015-01-01

    Many pathogenic bacteria utilize the type III secretion system (T3SS) to translocate effector proteins directly into host cells, facilitating colonization. In enterohemmorhagic Escherichia coli (EHEC), a subset of T3SS effectors is essential for suppression of the inflammatory response in hosts, including humans. Identified as a zinc protease that cleaves NF-κB transcription factors, NleC is one such effector. Here, we investigate NleC substrate specificity, showing that four residues around the cleavage site in the DNA-binding loop of the NF-κB subunit RelA strongly influence the cleavage rate. Class I NF-κB subunit p50 is cleaved at a reduced rate consistent with conservation of only three of these four residues. However, peptides containing 10 residues on each side of the scissile bond were not efficiently cleaved by NleC, indicating that elements distal from the cleavage site are also important for substrate recognition. We present the crystal structure of NleC and show that it mimics DNA structurally and electrostatically. Consistent with this model, mutation of phosphate-mimicking residues in NleC reduces the level of RelA cleavage. We propose that global recognition of NF-κB subunits by DNA mimicry combined with a high sequence selectivity for the cleavage site results in exquisite NleC substrate specificity. The structure also shows that despite undetectable similarity of its sequence to those of other Zn2+ proteases beyond its conserved HExxH Zn2+-binding motif, NleC is a member of the Zincin protease superfamily, albeit divergent from its structural homologues. In particular, NleC displays a modified Ψ-loop motif that may be important for folding and refolding requirements implicit in T3SS translocation. PMID:25040221

  10. Breaking conceptual locks in modelling root absorption of nutrients: reopening the thermodynamic viewpoint of ion transport across the root

    PubMed Central

    Le Deunff, Erwan; Malagoli, Philippe

    2014-01-01

    Background The top-down analysis of nitrate influx isotherms through the Enzyme-Substrate interpretation has not withstood recent molecular and histochemical analyses of nitrate transporters. Indeed, at least four families of nitrate transporters operating at both high and/or low external nitrate concentrations, and which are located in series and/or parallel in the different cellular layers of the mature root, are involved in nitrate uptake. Accordingly, the top-down analysis of the root catalytic structure for ion transport from the Enzyme-Substrate interpretation of nitrate influx isotherms is inadequate. Moreover, the use of the Enzyme-Substrate velocity equation as a single reference in agronomic models is not suitable in its formalism to account for variations in N uptake under fluctuating environmental conditions. Therefore, a conceptual paradigm shift is required to improve the mechanistic modelling of N uptake in agronomic models. Scope An alternative formalism, the Flow-Force theory, was proposed in the 1970s to describe ion isotherms based upon biophysical ‘flows and forces’ relationships of non-equilibrium thermodynamics. This interpretation describes, with macroscopic parameters, the patterns of N uptake provided by a biological system such as roots. In contrast to the Enzyme-Substrate interpretation, this approach does not claim to represent molecular characteristics. Here it is shown that it is possible to combine the Flow-Force formalism with polynomial responses of nitrate influx rate induced by climatic and in planta factors in relation to nitrate availability. Conclusions Application of the Flow-Force formalism allows nitrate uptake to be modelled in a more realistic manner, and allows scaling-up in time and space of the regulation of nitrate uptake across the plant growth cycle. PMID:25425406

  11. Solution of non-steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Senthamarai, R.; Jana Ranjani, R.

    2018-04-01

    In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.

  12. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase-IRF3 transcription factor interaction and signaling required for interferon induction.

    PubMed

    Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin

    2017-10-06

    Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Ten Ghz YBa2Cu3O(7-Delta) Superconducting Ring Resonators on NdGaO3 Substrates

    NASA Technical Reports Server (NTRS)

    To, H. Y.; Valco, G. J.; Bhasin, K. B.

    1993-01-01

    YBa2Cu3O(7-delta) thin films were formed on NdGaO3 substrates by laser ablation. Critical temperatures greater than 89 K and critical current densities exceeding 2 x 10(exp 8) Acm(sub -2) at 77 K were obtained. The microwave performance of films patterned into microstrip ring resonators with gold ground planes was measured. An unloaded quality factor six times larger than that of a gold resonator of identical geometry was achieved. The unloaded quality factor decreased below 70 K for both the superconducting and gold resonators due to increasing dielectric losses in the substrate. The temperature dependence of the loss tangent of NdGaO3 was extracted from the measurements.

  14. Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response.

    PubMed

    Kaladhar, K; Renz, H; Sharma, C P

    2015-04-01

    Exploring drug molecules for material design, to harness concepts of nano-anisotropy and ligand-receptor interactions, are rather elusive. The aim of this study is to demonstrate the bottom-up design of a single-step and bio-interactive polymeric surface coating, based on drug based pendant polymer. This can be applied on to polystyrene (PS) substrates, to suppress macrophage adhesion and spreading. The drug molecule is used in this coating for two purposes. The first one is drug as a "pendant" group, to produce nano-anisotropic properties that can enable adhesion of the coatings to the substrate. The second purpose is to use the drug as a "ligand", to produce ligand-receptor interaction, between the bound ligand and receptors of albumin, to develop a self-albumin coat over the surface, by the preferential binding of albumin in biological environment, to reduce macrophage adhesion. Our in silico studies show that, diclofenac (DIC) is an ideal drug based "ligand" for albumin. This can also act as a "pendant" group with planar aryl groups. The combination of these two factors can help to harness, both nano-anisotropic properties and biological functions to the polymeric coating. Further, the drug, diclofenac (DIC) is immobilized to the polyvinyl alcohol (PVA), to develop the pendant polymer (PVA-DIC). The interaction of bound DIC with the albumin is a ligand-receptor based interaction, as per the studies by circular dichroism, differential scanning calorimetry, and SDS-PAGE. The non-polar π-π* interactions are regulating; the interactions between PVA bound DIC-DIC interactions, leading to "nano-anisotropic condensation" to form distinct "nano-anisotropic segments" inside the polymeric coating. This is evident from, the thermo-responsiveness and uniform size of nanoparticles, as well as regular roughness in the surface coating, with similar properties as that of nanoparticles. In addition, the hydrophobic DIC-polystyrene (PS) interactions, between the PVA-DIC coating and PS-substrate produce improved coating stability. Subsequently, the PVA-DIC coated substrate has the maximum capacity to suppress the macrophage (RAW 264.7 cell line) adhesion and spreading, which is partly due to wavy-surface topography of hydrophilic PVA and preferential albumin binding capacity of PVA bound DIC. Our result shows that, such surfaces suppress the macrophages, even under stimulation with lipopolysaccharide (LPS). The modified tissue culture plates can be used as an in vitro tool, to study the macrophage response under low spatial cues. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Patterns of intracellular calcium oscillations in horse oocytes fertilized by intracytoplasmic sperm injection: possible explanations for the low success of this assisted reproduction technique in the horse.

    PubMed

    Bedford, Sylvia J; Kurokawa, Manabu; Hinrichs, Katrin; Fissore, Rafael A

    2004-04-01

    In all species studied, fertilization induces intracellular Ca2+ ([Ca2+]i) oscillations required for oocyte activation and embryonic development. This species-specific pattern has not been studied in the equine, partly due to the difficulties linked to in vitro fertilization in this species. Therefore, the objective of this study was to use intracytoplasmic sperm injection (ICSI) to investigate fertilization-induced [Ca2+]i signaling and, possibly, ascertain problems linked to the success of this technology in the horse. In vivo- and in vitro-matured mare oocytes were injected with a single motile stallion sperm. Few oocytes displayed [Ca2+]i responses regardless of oocyte source and we hypothesized that this may result from insufficient release of the sperm-borne active molecule (sperm factor) into the oocyte. However, permeabilization of sperm membranes with Triton-X or by sonication did not alleviate the deficient [Ca2+]i responses in mare oocytes. Thus, we hypothesized that a step downstream of release, possibly required for sperm factor function, is not appropriately accomplished in horse oocytes. To test this, ICSI-fertilized horse oocytes were fused to unfertilized mouse oocytes, which are known to respond with [Ca2+]i oscillations to injection of stallion sperm, and [Ca2+]i monitoring was performed. Such pairs consistently displayed [Ca2+]i responses demonstrating that the sperm factor is appropriately released into the ooplasm of horse oocytes, but that these are unable to activate and/or provide the appropriate substrate that is required for the sperm factor delivered by ICSI to initiate oscillations. These findings may have implications to improve the success of ICSI in the equine and other livestock species.

  16. Inhibition of neutrophil migration by aggregated immunoglobulin attached to micropore membranes.

    PubMed Central

    Kemp, A S; Brown, S

    1980-01-01

    The effect of substrate-bound immunoglobulin on neutrophil migration was examined. Immunoglobulin aggregates bound to micropore membranes inhibited the neutrophil response to a chemotactic stimulus. This inhibition was reversed by the presence of aggregates in suspension suggesting competition between substrate-bound and free aggregates for neutrophil surface binding sites. The immobilization of neutrophils by substrate-bound aggregated immunoglobulin suggests a mechanism for the accumulation of neutrophils at sites of immune complex deposition and tissue-bound antibodies in vivo. PMID:7380477

  17. Controlling the Electronic Structure of Graphene Using Surface-adsorbate Interactions

    DTIC Science & Technology

    2015-07-21

    substrate via n doping, with or without intercalation, suggests that the graphene-to-substrate interaction could be controlled dynamically. DOI : 10.1103...which form a Dirac cone and are degenerate at the Fermi level [1]. These states change in response to atoms adsorbed on top of graphene (doping) or when...coupling to the substrate is strong. In the case of graphene on metals, the energy of the Dirac cone can change as a result of interfacial doping, or

  18. Substrate texture affects female cricket walking response to male calling song

    NASA Astrophysics Data System (ADS)

    Sarmiento-Ponce, E. J.; Sutcliffe, M. P. F.; Hedwig, B.

    2018-03-01

    Field crickets are extensively used as a model organism to study female phonotactic walking behaviour, i.e. their attraction to the male calling song. Laboratory-based phonotaxis experiments generally rely on arena or trackball-based settings; however, no attention has been paid to the effect of substrate texture on the response. Here, we tested phonotaxis in female Gryllus bimaculatus, walking on trackballs machined from methyl-methacrylate foam with different cell sizes. Surface height variations of the trackballs, due to the cellular composition of the material, were measured with profilometry and characterized as smooth, medium or rough, with roughness amplitudes of 7.3, 16 and 180 µm. Female phonotaxis was best on a rough and medium trackball surface, a smooth surface resulted in a significant lower phonotactic response. Claws of the cricket foot were crucial for effective walking. Females insert their claws into the surface pores to allow mechanical interlocking with the substrate texture and a high degree of attachment, which cannot be established on smooth surfaces. These findings provide insight to the biomechanical basis of insect walking and may inform behavioural studies that the surface texture on which walking insects are tested is crucial for the resulting behavioural response.

  19. Metabolic Inflexibility in Substrate Use Is Present in African-American But Not Caucasian Healthy, Premenopausal, Nondiabetic Women

    PubMed Central

    Berk, Evan S.; Kovera, Albert J.; Boozer, Carol N.; Pi-Sunyer, F. Xavier; Albu, Jeanine B.

    2009-01-01

    Context There is an increased prevalence of obesity and insulin resistance in African-American compared with Caucasian females. Metabolic inflexibility (MI) is the inability to switch the use of lipids and carbohydrates in the peripheral tissue (i.e. muscle) based upon substrate availability. Objective We examined whether MI exists in African-American females. Main Outcome Measures and Design We measured substrate use differences during eucaloric, macronutrient-manipulated diets [high fat (50% fat, 35% carbohydrate, 15% protein) vs. low fat (30% fat, 55% carbohydrate, 15% protein)] between Caucasian and African-American women. We also compared differences in substrate use in response to insulin infusion during two-step pancreatic-euglycemic clamps and epinephrine infusion during lipolysis studies. In each study, similar groups of Caucasian and African-American women were compared. Results Caucasians had significantly higher fat oxidation (FO) (P = 0.01) and lower carbohydrate oxidation (P < 0.01) during the high-fat vs. low-fat diet, whereas no significant differences were observed in African-Americans. The African-American women also failed to significantly suppress FO during the second step of the pancreatic-euglycemic clamp despite a doubling of their fasting plasma insulin and failed to increase their FO or decrease their carbohydrate oxidation in response to epinephrine infusion as much as Caucasian women did. The response of free fatty acid turnover rates to insulin and epinephrine stimulation was similar between races. Conclusion The impaired substrate use observed in African-American women during these three studies demonstrates the existence of MI and may contribute to their greater prevalence of obesity and insulin resistance. PMID:16868062

  20. Wrinkling of graphene membranes supported by silica nanoparticles on substrates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mahito; Cullen, William; Fuhrer, Michael; Einstein, Theodore; Department of Physics, University of Maryland Team

    2011-03-01

    The challenging endeavor of modulating the morphology of graphene via a patterned substrate to produce a controlled deformation has great potential importance for strain engineering the electronic properties of graphene. An essential step in this direction is to understand the response of graphene to substrate features of known geometry. Here we employ silica nanoparticles with a diameter of 10-100 nm to uniformly decorate Si O2 and mica substrates before depositing graphene, to promote nanoscale modulation of graphene geometry. The morphology of graphene on this modified substrate is then characterized by atomic force spectroscopy. We find that graphene on the substrate is locally raised by the supporting nanoparticles, and wrinkling propagates radially from the protrusions to form a ridge network which links the protrusions. We discuss the dependence of the wrinkled morphology on nanoparticle diameter and graphene thickness in terms of graphene elasticity and adhesion energy. Supported by NSF-MRSEC, Grant DMR 05-20471

  1. Design of a Selective Substrate and Activity Based Probe for Human Neutrophil Serine Protease 4

    PubMed Central

    Kasperkiewicz, Paulina; Poreba, Marcin; Snipas, Scott J.; Lin, S. Jack; Kirchhofer, Daniel; Salvesen, Guy S.; Drag, Marcin

    2015-01-01

    Human neutrophil serine protease 4 (NSP4), also known as PRSS57, is a recently discovered fourth member of the neutrophil serine proteases family. Although its biological function is not precisely defined, it is suggested to regulate neutrophil response and innate immune reactions. To create optimal substrates and visualization probes for NSP4 that distinguish it from other NSPs we have employed a Hybrid Combinatorial Substrate Library approach that utilizes natural and unnatural amino acids to explore protease subsite preferences. Library results were validated by synthesizing individual substrates, leading to the identification of an optimal substrate peptide. This substrate was converted to a covalent diphenyl phosphonate probe with an embedded biotin tag. This probe demonstrated high inhibitory activity and stringent specificity and may be suitable for visualizing NSP4 in the background of other NSPs. PMID:26172376

  2. Micro environmental sensing device

    DOEpatents

    Polosky, Marc A.; Lukens, Laurance L.

    2006-05-02

    A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.

  3. Sensitivity of Crustaceans to Substrate-Borne Vibration.

    PubMed

    Roberts, Louise; Breithaupt, Thomas

    2016-01-01

    There is increasing interest in the responsiveness of crustaceans to vibrations, especially in the context of marine developments where techniques such as pile driving create strong vibrations that are readily transmitted through the seabed. Experiments were undertaken under controlled conditions to investigate the sensitivity of unconditioned crustaceans to substrate-borne vibration. The subjects were exposed to a range of frequencies and amplitudes using the staircase method of presentation to determine the thresholds of response. Behavior varied according to the strength of the stimuli and included bursts of movement and rapid bouts of movement.

  4. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR

    PubMed Central

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E.; Hornung, Veit

    2016-01-01

    ABSTRACT Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we demonstrate that NSs requires E3 ubiquitin ligase complexes of the SCF (Skp1, Cul1, F-box protein) type to destroy PKR. SCF-type complexes can engage variant ubiquitination substrate recognition subunits, and we found the F-box proteins FBXW11 and β-TRCP1 to be relevant for the action of NSs against PKR. Thus, we identified the host cell factors that are critically needed by Rift Valley fever virus to uphold its replication against the potent antiviral kinase PKR. PMID:27122577

  5. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    PubMed

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  6. The plastid and mitochondrial peptidase network in Arabidopsis thaliana: a foundation for testing genetic interactions and functions in organellar proteostasis

    USDA-ARS?s Scientific Manuscript database

    Plant plastids and mitochondria have dynamic proteomes. To maintain their protein homeostasis, a proteostasis network containing protein chaperones, peptidases and their substrate recognition factors exists, but many peptidases, their functional connections and substrates are poorly characterized. T...

  7. IR visible sum-frequency vibrational spectroscopy of Biphenyl-3 methylene thiol monolayer on gold and silver: effect of the visible wavelength on the SFG spectrum

    NASA Astrophysics Data System (ADS)

    Humbert, C.; Dreesen, L.; Mani, A. A.; Caudano, Y.; Lemaire, J.-J.; Thiry, P. A.; Peremans, A.

    2002-04-01

    We measured IR-visible sum-frequency generation spectra of CH 3-(C 6H 4) 2-(CH 2) 3-S-H (Biphenyl-3) self-assembled monolayers on a silver and a gold substrate. For the latter substrate, we observed different interference patterns between the resonant signal of the CH vibration and the non-resonant contribution of the substrate as a function of the visible beam wavelength. The non-linear response of the gold substrate is enhanced around 480 nm corresponding to the s-d interband transition. Such effect is not observed for the silver substrate the interband transition of which is located out of the investigated visible spectral range of 450-700 nm.

  8. Detecting low levels of radionuclides in fluids

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  9. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP's efficacy as a matrix-bound angiogenic factor that directs endothelial cell proliferation and migration. These findings suggest that QKCMP can be used to enhance microvasculature formation during wound healing as well as to promote spatially controlled microvasculature for tissue engineering applications.

  10. Chemically attached gold nanoparticle-carbon nanotube hybrids for highly sensitive SERS substrate

    NASA Astrophysics Data System (ADS)

    Beqa, Lule; Singh, Anant Kumar; Fan, Zheng; Senapati, Dulal; Ray, Paresh Chandra

    2011-08-01

    Surface-enhanced Raman spectroscopy (SERS) has been shown as one of the most powerful analytical tool with high sensitivity. In this manuscript, we report the chemical design of SERS substrate, based on gold nanoparticles of different shapes-decorated with carbon nanotube with an enhancement factor of 7.5 × 1010. Shape dependent result shows that popcorn shape gold nanoparticle decorated SWCNT is the best choice for SERS substrate due to the existence of 'lightning rod effect' through several sharp edges or corners. Our results provide a good approach to develop highly sensitive SERS substrates and can help to improve the fundamental understanding of SERS phenomena.

  11. Using copper substrate to enhance the thermal conductivity of top-emission organic light-emitting diodes for improving the luminance efficiency and lifetime

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Sheng; Wang, Shun-Hsi; Chen, Chuan-Hung; Cheng, Chien-Lung; Liao, Teh-Chao

    2009-12-01

    The influence of heat dissipation on the performances of organic light-emitting diode (OLED) is investigated by measuring junction temperature and by calculating the rate of heat flow. The calculated rate of heat flow reveals that the key factors include the thermal conductivity, the substrate thickness, and the UV glue. Moreover, the use of copper substrate can effectively dissipate the joule heat, which then reduces the temperature gradient. Finally, it is shown that the use of a high thermal conductivity thinner substrate can enhance the thermal conductivity of OLED and the luminance efficiency as well.

  12. Spin transport studies in encapsulated CVD graphene

    NASA Astrophysics Data System (ADS)

    Avsar, Ahmet; You Tan, Jun; Ho, Yuda; Koon, Gavin; Oezyilmaz, Barbaros

    2013-03-01

    Spin transport studies in exfoliated graphene on SiO2/Si substrates have shown spin relaxation times that are orders of magnitude shorter than the theoretical predictions. Similar to the charge transport case, the underlying substrate is expected to be the limiting factor. The recent work Zomer, P. J. et al. shows that spin transport over lengths up to 20um is possible in high mobility exfoliated graphene devices on boron nitride (BN) substrates. Here we discuss our initial attempts to repeat such spin transport experiments with CVD graphene on BN substrates. The effect of encapsulation of such devices with an extra BN layer will be also discussed.

  13. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates

    PubMed Central

    Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971

  14. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response

    PubMed Central

    Kumar, Akhilesh; Birnbaum, Michael D; Patel, Devang M; Morgan, William M; Singh, Jayanti; Barrientos, Antoni; Zhang, Fangliang

    2016-01-01

    Arginyltransferase 1 (Ate1) mediates protein arginylation, a poorly understood protein posttranslational modification (PTM) in eukaryotic cells. Previous evidence suggest a potential involvement of arginylation in stress response and this PTM was traditionally considered anti-apoptotic based on the studies of individual substrates. However, here we found that arginylation promotes cell death and/or growth arrest, depending on the nature and intensity of the stressing factor. Specifically, in yeast, mouse and human cells, deletion or downregulation of the ATE1 gene disrupts typical stress responses by bypassing growth arrest and suppressing cell death events in the presence of disease-related stressing factors, including oxidative, heat, and osmotic stresses, as well as the exposure to heavy metals or radiation. Conversely, in wild-type cells responding to stress, there is an increase of cellular Ate1 protein level and arginylation activity. Furthermore, the increase of Ate1 protein directly promotes cell death in a manner dependent on its arginylation activity. Finally, we found Ate1 to be required to suppress mutation frequency in yeast and mammalian cells during DNA-damaging conditions such as ultraviolet irradiation. Our study clarifies the role of Ate1/arginylation in stress response and provides a new mechanism to explain the link between Ate1 and a variety of diseases including cancer. This is also the first example that the modulation of the global level of a PTM is capable of affecting DNA mutagenesis. PMID:27685622

  15. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat.

    PubMed

    Huang, Xian; Liu, Yuhao; Chen, Kaile; Shin, Woo-Jung; Lu, Ching-Jui; Kong, Gil-Woo; Patnaik, Dwipayan; Lee, Sang-Heon; Cortes, Jonathan Fajardo; Rogers, John A

    2014-08-13

    This paper introduces materials and architectures for ultrathin, stretchable wireless sensors that mount on functional elastomeric substrates for epidermal analysis of biofluids. Measurement of the volume and chemical properties of sweat via dielectric detection and colorimetry demonstrates some capabilities. Here, inductively coupled sensors consisting of LC resonators with capacitive electrodes show systematic responses to sweat collected in microporous substrates. Interrogation occurs through external coils placed in physical proximity to the devices. The substrates allow spontaneous sweat collection through capillary forces, without the need for complex microfluidic handling systems. Furthermore, colorimetric measurement modes are possible in the same system by introducing indicator compounds into the depths of the substrates, for sensing specific components (OH(-) , H(+) , Cu(+) , and Fe(2+) ) in the sweat. The complete devices offer Young's moduli that are similar to skin, thus allowing highly effective and reliable skin integration without external fixtures. Experimental results demonstrate volumetric measurement of sweat with an accuracy of 0.06 μL/mm(2) with good stability and low drift. Colorimetric responses to pH and concentrations of various ions provide capabilities relevant to analysis of sweat. Similar materials and device designs can be used in monitoring other body fluids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs

    PubMed Central

    Blachly, Patrick G.; de Oliveira, César A. F.; Williams, Sarah L.; McCammon, J. Andrew

    2013-01-01

    The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts. PMID:24367248

  17. Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films.

    PubMed

    Wang, Zhihong; Lau, Gih Keong; Zhu, Weiguang; Chao, Chen

    2006-01-01

    This paper presents both theoretical and numerical analyses of the piezoelectric and dielectric responses of a highly idealized film-on-substrate system, namely, a polarized ferroelectric film perfectly bonded to an elastic silicon substrate. It shows that both effective dielectric and piezoelectric properties of the films change with the size and configuration of the test capacitor. There exists a critical electrode size that is smaller than the diameter of the commonly used substrate. The effective film properties converge to their respective constrained values as capacitor size increases to the critical size. If capacitor size is smaller than the critical size, the surface displacement at the top electrode deviates from the net thickness change in response to an applied voltage because the film is deformable at the film/substrate interface. The constrained properties of the films depend only on those of bulk ferroelectrics but are independent of film thickness and substrate properties. The finding of the critical capacitor size together with analytical expressions of the constrained properties makes it possible to realize consistent measurement of piezoelectric and dielectric properties of films. A surface scanning technique is recommended to measure the profile of piezoresponses of the film so that the constrained properties of the film can be identified accurately.

  18. Inherent interfacial mechanical gradients in 3D hydrogels influence tumor cell behaviors.

    PubMed

    Rao, Shreyas S; Bentil, Sarah; DeJesus, Jessica; Larison, John; Hissong, Alex; Dupaix, Rebecca; Sarkar, Atom; Winter, Jessica O

    2012-01-01

    Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems.

  19. The Structure of Lombricine Kinase

    PubMed Central

    Bush, D. Jeffrey; Kirillova, Olga; Clark, Shawn A.; Davulcu, Omar; Fabiola, Felcy; Xie, Qing; Somasundaram, Thayumanasamy; Ellington, W. Ross; Chapman, Michael S.

    2011-01-01

    Lombricine kinase is a member of the phosphagen kinase family and a homolog of creatine and arginine kinases, enzymes responsible for buffering cellular ATP levels. Structures of lombricine kinase from the marine worm Urechis caupo were determined by x-ray crystallography. One form was crystallized as a nucleotide complex, and the other was substrate-free. The two structures are similar to each other and more similar to the substrate-free forms of homologs than to the substrate-bound forms of the other phosphagen kinases. Active site specificity loop 309–317, which is disordered in substrate-free structures of homologs and is known from the NMR of arginine kinase to be inherently dynamic, is resolved in both lombricine kinase structures, providing an improved basis for understanding the loop dynamics. Phosphagen kinases undergo a segmented closing on substrate binding, but the lombricine kinase ADP complex is in the open form more typical of substrate-free homologs. Through a comparison with prior complexes of intermediate structure, a correlation was revealed between the overall enzyme conformation and the substrate interactions of His178. Comparative modeling provides a rationale for the more relaxed specificity of these kinases, of which the natural substrates are among the largest of the phosphagen substrates. PMID:21212263

  20. Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought.

    PubMed

    Tan, Wenrong; Zhang, Dawei; Zhou, Huapeng; Zheng, Ting; Yin, Yanhai; Lin, Honghui

    2018-04-01

    Drought is a major threat to plant growth and crop productivity. The phytohormone abscisic acid (ABA) plays a critical role in plant response to drought stress. Although ABA signaling-mediated drought tolerance has been widely investigated in Arabidopsis thaliana, the feedback mechanism and components negatively regulating this pathway are less well understood. Here we identified a member of Arabidopsis HD-ZIP transcription factors HAT1 which can interacts with and be phosphorylated by SnRK2s. hat1hat3, loss-of-function mutant of HAT1 and its homolog HAT3, was hypersensitive to ABA in primary root inhibition, ABA-responsive genes expression, and displayed enhanced drought tolerance, whereas HAT1 overexpressing lines were hyposensitive to ABA and less tolerant to drought stress, suggesting that HAT1 functions as a negative regulator in ABA signaling-mediated drought response. Furthermore, expression levels of ABA biosynthesis genes ABA3 and NCED3 were repressed by HAT1 directly binding to their promoters, resulting in the ABA level was increased in hat1hat3 and reduced in HAT1OX lines. Further evidence showed that both protein stability and binding activity of HAT1 was repressed by SnRK2.3 phosphorylation. Overexpressing SnRK2.3 in HAT1OX transgenic plant made a reduced HAT1 protein level and suppressed the HAT1OX phenotypes in ABA and drought response. Our results thus establish a new negative regulation mechanism of HAT1 which helps plants fine-tune their drought responses.

Top