Molecular characterization and functional analysis of IRF3 in tilapia (Oreochromis niloticus).
Gu, Yi-Feng; Wei, Qun; Tang, Shou-Jie; Chen, Xiao-Wu; Zhao, Jin-Liang
2016-02-01
Interferon regulatory factor 3 (IRF3) plays a key role in interferon (IFN) response and binding to the IFN stimulatory response elements (ISREs) within the promoter of IFN and IFN-stimulated genes followed by virus infection. In the current study, we discovered one IRF3 homologue in tilapia genome and analyzed the characterizations and functions of tilapia IRF3. Tilapia IRF3 contains 1368 bp with an ORF of 455 aa. Structurally, tilapia IRF3 protein typically shares the conserved characterizations with other species' IRF3 homologues, displaying conserved DNA-binding domain, IRF association domain, serine-rich C terminal domain, and tryptophan residue cluster. Phylogenetic analysis illustrated that tilapia IRF3 belongs to the IRF3 subfamily. Real-time PCR revealed a broad expression pattern of tilapia IRF3 in various tissues. Subcellular localization analysis showed that tilapia IRF3 mainly resides in the cytoplasm, Western blot demonstrated that IRF3 was distributed in the cytoplasmic fraction. Functionally, IRF3 was found to be transcriptionally up-regulated by the poly I:C stimulation. Moreover, reporter assay elucidated that tilapia IRF3 serves as a regulator in mediating IFN response by increasing the activity of IFN-β and ISRE-containing promoter. These data supported the view that tilapia IRF3 is a potential molecule in IFN immune defense system against viral infection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thackray, Larissa B; Shrestha, Bimmi; Richner, Justin M; Miner, Jonathan J; Pinto, Amelia K; Lazear, Helen M; Gale, Michael; Diamond, Michael S
2014-10-01
Upon activation of Toll-like and RIG-I-like receptor signaling pathways, the transcription factor IRF5 translocates to the nucleus and induces antiviral immune programs. The recent discovery of a homozygous mutation in the immunoregulatory gene guanine exchange factor dedicator of cytokinesis 2 (Dock2mu/mu) in several Irf5-/- mouse colonies has complicated interpretation of immune functions previously ascribed to IRF5. To define the antiviral functions of IRF5 in vivo, we infected backcrossed Irf5-/-×Dock2wt/wt mice (here called Irf5-/- mice) and independently generated CMV-Cre Irf5fl/fl mice with West Nile virus (WNV), a pathogenic neurotropic flavivirus. Compared to congenic wild-type animals, Irf5-/- and CMV-Cre Irf5fl/fl mice were more vulnerable to WNV infection, and this phenotype was associated with increased infection in peripheral organs, which resulted in higher virus titers in the central nervous system. The loss of IRF5, however, was associated with only small differences in the type I interferon response systemically and in the draining lymph node during WNV infection. Instead, lower levels of several other proinflammatory cytokines and chemokines, as well as fewer and less activated immune cells, were detected in the draining lymph node 2 days after WNV infection. WNV-specific antibody responses in Irf5-/- mice also were blunted in the context of live or inactivated virus infection and this was associated with fewer antigen-specific memory B cells and long-lived plasma cells. Our results with Irf5-/- mice establish a key role for IRF5 in shaping the early innate immune response in the draining lymph node, which impacts the spread of virus infection, optimal B cell immunity, and disease pathogenesis. Although the roles of IRF3 and IRF7 in orchestrating innate and adaptive immunity after viral infection are established, the function of the related transcription factor IRF5 remains less certain. Prior studies in Irf5-/- mice reported conflicting results as to the contribution of IRF5 in regulating type I interferon and adaptive immune responses. The lack of clarity may stem from a recently discovered homozygous loss-of-function mutation of the immunoregulatory gene Dock2 in several colonies of Irf5-/- mice. Here, using a mouse model with a deficiency in IRF5 and wild-type Dock2 alleles, we investigated how IRF5 modulates West Nile virus (WNV) pathogenesis and host immune responses. Our in vivo studies indicate that IRF5 has a key role in shaping the early proinflammatory cytokine response in the draining lymph node, which impacts immunity and control of WNV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Interferon response factor 3 is essential for house dust mite-induced airway allergy.
Marichal, Thomas; Bedoret, Denis; Mesnil, Claire; Pichavant, Muriel; Goriely, Stanislas; Trottein, François; Cataldo, Didier; Goldman, Michel; Lekeux, Pierre; Bureau, Fabrice; Desmet, Christophe J
2010-10-01
Pattern-recognition receptors (PRRs) are critically involved in the pathophysiology of airway allergy, yet most of the signaling pathways downstream of PRRs implicated in allergic airway sensitization remain unknown. We sought to study the effects of genetic depletion of interferon response factor (IRF) 3 and IRF7, important transcription factors downstream of various PRRs, in a murine model of house dust mite (HDM)-induced allergic asthma. We compared HDM-induced allergic immune responses in IRF3-deficient (IRF3(-/-)), IRF7(-/-), and wild-type mice. Parameters of airway allergy caused by HDM exposure were strongly attenuated in IRF3(-/-), but not IRF7(-/-), mice compared with those in wild-type mice. Indeed, in HDM-exposed IRF3(-/-) mice HDM-specific T(H)2 cell responses did not develop. This correlated with impaired maturation and migration of IRF3(-/-) lung dendritic cells (DCs) on HDM treatment. Furthermore, adoptive transfer of HDM-loaded DCs indicated that IRF3(-/-) DCs had an intrinsic defect rendering them unable to migrate and to prime HDM-specific T(H)2 responses. Intriguingly, we also show that DC function and allergic airway sensitization in response to HDM were independent of signaling by type I interferons, the main target genes of IRF3. Through its role in DC function, IRF3, mainly known as a central activator of antiviral immunity, is essential for the development of T(H)2-type responses to airway allergens. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Carlin, Aaron F; Plummer, Emily M; Vizcarra, Edward A; Sheets, Nicholas; Joo, Yunichel; Tang, William; Day, Jeremy; Greenbaum, Jay; Glass, Christopher K; Diamond, Michael S; Shresta, Sujan
2017-11-07
Interferon-regulatory factors (IRFs) are a family of transcription factors (TFs) that translate viral recognition into antiviral responses, including type I interferon (IFN) production. Dengue virus (DENV) and other clinically important flaviviruses are suppressed by type I IFN. While mice lacking the type I IFN receptor (Ifnar1 -/- ) succumb to DENV infection, we found that mice deficient in three transcription factors controlling type I IFN production (Irf3 -/- Irf5 -/- Irf7 -/- triple knockout [TKO]) survive DENV challenge. DENV infection of TKO mice resulted in minimal type I IFN production but a robust type II IFN (IFN-γ) response. Using loss-of-function approaches for various molecules, we demonstrate that the IRF-3-, IRF-5-, IRF-7-independent pathway predominantly utilizes IFN-γ and, to a lesser degree, type I IFNs. This pathway signals via IRF-1 to stimulate interleukin-12 (IL-12) production and IFN-γ response. These results reveal a key antiviral role for IRF-1 by activating both type I and II IFN responses during DENV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Zhou, Peng; Cowled, Chris; Mansell, Ashley; Monaghan, Paul; Green, Diane; Wu, Lijun; Shi, Zhengli; Wang, Lin-Fa; Baker, Michelle L
2014-01-01
As the only flying mammal, bats harbor a number of emerging and re-emerging viruses, many of which cause severe diseases in humans and other mammals yet result in no clinical symptoms in bats. As the master regulator of the interferon (IFN)-dependent immune response, IFN regulatory factor 7 (IRF7) plays a central role in innate antiviral immunity. To explore the role of bat IRF7 in the regulation of the IFN response, we performed sequence and functional analysis of IRF7 from the pteropid bat, Pteropus alecto. Our results demonstrate that bat IRF7 retains the ability to bind to MyD88 and activate the IFN response despite unique changes in the MyD88 binding domain. We also demonstrate that bat IRF7 has a unique expression pattern across both immune and non-immune related tissues and is inducible by double-strand RNA. The broad tissue distribution of IRF7 may provide bats with an enhanced ability to rapidly activate the IFN response in a wider range of tissues compared to other mammals. The importance of IRF7 in antiviral activity against the bat reovirus, Pulau virus was confirmed by siRNA knockdown of IRF7 in bat cells resulting in enhanced viral replication. Our results highlight the importance of IRF7 in innate antiviral immunity in bats.
Zhou, Peng; Cowled, Chris; Mansell, Ashley; Monaghan, Paul; Green, Diane; Wu, Lijun; Shi, Zhengli; Wang, Lin-Fa; Baker, Michelle L.
2014-01-01
As the only flying mammal, bats harbor a number of emerging and re-emerging viruses, many of which cause severe diseases in humans and other mammals yet result in no clinical symptoms in bats. As the master regulator of the interferon (IFN)-dependent immune response, IFN regulatory factor 7 (IRF7) plays a central role in innate antiviral immunity. To explore the role of bat IRF7 in the regulation of the IFN response, we performed sequence and functional analysis of IRF7 from the pteropid bat, Pteropus alecto. Our results demonstrate that bat IRF7 retains the ability to bind to MyD88 and activate the IFN response despite unique changes in the MyD88 binding domain. We also demonstrate that bat IRF7 has a unique expression pattern across both immune and non-immune related tissues and is inducible by double-strand RNA. The broad tissue distribution of IRF7 may provide bats with an enhanced ability to rapidly activate the IFN response in a wider range of tissues compared to other mammals. The importance of IRF7 in antiviral activity against the bat reovirus, Pulau virus was confirmed by siRNA knockdown of IRF7 in bat cells resulting in enhanced viral replication. Our results highlight the importance of IRF7 in innate antiviral immunity in bats. PMID:25100081
A ChIP-chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response.
Frontini, Mattia; Vijayakumar, Meeraa; Garvin, Alexander; Clarke, Nicole
2009-03-01
IRF1 is a transcription factor that regulates key processes in the immune system and in tumour suppression. To gain further insight into IRF1's role in these processes, we searched for new target genes by performing chromatin immunoprecipitation coupled to a CpG island microarray (ChIP-chip). Using this approach we identified 202 new IRF1-binding sites with high confidence. Functional categorization of the target genes revealed a surprising cadre of new roles that can be linked to IRF1. One of the major functional categories was the DNA damage response pathway. In order to further validate our findings, we show that IRF1 can regulate the mRNA expression of a number of the DNA damage response genes in our list. In particular, we demonstrate that the mRNA and protein levels of the DNA repair protein BRIP1 [Fanconi anemia gene J (FANC J)] are upregulated after IRF1 over-expression. We also demonstrate that knockdown of IRF1 by siRNA results in loss of BRIP1 expression, abrogation of BRIP1 foci after DNA interstrand crosslink (ICL) damage and hypersensitivity to the DNA crosslinking agent, melphalan; a characteristic phenotype of FANC J cells. Taken together, our data provides a more complete understanding of the regulatory networks controlled by IRF1 and reveals a novel role for IRF1 in regulating the ICL DNA damage response.
A ChIP–chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response
Frontini, Mattia; Vijayakumar, Meeraa; Garvin, Alexander; Clarke, Nicole
2009-01-01
IRF1 is a transcription factor that regulates key processes in the immune system and in tumour suppression. To gain further insight into IRF1's role in these processes, we searched for new target genes by performing chromatin immunoprecipitation coupled to a CpG island microarray (ChIP–chip). Using this approach we identified 202 new IRF1-binding sites with high confidence. Functional categorization of the target genes revealed a surprising cadre of new roles that can be linked to IRF1. One of the major functional categories was the DNA damage response pathway. In order to further validate our findings, we show that IRF1 can regulate the mRNA expression of a number of the DNA damage response genes in our list. In particular, we demonstrate that the mRNA and protein levels of the DNA repair protein BRIP1 [Fanconi anemia gene J (FANC J)] are upregulated after IRF1 over-expression. We also demonstrate that knockdown of IRF1 by siRNA results in loss of BRIP1 expression, abrogation of BRIP1 foci after DNA interstrand crosslink (ICL) damage and hypersensitivity to the DNA crosslinking agent, melphalan; a characteristic phenotype of FANC J cells. Taken together, our data provides a more complete understanding of the regulatory networks controlled by IRF1 and reveals a novel role for IRF1 in regulating the ICL DNA damage response. PMID:19129219
Uncertainty analysis of signal deconvolution using a measured instrument response function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartouni, E. P.; Beeman, B.; Caggiano, J. A.
2016-10-05
A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). Here, we investigate the National Ignition Facility (NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to the uncertainty estimate of the physical model’s parameters. Finally, we apply a Bayesian analysis to properly account for IRF uncertainties in calculating the ln-likelihood function used to find the optimummore » physical parameters.« less
A Quasi-Parametric Method for Fitting Flexible Item Response Functions
ERIC Educational Resources Information Center
Liang, Longjuan; Browne, Michael W.
2015-01-01
If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not fit the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, Gretchen L.; Liu Renshui; Hahn, Angela M.
Activation of interferon regulatory factors (IRFs) 3 and 7 is essential for the induction of Type I interferons (IFN) and innate antiviral responses, and herpesviruses have evolved mechanisms to evade such responses. We previously reported that Epstein-Barr virus BZLF1, an immediate-early (IE) protein, inhibits the function of IRF7, but the role of BRLF1, the other IE transactivator, in IRF regulation has not been examined. We now show that BRLF1 expression decreased induction of IFN-{beta}, and reduced expression of IRF3 and IRF7; effects were dependent on N- and C-terminal regions of BRLF1 and its nuclear localization signal. Endogenous IRF3 and IRF7more » RNA and protein levels were also decreased during cytolytic EBV infection. Finally, production of IFN-{beta} was decreased during lytic EBV infection and was associated with increased susceptibility to superinfection with Sendai virus. These data suggest a new role for BRLF1 with the ability to evade host innate immune responses.« less
Wilden, Holger; Schirrmacher, Volker; Fournier, Philippe
2011-08-01
Newcastle disease virus (NDV) is an interesting agent for activating innate immune activity in macrophages including secretion of TNF-α and IFN-α, upregulation of TRAIL and activation of NF-κB and iNOS. However, the molecular mechanism of such cellular activities remains largely unknown. Tumor selectivity of replication of NDV has been described to be linked to deviations in tumor cells of the type I interferon response. We therefore focused on the interferon response to NDV of macrophages as part of innate anti-viral and anti-tumor activity. In particular, we investigated the functional significance of the interferon regulatory factor genes (IRF)-3 and IRF-7. Deletion of the IRF-3 or IRF-7 gene was found to increase susceptibility of mouse macrophages to virus infection. Surprisingly, NDV replicated better in IRF-3 KO than in IRF-7 KO macrophages. Further analysis showed that IRF-3 KO macrophages have a lower basal and NDV-induced RIG-I expression in comparison to IRF-7 KO macrophages. This might explain why, in IRF-3 KO macrophages, the secretion of type I interferons after NDV infection is delayed, when compared to IRF-7 KO and wild-type macrophages. In addition, IRF-3 KO cells showed reduced NDV-induced levels of IRF-7. This effect could be prevented by priming the cells first by interferon-α. Further results indicated that an early production of type I interferon rather than high maximal levels at later time points are important for resistance to infection by NDV. In conclusion, these results demonstrate an important role of IRF-3 for the innate anti-viral response to NDV of mouse macrophages.
Hu, Yi Wei; Zhang, Jie; Wu, Xiao Man; Cao, Lu; Nie, Pin; Chang, Ming Xian
2018-01-01
TANK-binding kinase 1 (TBK1) is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs) in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible gene I (RIG-I) and mitochondria antiviral-signaling protein (MAVS). However, it is still unclear whether alternative splicing patterns and the function of TBK1 isoform(s) exist in teleost fish. In this study, we identify two alternatively spliced isoforms of TBK1 from zebrafish, termed TBK1_tv1 and TBK1_tv2. Both TBK1_tv1 and TBK1_tv2 contain an incomplete STKc_TBK1 domain. Moreover, the UBL_TBK1_like domain is also missing for TBK1_tv2. TBK1_tv1 and TBK1_tv2 are expressed in zebrafish larvae. Overexpression of TBK1_tv1 and TBK1_tv2 inhibits RIG-I-, MAVS-, TBK1-, and IRF3-mediated activation of IFN promoters in response to spring viremia of carp virus infection. Also, TBK1_tv1 and TBK1_tv2 inhibit expression of IFNs and IFN-stimulated genes induced by MAVS and TBK1 . Mechanistically, TBK1_tv1 and TBK1_tv2 competitively associate with TBK1 and IRF3 to disrupt the formation of a functional TBK1-IRF3 complex, impeding the phosphorylation of IRF3 mediated by TBK1. Collectively, these results demonstrate that TBK1 spliced isoforms are dominant negative regulators in the RIG-I/MAVS/TBK1/IRF3 antiviral pathway by targeting the functional TBK1-IRF3 complex formation. Identification and functional characterization of piscine TBK1 spliced isoforms may contribute to understanding the role of TBK1 expression in innate antiviral response.
Zafirova, Biljana; This, Sébastien; Coléon, Séverin; Décembre, Elodie; Paidassi, Helena; Bouvier, Isabelle; Joubert, Pierre-Emmanuel; Duffy, Darragh; Walzer, Thierry
2018-01-01
Type I interferon (IFN-I) responses are critical for the control of RNA virus infections, however, many viruses, including Dengue (DENV) and Chikungunya (CHIKV) virus, do not directly activate plasmacytoid dendritic cells (pDCs), robust IFN-I producing cells. Herein, we demonstrated that DENV and CHIKV infected cells are sensed by pDCs, indirectly, resulting in selective IRF7 activation and IFN-I production, in the absence of other inflammatory cytokine responses. To elucidate pDC immunomodulatory functions, we developed a mouse model in which IRF7 signaling is restricted to pDC. Despite undetectable levels of IFN-I protein, pDC-restricted IRF7 signaling controlled both viruses and was sufficient to protect mice from lethal CHIKV infection. Early pDC IRF7-signaling resulted in amplification of downstream antiviral responses, including an accelerated natural killer (NK) cell-mediated type II IFN response. These studies revealed the dominant, yet indirect role of pDC IRF7-signaling in directing both type I and II IFN responses during arbovirus infections. PMID:29914621
Ad-IRF-1 Induces Apoptosis in Esophageal Adenocarcinoma
Stang, Michael T; Armstrong, Michaele J; Gooding, William E; Kuan, Shih-Fan; Yim, John H; Hughes, Steven J
2006-01-01
Abstract The nuclear transcription factor interferon regulatory factor-1 (IRF-1) is a putative tumor suppressor, but the expression and function of IRF-1 in esophageal adenocarcinoma (EA) remain unknown. We hypothesized that IRF-1 expression was reduced or lost in EA and that restoration of IRF-1 would result in the apoptosis of EA cells in vitro and the inhibition of tumor growth in vivo. Three EA cell lines were used to examine IRF-1 expression, IFN-γ responsiveness, and the effects of IRF-1 overexpression using a recombinant adenoviral vector (Ad-IRF-1). All three EA cell lines produced IRF-1 protein following IFN-γ stimulation, although IFN-γ did not induce cell death. In contrast, Ad-IRF-1 infection resulted in high levels of IRF-1 protein and triggered apoptosis in all three EA cell lines. Potential mechanisms for the differential response to IFN-γ versus Ad-IRF-1—such as modulation of c-Met or extracellular regulated kinase signaling, or altered expression of IRF-2, Fas, or survivin—were investigated, but none of these mechanisms can account for this observation. In vivo administration of IRF-1 in a murine model of EA modestly inhibited tumor growth, but did not lead to tumor regression. Strategies aimed at increasing or restoring IRF-1 expression may have therapeutic benefits in EA. PMID:16533423
RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production
Feng, Jun; De Jesus, Paul D.; Su, Victoria; Han, Stephanie; Gong, Danyang; Wu, Nicholas C.; Tian, Yuan; Li, Xudong; Wu, Ting-Ting; Chanda, Sumit K.
2014-01-01
ABSTRACT Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. IMPORTANCE The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection. PMID:24807708
Irf8-Regulated Genomic Responses Drive Pathological Inflammation during Cerebral Malaria
Radovanovic, Irena; Tam, Mifong; MacMicking, John D.; Stevenson, Mary M.; Gros, Philippe
2013-01-01
Interferon Regulatory Factor 8 (IRF8) is required for development, maturation and expression of anti-microbial defenses of myeloid cells. BXH2 mice harbor a severely hypomorphic allele at Irf8 (Irf8R294C) that causes susceptibility to infection with intracellular pathogens including Mycobacterium tuberculosis. We report that BXH2 are completely resistant to the development of cerebral malaria (ECM) following Plasmodium berghei ANKA infection. Comparative transcriptional profiling of brain RNA as well as chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq) was used to identify IRF8-regulated genes whose expression is associated with pathological acute neuroinflammation. Genes increased by infection were strongly enriched for IRF8 binding sites, suggesting that IRF8 acts as a transcriptional activator in inflammatory programs. These lists were enriched for myeloid-specific pathways, including interferon responses, antigen presentation and Th1 polarizing cytokines. We show that inactivation of several of these downstream target genes (including the Irf8 transcription partner Irf1) confers protection against ECM. ECM-resistance in Irf8 and Irf1 mutants is associated with impaired myeloid and lymphoid cells function, including production of IL12p40 and IFNγ. We note strong overlap between genes bound and regulated by IRF8 during ECM and genes regulated in the lungs of M. tuberculosis infected mice. This IRF8-dependent network contains several genes recently identified as risk factors in acute and chronic human inflammatory conditions. We report a common core of IRF8-bound genes forming a critical inflammatory host-response network. PMID:23853600
Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock
Volk, Paige; Moreland, Jessica G.; Dunnwald, Martine
2016-01-01
Interferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production. PMID:27035130
Functional IRF3 deficiency in a patient with herpes simplex encephalitis.
Andersen, Line Lykke; Mørk, Nanna; Reinert, Line S; Kofod-Olsen, Emil; Narita, Ryo; Jørgensen, Sofie E; Skipper, Kristian A; Höning, Klara; Gad, Hans Henrik; Østergaard, Lars; Ørntoft, Torben F; Hornung, Veit; Paludan, Søren R; Mikkelsen, Jacob Giehm; Fujita, Takashi; Christiansen, Mette; Hartmann, Rune; Mogensen, Trine H
2015-08-24
Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon (IFN) production downstream of Toll-like receptor 3. Here, we describe a novel genetic etiology of HSE by identifying a heterozygous loss-of-function mutation in the IFN regulatory factor 3 (IRF3) gene, leading to autosomal dominant (AD) IRF3 deficiency by haploinsufficiency, in an adolescent female patient with HSE. IRF3 is activated by most pattern recognition receptors recognizing viral infections and plays an essential role in induction of type I IFN. The identified IRF3 R285Q amino acid substitution results in impaired IFN responses to HSV-1 infection and particularly impairs signaling through the TLR3-TRIF pathway. In addition, the R285Q mutant of IRF3 fails to become phosphorylated at S386 and undergo dimerization, and thus has impaired ability to activate transcription. Finally, transduction with WT IRF3 rescues the ability of patient fibroblasts to express IFN in response to HSV-1 infection. The identification of IRF3 deficiency in HSE provides the first description of a defect in an IFN-regulating transcription factor conferring increased susceptibility to a viral infection in the CNS in humans. © 2015 Andersen et al.
Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation
Meng, Fansen; Zhou, Ruyuan; Wu, Shiying; Zhang, Qian; Jin, Qiuheng; Zhou, Yao; Plouffe, Steven W.; Liu, Shengduo; Song, Hai; Xia, Zongping; Zhao, Bin; Ye, Sheng; Feng, Xin-Hua; Guan, Kun-Liang; Zou, Jian
2016-01-01
Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies. PMID:27125670
Bonura, M A; Ruiz, C L; Fehl, D L; Cooper, G W; Chandler, G; Hahn, K D; Nelson, A J; Styron, J D; Torres, J A
2014-11-01
An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF's) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement.
Hartman, Amy L; Dover, Jason E; Towner, Jonathan S; Nichol, Stuart T
2006-07-01
The VP35 protein of Zaire Ebola virus is an essential component of the viral RNA polymerase complex and also functions to antagonize the cellular type I interferon (IFN) response by blocking activation of the transcription factor IRF-3. We previously mapped the IRF-3 inhibitory domain within the C terminus of VP35. In the present study, we show that mutations that disrupt the IRF-3 inhibitory function of VP35 do not disrupt viral transcription/replication, suggesting that the two functions of VP35 are separable. Second, using reverse genetics, we successfully recovered recombinant Ebola viruses containing mutations within the IRF-3 inhibitory domain. Importantly, we show that the recombinant viruses were attenuated for growth in cell culture and that they activated IRF-3 and IRF-3-inducible gene expression at levels higher than that for Ebola virus containing wild-type VP35. In the context of Ebola virus pathogenesis, VP35 may function to limit early IFN-beta production and other antiviral signals generated from cells at the primary site of infection, thereby slowing down the host's ability to curb virus replication and induce adaptive immunity.
Targeting Interferon Regulatory Factor for Cardiometabolic Diseases: Opportunities and Challenges.
Zhang, Yaxing; Zhang, Xiao-Jing; Li, Hongliang
2017-01-01
The pathological activation of innate immune system may contribute to the development of cardiometabolic diseases. The interferon regulatory factor (IRF) family members, which are the major transcription factors in innate immune signaling, are implicated in cardiometabolic diseases. The aim of this review is to summary the current knowledge of the biological functions of IRFs in innate immune responses and immune cell development, and highlight our contemporary understanding of the functions and molecular mechanisms of IRFs in metabolic diseases, cardiovascular remodeling, and stroke. IRFs are the essential regulators of cardiometabolic diseases via immune-dependent and - independent manners. IRFs signaling is the promising target to manage the initiation and progression of cardiometabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bentz, Gretchen L.; Shackelford, Julia
2012-01-01
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) induces multiple signal transduction pathways during latent EBV infection via its C-terminal activating region 1 (CTAR1), CTAR2, and the less-studied CTAR3. One mechanism by which LMP1 regulates cellular activation is through the induction of protein posttranslational modifications, including phosphorylation and ubiquitination. We recently documented that LMP1 induces a third major protein modification by physically interacting with the SUMO-conjugating enzyme Ubc9 through CTAR3 and inducing the sumoylation of cellular proteins in latently infected cells. We have now identified a specific target of LMP1-induced sumoylation, interferon regulatory factor 7 (IRF7). We hypothesize that during EBV latency, LMP1 induces the sumoylation of IRF7, limiting its transcriptional activity and modulating the activation of innate immune responses. Our data show that endogenously sumoylated IRF7 is detected in latently infected EBV lymphoblastoid cell lines. LMP1 expression coincided with increased sumoylation of IRF7 in a CTAR3-dependent manner. Additional experiments show that LMP1 CTAR3-induced sumoylation regulates the expression and function of IRF7 by decreasing its turnover, increasing its nuclear retention, decreasing its DNA binding, and limiting its transcriptional activation. Finally, we identified that IRF7 is sumoylated at lysine 452. These data demonstrate that LMP1 CTAR3 does in fact function in intracellular signaling, leading to biologic effects. We propose that CTAR3 is an important signaling region of LMP1 that regulates protein function by sumoylation. We have shown specifically that LMP1 CTAR3, in cooperation with CTAR2, can limit the ability of IRF7 to induce innate immune responses by inducing the sumoylation of IRF7. PMID:22951831
A Multidimensional Ideal Point Item Response Theory Model for Binary Data
ERIC Educational Resources Information Center
Maydeu-Olivares, Albert; Hernandez, Adolfo; McDonald, Roderick P.
2006-01-01
We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model…
Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing.
Guo, Yuanyuan; Yang, Zhiyin; Wu, Shan; Xu, Peng; Peng, Yinbo; Yao, Min
2017-02-01
The inflammatory response is essential for normal cutaneous wound healing. Macrophages, as critical inflammatory cells, coordinate inflammation and angiogenesis phases during wound healing. It has been reported that the transcription factor interferon regulatory factor 8 (IRF8), a member of the IRF family, plays a critical role in the development and function of macrophages and is associated with inflammation. However, the role of IRF8 in cutaneous wound healing and its underlying mechanism remain elusive. Through immunohistochemical (IHC) staining, we showed that IRF8 is involved in the wound repair process in mice and patients. Furthermore, we ascertain that the repression of IRF8 by small interfering RNA (siRNA) leads to delayed wound healing. To explore the mechanism by which IRF8 impacts wound healing, we observed its effect on macrophage-related mediators by IHC or real-time PCR. The results demonstrated that the inhibition of IRF8 decreases the mRNA expression of inflammatory mediators associated with M1 macrophage (il-1b, il-6, inos, and tnf-a) but no impact on M2 macrophage-related mediators (arg-1, mrc-1, and il-10) and the number of macrophages in the wounds. Furthermore, the inhibition of IRF8 induced apoptosis in the wounds. In summary, this study demonstrates that the down-regulation of IRF8 in the wound leads to impaired wound healing possibly through the regulation of macrophage function and apoptosis in skin wound.
RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.11)
NASA Astrophysics Data System (ADS)
Long, A. J.
2014-09-01
The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, springflow, groundwater level, solute transport, or cave drip for a measurement point in response to a system input of precipitation, recharge, or solute injection. The RRAWFLOW open-source code is written in the R language and is included in the Supplement to this article along with an example model of springflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution; i.e., the unit hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Other options include the use of user-defined IRFs and different methods to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications. RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.
Falk, Carl F; Cai, Li
2016-06-01
We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest order polynomial. Our approach extends Liang's (A semi-parametric approach to estimate IRFs, Unpublished doctoral dissertation, 2007) method for dichotomous item responses to the case of polytomous data. Furthermore, item parameter estimation is implemented with maximum marginal likelihood using the Bock-Aitkin EM algorithm, thereby facilitating multiple group analyses useful in operational settings. Our approach is demonstrated on both educational and psychological data. We present simulation results comparing our approach to more standard IRF estimation approaches and other non-parametric and semi-parametric alternatives.
Consequences of Ignoring Guessing when Estimating the Latent Density in Item Response Theory
ERIC Educational Resources Information Center
Woods, Carol M.
2008-01-01
In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters. In extant Monte Carlo evaluations of RC-IRT, the item response function (IRF) used to fit the data is the same one used to generate the data. The present simulation study examines RC-IRT when the IRF is imperfectly…
Zhu, Yaoyao; Qi, Chenchen; Shan, Shijuan; Zhang, Fumiao; Li, Hua; An, Liguo; Yang, Guiwen
2016-06-27
Common carp (Cyprinus carpio L.), one of the most economically valuable commercial farming fish species in China, is often infected by a variety of viruses. As the first line of defence against microbial pathogens, the innate immune system plays a crucial role in teleost fish, which are lower vertebrates. Interferon (IFN) regulatory factor 5 (IRF5) is a key molecule in antiviral immunity that regulating the expression of IFN and other pro-inflammatory cytokines. It is necessary to gain more insight into the common carp IFN system and the function of fish IRF5 in the antiviral and antibacterial response. In the present study, we characterized the cDNA and genomic sequence of the IRF5 gene in common carp, and analysed tissue distribution and expression profile of this gene in response to polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharides (LPS) treatment. The common carp IRF5 (ccIRF5) gene is 5790 bp in length and is composed of 9 exons and 8 introns. The open reading frame (ORF) of ccIRF5 is 1554 bp, and encodes 517 amino acid protein. The putative ccIRF5 protein shares identity (65.4-90.0 %) with other fish IRF5s and contains a DNA binding domain (DBD), a middle region (MR), an IRF-associated domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) similar to those found in vertebrate IRF5. Phylogenetic analysis clustered ccIRF5 into the IRF5 subfamily with other vertebrate IRF5 and IRF6 genes. Real-time PCR analysis revealed that ccIRF5 mRNA was expressed in all examined tissues of healthy carps, with high levels observed in the gills and the brain. After poly I:C challenge, expression levels of ccIRF5, tumour-necrosis factor α (ccTNFα) and two IFN stimulated genes [ISGs (ccISG5 and ccPKR)] were up-regulated in seven immune-related tissues (liver, spleen, head kidney, foregut, hindgut, skin and gills). Furthermore, all four genes were up-regulated in vitro upon poly I:C and LPS challenges. Our findings suggest that IRF5 might play an important role in regulating the antiviral and antibacterial response in fish. These results could provide a clue for preventing common carp infection by pathogenic microorganisms present in the aquatic environment.
The Adenovirus E1A C Terminus Suppresses a Delayed Antiviral Response and Modulates RAS Signaling.
Zemke, Nathan R; Berk, Arnold J
2017-12-13
The N-terminal half of adenovirus e1a assembles multimeric complexes with host proteins that repress innate immune responses and force host cells into S-phase. In contrast, the functions of e1a's C-terminal interactions with FOXK, DCAF7, and CtBP are unknown. We found that these interactions modulate RAS signaling, and that a single e1a molecule must bind all three of these host proteins to suppress activation of a subset of IFN-stimulated genes (ISGs). These ISGs were otherwise induced in primary respiratory epithelial cells at 12 hr p.i. This delayed activation of ISGs required IRF3 and coincided with an ∼10-fold increase in IRF3 from protein stabilization. The induced IRF3 bound to chromatin and localized to the promoters of activated ISGs. While IRF3, STAT1/2, and IRF9 all greatly increased in concentration, there were no corresponding mRNA increases, suggesting that e1a regulates the stabilities of these key activators of innate immune responses, as shown directly for IRF3. Copyright © 2017 Elsevier Inc. All rights reserved.
Thackray, Larissa B.; Duan, Erning; Lazear, Helen M.; Kambal, Amal; Schreiber, Robert D.; Diamond, Michael S.
2012-01-01
Human noroviruses (HuNoV) are the major cause of epidemic, nonbacterial gastroenteritis in the world. The short course of HuNoV-induced symptoms has implicated innate immunity in control of norovirus (NoV) infection. Studies using murine norovirus (MNV) confirm the importance of innate immune responses during NoV infection. Type I alpha and beta interferons (IFN-α/β) limit HuNoV replicon function, restrict MNV replication in cultured cells, and control MNV replication in vivo. Therefore, the cell types and transcription factors involved in antiviral immune responses and IFN-α/β-mediated control of NoV infection are important to define. We used mice with floxed alleles of the IFNAR1 chain of the IFN-α/β receptor to identify cells expressing lysozyme M or CD11c as cells that respond to IFN-α/β to restrict MNV replication in vivo. Furthermore, we show that the transcription factors IRF-3 and IRF-7 work in concert to initiate unique and overlapping antiviral responses to restrict MNV replication in vivo. IRF-3 and IRF-7 restrict MNV replication in both cultured macrophages and dendritic cells, are required for induction of IFN-α/β in macrophages but not dendritic cells, and are dispensable for the antiviral effects of IFN-α/β that block MNV replication. These studies suggest that expression of the IFN-α/β receptor on macrophages/neutrophils and dendritic cells, as well as of IRF-3 and IRF-7, is critical for innate immune responses to NoV infection. PMID:23035219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melroe, Gregory T.; Silva, Lindsey; Schaffer, Priscilla A.
2007-04-10
The host innate response to viral infection includes the production of interferons, which is dependent on the coordinated activity of multiple transcription factors. Herpes simplex virus 1 (HSV-1) has been shown to block efficient interferon expression by multiple mechanisms. We and others have demonstrated that HSV-1 can inhibit the transcription of genes promoted by interferon regulatory factor-3 (IRF-3), including interferon beta (IFN-{beta}), and that the immediate-early ICP0 protein is sufficient for this function. However, the exact mechanism by which ICP0 blocks IRF-3 activity has yet to be determined. Unlike some other viral proteins that inhibit IRF-3 activity, ICP0 does notmore » appear to affect phosphorylation and dimerization of IRF-3. Here, we show that a portion of activated IRF-3 co-localizes with nuclear foci containing ICP0 at early times after virus infection. Co-localization to ICP0-containing foci is also seen with the IRF-3-binding partners and transcriptional co-activators, CBP and p300. In addition, using immunoprecipitation of infected cell lysates, we can immunoprecipitate a complex containing ICP0, IRF-3, and CBP. Thus we hypothesize that ICP0 recruits activated IRF-3 and CBP/p300 to nuclear structures, away from the host chromatin. This leads to the inactivation and accelerated degradation of IRF-3, resulting in reduced transcription of IFN-{beta} and an inhibition of the host response. Therefore, ICP0 provides an example of how viruses can block IFN-{beta} induction by sequestration of important transcription factors essential for the host response.« less
Möller, Angeli; Pion, Emmanuelle; Narayan, Vikram; Ball, Kathryn L.
2010-01-01
IRF-1 is a tumor suppressor protein that activates gene expression from a range of promoters in response to stimuli spanning viral infection to DNA damage. Studies on the post-translational regulation of IRF-1 have been hampered by a lack of suitable biochemical tools capable of targeting the endogenous protein. In this study, phage display technology was used to develop a monoclonal nanobody targeting the C-terminal Mf1 domain (residues 301–325) of IRF-1. Intracellular expression of the nanobody demonstrated that the transcriptional activity of IRF-1 is constrained by the Mf1 domain as nanobody binding gave an increase in expression from IRF-1-responsive promoters of up to 8-fold. Furthermore, Mf1-directed nanobodies have revealed an unexpected function for this domain in limiting the rate at which the IRF-1 protein is degraded. Thus, the increase in IRF-1 transcriptional activity observed on nanobody binding is accompanied by a significant reduction in the half-life of the protein. In support of the data obtained using nanobodies, a single point mutation (P325A) involving the C-terminal residue of IRF-1 has been identified, which results in greater transcriptional activity and a significant increase in the rate of degradation. The results presented here support a role for the Mf1 domain in limiting both IRF-1-dependent transcription and the rate of IRF-1 turnover. In addition, the data highlight a route for activation of downstream genes in the IRF-1 tumor suppressor pathway using biologics. PMID:20817723
Induction of Interferon-Stimulated Genes by IRF3 Promotes Replication of Toxoplasma gondii
Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C.; Barik, Sailen
2015-01-01
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role. PMID:25811886
Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii.
Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C; Barik, Sailen
2015-03-01
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role.
Long, Andrew J.; Mahler, Barbara J.
2013-01-01
Many karst aquifers are rapidly filled and depleted and therefore are likely to be susceptible to changes in short-term climate variability. Here we explore methods that could be applied to model site-specific hydraulic responses, with the intent of simulating these responses to different climate scenarios from high-resolution climate models. We compare hydraulic responses (spring flow, groundwater level, stream base flow, and cave drip) at several sites in two karst aquifers: the Edwards aquifer (Texas, USA) and the Madison aquifer (South Dakota, USA). A lumped-parameter model simulates nonlinear soil moisture changes for estimation of recharge, and a time-variant convolution model simulates the aquifer response to this recharge. Model fit to data is 2.4% better for calibration periods than for validation periods according to the Nash–Sutcliffe coefficient of efficiency, which ranges from 0.53 to 0.94 for validation periods. We use metrics that describe the shapes of the impulse-response functions (IRFs) obtained from convolution modeling to make comparisons in the distribution of response times among sites and between aquifers. Time-variant IRFs were applied to 62% of the sites. Principal component analysis (PCA) of metrics describing the shapes of the IRFs indicates three principal components that together account for 84% of the variability in IRF shape: the first is related to IRF skewness and temporal spread and accounts for 51% of the variability; the second and third largely are related to time-variant properties and together account for 33% of the variability. Sites with IRFs that dominantly comprise exponential curves are separated geographically from those dominantly comprising lognormal curves in both aquifers as a result of spatial heterogeneity. The use of multiple IRF metrics in PCA is a novel method to characterize, compare, and classify the way in which different sites and aquifers respond to recharge. As convolution models are developed for additional aquifers, they could contribute to an IRF database and a general classification system for karst aquifers.
Hu, Guobin; Yin, Xiangyan; Xia, Jun; Dong, Xianzhi; Zhang, Jianyie; Liu, Qiuming
2010-12-01
Interferon regulatory factor (IRF) 7 in mammals is known to be a key player in regulating the type I interferon (IFN) response to viral infection as a transcription activator of IFNs and IFN-stimulated genes (ISGs). In this study, a full-length cDNA of Japanese flounder, Paralichthys olivaceus, (Po)IRF-7 was cloned and characterized. PoIRF-7 is 2032 bp in length, with an open reading frame (ORF) of 1293 bp that encodes 430 amino acid residues. The putative amino acid sequence shows the highest homology to fish IRF-7 with 51.5-76.3% identity and possesses a DNA-binding domain (DBD), an IRF association domain (IAD) and a serine-rich domain of vertebrate IRF-7. In addition, the tryptophan cluster of PoIRF-7 DBD consists of only four tryptophans, which is a characteristic unique to all fish IRF-7 members. The PoIRF-7 was expressed constitutively in all tested tissues of healthy flounders, with high levels in head kidney, spleen, gill, intestine and skin, and moderately expressed in FG9307 cells, a flounder gill epithelial cell line. Using a luciferase assay, PoIRF-7 was proved to be capable of activating fish type I IFN promoter in FG9307 cells. A quantitative real time PCR assay was employed to monitor the gene expression of PoIRF-7 and Mx in FG9307 cells and flounder head kidney and gill. Both genes were up-regulated by polyinosinic:polycytidylic acid (poly I:C) and lymphocystis disease virus (LCDV) though to a much lesser extent in FG9307 cells. Further, their transcription kinetics were similar in fish organs but different in FG9307 cells. These data provide insights into the functions of PoIRF-7 and imply a difference in PoIRF-7-related signaling pathways in antiviral response between cultured cells and live fish. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ward, B Douglas; Mazaheri, Yousef
2006-12-15
The blood oxygenation level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments in response to input stimuli is temporally delayed and distorted due to the blurring effect of the voxel hemodynamic impulse response function (IRF). Knowledge of the IRF, obtained during the same experiment, or as the result of a separate experiment, can be used to dynamically obtain an estimate of the input stimulus function. Reconstruction of the input stimulus function allows the fMRI experiment to be evaluated as a communication system. The input stimulus function may be considered as a "message" which is being transmitted over a noisy "channel", where the "channel" is characterized by the voxel IRF. Following reconstruction of the input stimulus function, the received message is compared with the transmitted message on a voxel-by-voxel basis to determine the transmission error rate. Reconstruction of the input stimulus function provides insight into actual brain activity during task activation with less temporal blurring, and may be considered as a first step toward estimation of the true neuronal input function.
NASA Astrophysics Data System (ADS)
Luchowski, R.; Kapusta, P.; Szabelski, M.; Sarkar, P.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I.
2009-09-01
Förster resonance energy transfer (FRET) can be utilized to achieve ultrashort fluorescence responses in time-domain fluorometry. In a poly(vinyl) alcohol matrix, the presence of 60 mM Rhodamine 800 acceptor shortens the fluorescence lifetime of a pyridine 1 donor to about 20 ps. Such a fast fluorescence response is very similar to the instrument response function (IRF) obtained using scattered excitation light. A solid fluorescent sample (e.g a film) with picosecond lifetime is ideal for IRF measurements and particularly useful for time-resolved microscopy. Avalanche photodiode detectors, commonly used in this field, feature color- dependent-timing responses. We demonstrate that recording the fluorescence decay of the proposed FRET-based reference sample yields a better IRF approximation than the conventional light-scattering method and therefore avoids systematic errors in decay curve analysis.
NASA Astrophysics Data System (ADS)
Kwak, Sangmin; Song, Seok Goo; Kim, Geunyoung; Cho, Chang Soo; Shin, Jin Soo
2017-10-01
Using recordings of a mine collapse event (Mw 4.2) in South Korea in January 2015, we demonstrated that the phase and amplitude information of impulse response functions (IRFs) can be effectively retrieved using seismic interferometry. This event is equivalent to a single downward force at shallow depth. Using quantitative metrics, we compared three different seismic interferometry techniques—deconvolution, coherency, and cross correlation—to extract the IRFs between two distant stations with ambient seismic noise data. The azimuthal dependency of the source distribution of the ambient noise was also evaluated. We found that deconvolution is the best method for extracting IRFs from ambient seismic noise within the period band of 2-10 s. The coherency method is also effective if appropriate spectral normalization or whitening schemes are applied during the data processing.
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.;
2012-01-01
The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy -ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the Instrument Response Functions (IRFs), the description of the instrument performance provided for data analysis. In this paper we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.
Antiviral Activity of Porcine Interferon Regulatory Factor 1 against Swine Viruses in Cell Culture.
Li, Yongtao; Chang, Hongtao; Yang, Xia; Zhao, Yongxiang; Chen, Lu; Wang, Xinwei; Liu, Hongying; Wang, Chuanqing; Zhao, Jun
2015-11-17
Interferon regulatory factor 1 (IRF1), as an important transcription factor, is abundantly induced upon virus infections and participates in host antiviral immune responses. However, the roles of porcine IRF1 (poIRF1) in host antiviral defense remain poorly understood. In this study, we determined that poIRF1 was upregulated upon infection with viruses and distributed in nucleus in porcine PK-15 cells. Subsequently, we tested the antiviral activities of poIRF1 against several swine viruses in cells. Overexpression of poIRF1 can efficiently suppress the replication of viruses, and knockdown of poIRF1 promotes moderately viral replication. Interestingly, overexpression of poIRF1 enhances dsRNA-induced IFN-β and IFN-stimulated response element (ISRE) promoter activation, whereas knockdown of poIRF1 cannot significantly affect the activation of IFN-β promoter induced by RNA viruses. This study suggests that poIRF1 plays a significant role in cellular antiviral response against swine viruses, but might be dispensable for IFN-β induction triggered by RNA viruses in PK-15 cells. Given these results, poIRF1 plays potential roles in cellular antiviral responses against swine viruses.
Park, Gwansik; Forman, Jason; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R
2018-02-28
The goal of this study was to explore a framework for developing injury risk functions (IRFs) in a bottom-up approach based on responses of parametrically variable finite element (FE) models representing exemplar populations. First, a parametric femur modeling tool was developed and validated using a subject-specific (SS)-FE modeling approach. Second, principal component analysis and regression were used to identify parametric geometric descriptors of the human femur and the distribution of those factors for 3 target occupant sizes (5th, 50th, and 95th percentile males). Third, distributions of material parameters of cortical bone were obtained from the literature for 3 target occupant ages (25, 50, and 75 years) using regression analysis. A Monte Carlo method was then implemented to generate populations of FE models of the femur for target occupants, using a parametric femur modeling tool. Simulations were conducted with each of these models under 3-point dynamic bending. Finally, model-based IRFs were developed using logistic regression analysis, based on the moment at fracture observed in the FE simulation. In total, 100 femur FE models incorporating the variation in the population of interest were generated, and 500,000 moments at fracture were observed (applying 5,000 ultimate strains for each synthesized 100 femur FE models) for each target occupant characteristics. Using the proposed framework on this study, the model-based IRFs for 3 target male occupant sizes (5th, 50th, and 95th percentiles) and ages (25, 50, and 75 years) were developed. The model-based IRF was located in the 95% confidence interval of the test-based IRF for the range of 15 to 70% injury risks. The 95% confidence interval of the developed IRF was almost in line with the mean curve due to a large number of data points. The framework proposed in this study would be beneficial for developing the IRFs in a bottom-up manner, whose range of variabilities is informed by the population-based FE model responses. Specifically, this method mitigates the uncertainties in applying empirical scaling and may improve IRF fidelity when a limited number of experimental specimens are available.
[Quenched fluorescein: a reference dye for instrument response function of TCSPC].
Pan, Hai-feng; Ding, Jing-xin; Liang, Rong-rong; Tao, Zhan-dong; Liu, Meng-wei; Zhang, San-jun; Xu, Jian-hua
2014-08-01
Measuring the instrument response function (IRF) and fitting by reconvolution algorithms are routines to improve time resolution in fluorescence lifetime measurements. Iodide ions were successfully used to quench the fluorescence of fluorescein in this study. By systematically adding saturated NaI water solution in basic fluorescein solution, the lifetimes of fluorescein were reduced from 4 ns to 24 ps. The quenched lifetime of fluorescein obtained from the analysis of Time-Correlated Single Photon Counting (TCSPC) measurement agrees well with that from femtosecond frequency up-conversion measurement. In time resolved excitation spectra measurements, the IRF should be measured at various detection wavelengths providing scattring materials are used. This study could not only reduce the complexity of IRF measurement, but also avoid the existing color effect in system. This study should have wide applications in time resolved fluorescence spectroscopy and fluorescence lifetime imaging.
Watanabe, Tomohiro; Asano, Naoki; Meng, Guangxun; Yamashita, Kouhei; Arai, Yasuyuki; Sakurai, Toshiharu; Kudo, Masatoshi; Fuss, Ivan J; Kitani, Atsushi; Shimosegawa, Tooru; Chiba, Tsutomu; Strober, Warren
2014-01-01
It is well established that polymorphisms of the nucleotide-binding oligomerization domain 2 (NOD2) gene, a major risk factor in Crohn's disease (CD), lead to loss of NOD2 function. However, a molecular explanation of how such loss of function leads to increased susceptibility to CD has remained unclear. In a previous study exploring this question we reported that activation of NOD2 in human dendritic cells by its ligand, muramyl dipeptide (MDP) negatively regulates Toll-like receptor (TLR)-mediated inflammatory responses. Here we show that NOD2 activation results in increased interferon regulatory factor 4 (IRF4) expression and binding to TNF receptor associated factor 6 (TRAF6) and receptor interacting serine-threonine kinase (RICK). We then show that such binding leads to IRF4-mediated inhibition of Lys63-linked polyubiquitination of TRAF6 and RICK and thus to down-regulation of NF-κB activation. Finally, we demonstrate that protection of mice from the development of experimental colitis by MDP or IRF4 administration is accompanied by similar IRF4-mediated effects on polyubiquitination of TRAF6 and RICK in colonic lamina propria mononuclear cells. These findings thus define a mechanism of NOD2-mediated regulation of innate immune responses to intestinal microflora that could explain the relation of NOD2 polymorphisms and resultant NOD2 dysfunction to CD. PMID:24670424
Mattei, Fabrizio; Schiavoni, Giovanna; Sestili, Paola; Spadaro, Francesca; Fragale, Alessandra; Sistigu, Antonella; Lucarini, Valeria; Spada, Massimo; Sanchez, Massimo; Scala, Stefania; Battistini, Angela; Belardelli, Filippo; Gabriele, Lucia
2012-01-01
The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8-/-) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8-/- mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2′-deoxycytidine into melanoma-bearing IRF-8-/- animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness. PMID:23308054
Xu, Qiaoqing; Jiang, Yousheng; Wangkahart, Eakapol; Zou, Jun; Chang, Mingxian; Yang, Daiqin; Secombes, Chris J; Nie, Pin; Wang, Tiehui
2016-01-01
Interferon regulatory factor (IRF) 10 was first found in birds and is present in the genome of other tetrapods (but not humans and mice), as well as in teleost fish. The functional role of IRF10 in vertebrate immunity is relatively unknown compared to IRF1-9. The target of this research was to clone and characterize the IRF10 genes in three economically important fish species that will facilitate future evaluation of this molecule in fish innate and adaptive immunity. In the present study, a single IRF10 gene was cloned in grass carp Ctenopharyngodon idella and Asian swamp eel Monopterus albus, and two, named IRF10a and IRF10b, in rainbow trout Oncorhynchus mykiss. The fish IRF10 molecules share highest identities to other vertebrate IRF10s, and have a well conserved DNA binding domain, IRF-associated domain, and an 8 exon/7 intron structure with conserved intron phase. The presence of an upstream ATG or open reading frame (ORF) in the 5'-untranslated region of different fish IRF10 cDNA sequences suggests potential regulation at the translational level, and this has been verified by in vitro transcription/translation experiments of the trout IRF10a cDNA, but would still need to be validated in fish cells. Both trout IRF10 paralogues are highly expressed in thymus, blood and spleen but are relatively low in head kidney and caudal kidney. Trout IRF10b expression is significantly higher than IRF10a in integumentary tissues i.e. gills, scales, skin, intestine, adipose fin and tail fins, suggesting that IRF10b may be more important in mucosal immunity. The expression of both trout IRF10 paralogues is up-regulated by recombinant IFN-γ. The expression of the IRF10 genes is highly induced by Poly I:C in vitro and in vivo, and by viral infection, but is less responsive to peptidoglycan and bacterial infection, suggesting an important role of fish IRF10 in antiviral defense.
Ackermann, M.; Ajello, M.; Albert, A.; ...
2012-10-12
The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this study, we describe the effects thatmore » motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. In conclusion, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.« less
Xu, Qiaoqing; Jiang, Yousheng; Wangkahart, Eakapol; Zou, Jun; Chang, Mingxian; Yang, Daiqin; Secombes, Chris J.; Nie, Pin; Wang, Tiehui
2016-01-01
Background Interferon regulatory factor (IRF) 10 was first found in birds and is present in the genome of other tetrapods (but not humans and mice), as well as in teleost fish. The functional role of IRF10 in vertebrate immunity is relatively unknown compared to IRF1-9. The target of this research was to clone and characterize the IRF10 genes in three economically important fish species that will facilitate future evaluation of this molecule in fish innate and adaptive immunity. Molecular Characterization of IRF10 in Three Fish Species In the present study, a single IRF10 gene was cloned in grass carp Ctenopharyngodon idella and Asian swamp eel Monopterus albus, and two, named IRF10a and IRF10b, in rainbow trout Oncorhynchus mykiss. The fish IRF10 molecules share highest identities to other vertebrate IRF10s, and have a well conserved DNA binding domain, IRF-associated domain, and an 8 exon/7 intron structure with conserved intron phase. The presence of an upstream ATG or open reading frame (ORF) in the 5’-untranslated region of different fish IRF10 cDNA sequences suggests potential regulation at the translational level, and this has been verified by in vitro transcription/translation experiments of the trout IRF10a cDNA, but would still need to be validated in fish cells. Expression Analysis of IRF10 In Vivo and In Vitro Both trout IRF10 paralogues are highly expressed in thymus, blood and spleen but are relatively low in head kidney and caudal kidney. Trout IRF10b expression is significantly higher than IRF10a in integumentary tissues i.e. gills, scales, skin, intestine, adipose fin and tail fins, suggesting that IRF10b may be more important in mucosal immunity. The expression of both trout IRF10 paralogues is up-regulated by recombinant IFN-γ. The expression of the IRF10 genes is highly induced by Poly I:C in vitro and in vivo, and by viral infection, but is less responsive to peptidoglycan and bacterial infection, suggesting an important role of fish IRF10 in antiviral defense. PMID:26783745
Daffis, Stephane; Samuel, Melanie A; Keller, Brian C; Gale, Michael; Diamond, Michael S
2007-01-01
Interferon regulatory factor (IRF)-3 is a master transcription factor that activates host antiviral defense programs. Although cell culture studies suggest that IRF-3 promotes antiviral control by inducing interferon (IFN)-β, near normal levels of IFN-α and IFN-β were observed in IRF-3−/− mice after infection by several RNA and DNA viruses. Thus, the specific mechanisms by which IRF-3 modulates viral infection remain controversial. Some of this disparity could reflect direct IRF-3-dependent antiviral responses in specific cell types to control infection. To address this and determine how IRF-3 coordinates an antiviral response, we infected IRF-3−/− mice and two primary cells relevant for West Nile virus (WNV) pathogenesis, macrophages and cortical neurons. IRF-3−/− mice were uniformly vulnerable to infection and developed elevated WNV burdens in peripheral and central nervous system tissues, though peripheral IFN responses were largely normal. Whereas wild-type macrophages basally expressed key host defense molecules, including RIG-I, MDA5, ISG54, and ISG56, and restricted WNV infection, IRF-3−/− macrophages lacked basal expression of these host defense genes and supported increased WNV infection and IFN-α and IFN-β production. In contrast, wild-type cortical neurons were highly permissive to WNV and did not basally express RIG-I, MDA5, ISG54, and ISG56. IRF-3−/− neurons lacked induction of host defense genes and had blunted IFN-α and IFN-β production, yet exhibited only modestly increased viral titers. Collectively, our data suggest that cell-specific IRF-3 responses protect against WNV infection through both IFN-dependent and -independent programs. PMID:17676997
NASA Astrophysics Data System (ADS)
Ascott, M.; Bloomfield, J.; Macdonald, D.; Marchant, B.; McKenzie, A.
2017-12-01
The Cretaceous Chalk, the most important aquifer in the United Kingdom (UK) for public water supply, underlies many large cities in southern and eastern England including parts of London, however, it is prone to groundwater flooding. We have developed a new approach to analyse the spatio-temporal extent of groundwater flooding using statistical analysis of groundwater level hydrographs and impulse response functions (IRFs) applied to a major Chalk groundwater flooding event in the UK during winter 2013/14. Using monthly groundwater levels for 26 boreholes in the Chalk and a new standardised index for groundwater flooding, we have: estimated standardised series; grouped them using k-means cluster analysis; and, cross-correlated the cluster centroids with the Standardised Precipitation Index accumulated over time intervals between 1 and 60 months. This analysis reveals two spatially coherent groups of standardised hydrographs which respond to precipitation over different timescales. We estimate IRF models of the groundwater level response to effective precipitation for three boreholes in each group. The IRF models support the SPI analysis showing different response functions between the two groups. If we apply identical effective precipitation inputs to each of the IRF models we see differences between the hydrographs from each group. It is proposed that these differences are due to the intrinsic, hydrogeological properties of the Chalk and of overlying relatively low permeability superficial deposits. Consequently, it is concluded that the overarching controls on groundwater flood response are a complex combination of antecedent conditions, rainfall and catchment hydrogeological properties. These controls should be taken into consideration when anticipating and managing future groundwater flood events.
Li, Edward B; Truong, Dawn; Hallett, Shawn A; Mukherjee, Kusumika; Schutte, Brian C; Liao, Eric C
2017-09-01
Large-scale sequencing efforts have captured a rapidly growing catalogue of genetic variations. However, the accurate establishment of gene variant pathogenicity remains a central challenge in translating personal genomics information to clinical decisions. Interferon Regulatory Factor 6 (IRF6) gene variants are significant genetic contributors to orofacial clefts. Although approximately three hundred IRF6 gene variants have been documented, their effects on protein functions remain difficult to interpret. Here, we demonstrate the protein functions of human IRF6 missense gene variants could be rapidly assessed in detail by their abilities to rescue the irf6 -/- phenotype in zebrafish through variant mRNA microinjections at the one-cell stage. The results revealed many missense variants previously predicted by traditional statistical and computational tools to be loss-of-function and pathogenic retained partial or full protein function and rescued the zebrafish irf6 -/- periderm rupture phenotype. Through mRNA dosage titration and analysis of the Exome Aggregation Consortium (ExAC) database, IRF6 missense variants were grouped by their abilities to rescue at various dosages into three functional categories: wild type function, reduced function, and complete loss-of-function. This sensitive and specific biological assay was able to address the nuanced functional significances of IRF6 missense gene variants and overcome many limitations faced by current statistical and computational tools in assigning variant protein function and pathogenicity. Furthermore, it unlocked the possibility for characterizing yet undiscovered human IRF6 missense gene variants from orofacial cleft patients, and illustrated a generalizable functional genomics paradigm in personalized medicine.
Huang, Li; Xiong, Tao; Yu, Huibin; Zhang, Quan; Zhang, Kunli; Li, Changyao; Hu, Liang; Zhang, Yuanfeng; Zhang, Lijie; Liu, Qinfang; Wang, Shengnan; He, Xijun; Bu, Zhigao; Cai, Xuehui; Cui, Shangjin; Li, Jiangnan; Weng, Changjiang
2017-06-09
TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK. © 2017 The Author(s).
Huang, Li; Xiong, Tao; Yu, Huibin; Zhang, Quan; Zhang, Kunli; Li, Changyao; Hu, Liang; Zhang, Yuanfeng; Zhang, Lijie; Liu, Qinfang; Wang, Shengnan; He, Xijun; Bu, Zhigao; Cai, Xuehui
2017-01-01
TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)–(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK–TBK1–IKKε–IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK. PMID:28487378
RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)
Long, Andrew J.
2015-01-01
The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.
Deconvolution improves the accuracy and depth sensitivity of time-resolved measurements
NASA Astrophysics Data System (ADS)
Diop, Mamadou; St. Lawrence, Keith
2013-03-01
Time-resolved (TR) techniques have the potential to distinguish early- from late-arriving photons. Since light travelling through superficial tissue is detected earlier than photons that penetrate the deeper layers, time-windowing can in principle be used to improve the depth sensitivity of TR measurements. However, TR measurements also contain instrument contributions - referred to as the instrument-response-function (IRF) - which cause temporal broadening of the measured temporal-point-spread-function (TPSF). In this report, we investigate the influence of the IRF on pathlength-resolved absorption changes (Δμa) retrieved from TR measurements using the microscopic Beer-Lambert law (MBLL). TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved to recover the distribution of time-of-flights (DTOFs) of the detected photons. The microscopic Beer-Lambert law was applied to early and late time-windows of the TPSFs and DTOFs to access the effects of the IRF on pathlength-resolved Δμa. The analysis showed that the late part of the TPSFs contains substantial contributions from early-arriving photons, due to the smearing effects of the IRF, which reduced its sensitivity to absorption changes occurring in deep layers. We also demonstrated that the effects of the IRF can be efficiently eliminated by applying a robust deconvolution technique, thereby improving the accuracy and sensitivity of TR measurements to deep-tissue absorption changes.
The ischiorectal fossa: an alternative route for the administration of prostaglandin in cattle
Colazo, Marcos G.; MartÍnez, Marcelo F.; Kastelic, John P.; Mapletoft, Reuben J.; Carruthers, Terry D.
2002-01-01
Three experiments were conducted to investigate the ischiorectal fossa (IRF) as a route for the administration of prostaglandin F2α (dinoprost) in cattle. In Experiment 1, 21 nonlactating Holstein cows were given 100 μg of gonadotropin releasing hormone (GnRH), intramuscularly (IM), and, 7 d later, 25 mg of dinoprost into the IRF. Sixteen cows had serum progesterone concentrations ≥ 1.0 ng/mL at the time of dinoprost treatment, and all of these had rapid and complete luteolysis; the other 5 cows were not considered to have a functional corpus luteum (CL) at the time of treatment. There were minimal adverse behavioral reactions to the IRF injections and no visible or palpable tissue reactions at the injection site. In Experiment 2, 74 Holstein heifers were given 25 mg of dinoprost by IRF injection. Luteolysis occurred in 84.3% of the heifers with a functional CL (as determined by the serum progesterone concentration at the time of treatment). Of the heifers bred by either natural service or artificial insemination, 61.8% became pregnant. In Experiment 3, 48 beef heifers received dinoprost 7 d after ovulation, as follows: 25 mg, IM (n = 9); 25 mg, IRF (n = 10); 10 mg, IRF (n = 10); 10 mg, subcutaneously (SC) (n = 10); or 10 mg, intravulvosubmucosally (IVSM) (n = 9). Fewer heifers (P < 0.05) were found to be in estrus or ovulating in the 10 mg IVSM group (0% and 11%, respectively) than in the 25 mg IM group (100% and 100%), the 25 mg IRF group (90% and 100%, respectively), or the 10 mg IRF group (80% and 80%). The rates of estrus (50%) and ovulation (50%) were intermediate in the 10 mg SC group. In summary, 25 mg of dinoprost injected into the IRF caused minimal behavioral or tissue response and induced luteolysis and fertile estrus. In addition, 10 mg of dinoprost injected into the IRF was as efficacious as 25 mg given either IM or into the IRF in inducing estrus and ovulation. PMID:12125185
Distinct DC subsets regulate adaptive Th1 and 2 responses during Trichuris muris infection.
Demiri, M; Müller-Luda, K; Agace, W W; Svensson-Frej, M
2017-10-01
Low- and high-dose infections with the murine large intestinal nematode Trichuris muris are associated with induction of adaptive Th1 and Th2 responses, respectively, in mesenteric lymph nodes (MLN). Classical dendritic cells (cDC) accumulate in the large intestinal mucosa and MLN upon T. muris infection, yet their role in driving adaptive responses to infection remains largely unknown. We performed low- and high-dose T. muris infections of mice deficient in defined cDC subsets to investigate their role in induction of adaptive immune responses. Mice lacking IRF4-dependent cDC failed to clear a high-dose infection and displayed impaired Th2 responses. Conversely, mice lacking IRF8-dependent cDC cleared a low-dose infection and displayed an impaired Th1 response while increased production of Th2 cytokines. Finally, mice lacking both IRF4- and IRF8-dependent cDC were able to generate a Th2 response and clear a low-dose infection. Collectively, these results suggest that IRF4- and IRF8-dependent cDC act antagonistically during T. muris infection, and demonstrate that intestinal Th2 responses can be generated towards T. muris in the absence of IRF4-dependent cDC. © 2017 John Wiley & Sons Ltd.
The impulse response of S-cone pathways in detection of increments and decrements
Shinomori, Keizo; Werner, John S.
2008-01-01
Impulse response functions (IRFs) were obtained from two-pulse detection thresholds using isoluminant stimuli that produced increments or decrements in S-cone excitation. The pulses were chromatically modulated at constant luminance (based on 18 Hz heterochromatic flicker photometry). Chromatic stimuli were presented as a Gaussian patch (±1 SD = 2.3°) in one of four quadrants around a central fixation cross on a CRT screen. Each of the two pulses (6.67 ms) was separated by an inter-stimulus interval (ISI) from 20 to 360 ms. Chromaticity of the pulses was changed from the equal-energy white of the background to a bluish or yellowish color along individually determined tritan lines (based on color matching under strong S-cone adaptation from a 420 nm background superimposed in Maxwellian view). Chromatic detection thresholds were determined by a four-alternative forced-choice method with staircases for each ISI interleaved in each session. Measurements were repeated in at least four sessions for each observer. IRFs were calculated by varying four parameters of an exponentially-damped sinewave. Both S-cone increment and decrement IRFs are characterized by a single excitatory phase and a much longer time course compared with IRFs derived for luminance modulation using the same apparatus and observers. S-cone increment IRFs are faster than S-cone decrement IRFs; the time to peak amplitude of S-cone increment and decrement IRFs is 50–70 and 100–120 ms, respectively. These results were used to derive the temporal contrast sensitivity for human observers of putative ON- and OFF-channels carrying signals from S-cones. PMID:18321402
Association of a functional IRF7 variant with systemic lupus erythematosus.
Fu, Qiong; Zhao, Jian; Qian, Xiaoxia; Wong, Jonathan L H; Kaufman, Kenneth M; Yu, C Yung; Mok, Mo Yin; Harley, John B; Guthridge, Joel M; Song, Yeong Wook; Cho, Soo-Kyung; Bae, Sang-Cheol; Grossman, Jennifer M; Hahn, Bevra H; Arnett, Frank C; Shen, Nan; Tsao, Betty P
2011-03-01
A previous genome-wide association study conducted in a population of European ancestry identified rs4963128, a KIAA1542 single-nucleotide polymorphism (SNP) 23 kb telomeric to IRF7 (the gene for interferon regulatory factor 7 [IRF-7]), to be strongly associated with systemic lupus erythematosus (SLE). This study was undertaken to investigate whether genetic polymorphism within IRF7 is a risk factor for the development of SLE. We genotyped one KIAA1542 SNP (rs4963128) and one IRF7 SNP (rs1131665 [Q412R]) in an Asian population (1,302 cases, 1,479 controls), to assess their association with SLE. Subsequently, rs1131665 was further genotyped in independent panels of Chinese subjects (528 cases, 527 controls), European American subjects (446 cases, 461 controls), and African American subjects (159 cases, 115 controls) by TaqMan genotyping assay, to seek confirmation of association in various ethnic groups. A luciferase reporter assay was used to assess the effect of Q412R polymorphism on the activation of IRF-7. Consistent association of rs1131665 (Q412R) with SLE was identified in Asian, European American, and African American populations (total 2,435 cases and 2,582 controls) (P(meta) = 6.18 × 10(-6) , odds ratio 1.42 [95% confidence interval 1.22-1.65]). Expression of the IRF7 412Q risk allele resulted in a 2-fold increase in interferon-stimulated response element transcriptional activity compared with expression of IRF7 412R (P = 0.0003), suggesting that IRF7 412Q confers elevated IRF-7 activity and may therefore affect a downstream interferon pathway. These findings show that the major allele of a nonsynonymous SNP, rs1131665 (412Q) in IRF7, confers elevated activation of IRF-7 and predisposes to the development of SLE in multiple ethnic groups. This result provides direct genetic evidence that IRF7 may be a risk gene for human SLE. Copyright © 2011 by the American College of Rheumatology.
Man, Kevin; Gabriel, Sarah S; Liao, Yang; Gloury, Renee; Preston, Simon; Henstridge, Darren C; Pellegrini, Marc; Zehn, Dietmar; Berberich-Siebelt, Friederike; Febbraio, Mark A; Shi, Wei; Kallies, Axel
2017-12-19
During chronic stimulation, CD8 + T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, down-modulation of effector function, and metabolic impairments. T cell exhaustion protects from excessive immunopathology but limits clearance of virus-infected or tumor cells. We transcriptionally profiled antigen-specific T cells from mice infected with lymphocytic choriomeningitis virus strains that cause acute or chronic disease. T cell exhaustion during chronic infection was driven by high amounts of T cell receptor (TCR)-induced transcription factors IRF4, BATF, and NFATc1. These regulators promoted expression of inhibitory receptors, including PD-1, and mediated impaired cellular metabolism. Furthermore, they repressed the expression of TCF1, a transcription factor required for memory T cell differentiation. Reducing IRF4 expression restored the functional and metabolic properties of antigen-specific T cells and promoted memory-like T cell development. These findings indicate that IRF4 functions as a central node in a TCR-responsive transcriptional circuit that establishes and sustains T cell exhaustion during chronic infection. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)
NASA Astrophysics Data System (ADS)
Long, A. J.
2015-03-01
The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.
Huang, Bei; Jia, Qin Qin; Liang, Ying; Huang, Wen Shu; Nie, P
2015-10-01
IRF10 gene was cloned in orange spotted grouper, Epinephelus coioides, and its expression was examined following poly(I:C) stimulation and bacterial infection. The cDNA sequence of grouper IRF10 contains an open reading frame of 1197 bp, flanked by 99 bp 5'-untranslated region and 480 bp 3'- untranslated region. Multiple alignments showed that the grouper IRF10 has a highly conserved DNA binding domain in the N terminus with characteristic motif containing five tryptophan residues. Quantitative real-time PCR analysis revealed that the expression of IRF10 was responsive to both poly(I:C) stimulation and Vibrio parahemolyticus infection, with a higher increase to poly(I:C), indicating an important role of IRF10 in host immune response during infection. A phyletic distribution of IRF members was also examined in vertebrates, and IRF10 was found in most lineages of vertebrates, not in modern primates and rodents. It is suggested that the first divergence of IRF members might have occurred before the evolutionary split of vertebrate and cephalochordates, producing ancestors of IRF (1/2/11) and IRF (4/8/9/10)[(3/7) (5/6)], and that the second and/or third divergence of IRF members occurred following the split, thus leading to the subsets of the IRF family in vertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nam, Sorim; Kang, Kyeongah; Cha, Jae Seon; Kim, Jung Woo; Lee, Hee Gu; Kim, Yonghwan; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok
2016-12-01
Myeloid-derived suppressor cells (MDSCs) are immature cells that do not differentiate into mature myeloid cells. Two major populations of PMN-MDSCs (Ly6G high Ly6C low Gr1 high CD11b + ) and MO-MDSCs (Ly6G - Ly6C high Gr-1 int CD11b + ) have an immune suppressive function. Interferon regulatory factor 4 (IRF4) has a role in the negative regulation of TLR signaling and is associated with lymphoid cell development. However, the roles of IRF4 in myeloid cell differentiation are unclear. In this study, we found that IRF4 expression was remarkably suppressed during the development of MDSCs in the tumor microenvironment. Both the mRNA and protein levels of IRF4 in MDSCs were gradually reduced, depending on the development of tumors in the 4T1 model. siRNA-mediated knockdown of IRF4 in bone marrow cells promoted the differentiation of PMN-MDSCs. Similarly, IRF4 inhibition in bone marrow cells using simvastatin, which has been known to inhibit IRF4 expression, increased PMN-MDSC numbers. In contrast, IRF4 overexpression in bone marrow cells inhibited the total numbers of MDSCs, especially PMN-MDSCs. Notably, treatment with IL-4, an upstream regulator of IRF4, induced IRF4 expression in the bone marrow cells, and consequently, IL-4-induced IRF4 expression resulted in a decrease in PMN-MDSC numbers. Finally, we confirmed that IRF4 expression in MDSCs can modulate their activity to inhibit T cell proliferation through IL-10 production and ROS generation, and myeloid-specific deletion of IRF4 leads to the increase of MDSC differentiation. Our present findings indicate that IRF4 reduction induced by tumor formation can increase the number of MDSCs, and increases in the IRF4 expression in MDSCs may infringe on the immune-suppressive function of MDSCs. © Society for Leukocyte Biology.
Ning, Shunbin; Campos, Alex D.; Darnay, Bryant G.; Bentz, Gretchen L.; Pagano, Joseph S.
2008-01-01
We have recently shown that interferon regulatory factor 7 (IRF7) is activated by Epstein-Barr virus latent membrane protein 1 (LMP1), a member of the tumor necrosis factor receptor (TNFR) superfamily, through receptor-interacting protein-dependent K63-linked ubiquitination (L. E. Huye, S. Ning, M. Kelliher, and J. S. Pagano, Mol. Cell. Biol. 27:2910-2918, 2007). In this study, with the use of small interfering RNA and TNFR-associated factor 6 (TRAF6) knockout cells, we first show that TRAF6 and its E3 ligase activity are required for LMP1-stimulated IRF7 ubiquitination. In Raji cells which are latently infected and express high levels of LMP1 and IRF7 endogenously, expression of a TRAF6 small hairpin RNA construct reduces endogenous ubiquitination and endogenous activity of IRF7. In TRAF6−/− mouse embryonic fibroblasts, reconstitution with TRAF6 expression, but not with TRAF6(C70A), which lacks the E3 ligase activity, recovers LMP1's ability to stimulate K63-linked ubiquitination of IRF7. Further, we identify IRF7 as a substrate for TRAF6 E3 ligase and show that IRF7 is ubiquitinated by TRAF6 at multiple sites both in vitro and in vivo. Most important, we determine that the last three C-terminal lysine sites (positions 444, 446, and 452) of human IRF7 variant A are essential for activation of IRF7; these are the first such sites identified. A ubiquitination-deficient mutant of IRF7 with these sites mutated to arginines completely loses transactivational ability in response not only to LMP1 but also to the IRF7 kinase IκB kinase ɛ. In addition, we find that K63-linked ubiquitination of IRF7 occurs independently of its C-terminal functional phosphorylation sites. These data support our hypothesis that regulatory ubiquitination of IRF7 is a prerequisite for its phosphorylation. This is the first evidence to imply that ubiquitination is required for phosphorylation and activation of a transcription factor. PMID:18710948
The tumor suppressor PTEN has a critical role in antiviral innate immunity.
Li, Shun; Zhu, Mingzhu; Pan, Ruangang; Fang, Ting; Cao, Yuan-Yuan; Chen, Shuliang; Zhao, Xiaolu; Lei, Cao-Qi; Guo, Lin; Chen, Yu; Li, Chun-Mei; Jokitalo, Eija; Yin, Yuxin; Shu, Hong-Bing; Guo, Deyin
2016-03-01
The gene encoding PTEN is one of the most frequently mutated tumor suppressor-encoding genes in human cancer. While PTEN's function in tumor suppression is well established, its relationship to anti-microbial immunity remains unknown. Here we found a pivotal role for PTEN in the induction of type I interferon, the hallmark of antiviral innate immunity, that was independent of the pathway of the kinases PI(3)K and Akt. PTEN controlled the import of IRF3, a master transcription factor responsible for IFN-β production, into the nucleus. We further identified a PTEN-controlled negative phosphorylation site at Ser97 of IRF3 and found that release from this negative regulation via the phosphatase activity of PTEN was essential for the activation of IRF3 and its import into the nucleus. Our study identifies crosstalk between PTEN and IRF3 in tumor suppression and innate immunity.
NASA Astrophysics Data System (ADS)
Tang, Chaoli; Wei, Yuanyuan; Liu, Dong; Luo, Tao; Dai, Congming; Wei, Heli
2017-12-01
The global distribution and variations of NO infrared radiative flux (NO-IRF) are presented during 2002-2016 in the thermosphere covering 100-280 km altitude based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) data set. For investigating the spatial variations of the mutual relationship between NO-IRF and solar activity, the altitude ranges from 100 km to 280 km are divided into 90 altitude bins, and the latitude regions of 83°S-83°N are divided into 16 latitude bins. By processing about 1.8E9 NO-IRF observation values from about 5E6 vertical nighttime profiles recorded in SABER data set, we obtained more than 4.1E8 samples of NO-IRF. The annual-mean values of NO-IRF are then calculated by all available NO-IRF samples within each latitude and altitude bin. Local latitudinal maxima in NO-IRF are found between 120 and 145 km altitude, and the maximum NO-IRF located at polar regions are 3 times more than that of the minimum at equatorial region. The influences of solar and geomagnetic activity on the spatial variations of NO-IRF are investigated. Both the NO-IRF and its response to solar and geomagnetic activity show nearly symmetric distribution between the two hemispheres. It is demonstrated that the observed changes in NO-IRF at altitudes between 100 and 225 km correlate well with the changes in solar activity. The NO-IRF at solar maximum is about 4 times than that at solar minimum, and the current maximum of NO-IRF in 2014 is less than 70% of the prior maximum in 2001. For the first time, the response ranges of the NO-IRF to solar and geomagnetic activity at different altitudes and latitudes are reported.
Deng, Song-Yun; Zhang, Le-Meng; Ai, Yu-hang; Pan, Pin-Hua; Zhao, Shuang-Ping; Su, Xiao-Li; Wu, Dong-Dong; Tan, Hong-Yi; Zhang, Li-Na; Tsung, Allan
2017-01-01
Sepsis causes many early deaths; both macrophage mitochondrial damage and oxidative stress responses are key factors in its pathogenesis. Although the exact mechanisms responsible for sepsis-induced mitochondrial damage are unknown, the nuclear transcription factor, interferon regulatory factor-1 (IRF-1) has been reported to cause mitochondrial damage in several diseases. Previously, we reported that in addition to promoting systemic inflammation, IRF-1 promoted the apoptosis of and inhibited autophagy in macrophages. In the present study, we hypothesized that lipopolysaccharide (LPS)-induced IRF-1 activation in macrophages may promote mitochondrial damage and oxidative stress. In vitro, LPS was found to promote IRF-1 activation, reactive oxygen species (ROS) production, adenosine triphosphate (ATP) depletion, superoxide dismutase (SOD) consumption, malondialdehyde (MDA) accumulation and mitochondrial depolarization in macrophages in a time- and dose-dependent manner. These effects were abrogated in cells in which IRF-1 was knocked down. Furthermore, IRF-1 overexpression increased LPS-induced oxidative stress responses and mitochondrial damage. In vivo, peritoneal macrophages obtained from IRF-1 knockout (KO) mice produced less ROS and had less mitochondrial depolarization and damage following the administration of LPS, when compared to their wild-type (WT) counterparts. In addition, IRF-1 KO mice exhibited a decreased release of mitochondrial DNA (mtDNA) following the administration of LPS. Thus, IRF-1 may be a critical factor in augmenting LPS-induced oxidative stress and mitochondrial damage in macrophages. PMID:28849179
Hydrograph separation for karst watersheds using a two-domain rainfall-discharge model
Long, Andrew J.
2009-01-01
Highly parameterized, physically based models may be no more effective at simulating the relations between rainfall and outflow from karst watersheds than are simpler models. Here an antecedent rainfall and convolution model was used to separate a karst watershed hydrograph into two outflow components: one originating from focused recharge in conduits and one originating from slow flow in a porous annex system. In convolution, parameters of a complex system are lumped together in the impulse-response function (IRF), which describes the response of the system to an impulse of effective precipitation. Two parametric functions in superposition approximate the two-domain IRF. The outflow hydrograph can be separated into flow components by forward modeling with isolated IRF components, which provides an objective criterion for separation. As an example, the model was applied to a karst watershed in the Madison aquifer, South Dakota, USA. Simulation results indicate that this watershed is characterized by a flashy response to storms, with a peak response time of 1 day, but that 89% of the flow results from the slow-flow domain, with a peak response time of more than 1 year. This long response time may be the result of perched areas that store water above the main water table. Simulation results indicated that some aspects of the system are stationary but that nonlinearities also exist.
Least squares deconvolution for leak detection with a pseudo random binary sequence excitation
NASA Astrophysics Data System (ADS)
Nguyen, Si Tran Nguyen; Gong, Jinzhe; Lambert, Martin F.; Zecchin, Aaron C.; Simpson, Angus R.
2018-01-01
Leak detection and localisation is critical for water distribution system pipelines. This paper examines the use of the time-domain impulse response function (IRF) for leak detection and localisation in a pressurised water pipeline with a pseudo random binary sequence (PRBS) signal excitation. Compared to the conventional step wave generated using a single fast operation of a valve closure, a PRBS signal offers advantageous correlation properties, in that the signal has very low autocorrelation for lags different from zero and low cross correlation with other signals including noise and other interference. These properties result in a significant improvement in the IRF signal to noise ratio (SNR), leading to more accurate leak localisation. In this paper, the estimation of the system IRF is formulated as an optimisation problem in which the l2 norm of the IRF is minimised to suppress the impact of noise and interference sources. Both numerical and experimental data are used to verify the proposed technique. The resultant estimated IRF provides not only accurate leak location estimation, but also good sensitivity to small leak sizes due to the improved SNR.
Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1
Cho, Jae Youl
2018-01-01
Interferon regulatory factor (IRF)-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN). Thymoquinone (TQ) is a compound derived from black cumin (Nigella sativa L.) and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I) luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1), an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities. PMID:29751576
Liao, Zhiwei; Wan, Quanyuan; Su, Jianguo
2016-08-01
Interferons (IFNs) play crucial roles in the immune response of defense against viral infection and bacteria invasion. In the present study, we systematically identified and characterized the IFNs, their regulatory factors (Interferon Regulatory Factors, IRFs) and receptors (Cytokine Receptor Family B, CRFBs) in grass carp (Ctenopharyngodon idella). Grass carp IFNs can be classified into type I IFN (IFN-I) and type II IFN (IFN-II) like other teleosts. IFN-I consist of two groups with two (group I) or four (group II) cysteines in the mature peptide and can be further divided into three subgroups (IFN-a, -c and -d), containing four members: IFN1, IFN2, IFN3, IFN4 in grass carp. IFN-II contain two members, IFNγ2 with the similarity to mammalian IFNγ and a cyprinid specific IFNγ1 (IFNγ-rel) molecule. mRNA expression analyses of IFNs discovered that IFN1 and IFN-II were sustainably expressed in many tissues, while other IFN members were transiently expressed in specific tissues and time points. In the immune response, IFN transcriptions are primarily regulated through multiple IRFs after grass carp reovirus (GCRV) challenge. IRF family possess thirteen members in grass carp, which can be further divided into four subfamilies (IRF-1, -3, -4 and -5 subfamily), each of them plays different roles in the innate and adaptive immunity via various signaling pathways to interact with IFNs (mainly IFN-I). IFNs have to bind receptors (CRFBs) to perform their functions. CRFBs as IFN receptors contain six members in grass carp. The structure and expression characterizations of IFNs, IRFs and CRFBs were analyzed using bioinformatics tools. These results might provide basic data for the further functional research of IFN system, and deeply understand fish immune mechanisms against virus infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oriss, Timothy B.; Raundhal, Mahesh; Morse, Christina; Huff, Rachael E.; Das, Sudipta; Hannum, Rachel; Gauthier, Marc C.; Scholl, Kathryn L.; Chakraborty, Krishnendu; Nouraie, Seyed M.; Wenzel, Sally E.; Ray, Prabir
2017-01-01
Severe asthma (SA) is a significant problem both clinically and economically, given its poor response to corticosteroids (CS). We recently reported a complex type 1–dominated (IFN-γ–dominated) immune response in more than 50% of severe asthmatics despite high-dose CS treatment. Also, IFN-γ was found to be critical for increased airway hyperreactivity (AHR) in our model of SA. The transcription factor IRF5 expressed in M1 macrophages can induce a Th1/Th17 response in cocultured human T cells. Here we show markedly higher expression of IRF5 in bronchoalveolar lavage (BAL) cells of severe asthmatics as compared with that in cells from milder asthmatics or healthy controls. Using our SA mouse model, we demonstrate that lack of IRF5 in lymph node migratory DCs severely limits their ability to stimulate the generation of IFN-γ– and IL-17–producing CD4+ T cells and IRF5–/– mice subjected to the SA model displayed significantly lower IFN-γ and IL-17 responses, albeit showing a reciprocal increase in Th2 response. However, the absence of IRF5 rendered the mice responsive to CS with suppression of the heightened Th2 response. These data support the notion that IRF5 inhibition in combination with CS may be a viable approach to manage disease in a subset of severe asthmatics. PMID:28515358
Tellier, Julie; Shi, Wei; Minnich, Martina; Liao, Yang; Crawford, Simon; Smyth, Gordon K; Kallies, Axel; Busslinger, Meinrad; Nutt, Stephen L
2016-03-01
Plasma cell differentiation requires silencing of B cell transcription, while it establishes antibody-secretory function and long-term survival. The transcription factors Blimp-1 and IRF4 are essential for the generation of plasma cells; however, their function in mature plasma cells has remained elusive. We found that while IRF4 was essential for the survival of plasma cells, Blimp-1 was dispensable for this. Blimp-1-deficient plasma cells retained their transcriptional identity but lost the ability to secrete antibody. Blimp-1 regulated many components of the unfolded protein response (UPR), including XBP-1 and ATF6. The overlap in the functions of Blimp-1 and XBP-1 was restricted to that response, with Blimp-1 uniquely regulating activity of the kinase mTOR and the size of plasma cells. Thus, Blimp-1 was required for the unique physiological ability of plasma cells that enables the secretion of protective antibody.
Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin
2017-10-06
Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Pestivirus Npro Directly Interacts with Interferon Regulatory Factor 3 Monomer and Dimer
Holthauzen, Luis Marcelo F.; Ruggli, Nicolas
2016-01-01
ABSTRACT Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/β) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein Npro that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant Npro and IRF3 proteins and show that Npro interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between Npro and IRF3 is not dependent on the activation state of IRF3, since Npro binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the Npro-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE The pestivirus N-terminal protease, Npro, is essential for evading the host's immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the Npro interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that Npro targets for degradation, is largely unknown. We show that classical swine fever virus Npro and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with Npro. Additionally, Npro interacts with a constitutively active form of IRF3 bound to its transcriptional cofactor, the CREB-binding protein. This is the first study to demonstrate that Npro is able to bind both inactive IRF3 monomer and activated IRF3 dimer and thus likely targets both IRF3 species for ubiquitination and proteasomal degradation. PMID:27334592
[Mechanism for synergistic effect of IRF4 and MITF on tyrosinase promoter].
Song, Jian; Liu, Xueming; Li, Jiada; Liu, Huadie; Peng, Zhen; Chen, Hongsheng; Mei, Lingyun; He, Chufeng; Feng, Yong
2018-05-28
To investigate the mechanism for the synergistic effect of interferon regulatory factor 4 (IRF4) and microphthalmia-associated transcription factor (MITF) on tyrosinase (TYR) promoter. Methods: The synergistic transcriptional effect, subcellular localization, and protein-protein interaction for IRF4 and MITF were observed by luciferase assay, immunofluorescence, GST-pull down, and co-immunoprecipitation, respectively. Results: IRF4 and MITF proteins were co-expressed in the cell nucleus. IRF4 augmented the transcriptional function of MITF (but not the mutant MITF) to activate the expression of the TYR promoter, but with no effect on other MITF-specific target promoters. IRF4 alone did not affect TYR promoter significantly. No direct interaction between the two proteins was noted. Conclusion: IRF4 and MITF exert a specifically synergistic effect on activation of TYR promoter through IRF4-mediated upregulation of transcriptional function of MITF. This synergistic effect is mainly regulated by MITF; DNA might be involved in the interaction between the two proteins.
Matthews, Krystal; Schäfer, Alexandra; Pham, Alissa; Frieman, Matthew
2014-12-07
The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction. We have used plasmids expressing PLpro and IRF3 including an IRF3 mutant that is constitutively active, called IRF3(5D). In these experiments we utilize transfections, chromatin immunoprecipitation, Electro-mobility Shift Assays (EMSA) and protein localization to identify where IRF3 and IRF3(5D) are inhibited by PLpro. Here we show that PLpro also inhibits IRF3 activation at a step after phosphorylation and that this inhibition is dependent on the de-ubiquitination (DUB) activity of PLpro. We found that PLpro is able to block the type I IFN induction of a constitutively active IRF3, but does not inhibit IRF3 dimerization, nuclear localization or DNA binding. However, inhibition of PLpro's DUB activity by mutagenesis blocked the IRF3 inhibition activity of PLpro, suggesting a role for IRF3 ubiquitination in induction of a type I IFN innate immune response. These results demonstrate an additional mechanism that PLpro is able to inhibit IRF3 signaling. These data suggest novel innate immune antagonism activities of PLpro that may contribute to SARS-CoV pathogenesis.
SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sun-Mi; School of Biological Sciences and Biotechnology, Chonnam National University, Gwangju 500-757; Chae, Myounghee
2010-01-01
Interferon regulatory factor-1 (IRF-1) is an interferon-induced transcriptional activator that suppresses tumors by impeding cell proliferation. Recently, we demonstrated that the level of SUMOylated IRF-1 is elevated in tumor cells, and that SUMOylation of IRF-1 attenuates its tumor-suppressive function. Here we report that SUMOylated IRF-1 mimics IRF-2, an antagonistic repressor, and shows oncogenic potential. To demonstrate the role of SUMOylated IRF-1 in tumorigenesis, we used SUMO-IRF-1 recombinant protein. Stable expression of SUMO-IRF-1 in NIH3T3 cells resulted in focus formation and anchorage-independent growth in soft agar. Inoculation of SUMO-IRF-1-transfected cells into athymic nude mice resulted in tumor formation and infiltration ofmore » adipose tissues. Finally, we demonstrated that SUMO-IRF-1 transforms NIH3T3 cells in a dose-dependent manner suggesting that SUMOylated IRF-1 may act as an oncogenic protein in tumor cells.« less
Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection
Xu, Zhipeng; Xu, Lei; Li, Wei; Jin, Xin; Song, Xian; Chen, Xiaojun; Zhu, Jifeng; Zhou, Sha; Li, Yong; Zhang, Weiwei; Dong, Xiaoxiao; Yang, Xiaowei; Liu, Feng; Bai, Hui; Chen, Qi; Su, Chuan
2017-01-01
The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses. PMID:28695899
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4
Ochiai, Kyoko; Maienschein-Cline, Mark; Simonetti, Giorgia; Chen, Jianjun; Rosenthal, Rebecca; Brink, Robert; Chong, Anita S.; Klein, Ulf; Dinner, Aaron R.; Singh, Harinder; Sciammas, Roger
2013-01-01
Summary The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 co-bound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of “kinetic control” in which signaling induced dynamics of IRF4 in activated B cells control their cell fate outcomes. PMID:23684984
Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.
Functional Outcomes of Persons Undergoing Dysvascular Lower Extremity Amputations
Sauter, Carley N.; Pezzin, Liliana E.; Dillingham, Timothy R.
2012-01-01
Objective To examine the effect of post-acute rehabilitation setting on functional outcomes among patients undergoing major lower extremity dysvascular amputations. Design A population-based, prospective cohort study conducted in Maryland and Wisconsin. Data collected from medical records and patient interviews conducted during acute hospitalization following amputation and at six-month following the acute care discharge were analyzed using multivariate models and instrumental variable techniques. Results A total of 297 patients were analyzed based on post-acute care rehabilitation setting: acute inpatient rehabilitation (IRF), skilled nursing facility (SNF) or home. The majority (43.4%) received care in IRF, 32% in SNF, and 24.6% at home. On SF-36 subscales, significantly improved outcomes were observed for patients receiving post-acute care at an IRF relative to those cared for at a SNF in physical function (PF), role physical (RF) and physical component score (PCS). Patients receiving post-acute care in IRFs also experienced better RF and PCS outcomes compared to those discharged directly home. In addition, patients receiving post-acute care at an IRF were significantly more likely to score in the top quartile for general health in IRF compared to SNF or home, and less likely to score in the lowest quartile for PF, RF and PCS in IRF compared to SNF. Lower ADL impairment was observed in IRF compared to SNF. Conclusions Among this large and diverse cohort of patients undergoing major dysvascular lower limb amputations, receipt of interdisciplinary rehabilitation services at an IRF yielded improved functional outcomes six months after amputation relative to care received at SNFs or home. PMID:23291599
Paschall, Amy V.; Zhang, Ruihua; Qi, Chen-Feng; Bardhan, Kankana; Peng, Liang; Lu, Geming; Yang, Jianjun; Merad, Miriam; McGaha, Tracy; Zhou, Gang; Mellor, Andrew; Abrams, Scott I.; Morse, Herbert C.; Ozato, Keiko; Xiong, Huabao; Liu, Kebin
2015-01-01
During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN Regulatory Factor 8 (IRF8) accumulate CD11b+Gr1+ myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. Here we report an intriguing finding that although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b+Gr1+ MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to represses GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo. PMID:25646302
Zhao, Shou-Cai; Wang, Chun; Xu, Heng; Wu, Wen-Qian; Chu, Zhao-Hu; Ma, Ling-Song; Zhang, Ying-Dong; Liu, Fudong
2017-11-01
Stroke is a disease that mainly affects the elderly. Since the age-related differences in stroke have not been well studied, modeling stroke in aged animals is clinically more relevant. The inflammatory responses to stroke are a fundamental pathological procedure, in which microglial activation plays an important role. Interferon regulatory factor-5 (IRF5) and IRF4 regulate M1 and M2 activation of macrophages, respectively, in peripheral inflammation; but it is unknown whether IRF5/IRF4 are also involved in cerebral inflammatory responses to stroke and whether age-related differences of the IRF5/IRF4 signaling exist in ischemic brain. Here, we investigated the influences of aging on IRF5/IRF4 signaling and post-stroke inflammation in mice. Both young (9-12 weeks) and aged (18 months) male mice were subjected to middle cerebral artery occlusion (MCAO). Morphological and biochemical changes in the ischemic brains and behavior deficits were assessed on 1, 3, and 7 d post-stroke. After MCAO, the aged mice showed smaller infarct sizes but higher neurological deficits and corner test scores than young mice. Young mice had higher levels of IRF4 and CD206 microglia in the ischemic brains, whereas the aged mice expressed more IRF5 and MHCII microglia. After MCAO, serum pro-inflammatory cytokines (TNF-α, iNOS, IL-6) were more prominently up-regulated in aged mice, whereas serum anti-inflammatory cytokines (TGF-β, IL-4, IL-10) were more prominently up-regulated in young mice. Our results demonstrate that aging has a significant influence on stroke outcomes in mice, which is probably mediated by age-specific inflammatory responses.
Biallelic mutations in IRF8 impair human NK cell maturation and function
Mace, Emily M.; Gunesch, Justin T.; Chinn, Ivan K.; Angelo, Laura S.; Maisuria, Sheetal; Keller, Michael D.; Togi, Sumihito; Watkin, Levi B.; LaRosa, David F.; Jhangiani, Shalini N.; Muzny, Donna M.; Stray-Pedersen, Asbjørg; Coban Akdemir, Zeynep; Smith, Jansen B.; Hernández-Sanabria, Mayra; Le, Duy T.; Hogg, Graham D.; Cao, Tram N.; Freud, Aharon G.; Szymanski, Eva P.; Collin, Matthew; Cant, Andrew J.; Gibbs, Richard A.; Holland, Steven M.; Caligiuri, Michael A.; Ozato, Keiko; Paust, Silke; Doody, Gina M.; Lupski, James R.; Orange, Jordan S.
2016-01-01
Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8–/–, but not Irf8+/–, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense. PMID:27893462
Biallelic mutations in IRF8 impair human NK cell maturation and function.
Mace, Emily M; Bigley, Venetia; Gunesch, Justin T; Chinn, Ivan K; Angelo, Laura S; Care, Matthew A; Maisuria, Sheetal; Keller, Michael D; Togi, Sumihito; Watkin, Levi B; LaRosa, David F; Jhangiani, Shalini N; Muzny, Donna M; Stray-Pedersen, Asbjørg; Coban Akdemir, Zeynep; Smith, Jansen B; Hernández-Sanabria, Mayra; Le, Duy T; Hogg, Graham D; Cao, Tram N; Freud, Aharon G; Szymanski, Eva P; Savic, Sinisa; Collin, Matthew; Cant, Andrew J; Gibbs, Richard A; Holland, Steven M; Caligiuri, Michael A; Ozato, Keiko; Paust, Silke; Doody, Gina M; Lupski, James R; Orange, Jordan S
2017-01-03
Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8-/-, but not Irf8+/-, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense.
Using Data Augmentation and Markov Chain Monte Carlo for the Estimation of Unfolding Response Models
ERIC Educational Resources Information Center
Johnson, Matthew S.; Junker, Brian W.
2003-01-01
Unfolding response models, a class of item response theory (IRT) models that assume a unimodal item response function (IRF), are often used for the measurement of attitudes. Verhelst and Verstralen (1993)and Andrich and Luo (1993) independently developed unfolding response models by relating the observed responses to a more common monotone IRT…
Huang, Youhua; Huang, Xiaohong; Cai, Jia; OuYang, Zhengliang; Wei, Shina; Wei, Jingguang; Qin, Qiwei
2015-02-01
Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was exerted crucial roles for fish RNA virus, but not for DNA virus replication. Copyright © 2014 Elsevier Ltd. All rights reserved.
An aberrant NOTCH2-BCR signaling axis in B cells from patients with chronic GVHD.
Poe, Jonathan C; Jia, Wei; Su, Hsuan; Anand, Sarah; Rose, Jeremy J; Tata, Prasanthi V; Suthers, Amy N; Jones, Corbin D; Kuan, Pei Fen; Vincent, Benjamin G; Serody, Jonathan S; Horwitz, Mitchell E; Ho, Vincent T; Pavletic, Steven Z; Hakim, Frances T; Owzar, Kouros; Zhang, Dadong; Blazar, Bruce R; Siebel, Christian W; Chao, Nelson J; Maillard, Ivan; Sarantopoulos, Stefanie
2017-11-09
B-cell receptor (BCR)-activated B cells contribute to pathogenesis in chronic graft-versus-host disease (cGVHD), a condition manifested by both B-cell autoreactivity and immune deficiency. We hypothesized that constitutive BCR activation precluded functional B-cell maturation in cGVHD. To address this, we examined BCR-NOTCH2 synergy because NOTCH has been shown to increase BCR responsiveness in normal mouse B cells. We conducted ex vivo activation and signaling assays of 30 primary samples from hematopoietic stem cell transplantation patients with and without cGVHD. Consistent with a molecular link between pathways, we found that BCR-NOTCH activation significantly increased the proximal BCR adapter protein BLNK. BCR-NOTCH activation also enabled persistent NOTCH2 surface expression, suggesting a positive feedback loop. Specific NOTCH2 blockade eliminated NOTCH-BCR activation and significantly altered NOTCH downstream targets and B-cell maturation/effector molecules. Examination of the molecular underpinnings of this "NOTCH2-BCR axis" in cGVHD revealed imbalanced expression of the transcription factors IRF4 and IRF8 , each critical to B-cell differentiation and fate. All- trans retinoic acid (ATRA) increased IRF4 expression, restored the IRF4 -to- IRF8 ratio, abrogated BCR-NOTCH hyperactivation, and reduced NOTCH2 expression in cGVHD B cells without compromising viability. ATRA-treated cGVHD B cells had elevated TLR9 and PAX5 , but not BLIMP1 (a gene-expression pattern associated with mature follicular B cells) and also attained increased cytosine guanine dinucleotide responsiveness. Together, we reveal a mechanistic link between NOTCH2 activation and robust BCR responses to otherwise suboptimal amounts of surrogate antigen. Our findings suggest that peripheral B cells in cGVHD patients can be pharmacologically directed from hyperactivation toward maturity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan, E-mail: dyoo@illinois.edu
Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E),more » membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. - Highlights: • PEDV modulates the host innate immune system by suppressing the type I interferon production and ISGs expression. • Ten viral proteins were identified as IFN antagonists, and nsp1 was the most potent viral IFN antagonist. • PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP). • PEDV nsp1 caused the CBP degradation in the nucleus, which may be the key mechanism for PEDV-mediated IFN downregulation.« less
Chattopadhyay, Saurabh; Kuzmanovic, Teodora; Zhang, Ying; Wetzel, Jaime L.; Sen, Ganes C.
2016-01-01
SUMMARY The transcription factor IRF-3 mediates cellular antiviral response by inducing the expression of interferon and other antiviral proteins. In RNA-virus infected cells, IRF-3’s transcriptional activation is triggered primarily by RIG-I-like receptors (RLR), which can also activate the RLR-induced IRF-3-mediated pathway of apoptosis (RIPA). Here, we have reported that the pathway of IRF-3 activation in RIPA was independent of and distinct from the known pathway of transcriptional activation of IRF-3. It required linear polyubiquitination of two specific lysine residues of IRF-3 by LUBAC, the linear polyubiquitinating enzyme complex, which bound IRF-3 in signal-dependent fashion. To evaluate the role of RIPA in viral pathogenesis, we engineered a genetically targeted mouse, which expressed a mutant IRF-3 that was RIPA-competent but transcriptionally inert; this single-action IRF-3 could protect mice from lethal viral infection. Our observations indicated that IRF-3-mediated apoptosis of virus-infected cells could be an effective antiviral mechanism, without expression of the interferon-stimulated genes. PMID:27178468
Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.
2013-11-20
Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures ofmore » IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.« less
Buss, Claudia; Opitz, Bastian; Hocke, Andreas C; Lippmann, Juliane; van Laak, Vincent; Hippenstiel, Stefan; Krüll, Matthias; Suttorp, Norbert; Eitel, Julia
2010-03-15
Chlamydophila pneumoniae infection of the vascular wall as well as activation of the transcription factor IFN regulatory factor (IRF)3 have been linked to development of chronic vascular lesions and atherosclerosis. The innate immune system detects invading pathogens by use of pattern recognition receptors, some of which are able to stimulate IRF3/7 activation and subsequent type I IFN production (e. g., IFN-beta). In this study, we show that infection of human endothelial cells with C. pneumoniae-induced production of IFN-beta, a cytokine that so far has been mainly associated with antiviral immunity. Moreover, C. pneumoniae infection led to IRF3 and IRF7 nuclear translocation in HUVECs and RNA interference experiments showed that IRF3 and IRF7 as well as the mitochondrial antiviral signaling (MAVS) were essential for IFN-beta induction. Finally, C. pneumoniae replication was enhanced in endothelial cells in which IRF3, IRF7, or MAVS expression was inhibited by small interfering RNA and attenuated by IFN-beta treatment. In conclusion, C. pneumoniae infection of endothelial cells activates an MAVS-, IRF3-, and IRF7-dependent signaling, which controls bacterial growth and might modulate development of vascular lesions.
Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins
Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; ...
2016-06-02
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here in this paper, we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF bindsmore » to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.« less
Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Baoyu; Shu, Chang; Gao, Xinsheng
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here in this paper, we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF bindsmore » to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.« less
Polak, Marta E; Ung, Chuin Ying; Masapust, Joanna; Freeman, Tom C; Ardern-Jones, Michael R
2017-04-06
Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlberg, Angela; Auble, Mark R.; Petro, Thomas M.
2006-09-30
Macrophages responding to viral infections may contribute to autoimmune demyelinating diseases (ADD). Macrophages from ADD-susceptible SJL/J mice responding to Theiler's Virus (TMEV) infection, the TLR7 agonist loxoribine, or the TLR4 agonist-LPS expressed less IL-12 p35 but more IL-12/23 p40 and IFN-{beta} than macrophages from ADD-resistant B10.S mice. While expression of IRF-1 and -7 was similar between B10.S and SJL/J TMEV-infected macrophages, SJL/J but not B10.S macrophages exhibited constitutively active IRF-3. In contrast to overexpressed IRF-1, IRF-5, and IRF-7, which stimulated p35 promoter reporter activity, overexpressed IRF-3 repressed p35 promoter activity in response to TMEV infection, loxoribine, IFN-{gamma}/LPS, but not IFN-{gamma}more » alone. IRF-3 lessened but did not eliminate IRF-1-stimulated p35 promoter activity. Repression by IRF-3 required bp -172 to -122 of the p35 promoter. The data suggest that pre-activated IRF-3 is a major factor in the differences in IL-12 production between B10.S and SJL/J macrophages responding to TMEV.« less
Mukherjee, Rathindra M; Bansode, Budhapriyavilas; Gangwal, Puja; Jakkampudi, Aparna; Reddy, Panyala B; Rao, Padaki N; Gupta, Rajesh; Reddy, D Nageshwar
2012-01-01
Background The interferon regulatory factors (IRFs) are a family of transcription factors known to be involved in the modulation of cellular responses to interferons (IFNs) and viral infection. While IRF-1 acts as a positive regulator, IRF-2 is known to repress IFN-mediated gene expression. The increase in the IRF-1/IRF-2 ratio is considered as an important event in the transcriptional activation of IFN-α gene toward development of the cellular antiviral response. Objective This study was performed to assess the expression of IRF mRNAs along with the expression level of IFN-α, its receptor (IFNAR-1), and the signal transduction factor (STAT-1) in treatment naive hepatitis C virus (HCV)-infected subjects. Materials Thirty-five chronically infected (CHC) patients and 39 voluntary blood donors as controls were included in the study. Quantification of HCV-RNA (ribonucleic acid) and genotyping were done by real-time polymerase chain reaction (PCR) and hybridization assays, respectively, using patient's serum/plasma. In both controls and patients, the serum level of IFN-α and IFN-α was measured by flow cytometry. Target gene expressions were studied by retro-transcription of respective mRNAs extracted from peripheral blood mononuclear cells (PBMCs) followed by PCR amplification and densitometry. Minus-strand HCV-RNA as a marker of viral replication in PBMCs was detected by an inhouse PCR assay. Results Both IRF-1 and IRF-2 genes were significantly enhanced in CHC than in control subjects (P < 0.001). A significant positive correlation (r2 = 0.386, P <0.01) was obtained between higher IRF-2 gene expression and increasing level of HCV-RNA. Chronically infected subjects (13%) harboring replicating HCV in PBMCs showed no significant differences in gene expressions than the subjects without HCV in PBMCs. Conclusion Our findings indicate that HCV modulates host immunity by inducing IRF-2 gene to counteract IRF-1-mediated IFN-α gene expression. Since the IRF-2 gene is known to encode oncogenic protein, the role of IRF-2 in CHC patients developing hepatocellular carcinoma warrants further studies. PMID:25755403
Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping
2018-04-01
Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Model-free quantification of dynamic PET data using nonparametric deconvolution
Zanderigo, Francesca; Parsey, Ramin V; Todd Ogden, R
2015-01-01
Dynamic positron emission tomography (PET) data are usually quantified using compartment models (CMs) or derived graphical approaches. Often, however, CMs either do not properly describe the tracer kinetics, or are not identifiable, leading to nonphysiologic estimates of the tracer binding. The PET data are modeled as the convolution of the metabolite-corrected input function and the tracer impulse response function (IRF) in the tissue. Using nonparametric deconvolution methods, it is possible to obtain model-free estimates of the IRF, from which functionals related to tracer volume of distribution and binding may be computed, but this approach has rarely been applied in PET. Here, we apply nonparametric deconvolution using singular value decomposition to simulated and test–retest clinical PET data with four reversible tracers well characterized by CMs ([11C]CUMI-101, [11C]DASB, [11C]PE2I, and [11C]WAY-100635), and systematically compare reproducibility, reliability, and identifiability of various IRF-derived functionals with that of traditional CMs outcomes. Results show that nonparametric deconvolution, completely free of any model assumptions, allows for estimates of tracer volume of distribution and binding that are very close to the estimates obtained with CMs and, in some cases, show better test–retest performance than CMs outcomes. PMID:25873427
Stuart, Johnasha D; Holm, Geoffrey H; Boehme, Karl W
2018-05-01
Serotype 3 (T3) reoviruses induce substantially more type 1 interferon (IFN-I) secretion than serotype 1 (T1) strains. However, the mechanisms underlying differences in IFN-I production between T1 and T3 reoviruses remain undefined. Here, we found that differences in IFN-I production between T1 and T3 reoviruses correlate with activation of interferon regulatory factor 3 (IRF3), a key transcription factor for the production of IFN-I. T3 strain rsT3D activated IRF3 more rapidly and to a greater extent than the T1 strain rsT1L, in simian virus 40 (SV40) immortalized endothelial cells (SVECs). Differences in IRF3 activation between rsT1L and rsT3D were observed in the first hours of infection and were independent of de novo viral RNA and protein synthesis. NF-κB activation mirrored IRF3 activation, with rsT3D inducing more NF-κB activity than rsT1L. We also found that IRF3 and NF-κB are activated in a mitochondrial antiviral-signaling protein (MAVS)-dependent manner. rsT1L does not suppress IRF3 activation, as IRF3 phosphorylation could be induced in rsT1L-infected cells. Transfected rsT1L and rsT3D RNA induced IRF3 phosphorylation, indicating that genomic RNA from both strains has the capacity to activate IRF3. Finally, bypassing the normal route of reovirus entry by transfecting in vitro -generated viral cores revealed that rsT1L and rsT3D core particles induced equivalent IRF3 activation. Taken together, our findings indicate that entry-related events that occur after outer capsid disassembly, but prior to deposition of viral cores into the cytoplasm, influence the efficiency of IFN-I responses to reovirus. This work provides further insight into mechanisms by which nonenveloped viruses activate innate immune responses. IMPORTANCE Detection of viral nucleic acids by the host cell triggers type 1 interferon (IFN-I) responses, which are critical for containing and clearing viral infections. Viral RNA is sensed in the cytoplasm by cellular receptors that initiate signaling pathways, leading to the activation of interferon regulatory factor 3 (IRF3) and NF-κB, key transcription factors required for IFN-I induction. Serotype 3 (T3) reoviruses induce significantly more IFN-I than serotype 1 (T1) strains. In this work, we found that differences in IFN-I production by T1 and T3 reoviruses correlate with differential IRF3 activation. Differences in IRF3 activation are not caused by a blockade of the IRF3 activation by a T1 strain. Rather, differences in events during the late stages of viral entry determine the capacity of reovirus to activate host IFN-I responses. Together, our work provides insight into mechanisms of IFN-I induction by nonenveloped viruses. Copyright © 2018 American Society for Microbiology.
Student Initiatives and Missed Learning Opportunities in an IRF Sequence: A Single Case Analysis
ERIC Educational Resources Information Center
Li, Houxiang
2013-01-01
Most conversation analysis (CA) studies of the initiation-response-feedback (IRF; Sinclair & Coulthard, 1975) sequence have focused on teacher actions in the feedback move. In this article, I use CA to analyze student initiatives (Waring, 2011) within an IRF sequence in one excerpt from a Chinese as a foreign language class. The excerpt…
Montano, Giorgia; Ullmark, Tove; Jernmark-Nilsson, Helena; Sodaro, Gaetano; Drott, Kristina; Costanzo, Paola; Vidovic, Karina; Gullberg, Urban
2016-01-01
The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Narayan, Vikram; Pion, Emmanuelle; Landré, Vivien; Müller, Petr; Ball, Kathryn L.
2011-01-01
Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20–40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106–140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or “docking” of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase. PMID:20947504
Kotla, Swathi; Gustin, Kurt E
2015-10-06
The type I interferon (IFN) response is a critical component of the innate immune response to infection by RNA viruses and is initiated via recognition of viral nucleic acids by RIG-like receptors (RLR). Engagement of these receptors in the cytoplasm initiates a signal transduction pathway leading to activation of the transcription factors NF-κB, ATF-2 and IRF-3 that coordinately upregulate transcription of type I IFN genes, such as that encoding IFN-β. In this study the impact of poliovirus infection on the type I interferon response has been examined. The type I IFN response was assessed by measuring IFN-β mRNA levels using qRT-PCR and normalizing to levels of β-actin mRNA. The status of host factors involved in activation of the type I IFN response was examined by immunoblot, immunofluorescence microcopy and qRT-PCR. The results show that poliovirus infection results in induction of very low levels of IFN-β mRNA despite clear activation of NF-κB and ATF-2. In contrast, analysis of IRF-3 revealed no transcriptional induction of an IRF-3-responsive promoter or homodimerization of IRF-3 indicating it is not activated in poliovirus-infected cells. Exposure of poliovirus-infected cells to poly(I:C) results in lower levels of IFN-β mRNA synthesis and IRF-3 activation compared to mock-infected cells. Analysis of MDA-5 and IPS-1 revealed that these components of the RLR pathway were largely intact at times when the type I IFN response was suppressed. Collectively, these results demonstrate that poliovirus infection actively suppresses the host type I interferon response by blocking activation of IRF-3 and suggests that this is not mediated by cleavage of MDA-5 or IPS-1.
Niewold, Timothy B; Kelly, Jennifer A; Kariuki, Silvia N; Franek, Beverly S; Kumar, Akaash A; Kaufman, Kenneth M; Thomas, Kenaz; Walker, Daniel; Kamp, Stan; Frost, Jacqueline M; Wong, Andrew K; Merrill, Joan T; Alarcón-Riquelme, Marta E; Tikly, Mohammed; Ramsey-Goldman, Rosalind; Reveille, John D; Petri, Michelle A; Edberg, Jeffrey C; Kimberly, Robert P; Alarcón, Graciela S; Kamen, Diane L; Gilkeson, Gary S; Vyse, Timothy J; James, Judith A; Gaffney, Patrick M; Moser, Kathy L; Crow, Mary K; Harley, John B
2012-01-01
Objective High serum interferon α (IFNα) activity is a heritable risk factor for systemic lupus erythematosus (SLE). Auto-antibodies found in SLE form immune complexes which can stimulate IFNα production by activating endosomal Toll-like receptors and interferon regulatory factors (IRFs), including IRF5. Genetic variation in IRF5 is associated with SLE susceptibility; however, it is unclear how IRF5 functional genetic elements contribute to human disease. Methods 1034 patients with SLE and 989 controls of European ancestry, 555 patients with SLE and 679 controls of African–American ancestry, and 73 patients with SLE of South African ancestry were genotyped at IRF5 polymorphisms, which define major haplotypes. Serum IFNα activity was measured using a functional assay. Results In European ancestry subjects, anti-double-stranded DNA (dsDNA) and anti-Ro antibodies were each associated with different haplotypes characterised by a different combination of functional genetic elements (OR > 2.56, p >003C; 1.9×10−14 for both). These IRF5 haplotype-auto-antibody associations strongly predicted higher serum IFNα in patients with SLE and explained > 70% of the genetic risk of SLE due to IRF5. In African–American patients with SLE a similar relationship between serology and IFNα was observed, although the previously described European ancestry-risk haplotype was present at admixture proportions in African–American subjects and absent in African patients with SLE. Conclusions The authors define a novel risk haplotype of IRF5 that is associated with anti-dsDNA antibodies and show that risk of SLE due to IRF5 genotype is largely dependent upon particular auto-antibodies. This suggests that auto-antibodies are directly pathogenic in human SLE, resulting in increased IFNα in cooperation with particular combinations of IRF5 functional genetic elements. SLE is a systemic autoimmune disorder affecting multiple organ systems including the skin, musculoskeletal, renal and haematopoietic systems. Humoral autoimmunity is a hallmark of SLE, and patients frequently have circulating auto-antibodies directed against dsDNA, as well as RNA binding proteins (RBP). Anti-RBP autoantibodies include antibodies which recognize Ro, La, Smith (anti-Sm), and ribonucleoprotein (anti-nRNP), collectively referred to as anti-retinol-binding protein). Anti-retinol-binding protein and anti-dsDNA auto-antibodies are rare in the healthy population.1 These auto-antibodies can be present in sera for years preceding the onset of clinical SLE illness2 and are likely pathogenic in SLE.34 PMID:22088620
Cao, Ye; Guan, Kai; He, Xiang; Wei, Congwen; Zheng, Zirui; Zhang, Yanhong; Ma, Shengli; Zhong, Hui; Shi, Wei
2016-12-01
The Yersinia outer protein J (YopJ) plays a pivotal role in evading the host immune response and establishes a persistent infection in host cells after bacterial infection. YopJ is a cysteine protease and can act as a deubiquitinating enzyme that deubiquitinates several targets in multiple signaling pathways. Stimulator of interferon genes (STING) is a critical adapter for the induction of interferon regulatory factor 3 (IRF3) phosphorylation and subsequent production of the cytokines in response to nucleic acids in the cytoplasm. Our studies demonstrate that YopJ targets STING to inhibit IRF3 signaling. Specially, YopJ interacts with STING to block its ER-to-Golgi traffic and remove its K63-linked ubiquitination chains. Deubiquited STING perturbs the formation of STING-TBK1 complex and the activation of IRF3. The 172th cysteine of YopJ mediated STING deubiquitination and IRF3 signaling inhibition. Consequently, mice infected with WT and ΔYopJ/YopJ bacteria induced lower levels of IRF3 and IFN-β, decreased inflammation and reduced staining of STING as compared to ΔYopJ and ΔYopJ/YopJ C172A strains infection. The data herein reveal a previously unrecognized mechanism by which YopJ modulates innate immune signaling. Copyright © 2016 Elsevier B.V. All rights reserved.
Watanabe, Tomoya; Hotta, Chie; Koizumi, Shin-ichi; Miyashita, Kazuho; Nakabayashi, Jun; Kurotaki, Daisuke; Sato, Go R; Yamamoto, Michio; Nakazawa, Masatoshi; Fujita, Hiroyuki; Sakai, Rika; Fujisawa, Shin; Nishiyama, Akira; Ikezawa, Zenro; Aihara, Michiko; Ishigatsubo, Yoshiaki; Tamura, Tomohiko
2013-11-15
BCR-ABL tyrosine kinase inhibitors (TKI) have dramatically improved therapy for chronic myelogenous leukemia (CML). However, several problems leading to TKI resistance still impede a complete cure of this disease. IFN regulatory factor-8 (IRF8) is a transcription factor essential for the development and functions of immune cells, including dendritic cells. Irf8(-/-) mice develop a CML-like disease and IRF8 expression is downregulated in patients with CML, suggesting that IRF8 is involved in the pathogenesis of CML. In this study, by using a murine CML model, we show that BCR-ABL strongly inhibits a generation of dendritic cells from an early stage of their differentiation in vivo, concomitant with suppression of Irf8 expression. Forced expression of IRF8 overrode BCR-ABL (both wild-type and T315I-mutated) to rescue dendritic cell development in vitro, indicating that the suppression of Irf8 causes dendritic cell deficiency. Gene expression profiling revealed that IRF8 restored the expression of a significant portion of BCR-ABL-dysregulated genes and predicted that BCR-ABL has immune-stimulatory potential. Indeed, IRF8-rescued BCR-ABL-expressing dendritic cells were capable of inducing CTLs more efficiently than control dendritic cells. Altogether, our findings suggest that IRF8 is an attractive target in next-generation therapies for CML. ©2013 AACR
Narayan, Vikram; Eckert, Mirjam; Zylicz, Alicja; Zylicz, Maciej; Ball, Kathryn L.
2009-01-01
Our understanding of the post-translational processes involved in regulating the interferon regulatory factor-1 (IRF-1) tumor suppressor protein is limited. The introduction of mutations within the C-terminal Mf1 domain (amino acids 301–325) impacts on IRF-1-mediated gene repression and growth suppression as well as the rate of IRF-1 degradation. However, nothing is known about the proteins that interact with this region to modulate IRF-1 function. A biochemical screen for Mf1-interacting proteins has identified an LXXLL motif that is required for binding of Hsp70 family members and cooperation with Hsp90 to regulate IRF-1 turnover and activity. These conclusions are supported by the finding that Hsp90 inhibitors suppress IRF-1-dependent transcription shortly after treatment, although at later time points inhibition of Hsp90 leads to an Hsp70-dependent depletion of nuclear IRF-1. Conversely, the half-life of IRF-1 is increased by Hsp90 in an ATPase-dependent manner leading to the accumulation of nuclear but not cytoplasmic IRF-1. This study begins to elucidate the role of the Mf1 domain of IRF-1 in orchestrating the recruitment of regulatory factors that can impact on both its turnover and transcriptional activity. PMID:19502235
2013-01-01
Background The availability of gene expression data that corresponds to pig immune response challenges provides compelling material for the understanding of the host immune system. Meta-analysis offers the opportunity to confirm and expand our knowledge by combining and studying at one time a vast set of independent studies creating large datasets with increased statistical power. In this study, we performed two meta-analyses of porcine transcriptomic data: i) scrutinized the global immune response to different challenges, and ii) determined the specific response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection. To gain an in-depth knowledge of the pig response to PRRSV infection, we used an original approach comparing and eliminating the common genes from both meta-analyses in order to identify genes and pathways specifically involved in the PRRSV immune response. The software Pointillist was used to cope with the highly disparate data, circumventing the biases generated by the specific responses linked to single studies. Next, we used the Ingenuity Pathways Analysis (IPA) software to survey the canonical pathways, biological functions and transcription factors found to be significantly involved in the pig immune response. We used 779 chips corresponding to 29 datasets for the pig global immune response and 279 chips obtained from 6 datasets for the pig response to PRRSV infection, respectively. Results The pig global immune response analysis showed interconnected canonical pathways involved in the regulation of translation and mitochondrial energy metabolism. Biological functions revealed in this meta-analysis were centred around translation regulation, which included protein synthesis, RNA-post transcriptional gene expression and cellular growth and proliferation. Furthermore, the oxidative phosphorylation and mitochondria dysfunctions, associated with stress signalling, were highly regulated. Transcription factors such as MYCN, MYC and NFE2L2 were found in this analysis to be potentially involved in the regulation of the immune response. The host specific response to PRRSV infection engendered the activation of well-defined canonical pathways in response to pathogen challenge such as TREM1, toll-like receptor and hyper-cytokinemia/ hyper-chemokinemia signalling. Furthermore, this analysis brought forth the central role of the crosstalk between innate and adaptive immune response and the regulation of anti-inflammatory response. The most significant transcription factor potentially involved in this analysis was HMGB1, which is required for the innate recognition of viral nucleic acids. Other transcription factors like interferon regulatory factors IRF1, IRF3, IRF5 and IRF8 were also involved in the pig specific response to PRRSV infection. Conclusions This work reveals key genes, canonical pathways and biological functions involved in the pig global immune response to diverse challenges, including PRRSV infection. The powerful statistical approach led us to consolidate previous findings as well as to gain new insights into the pig immune response either to common stimuli or specifically to PRRSV infection. PMID:23552196
Zhang, Bao-cun; Zhou, Ze-jun; Sun, Li
2016-01-01
Megalocytivirus is a DNA virus that is highly infectious in a wide variety of marine and freshwater fish, including Japanese flounder (Paralichthys olivaceus), a flatfish that is farmed worldwide. However, the infection mechanism of megalocytivirus remains largely unknown. In this study, we investigated the function of a flounder microRNA, pol-miR-731, in virus-host interaction. We found that pol-miR-731 was induced in expression by megalocytivirus and promoted viral replication at the early infection stage. In vivo and in vitro studies revealed that pol-miR-731 (i) specifically suppresses the expression of interferon regulatory factor 7 (IRF7) and cellular tumor antigen p53 in a manner that depended on the integrity of the pol-miR-731 complementary sequences in the 3′ untranslated regions of IRF7 and p53, (ii) disrupts megalocytivirus-induced Type I interferon response through IRF7, (iii) inhibits megalocytivirus-induced splenocyte apoptosis and cell cycle arrest through p53. Furthermore, overexpression of IRF7 and p53 abolished both the inhibitory effects of pol-miR-731 on these biological processes and its stimulatory effect on viral replication. These results disclosed a novel evasion mechanism of megalocytivirus mediated by a host miRNA. This study also provides the first evidence that a virus-induced host miRNA can facilitate viral infection by simultaneously suppressing several antiviral pathways. PMID:27311682
Gannon, Stephen A; Mukamal, Kenneth J; Chang, James D
2018-06-14
The aim of this study was to identify echocardiographic predictors of improved or worsening renal function during intravenous diuresis for decompensated heart failure. Secondary aim included defining the incidence and clinical risk factors for acute changes in renal function with decongestion. A retrospective review of 363 patients admitted to a single centre for decompensated heart failure who underwent intravenous diuresis and transthoracic echocardiography was conducted. Clinical, echocardiographic, and renal function data were retrospectively collected. A multinomial logistic regression model was created to determine relative risk ratios for improved renal function (IRF) or worsening renal function (WRF). Within this cohort, 36% of patients experienced WRF, 35% had stable renal function, and 29% had IRF. Patients with WRF were more likely to have a preserved left ventricular ejection fraction compared with those with stable renal function or IRF (P = 0.02). Patients with IRF were more likely to have a dilated, hypokinetic right ventricle compared with those with stable renal function or WRF (P ≤ 0.01), although this was not significant after adjustment for baseline characteristics. Left atrial size, left ventricular linear dimensions, and diastolic function did not significantly predict change in renal function. An acute change in renal function occurred in 65% of patients admitted with decompensated heart failure. WRF was statistically more likely in patients with a preserved left ventricular ejection fraction. A trend towards IRF was noted in patients with global right ventricular dysfunction. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Trends in the supply of inpatient rehabilitation facilities services: 1996 to 2004.
Mallinson, Trudy R; Manheim, Larry M; Almagor, Orit; Demark, Holly M; Heinemann, Allen W
2008-11-01
Describe the supply of inpatient rehabilitation facilities (IRFs) services in 1996 and examine changes between 1996 and 2004, including the impact of the IRF prospective payment system (PPS) in 2002 on organizational trends. Retrospective pre-post design. Freestanding and subprovider (distinct-part units) IRFs. IRFs (N=1424), including 257 freestanding IRFs and 1167 IRF units reported in the Healthcare Cost Report Information System database, from years 1996 to 2004. Not applicable. Number of IRF openings, IRF closures, beds, and inpatient days. The number of IRFs grew from 1037 to 1183 between 1996 and 2001 and grew to 1235 between 2001 and 2004. The likelihood of IRF closures trended lower after PPS, and there was a significant increase in the likelihood of openings when PPS was introduced. For-profit, rural, and small IRFs were more likely to open over the entire period. There was a 12.9% increase in the number of total inpatient days, somewhat less than the 15.7% growth in IRF beds over the period. There was no impact of PPS on beds available but a significant decline in total inpatient days after PPS. Inpatient days rose under the Tax Equity and Fiscal Responsibility Act and declined after 2002. Yet the likelihood of openings and closures did not appear to respond to these changes, perhaps because they were modest compared with changes in local IRF markets. The IRF PPS did little to affect service distribution in less well-served areas, although we did find growth in rural areas. Occupancy rates in 2004 were close to rates at the start of the period (70%). This observation implies that IRFs were implementing strategies to recruit a sufficient number of patients, even though bed numbers were increasing and length of stay was declining. Consequently, policy that limits the potential of IRFs to increase patient admissions, such as the limits on admissions to IRFs of patients with conditions other than those included in the 75% rule, is likely to produce substantial decreases in total inpatient days.
Xu, Lei; Zhou, Xinying; Wang, Wenshi; Wang, Yijin; Yin, Yuebang; Laan, Luc J W van der; Sprengers, Dave; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei
2016-10-01
IFN regulatory factor 1 (IRF1) is one of the most important IFN-stimulated genes (ISGs) in cellular antiviral immunity. Although hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide, how ISGs counteract HEV infection is largely unknown. This study was conducted to investigate the effect of IRF1 on HEV replication. Multiple cell lines were used in 2 models that harbor HEV. In different HEV cell culture systems, IRF1 effectively inhibited HEV replication. IRF1 did not trigger IFN production, and chromatin immunoprecipitation sequencing data analysis revealed that IRF1 bound to the promoter region of signal transducers and activators of transcription 1 (STAT1). Functional assay confirmed that IRF1 could drive the transcription of STAT1, resulting in elevation of total and phosphorylated STAT1 proteins and further activating the transcription of a panel of downstream antiviral ISGs. By pharmacological inhibitors and RNAi-mediated gene-silencing approaches, we revealed that antiviral function of IRF1 is dependent on the JAK-STAT cascade. Furthermore, induction of ISGs and the anti-HEV effect of IRF1 overlapped that of IFNα, but was potentiated by ribavirin. We demonstrated that IRF1 effectively inhibits HEV replication through the activation of the JAK-STAT pathway, and the subsequent transcription of antiviral ISGs, but independent of IFN production.-Xu, L., Zhou, X., Wang, W., Wang, Y., Yin, Y., van der Laan, L. J. W., Sprengers, D., Metselaar, H. J., Peppelenbosch, M. P., Pan, Q. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes. © FASEB.
Smith, Nikaïa; Vidalain, Pierre-Olivier; Nisole, Sébastien; Herbeuval, Jean-Philippe
2016-01-01
Plasmacytoid dendritic cells (pDC) are specialized immune cells that produce massive levels of type I interferon in response to pathogens. Unfortunately, pDC are fragile and extremely rare, rendering their functional study a tough challenge. However, because of their central role in numerous pathologies, there is a considerable need for an efficient and reproducible protocol for gene silencing in these cells. In this report, we tested six different methods for siRNA delivery into primary human pDC including viral-based, lipid-based, electroporation, and poly-ethylenimine (PEI) technologies. We show that lipid-based reagent DOTAP was extremely efficient for siRNA delivery into pDC, and did not induce cell death or pDC activation. We successfully silenced Toll-Like Receptor 7 (TLR7), CXCR4 and IFN regulatory factor 7 (IRF-7) gene expression in pDC as assessed by RT-qPCR or cytometry. Finally, we showed that TLR7 or IRF-7 silencing in pDC specifically suppressed IFN-α production upon stimulation, providing a functional validation of our transfection protocol. PMID:27412723
IRF4 haploinsufficiency in a family with Whipple’s disease
Guérin, Antoine; Kerner, Gaspard; Marr, Nico; Markle, Janet G; Fenollar, Florence; Wong, Natalie; Boughorbel, Sabri; Avery, Danielle T; Ma, Cindy S; Bougarn, Salim; Bouaziz, Matthieu; Béziat, Vivien; Della Mina, Erika; Oleaga-Quintas, Carmen; Lazarov, Tomi; Worley, Lisa; Nguyen, Tina; Patin, Etienne; Deswarte, Caroline; Martinez-Barricarte, Rubén; Boucherit, Soraya; Ayral, Xavier; Edouard, Sophie; Boisson-Dupuis, Stéphanie; Rattina, Vimel; Bigio, Benedetta; Vogt, Guillaume; Geissmann, Frédéric; Quintana-Murci, Lluis; Chaussabel, Damien; Tangye, Stuart G; Raoult, Didier; Abel, Laurent; Bustamante, Jacinta
2018-01-01
Most humans are exposed to Tropheryma whipplei (Tw). Whipple’s disease (WD) strikes only a small minority of individuals infected with Tw (<0.01%), whereas asymptomatic chronic carriage is more common (<25%). We studied a multiplex kindred, containing four WD patients and five healthy Tw chronic carriers. We hypothesized that WD displays autosomal dominant (AD) inheritance, with age-dependent incomplete penetrance. We identified a single very rare non-synonymous mutation in the four patients: the private R98W variant of IRF4, a transcription factor involved in immunity. The five Tw carriers were younger, and also heterozygous for R98W. We found that R98W was loss-of-function, modified the transcriptome of heterozygous leukocytes following Tw stimulation, and was not dominant-negative. We also found that only six of the other 153 known non-synonymous IRF4 variants were loss-of-function. Finally, we found that IRF4 had evolved under purifying selection. AD IRF4 deficiency can underlie WD by haploinsufficiency, with age-dependent incomplete penetrance. PMID:29537367
Shi, Jun; Zhang, Yi-Bing; Liu, Ting-Kai; Sun, Fan; Gui, Jian-Fang
2012-08-01
Mammalian interferon (IFN) regulatory factor 9 (IRF-9) has long been recognized as the DNA sequence recognition subunit of IFN-stimulated gene factor 3 (ISGF3) complex, which is critical for type I IFN to induce the expression of IFN-stimulated genes (ISGs) against viral infection. Recent studies have shown that fish IFN exerts antiviral effects by induction of a number of ISGs and also of itself; however, little is known about the role of fish IRF9 in IFN signaling. Here we identify a fish IRF9 orthologue (CaIRF9) from IFN-producing cell line, crucian carp Carassius auratus blastulae embryonic (CAB) cells. Analysis of subcellular distribution of CaIRF9-green fluorescent protein indicates that CaIRF9 is constitutively present in the nucleus, which is driven by two nuclear localization signals (NLS), one locating within DNA-binding domain (DBD) of CaIRF9 and the other immediately behind DBD, although human IRF9 contains only one NLS analogous to the former of CaIRF9. Overexpression of CaIRF9 together with CaSTAT2 not only activates ISRE-containing promoter but also upregulates the expression of fish ISGs. Strikingly, CaIRF9 together with CaSTAT2 also exhibits an ability to activate crucian carp IFN promoter, and blockade of cellular CaIRF9 attenuates IFN itself-induced activation of crucian carp IFN promoter. Taken together, these data suggest that crucian carp IFN induces the expression of ISGs and also of itself possibly by the JAK-STAT signaling pathway that is conserved from fish to mammals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jiang, Ding-Sheng; Liu, Yu; Zhou, Heng; Zhang, Yan; Zhang, Xiao-Dong; Zhang, Xiao-Fei; Chen, Ke; Gao, Lu; Peng, Juan; Gong, Hui; Chen, Yingjie; Yang, Qinglin; Liu, Peter P.; Fan, Guo-Chang; Zou, Yunzeng; Li, Hongliang
2017-01-01
Cardiac hypertrophy is a complex pathological process that involves multiple factors including inflammation and apoptosis. Interferon regulatory factor 7 (IRF7) is a multifunctional regulator that participates in immune regulation, cell differentiation, apoptosis, and oncogenesis. However, the role of IRF7 in cardiac hypertrophy remains unclear. We performed aortic banding in cardiac-specific IRF7 transgenic mice, IRF7 knockout mice, and the wild-type littermates of these mice. Our results demonstrated that IRF7 was downregulated in aortic banding–induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 48 hours. Accordingly, heart-specific overexpression of IRF7 significantly attenuated pressure overload–induced cardiac hypertrophy, fibrosis, and dysfunction, whereas loss of IRF7 led to opposite effects. Moreover, IRF7 protected against angiotensin II–induced cardiomyocyte hypertrophy in vitro. Mechanistically, we identified that IRF7-dependent cardioprotection was mediated through IRF7 binding to inhibitor of κB kinase-β, and subsequent nuclear factor-κB inactivation. In fact, blocking nuclear factor-κB signaling with cardiac-specific inhibitors of κBαS32A/S36A super-repressor transgene counteracted the adverse effect of IRF7 deficiency. Conversely, activation of nuclear factor-κB signaling via a cardiac-specific conditional inhibitor of κB kinase-βS177E/S181E (constitutively active) transgene negated the antihypertrophic effect of IRF7 overexpression. Our data demonstrate that IRF7 acts as a novel negative regulator of pathological cardiac hypertrophy by inhibiting nuclear factor-κB signaling and may constitute a potential therapeutic target for pathological cardiac hypertrophy. PMID:24396025
Kottyan, Leah C; Zoller, Erin E; Bene, Jessica; Lu, Xiaoming; Kelly, Jennifer A; Rupert, Andrew M; Lessard, Christopher J; Vaughn, Samuel E; Marion, Miranda; Weirauch, Matthew T; Namjou, Bahram; Adler, Adam; Rasmussen, Astrid; Glenn, Stuart; Montgomery, Courtney G; Hirschfield, Gideon M; Xie, Gang; Coltescu, Catalina; Amos, Chris; Li, He; Ice, John A; Nath, Swapan K; Mariette, Xavier; Bowman, Simon; Rischmueller, Maureen; Lester, Sue; Brun, Johan G; Gøransson, Lasse G; Harboe, Erna; Omdal, Roald; Cunninghame-Graham, Deborah S; Vyse, Tim; Miceli-Richard, Corinne; Brennan, Michael T; Lessard, James A; Wahren-Herlenius, Marie; Kvarnström, Marika; Illei, Gabor G; Witte, Torsten; Jonsson, Roland; Eriksson, Per; Nordmark, Gunnel; Ng, Wan-Fai; Anaya, Juan-Manuel; Rhodus, Nelson L; Segal, Barbara M; Merrill, Joan T; James, Judith A; Guthridge, Joel M; Scofield, R Hal; Alarcon-Riquelme, Marta; Bae, Sang-Cheol; Boackle, Susan A; Criswell, Lindsey A; Gilkeson, Gary; Kamen, Diane L; Jacob, Chaim O; Kimberly, Robert; Brown, Elizabeth; Edberg, Jeffrey; Alarcón, Graciela S; Reveille, John D; Vilá, Luis M; Petri, Michelle; Ramsey-Goldman, Rosalind; Freedman, Barry I; Niewold, Timothy; Stevens, Anne M; Tsao, Betty P; Ying, Jun; Mayes, Maureen D; Gorlova, Olga Y; Wakeland, Ward; Radstake, Timothy; Martin, Ezequiel; Martin, Javier; Siminovitch, Katherine; Moser Sivils, Kathy L; Gaffney, Patrick M; Langefeld, Carl D; Harley, John B; Kaufman, Kenneth M
2015-01-15
Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10(-49); OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10(-27)-10(-32), OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Kottyan, Leah C.; Zoller, Erin E.; Bene, Jessica; Lu, Xiaoming; Kelly, Jennifer A.; Rupert, Andrew M.; Lessard, Christopher J.; Vaughn, Samuel E.; Marion, Miranda; Weirauch, Matthew T.; Namjou, Bahram; Adler, Adam; Rasmussen, Astrid; Glenn, Stuart; Montgomery, Courtney G.; Hirschfield, Gideon M.; Xie, Gang; Coltescu, Catalina; Amos, Chris; Li, He; Ice, John A.; Nath, Swapan K.; Mariette, Xavier; Bowman, Simon; Rischmueller, Maureen; Lester, Sue; Brun, Johan G.; Gøransson, Lasse G.; Harboe, Erna; Omdal, Roald; Cunninghame-Graham, Deborah S.; Vyse, Tim; Miceli-Richard, Corinne; Brennan, Michael T.; Lessard, James A.; Wahren-Herlenius, Marie; Kvarnström, Marika; Illei, Gabor G.; Witte, Torsten; Jonsson, Roland; Eriksson, Per; Nordmark, Gunnel; Ng, Wan-Fai; Anaya, Juan-Manuel; Rhodus, Nelson L.; Segal, Barbara M.; Merrill, Joan T.; James, Judith A.; Guthridge, Joel M.; Hal Scofield, R.; Alarcon-Riquelme, Marta; Bae, Sang-Cheol; Boackle, Susan A.; Criswell, Lindsey A.; Gilkeson, Gary; Kamen, Diane L.; Jacob, Chaim O.; Kimberly, Robert; Brown, Elizabeth; Edberg, Jeffrey; Alarcón, Graciela S.; Reveille, John D.; Vilá, Luis M.; Petri, Michelle; Ramsey-Goldman, Rosalind; Freedman, Barry I.; Niewold, Timothy; Stevens, Anne M.; Tsao, Betty P.; Ying, Jun; Mayes, Maureen D.; Gorlova, Olga Y.; Wakeland, Ward; Radstake, Timothy; Martin, Ezequiel; Martin, Javier; Siminovitch, Katherine; Moser Sivils, Kathy L.; Gaffney, Patrick M.; Langefeld, Carl D.; Harley, John B.; Kaufman, Kenneth M.
2015-01-01
Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5–TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5–TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10−49; OR = 1.38–1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10−27–10−32, OR = 1.7–1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5–TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5–TNPO3. PMID:25205108
Pardasaney, Poonam K; Deutsch, Anne; Iriondo-Perez, Jeniffer; Ingber, Melvin J; McMullen, Tara
2018-06-01
To describe the calculation and psychometric properties of the discharge self-care functional status quality measure implemented in the Centers for Medicare & Medicaid Services' (CMS) Inpatient Rehabilitation Facility (IRF) Quality Reporting Program on October 1, 2016. Medicare fee-for-service (FFS) patients from 38 IRFs that participated in the CMS Post-Acute Care Payment Reform Demonstration were included in this cohort study. Data came from the Continuity Assessment Record and Evaluation Item Set, IRF-Patient Assessment Instrument, and Medicare claims. For each patient, we calculated an expected discharge self-care score, risk-adjusted for demographic and baseline clinical characteristics. The performance score of each IRF equaled the percentage of patient stays where the observed discharge self-care score met or exceeded the expected score. We assessed the measure's discriminatory ability across IRFs and reliability. IRFs. Medicare FFS patients aged ≥21 years (N=4769). Not applicable. Facility-level discharge self-care quality measure performance score. A total of 4769 patient stays were included; 57% of stays were in women, and 12.1% were in patients aged <65 years. Stroke was the most common diagnosis (21.8%). The mean±SD performance score was 55.1%±16.6% (range, 25.8%-100%). About 54% of IRFs had scores significantly different from the percentage of stays that met or exceeded the expected discharge self-care score in the overall demonstration sample. The quality measure showed strong reliability, with intraclass correlation coefficients of .91. The discharge self-care quality measure showed strong discriminatory ability and reliability, representing an important initial step in evaluation of IRF self-care outcomes. A wide range in performance scores suggested a gap in quality of care across IRFs. Future work should include testing the measure with nationwide data from all IRFs. Published by Elsevier Inc.
Full Spectrum of Postnatal Tooth Phenotypes in a Novel Irf6 Cleft Lip Model
Chu, E.Y.; Tamasas, B.; Fong, H.; Foster, B.L.; LaCourse, M.R.; Tran, A.B.; Martin, J.F.; Schutte, B.C.; Somerman, M.J.; Cox, T.C.
2016-01-01
Clefting of the lip, with or without palatal involvement (CLP), is associated with a higher incidence of developmental tooth abnormalities, including hypodontia and supernumerary teeth, aberrant crown and root morphologies, and enamel defects, although the underlying mechanistic link is poorly understood. As most CLP genes are expressed throughout the oral epithelium, the authors hypothesized that the expression of CLP genes may persist in the dental epithelium and thus, in addition to their earlier role in labiopalatine development, may play an important functional role in subsequent tooth patterning and amelogenesis. To address this, the authors generated a unique conditional knockout model involving the major CLP gene, Irf6, that overcomes the previously reported perinatal lethality to enable assessment of any posteruption dental phenotypes. A dental epithelium–specific Irf6 conditional knockout (Irf6-cKO) mouse was generated via a Pitx2-Cre driver line. Dental development was analyzed by microcomputed tomography, scanning electron microscopy, histology, immunohistochemistry, and quantitative polymerase chain reaction. Irf6-cKO mice displayed variable hypodontia, occasional supernumerary incisors and molars, as well as crown and root patterning anomalies, including peg-shaped first molars and taurodontic and C-shaped mandibular second molars. Enamel density was reduced in preeruption Irf6-cKO mice, and some shearing of enamel rods was noted in posteruption incisors. There was also rapid attrition of Irf6-cKO molars following eruption. Histologically, Irf6-cKO ameloblasts exhibited disturbances in adhesion and polarity, and delayed enamel formation was confirmed immunohistochemically. Altered structure of Hertwig’s epithelial root sheath was also observed. These data support a role for IRF6 in tooth number, crown and root morphology and amelogenesis that is likely due to a functional role of Irf6 in organization and polarity of epithelial cell types. This data reinforce the notion that various isolated tooth defects could be considered part of the CLP spectrum in relatives of an affected individual. PMID:27369589
A Multidimensional Ideal Point Item Response Theory Model for Binary Data.
Maydeu-Olivares, Albert; Hernández, Adolfo; McDonald, Roderick P
2006-12-01
We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model yields closed form expressions for the cell probabilities. We estimate and test the goodness of fit of the model using only information contained in the univariate and bivariate moments of the data. Also, we pit the new model against the multidimensional normal ogive model estimated using NOHARM in four applications involving (a) attitudes toward censorship, (b) satisfaction with life, (c) attitudes of morality and equality, and (d) political efficacy. The normal PDF model is not invariant to simple operations such as reverse scoring. Thus, when there is no natural category to be modeled, as in many personality applications, it should be fit separately with and without reverse scoring for comparisons.
Ireland, Robin; Wang, Rong; Alinger, Joshua B.; Small, Pamela; Bosio, Catharine M.
2013-01-01
Induction of innate immunity is essential for host survival of infection. Evasion and inhibition of innate immunity is a strategy used by pathogens, such as the highly virulent bacterium Francisella tularensis, to ensure their replication and transmission. The mechanism and bacterial components responsible for this suppression of innate immunity by F. tularensis are not defined. Here, we demonstrate that lipids enriched from virulent F. tularensis strain SchuS4, but not attenuated Live Vaccine Strain (LVS), inhibit inflammatory responses in vitro and in vivo. Suppression of inflammatory responses is associated with IκBα independent inhibition of NF-κBp65 activation and selective inhibition of activation of Interferon Regulatory Factors (IRFs). Interference with NF-κBp65 and IRFs is also observed following infection with viable SchuS4. Together these data provide novel insight as to how highly virulent bacteria selectively modulate the host to interfere innate immune responses required for survival of infection. PMID:23817430
Sontag, Stephanie; Förster, Malrun; Qin, Jie; Wanek, Paul; Mitzka, Saskia; Schüler, Herdit M; Koschmieder, Steffen; Rose-John, Stefan; Seré, Kristin; Zenke, Martin
2017-04-01
Human induced pluripotent stem (iPS) cells can differentiate into cells of all three germ layers, including hematopoietic stem cells and their progeny. Interferon regulatory factor 8 (IRF8) is a transcription factor, which acts in hematopoiesis as lineage determining factor for myeloid cells, including dendritic cells (DC). Autosomal recessive or dominant IRF8 mutations occurring in patients cause severe monocytic and DC immunodeficiency. To study IRF8 in human hematopoiesis we generated human IRF8-/- iPS cells and IRF8-/- embryonic stem (ES) cells using RNA guided CRISPR/Cas9n genome editing. Upon induction of hematopoietic differentiation, we demonstrate that IRF8 is dispensable for iPS cell and ES cell differentiation into hemogenic endothelium and for endothelial-to-hematopoietic transition, and thus development of hematopoietic progenitors. We differentiated iPS cell and ES cell derived progenitors into CD141+ cross-presenting cDC1 and CD1c+ classical cDC2 and CD303+ plasmacytoid DC (pDC). We found that IRF8 deficiency compromised cDC1 and pDC development, while cDC2 development was largely unaffected. Additionally, in an unrestricted differentiation regimen, IRF8-/- iPS cells and ES cells exhibited a clear bias toward granulocytes at the expense of monocytes. IRF8-/- DC showed reduced MHC class II expression and were impaired in cytokine responses, migration, and antigen presentation. Taken together, we engineered a human IRF8 knockout model that allows studying molecular mechanisms of human immunodeficiencies in vitro, including the pathophysiology of IRF8 deficient DC. Stem Cells 2017;35:898-908. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Tamura, Tomokazu; Nagashima, Naofumi; Ruggli, Nicolas; Summerfield, Artur; Kida, Hiroshi; Sakoda, Yoshihiro
2014-04-17
Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.
Carballo, Carlos; Castro, Dolores; Borrego, Juan J; Manchado, Manuel
2017-07-01
In the present study, the pathogenesis of lymphocystis disease virus (LCDV) and the immune gene expression patterns associated with this viral infection were determined in the flatfish Senegalese sole. The results indicate that LCDV spreads rapidly from the peritoneal cavity through the bloodstream to reach target organs such as kidney, gut, liver, and skin/fin. The viral load was highest in kidney and reduced progressively thorough the experiment in spite of the viral major capsid protein gene was transcribed. The LCDV injection activated a similar set of differentially expressed transcripts in kidney and intestine although with some differences in the intensity and time-course response. This set included antiviral-related transcripts (including the mx and interferon-related factors irf1, irf2, irf3, irf7, irf8, irf9, irf10), cytokines (il1b, il6, il8, il12 and tnfa) and their receptors (il1r, il8r, il10r, il15ra, il17r), chemokines (CXC-type, CC-type and IL-8), prostaglandins (cox-2), g-type lysozymes, hepcidin, complement fractions (c2, c4-1 and c4-2) and the antigen differentiation factors cd4, cd8a, and cd8b. The expression profile observed indicated that the host triggered a systemic defensive response including inflammation able to cope with the viral challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Oekyung; Sun Yan; Lai, Frances W.
2010-07-05
Porcine reproductive and respiratory syndrome (PRRS) is an emerged disease of swine characterized by negligible response of type I IFNs and viral persistence. We show that the PRRSV non-structural protein 1 (Nsp1) is the viral component responsible for modulation of IFN response. Nsp1 blocked dsRNA-induced IRF3 and IFN promoter activities. Nsp1 did not block phosphorylation and nuclear translocation of IRF3 but inhibited IRF3 association with CREB-binding protein (CBP) in the nucleus. While IRF3 was stable, CBP was degraded, and CBP degradation was proteasome-dependent, suggesting that CBP degradation is not due to the protease activity of Nsp1 but an intermediary ismore » involved. Our data suggest that the Nsp1-mediated CBP degradation inhibits the recruitment of CBP for enhanceosome assembly, leading to the block of IFN response. CBP degradation is a novel strategy for viral evasion from the host response, and Nsp1 may form a new class of viral antagonists for IFN modulation.« less
Wen, Weiping; Kalkan, Erol
2017-01-01
Deconvolution and cross‐correlation techniques are used for system identification of a 20‐story steel, moment‐resisting frame building in downtown Anchorage, Alaska. This regular‐plan midrise structure is instrumented with a 32‐channel accelerometer array at 10 levels. The impulse response functions (IRFs) and correlation functions (CFs) are computed based on waveforms recorded from ambient vibrations and five local and regional earthquakes. The earthquakes occurred from 2005 to 2014 with moment magnitudes between 4.7 and 6.2 over a range of azimuths at epicenter distances of 13.3–183 km. The building’s fundamental frequencies and mode shapes are determined using a complex mode indicator function based on singular value decomposition of multiple reference frequency‐response functions. The traveling waves, identified in IRFs with a virtual source at the roof, and CFs are used to estimate the intrinsic attenuation associated with the fundamental modes and shear‐wave velocity in the building. Although the cross correlation of the waveforms at various levels with the corresponding waveform at the first floor provides more complicated wave propagation than that from the deconvolution with virtual source at the roof, the shear‐wave velocities identified by both techniques are consistent—the largest difference in average values is within 8%. The median shear‐wave velocity from the IRFs of five earthquakes is 191 m/s for the east–west (E‐W), 205 m/s for the north–south (N‐S), and 176 m/s for the torsional responses. The building’s average intrinsic‐damping ratio is estimated to be 3.7% and 3.4% in the 0.2–1 Hz frequency band for the E‐W and N‐S directions, respectively. These results are intended to serve as reference for the undamaged condition of the building, which may be used for tracking changes in structural integrity during and after future earthquakes.
Pathogen Specific, IRF3-Dependent Signaling and Innate Resistance to Human Kidney Infection
Fischer, Hans; Lutay, Nataliya; Ragnarsdóttir, Bryndís; Yadav, Manisha; Jönsson, Klas; Urbano, Alexander; Al Hadad, Ahmed; Rämisch, Sebastian; Storm, Petter; Dobrindt, Ulrich; Salvador, Ellaine; Karpman, Diana; Jodal, Ulf; Svanborg, Catharina
2010-01-01
The mucosal immune system identifies and fights invading pathogens, while allowing non-pathogenic organisms to persist. Mechanisms of pathogen/non-pathogen discrimination are poorly understood, as is the contribution of human genetic variation in disease susceptibility. We describe here a new, IRF3-dependent signaling pathway that is critical for distinguishing pathogens from normal flora at the mucosal barrier. Following uropathogenic E. coli infection, Irf3−/− mice showed a pathogen-specific increase in acute mortality, bacterial burden, abscess formation and renal damage compared to wild type mice. TLR4 signaling was initiated after ceramide release from glycosphingolipid receptors, through TRAM, CREB, Fos and Jun phosphorylation and p38 MAPK-dependent mechanisms, resulting in nuclear translocation of IRF3 and activation of IRF3/IFNβ-dependent antibacterial effector mechanisms. This TLR4/IRF3 pathway of pathogen discrimination was activated by ceramide and by P-fimbriated E. coli, which use ceramide-anchored glycosphingolipid receptors. Relevance of this pathway for human disease was supported by polymorphic IRF3 promoter sequences, differing between children with severe, symptomatic kidney infection and children who were asymptomatic bacterial carriers. IRF3 promoter activity was reduced by the disease-associated genotype, consistent with the pathology in Irf3−/− mice. Host susceptibility to common infections like UTI may thus be strongly influenced by single gene modifications affecting the innate immune response. PMID:20886096
Samejima Items in Multiple-Choice Tests: Identification and Implications
ERIC Educational Resources Information Center
Rahman, Nazia
2013-01-01
Samejima hypothesized that non-monotonically increasing item response functions (IRFs) of ability might occur for multiple-choice items (referred to here as "Samejima items") if low ability test takers with some, though incomplete, knowledge or skill are drawn to a particularly attractive distractor, while very low ability test takers…
Hu, Guo-Bin; Lou, Hui-Min; Dong, Xian-Zhi; Liu, Qiu-Ming; Zhang, Shi-Cui
2012-10-01
Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Flutter, Barry; Nestle, Frank O
2013-10-17
Interferon regulatory factors play an important role in the transcriptional regulation of immunity. In this issue of Immunity, Kumamoto et al. (2013) and Gao et al. (2013) identify an Irf4-dependent migratory dendritic cell subset required for T helper 2 cell polarization following cutaneous challenge. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Huq, Rizwan-ul; Amir, Alia
2015-01-01
In classroom settings, students' competence is regularly evaluated through a default practice named Initiation-Response-Feedback (IRF) or Initiation-Response-Evaluation (IRE). In the feedback or evaluation turn, the teacher normally uses acknowledgement tokens (such as uhm, yeah, okay). These tokens perform an active role of maintaining…
Using a System Identification Approach to Investigate Subtask Control during Human Locomotion
Logan, David; Kiemel, Tim; Jeka, John J.
2017-01-01
Here we apply a control theoretic view of movement to the behavior of human locomotion with the goal of using perturbations to learn about subtask control. Controlling one's speed and maintaining upright posture are two critical subtasks, or underlying functions, of human locomotion. How the nervous system simultaneously controls these two subtasks was investigated in this study. Continuous visual and mechanical perturbations were applied concurrently to subjects (n = 20) as probes to investigate these two subtasks during treadmill walking. Novel application of harmonic transfer function (HTF) analysis to human motor behavior was used, and these HTFs were converted to the time-domain based representation of phase-dependent impulse response functions (ϕIRFs). These ϕIRFs were used to identify the mapping from perturbation inputs to kinematic and electromyographic (EMG) outputs throughout the phases of the gait cycle. Mechanical perturbations caused an initial, passive change in trunk orientation and, at some phases of stimulus presentation, a corrective trunk EMG and orientation response. Visual perturbations elicited a trunk EMG response prior to a trunk orientation response, which was subsequently followed by an anterior-posterior displacement response. This finding supports the notion that there is a temporal hierarchy of functional subtasks during locomotion in which the control of upper-body posture precedes other subtasks. Moreover, the novel analysis we apply has the potential to probe a broad range of rhythmic behaviors to better understand their neural control. PMID:28123365
Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew
2011-12-01
All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.
Jayakumar, Asha; Donovan, Michael J.; Tripathi, Vinita; Ramalho-Ortigao, Marcelo; McDowell, Mary Ann
2008-01-01
The salient feature of dendritic cells (DC) is the initiation of appropriate adaptive immune responses by discriminating between pathogens. Using a prototypic model of intracellular infection, we previously showed that Leishmania major parasites prime human DC for efficient interleukin-12 (IL-12) secretion. L. major infection is associated with self-limiting cutaneous disease and powerful immunity. In stark contrast, the causative agent of visceral leishmaniasis, Leishmania donovani, does not prime human DC for IL-12 production. Here, we report that DC priming by L. major infection results in the early activation of NF-κB transcription factors and the up-regulation and nuclear translocation of interferon regulatory factor 1 (IRF-1) and IRF-8. The inhibition of NF-κB activation by the pretreatment of DC with caffeic acid phenethyl ester blocks L. major-induced IRF-1 and IRF-8 activation and IL-12 expression. We further demonstrate that IRF-1 and IRF-8 obtained from L. major-infected human DC specifically bind to their consensus binding sites on the IL-12p35 promoter, indicating that L. major infection either directly stimulates a signaling cascade or induces an autocrine pathway that activates IRF-1 and IRF-8, ultimately resulting in IL-12 transcription. PMID:18316378
Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease.
Szelag, Malgorzata; Piaszyk-Borychowska, Anna; Plens-Galaska, Martyna; Wesoly, Joanna; Bluyssen, Hans A R
2016-07-26
Key factors contributing to early stages of atherosclerosis and plaque development include the pro-inflammatory cytokines Interferon (IFN)α, IFNγ and Interleukin (IL)-6 and Toll-like receptor 4 (TLR4) stimuli. Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT) and Interferon Regulatory Factor (IRF) families. In particular, STAT1, 2 and 3; IRF1 and 8 have recently been recognized as prominent modulators of inflammation, especially in immune and vascular cells during atherosclerosis. Moreover, inflammation-mediated activation of these STATs and IRFs coordinates a platform for synergistic amplification leading to pro-atherogenic responses.Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules including natural products. Only a few inhibitors for other STATs, but none for IRFs, are described. Promising results for several STAT3 inhibitors in recent clinical trials predicts STAT3-inhibiting strategies may find their way to the clinic. However, many of these inhibitors do not seem STAT-specific, display toxicity and are not very potent. This illustrates the need for better models, and screening and validation tools for novel STAT and IRF inhibitors.This review presents a summary of these findings. It postulates STAT1, STAT2 and STAT3 and IRF1 and IRF8 as interesting therapeutic targets and targeted inhibition could be a potential treatment strategy in CVDs. In addition, it proposes a pipeline approach that combines comparative in silico docking of STAT-SH2 and IRF-DBD models with in vitro STAT and IRF activation inhibition validation, as a novel tool to screen multi-million compound libraries and identify specific inhibitors for STATs and IRFs.
Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease
Szelag, Malgorzata; Piaszyk-Borychowska, Anna; Plens-Galaska, Martyna; Wesoly, Joanna; Bluyssen, Hans A.R.
2016-01-01
Key factors contributing to early stages of atherosclerosis and plaque development include the pro-inflammatory cytokines Interferon (IFN)α, IFNγ and Interleukin (IL)-6 and Toll-like receptor 4 (TLR4) stimuli. Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT) and Interferon Regulatory Factor (IRF) families. In particular, STAT1, 2 and 3; IRF1 and 8 have recently been recognized as prominent modulators of inflammation, especially in immune and vascular cells during atherosclerosis. Moreover, inflammation-mediated activation of these STATs and IRFs coordinates a platform for synergistic amplification leading to pro-atherogenic responses. Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules including natural products. Only a few inhibitors for other STATs, but none for IRFs, are described. Promising results for several STAT3 inhibitors in recent clinical trials predicts STAT3-inhibiting strategies may find their way to the clinic. However, many of these inhibitors do not seem STAT-specific, display toxicity and are not very potent. This illustrates the need for better models, and screening and validation tools for novel STAT and IRF inhibitors. This review presents a summary of these findings. It postulates STAT1, STAT2 and STAT3 and IRF1 and IRF8 as interesting therapeutic targets and targeted inhibition could be a potential treatment strategy in CVDs. In addition, it proposes a pipeline approach that combines comparative in silico docking of STAT-SH2 and IRF-DBD models with in vitro STAT and IRF activation inhibition validation, as a novel tool to screen multi-million compound libraries and identify specific inhibitors for STATs and IRFs. PMID:27166190
Diop, Mamadou; St. Lawrence, Keith
2013-01-01
Time-resolved (TR) techniques provide a means of discriminating photons based on their time-of-flight. Since early arriving photons have a lower probability of probing deeper tissue than photons with long time-of-flight, time-windowing has been suggested as a method for improving depth sensitivity. However, TR measurements also contain instrument contributions (instrument-response-function, IRF), which cause temporal broadening of the measured temporal point-spread function (TPSF) compared to the true distribution of times-of-flight (DTOF). The purpose of this study was to investigate the influence of the IRF on the depth sensitivity of TR measurements. TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved using a stable algorithm to recover the DTOFs. The microscopic Beer-Lambert law was applied to the TPSFs and DTOFs to obtain depth-resolved absorption changes. In contrast to the DTOF, the latest part of the TPSF was not the most sensitive to absorption changes in the lower layer, which was confirmed by computer simulations. The improved depth sensitivity of the DTOF was illustrated in a pig model of the adult human head. Specifically, it was shown that dynamic absorption changes obtained from the late part of the DTOFs recovered from TPSFs acquired by probes positioned on the scalp were similar to absorption changes measured directly on the brain. These results collectively demonstrate that this method improves the depth sensitivity of TR measurements by removing the effects of the IRF. PMID:23504445
NASA Astrophysics Data System (ADS)
van Dijk, W. M.; Joshi, S. K.; Densmore, A. L.; Jackson, C. R.; Sutanudjaja, E.; Lafare, A. E. A.; Gupta, S.; Mackay, J. D.; Mason, P. J.; Sinha, R.
2017-12-01
Groundwater is a primary source of freshwater in the alluvial aquifer system of northwestern India. Unsustainable exploitation of the groundwater resources has led to a regional hotspot in groundwater depletion. Rapid groundwater-level decline shows spatial variation, as the effects of various stresses, including precipitation, potential evapotranspiration and abstraction, are likely to be influenced by the stratigraphic and geomorphic heterogeneity between sediment fan and interfan areas (see Geomorphological map in Figure A). We used a transfer function-noise (TFN) time series approach to quantify the effect of the various stress components in the period 1974-2010, based on predefined impulse response functions (IRFs) of von Asmuth et al. (2008). The objective of this study was 1) to acquire the impulse response function of various stresses, 2) assess the spatial estimation parameter (the zeroth moment, M0) of the spatial development of the groundwater head and 3) relate the spatial M0 to the observed stratigraphic and geomorphic heterogeneity. We collected information on the groundwater head pre- and post-monsoon, the district-wise monthly precipitation and potential evapotranspiration, and we modeled the monthly abstraction rate using land-use information. The TFN identified the IRF of precipitation as well as abstraction. The IRF, summarized in the parameter M0, identified a hotspot for the abstraction stress (see M0 spatial map for abstraction in Figure B) at the margins of the Sutlej and Yamuna fans. No hotspot is observed for the precipitation stress, but the M0 for precipitation increases with distance from the Himalayan front. At larger distances from the Himalayan front, observed groundwater head rises cannot be explained by the IRFs for the abstraction and precipitation stresses. This is likely because the current TFN models do not account for other stresses, such as recharge by canal leakage, which are locally important. We conclude that the spatial variation in the M0 for abstraction is controlled by stratigraphic and geomorphic heterogeneity. The fan margins and the interfan area are more affected by abstraction as these areas are underlain by fewer, and thinner, aquifer bodies them the fans themselves. Von Ashmuth et al,2008. Ground Water, 46 (1), 30-40
Zargar, Homayoun; Akca, Oktay; Autorino, Riccardo; Brandao, Luis Felipe; Laydner, Humberto; Krishnan, Jayram; Samarasekera, Dinesh; Stein, Robert J; Kaouk, Jihad H
2015-05-01
To objectively assess ipsilateral renal function (IRF) preservation and factors influencing it after robot-assisted partial nephrectomy (RAPN). Our database was queried to identify patients who had undergone RAPN from 2007 to 2013 and had complete pre- and postoperative mercapto-acetyltriglycine (MAG3) renal scan assessment. The estimated glomerular filtration rate (eGFR) for the operated kidney was calculated by multiplying the percentage of contribution from the renal scan by the total eGFR. IRF preservation was defined as a ratio of the postoperative eGFR for the operated kidney to the preoperative eGFR for the operated kidney. The percentage of total eGFR preservation was calculated in the same manner (postoperative eGFR/preoperative eGFR × 100). The amount of healthy rim of renal parenchyma removed was assessed by deducting the volume of tumour from the volume of the PN specimen assessed on pathology. Multivariable linear regression was used for analysis. In all, 99 patients were included in the analysis. The overall median (interquartile range) total eGFR preservation and IRF preservation for the operated kidney was 83.83 (75.2-94.1)% and 72 (60.3-81)%, respectively (P < 0.01). On multivariable analysis, volume of healthy rim of renal parenchyma removed, warm ischaemia time (WIT) > 30 min, body mass index (BMI) and operated kidney preoperative eGFR were predictive of IRF preservation. Using total eGFR tends to overestimate the degree of renal function preservation after RAPN. This is particularly relevant when studying factors affecting functional outcomes after nephron-sparing surgery. IRF may be a more precise assessment method in this setting. Operated kidney baseline renal function, BMI, WIT >30 min, and amount of resected healthy renal parenchyma represent the factors with a significant impact on the IRF preservation. RAPN provides significant preservation of renal function as shown by objective assessment criteria. © 2014 The Authors. BJU International © 2014 BJU International.
Tian, Bing; Zhao, Yingxin; Kalita, Mridul; Edeh, Chukwudi B.; Paessler, Slobodan; Casola, Antonella; Teng, Michael N.; Garofalo, Roberto P.
2013-01-01
Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3−/− MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser2 carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-β) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease. PMID:23596302
Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R; Vojtesek, Borivoj; Ball, Kathryn L
2011-04-22
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.
Wong, Hui Hui; Fung, To Sing; Fang, Shouguo; Huang, Mei; Le, My Tra; Liu, Ding Xiang
2018-02-01
Severe acute respiratory syndrome coronavirus (SARS-CoV) is an inefficient inducer of interferon (IFN) response. It expresses various proteins that effectively circumvent IFN production at different levels via distinct mechanisms. Through the construction of recombinant IBV expressing proteins 8a, 8b and 8ab encoded by SARS-CoV ORF8, we demonstrate that expression of 8b and 8ab enables the corresponding recombinant viruses to partially overcome the inhibitory actions of IFN activation to achieve higher replication efficiencies in cells. We also found that proteins 8b and 8ab could physically interact with IRF3. Overexpression of 8b and 8ab resulted in the reduction of poly (I:C)-induced IRF3 dimerization and inhibition of the IFN-β signaling pathway. This counteracting effect was partially mediated by protein 8b/8ab-induced degradation of IRF3 in a ubiquitin-proteasome-dependent manner. Taken together, we propose that SARS-CoV may exploit the unique functions of proteins 8b and 8ab as novel mechanisms to overcome the effect of IFN response during virus infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John
2002-09-15
IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.
Resistance to HSV-1 Infection in the Epithelium Resides with the Novel Innate Sensor, IFI-16
Conrady, Christopher D.; Zheng, Min; Fitzgerald, Katherine A.; Liu, Chuanju; Carr, Daniel J.J.
2012-01-01
Toll-like receptors (TLRs) are innate sentinels required for clearance of bacterial and fungal infections of the cornea, but their role in viral immunity is currently unknown. We report TLR signaling is expendable in HSV-1 containment as depicted by plaque assays of knockout mice (MyD88−/−, Trif−/− and MyD88−/− Trif−/− DKO) resembling wild type controls. To identify the key sentinel in viral recognition of the cornea, in vivo knockdown of the DNA sensor IFI-16/p204 in corneal epithelium was performed and resulted in a loss of IRF-3 nuclear translocation, interferon-α production, and viral containment. The sensor appears to have a similar function in other HSV clinically-relevant sites such as the vaginal mucosa in which a loss of p204/IFI-16 results in significantly more HSV-2 shedding. Thus, we have identified an IRF-3 dependent, IRF-7 and TLR - independent innate sensor responsible for HSV containment at the site of acute infection. PMID:22236996
Ben, Jin; Jabs, Ethylin Wang; Chong, Samuel S
2005-06-01
Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant clefting disorders recently discovered to be caused by mutations in the IRF6 (Interferon Regulatory Factor 6) gene. The IRF gene family consists of nine members encoding transcription factors that share a highly conserved helix-turn-helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-alpha and -beta after viral infection, but the function of IRF6 remains unknown. We have isolated a full-length zebrafish irf6 cDNA, which encodes a 492 amino acid protein that contains a Smad-IRF interaction motif and a DNA-binding domain. The zebrafish irf6 gene consists of eight exons and maps to linkage group 22 closest to marker unp1375. By in situ hybridization analysis of embryo whole-mounts and cryosections, we demonstrate that irf6 is first expressed as a maternal transcript. During gastrulation, irf6 expression was concentrated in the forerunner cells. From the bud stage to the 3-somite stage, irf6 expression was observed in the Kupffer's vesicle. No expression could be detected at the 6-somite and 10-somite stages. At the 14-somite stage, expression was detected in the otic placode. At the 17-somite stage, strong expression was also observed in the cloaca. During the pharyngula, hatch and larva periods up to 5 days post-fertilization, irf6 was expressed in the pharyngeal arches, olfactory and otic placodes, and in the epithelial cells of endoderm derived tissues. The latter tissues include the mouth, pharynx, esophagus, endodermal lining of swim bladder, liver, exocrine pancreas, and associated ducts. Overall, the zebrafish expression data are consistent with the observations of lip pits in VWS patients, as well as more recent reports of alae nasi, otitis media and sensorineural hearing loss documented in some patients.
Simonetti, Giorgia; Carette, Amanda; Silva, Kathryn; Wang, Haowei; De Silva, Nilushi S.; Heise, Nicole; Siebel, Christian W.; Shlomchik, Mark J.
2013-01-01
The transcription factor interferon regulatory factor-4 (IRF4) is expressed in B cells at most developmental stages. In antigen-activated B cells, IRF4 controls germinal center formation, class-switch recombination, and the generation of plasma cells. Here we describe a novel function for IRF4 in the homeostasis of mature B cells. Inducible deletion of irf4 specifically in B cells in vivo led to the aberrant accumulation of irf4-deleted follicular B cells in the marginal zone (MZ) area. IRF4-deficient B cells showed elevated protein expression and activation of NOTCH2, a transmembrane receptor and transcriptional regulator known to be required for MZ B cell development. Administration of a NOTCH2-inhibitory antibody abolished nuclear translocation of NOTCH2 in B cells within 12 h and caused a rapid and progressive disintegration of the MZ that was virtually complete 48 h after injection. The disappearance of the MZ was accompanied by a transient increase of MZ-like B cells in the blood rather than increased B cell apoptosis, demonstrating that continued NOTCH2 activation is critical for the retention of B cells in the MZ. Our results suggest that IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression. These findings may have implications for the understanding of B cell malignancies with dysregulated IRF4 and NOTCH2 activity. PMID:24323359
Tian, Wenqiang; DeJong, Gerben; Horn, Susan D; Putman, Koen; Hsieh, Ching-Hui; DaVanzo, Joan E
2012-01-01
There has been lengthy debate as to which setting, skilled nursing facility (SNF) or inpatient rehabilitation facility (IRF), is more efficient in treating joint replacement patients. This study aims to determine the efficiency of rehabilitation care provided by SNF and IRF to joint replacement patients with respect to both payment and length of stay (LOS). This study used a prospective multisite observational cohort design. Tobit models were used to examine the association between setting of care and efficiency. The study enrolled 948 knee replacement patients and 618 hip replacement patients from 11 IRFs and 7 SNFs between February 2006 and February 2007. Output was measured by motor functional independence measure (FIM) score at discharge. Efficiency was measured in 3 ways: payment efficiency, LOS efficiency, and stochastic frontier analysis efficiency. IRF patients incurred higher expenditures per case but also achieved larger motor FIM gains in shorter LOS than did SNF patients. Setting of care was not a strong predictor of overall efficiency of rehabilitation care. Great variation in characteristics existed within IRFs or SNFs and severity groups. Medium-volume facilities among both SNFs and IRFs were most efficient. Early rehabilitation was consistently predictive of efficient treatment. The advantage of either setting is not clear-cut. Definition of efficiency depends in part on preference between cost and time. SNFs are more payment efficient; IRFs are more LOS efficient. Variation within SNFs and IRFs blurred setting differences; a simple comparison between SNF and IRF may not be appropriate.
3C Protease of Enterovirus D68 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7
Xiang, Zichun; Liu, Lulu; Lei, Xiaobo; Zhou, Zhuo
2015-01-01
ABSTRACT Human enterovirus 68 (EV-D68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, clusters of EV-D68 infections have occurred worldwide. A recent outbreak in the United States is the largest one associated with severe respiratory illness and neurological complication. Although clinical symptoms are recognized, the virus remains poorly understood. Here we report that EV-D68 inhibits innate antiviral immunity by downregulation of interferon regulatory factor 7 (IRF7), an immune factor with a pivotal role in viral pathogenesis. This process depends on 3Cpro, an EV-D68-encoded protease, to mediate IRF7 cleavage. When expressed in host cells, 3Cpro targets Q167 and Q189 within the constitutive activation domain, resulting in cleavage of IRF7. Accordingly, wild-type IRF7 is fully active. However, IRF7 cleavage abrogated its capacity to activate type I interferon expression and limit replication of EV-D68. Notably, IRF7 cleavage strictly requires the protease activity of 3Cpro. Together, these results suggest that a dynamic interplay between 3Cpro and IRF7 may determine the outcome of EV-D68 infection. IMPORTANCE EV-D68 is a globally emerging pathogen, but the molecular basis of EV-D68 pathogenesis is unclear. Here we report that EV-D68 inhibits innate immune responses by targeting an immune factor, IRF7. This involves the 3C protease encoded by EV-D68, which mediates the cleavage of IRF7. These observations suggest that the 3Cpro-IRF7 interaction may represent an interface that dictates EV-D68 infection. PMID:26608321
Effects of Toll-like receptor 3 on herpes simplex virus type-1-infected mouse neural stem cells.
Sun, Xiuning; Shi, Lihong; Zhang, Haoyun; Li, Ruifang; Liang, Ruiwen; Liu, Zhijun
2015-03-01
In this study, we aimed to investigate the effect of herpes simplex virus type-1 (HSV-1) infection on the phosphorylation of interferon regulatory factor 3 (IRF3) and the expression of interferon-β (IFN-β), as well as to clarify the functions of toll-like receptor 3 (TLR3) in mouse neural stem cells (NSCs) infected with HSV-1. In HSV-1-infected cultured NSCs, immunofluorescence, reverse transcription - polymerase chain reaction, Western blot, and ELISA were performed to reveal the expression patterns of TLR3, IRF3, and IFN-β. Then, lentivirus-mediated RNA interference (RNAi) was used to block the expression of TLR3, and its effect on host resistance to HSV-1 infection was investigated. Under uninfected conditions, NSCs expressed TLR3 and phosphorylated IRF3, but after infection, the expression level of TLR3 was upregulated and the phosphorylation level of IRF3 in the nucleus was significantly enhanced, while IFN-β was also expressed. After TLR3 expression was blocked by lentivirus-mediated RNAi, IRF3 phosphorylation and IFN-β expression were downregulated. Therefore, HSV-1 upregulated the expression of TLR3 in NSCs and promoted nuclear translocation after IRF3 was phosphorylated to induce IFN-β expression. TLR3 exhibited an anti-HSV-1 infection capacity via innate immune functions.
Baernholdt, Marianne; Anderson, Ruth A.; Merwin, Elizabeth I.
2015-01-01
Objective To examine the influence of facility and aggregate patient characteristics of inpatient rehabilitation facilities (IRFs) on performance-based rehabilitation outcomes in a national sample of IRFs treating Medicare beneficiaries with hip fracture. Design Secondary data analysis. Setting U.S. Medicare-certified IRFs (N=983). Participants 983 US Medicare-certified IRFs. Data included 34,364 patient records of Medicare beneficiaries admitted in 2009 for rehabilitation after hip fracture. Main Outcome Measures Performance-based outcomes included mean motor function on discharge, mean motor change (mean motor score on discharge minus mean motor score on admission) and percentage discharged to the community. Results Higher mean motor function on discharge was explained by aggregate characteristics of hip fracture patients (lower age [p=0.009], lower percentage of Blacks [p<0.001] and Hispanics [p<0.001], higher percentage of females [p<0.030], higher motor function on admission [p<0.001], longer length of stay [p<0.001]) and facility characteristics (freestanding [p<0.001], rural [p<0.001], for-profit [p=0.048], and smaller IRFs [p=0.041]). The findings were similar for motor change, but motor change was also associated with lower mean cognitive function on admission (0.008). Higher percentage discharged to the community was associated with aggregate patient characteristics (lower age [p<0.001], lower percentage of Hispanics [p=0.009], higher percentage of patients living with others [p<0.001], and higher motor function on admission [p<0.001]). No facility characteristics were associated with percentage discharged to the community. Conclusion Performance-based measurement offers health policymakers, administrators, clinicians, and consumers a major opportunity for securing health system improvement by benchmarking or comparing their outcomes to other similar facilities. These results might serve as the basis for benchmarking and quality-based reimbursement to IRFs for one impairment group: hip fracture. PMID:25596000
Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock
Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.
2012-01-01
Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364
Sood, Neeraj; Huckfeldt, Peter J; Grabowski, David C; Newhouse, Joseph P; Escarce, José J
2013-01-01
We examine provider responses to the Medicare inpatient rehabilitation facility (IRF) prospective payment system (PPS), which simultaneously reduced marginal reimbursement and increased average reimbursement. IRFs could respond to the PPS by changing the number of patients admitted, admitting different types of patients, or changing the intensity of care. We use Medicare claims data to separately estimate each type of provider response. We also examine changes in patient outcomes and spillover effects on other post-acute care providers. We find that costs of care initially fell following the PPS, which we attribute to changes in treatment decisions rather than the characteristics of patients admitted to IRFs within the diagnostic categories we examine. However, the probability of admission to IRFs increased after the PPS due to the expanded admission policies of providers. We find modest spillover effects in other post-acute settings and negative health impacts for only one of three diagnostic groups studied. PMID:23994598
STAT3/IRF1 Pathway Activation Sensitizes Cervical Cancer Cells to Chemotherapeutic Drugs.
Walch-Rückheim, Barbara; Pahne-Zeppenfeld, Jennifer; Fischbach, Jil; Wickenhauser, Claudia; Horn, Lars Christian; Tharun, Lars; Büttner, Reinhard; Mallmann, Peter; Stern, Peter; Kim, Yoo-Jin; Bohle, Rainer Maria; Rübe, Christian; Ströder, Russalina; Juhasz-Böss, Ingolf; Solomayer, Erich-Franz; Smola, Sigrun
2016-07-01
Neoadjuvant radio/chemotherapy regimens can markedly improve cervical cancer outcome in a subset of patients, while other patients show poor responses, but may encounter severe adverse effects. Thus, there is a strong need for predictive biomarkers to improve clinical management of cervical cancer patients. STAT3 is considered as a critical antiapoptotic factor in various malignancies. We therefore investigated STAT3 activation during cervical carcinogenesis and its impact on the response of cervical cancer cells to chemotherapeutic drugs. Tyr705-phosphorylated STAT3 increased from low-grade cervical intraepithelial neoplasia (CIN1) to precancerous CIN3 lesions. Notably, pTyr705-STAT3 activation significantly declined from CIN3 to invasive cancer, also when compared in the same clinical biopsy. pTyr705-STAT3 was also low or absent in cultured human cervical cancer cell lines, consistent with the in vivo expression data. Unexpectedly, IL6-type cytokine signaling inducing STAT3 activation rendered cervical cancer cells significantly more susceptible to chemotherapeutic drugs, that is, cisplatin or etoposide. This chemosensitization was STAT3-dependent and we identified IFN regulatory factor-1 (IRF1) as the STAT3-inducible mediator required for cell death enhancement. In line with these data, pTyr705-STAT3 significantly correlated with nuclear IRF1 expression in cervical cancer in vivo Importantly, high IRF1 expression in pretreatment cervical cancer biopsy cells was associated with a significantly better response to neoadjuvant radio/chemotherapy of the patients. In summary, our study has identified a key role of the STAT3/IRF1 pathway for chemosensitization in cervical cancer. Our results suggest that pretherapeutic IRF1 expression should be evaluated as a novel predictive biomarker for neoadjuvant radio/chemotherapy responses. Cancer Res; 76(13); 3872-83. ©2016 AACR. ©2016 American Association for Cancer Research.
Laghari, Zubair Ahmed; Chen, Shan Nan; Li, Li; Huang, Bei; Gan, Zhen; Zhou, Ying; Huo, Hui Jun; Hou, Jing; Nie, Pin
2018-07-01
Teleost fish are unique in having type I and type II interferons (IFNs) only, and the type I IFNs are classified into Group one and Group two based on the presence of two or four cysteines respectively, and are further classified into seven subgroups. In the present study, three distinct type I IFNs, IFNc, IFNd and IFNh, have been identified in the genome sequences of a perciform fish, the mandarin fish Siniperca chuatsi. These IFNs are induced following the stimulation of Polyinosinic polycytidylic acid (poly(I:C)) and Resiquimod (R848) either in vivo or in vitro. But, the infectious spleen and kidney necrosis virus (ISKNV) infection caused a delayed response of IFNs, which may be resulted from the viral inhibition of type I IFN production and related signalling. The three receptor subunits, cytokine receptor family B 1 (CRFB1), CRFB2 and CRFB5 are also expressed in a similar manner as observed for the IFNs, and IFNc, IFNd and IFNh use preferentially the receptor complex, CRFB2 and CRFB5, CRFB1 and CRFB5, CRFB1 and CRFB5 respectively for their effective signalling in the induction of IFN-stimulated genes (ISGs). Moreover, the IFNs are able to induce their own expression, and also the IRF3 and IRF7 expression, leading to the amplification of IFN cascade. It is further revealed that these three IFNs are transcribed differently by IRF7 and IRF3. The composition, function, signalling and transcription of type I IFNs have been investigated in detail in a teleost fish. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong
2015-01-01
Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.
Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R.; Vojtesek, Borivoj; Ball, Kathryn L.
2011-01-01
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106–140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs. PMID:21245151
Ai, Kete; Luo, Kai; Li, Youshen; Hu, Wei; Gao, Weihua; Fang, Liu; Tian, Guangming; Ruan, Guoliang; Xu, Qiaoqing
2017-01-01
In mammals, interferon regulatory factor 4 (IRF4) plays an important role in the process of development and differentiation of B cells, T cells and dendritic cells. It can regulate immune pathway through IRF5, MyD88, IL21, PGC1α, and NOD2. In the present study, we investigated the expression pattern of IRF4 paralogues and these related genes for the first time in teleosts. The results showed that these genes were all expressed predominantly in known immune tissues while IRF5 was also relatively highly expressed in muscle. IRF4b, IL21, MyD88, IRF5 and NOD2 showed maternal expression in the oocyte and the higher expression of IRF4a, Mx and PGC1α before hatching might be involved in the embryonic innate defense system. Zebrafish embryonic fibroblast (ZF4) cells were infected with GCRV and SVCV. During GCRV infection, the expression of Mx was significantly up-regulated from 3 h to 24 h, reaching the highest level at 12 h (101.5-fold over the controls, P < 0.001). And the expression of IRF4a was significantly up-regulated from 3 h to 48 h, reaching the highest level at 12 h (13.75-fold over the controls, P < 0.001). While the expression of IRF4b was only slightly up-regulated at 12 h and 24 h (3.39-fold, 1.93-fold) above control levels, respectively. Whereas the expression of Mx was significantly up-regulated during SVCV infection from 1 h to 48 h, reaching the highest level at 24 h (11.49-fold over the controls, P < 0.001). IRF4a transcripts were significantly up-regulated from 6 h to 24 h, reaching the highest level at 24 h (41-fold over the controls, P < 0.01). IRF4b only showed a slightly up-regulation by SVCV at 24 h (3.2-fold over the controls, P < 0.01). IRF4a and IRF4b displayed a distinct tissue expression pattern, embryonic stages expression and inducible expression in vivo and in vitro, suggesting that IRF4 paralogues might play different roles in immune system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway
Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.
2015-01-01
ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates. PMID:26676770
Reid, Ryan; Ezekowitz, Justin A.; Brown, Paul M.; McAlister, Finlay A.; Rowe, Brian H.; Braam, Branko
2015-01-01
Background Worsening and improving renal function during acute heart failure have been associated with adverse outcomes but few studies have considered the admission level of renal function upon which these changes are superimposed. Objectives The objective of this study was to evaluate definitions that incorporate both admission renal function and change in renal function. Methods 696 patients with acute heart failure with calculable eGFR were classified by admission renal function (Reduced [R, eGFR<45 ml/min] or Preserved [P, eGFR≥45 ml/min]) and change over hospital admission (worsening [WRF]: eGFR ≥20% decline; stable [SRF]; and improving [IRF]: eGFR ≥20% increase). The primary outcome was all-cause mortality. The prevalence of Pres and Red renal function was 47.8% and 52.2%. The frequency of R-WRF, R-SRF, and R-IRF was 11.4%, 28.7%, and 12.1%, respectively; the incidence of P-WRF, P-SRF, and P-IRF was 5.7%, 35.3%, and 6.8%, respectively. Survival was shorter for patients with R-WRF compared to R-IRF (median survival times 13.9 months (95%CI 7.7–24.9) and 32.5 months (95%CI 18.8–56.1), respectively), resulting in an acceleration factor of 2.3 (p = 0.016). Thus, an increase compared with a decrease in renal function was associated with greater than two times longer survival among patients with Reduced renal function. PMID:26380982
Richardson, Rebecca J.; Dixon, Jill; Jiang, Rulang; Dixon, Michael J.
2009-01-01
In mammals, adhesion and fusion of the palatal shelves are essential mechanisms during the development of the secondary palate; failure of these processes leads to the congenital anomaly, cleft palate. The mechanisms that prevent pathological adhesion between the oral and palatal epithelia while permitting adhesion and subsequent fusion of the palatal shelves via their medial edge epithelia remain obscure. In humans, mutations in the transcription factor interferon regulatory factor 6 (IRF6) underlie Van der Woude syndrome and popliteal pterygium syndrome. Recently, we have demonstrated that mice homozygous for a mutation in Irf6 exhibit abnormalities of epithelial differentiation that results in cleft palate as a consequence of adhesion between the palatal shelves and the tongue. In the current paper, we demonstrate that Irf6 is essential for oral epithelial differentiation and that IRF6 and the Notch ligand Jagged2 function in convergent molecular pathways during this process. We further demonstrate that IRF6 plays a key role in the formation and maintenance of the oral periderm, spatio-temporal regulation of which is essential for ensuring appropriate palatal adhesion. PMID:19439425
Prescott, Joseph B; Hall, Pamela R; Bondu-Hawkins, Virginie S; Ye, Chunyan; Hjelle, Brian
2007-08-01
Sin Nombre virus (SNV) is a highly pathogenic New World virus and etiologic agent of hantavirus cardiopulmonary syndrome. We have previously shown that replication-defective virus particles are able to induce a strong IFN-stimulated gene (ISG) response in human primary cells. RNA viruses often stimulate the innate immune response by interactions between viral nucleic acids, acting as a pathogen-associated molecular pattern, and cellular pattern-recognition receptors (PRRs). Ligand binding to PRRs activates transcription factors which regulate the expression of antiviral genes, and in all systems examined thus far, IFN regulatory factor 3 (IRF3) has been described as an essential intermediate for induction of ISG expression. However, we now describe a model in which IRF3 is dispensable for the induction of ISG transcription in response to viral particles. IRF3-independent ISG transcription in human hepatoma cell lines is initiated early after exposure to SNV virus particles in an entry- and replication-independent fashion. Furthermore, using gene knockdown, we discovered that this activation is independent of the best-characterized RNA- and protein-sensing PRRs including the cytoplasmic caspase recruitment domain-containing RNA helicases and the TLRs. SNV particles engage a heretofore unrecognized PRR, likely located at the cell surface, and engage a novel IRF3-independent pathway that activates the innate immune response.
Bahadoran, Azadeh; Ebrahimi, Mehdi; Yeap, Swee Keong; Safi, Nikoo; Moeini, Hassan; Hair-Bejo, Mohd; Hussein, Mohd Zobir; Omar, Abdul Rahman
2017-01-01
This study was aimed to evaluate the immunogenicity of recombinant plasmid deoxyribonucleic acid (DNA), pBud-H5-green fluorescent protein (GFP)-interferon-regulatory factor (IRF)3 following delivery using polyamidoamine (PAMAM) dendrimer and transactivator of transcription (TAT)-conjugated PAMAM dendrimer as well as the effect of IRF3 as the genetic adjuvant. BALB/c mice were vaccinated transdermally with pBud-H5-GFP, PAMAM/pBud-H5-GFP, TAT-PAMAM/pBud-H5-GFP, and TAT-PAMAM/pBud-H5-GFP-IRF3. The expression analysis of H5 gene from the blood by using quantitative real-time reverse transcriptase polymerase chain reaction confirmed the ability of PAMAM dendrimer as a carrier for gene delivery, as well as the ability of TAT peptide to enhance the delivery efficiency of PAMAM dendrimer. Mice immunized with modified PAMAM by TAT peptide showed higher hemagglutination inhibition titer, and larger CD3 + /CD4 + T cells and CD3 + /CD8 + T cells population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2, IL-15, IL-12, IL-6, and tumor necrosis factor-α compared with those immunized with native PAMAM. These results suggest that the function of TAT peptide as a cell-penetrating peptide is able to enhance the gene delivery, which results in rapid distribution of H5 in the tissues of the immunized mice. Furthermore, pBud-H5-GFP co-expressing IRF3 as a genetic adjuvant demonstrated the highest hemagglutination inhibition titer besides larger CD3 + /CD4 + and CD3 + /CD8 + T cells population, and strong Th1-like cytokine responses among all the systems tested. In conclusion, TAT-PAMAM dendrimer-based delivery system with IRF3 as a genetic adjuvant is an attractive transdermal DNA vaccine delivery system utilized to evaluate the efficacy of the developed DNA vaccine in inducing protection during challenge with virulent H5N1 virus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Qianqian; Lan, Xi; Wang, Chen
Emerged porcine kobuvirus (PKV) has adversely affected the global swine industry since 2008, but the etiological biology of PKV is unclear. Screening PKV-encoded structural and non-structural proteins with a type I IFN-responsive luciferase reporter showed that PKV VP3 protein inhibited the IFN-β-triggered signaling pathway, resulting in the decrease of VSV-GFP replication. QPCR data showed that IFN-β downstream cytokine genes were suppressed without cell-type specificity as well. The results from biochemical experiments indicated that PKV VP3 associated with STAT2 and IRF9, and interfered with the formation of the STAT2-IRF9 and STAT2-STAT2 complex, impairing nuclear translocation of STAT2 and IRF9. Taken together,more » these data reveal a new mechanism for immune evasion of PKV. - Highlights: •PKV VP3 inhibits the IFN-β-triggered signaling pathway. •VP3 associates with STAT2 and IRF9. •VP3 blocks the STAT2-IRF9 nuclear translocation. •VP3 utilizes a novel strategy for innate immune evasion.« less
Equal Area Logistic Estimation for Item Response Theory
NASA Astrophysics Data System (ADS)
Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li
2009-08-01
Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.
Szulc-Dąbrowska, Lidia; Struzik, Justyna; Ostrowska, Agnieszka; Guzera, Maciej; Toka, Felix N; Bossowska-Nowicka, Magdalena; Gieryńska, Małgorzata M; Winnicka, Anna; Nowak, Zuzanna; Niemiałtowski, Marek G
2017-01-01
Ectromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM), comprised of conventional dendritic cells (cDCs) and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR). Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.
Maloney, Nicole S.; Thackray, Larissa B.; Goel, Gautam; Hwang, Seungmin; Duan, Erning; Vachharajani, Punit; Xavier, Ramnik
2012-01-01
Noroviruses (NVs) cause the majority of cases of epidemic nonbacterial gastroenteritis worldwide and contribute to endemic enteric disease. However, the molecular mechanisms responsible for immune control of their replication are not completely understood. Here we report that the transcription factor interferon regulatory factor 1 (IRF-1) is required for control of murine NV (MNV) replication and pathogenesis in vivo. This led us to studies documenting a cell-autonomous role for IRF-1 in gamma interferon (IFN-γ)-mediated inhibition of MNV replication in primary macrophages. This role of IRF-1 in the inhibition of MNV replication by IFN-γ is independent of IFN-αβ signaling. While the signal transducer and activator of transcription STAT-1 was also required for IFN-γ-mediated inhibition of MNV replication in vitro, class II transactivator (CIITA), interferon regulatory factor 3 (IRF-3), and interferon regulatory factor 7 (IRF-7) were not required. We therefore hypothesized that there must be a subset of IFN-stimulated genes (ISGs) regulated by IFN-γ in a manner dependent only on STAT-1 and IRF-1. Analysis of transcriptional profiles of macrophages lacking various transcription factors confirmed this hypothesis. These studies identify a key role for IRF-1 in IFN-γ-dependent control of norovirus infection in mice and macrophages. PMID:22973039
Interferon regulatory factors: A key to tumour immunity.
Chen, Yan-Jie; Li, Jing; Lu, Nan; Shen, Xi-Zhong
2017-08-01
Interferon regulatory factors (IRFs), which have 10 members, belong to the transcription factor family and were named because of the regulation of interferon expression. They play important roles in the immune regulation, cell differentiation, cell apoptosis, and cell cycle regulation. This article will review the functional characteristics and immune activity of the family members, especially in the role of cell differentiation and autoimmune diseases. Intensive studies will help uncover the pathogenesis of the disease in a more comprehensive view, and provide novel targets for disease treatment. But the most important problems yet to solve is IRFs function in the development processes of tumour, and whether IRFs can be an important regulator in tumour immune treatment. Copyright © 2017. Published by Elsevier B.V.
Tabata, Rie; Yasumizu, Ryoji; Tabata, Chiharu; Kojima, Masaru
2013-01-01
Here, we report a rare case of double-hit lymphoma, demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2. The present case had a rare abnormal chromosome, t(6;14;18)(p25;q32;q21), independently, in addition to known dual-hit chromosomal abnormalities, t(14;18)(q32;q21) and t(8;22)(q24;q11.2). Lymph node was characterized by a follicular and diffuse growth pattern with variously sized neoplastic follicles. The intrafollicular area was composed of centrocytes with a few centroblasts and the interfollicular area was occupied by uniformly spread medium- to large-sized lymphocytes. CD23 immunostaining demonstrated a disrupted follicular dendritic cell meshwork. The intrafollicular tumor cells had a germinal center phenotype with the expression of surface IgM, CD10, Bcl-2, Bcl-6, and MUM1/IRF4. However, the interfollicular larger cells showed plasmacytic differentiation with diminished CD20, Bcl-2, Bcl-6, and positive intracytoplasmic IgM, and co-expression of MUM1/IRF4 and CD138 with increased Ki-67-positive cells (> 90%). MUM1/IRF4 has been found to induce c-MYC expression, and in turn, MYC transactivates MUM1/IRF4, creating a positive autoregulatory feedback loop. On the other hand, MUM1/IRF4 functions as a tumor suppressor in c-MYC-induced B-cell leukemia. The present rare case arouses interest in view of the possible "dual" activation of both c-MYC and MUM1/IRF4 through two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2.
Dery, Kenneth J; Silver, Craig; Yang, Lu; Shively, John E
2018-06-15
The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the CEACAM1 gene. RNAi-mediated Lv1 depletion in IRF1-treated HeLa and melanoma cells induced significant CEACAM1 protein expression, reversed by ectopic Lv1 expression. The Lv1-mediated CEACAM1 repression resided in residues Gly 71 -Gly 89 and Ala 38 -Gly 89 in Lv1's N-terminal extension. ChIP analysis of IRF1- and FLAG-tagged Lv1-treated HeLa cells and global treatment with the global epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A indicated that IRF1 and Lv1 together induce chromatin remodeling, restricting IRF1 access to the CEACAM1 promoter. In interferon γ-treated HeLa cells, the transcription factor SP1 did not associate with the CEACAM1 promoter, but binding by upstream transcription factor 1 (USF1), a known CEACAM1 regulator, was greatly enhanced. ChIP-sequencing revealed that Lv1 overexpression in IRF1-treated cells induces transcriptional silencing across many genes, including DCC ( d eleted in c olorectal c arcinoma), associated with CEACAM5 in colon cancer. Notably, IRF1, but not IRF3 and IRF7, affected CEACAM1 expression via translational repression. We conclude that IRF1 and Lv1 coordinately regulate CEACAM1 transcription, alternative splicing, and translation and may significantly contribute to CEACAM1 silencing in cancer. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Diotallevi, Marina; Checconi, Paola; Palamara, Anna Teresa; Celestino, Ignacio; Coppo, Lucia; Holmgren, Arne; Abbas, Kahina; Peyrot, Fabienne; Mengozzi, Manuela; Ghezzi, Pietro
2017-01-01
Glutathione (GSH), a major cellular antioxidant, is considered an inhibitor of the inflammatory response involving reactive oxygen species (ROS). However, evidence is largely based on experiments with exogenously added antioxidants/reducing agents or pro-oxidants. We show that depleting macrophages of 99% of GSH does not exacerbate the inflammatory gene expression profile in the RAW264 macrophage cell line or increase expression of inflammatory cytokines in response to the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS); only two small patterns of LPS-induced genes were sensitive to GSH depletion. One group, mapping to innate immunity and antiviral responses (Oas2, Oas3, Mx2, Irf7, Irf9, STAT1, il1b), required GSH for optimal induction. Consequently, GSH depletion prevented the LPS-induced activation of antiviral response and its inhibition of influenza virus infection. LPS induction of a second group of genes (Prdx1, Srxn1, Hmox1, GSH synthase, cysteine transporters), mapping to nrf2 and the oxidative stress response, was increased by GSH depletion. We conclude that the main function of endogenous GSH is not to limit inflammation but to fine-tune the innate immune response to infection. PMID:29033950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dang; Fang, Liurong; Luo, Rui
2010-08-13
Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reductionmore » of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.« less
Regulation of Effector Treg Cells in Murine Lupus.
Chandrasekaran, Uma; Yi, Woelsung; Gupta, Sanjay; Weng, Chien-Huan; Giannopoulou, Eugenia; Chinenov, Yurii; Jessberger, Rolf; Weaver, Casey T; Bhagat, Govind; Pernis, Alessandra B
2016-06-01
Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development. © 2016, American College of Rheumatology.
Influence of the prospective payment system on speech-language pathology services.
Frymark, Tobi B; Mullen, Robert C
2005-01-01
The present study was performed to determine the clinical effects of the Inpatient Rehabilitation Facility Prospective Payment System (IRF PPS) on speech and language intervention services and to examine the feasibility of using the federally mandated FIM instrument to establish resource allocation to patients with cognitive, communication, and swallowing disorders. A pre-IRF PPS and post-IRF PPS comparative study was conducted over a 1-yr time interval using data from the American Speech-Language-Hearing Association's National Outcomes Measurement System. Toward this end, the National Outcomes Measurement System's Functional Communication Measures were used to obtain data from 2,631 patients residing in 96 freestanding rehabilitation hospitals or hospitals with rehabilitation units implementing the prospective payment system on or after January 1, 2002. To ensure reliable retrospective and prospective data comparisons, all sites were active participants within the National Outcomes Measurement System program before the introduction of IRF PPS within their facilities. Findings revealed changes in both the utilization of speech-language pathologists and patient outcomes. Under the IRF PPS, there was a clear decline in speech- and language-related lengths of stay. However, clinicians attempted to compensate for these decrements in lengths of stay by increasing the intensity and frequency of their speech and language services. Despite these compensatory efforts, further analyses of the data revealed that under the IRF PPS, fewer patients achieved multiple levels of functional progress in speech and language abilities than before this payment system was implemented. This trend was most noteworthy in the treatment areas of swallowing, motor speech, and memory. In addition, this study revealed that, compared with the National Outcomes Measurement System's Functional Communication Measures, the FIM instrument significantly under-represented and undervalued the extent of a patient's overall progress in recovering from their cognitive, communication, or swallowing disabilities. These findings support the notion that the introduction of the IRF PPS has, perhaps unintentionally, caused more patients with cognitive, communication, and swallowing disorders to be discharged from inpatient rehabilitative care with less than adequate functional skill levels. The discouraging results in speech-language pathology utilization and patient outcomes will be useful for clinicians in the future when facing the ongoing challenges of maintaining quality care while streamlining services under the prospective payment system.
Transcriptome characterization of immune suppression from battlefield-like stress
Muhie, S; Hammamieh, R; Cummings, C; Yang, D; Jett, M
2013-01-01
Transcriptome alterations of leukocytes from soldiers who underwent 8 weeks of Army Ranger training (RASP, Ranger Assessment and Selection Program) were analyzed to evaluate impacts of battlefield-like stress on the immune response. About 1400 transcripts were differentially expressed between pre- and post-RASP leukocytes. Upon functional analysis, immune response was the most enriched biological process, and most of the transcripts associated with the immune response were downregulated. Microbial pattern recognition, chemotaxis, antigen presentation and T-cell activation were among the most downregulated immune processes. Transcription factors predicted to be stress-inhibited (IRF7, RELA, NFκB1, CREB1, IRF1 and HMGB) regulated genes involved in inflammation, maturation of dendritic cells and glucocorticoid receptor signaling. Many altered transcripts were predicted to be targets of stress-regulated microRNAs. Post-RASP leukocytes exposed ex vivo to Staphylococcal enterotoxin B showed a markedly impaired immune response to this superantigen compared with pre-RASP leukocytes, consistent with the suppression of the immune response revealed by transcriptome analyses. Our results suggest that suppression of antigen presentation and lymphocyte activation pathways, in the setting of normal blood cell counts, most likely contribute to the poor vaccine response, impaired wound healing and infection susceptibility associated with chronic intense stress. PMID:23096155
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indukuri, Hemalatha; Castro, Shawn M.; Liao, S.-M.
2006-09-15
Respiratory syncytial virus (RSV)-induced chemokine gene expression occurs through the activation of a subset of transcription factors, including Interferon Regulatory Factor (IRF)-3. In this study, we have investigated the signaling pathway leading to RSV-induced IRF-3 activation and whether it is mediated by intracellular reactive oxygen species (ROS) generation. Our results show that RSV infection induces expression and catalytic activity of IKK{epsilon}, a noncanonical IKK-like kinase. Expression of a kinase-inactive IKK{epsilon} blocks RSV-induced IRF-3 serine phosphorylation, nuclear translocation and DNA-binding, leading to inhibition of RANTES gene transcription, mRNA expression and protein synthesis. Treatment of alveolar epithelial cells with antioxidants or withmore » NAD(P)H oxidase inhibitors abrogates RSV-induced chemokine secretion, IRF-3 phosphorylation and IKK{epsilon} induction, indicating that ROS generation plays a fundamental role in the signaling pathway leading to IRF-3 activation, therefore, identifying a novel molecular target for the development of strategies aimed to modify the inflammatory response associated with RSV infection of the lung.« less
Arsenic enhances the apoptosis induced by interferon gamma: key role of IRF-1.
El Bougrini, J; Pampin, M; Chelbi-Alix, M K
2006-05-15
Interferons (IFNs) and arsenic trioxide (As2O3) are known inhibitors of cell proliferation and have been used in the treatment of certain forms of malignancy. IFNgamma treatment of cells leads to tyrosine phosphorylation of STAT1 followed by dimerization that accumulates in the nucleus. This is followed by DNA binding, activation of target gene transcription, dephosphorylation, and return to the cytoplasm. We have shown earlier that IFNgamma and As2O3 act synergistically in acute promyelocytic leukemia cells to upregulate IRF-1 expression and to induce apoptosis. Here, we show that in the human fibrosarcoma cell line 2fTGH, As2O3 prolongs IFNgamma-induced STAT1 phosphorylation resulting in persistent binding of STAT1 to GAS motif leading to an increase in IRF-1 expression which correlated with both higher anti-proliferative effect and increased apoptosis. These biological responses induced by IFNgamma alone or in combination with As2O3 were abolished when IRF-1 expression was down-regulated by RNA interference, thus demonstrating the key role of IRF-1.
Watanabe, N; Sakakibara, J; Hovanessian, A G; Taniguchi, T; Fujita, T
1991-01-01
Expression of the Type I IFN (i.e., IFN-alpha s and IFN-beta) genes is efficiently induced by viruses at the transcriptional level. This induction is mediated by at least two types of positive regulatory elements located in the human IFN-beta gene promoter: (1) the repeated elements which bind both the transcriptional activator IRF-1 and the repressor IRF-2 (IRF-elements; IRF-Es), and (2) the kappa B element (kappa B-E), which binds NF kappa B and is located between the IRF-Es and the TATA box. In this study we demonstrate that a promoter containing synthetic IRF-E, which displays high affinity for the IRFs can be efficiently activated by Newcastle disease virus (NDV). In contrast, such activation was either very weak or nil when cells were treated by IFN-beta or tumor necrosis factor-alpha (TNF-alpha), despite the fact they both efficiently induce de novo synthesis of the short-lived IRF-1 in L929 cells. In fact, efficient activation of the IRF-E apparently requires an event in addition to de novo IRF-1 induction, which can be elicited by NDV even in the presence of protein synthesis inhibitor, cycloheximide. Moreover, efficient activation of the IRF-E by NDV is specifically inhibited by the protein kinase inhibitor, Staurosporin. Hence our results suggest the importance of IRF-1 synthesis and post-translational modification event(s), possibly phosphorylation for the efficient activation of IRF-Es, which are otherwise under negative regulation by IRF-2. Images PMID:1886766
Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feagins, Alicia R.; Basler, Christopher F., E-mail: chris.basler@mssm.edu
Lloviu virus (LLOV) is a new member of the filovirus family that also includes Ebola virus (EBOV) and Marburg virus (MARV). LLOV has not been cultured; however, its genomic RNA sequence indicates the coding capacity to produce homologs of the EBOV and MARV VP24, VP35, and VP40 proteins. EBOV and MARV VP35 proteins inhibit interferon (IFN)-alpha/beta production and EBOV VP35 blocks activation of the antiviral kinase PKR. The EBOV VP24 and MARV VP40 proteins inhibit IFN signaling, albeit by different mechanisms. Here we demonstrate that LLOV VP35 suppresses Sendai virus induced IFN regulatory factor 3 (IRF3) phosphorylation, IFN-α/β production, andmore » PKR phosphorylation. Additionally, LLOV VP24 blocks tyrosine phosphorylated STAT1 binding to karyopherin alpha 5 (KPNA5), STAT1 nuclear accumulation, and IFN-induced gene expression. LLOV VP40 lacks detectable IFN antagonist function. These activities parallel EBOV IFN inhibitory functions. EBOV and LLOV VP35 and VP24 proteins also inhibit IFN responses in bat cells. These data suggest that LLOV infection will block innate immune responses in a manner similar to EBOV. - Highlights: • Lloviu virus (LLOV) is a new member of the filovirus family. • LLOV VP35 blocks IRF3 phosphorylation, IFN-α/β production and PKR phosphorylation. • LLOV VP24 inhibits IFN responses by targeting phospho-STAT1 KPNA interaction. • Infection by LLOV may block innate immune responses in a manner similar to EBOV.« less
Bo, Marco; Erre, Gian Luca; Niegowska, Magdalena; Piras, Marco; Taras, Loredana; Longu, Maria Giovanna; Passiu, Giuseppe; Sechi, Leonardo A
2018-01-01
Rheumatoid arthritis (RA) is a chronic disease characterised by a pro-inflammatory cytokines linked erosive joint damage and by humoral and cellular response against a broad range of self-peptides. Molecular mimicry between Epstein-Barr virus (EBV), Mycobacterium avium subsp. paratuberculosis (MAP) and host peptides has long been regarded as an RA pathogenetic mechanism. Using bioinformatic analysis we identified high sequence homology among interferon regulatory factor 5 (IRF5), EBV antigen BOLF1 and MAP antigen MAP_4027. Our objective was to evaluate the presence in sera of RA patients of antibodies (Abs) directed against human homologous IRF5 cross-reacting with BOLF1 and MAP_4027. Frequency of reactivity against IRF5424-434, BOLF1305-320 and MAP_402718-32 was tested by indirect ELISA in sera from 71 RA patients and 60 healthy controls (HCs). RA sera show a remarkable high frequency of reactivity against IRF5424-434 in comparison to HCs (69% vs. 8%; p<0.0001). Similarly, seroreactivity against BOLF1305-320 was more frequently detected in RA sera than in HCs counterpart (58% vs. 8%; p<0.0001). Frequency of Abs against MAP_402718-32 was 17% in RA sera vs. 5% in HCs with a p-value at the threshold level (p<0.051). Prevalence of Abs against at least one of the assessed epitopes reached 72% in RA patients and 15% among HCs. Levels of Abs in RA patients were significantly related to systemic inflammation. IRF5 is a potential autoimmune target of RA. Our results support the hypothesis that EBV and MAP infections may be involved in the pathogenesis of RA, igniting a secondary immune response that cross-reacts against RA self-peptides.
Yuen, Chun-Kit; Chan, Ching-Ping; Fung, Sin-Yee; Wang, Pei-Hui; Wong, Wan-Man; Tang, Hei-Man Vincent; Yuen, Kit-San; Chan, Chi-Ping; Jin, Dong-Yan; Kok, Kin-Hang
2016-04-01
Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-β was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3.In vitrokinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL. Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Yuen, Chun-Kit; Chan, Ching-Ping; Fung, Sin-Yee; Wang, Pei-Hui; Wong, Wan-Man; Tang, Hei-Man Vincent; Yuen, Kit-San; Chan, Chi-Ping
2016-01-01
ABSTRACT Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-β was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3. In vitro kinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy. PMID:26819312
Hong, Suntaek; Kim, Hye-Youn; Kim, Jooyoung; Ha, Huyen Trang; Kim, Young-Mi; Bae, Eunjin; Kim, Tae Hyung; Lee, Kang Choon; Kim, Seong-Jin
2013-01-01
Smad7 has been known as a negative regulator for the transforming growth factor-β (TGF-β) signaling pathway through feedback regulation. However, Smad7 has been suspected to have other biological roles through the regulation of gene transcription. By screening differentially regulated genes, we found that the caspase 8 gene was highly up-regulated in Smad7-expressing cells. Smad7 was able to activate the caspase 8 promoter through recruitment of the interferon regulatory factor 1 (IRF1) transcription factor to the interferon-stimulated response element (ISRE) site. Interaction of Smad7 on the caspase 8 promoter was confirmed with electrophoretic mobility shift assay and chromatin immunoprecipitation experiment. Interestingly, Smad7 did not directly interact with the ISRE site, but it increased the binding activity of IRF1 with ISRE. These results support that Smad7 recruits IRF1 protein on the caspase 8 promoter and functions as a transcriptional coactivator. To confirm the biological significance of caspase 8 up-regulation, we tested tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cell death assay in breast cancer cells. Smad7 in apoptosis-resistant MCF7 cells markedly sensitized the cells to TRAIL-induced cell death by restoring the caspase cascade. Furthermore, restoration of caspase 8-mediated apoptosis pathway repressed the tumor growth in the xenograft model. In conclusion, we suggest a novel role for Smad7 as a transcriptional coactivator for caspase 8 through the interaction with IRF1 in regulation of the cell death pathway. PMID:23255602
Schwartz, Jordan Ari; Clayton, Kiera L; Mujib, Shariq; Zhang, Hongliang; Rahman, A K M Nur-Ur; Liu, Jun; Yue, Feng Yun; Benko, Erika; Kovacs, Colin; Ostrowski, Mario A
2017-04-15
In chronic diseases, such as HIV infection, plasmacytoid dendritic cells (pDCs) are rendered dysfunctional, as measured by their decreased capacity to produce IFN-α. In this study, we identified elevated levels of T cell Ig and mucin-domain containing molecule-3 (Tim-3)-expressing pDCs in the blood of HIV-infected donors. The frequency of Tim-3-expressing pDCs correlated inversely with CD4 T cell counts and positively with HIV viral loads. A lower frequency of pDCs expressing Tim-3 produced IFN-α or TNF-α in response to the TLR7 agonists imiquimod and Sendai virus and to the TLR9 agonist CpG. Thus, Tim-3 may serve as a biomarker of pDC dysfunction in HIV infection. The source and function of Tim-3 was investigated on enriched pDC populations from donors not infected with HIV. Tim-3 induction was achieved in response to viral and artificial stimuli, as well as exogenous IFN-α, and was PI3K dependent. Potent pDC-activating stimuli, such as CpG, imiquimod, and Sendai virus, induced the most Tim-3 expression and subsequent dysfunction. Small interfering RNA knockdown of Tim-3 increased IFN-α secretion in response to activation. Intracellular Tim-3, as measured by confocal microscopy, was dispersed throughout the cytoplasm prior to activation. Postactivation, Tim-3 accumulated at the plasma membrane and associated with disrupted TLR9 at the submembrane. Tim-3-expressing pDCs had reduced IRF7 levels. Furthermore, intracellular Tim-3 colocalized with p85 and IRF7 within LAMP1 + lysosomes, suggestive of a role in degradation. We conclude that Tim-3 is a biomarker of dysfunctional pDCs and may negatively regulate IFN-α, possibly through interference with TLR signaling and recruitment of IRF7 and p85 into lysosomes, enhancing their degradation. Copyright © 2017 by The American Association of Immunologists, Inc.
Fan, Zhen; Dani, Melanie; Femminella, Grazia D; Wood, Melanie; Calsolaro, Valeria; Veronese, Mattia; Turkheimer, Federico; Gentleman, Steve; Brooks, David J; Hinz, Rainer; Edison, Paul
2018-07-01
Neuroinflammation and microglial activation play an important role in amnestic mild cognitive impairment (MCI) and Alzheimer's disease. In this study, we investigated the spatial distribution of neuroinflammation in MCI subjects, using spectral analysis (SA) to generate parametric maps and quantify 11 C-PBR28 PET, and compared these with compartmental and other kinetic models of quantification. Thirteen MCI and nine healthy controls were enrolled in this study. Subjects underwent 11 C-PBR28 PET scans with arterial cannulation. Spectral analysis with an arterial plasma input function was used to generate 11 C-PBR28 parametric maps. These maps were then compared with regional 11 C-PBR28 V T (volume of distribution) using a two-tissue compartment model and Logan graphic analysis. Amyloid load was also assessed with 18 F-Flutemetamol PET. With SA, three component peaks were identified in addition to blood volume. The 11 C-PBR28 impulse response function (IRF) at 90 min produced the lowest coefficient of variation. Single-subject analysis using this IRF demonstrated microglial activation in five out of seven amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake revealed a group-wise significant increase in neuroinflammation in amyloid-positive MCI subjects versus HC in multiple cortical association areas, and particularly in the temporal lobe. Interestingly, compartmental analysis detected group-wise increase in 11 C-PBR28 binding in the thalamus of amyloid-positive MCI subjects, while Logan parametric maps did not perform well. This study demonstrates for the first time that spectral analysis can be used to generate parametric maps of 11 C-PBR28 uptake, and is able to detect microglial activation in amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake allow voxel-wise single-subject analysis and could be used to evaluate microglial activation in individual subjects.
Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.
Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang
2013-01-01
In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system.
Ganta, Vijay Chaitanya; Choi, Min Hyub; Kutateladze, Anna; Fox, Todd E.; Farber, Charles R.; Annex, Brian H.
2017-01-01
Background Currently no therapies exist for treating, and improving outcomes in patients with severe peripheral arterial disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and reduce tissue loss in genetic PAD models. However, the cell specific function, downstream mechanisms or signaling involved in miR93 mediated ischemic muscle neovascularization is not clear. Macrophages were best known to modulate arteriogenic response in PAD and the extent of arteriogenic response induced by macrophages is dependent on greater M2 to M1-activation/polarization state. In the current study, we identified a novel mechanism by which miR93 regulates macrophage-polarization to promote angiogenesis and arteriogenesis to revascularize ischemic muscle in experimental-PAD. Methods In vitro (macrophages, endothelial cells, skeletal muscle cells under normal and hypoxia serum starvation (HSS) conditions) and in vivo experiments in preclinical-PAD models (unilateral femoral artery ligation and resection)) were conducted to examine the role of miR93-interferon regulatory factor-9 (IRF9)-immune responsive gene-1 (IRG1)-itaconic acid pathway in macrophage-polarization, angiogenesis, arteriogenesis and perfusion recovery. Results In vivo, compared to wild type (WT) controls, miR106b-93-25 cluster deficient mice (miR106b-93-25−/−) showed decreased angiogenesis and arteriogenesis correlating with increased M1-like-macrophages following experimental-PAD. Intra-muscular delivery of miR93 in miR106b-93-25−/− PAD mice increased angiogenesis, arteriogenesis, the extent of perfusion which correlated with more M2-like-macrophages in the proximal and distal hind-limb muscles. In vitro, miR93 promotes and sustains M2-like-polarization even under M1-like-polarizing conditions (HSS). Delivery of bone marrow derived macrophages from miR106b-93-25−/− to WT ischemic-muscle decreased angiogenesis, arteriogenesis and perfusion, while transfer of wild-type macrophages to miR106b-93-25−/− had the opposite effect. Systematic analysis of top-differentially upregulated genes from RNA-sequencing between miR106b-93-25−/− and WT ischemic-muscle showed that miR93 regulates IRG1 function to modulate itaconic acid production and macrophage-polarization. 3′UTR luciferase-assays performed to determine whether IRG1 is a direct target of miR93 revealed that IRG1 is not a miR93 target but IRF9 that can regulate IRG1-expression is a miR93 target. In vitro, increased expression of IRF9, IRG1 and itaconic acid treatment significantly decreased endothelial angiogenic potential. Conclusion We conclude that miR93 inhibits IRF9 to decrease IRG1-itaconic acid production to induce M2-like-polarization in ischemic muscle to enhance angiogenesis, arteriogenesis and perfusion recovery in experimental-PAD. PMID:28356443
Chen, Xiaojuan; Yang, Xingxing; Zheng, Yang; Yang, Yudong; Xing, Yaling; Chen, Zhongbin
2014-05-01
SARS coronavirus (SARS-CoV) develops an antagonistic mechanism by which to evade the antiviral activities of interferon (IFN). Previous studies suggested that SARS-CoV papain-like protease (PLpro) inhibits activation of the IRF3 pathway, which would normally elicit a robust IFN response, but the mechanism(s) used by SARS PLpro to inhibit activation of the IRF3 pathway is not fully known. In this study, we uncovered a novel mechanism that may explain how SARS PLpro efficiently inhibits activation of the IRF3 pathway. We found that expression of the membrane-anchored PLpro domain (PLpro-TM) from SARS-CoV inhibits STING/TBK1/IKKε-mediated activation of type I IFNs and disrupts the phosphorylation and dimerization of IRF3, which are activated by STING and TBK1. Meanwhile, we showed that PLpro-TM physically interacts with TRAF3, TBK1, IKKε, STING, and IRF3, the key components that assemble the STING-TRAF3-TBK1 complex for activation of IFN expression. However, the interaction between the components in STING-TRAF3-TBK1 complex is disrupted by PLpro-TM. Furthermore, SARS PLpro-TM reduces the levels of ubiquitinated forms of RIG-I, STING, TRAF3, TBK1, and IRF3 in the STING-TRAF3-TBK1 complex. These results collectively point to a new mechanism used by SARS-CoV through which PLpro negatively regulates IRF3 activation by interaction with STING-TRAF3-TBK1 complex, yielding a SARS-CoV countermeasure against host innate immunity.
Liu, Mary Y.; Khachigian, Levon M.
2009-01-01
Understanding the mechanisms governing cytokine control of growth factor expression in smooth muscle cells would provide invaluable insight into the molecular regulation of vascular phenotypes and create future opportunities for therapeutic intervention. Here, we report that the proinflammatory cytokine interleukin (IL)-1β suppresses platelet-derived growth factor (PDGF)-D promoter activity and mRNA and protein expression in smooth muscle cells. NF-κB p65, induced by IL-1β, interacts with a novel element in the PDGF-D promoter and inhibits PDGF-D transcription. Interferon regulatory factor-1 (IRF-1) is also induced by IL-1β and binds to a different element upstream in the promoter. Immunoprecipitation and chromatin immunoprecipitation experiments showed that IL-1β stimulates p65 interaction with IRF-1 and the accumulation of both factors at the PDGF-D promoter. Mutation of the IRF-1 and p65 DNA-binding elements relieved the promoter from IL-1β-mediated repression. PDGF-D repression by IL-1β involves histone deacetylation and interaction of HDAC-1 with IRF-1 and p65. HDAC-1 small interfering RNA ablates complex formation with IRF-1 and p65 and abrogates IRF-1 and p65 occupancy of the PDGF-D promoter. Thus, HDAC-1 is enriched at the PDGF-D promoter in cells exposed to IL-1β and forms a cytokine-inducible gene-silencing complex with p65 and IRF-1. PMID:19843519
A nonlinear lag correction algorithm for a-Si flat-panel x-ray detectors
Starman, Jared; Star-Lack, Josh; Virshup, Gary; Shapiro, Edward; Fahrig, Rebecca
2012-01-01
Purpose: Detector lag, or residual signal, in a-Si flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and correct lag by deconvolution with an impulse response function (IRF). However, the lag correction is sensitive to both the exposure intensity and the technique used for determining the IRF. Even when the LTI correction that produces the minimum error is found, residual artifact remains. A new non-LTI method was developed to take into account the IRF measurement technique and exposure dependencies. Methods: First, a multiexponential (N = 4) LTI model was implemented for lag correction. Next, a non-LTI lag correction, known as the nonlinear consistent stored charge (NLCSC) method, was developed based on the LTI multiexponential method. It differs from other nonlinear lag correction algorithms in that it maintains a consistent estimate of the amount of charge stored in the FP and it does not require intimate knowledge of the semiconductor parameters specific to the FP. For the NLCSC method, all coefficients of the IRF are functions of exposure intensity. Another nonlinear lag correction method that only used an intensity weighting of the IRF was also compared. The correction algorithms were applied to step-response projection data and CT acquisitions of a large pelvic phantom and an acrylic head phantom. The authors collected rising and falling edge step-response data on a Varian 4030CB a-Si FP detector operating in dynamic gain mode at 15 fps at nine incident exposures (2.0%–92% of the detector saturation exposure). For projection data, 1st and 50th frame lag were measured before and after correction. For the CT reconstructions, five pairs of ROIs were defined and the maximum and mean signal differences within a pair were calculated for the different exposures and step-response edge techniques. Results: The LTI corrections left residual 1st and 50th frame lag up to 1.4% and 0.48%, while the NLCSC lag correction reduced 1st and 50th frame residual lags to less than 0.29% and 0.0052%. For CT reconstructions, the NLCSC lag correction gave an average error of 11 HU for the pelvic phantom and 3 HU for the head phantom, compared to 14–19 HU and 2–11 HU for the LTI corrections and 15 HU and 9 HU for the intensity weighted non-LTI algorithm. The maximum ROI error was always smallest for the NLCSC correction. The NLCSC correction was also superior to the intensity weighting algorithm. Conclusions: The NLCSC lag algorithm corrected for the exposure dependence of lag, provided superior image improvement for the pelvic phantom reconstruction, and gave similar results to the best case LTI results for the head phantom. The blurred ring artifact that is left over in the LTI corrections was better removed by the NLCSC correction in all cases. PMID:23039642
Activation of IRF1 in Human Adipocytes Leads to Phenotypes Associated with Metabolic Disease.
Friesen, Max; Camahort, Raymond; Lee, Youn-Kyoung; Xia, Fang; Gerszten, Robert E; Rhee, Eugene P; Deo, Rahul C; Cowan, Chad A
2017-05-09
The striking rise of obesity-related metabolic disorders has focused attention on adipocytes as critical mediators of disease phenotypes. To better understand the role played by excess adipose in metabolic dysfunction it is crucial to decipher the transcriptional underpinnings of the low-grade adipose inflammation characteristic of diseases such as type 2 diabetes. Through employing a comparative transcriptomics approach, we identified IRF1 as differentially regulated between primary and in vitro-derived genetically matched adipocytes. This suggests a role as a mediator of adipocyte inflammatory phenotypes, similar to its function in other tissues. Utilizing adipose-derived mesenchymal progenitors we subsequently demonstrated that expression of IRF1 in adipocytes indeed contributes to upregulation of inflammatory processes, both in vitro and in vivo. This highlights IRF1's relevance to obesity-related inflammation and the resultant metabolic dysregulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Ramírez-Carvajal, Lisbeth; Díaz-San Segundo, Fayna; Hickman, Danielle; Long, Charles R; Zhu, James; Rodríguez, Luis L; de los Santos, Teresa
2014-10-01
Several studies have demonstrated that the delivery of type I, II, or III interferons (IFNs) by inoculation of a replication-defective human adenovirus 5 (Ad5) vector expressing IFNs can effectively control foot-and-mouth disease (FMD) in cattle and swine during experimental infections. However, relatively high doses are required to achieve protection. In this study, we identified the functional properties of a porcine fusion protein, poIRF7/3(5D), as a biotherapeutic and enhancer of IFN activity against FMD virus (FMDV). We showed that poIRF7/3(5D) is a potent inducer of type I IFNs, including alpha IFN (IFN-α), IFN-β, and IFN-ω but not type III IFN (interleukin-28B), without inducing cytotoxicity. Expression of poIRF7/3(5D) significantly and steadily reduced FMDV titers by up to 6 log10 units in swine and bovine cell lines. Treatment with an IFN receptor inhibitor (B18R) combined with an anti-IFN-α antibody neutralized the antiviral activity in the supernatants of cells transduced with an Ad5 vector expressing poIRF7/3(5D) [Ad5-poIRF7/3(5D)]. However, several transcripts with known antiviral function, including type I IFNs, were still highly upregulated (range of increase, 8-fold to over 500-fold) by poIRF7/3(5D) in the presence of B18R. Furthermore, the sera of mice treated with Ad5-poIRF7/3(5D) showed antiviral activity that was associated with the induction of high levels of IFN-α and resulted in complete protection against FMDV challenge at 6, 24, or 48 h posttreatment. This study highlights for the first time the antiviral potential of Ad5-poIRF7/3(5D) in vitro and in vivo against FMDV. FMD remains one of the most devastating diseases that affect livestock worldwide. Effective vaccine formulations are available but are serotype specific and require approximately 7 days before they are able to elicit protective immunity. We have shown that vector-delivered IFN is an option to protect animals against many FMDV serotypes as soon as 24 h and for about 4 days postadministration. Here we demonstrate that delivery of a constitutively active transcription factor that induces the production of endogenous IFNs and potentially other antiviral genes is a viable strategy to protect against FMD. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Khodayari, Arezoo; Wuebbles, Donald J.; Olsen, Seth C.; Fuglestvedt, Jan S.; Berntsen, Terje; Lund, Marianne T.; Waitz, Ian; Wolfe, Philip; Forster, Piers M.; Meinshausen, Malte; Lee, David S.; Lim, Ling L.
2013-08-01
This study evaluates the capabilities of the carbon cycle and energy balance treatments relative to the effect of aviation CO2 emissions on climate in several existing simplified climate models (SCMs) that are either being used or could be used for evaluating the effects of aviation on climate. Since these models are used in policy-related analyses, it is important that the capabilities of such models represent the state of understanding of the science. We compare the Aviation Environmental Portfolio Management Tool (APMT) Impacts climate model, two models used at the Center for International Climate and Environmental Research-Oslo (CICERO-1 and CICERO-2), the Integrated Science Assessment Model (ISAM) model as described in Jain et al. (1994), the simple Linear Climate response model (LinClim) and the Model for the Assessment of Greenhouse-gas Induced Climate Change version 6 (MAGICC6). In this paper we select scenarios to illustrate the behavior of the carbon cycle and energy balance models in these SCMs. This study is not intended to determine the absolute and likely range of the expected climate response in these models but to highlight specific features in model representations of the carbon cycle and energy balance models that need to be carefully considered in studies of aviation effects on climate. These results suggest that carbon cycle models that use linear impulse-response-functions (IRF) in combination with separate equations describing air-sea and air-biosphere exchange of CO2 can account for the dominant nonlinearities in the climate system that would otherwise not have been captured with an IRF alone, and hence, produce a close representation of more complex carbon cycle models. Moreover, results suggest that an energy balance model with a 2-box ocean sub-model and IRF tuned to reproduce the response of coupled Earth system models produces a close representation of the globally-averaged temperature response of more complex energy balance models.
Kuo, Rei-Lin; Zhao, Chen; Malur, Meghana; Krug, Robert M
2010-12-20
We demonstrate that influenza A virus strains that circulate in humans differ markedly in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription. Strong activation occurs in cells infected with viruses expressing NS1 proteins of seasonal H3N2 and H2N2 viruses, whereas activation is blocked in cells infected with viruses expressing NS1 proteins of some, but not all seasonal H1N1 viruses. The NS1 proteins of the 2009 H1N1 and H5N1 viruses also block these activations. The difference in this NS1 function is mediated largely by the C-terminal region of the effector domain, which contains the only amino acid (K or E at position 196) that covaries with the functional difference. Further, we show that TRIM25 binds the NS1 protein whether or not IRF3 activation is blocked, demonstrating that binding of TRIM25 by the NS1 protein does not necessarily lead to the blocking of IRF3 activation. Copyright © 2010 Elsevier Inc. All rights reserved.
Uematsu, Satoshi; Sato, Shintaro; Yamamoto, Masahiro; Hirotani, Tomonori; Kato, Hiroki; Takeshita, Fumihiko; Matsuda, Michiyuki; Coban, Cevayir; Ishii, Ken J.; Kawai, Taro; Takeuchi, Osamu; Akira, Shizuo
2005-01-01
Toll-like receptors (TLRs) recognize microbial pathogens and trigger innate immune responses. Among TLR family members, TLR7, TLR8, and TLR9 induce interferon (IFN)-α in plasmacytoid dendritic cells (pDCs). This induction requires the formation of a complex consisting of the adaptor MyD88, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and IFN regulatory factor (IRF) 7. Here we show an essential role of IL-1 receptor-associated kinase (IRAK)-1 in TLR7- and TLR9-mediated IRF7 signaling pathway. IRAK-1 directly bound and phosphorylated IRF7 in vitro. The kinase activity of IRAK-1 was necessary for transcriptional activation of IRF7. TLR7- and TLR9-mediated IFN-α production was abolished in Irak-1–deficient mice, whereas inflammatory cytokine production was not impaired. Despite normal activation of NF-κB and mitogen-activated protein kinases, IRF7 was not activated by a TLR9 ligand in Irak-1–deficient pDCs. These results indicated that IRAK-1 is a specific regulator for TLR7- and TLR9-mediated IFN-α induction in pDCs. PMID:15767370
Identification of distal silencing elements in the murine interferon-A11 gene promoter.
Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G
1996-08-01
The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction.
Chiou, Wen-Fei; Chen, Chen-Chih; Wei, Bai-Luh
2011-01-01
8-Prenylkaempferol (8-PK) is a prenylflavonoid isolated from Sophora flavescens, a Chinese herb with antiviral and anti-inflammatory properties. In this study, we investigated its effect on regulated activation, normal T cell expressed and secreted (RANTES) secretion by influenza A virus (H1N1)-infected A549 alveolar epithelial cells. Cell inoculation with H1N1 evoked a significant induction in RANTES accumulation accompanied with time-related increase in nuclear translocation of nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF-3), but showed no effect on c-Jun phosphorylation. 8-PK could significantly inhibit not only RANTES production but also NF-κB and IRF-3 nuclear translocation. We had proved that both NF-κB and IRF-3 participated in H1N1-induced RANTES production since NF-κB inhibitor pyrrolidinedithio carbamate (PDTC) and IRF-3 siRNA attenuated significantly RANTES accumulation. H1N1 inoculation also increased PI3K activity as well as Akt phosphorylation and such responsiveness were attenuated by 8-PK. In the presence of wortmannin, nuclear translocation of NF-κB and IRF3 as well as RANTES production by H1N1 infection were all reversed, demonstrating that PI3K-Akt pathway is essential for NF-κB- and IRF-3-mediated RANTES production in A549 cells. Furthermore, 8-PK but not wortmannin, prevented effectively H1N1-evoked IκB degradation. In conclusion, 8-PK might be an anti-inflammatory agent for suppressing influenza A virus-induced RANTES production acts by blocking PI3K-mediated transcriptional activation of NF-κB and IRF-3 and in part by interfering with IκB degradation which subsequently decreases NF-κB translocation. PMID:19592477
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Pietz, Grzegorz; De, Rituparna; Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten; Hammarström, Marie-Louise
2017-01-01
Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease.
Immunopathology of childhood celiac disease—Key role of intestinal epithelial cells
Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten
2017-01-01
Background & Aims Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Methods Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. Results More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. Conclusion A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease. PMID:28934294
Cushing, Leah; Winkler, Aaron; Jelinsky, Scott A; Lee, Katherine; Korver, Wouter; Hawtin, Rachael; Rao, Vikram R; Fleming, Margaret; Lin, Lih-Ling
2017-11-10
Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in innate immune signaling by Toll-like receptors (TLRs), and loss of IRAK4 activity in mice and humans increases susceptibility to bacterial infections and causes defects in TLR and IL1 ligand sensing. However, the mechanism by which IRAK4 activity regulates the production of downstream inflammatory cytokines is unclear. Using transcriptomic and biochemical analyses of human monocytes treated with a highly potent and selective inhibitor of IRAK4, we show that IRAK4 kinase activity controls the activation of interferon regulatory factor 5 (IRF5), a transcription factor implicated in the pathogenesis of multiple autoimmune diseases. Following TLR7/8 stimulation by its agonist R848, chemical inhibition of IRAK4 abolished IRF5 translocation to the nucleus and thus prevented IRF5 binding to and activation of the promoters of inflammatory cytokines in human monocytes. We also found that IKKβ, an upstream IRF5 activator, is phosphorylated in response to the agonist-induced TLR signaling. Of note, IRAK4 inhibition blocked IKKβ phosphorylation but did not block the nuclear translocation of NFκB, which was surprising, given the canonical role of IKKβ in phosphorylating IκB to allow NFκB activation. Moreover, pharmacological inhibition of either IKKβ or the serine/threonine protein kinase TAK1 in monocytes blocked TLR-induced cytokine production and IRF5 translocation to the nucleus, but not nuclear translocation of NFκB. Taken together, our data suggest a mechanism by which IRAK4 activity regulates TAK1 and IKKβ activation, leading to the nuclear translocation of IRF5 and induction of inflammatory cytokines in human monocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Markon, Kristian E; Quilty, Lena C; Bagby, R Michael; Krueger, Robert F
2013-06-01
The current article reports on the development, psychometric properties, and external validity of an informant-report form of the Personality Inventory for DSM-5 (the PID-5-IRF). Using data from two nationally representative samples, as well as an elevated-risk community sample, we report on the PID-5-IRF item characteristics, scale properties, superordinate factor structure, and correlations with other measures. The PID-5-IRF replicates the factor structure of the self-report form and has relationships with other measures (including the PID-5 self-report form and a widely used Big Five measure) that are consistent with previous research and theory. We believe that the PID-5-IRF is a useful measure for a number of scenarios, such as when additional sources of information are desired, where informant measures are expected to provide incremental validity over self-report, where relationships or social perception is a focal interest, or when response bias is a salient concern. Areas for future research are also discussed.
Iwanowycz, Stephen; Wang, Junfeng; Altomare, Diego; Hui, Yvonne; Fan, Daping
2016-05-27
Macrophages are pleiotropic cells capable of performing a broad spectrum of functions. Macrophage phenotypes are classified along a continuum between the extremes of proinflammatory M1 macrophages and anti-inflammatory M2 macrophages. The seemingly opposing functions of M1 and M2 macrophages must be tightly regulated for an effective and proper response to foreign molecules or damaged tissue. Excessive activation of either M1 or M2 macrophages contributes to the pathology of many diseases. Emodin is a Chinese herb-derived compound and has shown potential to inhibit inflammation in various settings. In this study, we tested the ability of emodin to modulate the macrophage response to both M1 and M2 stimuli. Primary mouse macrophages were stimulated with LPS/IFNγ or IL4 with or without emodin, and the effects of emodin on gene transcription, cell signaling pathways, and histone modifications were examined by a variety of approaches, including microarray, quantitative real-time PCR, Western blotting, chromatin immunoprecipitation, and functional assays. We found that emodin bidirectionally tunes the induction of LPS/IFNγ- and IL4-responsive genes through inhibiting NFκB/IRF5/STAT1 signaling and IRF4/STAT6 signaling, respectively. Thereby, emodin modulates macrophage phagocytosis, migration, and NO production. Furthermore, emodin inhibited the removal of H3K27 trimethylation (H3K27m3) marks and the addition of H3K27 acetylation (H3K27ac) marks on genes required for M1 or M2 polarization of macrophages. In conclusion, our data suggest that emodin is uniquely able to suppress the excessive response of macrophages to both M1 and M2 stimuli and therefore has the potential to restore macrophage homeostasis in various pathologies. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Iwanowycz, Stephen; Wang, Junfeng; Altomare, Diego; Hui, Yvonne; Fan, Daping
2016-01-01
Macrophages are pleiotropic cells capable of performing a broad spectrum of functions. Macrophage phenotypes are classified along a continuum between the extremes of proinflammatory M1 macrophages and anti-inflammatory M2 macrophages. The seemingly opposing functions of M1 and M2 macrophages must be tightly regulated for an effective and proper response to foreign molecules or damaged tissue. Excessive activation of either M1 or M2 macrophages contributes to the pathology of many diseases. Emodin is a Chinese herb-derived compound and has shown potential to inhibit inflammation in various settings. In this study, we tested the ability of emodin to modulate the macrophage response to both M1 and M2 stimuli. Primary mouse macrophages were stimulated with LPS/IFNγ or IL4 with or without emodin, and the effects of emodin on gene transcription, cell signaling pathways, and histone modifications were examined by a variety of approaches, including microarray, quantitative real-time PCR, Western blotting, chromatin immunoprecipitation, and functional assays. We found that emodin bidirectionally tunes the induction of LPS/IFNγ- and IL4-responsive genes through inhibiting NFκB/IRF5/STAT1 signaling and IRF4/STAT6 signaling, respectively. Thereby, emodin modulates macrophage phagocytosis, migration, and NO production. Furthermore, emodin inhibited the removal of H3K27 trimethylation (H3K27m3) marks and the addition of H3K27 acetylation (H3K27ac) marks on genes required for M1 or M2 polarization of macrophages. In conclusion, our data suggest that emodin is uniquely able to suppress the excessive response of macrophages to both M1 and M2 stimuli and therefore has the potential to restore macrophage homeostasis in various pathologies. PMID:27008857
NASA Astrophysics Data System (ADS)
Sofyan, Hizir; Maulia, Eva; Miftahuddin
2017-11-01
A country has several important parameters to achieve economic prosperity, such as tax revenue and inflation rate. One of the largest revenues of the State Budget in Indonesia comes from the tax sector. Meanwhile, the rate of inflation occurring in a country can be used as an indicator, to measure the good and bad economic problems faced by the country. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the structure of tax revenue relations and inflation rate. This study aims to produce the best VECM (Vector Error Correction Model) with optimal lag using various alpha and perform structural analysis using the Impulse Response Function (IRF) of the VECM models to examine the relationship of tax revenue, and inflation in Banda Aceh. The results showed that the best model for the data of tax revenue and inflation rate in Banda Aceh City using alpha 0.01 is VECM with optimal lag 2, while the best model for data of tax revenue and inflation rate in Banda Aceh City using alpha 0.05 and 0,1 VECM with optimal lag 3. However, the VECM model with alpha 0.01 yielded four significant models of income tax model, inflation rate of Banda Aceh, inflation rate of health and inflation rate of education in Banda Aceh. While the VECM model with alpha 0.05 and 0.1 yielded one significant model that is income tax model. Based on the VECM models, then there are two structural analysis IRF which is formed to look at the relationship of tax revenue, and inflation in Banda Aceh, the IRF with VECM (2) and IRF with VECM (3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ruoxi; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070; Fang, Liurong, E-mail: fanglr@mail.hzau.edu.cn
2015-11-15
To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9).more » Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.« less
Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish
Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; ...
2015-01-23
Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.
Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less
IRF4 Deficiency Abrogates Lupus Nephritis Despite Enhancing Systemic Cytokine Production
Lech, Maciej; Weidenbusch, Marc; Kulkarni, Onkar P.; Ryu, Mi; Darisipudi, Murthy Narayana; Susanti, Heni Eka; Mittruecker, Hans-Willi; Mak, Tak W.
2011-01-01
The IFN-regulatory factors IRF1, IRF3, IRF5, and IRF7 modulate processes involved in the pathogenesis of systemic lupus and lupus nephritis, but the contribution of IRF4, which has multiple roles in innate and adaptive immunity, is unknown. To determine a putative pathogenic role of IRF4 in lupus, we crossed Irf4-deficient mice with autoimmune C57BL/6-(Fas)lpr mice. IRF4 deficiency associated with increased activation of antigen-presenting cells in C57BL/6-(Fas)lpr mice, resulting in a massive increase in plasma levels of TNF and IL-12p40, suggesting that IRF4 suppresses cytokine release in these mice. Nevertheless, IRF4 deficiency completely protected these mice from glomerulonephritis and lung disease. The mice were hypogammaglobulinemic and lacked antinuclear and anti-dsDNA autoantibodies, revealing the requirement of IRF4 for the maturation of plasma cells. As a consequence, Irf4-deficient C57BL/6-(Fas)lpr mice neither developed immune complex disease nor glomerular activation of complement. In addition, lack of IRF4 impaired the maturation of Th17 effector T cells and reduced plasma levels of IL-17 and IL-21, which are cytokines known to contribute to autoimmune tissue injury. In summary, IRF4 deficiency enhances systemic inflammation and the activation of antigen-presenting cells but also prevents the maturation of plasma cells and effector T cells. Because these adaptive immune effectors are essential for the evolution of lupus nephritis, we conclude that IRF4 promotes the development of lupus nephritis despite suppressing antigen-presenting cells. PMID:21742731
Fitting measurement models to vocational interest data: are dominance models ideal?
Tay, Louis; Drasgow, Fritz; Rounds, James; Williams, Bruce A
2009-09-01
In this study, the authors examined the item response process underlying 3 vocational interest inventories: the Occupational Preference Inventory (C.-P. Deng, P. I. Armstrong, & J. Rounds, 2007), the Interest Profiler (J. Rounds, T. Smith, L. Hubert, P. Lewis, & D. Rivkin, 1999; J. Rounds, C. M. Walker, et al., 1999), and the Interest Finder (J. E. Wall & H. E. Baker, 1997; J. E. Wall, L. L. Wise, & H. E. Baker, 1996). Item response theory (IRT) dominance models, such as the 2-parameter and 3-parameter logistic models, assume that item response functions (IRFs) are monotonically increasing as the latent trait increases. In contrast, IRT ideal point models, such as the generalized graded unfolding model, have IRFs that peak where the latent trait matches the item. Ideal point models are expected to fit better because vocational interest inventories ask about typical behavior, as opposed to requiring maximal performance. Results show that across all 3 interest inventories, the ideal point model provided better descriptions of the response process. The importance of specifying the correct item response model for precise measurement is discussed. In particular, scores computed by a dominance model were shown to be sometimes illogical: individuals endorsing mostly realistic or mostly social items were given similar scores, whereas scores based on an ideal point model were sensitive to which type of items respondents endorsed.
Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L
2016-12-13
In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.
Chen, Peii; Hreha, Kimberly; Kong, Yekyung; Barrett, A. M.
2015-01-01
Objective To examine the impact of spatial neglect on rehabilitation outcome, risk of falls, and discharge disposition in stroke survivors. Design Inception cohort Setting Inpatient rehabilitation facility (IRF) Participants 108 individuals with unilateral brain damage after their first stroke were assessed at the times of IRF admission and discharge. At admission, 74 of them (68.5%) demonstrated symptoms of spatial neglect, as measured with the Kessler Foundation Neglect Assessment Process (KF-NAP™). Interventions Usual and standard IRF care. Main Outcome Measures Functional Independence Measure (FIM™), Conley Scale, number of falls, length of stay (LOS), and discharge disposition. Results The greater severity of spatial neglect (higher KF-NAP scores) at IRF admission, the lower FIM scores at admission as well as at discharge. Higher KF-NAP scores also correlated with greater LOS and slower FIM improvement rate. The presence of spatial neglect (KF-NAP > 0), but not Conley Scale scores, predicted falls such that participants with spatial neglect fell 6.5 times more often than those without symptoms. More severe neglect, by KF-NAP scores at IRF admission, reduced the likelihood of returning home at discharge. A model that took spatial neglect and other demographic, socioeconomic, and clinical factors into account predicted home discharge. Rapid FIM improvement during IRF stay and lower annual income level were significant predictors of home discharge. Conclusions Spatial neglect following a stroke is a prevalent problem, and may negatively affect rehabilitation outcome, risk of falls, and length of hospital stay. PMID:25862254
Chen, Xiaohui; Hu, Yang; Shan, Lipeng; Yu, Xiaobo; Hao, Kai; Wang, Gao-Xue
2017-04-01
Medicinal plants have been widely used for a long history. Exploration of pharmacologically active compounds from medicinal plants present a broad prevalent of application. By examining viral mRNA expression in GCRV-infected Ctenopharyngodon idella kidney (CIK) cells treated with thirty kinds of plant extracts, we identified Magnolia officinalis Rehd et Wils. was able to preferably suppress viral replication. Further studies demonstrated that the main ingredients of magnolia bark, namely, magnolol and honokiol presented protective pharmacological function when treated GCRV-infected CIK cells with a concentration of 2.00 μg/ml and 1.25 μg/ml, respectively. Furthermore, reverse transcript quantitative polymerase chain reaction (RT-qPCR) and western blot showed that both magnolol and honokiol were efficient to restrain the replication of GCRV in CIK cells at non-toxic concentration (2.51 ± 0.51 μg/ml for magnolol, and 3.18 ± 0.61 μg/ml for honokiol). Moreover, it was found that magnolol and honokiol promoted the expression of immune-related genes. Magnolol obviously significantly increased the expression of interferon (IFN) regulatory factor (IRF)7 rather than that of IRF3 in the GCRV-infected cells, leading to the activation of type I IFN (IFN-I). Simultaneously, magnolol drastically facilitated the expression of interleukin (IL)-1β, but failed to induce the molecules in nuclear factor (NF)-κB pathways. Differently, honokiol strikingly motivated not only the expression of IL-1β, but also those of tumor necrosis factor α (TNFα) and NF-κB. Interestingly, though honokiol motivated the expression of IFN-β promoter stimulator 1 (IPS-1), IRF3 and IRF7, it failed to up-regulate the expression of IFN-I, indicating that honokiol enhanced the host innate antiviral response to GCRV infection via NF-κB pathways. Collectively, the present study revealed that magnolol and honokiol facilitated the expression of innate immune-related genes to strengthen the innate immune signaling responses to resist GCRV infection, which contributed to understanding the mechanisms by which small-molecule drugs possessed antiviral activities. In addition, these results lay a foundation for the development of broad-spectrum antiviral compounds in aquaculture industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Island, Marie-Laure; Mesplede, Thibault; Darracq, Nicole; Bandu, Marie-Thérèse; Christeff, Nicolas; Djian, Philippe; Drouin, Jacques; Navarro, Sébastien
2002-01-01
Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by the specific transcription activators IFN regulatory factor 3 (IRF3) and IRF-7 and the homeoprotein transcription repressor Pitx1. We now show that repression by Pitx1 does not appear to be due to the recruitment of histone deacetylases. On the other hand, Pitx1 inhibits the IRF3 and IRF7 transcriptional activity of the IFN-A11 and IFN-A5 promoters and interacts physically with IRF3 and IRF7. Pitx1 trans-repression activity maps to specific C-terminal domains, and the Pitx1 homeodomain is involved in physical interaction with IRF3 or IRF7. IRF3 is able to bind to the antisilencer region of the IFN-A4 promoter, which overrides the repressive activity of Pitx1. These results indicate that interaction between the Pitx1 homeodomain and IRF3 or IRF7 and the ability of the Pitx1 C-terminal repressor domains to block IFN-A11 and IFN-A5 but not IFN-A4 promoter activities may contribute to our understanding of the complex differential transcriptional activation, repression, and antirepression of the IFN-A genes. PMID:12242290
Identification of Novel Gene Signatures in Atopic Dermatitis Complicated by Eczema Herpeticum
Bin, Lianghua; Edwards, Michael G.; Heiser, Ryan; Streib, Joanne; Richers, Brittany; Hall, Cliff; Leung, Donald Y.M.
2014-01-01
Background A subset of patients with atopic dermatitis (AD) is prone to disseminated herpes simplex virus (HSV) infection, i.e. eczema herpeticum (ADEH+). Biomarkers that identify ADEH+ are lacking. Objective To search for novel ADEH+ gene signatures in peripheral blood mononuclear cells (PBMCs). Methods A RNA-sequencing (RNA-seq) approach was applied to evaluate global transcriptional changes using PBMCs from ADEH+ and AD without a history of EH (ADEH−). Candidate genes were confirmed by qPCR or ELISA. RESULTS ADEH+ PBMCs had distinct changes to the transcriptome when compared to ADEH− PBMCs following HSV-1 stimulation: 792 genes were differentially expressed at a false discovery rate (FDR) < 0.05 (ANOVA), and 15 type I and type III interferon (IFN) genes were among the top 20 most down-regulated genes in ADEH+. We further validated that IFN-α and IL-29 mRNA and protein levels were significantly decreased in HSV-1 stimulated PBMCs from ADEH+ compared to ADEH− and normal. Ingenuity pathway analysis (IPA) demonstrated that the up-stream regulators of type I and type III IFNs, IRF3 and IRF7, was significantly inhibited in ADEH+ based on the down-regulation of their target genes. Furthermore, we found that gene expression of IRF3 and IRF7 were significantly decreased in HSV-1 stimulated PBMC from ADEH+ subjects. CONCLUSIONS PBMCs from ADEH+ have a distinct immune response following HSV-1 exposure compared to ADEH−. Inhibition of the IRF3 and IRF7 innate immune pathways in ADEH+ may be important mechanism for increased susceptibility to disseminated viral infection. PMID:25159465
Brisco, Meredith A; Coca, Steven G; Chen, Jennifer; Owens, Anjali Tiku; McCauley, Brian D; Kimmel, Stephen E; Testani, Jeffrey M
2013-03-01
Identifying reversible renal dysfunction (RD) in the setting of heart failure is challenging. The goal of this study was to evaluate whether elevated admission blood urea nitrogen/creatinine ratio (BUN/Cr) could identify decompensated heart failure patients likely to experience improvement in renal function (IRF) with treatment. Consecutive hospitalizations with a discharge diagnosis of heart failure were reviewed. IRF was defined as ≥20% increase and worsening renal function as ≥20% decrease in estimated glomerular filtration rate. IRF occurred in 31% of the 896 patients meeting eligibility criteria. Higher admission BUN/Cr was associated with in-hospital IRF (odds ratio, 1.5 per 10 increase; 95% confidence interval [CI], 1.3-1.8; P<0.001), an association persisting after adjustment for baseline characteristics (odds ratio, 1.4; 95% CI, 1.1-1.8; P=0.004). However, higher admission BUN/Cr was also associated with post-discharge worsening renal function (odds ratio, 1.4; 95% CI, 1.1-1.8; P=0.011). Notably, in patients with an elevated admission BUN/Cr, the risk of death associated with RD (estimated glomerular filtration rate <45) was substantial (hazard ratio, 2.2; 95% CI, 1.6-3.1; P<0.001). However, in patients with a normal admission BUN/Cr, RD was not associated with increased mortality (hazard ratio, 1.2; 95% CI, 0.67-2.0; P=0.59; p interaction=0.03). An elevated admission BUN/Cr identifies decompensated patients with heart failure likely to experience IRF with treatment, providing proof of concept that reversible RD may be a discernible entity. However, this improvement seems to be largely transient, and RD, in the setting of an elevated BUN/Cr, remains strongly associated with death. Further research is warranted to develop strategies for the optimal detection and treatment of these high-risk patients.
Brisco, Meredith A.; Coca, Steven G.; Chen, Jennifer; Owens, Anjali Tiku; McCauley, Brian D.; Kimmel, Stephen E.; Testani, Jeffrey M.
2014-01-01
Background Identifying reversible renal dysfunction (RD) in the setting of heart failure is challenging. The goal of this study was to evaluate whether elevated admission blood urea nitrogen/creatinine ratio (BUN/Cr) could identify decompensated heart failure patients likely to experience improvement in renal function (IRF) with treatment. Methods and Results Consecutive hospitalizations with a discharge diagnosis of heart failure were reviewed. IRF was defined as ≥20% increase and worsening renal function as ≥20% decrease in estimated glomerular filtration rate. IRF occurred in 31% of the 896 patients meeting eligibility criteria. Higher admission BUN/Cr was associated with inhospital IRF (odds ratio, 1.5 per 10 increase; 95% confidence interval [CI], 1.3–1.8; P<0.001), an association persisting after adjustment for baseline characteristics (odds ratio, 1.4; 95% CI, 1.1–1.8; P=0.004). However, higher admission BUN/Cr was also associated with post-discharge worsening renal function (odds ratio, 1.4; 95% CI, 1.1–1.8; P=0.011). Notably, in patients with an elevated admission BUN/Cr, the risk of death associated with RD (estimated glomerular filtration rate <45) was substantial (hazard ratio, 2.2; 95% CI, 1.6–3.1; P<0.001). However, in patients with a normal admission BUN/Cr, RD was not associated with increased mortality (hazard ratio, 1.2; 95% CI, 0.67–2.0; P=0.59; p interaction=0.03). Conclusions An elevated admission BUN/Cr identifies decompensated patients with heart failure likely to experience IRF with treatment, providing proof of concept that reversible RD may be a discernible entity. However, this improvement seems to be largely transient, and RD, in the setting of an elevated BUN/Cr, remains strongly associated with death. Further research is warranted to develop strategies for the optimal detection and treatment of these high-risk patients. PMID:23325460
Skolarus, Lesli E; Burke, James F; Morgenstern, Lewis B; Meurer, William J; Adelman, Eric E; Kerber, Kevin A; Callaghan, Brian C; Lisabeth, Lynda D
2014-08-01
Poststroke rehabilitation is associated with improved outcomes. Medicaid coverage of inpatient rehabilitation facility (IRF) admissions varies by state. We explored the role of state Medicaid IRF coverage on IRF utilization among patients with stroke. Working age ischemic stroke patients with Medicaid were identified from the 2010 Nationwide Inpatient Sample. Medicaid coverage of IRFs (yes versus no) was ascertained. Primary outcome was discharge to IRF (versus other discharge destinations). We fit a logistic regression model that included patient demographics, Medicaid coverage, comorbidities, length of stay, tissue-type plasminogen activator use, state Medicaid IRF coverage, and the interaction between patient Medicaid status and state Medicaid IRF coverage while accounting for hospital clustering. Medicaid did not cover IRFs in 4 (TN, TX, SC, WV) of 42 states. The impact of State Medicaid IRF coverage was limited to Medicaid stroke patients (P for interaction <0.01). Compared with Medicaid stroke patients in states with Medicaid IRF coverage, Medicaid stroke patients hospitalized in states without Medicaid IRF coverage were less likely to be discharged to an IRF of 11.6% (95% confidence interval, 8.5%-14.7%) versus 19.5% (95% confidence interval, 18.3%-20.8%), P<0.01 after full adjustment. State Medicaid coverage of IRFs is associated with IRF utilization among stroke patients with Medicaid. Given the increasing stroke incidence among the working age and Medicaid expansion under the Affordable Care Act, careful attention to state Medicaid policy for poststroke rehabilitation and analysis of its effects on stroke outcome disparities are warranted. © 2014 American Heart Association, Inc.
Wang, Yan-Yi; Liu, Li-Juan; Zhong, Bo; Liu, Tian-Tian; Li, Ying; Yang, Yan; Ran, Yong; Li, Shu; Tien, Po; Shu, Hong-Bing
2010-01-12
Viral infection causes activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and cellular antiviral response. The mitochondrial outer membrane protein VISA acts as a critical adapter for assembling a virus-induced complex that signals NF-kappaB and IRF3 activation. Using a biochemical purification approach, we identified the WD repeat protein WDR5 as a VISA-associated protein. WDR5 was recruited to VISA in a viral infection dependent manner. Viral infection also caused translocation of WDR5 from the nucleus to mitochondria. Knockdown of WDR5 impaired the formation of virus-induced VISA-associated complex. Consistently, knockdown of WDR5 inhibited virus-triggered activation of IRF3 and NF-kappaB as well as transcription of the IFNB1 gene. These findings suggest that WDR5 is essential in assembling a virus-induced VISA-associated complex and plays an important role in virus-triggered induction of type I IFNs.
de Laurentiis, A; Hiscott, J; Alcalay, M
2015-12-03
The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.
HIST1H1C Regulates Interferon-β and Inhibits Influenza Virus Replication by Interacting with IRF3
Liu, Xiaokun; Yang, Cha; Hu, Yong; Lei, Erming; Lin, Xian; Zhao, Lianzhong; Zou, Zhong; Zhang, Anding; Zhou, Hongbo; Chen, Huanchun; Qian, Ping; Jin, Meilin
2017-01-01
Influenza virus NS2 is well known for its role in viral ribonucleoprotein nuclear export; however, its function has not been fully understood. A recent study showed that NS2 might interact with HIST1H1C (H1C, H1.2). Histones have been found to affect influenza virus replication, such as the H2A, H2B, H3, and H4, but H1 has not been detected. Here, we found that H1C interacts with NS2 via its C-terminal in the nucleus and that H1C affects influenza virus replication. The H1N1 influenza virus replicates better in H1C knockout A549 cells compared to wild-type A549 cells, primarily because of the regulation of H1C on interferon-β (IFN-β). Further studies showed that the H1C phosphorylation mutant (T146A) decreases IFN-β, while H1C methylation mutants (K34A, K187A) increases IFN-β by releasing the nucleosome and promoting IRF3 binding to the IFN-β promoter. Interestingly, NS2 interacts with H1C, which reduces H1C–IRF3 interaction and results in the inhibition of IFN-β enhanced by H1C. In summary, our study reveals a novel function of H1C to regulate IFN-β and uncovers an underlying mechanism, which suggests H1C plays a role in epigenetic regulation. Moreover, our results suggest a novel mechanism for the influenza virus to antagonize the innate immune response by NS2. PMID:28392790
Karmarkar, Amol; Lin, Yu-Li; Kuo, Yong-Fang; Ottenbacher, Kenneth J.; Graham, James E.
2017-01-01
Objective To investigate the effects of facility-level factors on 30-day unplanned risk-adjusted hospital readmission after Inpatient Rehabilitation Facilities (IRFs) discharge. Design We used the 100% Medicare claims data, covering 269,306 discharges from 1,094 IRFs between October 2010 and September 2011. We examined the association between hospital readmission and ten facility-level factors (number of discharges, disproportionate share percentage, profit status, teaching status, freestanding status, accreditation status, census region, stroke belt, location and median household income). Setting Discharge from IRFs. Participants Facilities (IRFs) serving Medicare fee-for-service beneficiaries. Intervention NA Main Outcome Measure(s) Risk Standardized Readmission Rate (RSRR) for 30-day hospital readmission. Results Profit status was the only IRF provider-level characteristic significantly associated with unplanned readmissions. For-profit IRFs had significantly higher RSRR (13.26 ± 0.51) as compared to non-profit IRFs (13.15 ± 0.47) (p<0.001). After controlling for all other facility characteristics (except for accreditation status due to collinearity), for-profit IRFs remained 0.1% point higher RSRR than non-profit IRFs, and census region was the only significant region-level characteristic, with the South showing the highest RSRR of all regions (p=0.005 for both, type III test). Conclusions Our findings support the inclusion of profit status on the IRF Compare website (a platform includes IRF comparators to indicate quality of services). For-profit IRFs had higher RSRR than non-profit IRFs for Medicare beneficiaries. The South had higher RSRR than other regions. The RSRR difference between for-profit and non-profit IRFs could be due to the combined effects of organizational and regional factors. PMID:28958606
Association of IRF5 polymorphisms with activation of the interferon α pathway
Rullo, Ornella J; Woo, Jennifer M P; Wu, Hui; Hoftman, Alice D C; Maranian, Paul; Brahn, Brittany A; McCurdy, Deborah; Cantor, Rita M; Tsao, Betty P
2011-01-01
Objective The genetic association of interferon regulatory factor 5 (IRF5) with systemic lupus erythematosus (SLE) susceptibility has been convincingly established. To gain understanding of the effect of IRF5 variation in individuals without SLE, a study was undertaken to examine whether such genetic variation predisposes to activation of the interferon α (IFNα) pathway. Methods Using a computer simulated approach, 14 single nucleotide polymorphisms (SNPs) and haplotypes of IRF5 were tested for association with mRNA expression levels of IRF5, IFNα and IFN-inducible genes and chemokines in lymphoblastoid cell lines (LCLs) from individuals of European (CEU), Han Chinese (CHB), Japanese (JPT) and Yoruba Nigerian (YRI) backgrounds. IFN-inducible gene expression was assessed in LCLs from children with SLE in the presence and absence of IFNα stimulation. Results The major alleles of IRF5 rs13242262 and rs2280714 were associated with increased IRF5 mRNA expression levels in the CEU, CHB+JPT and YRI samples. The minor allele of IRF5 rs10488631 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU (pc=0.0005, 0.01 and 0.04, respectively). A haplotype containing these risk alleles of rs13242262, rs10488631 and rs2280714 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU LCLs. In vitro studies showed specific activation of IFN-inducible genes in LCLs by IFNα. Conclusions SNPs of IRF5 in healthy individuals of a number of ethnic groups were associated with increased mRNA expression of IRF5. In European-derived individuals, an IRF5 haplotype was associated with increased IRF5, IFNα and IFN-inducible chemokine expression. Identifying individuals genetically predisposed to increased IFN-inducible gene and chemokine expression may allow early detection of risk for SLE. PMID:19854706
2014-01-01
Introduction Rheumatoid arthritis (RA) is a complex polygenic inflammatory disease associated with accelerated atherosclerosis and increased cardiovascular (CV) disease risk. Interferon regulatory factor 5 (IRF5) is a regulator of type I interferon induction. Recently, researchers have described an association between multiple single-nucleotide polymorphisms of the IRF5 gene and some rheumatic disorders. In this study, we aimed to evaluate whether three different haplotype blocks within the IRF5 locus which have been shown to alter the protein function are involved in the risk of CV events occurring in Spanish RA patients. Methods Three IRF5 polymorphisms (rs2004640, rs2070197 and rs10954213) representative of each haplotype group were genotyped by performing TaqMan assays using a 7900HT Fast Real-Time PCR System with tissue from a total of 2,137 Spanish patients diagnosed with RA. Among them, 390 (18.2%) had experienced CV events. The relationship of IRF5 genotypes and haplotypes to CV events was tested using Cox regression. Results Male sex, age at RA diagnosis and most traditional risk factors (hypertension, dyslipidemia and smoking habit) were associated with increased risk for CV events in the RA population. Interestingly, a protective effect of both IRF5 rs2004640 GG and IRF5 rs10954213 GG genotypes against the risk for CV events after adjusting the results for sex, age at RA diagnosis and traditional CV disease risk factors was observed (hazard ratio (HR) = 0.6, 95% confidence interval (CI) = 0.38 to 0.92, P = 0.02; and HR = 0.58, 95% CI = 0.36 to 0.95, P = 0.03, respectively). Moreover, we detected a protective effect of the GTG haplotype against the risk for CV events after adjusting the results for potential confounding factors (HR = 0.72, 95% CI = 0.56 to 0.93, P = 0.012). Conclusions Our results reveal that IRF5 gene variants are associated with risk of CV events in patients with RA. PMID:25011482
IRF4 rs12203592 functional variant and melanoma survival.
Potrony, Miriam; Rebollo-Morell, Aida; Giménez-Xavier, Pol; Zimmer, Lisa; Puig-Butille, Joan Anton; Tell-Marti, Gemma; Sucker, Antje; Badenas, Celia; Carrera, Cristina; Malvehy, Josep; Schadendorf, Dirk; Puig, Susana
2017-04-15
Inherited genetic factors may modulate clinical outcome in melanoma. Some low-to-medium risk genes in melanoma susceptibility play a role in melanoma outcome. Our aim was to assess the role of the functional IRF4 SNP rs12203592 in melanoma prognosis in two independent sets (Barcelona, N = 493 and Essen, N = 438). Genotype association analyses showed that the IRF4 rs12203592 T allele increased the risk of dying from melanoma in both sets (Barcelona: odds ratio [OR] = 6.53, 95% CI 1.38-30.87, Adj p = 0.032; Essen: OR = 1.68, 95% CI 1.04-2.72, Adj p = 0.035). Survival analyses only showed significance for the Barcelona set (hazard ratio = 4.58, 95% CI 1.11-18.92, Adj p = 0.036). This SNP was also associated with tumour localization, increasing the risk of developing melanoma in head or neck (OR = 1.79, 95% CI 1.07-2.98, Adj p = 0.032) and protecting from developing melanoma in the trunk (OR = 0.59, 95% CI 0.41-0.85, Adj p = 0.004). These findings suggest for the first time that IRF4 rs12203592 plays a role in the modulation of melanoma outcome and confirms its contribution to the localization of the primary tumour. © 2017 UICC.
Interaction between IRF6 and TGFA Genes Contribute to the Risk of Nonsyndromic Cleft Lip/Palate
Letra, Ariadne; Fakhouri, Walid; Fonseca, Renata F.; Menezes, Renato; Kempa, Inga; Prasad, Joanne L.; McHenry, Toby G.; Lidral, Andrew C.; Moreno, Lina; Murray, Jeffrey C.; Daack-Hirsch, Sandra; Marazita, Mary L.; Castilla, Eduardo E.; Lace, Baiba; Orioli, Ieda M.; Granjeiro, Jose M.; Schutte, Brian C.; Vieira, Alexandre R.
2012-01-01
Previous evidence from tooth agenesis studies suggested IRF6 and TGFA interact. Since tooth agenesis is commonly found in individuals with cleft lip/palate (CL/P), we used four large cohorts to evaluate if IRF6 and TGFA interaction contributes to CL/P. Markers within and flanking IRF6 and TGFA genes were tested using Taqman or SYBR green chemistries for case-control analyses in 1,000 Brazilian individuals. We looked for evidence of gene-gene interaction between IRF6 and TGFA by testing if markers associated with CL/P were overtransmitted together in the case-control Brazilian dataset and in the additional family datasets. Genotypes for an additional 142 case-parent trios from South America drawn from the Latin American Collaborative Study of Congenital Malformations (ECLAMC), 154 cases from Latvia, and 8,717 individuals from several cohorts were available for replication of tests for interaction. Tgfa and Irf6 expression at critical stages during palatogenesis was analyzed in wild type and Irf6 knockout mice. Markers in and near IRF6 and TGFA were associated with CL/P in the Brazilian cohort (p<10−6). IRF6 was also associated with cleft palate (CP) with impaction of permanent teeth (p<10−6). Statistical evidence of interaction between IRF6 and TGFA was found in all data sets (p = 0.013 for Brazilians; p = 0.046 for ECLAMC; p = 10−6 for Latvians, and p = 0.003 for the 8,717 individuals). Tgfa was not expressed in the palatal tissues of Irf6 knockout mice. IRF6 and TGFA contribute to subsets of CL/P with specific dental anomalies. Moreover, this potential IRF6-TGFA interaction may account for as much as 1% to 10% of CL/P cases. The Irf6-knockout model further supports the evidence of IRF6-TGFA interaction found in humans. PMID:23029012
A Procedure to Detect Item Bias Present Simultaneously in Several Items
1991-04-25
exhibit a coherent and major biasing influence at the test level. In partic- ular, this can be true even if each individual item displays only a minor...response functions (IRFs) without the use of item parameter estimation algorithms when the sample size is too small for their use. Thissen, Steinberg...convention). A random sample of examinees is drawn from each group, and a test of N items is administered to them. Typically it is suspected that a
MyD88 contributes to neuroinflammatory responses induced by cerebral ischemia/reperfusion in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xinchun; Kong, Delian; Wang, Jun
Myeloid differentiation primary-response protein-88 (MyD88) is one of adaptor proteins mediating Toll-like receptors (TLRs) signaling. Activation of MyD88 results in the activation of nuclear factor kappa B (NFκB) and the increase of inflammatory responses. Evidences have demonstrated that TLRs signaling contributes to cerebral ischemia/reperfusion (I/R) injury. However, the role of MyD88 in this mechanism of action is disputed and needs to be clarified. In the present study, in a mouse model of cerebral I/R, we examined the activities of NFκB and interferon factor-3 (IRF3), and the inflammatory responses in ischemic brain tissue using ELISA, Western blots, and real-time PCR. Neurologicalmore » function and cerebral infarct size were also evaluated 24 h after cerebral I/R. Our results showed that NFκB activity increased in ischemic brains, but IRF3 was not activated after cerebral I/R, in wild-type (WT) mice. MyD88 deficit inhibited the activation of NFκB, and the expression of interleukin-1β (IL-1β), IL-6, Beclin-1 (BECN1), pellino-1, and cyclooxygenase-2 (COX-2) increased by cerebral I/R compared with WT mice. Interestingly, the expression of interferon Beta 1 (INFB1) and vascular endothelial growth factor (VEGF) increased in MyD88 KO mice. Unexpectedly, although the neurological function improved in the MyD88 knockout (KO) mice, the deficit of MyD88 failed to reduce cerebral infarct size compared to WT mice. We concluded that MyD88-dependent signaling contributes to the inflammatory responses induced by cerebral I/R. MyD88 deficit may inhibit the increased inflammatory response and increase neuroprotective signaling. - Highlights: • Cerebral ischemia/reperfusion activates inflammatory responses in brain tissue. • MyD88-dependent pathway contributes to the activated inflammatory responses. • MyD88 deficit increases neuroprotective signaling in ischemic brain.« less
Bernardo, Ana R; Cosgaya, José M; Aranda, Ana; Jiménez-Lara, Ana M
2017-07-01
Breast cancer is one of the most lethal malignancies for women. Retinoic acid (RA) and double-stranded RNA (dsRNA) are considered signaling molecules with potential anticancer activity. RA, co-administered with the dsRNA mimic polyinosinic-polycytidylic acid (poly(I:C)), synergizes to induce a TRAIL (Tumor-Necrosis-Factor Related Apoptosis-Inducing Ligand)- dependent apoptotic program in breast cancer cells. Here, we report that RA/poly(I:C) co-treatment, synergically, induce the activation of Interferon Regulatory Factor-3 (IRF3) in breast cancer cells. IRF3 activation is mediated by a member of the pathogen recognition receptors, Toll-like receptor-3 (TLR3), since its depletion abrogates IRF3 activation by RA/poly(I:C) co-treatment. Besides induction of TRAIL, apoptosis induced by RA/poly(I:C) correlates with the increased expression of pro-apoptotic TRAIL receptors, TRAIL-R1/2, and the inhibition of the antagonistic receptors TRAIL-R3/4. IRF3 plays an important role in RA/poly(I:C)-induced apoptosis since IRF3 depletion suppresses caspase-8 and caspase-3 activation, TRAIL expression upregulation and apoptosis. Interestingly, RA/poly(I:C) combination synergizes to induce a bioactive autocrine/paracrine loop of type-I Interferons (IFNs) which is ultimately responsible for TRAIL and TRAIL-R1/2 expression upregulation, while inhibition of TRAIL-R3/4 expression is type-I IFN-independent. Our results highlight the importance of IRF3 and type-I IFNs signaling for the pro-apoptotic effects induced by RA and synthetic dsRNA in breast cancer cells.
Measuring Function for Medicare Inpatient Rehabilitation Payment
Carter, Grace M.; Relies, Daniel A.; Ridgeway, Gregory K.; Rimes, Carolyn M.
2003-01-01
We studied 186,766 Medicare discharges to the community in 1999 from 694 inpatient rehabilitation facilities (IRF). Statistical models were used to examine the relationship of functional items and scales to accounting cost within impairment categories. For most items, more independence leads to lower costs. However, two items are not associated with cost in the expected way. The probable causes of these anomalies are discussed along with implications for payment policy. We present the rules used to construct administratively simple, homogeneous, resource use groups that provide reasonable incentives for access and quality care and that determine payments under the new IRF prospective payment system (PPS). PMID:12894633
2012-01-01
Background During a viral infection, the intracellular RIG-I-like receptors (RLRs) sense viral RNA and signal through the mitochondrial antiviral signaling adaptor MAVS (also known as IPS-1, Cardif and VISA) whose activation triggers a rapid production of type I interferons (IFN) and of pro-inflammatory cytokines through the transcription factors IRF3/IRF7 and NF-κB, respectively. While MAVS is essential for this signaling and known to operate through the scaffold protein NEMO and the protein kinase TBK1 that phosphorylates IRF3, its mechanism of action and regulation remain unclear. Results We report here that RLR activation triggers MAVS ubiquitination on lysine 7 and 10 by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. Inhibition of this MAVS degradation with a proteasome inhibitor does not affect NF-κB signaling but it hampers IRF3 activation, and NEMO and TBK1, two essential mediators in type I IFN production, are retained at the mitochondria. Conclusions These results suggest that MAVS functions as a recruitment platform that assembles a signaling complex involving NEMO and TBK1, and that the proteasome-mediated MAVS degradation is required to release the signaling complex into the cytosol, allowing IRF3 phosphorylation by TBK1. PMID:22626058
Castanier, Céline; Zemirli, Naima; Portier, Alain; Garcin, Dominique; Bidère, Nicolas; Vazquez, Aimé; Arnoult, Damien
2012-05-24
During a viral infection, the intracellular RIG-I-like receptors (RLRs) sense viral RNA and signal through the mitochondrial antiviral signaling adaptor MAVS (also known as IPS-1, Cardif and VISA) whose activation triggers a rapid production of type I interferons (IFN) and of pro-inflammatory cytokines through the transcription factors IRF3/IRF7 and NF-κB, respectively. While MAVS is essential for this signaling and known to operate through the scaffold protein NEMO and the protein kinase TBK1 that phosphorylates IRF3, its mechanism of action and regulation remain unclear. We report here that RLR activation triggers MAVS ubiquitination on lysine 7 and 10 by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. Inhibition of this MAVS degradation with a proteasome inhibitor does not affect NF-κB signaling but it hampers IRF3 activation, and NEMO and TBK1, two essential mediators in type I IFN production, are retained at the mitochondria. These results suggest that MAVS functions as a recruitment platform that assembles a signaling complex involving NEMO and TBK1, and that the proteasome-mediated MAVS degradation is required to release the signaling complex into the cytosol, allowing IRF3 phosphorylation by TBK1.
MAP4-regulated dynein-dependent trafficking of BTN3A1 controls the TBK1–IRF3 signaling axis
Seo, Minji; Lee, Seong-Ok; Kim, Ji-Hoon; Hong, Yujin; Kim, Seongchan; Kim, Yeumin; Min, Dal-Hee; Kong, Young-Yun; Shin, Jinwook; Ahn, Kwangseog
2016-01-01
The innate immune system detects viral nucleic acids and induces type I interferon (IFN) responses. The RNA- and DNA-sensing pathways converge on the protein kinase TANK-binding kinase 1 (TBK1) and the transcription factor IFN-regulatory factor 3 (IRF3). Activation of the IFN signaling pathway is known to trigger the redistribution of key signaling molecules to punctate perinuclear structures, but the mediators of this spatiotemporal regulation have yet to be defined. Here we identify butyrophilin 3A1 (BTN3A1) as a positive regulator of nucleic acid-mediated type I IFN signaling. Depletion of BTN3A1 inhibits the cytoplasmic nucleic acid- or virus-triggered activation of IFN-β production. In the resting state, BTN3A1 is constitutively associated with TBK1. Stimulation with nucleic acids induces the redistribution of the BTN3A1–TBK1 complex to the perinuclear region, where BTN3A1 mediates the interaction between TBK1 and IRF3, leading to the phosphorylation of IRF3. Furthermore, we show that microtubule-associated protein 4 (MAP4) controls the dynein-dependent transport of BTN3A1 in response to nucleic acid stimulation, thereby identifying MAP4 as an upstream regulator of BTN3A1. Thus, the depletion of either MAP4 or BTN3A1 impairs cytosolic DNA- or RNA-mediated type I IFN responses. Our findings demonstrate a critical role for MAP4 and BTN3A1 in the spatiotemporal regulation of TBK1, a central player in the intracellular nucleic acid-sensing pathways involved in antiviral signaling. PMID:27911820
Takahashi, Keita; Sugiyama, Tsuyoshi; Tokoro, Shunji; Neri, Paol; Mori, Hiroshi
2013-08-01
Toll-like receptors (TLRs) play a critical role in innate immunity by recognizing pathogen-associated molecular patterns. Various environmental materials including lipids may affect TLR signaling and modulate innate immune responses. We previously reported that 10-hydroxy-trans-2-decenoic acid (10H2DA) inhibits lipopolysaccharide (LPS)-induced interleukin (IL)-6 and nitric oxide (NO) production via inhibiting NF-κB activation. In this study, we investigated the effect of 10-hydroxydecanoic acid (10HDA), a saturated fatty acid of 10H2DA, on LPS-induced cytokines/chemokines and NO production. 10HDA inhibited LPS-induced NO production, but not tumor necrosis factor-α or IL-6 production. LPS-induced activation of interferon (IFN)-stimulated response element, but not NF-κB, was inhibited by 10HDA. Phosphorylation of STAT1 and STAT2 was not affected, but IFN-regulatory factor (IRF)-1 production was significantly reduced by 10HDA. The LPS-induced increase of IRF-1 mRNA, however, was not affected by 10HDA. We found that IRF-1 mRNA level in the polysomal fraction was significantly decreased by 10HDA. Further, LPS-induced phosphorylation of Akt and 4E-BP1, which control mRNA translation, was markedly decreased. These results suggest that 10HDA inhibited LPS-induced NO production through inhibiting IRF-1 translation. These findings elucidate a novel mechanism for anti-inflammatory activity of medium-chain fatty acid 10HDA.
Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.
Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen
2017-10-15
Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and DNA damage-mediated cellular stresses. This seems to be the first report that p53 activates a viral oncogene; therefore, the discovery would be interesting to a broad readership from the fields of oncology to virology. Copyright © 2017 American Society for Microbiology.
Li, Qunfang; Tang, Lin; Roberts, Paul Christopher; Kraniak, Janice M.; Fridman, Aviva Levine; Kulaeva, Olga I.; Tehrani, Omid S.; Tainsky, Michael A.
2013-01-01
Cellular immortalization is one of the prerequisite steps in carcinogenesis. By gene expression profiling, we have found that genes in the interferon (IFN) pathway were dysregulated during the spontaneous cellular immortalization of fibroblasts from Li-Fraumeni syndrome (LFS) patients with germ-line mutations in p53. IFN signaling pathway genes were down-regulated by epigenetic silencing during immortalization, and some of these same IFN-regulated genes were activated during replicative senescence. Bisulfite sequencing of the promoter regions of two IFN regulatory transcription factors (IRF5 and IRF7) revealed that IRF7, but not IRF5, was epigenetically silenced by methylation of CpG islands in immortal LFS cells. The induction of IRF7 gene by IFNα in immortal LFS cells was potentiated by pretreatment with the demethylation agent 5-aza-2′-deoxycytidine. Overexpression of IRF5 and IRF7 revealed that they can act either alone or in tandem to activate other IFN-regulated genes. In addition, they serve to inhibit the proliferation rate and induce a senescence-related phenotype in immortal LFS cells. Furthermore, polyinosinic:polycytidylic acid treatment of the IRF-overexpressing cells showed a more rapid induction of several IFN-regulated genes. We conclude that the epigenetic inactivation of the IFN pathway plays a critical role in cellular immortalization, and the reactivation of IFN-regulated genes by transcription factors IRF5 and/or IRF7 is sufficient to induce cellular senescence. The IFN pathway may provide valuable molecular targets for therapeutic interventions at early stages of cancer development. PMID:18505922
Li, Qunfang; Tang, Lin; Roberts, Paul Christopher; Kraniak, Janice M; Fridman, Aviva Levine; Kulaeva, Olga I; Tehrani, Omid S; Tainsky, Michael A
2008-05-01
Cellular immortalization is one of the prerequisite steps in carcinogenesis. By gene expression profiling, we have found that genes in the interferon (IFN) pathway were dysregulated during the spontaneous cellular immortalization of fibroblasts from Li-Fraumeni syndrome (LFS) patients with germ-line mutations in p53. IFN signaling pathway genes were down-regulated by epigenetic silencing during immortalization, and some of these same IFN-regulated genes were activated during replicative senescence. Bisulfite sequencing of the promoter regions of two IFN regulatory transcription factors (IRF5 and IRF7) revealed that IRF7, but not IRF5, was epigenetically silenced by methylation of CpG islands in immortal LFS cells. The induction of IRF7 gene by IFNalpha in immortal LFS cells was potentiated by pretreatment with the demethylation agent 5-aza-2'-deoxycytidine. Overexpression of IRF5 and IRF7 revealed that they can act either alone or in tandem to activate other IFN-regulated genes. In addition, they serve to inhibit the proliferation rate and induce a senescence-related phenotype in immortal LFS cells. Furthermore, polyinosinic:polycytidylic acid treatment of the IRF-overexpressing cells showed a more rapid induction of several IFN-regulated genes. We conclude that the epigenetic inactivation of the IFN pathway plays a critical role in cellular immortalization, and the reactivation of IFN-regulated genes by transcription factors IRF5 and/or IRF7 is sufficient to induce cellular senescence. The IFN pathway may provide valuable molecular targets for therapeutic interventions at early stages of cancer development.
IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro.
Sun, Kang; He, Song-Bing; Qu, Jian-Guo; Dang, Sheng-Chun; Chen, Ji-Xiang; Gong, Ai-Hua; Xie, Rong; Zhang, Jian-Xin
2016-11-14
To investigate the role of interferon regulatory factor 5 (IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis (SAP) in vitro . A mouse SAP model was established by intraperitoneal (ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detected by fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction (RT-PCR). They were treated with IL-4/IRF5 specific siRNA (IRF5 siRNA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RT-PCR. SAP associated acute lung injury (ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siRNA reversed the action of macrophages from M1 to M2 phenotype in vitro . The expressions of M1 markers, including IRF5 (S + IRF5 siRNA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P < 0.01), TNF-α (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.019 ± 0.018, P < 0.001), iNOS (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.026 ± 0.018, P < 0.001) and IL-12 (S + IRF5 siRNA vs S + PBS, 0.000005 ± 0.00004 vs 0.024 ± 0.016, P < 0.001), were decreased. In contrast, the expressions of M2 markers, including IL-10 (S + IRF5 siRNA vs S + PBS, 0.060 ± 0.055 vs 0.0230 ± 0.018, P < 0.01) and Arg-1 (S + IRF5 siRNA vs S + PBS, 0.910 ± 0.788 vs 0.0036 ± 0.0025, P < 0.001), were increased. IRF5 siRNA could reverse the lung macrophage polarization more effectively than IL-4. Treatment with IRF5 siRNA can reverse the pancreatitis-induced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI.
Seago, Julian; Hilton, Louise; Reid, Elizabeth; Doceul, Virginie; Jeyatheesan, Janan; Moganeradj, Kartykayan; McCauley, John; Charleston, Bryan; Goodbourn, Stephen
2007-11-01
Classical swine fever virus (CSFV) is a member of the genus Pestivirus in the family Flaviviridae. The N(pro) product of CSFV targets the host's innate immune response and can prevent the production of type I interferon (IFN). The mechanism by which CSFV orchestrates this inhibition was investigated and it is shown that, like the related pestivirus bovine viral diarrhea virus (BVDV), this involves the N(pro) protein targeting interferon regulatory factor-3 (IRF-3) for degradation by proteasomes and thus preventing IRF-3 from activating transcription from the IFN-beta promoter. Like BVDV, the steady-state levels of IRF-3 mRNA are not reduced markedly by CSFV infection or N(pro) overexpression. Moreover, IFN-alpha stimulation of CSFV-infected cells induces the antiviral protein MxA, indicating that, as in BVDV-infected cells, the JAK/STAT pathway is not targeted for inhibition.
Evasion of interferon responses by Ebola and Marburg viruses.
Basler, Christopher F; Amarasinghe, Gaya K
2009-09-01
The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), cause frequently lethal viral hemorrhagic fever. These infections induce potent cytokine production, yet these host responses fail to prevent systemic virus replication. Consistent with this, filoviruses have been found to encode proteins VP35 and VP24 that block host interferon (IFN)-alpha/beta production and inhibit signaling downstream of the IFN-alpha/beta and the IFN-gamma receptors, respectively. VP35, which is a component of the viral nucleocapsid complex and plays an essential role in viral RNA synthesis, acts as a pseudosubstrate for the cellular kinases IKK-epsilon and TBK-1, which phosphorylate and activate interferon regulatory factor 3 (IRF-3) and interferon regulatory factor 7 (IRF-7). VP35 also promotes SUMOylation of IRF-7, repressing IFN gene transcription. In addition, VP35 is a dsRNA-binding protein, and mutations that disrupt dsRNA binding impair VP35 IFN-antagonist activity while leaving its RNA replication functions intact. The phenotypes of recombinant EBOV bearing mutant VP35s unable to inhibit IFN-alpha/beta demonstrate that VP35 IFN-antagonist activity is critical for full virulence of these lethal pathogens. The structure of the VP35 dsRNA-binding domain, which has recently become available, is expected to provide insight into how VP35 IFN-antagonist and dsRNA-binding functions are related. The EBOV VP24 protein inhibits IFN signaling through an interaction with select host cell karyopherin-alpha proteins, preventing the nuclear import of otherwise activated STAT1. It remains to be determined to what extent VP24 may also modulate the nuclear import of other host cell factors and to what extent this may influence the outcome of infection. Notably, the Marburg virus VP24 protein does not detectably block STAT1 nuclear import, and, unlike EBOV, MARV infection inhibits STAT1 and STAT2 phosphorylation. Thus, despite their similarities, there are fundamental differences by which these deadly viruses counteract the IFN system. It will be of interest to determine how these differences influence pathogenesis.
Hu, Guobin; Yin, Xiangyan; Lou, Huimin; Xia, Jun; Dong, Xianzhi; Zhang, Jianyie; Liu, Qiuming
2011-02-01
Two cDNAs with different 3'-untranslated region (UTR) encoding an interferon regulatory factor 3 (IRF-3) were cloned from head kidney of Japanese flounder, Paralichthys olivaceus, by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. Sequence analysis reveals that they were generated by alternative polyadenylation. The predicted protein consists of 467 amino acid residues which shares the highest identity of 50.7-57.6% to fish IRF-3 and possesses a DNA-binding domain (DBD), an IRF association domain (IAD) and a serine-rich domain (SRD) of vertebrate IRF-3. The presence of these domains along with phylogenetic analysis places it into the IRF-3 group of the IRF-3 subfamily. RT-PCR analysis revealed that flounder IRF-3 was expressed constitutively in limited tissue types including head kidney, spleen, kidney, heart, gill, intestine and liver. A quantitative real time PCR assay was employed to monitor expression of IRF-3, type I interferon (IFN) and Mx in flounder head kidney and gill. All three genes were up-regulated by polyinosinic:polycytidylic acid (polyI:C) and lymphocystis disease virus (LCDV) with an earlier but slight and less persistent increase in transcription levels seen for the IRF-3. Finally, flounder IRF-3 was proved to induce fish type I IFN promoter in FG9307 cells, a flounder gill cell line, by a luciferase assay. These results provide insights into the roles of fish IRF-3 in the antiviral immunity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.
2014-01-01
Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153
Gene cloning and expression analysis of IRF1 in half-smooth tongue sole (Cynoglossus semilaevis).
Lu, Yang; Wang, Qilong; Liu, Yang; Shao, Changwei; Chen, Songlin; Sha, Zhenxia
2014-06-01
Interferon regulatory factor 1 (IRF1) was known to play key roles in antiviral defense in several species, and some other important biological processes. In this report, full length cDNA of IRF1 from Cynoglossus semilaevis (CsIRF1) was identified. It was of 1,455 bp, containing a 5' UTR of 104 bp, a 3' UTR of 541 bp with a poly (A) tail and an ORF of 810 bp encoding a putative protein of 269 amino acids. The putative CsIRF1protein contained one conserved IRF domain (1-113aa), and two low complexity regions (140-158aa and 230-242aa, respectively). Phylogenetic analysis showed that CsIRF1 was conserved in the teleost evolutionary branch, which was independent of mammalian, birds and amphibians. Additionally, CsIRF1 had the 96% homology with marine fishes, while 66% with freshwater fishes. The expression profiles of CsIRF1was analyzed by quantitative real-time PCR in healthy tissues and in immune tissues challenged with different pathogens [Vibrio anguillarum and Lymphocystis disease virus (LCDV)], respectively. CsIRF1 was widely expressed in healthy tissues of Cynoglossus semilaevis and with the highest expression in blood, as much as 19 times of that in liver. V. anguillarum and LCDV both induced the CsIRF1 gene expression distinctly in liver, with the peak value reached to 98-fold at 6 h and 25-fold at 24 h, respectively. The bacteria induced CsIRF1 suddenly up-expression in each detected tissues. However, at the initial stage of the challenge of virus LCDV, the CsIRF1 expression in blood and spleen were up regulated; on the contrary, its expression in liver and head kidney were down regulated, 0.3 and 0.4-fold 6 h post virus injection, respectively. These results suggested that CsIRF1 gene might involve in not only antiviral activity but also antibacterial procedure, indicating its vital role in Cynoglossus semilaevis innate defense system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulit-Penaloza, Joanna A.; Scherbik, Svetlana V.; Brinton, Margo A., E-mail: mbrinton@gsu.edu
2012-04-10
Although infection of mouse embryofibroblasts (MEFs) with WNV Eg101 induced interferon (IFN) beta production and STAT1 and STAT2 phosphorylation, these transcription factors (TFs) were not detected in the nucleus or on the promoters of four IRF-3-independent interferon stimulated genes (ISGs): Oas1a and Irf7 (previously characterized as IFN/ISGF3-dependent), Oas1b and Irf1. These ISGs were upregulated in WNV Eg101-infected STAT1-/-, STAT2-/-, and IFN alpha/beta receptor -/- MEFs. Although either IRF-3 or IRF-7 could amplify/sustain Oas1a and Oas1b upregulation at later times after infection, these factors were not required for the initial gene activation. The lack of upregulation of these ISGs in WNVmore » Eg101-infected IRF-3/9-/- MEFs suggested the involvement of IRF-9. Activation of Irf1 in infected MEFs did not depend on any of these IRFs. The data indicate that additional alternative activation mechanisms exist for subsets of ISGs when a virus infection has blocked ISG activation by the canonical IFN-mediated pathway.« less
Touati, Nathan; Tryfonidis, Konstantinos; Caramia, Franco; Bonnefoi, Hervé; Cameron, David; Slaets, Leen; Parker, Belinda S; Loi, Sherene
2017-02-01
Breast cancer cells which express an innate immune signature regulated by interferon regulatory factor 7 (IRF7) have reduced metastatic potential. Infections can induce interferon signalling and may activate an anti-tumour immune response. We investigated whether 'severe infection' can be a clinical surrogate of this phenomenon and/or the presence of high levels of the IRF7 signature at diagnosis before neo-adjuvant chemotherapy (NACT) is associated with a reduced distant relapse risk, specifically in bones. Clinical data of the European Organisation for Research and Treatment of Cancer 10994/BIG 1-00 phase III trial which randomised 1856 patients treated with NACT between 2001 and 2006, were used. Severe infection was febrile neutropenia or any other grade III-IV infective adverse event during NACT. The IRF7 signature was calculated from gene expression data available for 160 patients on a pre-NACT biopsy. Cox models for distant relapse-free interval (DRFI) investigated the effect of the severe infection and IRF7. Fine and Gray models studied the occurrence of bone metastases as first distant relapse. Median follow-up was 4.8 years. No association between severe infection and DFRI was observed in the entire population (n = 1615 eligible patients) hazard ratio [(HR] = 0.99, 90% CI, confidence interval [CI] = 0.81-1.20). For IRF7 (N = 160), a trend towards an association with DRFI was observed (HR = 0.89 for a 50 unit increase, 90% CI = 0.78-1.02, p = 0.081). Higher levels of the IRF7 signature were significantly associated with a decreased bone metastases risk: (HR = 0.76 for a 50 unit increase, 95% CI, 0.62-0.94, p = 0.012). In this study it was shown that severe infection during NACT was not associated with decreased DRFI while high expression of the IRF7 gene signature was significantly associated with reduced bone relapse. This result may be useful for future adjuvant bisphosphonate/denosumab use. Copyright © 2016 Elsevier Ltd. All rights reserved.
IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro
Sun, Kang; He, Song-Bing; Qu, Jian-Guo; Dang, Sheng-Chun; Chen, Ji-Xiang; Gong, Ai-Hua; Xie, Rong; Zhang, Jian-Xin
2016-01-01
AIM To investigate the role of interferon regulatory factor 5 (IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis (SAP) in vitro. METHODS A mouse SAP model was established by intraperitoneal (ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detected by fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction (RT-PCR). They were treated with IL-4/IRF5 specific siRNA (IRF5 siRNA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RT-PCR. RESULTS SAP associated acute lung injury (ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siRNA reversed the action of macrophages from M1 to M2 phenotype in vitro. The expressions of M1 markers, including IRF5 (S + IRF5 siRNA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P < 0.01), TNF-α (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.019 ± 0.018, P < 0.001), iNOS (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.026 ± 0.018, P < 0.001) and IL-12 (S + IRF5 siRNA vs S + PBS, 0.000005 ± 0.00004 vs 0.024 ± 0.016, P < 0.001), were decreased. In contrast, the expressions of M2 markers, including IL-10 (S + IRF5 siRNA vs S + PBS, 0.060 ± 0.055 vs 0.0230 ± 0.018, P < 0.01) and Arg-1 (S + IRF5 siRNA vs S + PBS, 0.910 ± 0.788 vs 0.0036 ± 0.0025, P < 0.001), were increased. IRF5 siRNA could reverse the lung macrophage polarization more effectively than IL-4. CONCLUSION Treatment with IRF5 siRNA can reverse the pancreatitis-induced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI. PMID:27895424
Estimation of joint stiffness with a compliant load.
Ludvig, Daniel; Kearney, Robert E
2009-01-01
Joint stiffness defines the dynamic relationship between the position of the joint and the torque acting about it. It consists of two components: intrinsic and reflex stiffness. Many previous studies have investigated joint stiffness in an open-loop environment, because the current algorithm in use is an open-loop algorithm. This paper explores issues related to the estimation of joint stiffness when subjects interact with compliant loads. First, we show analytically how the bias in closed-loop estimates of joint stiffness depends on the properties of the load, the noise power, and length of the estimated impulse response functions (IRF). We then demonstrate with simulations that the open-loop analysis will fail completely for an elastic load but may succeed for an inertial load. We further show that the open-loop analysis can yield unbiased results with an inertial load and document IRF length, signal-to-noise ratio needed, and minimum inertia needed for the analysis to succeed. Thus, by using a load with a properly selected inertia, open-loop analysis can be used under closed-loop conditions.
Widefield TSCSPC-systems with large-area-detectors: application in simultaneous multi-channel-FLIM
NASA Astrophysics Data System (ADS)
Stepanov, Sergei; Bakhlanov, Sergei; Drobchenko, Evgeny; Eckert, Hann-Jörg; Kemnitz, Klaus
2010-11-01
Novel proximity-type Time- and Space-Correlated Single Photon Counting (TSCSPC) crossed-delay-line (DL)- and multi-anode (MA)-systems of outstanding performance and homogeneity were developed, using large-area detector heads of 25 and 40 mm diameter. Instrument response functions IRF(space) = (60 +/- 5) μm FWHM and IRF(time) = (28 +/- 3) ps FWHM were achieved over the full 12 cm2 area of the detector. Deadtime at throughput of 105 cps is 10% for "high-resolution" system and 5% in the "video"-system at 106 cps, at slightly reduced time- and space resolution. A fluorescence lifetime of (3.5 +/- 1) ps can be recovered from multi-exponential dynamics of a single living cyanobacterium (Acaryochloris marina). The present large-area detectors are particularly useful in simultaneous multichannel applications, such as 2-colour anisotropy or 4-colour lifetime imaging, utilizing dual- or quad-view image splitters. The long-term stability, low- excitation-intensity (< 100 mW/cm2) widefield systems enable minimal-invasive observation, without significant bleaching or photodynamic reactions, thus allowing long-period observation of up to several hours in living cells.
The mechanisms of Ag85A DNA vaccine activates RNA sensors through new signal transduction.
Zhai, Jingbo; Wang, Qiubo; Gao, Yunfeng; Zhang, Ran; Li, Shengjun; Wei, Bing; You, Yong; Sun, Xun; Lu, Changlong
2018-06-01
Low immunogenicity is one of the major problems limiting the clinical use for DNA vaccines, which makes it impossible to obtain a strong protective immune response after vaccination. In order to explore whether Ag85A DNA vaccine could mount more efficiently protective immune response through new RNA sensor and its signal transduction pathway of antigen presentation we designed and synthesized Ag85A gene fragment containing multiple points mutations and transfected the gene fragment into the dendritic cell line (DC2.4) by CRISPR/Cas9. Subsequently, we focused on the changes of RNA sensors RIG-I, Mda-5, and the downstream adaptors MAVS, IRF3, IRF7 and IFN-β. The results indicated the significant increases in the mRNA and protein expression of RNA sensors RIG-I, Mda-5 and related adaptors MAVS, IRF3, IRF7, and IFN-β in the mutant DC 2.4 cells. The flow cytometry results demonstrated that the expression of MHC II on the surface of DC 2.4 significantly increased when compared with that in control. Therefore, it is suggested that Ag85A mutant DNA could release immunogenic message through RNA sensors and related adaptors via non protein pathway. There is at least one RNA signal transduction pathway of Ag85A DNA in DC2.4 cell. The work provides a new mode of action for nucleic acid vaccine to improve immunogenicity and meaningful data for the better understanding of the mechanisms of DNA vaccine. Copyright © 2017. Published by Elsevier B.V.
Role of BRCA2 in the Expressions of IRF9-Regulated Genes in Human Breast Cells
2011-07-01
interactions of BRCA2 with the members of the ISGF3 complex (STAT1, STAT2 and IRF9) in the human breast cells. (B) To evaluate the antiproliferative effects...The classic pathway induced by type I IFNs involves the interaction 5 of the IFN with two-receptor subunits, IFNAR-1 and -2, which are associated...against human breast tumor cells. Specific aims to verify the hypothesis are: (A) To evaluate further the structural and functional interactions of BRCA2
Zele, Andrew J.; Kambhampati, Pradeep K.; Aher, Avinash; McKeefry, Declan; Parry, Neil; Maguire, John; Murray, Ian
2017-01-01
Purpose We introduce a method for determining the impulse response function (IRF) of the ERG derived from responses to temporal white noise (TWN) stimuli. Methods This white noise ERG (wnERG) was recorded in participants with normal trichromatic vision to full-field (Ganzfeld) and 39.3° diameter focal stimuli at mesopic and photopic mean luminances and at different TWN contrasts. The IRF was obtained by cross-correlating the TWN stimulus with the wnERG. Results We show that wnERG recordings are highly repeatable, with good signal-to-noise ratio, and do not lead to blink artifacts. The wnERG resembles a flash ERG waveform with an initial negativity (N1) followed by a positivity (P1), with amplitudes that are linearly related to stimulus contrast. These N1 and N1-P1 components showed commonalties in implicit times with the a- and b-waves of flash ERGs. There was a clear transition from rod- to cone-driven wnERGs at ∼1 photopic cd.m−2. We infer that oscillatory potentials found with the flash ERG, but not the wnERG, may reflect retinal nonlinearities due to the compression of energy into a short time period during a stimulus flash. Conclusion The wnERG provides a new approach to study the physiology of the retina using a stimulation method with adaptation and contrast conditions similar to natural scenes to allow for independent variation of stimulus strength and mean luminance, which is not possible with the conventional flash ERG. Translational Relevance The white noise ERG methodology will be of benefit for clinical studies and animal models in the evaluation of hypotheses related to cellular redundancy to understand the effects of disease on specific visual pathways. PMID:29109907
Inoue, Kazuaki; Tsukiyama-Kohara, Kyoko; Matsuda, Chiho; Yoneyama, Mitsutoshi; Fujita, Takashi; Kuge, Shusuke; Yoshiba, Makoto; Kohara, Michinori
2012-11-30
Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-β induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-β mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-β mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection. Copyright © 2012 Elsevier Inc. All rights reserved.
Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus
Leung, Yiu Tak; Shi, Lihua; Maurer, Kelly; Song, Li; Zhang, Zhe; Petri, Michelle; Sullivan, Kathleen E
2015-01-01
Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1. PMID:25611806
NASA Astrophysics Data System (ADS)
Wintoft, Peter; Wik, Magnus; Matzka, Jürgen; Shprits, Yuri
2017-11-01
We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks) provide prediction lead times in the range 20-90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2) IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF-Kp-2017-h3. The errors as function of Kp and for different years are also studied.
Cheng, Christine S.; Feldman, Kristyn E.; Lee, James; Verma, Shilpi; Huang, De-Bin; Huynh, Kim; Chang, Mikyoung; Ponomarenko, Julia V.; Sun, Shao-Cong; Benedict, Chris A.; Ghosh, Gourisankar; Hoffmann, Alexander
2011-01-01
The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. Members of the nuclear factor κB (NF-κB) and interferon (IFN) regulatory factor (IRF) transcription factor families bind to the κB site and the IFN response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-κB p50 homodimer as a regulator of IRF responses. Unbiased genome-wide expression and biochemical and structural analyses revealed that the p50 homodimer repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences. Mathematical modeling predicted that the p50 homodimer might enforce the stimulus specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-β was rendered stimulus-specific by the binding of the p50 homodimer to the G-IRE–containing IFNβ enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-β in response to bacterial DNA sensed by Toll-like receptor 9. This role for the NF-κB p50 homodimer in enforcing the specificity of the cellular response to pathogens by binding to a subset of IRE sequences alters our understanding of how the NF-κB and IRF signaling systems cooperate to regulate antimicrobial immunity. PMID:21343618
Demirci, F Y K; Manzi, S; Ramsey-Goldman, R; Minster, R L; Kenney, M; Shaw, P S; Dunlop-Thomas, C M; Kao, A H; Rhew, E; Bontempo, F; Kammerer, C; Kamboh, M I
2007-05-01
Interferon regulatory factor 5 (IRF5) belongs to a family of transcription factors that control the transactivation of type I interferon system-related genes, as well as the expression of several other genes involved in immune response, cell signalling, cell cycle control and apoptosis. Two recent studies reported a significant association between the IRF5/rs2004640 T allele and systemic lupus erythematosus (SLE). The purpose of this study was to determine whether the reported rs2004640 T allele association could be replicated in our independent SLE case-control sample. We genotyped DNA samples from 370 white SLE-affected female subjects and 462 white healthy female controls using the TaqMan Assay-on-Demand for rs2004640, and performed a case-control genetic association analysis. Frequency of the rs2004640 T allele was significantly higher in cases than in controls (56.5% vs. 50%; P= 0.008). The odds ratio for T allele carriers was 1.68 (95% CI: 1.20 - 2.34; P= 0.003). Our results in an independent case-control sample confirm the robust association of the IRF5/rs2004640 T allele with SLE risk, and further support the relevance of the type I interferon system in the pathogenesis of SLE and autoimmunity.
Kiermer, V; Van Lint, C; Briclet, D; Vanhulle, C; Kettmann, R; Verdin, E; Burny, A; Droogmans, L
1998-07-01
Bovine leukemia virus (BLV) replication is controlled by both cis- and trans-acting elements. The virus-encoded transactivator, Tax, is necessary for efficient transcription from the BLV promoter, although it is not present during the early stages of infection. Therefore, sequences that control Tax-independent transcription must play an important role in the initiation of viral gene expression. This study demonstrates that the R-U5 sequence of BLV stimulates Tax-independent reporter gene expression directed by the BLV promoter. R-U5 was also stimulatory when inserted immediately downstream from the transcription initiation site of a heterologous promoter. Progressive deletion analysis of this region revealed that a 46-bp element corresponding to the 5' half of U5 is principally responsible for the stimulation. This element exhibited enhancer activity when inserted upstream or downstream from the herpes simplex virus thymidine kinase promoter. This enhancer contains a binding site for the interferon regulatory factors IRF-1 and IRF-2. A 3-bp mutation that destroys the IRF recognition site caused a twofold decrease in Tax-independent BLV long terminal repeat-driven gene expression. These observations suggest that the IRF binding site in the U5 region of BLV plays a role in the initiation of virus replication.
Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response.
Witteveldt, Jeroen; Ivens, Alasdair; Macias, Sara
2018-06-12
Type I interferons (IFNs) are central components of the antiviral response. Most cell types respond to viral infections by secreting IFNs, but the mechanisms that regulate correct expression of these cytokines are not completely understood. Here, we show that activation of the type I IFN response regulates the expression of miRNAs in a post-transcriptional manner. Activation of IFN expression alters the binding of the Microprocessor complex to pri-miRNAs, reducing its processing rate and thus leading to decreased levels of a subset of mature miRNAs in an IRF3-dependent manner. The rescue of Microprocessor function during the antiviral response downregulates the levels of IFN-β and IFN-stimulated genes. All these findings support a model by which the inhibition of Microprocessor activity is an essential step to induce a robust type I IFN response in mammalian cells. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
EMG-Torque Dynamics Change With Contraction Bandwidth.
Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E
2018-04-01
An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.
Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L.; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C.; Staudt, Louis M.; Niesvizky, Ruben; Moore, Malcolm A. S.
2012-01-01
Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G1 arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G1 and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G1 block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy. PMID:22718837
Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C; Staudt, Louis M; Niesvizky, Ruben; Moore, Malcolm A S; Chen-Kiang, Selina
2012-08-02
Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.
Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.
Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K
2005-01-20
Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.
Maywald, Martina; Rink, Lothar
2017-08-01
The essential trace element zinc plays a fundamental role in immune function and regulation since its deficiency is associated with autoimmunity, allergies, and transplant rejection. Thus, we investigated the influence of zinc supplementation on the Th1-driven alloreaction in mixed lymphocyte cultures (MLC), on generation of antigen-specific T cells, and analyzed underlying molecular mechanisms. Cell proliferation and pro-inflammatory cytokine production were monitored by [ 3 H]-thymidine proliferation assay and ELISA, respectively. Analysis of surface and intracellular T cell marker was performed by flow cytometry. Western blotting and mRNA analysis were used for Foxp3, KLF-10, and IRF-1 expression. Zinc supplementation on antigen-specific T cells in physiological doses (50 µM) provokes a significant amelioration of cell proliferation and pro-inflammatory cytokine production after reactivation compared to untreated controls. Zinc administration on MLC results in an increased induction and stabilization of CD4 + CD25 + Foxp3 + and CD4 + CD25 + CTLA-4 + T cells (p < 0.05). The effect is based on zinc-induced upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. However, in resting lymphocytes zinc increases IRF-1. In summary, zinc is capable of ameliorating the allogeneic immune reaction by enhancement of antigen-specific iTreg cells due to modulation of essential molecular targets: Foxp3, KLF-10, and IRF-1. Thus, zinc can be seen as an auspicious tool for inducing tolerance in adverse immune reactions.
Yanagimachi, Masakatsu; Naruto, Takuya; Miyamae, Takako; Hara, Takuma; Kikuchi, Masako; Hara, Ryoki; Imagawa, Tomoyuki; Mori, Masaaki; Sato, Hidenori; Goto, Hiroaki; Yokota, Shumpei
2011-04-01
Systemic-onset juvenile idiopathic arthritis (systemic JIA) and macrophage activation syndrome (MAS), the most devastating complication of systemic JIA, are characterized by abnormal levels of proinflammatory cytokines. Interferon regulatory factor 5 (IRF5) is a member of the IRF family of transcription factors, and acts as a master transcription factor in the activation of genes encoding proinflammatory cytokines. Polymorphisms in the IRF5 gene have been associated with susceptibility to autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis. Our aim was to assess associations of IRF5 gene polymorphisms with susceptibility to systemic JIA and MAS. Three IRF5 single-nucleotide polymorphisms (rs729302, rs2004640, and rs2280714) were genotyped using TaqMan assays in 81 patients with systemic JIA (33 with MAS, 48 without) and 190 controls. There were no associations of the IRF5 gene polymorphisms or haplotypes under study with susceptibility to systemic JIA. There was a significant association of the rs2004640 T allele with MAS susceptibility (OR 4.11; 95% CI 1.84, 9.16; p = 0.001). The IRF5 haplotype (rs729302 A, rs2004640 T, and rs2280714 T), which was reported as conferring an increased risk of SLE, was significantly associated with MAS susceptibility in patients with systemic JIA (OR 4.61; 95% CI 1.73, 12.3; p < 0.001). IRF5 gene polymorphism is a genetic factor influencing susceptibility to MAS in patients with systemic JIA, and IRF5 contributes to the pathogenesis of MAS in these patients.
Regulation of mononuclear phagocyte development by IRF8.
Tamura, Tomohiko
2017-01-01
Mononuclear phagocytes, such as monocytes and dendritic cells (DCs), are essential for tissue homeostasis and immunity. In adults, these cells develop from hematopoietic stem cells via a common progenitor population. We have been investigating the mechanism underlying the development of mononuclear phagocytes from the viewpoint of gene expression control by transcription factors. Particularly, IRF8, the loss of which causes immunodeficiency and chronic myeloid leukemia-like neutrophilia in mice and humans, promotes the development of monocytes and DCs, while it limits neutrophil differentiation. IRF8 cooperates with the myeloid master transcription factor, PU.1, in mononuclear phagocyte progenitors. KLF4 and BATF3 serve as critical transcription factors downstream of IRF8 to induce the differentiation of monocytes and DCs, respectively. Conversely, IRF8 blocks the activity of the transcription factor C/EBPα to suppress the neutrophil differentiation program. Indeed, Irf8 -/- mononuclear phagocyte progenitors do not efficiently generate monocytes and DCs and, instead, aberrantly give rise to a large number of neutrophils. Our recent data have begun to uncover the vital role of IRF8 in the establishment of distal enhancers in mononuclear phagocyte progenitors. These results place IRF8 as a central regulator of the development of monocytes and DCs.
HAUS8 regulates RLR‑VISA antiviral signaling positively by targeting VISA.
He, Tian-Sheng; Chen, Tian; Wang, Dan-Dan; Xu, Liang-Guo
2018-06-15
Mitochondrial anti‑viral signaling protein (VISA), additionally termed MAVS, IPS‑1 and Cardif, is located at the outer membrane of mitochondria and is an essential adaptor in the Rig‑like receptor (RLRs) signaling pathway. Upon viral infection, activated RLRs interact with VISA on mitochondria, forming a RLR‑VISA platform, leading to the recruitment of different TRAF family members, including TRAF3, TRAF2 and TRAF6. This results in the phosphorylation and nuclear translocation of interferon regulatory factors 3 and 7 (IRF3/IRF7) by TANK binding kinase 1 (TBK1) and/or IKKε, as well as activation of NF‑κB, to induce type I interferons (IFNs) and pro‑inflammatory cytokines. It remains to be elucidated how VISA functions as a scaffold for protein complex assembly in mitochondria to regulate RLR‑VISA antiviral signaling. In the present study, it was demonstrated that HAUS augmin like complex subunit 8 (HAUS8) augments the RLR‑VISA‑dependent antiviral signaling pathway by targeting the VISA complex. Co‑immunoprecipitation verified that HAUS8 was associated with VISA and the VISA signaling complex components retinoic acid‑inducible gene I (RIG‑I) and TBK1 when the RLR‑VISA signaling pathway was activated. The data demonstrated that overexpression of HAUS8 significantly promoted the activity of the transcription factors NF‑κB, IRF3 and the IFN‑β promoter induced by Sendai virus‑mediated RLR‑VISA signaling. HAUS8 increased the polyubiquitination of VISA, RIG‑I and TBK1. Knockdown of HAUS8 inhibited the activation of the transcription factors IRF‑3, NF‑κB and the IFN‑β promoter triggered by Sendai virus. Collectively, these results demonstrated that HAUS8 may function as a positive regulator of RLR‑VISA dependent antiviral signaling by targeting the VISA complex, providing a novel regulatory mechanism of antiviral responses.
Liu, Zhigang; Wu, Shu-Wen; Lei, Cao-Qi; Zhou, Qian; Li, Shu; Shu, Hong-Bing; Wang, Yan-Yi
2013-05-01
In response to viral infection, RIG-I-like RNA helicases detect viral RNA and signal through the mitochondrial adapter protein VISA. VISA activation leads to rapid activation of transcription factors IRF3 and NF-κB, which collaborate to induce transcription of type I interferon (IFN) genes and cellular antiviral response. It has been demonstrated that VISA is activated by forming prion-like aggregates. However, how this process is regulated remains unknown. Here we show that overexpression of HSC71 resulted in potent inhibition of virus-triggered transcription of IFNB1 gene and cellular antiviral response. Consistently, knockdown of HSC71 had opposite effects. HSC71 interacted with VISA, and negatively regulated virus-triggered VISA aggregation. These findings suggest that HSC71 functions as a check against VISA-mediated antiviral response.
Moskwa, Sylwia; Piotrowski, Wojciech; Marczak, Jerzy; Pawełczyk, Małgorzata; Lewandowska-Polak, Anna; Jarzębska, Marzanna; Brauncajs, Małgorzata; Głobińska, Anna; Górski, Paweł; Papadopoulos, Nikolaos G; Edwards, Michael R; Johnston, Sebastian L; Kowalski, Marek L
2018-03-01
In order to gain an insight into determinants of reported variability in immune responses to respiratory viruses in human bronchial epithelial cells (HBECs) from asthmatics, the responses of HBEC to viral infections were evaluated in HBECs from phenotypically heterogeneous groups of asthmatics and in healthy controls. HBECs were obtained during bronchoscopy from 10 patients with asthma (6 atopic and 4 non-atopic) and from healthy controls (n=9) and grown as undifferentiated cultures. HBECs were infected with parainfluenza virus (PIV)-3 (MOI 0.1) and rhinovirus (RV)-1B (MOI 0.1), or treated with medium alone. The cell supernatants were harvested at 8, 24, and 48 hours. IFN-α, CXCL10 (IP-10), and RANTES (CCL5) were analyzed by using Cytometric Bead Array (CBA), and interferon (IFN)-β and IFN-λ1 by ELISA. Gene expression of IFNs, chemokines, and IFN-regulatory factors (IRF-3 and IRF-7) was determined by using quantitative PCR. PIV3 and RV1B infections increased IFN-λ1 mRNA expression in HBECs from asthmatics and healthy controls to a similar extent, and virus-induced IFN-λ1 expression correlated positively with IRF-7 expression. Following PIV3 infection, IP-10 protein release and mRNA expression were significantly higher in asthmatics compared to healthy controls (median 36.03-fold). No differences in the release or expression of RANTES, IFN-λ1 protein and mRNA, or IFN-α and IFN-β mRNA between asthmatics and healthy controls were observed. However, when asthmatics were divided according to their atopic status, HBECs from atopic asthmatics (n=6) generated significantly more IFN-λ1 protein and demonstrated higher IFN-α, IFN-β, and IRF-7 mRNA expressions in response to PIV3 compared to non-atopic asthmatics (n=4) and healthy controls (n=9). In response to RV1B infection, IFN-β mRNA expression was lower (12.39-fold at 24 hours and 19.37-fold at 48 hours) in non-atopic asthmatics compared to atopic asthmatics. The immune response of HBECs to virus infections may not be deficient in asthmatics, but seems to be modified by atopic status. Copyright © 2018 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease
ECSIT bridges RIG-I-like receptors to VISA in signaling events of innate antiviral responses.
Lei, Cao-Qi; Zhang, Yu; Li, Mi; Jiang, Li-Qun; Zhong, Bo; Kim, Yong Ho; Shu, Hong-Bing
2015-01-01
Upon binding to RNA structures from invading viruses, RIG-I and MDA5 are recruited to mitochondria to interact with VISA and initiate antiviral type I interferon (IFN) responses. How this process is mediated is less understood. In this report, we demonstrate that ECSIT is an essential scaffolding protein that mediates the association of VISA and RIG-I or MDA5. Overexpression of ECSIT potentiated virus-triggered activation of IFN-regulatory factor 3 (IRF3) and expression of IFNB1, whereas knockdown of ECSIT impaired viral infection-induced activation of IRF3 and expression of IFNB1 as well as cellular antiviral responses. Mechanistically, ECSIT was associated with VISA on mitochondria and important for bridging RIG-I and MDA5 to VISA. Our findings suggest that ECSIT mediates virus-triggered type I IFN induction by bridging RIG-I and MDA5 to the VISA complex, and provide new insights into the molecular events of innate antiviral immune responses. © 2014 S. Karger AG, Basel.
Xian, Ying; Thomas, Laine; Liang, Li; Federspiel, Jerome J; Webb, Laura E; Bushnell, Cheryl D; Duncan, Pamela W; Schwamm, Lee H; Stein, Joel; Fonarow, Gregg C; Hoenig, Helen; Montalvo, Cris; George, Mary G; Lutz, Barbara J; Peterson, Eric D; Bettger, Janet Prvu
2017-10-01
Rehabilitation is recommended after a stroke to enhance recovery and improve outcomes, but hospital's use of inpatient rehabilitation facilities (IRFs) or skilled nursing facility (SNF) and the factors associated with referral are unknown. We analyzed clinical registry and claims data for 31 775 Medicare beneficiaries presenting with acute ischemic stroke from 918 Get With The Guidelines-Stroke hospitals who were discharged to either IRF or SNF between 2006 and 2008. Using a multilevel logistic regression model, we evaluated patient and hospital characteristics, as well as geographic availability, in relation to discharge to either IRF or SNF. After accounting for observed factors, the median odds ratio was reported to quantify hospital-level variation in the use of IRF versus SNF. Of 31 775 patients, 17 662 (55.6%) were discharged to IRF and 14 113 (44.4%) were discharged to SNF. Compared with SNF patients, IRF patients were younger, more were men, had less health-service use 6 months prestroke, and had fewer comorbid conditions and in-hospital complications. Use of IRF or SNF varied significantly across hospitals (median IRF use, 55.8%; interquartile range, 34.8%-75.0%; unadjusted median odds ratio, 2.59; 95% confidence interval, 2.44-2.77). Hospital-level variation in discharge rates to IRF or SNF persisted after adjustment for patient, clinical, and geographic variables (adjusted median odds ratio, 2.87; 95% confidence interval, 2.68-3.11). There is marked unexplained variation among hospitals in their use of IRF versus SNF poststroke even after accounting for clinical characteristics and geographic availability. URL: https://clinicaltrials.gov. Unique identifier: NCT02284165. © 2017 American Heart Association, Inc.
PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1.
Yoh, Sunnie M; Schneider, Monika; Seifried, Janna; Soonthornvacharin, Stephen; Akleh, Rana E; Olivieri, Kevin C; De Jesus, Paul D; Ruan, Chunhai; de Castro, Elisa; Ruiz, Pedro A; Germanaud, David; des Portes, Vincent; García-Sastre, Adolfo; König, Renate; Chanda, Sumit K
2015-06-04
Dendritic cells (DCs) play a critical role in the immune response to viral infection through the facilitation of cell-intrinsic antiviral activity and the activation of adaptive immunity. HIV-1 infection of DCs triggers an IRF3-dependent innate immune response, which requires the activity of cyclic GAMP synthase (cGAS). We report the results of a targeted RNAi screen utilizing primary human monocyte-derived DCs (MDDCs) to identify immune regulators that directly interface with HIV-1-encoded features to initiate this innate response. Polyglutamine binding protein 1 (PQBP1) emerged as a strong candidate through this analysis. We found that PQBP1 directly binds to reverse-transcribed HIV-1 DNA and interacts with cGAS to initiate an IRF3-dependent innate response. MDDCs derived from Renpenning syndrome patients, who harbor mutations in the PQBP1 locus, possess a severely attenuated innate immune response to HIV-1 challenge, underscoring the role of PQBP1 as a proximal innate sensor of a HIV-1 infection. Copyright © 2015 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
...This final rule updates the prospective payment rates for inpatient rehabilitation facilities (IRFs) for federal fiscal year (FY) 2014 (for discharges occurring on or after October 1, 2013 and on or before September 30, 2014) as required by the statute. This final rule also revised the list of diagnosis codes that may be counted toward an IRF's ``60 percent rule'' compliance calculation to determine ``presumptive compliance,'' update the IRF facility-level adjustment factors using an enhanced estimation methodology, revise sections of the Inpatient Rehabilitation Facility-Patient Assessment Instrument, revise requirements for acute care hospitals that have IRF units, clarify the IRF regulation text regarding limitation of review, update references to previously changed sections in the regulations text, and revise and update quality measures and reporting requirements under the IRF quality reporting program.
2013-08-06
This final rule updates the prospective payment rates for inpatient rehabilitation facilities (IRFs) for federal fiscal year (FY) 2014 (for discharges occurring on or after October 1, 2013 and on or before September 30, 2014) as required by the statute. This final rule also revised the list of diagnosis codes that may be counted toward an IRF's "60 percent rule'' compliance calculation to determine "presumptive compliance,'' update the IRF facility-level adjustment factors using an enhanced estimation methodology, revise sections of the Inpatient Rehabilitation Facility-Patient Assessment Instrument, revise requirements for acute care hospitals that have IRF units, clarify the IRF regulation text regarding limitation of review, update references to previously changed sections in the regulations text, and revise and update quality measures and reporting requirements under the IRF quality reporting program.
von Philipsborn, Peter; Steinbeis, Fridolin; Bender, Max E; Regmi, Sadie; Tinnemann, Peter
2015-01-01
Economic growth in low- and middle-income countries (LMIC) has raised interest in how disease burden patterns are related to economic development. Meanwhile, poverty-related diseases are considered to be neglected in terms of research and development (R&D). Developing intuitive and meaningful metrics to measure how different diseases are related to poverty and neglected in the current R&D system. We measured how diseases are related to economic development with the income relation factor (IRF), defined by the ratio of disability-adjusted life-years (DALYs) per 100,000 inhabitants in LMIC versus that in high-income countries. We calculated the IRF for 291 diseases and injuries and 67 risk factors included in the Global Burden of Disease Study 2010. We measured neglect in R&D with the neglect factor (NF), defined by the ratio of disease burden in DALYs (as percentage of the total global disease burden) and R&D expenditure (as percentage of total global health-related R&D expenditure) for 26 diseases. The disease burden varies considerably with the level of economic development, shown by the IRF (median: 1.38; interquartile range (IQR): 0.79-6.3). Comparison of IRFs from 1990 to 2010 highlights general patterns of the global epidemiological transition. The 26 poverty-related diseases included in our analysis of neglect in R&D are responsible for 13.8% of the global disease burden, but receive only 1.34% of global health-related R&D expenditure. Within this group, the NF varies considerably (median: 19; IQR: 6-52). The IRF is an intuitive and meaningful metric to highlight shifts in global disease burden patterns. A large shortfall exists in global R&D spending for poverty-related and neglected diseases, with strong variations between diseases.
Care, Matthew A.; Cocco, Mario; Laye, Jon P.; Barnes, Nicholas; Huang, Yuanxue; Wang, Ming; Barrans, Sharon; Du, Ming; Jack, Andrew; Westhead, David R.; Doody, Gina M.; Tooze, Reuben M.
2014-01-01
Interferon regulatory factor 4 (IRF4) is central to the transcriptional network of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL), an aggressive lymphoma subgroup defined by gene expression profiling. Since cofactor association modifies transcriptional regulatory input by IRF4, we assessed genome occupancy by IRF4 and endogenous cofactors in ABC-DLBCL cell lines. IRF4 partners with SPIB, PU.1 and BATF genome-wide, but SPIB provides the dominant IRF4 partner in this context. Upon SPIB knockdown IRF4 occupancy is depleted and neither PU.1 nor BATF acutely compensates. Integration with ENCODE data from lymphoblastoid cell line GM12878, demonstrates that IRF4 adopts either SPIB- or BATF-centric genome-wide distributions in related states of post-germinal centre B-cell transformation. In primary DLBCL high-SPIB and low-BATF or the reciprocal low-SPIB and high-BATF mRNA expression links to differential gene expression profiles across nine data sets, identifying distinct associations with SPIB occupancy, signatures of B-cell differentiation stage and potential pathogenetic mechanisms. In a population-based patient cohort, SPIBhigh/BATFlow-ABC-DLBCL is enriched for mutation of MYD88, and SPIBhigh/BATFlow-ABC-DLBCL with MYD88-L265P mutation identifies a small subgroup of patients among this otherwise aggressive disease subgroup with distinct favourable outcome. We conclude that differential expression of IRF4 cofactors SPIB and BATF identifies biologically and clinically significant heterogeneity among ABC-DLBCL. PMID:24875472
Shukla, Vipul; Shukla, Ashima; Joshi, Shantaram S.
2016-01-01
Molecular pathogenesis of Chronic Lymphocytic Leukemia (CLL) is not fully elucidated. Genome wide association studies have linked Interferon Regulatory Factor 4 (IRF4) to the development of CLL. We recently established a causal relationship between low levels of IRF4 and development of CLL. However, the molecular mechanism through which IRF4 suppresses CLL development remains unclear. Deregulation of Notch signaling pathway has been identified as one of the most recurrent molecular anomalies in the pathogenesis of CLL. Yet, the role of Notch signaling as well as its regulation during CLL development remains poorly understood. Previously, we demonstrated that IRF4 deficient mice expressing immunoglobulin heavy chain Vh11 (IRF4−/−Vh11) developed spontaneous CLL with complete penetrance. In this study, we show that elevated Notch2 expression and the resulting hyperactivation of Notch signaling are common features of IRF4−/−Vh11 CLL cells. Our studies further reveal that Notch signaling is indispensable for CLL development in the IRF4−/−Vh11 mice. Moreover, we identify E3 ubiquitin ligase Nedd4, which targets Notch for degradation, as a direct target of IRF4 in CLL cells and their precursors. Collectively, our studies provide the first in vivo evidence for an essential role of Notch signaling in the development of CLL and establish IRF4 as a critical regulator of Notch signaling during CLL development. PMID:27232759
Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics.
Gonzalez-Ochoa, Guadalupe; Flores-Mendoza, Lilian K; Icedo-Garcia, Ramona; Gomez-Flores, Ricardo; Tamez-Guerra, Patricia
2017-09-01
Annual mortality rates due to infectious diarrhea are about 2.2 million; children are the most vulnerable age group to severe gastroenteritis, representing group A rotaviruses as the main cause of disease. One of the main factors of rotavirus pathogenesis is the NSP4 protein, which has been characterized as a viral toxin involved in triggering several cellular responses leading to diarrhea. Furthermore, the rotavirus protein NSP1 has been associated with interferon production inhibition by inducing the degradation of interferon regulatory factors IRF3, IRF5, and IRF7. On the other hand, probiotics such as Bifidobacterium and Lactobacillus species in combination with prebiotics such as inulin, HMO, scGOS, lcFOS have been associated with improved generalized antiviral response and anti-rotavirus effect by the reduction of rotavirus infectivity and viral shedding, decreased expression of NSP4 and increased levels of specific anti-rotavirus IgAs. Moreover, these probiotics and prebiotics have been related to shorter duration and severity of rotavirus diarrhea, to the prevention of infection and reduced incidence of reinfections. In this review we will discuss in detail about the rotavirus pathogenesis and immunity, and how probiotics such as Lactobacillus and Bifidobacterium species in combination with prebiotics have been associated with the prevention or modulation of rotavirus severe gastroenteritis.
Takeuchi, Masaki; Mizuki, Nobuhisa; Meguro, Akira; Ombrello, Michael J; Kirino, Yohei; Satorius, Colleen; Le, Julie; Blake, Mary; Erer, Burak; Kawagoe, Tatsukata; Ustek, Duran; Tugal-Tutkun, Ilknur; Seyahi, Emire; Ozyazgan, Yilmaz; Sousa, Inês; Davatchi, Fereydoun; Francisco, Vânia; Shahram, Farhad; Abdollahi, Bahar Sadeghi; Nadji, Abdolhadi; Shafiee, Niloofar Mojarad; Ghaderibarmi, Fahmida; Ohno, Shigeaki; Ueda, Atsuhisa; Ishigatsubo, Yoshiaki; Gadina, Massimo; Oliveira, Sofia A; Gül, Ahmet; Kastner, Daniel L; Remmers, Elaine F
2017-03-01
We analyzed 1,900 Turkish Behçet's disease cases and 1,779 controls genotyped with the Immunochip. The most significantly associated SNP was rs1050502, a tag SNP for HLA-B*51. In the Turkish discovery set, we identified three new risk loci, IL1A-IL1B, IRF8, and CEBPB-PTPN1, with genome-wide significance (P < 5 × 10 -8 ) by direct genotyping and ADO-EGR2 by imputation. We replicated the ADO-EGR2, IRF8, and CEBPB-PTPN1 loci by genotyping 969 Iranian cases and 826 controls. Imputed data in 608 Japanese cases and 737 controls further replicated ADO-EGR2 and IRF8, and meta-analysis additionally identified RIPK2 and LACC1. The disease-associated allele of rs4402765, the lead marker at IL1A-IL1B, was associated with both decreased IL-1α and increased IL-1β production. ABO non-secretor genotypes for two ancestry-specific FUT2 SNPs showed strong disease association (P = 5.89 × 10 -15 ). Our findings extend the list of susceptibility genes shared with Crohn's disease and leprosy and implicate mucosal factors and the innate immune response to microbial exposure in Behçet's disease susceptibility.
Takeuchi, Masaki; Mizuki, Nobuhisa; Meguro, Akira; Ombrello, Michael J.; Kirino, Yohei; Satorius, Colleen; Le, Julie; Blake, Mary; Erer, Burak; Kawagoe, Tatsukata; Ustek, Duran; Tugal-Tutkun, Ilknur; Seyahi, Emire; Ozyazgan, Yilmaz; Sousa, Inês; Davatchi, Fereydoun; Francisco, Vânia; Shahram, Farhad; Abdollahi, Bahar Sadeghi; Nadji, Abdolhadi; Shafiee, Niloofar Mojarad; Ghaderibarmi, Fahmida; Ohno, Shigeaki; Ueda, Atsuhisa; Ishigatsubo, Yoshiaki; Gadina, Massimo; Oliveira, Sofia A.; Gül, Ahmet; Kastner, Daniel L.; Remmers, Elaine F.
2017-01-01
We analyzed 1,900 Turkish Behçet’s disease cases and 1,779 controls genotyped with the Immunochip. The most significantly associated single nucleotide polymorphism (SNP) was rs1050502, a tag SNP for HLA-B*51. In the Turkish discovery set, we identified three novel loci, IL1A-IL1B, IRF8, and CEBPB-PTPN1, with genome-wide significance (P<5×10−8) by direct genotyping, and ADO-EGR2 by imputation. ADO-EGR2, IRF8, and CEBPB-PTPN1 replicated by genotyping 969 Iranian cases and 826 controls. Imputed data in 608 Japanese cases and 737 controls replicated ADO-EGR2 and IRF8 and meta-analysis additionally identified RIPK2 and LACC1. The disease-associated allele of rs4402765, the lead marker of the IL1A-IL1B locus, was associated with both decreased interleukin-1α and increased interleukin-1β production. ABO non-secretor genotypes of two ancestry-specific FUT2 SNPs showed strong disease association (P=5.89×10−15). Our findings extend shared susceptibility genes with Crohn’s disease and leprosy, and implicate mucosal factors and the innate immune response to microbial exposure in Behçet’s disease susceptibility. PMID:28166214
NASA Astrophysics Data System (ADS)
Strassmann, Kuno M.; Joos, Fortunat
2018-05-01
The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.
2017-08-03
This final rule updates the prospective payment rates for inpatient rehabilitation facilities (IRFs) for federal fiscal year (FY) 2018 as required by the statute. As required by section 1886(j)(5) of the Social Security Act (the Act), this rule includes the classification and weighting factors for the IRF prospective payment system's (IRF PPS) case-mix groups and a description of the methodologies and data used in computing the prospective payment rates for FY 2018. This final rule also revises the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) diagnosis codes that are used to determine presumptive compliance under the "60 percent rule," removes the 25 percent payment penalty for inpatient rehabilitation facility patient assessment instrument (IRF-PAI) late transmissions, removes the voluntary swallowing status item (Item 27) from the IRF-PAI, summarizes comments regarding the criteria used to classify facilities for payment under the IRF PPS, provides for a subregulatory process for certain annual updates to the presumptive methodology diagnosis code lists, adopts the use of height/weight items on the IRF-PAI to determine patient body mass index (BMI) greater than 50 for cases of single-joint replacement under the presumptive methodology, and revises and updates measures and reporting requirements under the IRF quality reporting program (QRP).
Ren, Wei; Zhu, Liang-Hua; Xu, Hua-Guo; Jin, Rui; Zhou, Guo-Ping
2012-06-01
Interferon regulatory factor 3 (IRF-3), an essential transcriptional regulator of the interferon genes, plays an important role in host defense against viral and microbial infection as well as in cell growth regulation. Promoter plays a crucial role in gene transcription. We have reported the characterization of the wide type of human IRF-3 promoter, but the characterization of the spliced variant of human IRF-3 Int2V1 promoter has not been systematically analyzed. To observe the spliced variant of human IRF-3 promoter, we have cloned the human IRF-3 gene promoter region containing 300 nucleotides upstream the transcription start site (TSS). Transient transfection of 5' deleted promoter-reporter constructs and luciferase assay illustrated the region -159/-100 relative to the TSS is sufficient for full promoter activity. This region contains GATA1 and specific protein-1 (Sp1) transcription factor binding sites. Interestingly, mutation of this Sp1 site reduced the promoter activity by 50%. However, overexpression of Sp1 increased the transcription activity by 2.4-fold. These results indicated that the spliced variant of human IRF-3 gene core promoter was located within the region -159/-100 relative to the TSS. Sp1 transcription factor upregulates the spliced variant of human IRF-3 gene promoter.
Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient
NASA Astrophysics Data System (ADS)
Shia, R.
2011-12-01
The instantaneous radiative forcing (IRF) at the top of the atmosphere (ToA) is the initial change of the total energy in the climate system when the concentration of greenhouse gas (GHG) increases. In my previous presentation at the 2010 Fall AGU meeting (A11J-02, "Mechanism of Radiative Forcing of Greenhouse Gas its Implication to the Global Warming"), it was demonstrated that IRF at TOA is generated by moving up of the emission weighting function. Thus, the temperature gradient plays a critical role in determining the climate effect of GHG. In this presentation the change of the outgoing infrared radiation flux at ToA is studied from a perturbation point of view. After the cancellation between the changes in the outgoing radiation flux from the surface emission and from the reemission of the atmosphere, the derivative of the outgoing flux to the concentration of GHG is found to be proportional to the temperature gradients below the level where the concentration of GHG changes. Therefore, the greenhouse gas contribute only to the magnitude of the radiative forcing, the temperature gradients decide the direction of the radiative forcing, i.e. warming or cooling, in addition to contributing to its magnitude. In response to the question "Does the negative IRF at ToA lead to the surface cooling or it only cools the upper part of the atmosphere?" the Eddington grey radiative equilibrium model is modified to simulate different scenarios. The original model has been used to illustrate the warming effect of GHG in textbooks of the atmospheric physics. It is modified by adding source terms from the absorption of the solar flux and the internal energy exchange in the atmosphere. In two cases the modified model generates atmospheres with a large and warm stratosphere and negative IRF at ToA when GHG increases by 25%. This negative radiative forcing can lead to the cooling of the atmosphere all the way down to the surface. The implications of the cooling effect of GHG to the climate change, including paleoclimatology and the prerequests for climate models to include cooling effect of GHG properly are discussed.
Crohn’s Disease and Genetic Hitchhiking at IBD5
Huff, Chad D.; Witherspoon, David J.; Zhang, Yuhua; Gatenbee, Chandler; Denson, Lee A.; Kugathasan, Subra; Hakonarson, Hakon; Whiting, April; Davis, Chadwick T.; Wu, Wilfred; Xing, Jinchuan; Watkins, W. Scott; Bamshad, Michael J.; Bradfield, Jonathan P.; Bulayeva, Kazima; Simonson, Tatum S.; Jorde, Lynn B.; Guthery, Stephen L.
2012-01-01
Inflammatory bowel disease 5 (IBD5) is a 250 kb haplotype on chromosome 5 that is associated with an increased risk of Crohn’s disease in Europeans. The OCTN1 gene is centrally located on IBD5 and encodes a transporter of the antioxidant ergothioneine (ET). The 503F variant of OCTN1 is strongly associated with IBD5 and is a gain-of-function mutation that increases absorption of ET. Although 503F has been implicated as the variant potentially responsible for Crohn’s disease susceptibility at IBD5, there is little evidence beyond statistical association to support its role in disease causation. We hypothesize that 503F is a recent adaptation in Europeans that swept to relatively high frequency and that disease association at IBD5 results not from 503F itself, but from one or more nearby hitchhiking variants, in the genes IRF1 or IL5. To test for evidence of recent positive selection on the 503F allele, we employed the iHS statistic, which was significant in the European CEU HapMap population (P = 0.0007) and European Human Genome Diversity Panel populations (P ≤ 0.01). To evaluate the hypothesis of disease-variant hitchhiking, we performed haplotype association tests on high-density microarray data in a sample of 1,868 Crohn’s disease cases and 5,550 controls. We found that 503F haplotypes with recombination breakpoints between OCTN1 and IRF1 or IL5 were not associated with disease (odds ratio [OR]: 1.05, P = 0.21). In contrast, we observed strong disease association for 503F haplotypes with no recombination between these three genes (OR: 1.24, P = 2.6 × 10−8), as expected if the sweeping haplotype harbored one or more disease-causing mutations in IRF1 or IL5. To further evaluate these disease-gene candidates, we obtained expression data from lower gastrointestinal biopsies of healthy individuals and Crohn’s disease patients. We observed a 72% increase in gene expression of IRF1 among Crohn’s disease patients (P = 0.0006) and no significant difference in expression of OCTN1. Collectively, these data indicate that the 503F variant has increased in frequency due to recent positive selection and that disease-causing variants in linkage disequilibrium with 503F have hitchhiked to relatively high frequency, thus forming the IBD5 risk haplotype. Finally, our association results and expression data support IRF1 as a strong candidate for Crohn’s disease causation. PMID:21816865
Chen, Shuliang; Bonifati, Serena; Qin, Zhihua; St Gelais, Corine; Kodigepalli, Karthik M; Barrett, Bradley S; Kim, Sun Hee; Antonucci, Jenna M; Ladner, Katherine J; Buzovetsky, Olga; Knecht, Kirsten M; Xiong, Yong; Yount, Jacob S; Guttridge, Denis C; Santiago, Mario L; Wu, Li
2018-04-17
Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.
Cao, Yin-Guang; Hao, Yu; Li, Zhi-Hui; Liu, Shun-Tao; Wang, Le-Xin
2016-12-01
This study was designed to investigate the inhibition activity of polysaccharide extract from Laminaria japonica against RSV. The polysaccharide from Laminaria japonica was isolated by ethanol precipitation. HEK293 cells were infected with RVS, and the antiviral activity of polysaccharide extract against RSV in host cells was tested. By using ELISA and western blot assay, the expression level of IFN-α and IRF3 and their functional roles in polysaccharide-mediated antiviral activity against RSV were investigated. The polysaccharide extract from Laminaria japonica had low toxicity to HEK293 cell. The TC50 to HEK293 cells was up to 1.76mg/mL. Furthermore, the EC50 of polysaccharide extract to RSV was 5.27μg/mL, and TI was 334. The polysaccharide extract improved IRF-3 expression which promoted the level of IFN-α. Polysaccharide extract from Laminaria japonica elicits antiviral activity against RSV by up-regulation of IRF3 signaling-mediated IFN-α production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Kusume, Y
1999-11-01
In this study, intrarenal inorganic fluoride concentrations (IR-F) in rabbits were measured after sevoflurane or methoxyflurane anesthesia (SA or MA) to investigate the mechanism of methoxy-flurane nephrotoxicity and to confirm the safety of SA in fluoride nephrotoxicity. At the end of SA of MA, IR-F was 1.5 to 5 times greater in the cortex to papilla region than serum fluoride concentrations (S-F). When S-F were nearly equal, IR-F after MA was not greater than IR-F after SA. IR-F after SA declined rapidly. In contrast, IR-F after MA was maintained at high levels for a protracted period due to the greater solubility of methoxyflurane in fatty tissue. The present study suggests that the most important factor in methoxyflurane nephrotoxicity is the high IR-F of long duration established by urine formation, and that sevoflurane, although it is not associated with fluoride nephrotoxicity under normal conditions, may not be safe when it is used for an extremely long period and at high concentrations.
Conversational Patterns of Homestay Hosts and Study Abroad Students
ERIC Educational Resources Information Center
Pryde, Michael
2014-01-01
Although the initiation, response, and follow-up (IRF) conversational structure and the initiation, response, evaluation (IRE) structure, commonly termed "triadic dialogue," (Lemke, 1990) have been extensively documented in relation to classroom conversational style, there is little research on their distribution during, and impact on,…
Ekmekcioglu, Suhendan; Mumm, John B.; Udtha, Malini; Chada, Sunil; Grimm, Elizabeth A.
2008-01-01
Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1–regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN alfa) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of Class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN beta induction followed by IRF regulation and TRAIL/FasL system activation. PMID:18511292
Lim, Wilfred; Gee, Katrina; Mishra, Sasmita; Kumar, Ashok
2005-11-01
The engagement of CD28 or CTLA-4 with B7.1 provides the essential second costimulatory signal that regulates the development of immune responses, including T cell activation, differentiation, and induction of peripheral tolerance. The signaling molecules and the transcription factors involved in B7.1 regulation are poorly understood. In this study we investigated the role of MAPKs in the regulation of LPS-induced B7.1 expression in human monocytes and the promonocytic THP-1 cells. Our results show that LPS-induced B7.1 expression in monocytic cells did not involve the activation of either p38 or ERKs. Using the JNK-specific inhibitor SP600125, small interfering RNAs specific for JNK1 and JNK2, and agents such as dexamethasone that inhibit JNK activation, we determined that LPS-induced B7.1 expression was regulated by JNK MAPK in both monocytes and THP-1 cells. In addition, we identified a distinct B7.1-responsive element corresponding to the IFN regulatory factor-7 (IRF-7) binding site in the B7.1 promoter responsible for the regulation of LPS-induced B7.1 transcription. Furthermore, SP600125 and dexamethasone inhibited LPS-induced IRF-7 activity. Taken together, these results suggest that LPS-induced B7.1 transcription in human monocytic cells may be regulated by JNK-mediated activation of the IRF-7 transcription factor.
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.
2017-02-01
CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.
SEEPLUS: A SIMPLE ONLINE CLIMATE MODEL
NASA Astrophysics Data System (ADS)
Tsutsui, Junichi
A web application for a simple climate model - SEEPLUS (a Simple climate model to Examine Emission Pathways Leading to Updated Scenarios) - has been developed. SEEPLUS consists of carbon-cycle and climate-change modules, through which it provides the information infrastructure required to perform climate-change experiments, even on a millennial-timescale. The main objective of this application is to share the latest scientific knowledge acquired from climate modeling studies among the different stakeholders involved in climate-change issues. Both the carbon-cycle and climate-change modules employ impulse response functions (IRFs) for their key processes, thereby enabling the model to integrate the outcome from an ensemble of complex climate models. The current IRF parameters and forcing manipulation are basically consistent with, or within an uncertainty range of, the understanding of certain key aspects such as the equivalent climate sensitivity and ocean CO2 uptake data documented in representative literature. The carbon-cycle module enables inverse calculation to determine the emission pathway required in order to attain a given concentration pathway, thereby providing a flexible way to compare the module with more advanced modeling studies. The module also enables analytical evaluation of its equilibrium states, thereby facilitating the long-term planning of global warming mitigation.
Bozeman, Ronald; Abel, Erika L; Macias, Everardo; Cheng, Tianyi; Beltran, Linda; DiGiovanni, John
2015-08-01
The current study was designed to explore the role of signal transducer and activator of transcription 1 (Stat1) during tumor promotion using the mouse skin multistage carcinogenesis model. Topical treatment with both 12-O-tetradecanoylphorbol-13-acetate (TPA) and 3-methyl-1,8-dihydroxy-9-anthrone (chrysarobin or CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Y701) and serine (S727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. CHRY treatment also led to upregulation of interferon regulatory factor 1 (IRF-1) mRNA and protein, which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNγ) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNγ signaling. Stat1 deficient (Stat1(-/-) ) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1(-/-) mice and wild-type littermates with TPA as the promoter. Maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNγ signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1, IRF-1 and uStat1. © 2014 Wiley Periodicals, Inc.
Inhibition of Interferon Regulatory Factor 3 Activation by Paramyxovirus V Protein
Irie, Takashi; Kiyotani, Katsuhiro; Igarashi, Tomoki; Yoshida, Asuka
2012-01-01
The V protein of Sendai virus (SeV) suppresses innate immunity, resulting in enhancement of viral growth in mouse lungs and viral pathogenicity. The innate immunity restricted by the V protein is induced through activation of interferon regulatory factor 3 (IRF3). The V protein has been shown to interact with melanoma differentiation-associated gene 5 (MDA5) and to inhibit beta interferon production. In the present study, we infected MDA5-knockout mice with V-deficient SeV and found that MDA5 was largely unrelated to the innate immunity that the V protein suppresses in vivo. We therefore investigated the target of the SeV V protein. We previously reported interaction of the V protein with IRF3. Here we extended the observation and showed that the V protein appeared to inhibit translocation of IRF3 into the nucleus. We also found that the V protein inhibited IRF3 activation when induced by a constitutive active form of IRF3. The V proteins of measles virus and Newcastle disease virus inhibited IRF3 transcriptional activation, as did the V protein of SeV, while the V proteins of mumps virus and Nipah virus did not, and inhibition by these proteins correlated with interaction of each V protein with IRF3. These results indicate that IRF3 is important as an alternative target of paramyxovirus V proteins. PMID:22532687
Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution
Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M.; Imumorin, Ikhide G.; Peters, Sunday O.; Zhang, Jiajin; Dong, Yang; Wang, Wen
2016-01-01
The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats’ populations. Fu and Li tests were significantly positive but Tajima’s D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3 led us to conclude that the gene evolution may have been influenced by domestication processes in goats. PMID:27598391
Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.
Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen
2016-01-01
The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3 led us to conclude that the gene evolution may have been influenced by domestication processes in goats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanju; Wang, Hailong; Singh, Balwinder
The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BCmore » and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that reductions of large amounts of OC in these regions would be relatively climate-neutral rather than causing significant warming via IRF reduction.« less
Iracheta-Vellve, Arvin; Petrasek, Jan; Gyongyosi, Benedek; Satishchandran, Abhishek; Lowe, Patrick; Kodys, Karen; Catalano, Donna; Calenda, Charles D.; Kurt-Jones, Evelyn A.; Fitzgerald, Katherine A.; Szabo, Gyongyi
2016-01-01
Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon regulatory factor 3 (IRF3) regulates hepatocyte apoptosis and production of type I IFNs. In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the endoplasmic reticulum (ER) adapter, stimulator of interferon genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically induced liver fibrogenesis. To test this, we performed acute or chronic CCl4 administration to WT and IRF3-, Toll/Interleukin-1R (TIR) domain-containing adapter-inducing interferon-β (TRIF)-, TRIF-related adaptor molecule (TRAM)-, and STING-deficient mice. We report that acute CCl4 administration to WT mice resulted in early ER stress, activation of IRF3, and type I IFNs, followed by hepatocyte apoptosis and liver injury, accompanied by liver fibrosis upon repeated administration of CCl4. Deficiency of IRF3 or STING prevented hepatocyte death and fibrosis both in acute or chronic CCl4. In contrast, mice deficient in type I IFN receptors or in TLR4 signaling adaptors, TRAM or TRIF, upstream of IRF3, were not protected from hepatocyte death and/or fibrosis, suggesting that the pro-apoptotic role of IRF3 is independent of TLR signaling in fibrosis. Hepatocyte death is required for liver fibrosis with causal involvement of STING and IRF3. Thus, our results identify that IRF3, by its association with STING in the presence of ER stress, couples hepatocyte apoptosis with liver fibrosis and indicate that innate immune signaling regulates outcomes of liver fibrosis via modulation of hepatocyte death in the liver. PMID:27810900
Gene expression profile after activation of RIG-I in 5'ppp-dsRNA challenged DF1.
Chen, Yang; Xu, Qi; Li, Yang; Liu, Ran; Huang, Zhengyang; Wang, Bin; Chen, Guohong
2016-12-01
Retinoic acid inducible gene I (RIG-I) can recognize influenza viruses and evoke the innate immune response. RIG-I is absent in the chicken genome, but is conserved in the genome of ducks. Lack of RIG-I renders chickens more susceptible to avian influenza infection, and the clinical symptoms are more prominent than in other poultry. It is unknown whether introduction of duck RIG-I into chicken cells can establish the immunity as is seen in ducks and the role of RIG-I in established immunity is unknown. In this study, a chicken cell strain with stable expression of duRIG-I was established by lentiviral infection, giving DF1/LV5-RIG-I, and a control strain DF1/LV5 was established in parallel. To verify stable, high level expression of duRIG-I in DF1 cells, the levels of duRIG-I mRNA and protein were determined by real-time RT-PCR and Western blot, respectively. Further, 5'triphosphate double stranded RNA (5'ppp-dsRNA) was used to mimic an RNA virus infection and the infected DF1/LV5-RIG-I and DF1/LV5 cells were subjected to high-throughput RNA-sequencing, which yielded 193.46 M reads and 39.07 G bases. A total of 278 differentially expressed genes (DEGs), i.e., duRIG-I-mediated responsive genes, were identified by RNA-seq. Among the 278 genes, 120 DEGs are annotated in the KEGG database, and the most reliable KEGG pathways are likely to be the signaling pathways of RIG-I like receptors. Functional analysis by Gene ontology (GO) indicates that the functions of these DEGs are primarily related to Type I interferon (IFN) signaling, IFN-β-mediated cellular responses and up-regulation of the RIG-I signaling pathway. Based on the shared genes among different pathways, a network representing crosstalk between RIG-I and other signaling pathways was constructed using Cytoscape software. The network suggests that RIG-mediated pathway may crosstalk with the Jak-STAT signaling pathway, Toll-like receptor signaling pathway, Wnt signaling pathway, ubiquitin-mediated proteolysis and MAPK signaling pathway during the transduction of antiviral signals. After screening, a group of key responsive genes in RIG-I-mediated signaling pathways, such as ISG12-2, Mx1, IFIT5, TRIM25, USP18, STAT1, STAT2, IRF1, IRF7 and IRF8, were tested for differential expression by real-time RT-PCR. In summary, by combining our results and the current literature, we propose a RIG-I-mediated signaling network in chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ploumis, A; Kolli, S; Patrick, M; Owens, M; Beris, A; Marino, R J
2011-03-01
Retrospective database review. To compare lengths of stay (LOS), pressure ulcers and readmissions to the acute care hospital of patients admitted to the inpatient rehabilitation facility (IRF) from a model spinal cord injury (SCI) trauma center or from a non-SCI acute hospital. Only sparse data exist comparing the status of patients admitted to IRF from a model SCI trauma center or from a non-SCI acute hospital. Acute care, IRF and total LOS were compared between patients transferred to IRF from the SCI center (n=78) and from non-SCI centers (n=131). The percentages of pressure ulcers on admission to IRF and transfer back to acute care were also compared. Patients admitted to IRF from the SCI trauma center (SCI TC) had significantly shorter (P=0.01) acute care LOS and total LOS compared with patients admitted from non-SCI TCs. By neurological category, acute-care LOS was less for all groups admitted from the SCI center, but statistically significant only for tetraplegia. There was no significant difference in the incidence of readmissions to acute care from IRF. More patients from non-SCI centers (34%) than SCI centers (12%) had pressure ulcers (P<0.001). Acute care in organized SCI TCs before transfer to IRF can significantly lower acute-care LOS or total LOS and incidence of pressure ulcers compared with non-SCI TCs. Patients admitted to IRF from SCI TCs are no more likely to be sent back to an acute hospital than those from non-SCI TCs.
Sim, Chan Kyu; Cho, Yeon Sook; Kim, Byung Soo; Baek, In-Jeoung; Kim, Young-Joon; Lee, Myeong Sup
2016-06-01
Type I interferon (IFN-I) plays a critical role in antiviral and antitumor defense. In our previous studies, we showed that IFN-I-inducible 2'-5' oligoadenylate synthetase-like 1 (OASL1) negatively regulates IFN-I production upon viral infection by specifically inhibiting translation of the IFN-I-regulating master transcription factor, interferon regulatory factor 7 (IRF7). In this study, we investigated whether OASL1 plays a negative role in the anti-tumor immune response by using OASL1-deficient (Oasl1 (-/-)) mice and transplantable syngeneic tumor cell models. We found that Oasl1 (-/-) mice demonstrate enhanced resistance to lung metastatic tumors and subcutaneously implanted tumors compared to wild-type (WT) mice. Additionally, we found that cytotoxic effector cells such as CD8(+) T cells (including tumor antigen-specific CD8(+) T cells) and NK cells as well as CD8α(+) DCs (the major antigen cross-presenting cells) were much more frequent (>fivefold) in the Oasl1 (-/-) mouse tumors. Furthermore, the cytotoxic effector cells in Oasl1 (-/-) mouse tumors seemed to be more functionally active. However, the proportion of immunosuppressive myeloid-derived suppressor cells within hematopoietic cells and of regulatory T cells within CD4(+) T cells in Oasl1 (-/-) mouse tumors did not differ significantly from that of WT mice. Tumor-challenged Oasl1 (-/-) mice expressed increased levels of IFN-I and IRF7 protein in the growing tumor, indicating that the enhanced antitumor immune response observed in Oasl1 (-/-) mice was caused by higher IFN-I production in Oasl1 (-/-) mice. Collectively, these results show that OASL1 deficiency promotes the antitumor immune response, and thus, OASL1 could be a good therapeutic target for treating tumors.
ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction
Tian, Yinyin; Wei, Congwen; Zhu, Yongjie; Li, Feng; Zhang, Pingping; Wang, Penghao; Zhang, Yanhong
2017-01-01
Estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily controlling energy homeostasis; however, its precise role in regulating antiviral innate immunity remains to be clarified. Here, we showed that ERRα deficiency conferred resistance to viral infection both in vivo and in vitro. Mechanistically, ERRα inhibited the production of type-I interferon (IFN-I) and the expression of multiple interferon-stimulated genes (ISGs). Furthermore, we found that viral infection induced TBK1-dependent ERRα stabilization, which in turn associated with TBK1 and IRF3 to impede the formation of TBK1-IRF3, IRF3 phosphorylation, IRF3 dimerization, and the DNA binding affinity of IRF3. The effect of ERRα on IFN-I production was independent of its transcriptional activity and PCG-1α. Notably, ERRα chemical inhibitor XCT790 has broad antiviral potency. This work not only identifies ERRα as a critical negative regulator of antiviral signaling, but also provides a potential target for future antiviral therapy. PMID:28591144
Mineral Dust Instantaneous Radiative Forcing in the Arctic
NASA Astrophysics Data System (ADS)
Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.
2018-05-01
Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.
Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4.
Cavallari, Joseph F; Fullerton, Morgan D; Duggan, Brittany M; Foley, Kevin P; Denou, Emmanuel; Smith, Brennan K; Desjardins, Eric M; Henriksbo, Brandyn D; Kim, Kalvin J; Tuinema, Brian R; Stearns, Jennifer C; Prescott, David; Rosenstiel, Philip; Coombes, Brian K; Steinberg, Gregory R; Schertzer, Jonathan D
2017-05-02
Intestinal dysbiosis contributes to obesity and insulin resistance, but intervening with antibiotics, prebiotics, or probiotics can be limited by specificity or sustained changes in microbial composition. Postbiotics include bacterial components such as lipopolysaccharides, which have been shown to promote insulin resistance during metabolic endotoxemia. We found that bacterial cell wall-derived muramyl dipeptide (MDP) is an insulin-sensitizing postbiotic that requires NOD2. Injecting MDP lowered adipose inflammation and reduced glucose intolerance in obese mice without causing weight loss or altering the composition of the microbiome. MDP reduced hepatic insulin resistance during obesity and low-level endotoxemia. NOD1-activating muropeptides worsened glucose tolerance. IRF4 distinguished opposing glycemic responses to different types of peptidoglycan and was required for MDP/NOD2-induced insulin sensitization and lower metabolic tissue inflammation during obesity and endotoxemia. IRF4 was dispensable for exacerbated glucose intolerance via NOD1. Mifamurtide, an MDP-based drug with orphan drug status, was an insulin sensitizer at clinically relevant doses in obese mice. Copyright © 2017 Elsevier Inc. All rights reserved.
2014-08-06
This final rule updates the prospective payment rates for inpatient rehabilitation facilities (IRFs) for federal fiscal year (FY) 2015 as required by the statute. This final rule finalizes a policy to collect data on the amount and mode (that is, Individual, Concurrent, Group, and Co-Treatment) of therapy provided in the IRF setting according to therapy discipline, revises the list of diagnosis and impairment group codes that presumptively meet the "60 percent rule'' compliance criteria, provides a way for IRFs to indicate on the Inpatient Rehabilitation Facility-Patient Assessment Instrument (IRF-PAI) form whether the prior treatment and severity requirements have been met for arthritis cases to presumptively meet the "60 percent rule'' compliance criteria, and revises and updates quality measures and reporting requirements under the IRF quality reporting program (QRP). This rule also delays the effective date for the revisions to the list of diagnosis codes that are used to determine presumptive compliance under the "60 percent rule'' that were finalized in FY 2014 IRF PPS final rule and adopts the revisions to the list of diagnosis codes that are used to determine presumptive compliance under the "60 percent rule'' that are finalized in this rule. This final rule also addresses the implementation of the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM), for the IRF prospective payment system (PPS), which will be effective when ICD-10-CM becomes the required medical data code set for use on Medicare claims and IRF-PAI submissions.
2015-08-06
This final rule updates the prospective payment rates for inpatient rehabilitation facilities (IRFs) for federal fiscal year (FY) 2016 as required by the statute. As required by section 1886(j)(5) of the Act, this rule includes the classification and weighting factors for the IRF PPS's case-mix groups and a description of the methodologies and data used in computing the prospective payment rates for FY 2016. This final rule also finalizes policy changes, including the adoption of an IRF-specific market basket that reflects the cost structures of only IRF providers, a 1-year phase-in of the revised wage index changes, a 3-year phase-out of the rural adjustment for certain IRFs, and revisions and updates to the quality reporting program (QRP).
Chen, Xueyuan; Zhou, Li; Peng, Nanfang; Yu, Haisheng; Li, Mengqi; Cao, Zhongying; Lin, Yong; Wang, Xueyu; Li, Qian; Wang, Jun; She, Yinglong; Zhu, Chengliang; Lu, Mengji; Zhu, Ying; Liu, Shi
2017-12-29
During influenza A virus (IAV) infection, cytokine storms play a vital and critical role in clinical outcomes. We have previously reported that microRNA (miR)-302c regulates IAV-induced IFN expression by targeting the 3'-UTR of nuclear factor κB (NF-κB)-inducing kinase. In the current study, we found that miR-302a, another member of the miR-302 cluster, controls the IAV-induced cytokine storm. According to results from cell-based and knockout mouse models, IAV induces a cytokine storm via interferon regulatory factor-5 (IRF-5). We also found that IAV infection up-regulates IRF-5 expression and that IRF-5 in turn promotes IAV replication. Furthermore, we observed that IRF-5 is a direct target of miR-302a, which down-regulated IRF-5 expression by binding its 3'-UTR. Moreover, IAV increased IRF-5 expression by down-regulating miR-302a expression. Interestingly, miR-302a inhibited IAV replication. In IAV-infected patients, miR-302a expression was down-regulated, whereas IRF-5 expression was up-regulated. Taken together, our work uncovers and defines a signaling pathway implicated in an IAV-induced cytokine storm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Becker, Amy M.; Michael, Drew G.; Satpathy, Ansuman T.; Sciammas, Roger; Singh, Harinder
2012-01-01
While most blood lineages are assumed to mature through a single cellular and developmental route downstream of HSCs, dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors differentiate into common DC progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that IFN regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8−/− BM demonstrated cell-intrinsic defects in the formation of CDPs and all splenic DC subsets. Irf8−/− common myeloid progenitors and, unexpectedly, Irf8−/− ALPs produced more neutrophils in vivo than their wild-type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context. PMID:22238324
Liu, Ai-Ling; Li, Yu-Feng; Qi, Wenbao; Ma, Xiu-Li; Yu, Ke-Xiang; Huang, Bing; Liao, Ming; Li, Feng; Pan, Jie; Song, Min-Xun
2015-04-01
H5N1 and H9N2 viruses are important causes of avian influenza in China. H5N1 is typically associated with severe to fatal disease in poultry, while H9N2 is usually associated with mild disease. Differences in viral virulence prompted us to investigate whether innate immune responses would be differentially regulated following infection by H5N1 and H9N2 viruses. To address this hypothesis, expression of a panel of innate immune-related genes including IFN-α, IFN-β, Mx1, OASL, ISG12, IFIT5, IRF7, USP18, SST, and KHSRP in immortal DF-1 cells following H5N1 and H9N2 infection was analyzed and compared by real-time quantitative RT-PCR. Cells infected by either virus overall exhibited a similar expression profile for four ISGs (Mx1, OASL, ISG12, and IFIT5), IFN-α, IFN-β, and SST gene. However, two immune-regulatory genes (IRF7 and KHSRP) were not responsive to highly pathogenic H5N1 infection but were strongly up-regulated in DF-1 cells infected with low pathogenic H9N2 infection. The subtype-dependent host response observed in this study offers new insights into the potential roles of IRF7 and KHSRP in control and modulation of the replication and virulence of different subtypes or strains of avian influenza A virus.
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes.
Cellier, Mathieu F M
2017-05-03
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression.
von Philipsborn, Peter; Steinbeis, Fridolin; Bender, Max E.; Regmi, Sadie; Tinnemann, Peter
2015-01-01
Background Economic growth in low- and middle-income countries (LMIC) has raised interest in how disease burden patterns are related to economic development. Meanwhile, poverty-related diseases are considered to be neglected in terms of research and development (R&D). Objectives Developing intuitive and meaningful metrics to measure how different diseases are related to poverty and neglected in the current R&D system. Design We measured how diseases are related to economic development with the income relation factor (IRF), defined by the ratio of disability-adjusted life-years (DALYs) per 100,000 inhabitants in LMIC versus that in high-income countries. We calculated the IRF for 291 diseases and injuries and 67 risk factors included in the Global Burden of Disease Study 2010. We measured neglect in R&D with the neglect factor (NF), defined by the ratio of disease burden in DALYs (as percentage of the total global disease burden) and R&D expenditure (as percentage of total global health-related R&D expenditure) for 26 diseases. Results The disease burden varies considerably with the level of economic development, shown by the IRF (median: 1.38; interquartile range (IQR): 0.79–6.3). Comparison of IRFs from 1990 to 2010 highlights general patterns of the global epidemiological transition. The 26 poverty-related diseases included in our analysis of neglect in R&D are responsible for 13.8% of the global disease burden, but receive only 1.34% of global health-related R&D expenditure. Within this group, the NF varies considerably (median: 19; IQR: 6–52). Conclusions The IRF is an intuitive and meaningful metric to highlight shifts in global disease burden patterns. A large shortfall exists in global R&D spending for poverty-related and neglected diseases, with strong variations between diseases. PMID:25623607
Results of the 2012 CASE Compensation Survey: Institutionally Related Foundation Respondents
ERIC Educational Resources Information Center
Paradise, Andrew
2012-01-01
The IRF Compensation Report summarizes the results of CASE's most recent compensation survey just for institutionally related foundations (IRFs). The 42-page report contains data from 323 individuals employed at North American IRFs. The 2012 results provide a comprehensive view of compensation practices to help identify patterns across the…
Eotaxin/CCL11 in idiopathic retroperitoneal fibrosis.
Mangieri, Domenica; Corradi, Domenico; Martorana, Davide; Malerba, Giovanni; Palmisano, Alessandra; Libri, Irene; Bartoli, Veronica; Carnevali, Maria L; Goldoni, Matteo; Govoni, Paolo; Alinovi, Rossella; Buzio, Carlo; Vaglio, Augusto
2012-10-01
Idiopathic retroperitoneal fibrosis (IRF) is a rare fibro-inflammatory disorder characterized by a periaortic tissue which often encases the ureters causing acute renal failure. IRF histology shows fibrosis and a chronic inflammatory infiltrate with frequent tissue eosinophilia. We assessed a panel of molecules promoting eosinophilia and fibrosis in IRF patients and performed an immunogenetic study. Serum levels of eotaxin/CCL11, regulated and normal T-cell expressed and secreted (RANTES), granulocyte colony-stimulating factor (G-CSF), interleukin (IL)-5, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) were measured using a multiplex assay in 24 newly diagnosed, untreated IRF patients and 14 healthy controls. Retroperitoneal biopsies (available in 8/24 patients) were histologically evaluated to assess eosinophil infiltration, whereas mast cells (MCs) were identified by immunohistochemical analysis for human tryptase. Immunohistochemistry for eotaxin/CCL11 and its receptor CCR3 was also performed. Six single nucleotide polymorphisms (SNPs) within the CCL11 gene (rs6505403, rs1860184, rs4795896, rs17735961, rs16969415 and rs17809012) were investigated in 142 IRF patients and 214 healthy controls. Serum levels of eotaxin/CCL11 were higher in IRF patients than in controls (P = 0.009). Eotaxin/CCL11 drives tissue infiltration of eosinophils and MCs, which can promote fibrosis. Eosinophilic infiltration was prominent (>5 cells/hpf) in five (62.5%) cases, and abundant tryptase-positive MCs were found in all cases; notably, MCs were in a degranulating state. Immunohistochemistry showed that CCL11 was highly produced by infiltrating mononuclear cells and that its receptor CCR3 was expressed by infiltrating eosinophils, MCs, lymphocytes and fibroblasts. None of the tested CCL11 SNPs showed disease association, but the TTCCAT haplotype was significantly associated with IRF (P = 0.0005). These findings suggest that the eotaxin/CCL11-CCR3 axis is active in IRF and may contribute to its pathogenesis; the TTCCAT haplotype within the CCL11 gene is significantly associated with IRF.
Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.
Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C
2014-03-07
To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.
BRISCO, MEREDITH A.; ZILE, MICHAEL R.; HANBERG, JENNIFER S.; WILSON, F. PERRY; PARIKH, CHIRAG R.; COCA, STEVEN G.; TANG, W.H. WILSON; TESTANI, JEFFREY M.
2017-01-01
Background Worsening renal function (WRF) is a common endpoint in decompensated heart failure clinical trials because of associations between WRF and adverse outcomes. However, WRF has not universally been identified as a poor prognostic sign, challenging the validity of WRF as a surrogate endpoint. Our aim was to describe the associations between changes in creatinine and adverse outcomes in a clinical trial of decongestive therapies. Methods and Results We investigated the association between changes in creatinine and the composite endpoint of death, rehospitalization or emergency room visit within 60 days in 301 patients in the Diuretic Optimization Strategies Evaluation (DOSE) trial. WRF was defined as an increase in creatinine >0.3 mg/dL and improvement in renal function (IRF) as a decrease >0.3 mg/dL. When examining linear changes in creatinine from baseline to 72 hours (the coprimary endpoint of DOSE), increasing creatinine was associated with lower risk for the composite outcome (HR = 0.81 per 0.3 mg/dL increase, 95% CI 0.67–0.98, P = .026). Compared with patients with stable renal function (n = 219), WRF (n = 54) was not associated with the composite endpoint (HR = 1.17, 95% CI = 0.77–1.78, P = .47). However, compared with stable renal function, there was a strong relationship between IRF (n = 28) and the composite endpoint (HR = 2.52, 95% CI = 1.57–4.03, P <.001). Conclusion The coprimary endpoint of the DOSE trial, a linear increase in creatinine, was paradoxically associated with improved outcomes. This was driven by absence of risk attributable to WRF and a strong risk associated with IRF. These results argue against using changes in serum creatinine as a surrogate endpoint in trials of decongestive strategies. PMID:27374839
Weeks, Douglas L; Greer, Christopher L; Bray, Brenda S; Schwartz, Catrina R; White, John R
2011-05-01
To study whether outcomes in patients who have undergone inpatient rehabilitation for stroke, traumatic brain injury (TBI), or traumatic spinal cord injury (TSCI) differ based on antidepressant medication (ADM) use. Retrospective cohort study of 867 electronic medical records of patients receiving inpatient rehabilitation for stroke, TBI, or TSCI. Four cohorts were formed within each rehabilitation condition: patients with no history of ADM use and no indication of history of depression; patients with no history of ADM use but with a secondary diagnostic code for a depressive illness; patients with a history of ADM use prior to and during inpatient rehabilitation; and patients who began ADM therapy in inpatient rehabilitation. Freestanding inpatient rehabilitation facility (IRF). Patients diagnosed with stroke (n=625), TBI (n=175), and TSCI (n=67). Not applicable. FIM, rehabilitation length of stay (LOS), deviation between actual LOS and expected LOS, and functional gain per day. In each impairment condition, patients initiating ADM therapy in inpatient rehabilitation had longer LOS than patients in the same impairment condition on ADM at IRF admission, and had significantly longer LOS than patients with no history of ADM use and no diagnosis of depression (P<.05). LOS for patients initiating ADM therapy as inpatients even exceeded LOS for patients without ADM history, but who had a diagnosis for a depressive disorder. Deviation in LOS was significantly larger in the stroke and TBI groups initiating ADM in IRF than their counterparts with no history of ADM use, illustrating that the group initiating ADM therapy in rehabilitation significantly exceeded expected LOS. Increased LOS did not translate into functional gains, and in fact, functional gain per day was lower in the group initiating ADM therapy in IRF. Explanations for unexpectedly long LOS in patients initiating ADM in inpatient rehabilitation focus on the potential for ADM to inhibit therapy-driven remodeling of the nervous system when initiated close in time to nervous system injury, or the possibility that untreated sequelae (eg, depressive symptoms or fatigue) were limiting progress in therapy, which triggered ADM treatment. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation.
Meldrum, Kirsty; Robertson, Sarah B; Römer, Isabella; Marczylo, Tim; Dean, Lareb S N; Rogers, Andrew; Gant, Timothy W; Smith, Rachel; Tetley, Terry D; Leonard, Martin O
2018-05-23
Nanomaterial inhalation represents a potential hazard for respiratory conditions such as asthma. Cerium dioxide nanoparticles (CeO 2 NPs) have the ability to modify disease outcome but have not been investigated for their effect on models of asthma and inflammatory lung disease. The aim of this study was to examine the impact of CeO 2 NPs in a house dust mite (HDM) induced murine model of asthma. Repeated intranasal instillation of CeO 2 NPs in the presence of HDM caused the induction of a type II inflammatory response, characterised by increased bronchoalveolar lavage eosinophils, mast cells, total plasma IgE and goblet cell metaplasia. This was accompanied by increases in IL-4, CCL11 and MCPT1 gene expression together with increases in the mucin and inflammatory regulators CLCA1 and SLC26A4. CLCA1 and SLC26A4 were also induced by CeO 2 NPs + HDM co-exposure in air liquid interface cultures of human primary bronchial epithelial cells. HDM induced airway hyperresponsiveness and airway remodelling in mice were not altered with CeO 2 NPs co-exposure. Repeated HMD instillations followed by a single exposure to CeO 2 NPs failed to produce changes in type II inflammatory endpoints but did result in alterations in the neutrophil marker CD177. Treatment of mice with CeO 2 NPs in the absence of HDM did not have any significant effects. RNA-SEQ was used to explore early effects 24 h after single treatment exposures. Changes in SAA3 expression paralleled increased neutrophil BAL levels, while no changes in eosinophil or lymphocyte levels were observed. HDM resulted in a strong induction of type I interferon and IRF3 dependent gene expression, which was inhibited with CeO 2 NPs co-exposure. Changes in the expression of genes including CCL20, CXCL10, NLRC5, IRF7 and CLEC10A suggest regulation of dendritic cells, macrophage functionality and IRF3 modulation as key early events in how CeO 2 NPs may guide pulmonary responses to HDM towards type II inflammation. CeO 2 NPs were observed to modulate the murine pulmonary response to house dust mite allergen exposure towards a type II inflammatory environment. As this type of response is present within asthmatic endotypes this finding may have implications for how occupational or incidental exposure to CeO 2 NPs should be considered for those susceptible to disease.
Materials Data on K2IrF6 (SG:164) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Lam, Adeline R; Bert, Nina Le; Ho, Samantha Sw; Shen, Yu J; Tang, Li Fm; Xiong, Gordon M; Croxford, John L; Koo, Christine X; Ishii, Ken J; Akira, Shizuo; Raulet, David H; Gasser, Stephan
2014-04-15
The immunoreceptor NKG2D originally identified in natural killer (NK) cells recognizes ligands that are upregulated on tumor cells. Expression of NKG2D ligands (NKG2DL) is induced by the DNA damage response (DDR), which is often activated constitutively in cancer cells, revealing them to NK cells as a mechanism of immunosurveillance. Here, we report that the induction of retinoic acid early transcript 1 (RAE1) ligands for NKG2D by the DDR relies on a STING-dependent DNA sensor pathway involving the effector molecules TBK1 and IRF3. Cytosolic DNA was detected in lymphoma cell lines that express RAE1 and its occurrence required activation of the DDR. Transfection of DNA into ligand-negative cells was sufficient to induce RAE1 expression. Irf3(+/-);Eμ-Myc mice expressed lower levels of RAE1 on tumor cells and showed a reduced survival rate compared with Irf3(+/+);Eμ-Myc mice. Taken together, our results suggest that genomic damage in tumor cells leads to activation of STING-dependent DNA sensor pathways, thereby activating RAE1 and enabling tumor immunosurveillance. ©2014 AACR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jinna, E-mail: kqkjk@yahoo.com.cn; Song, Tao; Jiao, Xiaohui
2011-07-15
Highlights: {yields} IRF6 rs642961 polymorphism is intensively associated with NSCLP. {yields} IRF6 rs2235371 polymorphism is not associated with NSCLP in the northern Chinese population. {yields} This investigation failed to yield any evidence for the involvement of TFAP2A polymorphisms in NSCLP in the northern Chinese population. -- Abstract: Non-syndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect that is presumably caused by genetic factors alone or gene alterations in combination with environmental changes. A number of studies have shown an association between NSCLP and single-nucleotide polymorphisms (SNPs) in the interferon regulatory factor 6 (IRF6) gene inmore » several populations. The transcription factor AP-2a (TFAP2A), which is involved in regulating mid-face development and upper lip fusion, has also be considered a candidate gene contributing to the etiology of NSCLP. The potential importance of IRF6 and TFAP2A in the NSCLP is further highlighted by a study showing that the two molecules are in the same developmental pathway. To further assess the roles of the IRF6 and TFAP2A in NSCLP, we investigated two identified IRF6 SNPs (rs2235371, rs642961) and three TFAP2A tag SNPs (rs3798691, rs1675414, rs303050) selected from HapMap data in a northern Chinese population, a group with a high prevalence of NSCLP. These SNPs were examined for association with NSCLP in 175 patients and 160 healthy controls. We observed a significant correlation between IRF6 rs642961 and NSCLP, and a lack of association between IRF6 rs2235371 polymorphisms and NSCLP in this population. This investigation indicated that there is no association between the three SNPs in the TFAP2A and NSCLP, suggesting that TFAP2A may not be involved in the development of NSCLP in the northern Chinese population. Our study provides further evidence regarding the role of IRF6 variations in NSCLP development and finds no significant association between TFAP2A and NSCLP in this northern Chinese population.« less
Kemp, Michael G.; Lindsey-Boltz, Laura A.; Sancar, Aziz
2015-01-01
The mechanism by which ultraviolet (UV) wavelengths of sunlight trigger or exacerbate the symptoms of the autoimmune disorder lupus erythematosus is not known but may involve a role for the innate immune system. Here we show that UV radiation potentiates STING (stimulator of interferon genes)-dependent activation of the immune signaling transcription factor interferon regulatory factor 3 (IRF3) in response to cytosolic DNA and cyclic dinucleotides in keratinocytes and other human cells. Furthermore, we find that modulation of this innate immune response also occurs with UV-mimetic chemical carcinogens and in a manner that is independent of DNA repair and several DNA damage and cell stress response signaling pathways. Rather, we find that the stimulation of STING-dependent IRF3 activation by UV is due to apoptotic signaling-dependent disruption of ULK1 (Unc51-like kinase 1), a pro-autophagic protein that negatively regulates STING. Thus, deregulation of ULK1 signaling by UV-induced DNA damage may contribute to the negative effects of sunlight UV exposure in patients with autoimmune disorders. PMID:25792739
Graham, James E.; Resnik, Linda; Karmarkar, Amol M.; Deutsch, Anne; Tan, Alai; Al Snih, Soham; Ottenbacher, Kenneth J.
2016-01-01
Background Medicare data from acute hospitals do not contain information on functional status. This lack of information limits the ability to conduct rehabilitation-related health services research. Objective The purpose of this study was to examine the associations between 5 comorbidity indexes derived from acute care claims data and functional status assessed at admission to an inpatient rehabilitation facility (IRF). Comorbidity indexes included tier comorbidity, Functional Comorbidity Index (FCI), Charlson Comorbidity Index, Elixhauser Comorbidity Index, and Hierarchical Condition Category (HCC). Design This was a retrospective cohort study. Methods Medicare beneficiaries with stroke, lower extremity joint replacement, and lower extremity fracture discharged to an IRF in 2011 were studied (N=105,441). Data from the beneficiary summary file, Medicare Provider Analysis and Review (MedPAR) file, and Inpatient Rehabilitation Facility–Patient Assessment Instrument (IRF-PAI) file were linked. Inpatient rehabilitation facility admission functional status was used as a proxy for acute hospital discharge functional status. Separate linear regression models for each impairment group were developed to assess the relationships between the comorbidity indexes and functional status. Base models included age, sex, race/ethnicity, disability, dual eligibility, and length of stay. Subsequent models included individual comorbidity indexes. Values of variance explained (R2) with each comorbidity index were compared. Results Base models explained 7.7% of the variance in motor function ratings for stroke, 3.8% for joint replacement, and 7.3% for fracture. The R2 increased marginally when comorbidity indexes were added to base models for stroke, joint replacement, and fracture: Charlson Comorbidity Index (0.4%, 0.5%, 0.3%), tier comorbidity (0.2%, 0.6%, 0.5%), FCI (0.4%, 1.2%, 1.6%), Elixhauser Comorbidity Index (1.2%, 1.9%, 3.5%), and HCC (2.2%, 2.1%, 2.8%). Limitation Patients from 3 impairment categories were included in the sample. Conclusions The 5 comorbidity indexes contributed little to predicting functional status. The indexes examined were not useful as proxies for functional status in the acute settings studied. PMID:26564253
ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract.
Yang, Yanyan; Yang, Woo Seok; Yu, Tao; Sung, Gi-Ho; Park, Kye Won; Yoon, Keejung; Son, Young-Jin; Hwang, Hyunsik; Kwak, Yi-Seong; Lee, Chang-Muk; Rhee, Man Hee; Kim, Jong-Hoon; Cho, Jae Youl
2014-05-28
Korean Red Ginseng (KRG) is one of the representative traditional herbal medicines prepared from Panax ginseng Meyer (Araliaceae) in Korea. It has been reported that KRG exhibits a lot of different biological actions such as anti-aging, anti-fatigue, anti-stress, anti-atherosclerosis, anti-diabetic, anti-cancer, and anti-inflammatory activities. Although systematic studies have investigated how KRG is able to ameliorate various inflammatory diseases, its molecular inhibitory mechanisms had not been carried out prior to this study. In order to investigate these mechanisms, we evaluated the effects of a water extract of Korean Red Ginseng (KRG-WE) on the in vitro inflammatory responses of activated RAW264.7 cells, and on in vivo gastritis and peritonitis models by analyzing the activation events of inflammation-inducing transcription factors and their upstream kinases. KRG-WE reduced the production of nitric oxide (NO), protected cells against NO-induced apoptosis, suppressed mRNA levels of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and interferon (IFN)-β, ameliorated EtOH/HCl-induced gastritis, and downregulated peritoneal exudate-derived NO production from lipopolysaccharide (LPS)-injected mice. The inhibition of these inflammatory responses by KRG-WE was regulated through the suppression of p38, c-Jun N-terminal kinase (JNK), and TANK-binding kinase 1 (TBK1) and by subsequent inhibition of activating transcription factor (ATF)-2, cAMP response element-binding protein (CREB), and IRF-3 activation. Of ginsensides included in this extract, interestingly, G-Rc showed the highest inhibitory potency on IRF-3-mediated luciferase activity. These results strongly suggest that the anti-inflammatory activities of KRG-WE could be due to its inhibition of the p38/JNK/TBK1 activation pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...
Morchikh, Mehdi; Cribier, Alexandra; Raffel, Raoul; Amraoui, Sonia; Cau, Julien; Severac, Dany; Dubois, Emeric; Schwartz, Olivier; Bennasser, Yamina; Benkirane, Monsef
2017-08-03
The DNA-mediated innate immune response underpins anti-microbial defenses and certain autoimmune diseases. Here we used immunoprecipitation, mass spectrometry, and RNA sequencing to identify a ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1 that we dubbed the HEXIM1-DNA-PK-paraspeckle components-ribonucleoprotein complex (HDP-RNP). The HDP-RNP contains DNA-PK subunits (DNAPKc, Ku70, and Ku80) and paraspeckle proteins (SFPQ, NONO, PSPC1, RBM14, and MATRIN3). We show that binding of HEXIM1 to NEAT1 is required for its assembly. We further demonstrate that the HDP-RNP is required for the innate immune response to foreign DNA, through the cGAS-STING-IRF3 pathway. The HDP-RNP interacts with cGAS and its partner PQBP1, and their interaction is remodeled by foreign DNA. Remodeling leads to the release of paraspeckle proteins, recruitment of STING, and activation of DNAPKc and IRF3. Our study establishes the HDP-RNP as a key nuclear regulator of DNA-mediated activation of innate immune response through the cGAS-STING pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhong, Weijie; Xu, Xin; Zhu, Zhigang; Du, Qinghua; Du, Hong; Yang, Li; Ling, Yanying; Xiong, Huabao; Li, Qingshan
2017-07-25
The immunological pathogenesis of diffuse large B cell lymphoma (DLBCL) remains elusive. Searching for new prognostic markers of DLBCL is a crucial focal point for clinical scientists. The aim of the present study was to examine the prognostic value of interferon regulatory factor 8 (IRF8) expression and its effect on the development of Th17 cells in the tumor microenvironment of DLBCL patients. Flow cytometry, immunohistochemistry, and quantitative real-time PCR were used to detect the distribution of Th17 cells and related cytokines and IRF8 in tumor tissues from DLBCL patients. Two DLBCL cell lines (OCI-LY10 and OCI-LY1) with IRF8 knockdown or overexpression and two human B lymphoblast cell lines were co-cultured with peripheral blood mononuclear cells (PBMCs) in vitro to determine the effect of IRF8 on the generation of Th17 cells. Quantitative real-time PCR and Western blotting were used to investigate the involvement of retinoic acid receptor-related orphan receptor gamma t (RORγt) in the effect of IRF8 on Th17 cell generation. The survival of 67 DLBCL patients was estimated using the Kaplan-Meier method and log-rank analysis. The percentage of Th17 cells was lower in DLBCL tumor tissues than in PBMCs and corresponding adjacent benign tissues. Relative expression of interleukin (IL)-17A was lower, whereas that of interferon (IFN)-γ was higher in tumor tissues than in benign tissues. Co-culture with DLBCL cell lines inhibited the generation of Th17 cells in vitro. IRF8 upregulation was detected in DLBCL tumor tissues, and it was associated with decreased DLBCL patient survival. Investigation of the underlying mechanism suggested that IRF8 upregulation in DLBCL, through an unknown mechanism, inhibited Th17 cell generation by suppressing RORγt in neighboring CD4+ T cells. Tumor cells may express soluble or membrane-bound factors that inhibit the expression of RORγt in T cells within the tumor microenvironment. Our findings suggest that IRF8 expression could be a prognostic factor for DLBCL.
Impact of urinary incontinence on medical rehabilitation inpatients.
Mallinson, Trudy; Fitzgerald, Colleen M; Neville, Cynthia E; Almagor, Orit; Manheim, Larry; Deutsch, Anne; Heinemann, Allen
2017-01-01
To determine the prevalence of urinary incontinence (UI) and its association with rehabilitation outcomes in patients receiving inpatient medical rehabilitation in the United States. A retrospective, cohort study of 425,547 Medicare patients discharged from inpatient rehabilitation facilities (IRFs) in 2005. We examined prevalence of UI at admission and discharge for 5 impairment groups. We examined the impact of demographics, health, and functional status on the primary outcome, change in continence status, and secondary outcomes of discharge location and 6-month mortality. Approximately one-quarter (26.6%) of men were incontinent at admission compared to 22.2% of women. In all diagnostic groups, continence status remains largely unchanged from admission to discharge. Patients who are older, have cognitive difficulties, less functional improvement, and longer lengths of stay (LOS), are more likely to remain incontinent, compared to those who improved, after controlling for patient factors and clinical variables. UI was significantly associated with discharge to another post-acute setting (PAC). For orthopedic patients, UI was associated with a 71% increase in the likelihood of discharge to an institutional setting after controlling for patient factors and clinical variables. UI was not associated with death at 6 months post-discharge. UI is highly prevalent in IRF patients and is associated with increased likelihood of discharge to institutional care, particularly for orthopedic patients. Greater attention to identifying and treating UI in IRF patients may reduce medical expenditures and improve other outcomes. Neurourol. Urodynam. 36:176-183, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Toward an Orofacial Gene Regulatory Network
Kousa, Youssef A.; Schutte, Brian C.
2015-01-01
Orofacial clefting is a common birth defect with significant morbidity. A panoply of candidate genes have been discovered through synergy of animal models and human genetics. Among these, variants in Interferon Regulatory Factor 6 (IRF6) cause syndromic orofacial clefting and contribute risk toward isolated cleft lip and palate (1/700 live births). Rare variants in IRF6 can lead to Van der Woude Syndrome (1/35,000 live births) and Popliteal Pterygium Syndrome (1/300,000 live births). Furthermore, IRF6 regulates GRHL3 and rare variants in this downstream target can also lead to Van der Woude Syndrome. In addition, a common variant (rs642961) in the IRF6 locus is found in 30% of the world’s population and contributes risk for isolated orofacial clefting. Biochemical studies revealed that rs642961 abrogates one of four AP-2alpha binding sites. Like IRF6 and GRHL3, rare variants in TFAP2A can also lead to syndromic orofacial clefting with lip pits (Branchio-oculo-facial Syndrome). The literature suggests that AP-2alpha, IRF6 and GRHL3 are part of a pathway that is essential for lip and palate development. In addition to updating the pathways, players and pursuits, this review will highlight some of the current questions in the study of orofacial clefting. PMID:26332872
Li, Yongfeng; Shen, Liang; Sun, Yuan; Wang, Xiao; Li, Chao; Huang, Junhua; Chen, Jianing; Li, Lianfeng; Zhao, Bibo; Luo, Yuzi; Li, Su; Qiu, Hua-Ji
2014-12-05
The N(pro) protein of classical swine fever virus (CSFV) is localized in the cytoplasm and nucleus. However, it is unknown whether the nuclear localization of N(pro) correlates with the virulence of CSFV in the host. Previously, we showed that the N(pro) protein fused with interferon regulatory factor 3 (IRF3) was present only in the cytoplasm. Here, we generated and evaluated a recombinant CSFV vSM-IRF3 harboring the IRF3 gene inserted into the N(pro) gene of the highly virulent CSFV Shimen strain. Compared to the even nuclear and cytoplasmic distribution of the enhanced green fluorescent protein (EGFP)-N(pro) fusion expressed by the recombinant CSFV EGFP-CSFV, vSM-IRF3 expressed an IRF3-N(pro) fusion protein that only was localized in the cytoplasm. vSM-IRF3 was markedly attenuated in vitro and in vivo, and the inoculated pigs were completely protected from lethal CSFV challenge, whereas the parental virus as well as EGFP-CSFV exhibited a typical virulent phenotype. Taken together, the nuclear localization of N(pro) plays a significant role in the CSFV replication and virulence. Copyright © 2014 Elsevier B.V. All rights reserved.
Rocca, Stefano; Schiavoni, Giovanna; Sali, Michela; Anfossi, Antonio Giovanni; Abalsamo, Laura; Palucci, Ivana; Mattei, Fabrizio; Sanchez, Massimo; Giagu, Anna; Antuofermo, Elisabetta; Fadda, Giovanni; Belardelli, Filippo; Delogu, Giovanni; Gabriele, Lucia
2013-01-01
Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8⁻/⁻) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8⁻/⁻ mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8⁻/⁻, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8⁻/⁻ mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions.
Sali, Michela; Anfossi, Antonio Giovanni; Abalsamo, Laura; Palucci, Ivana; Mattei, Fabrizio; Sanchez, Massimo; Giagu, Anna; Antuofermo, Elisabetta; Fadda, Giovanni; Belardelli, Filippo; Delogu, Giovanni; Gabriele, Lucia
2013-01-01
Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions. PMID:23717393
Nickel-induced down-regulation of {Delta}Np63 and its role in the proliferation of keratinocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Zhuo, E-mail: zhuo.zhang@uky.edu; Li Wenqi; Cheng Senping
2011-06-15
Epidemiological, animal, and cell studies have demonstrated that nickel compounds are human carcinogens. The mechanisms of their carcinogenic actions remain to be investigated. p63, a close homologue of the p53 tumor suppressor protein, has been linked to cell fate determination and/or maintenance of self-renewing populations in several epithelial tissues, including skin, mammary gland, and prostate. {Delta}Np63, a dominant negative isoform of p63, is amplified in a variety of epithelial tumors including squamous cell carcinomas and carcinomas of the prostate and mammary glands. The present study shows that nickel suppressed {Delta}Np63 expression in a short-time treatment (up to 48 h). Nickelmore » treatment caused activation of NF-{kappa}B. Blockage of NF-{kappa}B partially reversed nickel-induced {Delta}Np63 suppression. Nickel decreased interferon regulatory factor (IRF) 3 and IRF7, IKK{epsilon}, and Sp100. Over-expression of IRF3 increased {Delta}Np63 expression suppressed by nickel. Nickel was able to activate p21, and its activation was offset by the over-expression of {Delta}Np63. In turn, elevated p63 expression counteracted the ability of nickel to restrict cell growth. The present study demonstrated that nickel decreased interferon regulatory proteins IRF3 and IRF7, and activated NF-{kappa}B, resulting in {Delta}Np63 suppression and then p21 up-regulation. {Delta}Np63 plays an important role in nickel-induced cell proliferation. - Highlights: > Ni suppressed {Delta}Np63 expression in HaCat cells. > Ni activated NF-{kappa}B, decreased expressions of IRF3 and IRF7, IKK{epsilon}, and Sp100. > Over-expression of IRF3 increased {Delta}Np63 expression suppressed by Ni. > Ni activated p21, and its activation was offset by over-expression of {Delta}Np63. > Elevated p63 expression counteracted the ability of nickel to restrict cell growth.« less
Hooper, Kirsten M; Yen, Jui-Hung; Kong, Weimin; Rahbari, Kate M; Kuo, Ping-Chang; Gamero, Ana M; Ganea, Doina
2016-01-01
IL-27, a multifunctional cytokine produced by antigen-presenting cells, antagonizes inflammation by affecting conventional dendritic cells (cDC), inducing IL-10, and promoting development of regulatory Tr1 cells. Although the mechanisms involved in IL-27 induction are well-studied, much less is known about the factors that negatively impact IL-27 expression. Prostaglandin E2 (PGE2), a major immunomodulatory prostanoid, acts as a pro-inflammatory agent in several models of inflammatory/autoimmune diseases, promoting primarily Th17 development and function. In this study, we report on a novel mechanism which promotes the pro-inflammatory function of PGE2. We showed previously that PGE2 inhibits IL-27 production in murine bone marrow derived DCs. Here, we show that, in addition to BMDCs, PGE2 inhibits IL-27 production in macrophages and in splenic cDC and we identify a novel pathway consisting of signaling through EP2/EP4→induction of cAMP→downregulation of IRF1 expression and binding to the p28 ISRE site. The inhibitory effect of PGE2 on p28 and irf1 expression does not involve endogenous IFNβ, STAT1 or STAT2, and inhibition of IL-27 does not appear to be mediated through PKA, EPAC, PI3K, or MAPKs. We observed similar inhibition of il27p28 expression in vivo in splenic DC following administration of dimethyl PGE2 in conjunction with LPS. Based on the anti-inflammatory role of IL-27 in cDC and through the generation of Tr1 cells, we propose that the PGE2-induced inhibition of IL-27 in activated cDC represents an important additional mechanism for its in vivo pro-inflammatory functions. PMID:28062696
Mattei, Fabrizio; Schiavoni, Giovanna; De Ninno, Adele; Lucarini, Valeria; Sestili, Paola; Sistigu, Antonella; Fragale, Alessandra; Sanchez, Massimo; Spada, Massimo; Gerardino, Annamaria; Belardelli, Filippo; Businaro, Luca; Gabriele, Lucia
2014-10-01
A full elucidation of events occurring inside the cancer microenvironment is fundamental for the optimization of more effective therapies. In the present study, the cross-talk between cancer and immune cells was examined by employing mice deficient (KO) in interferon regulatory factor (IRF)-8, a transcription factor essential for induction of competent immune responses. The in vivo results showed that IRF-8 KO mice were highly permissive to B16.F10 melanoma growth and metastasis due to failure of their immune cells to exert proper immunosurveillance. These events were found to be dependent on soluble factors released by cells of the immune system capable of shaping the malignant phenotype of melanoma cells. An on-chip model was then generated to further explore the reciprocal interactions between the B16.F10 and immune cells. B16.F10 and immune cells were co-cultured in a microfluidic device composed of three culturing chambers suitably inter-connected by an array of microchannels; mutual interactions were then followed using time-lapse microscopy. It was observed that WT immune cells migrated through the microchannels towards the B16.F10 cells, establishing tight interactions that in turn limited tumor spread. In contrast, IRF-8 KO immune cells poorly interacted with the melanoma cells, resulting in a more invasive behavior of the B16.F10 cells. These results suggest that IRF-8 expression plays a key role in the cross-talk between melanoma and immune cells, and under-score the value of cell-on-chip approaches as useful in vitro tools to reconstruct complex in vivo microenvironments on a microscale level to explore cell interactions such as those occurring within a cancer immunoenvironment.
Intrinsic random functions for mitigation of atmospheric effects in terrestrial radar interferometry
NASA Astrophysics Data System (ADS)
Butt, Jemil; Wieser, Andreas; Conzett, Stefan
2017-06-01
The benefits of terrestrial radar interferometry (TRI) for deformation monitoring are restricted by the influence of changing meteorological conditions contaminating the potentially highly precise measurements with spurious deformations. This is especially the case when the measurement setup includes long distances between instrument and objects of interest and the topography affecting atmospheric refraction is complex. These situations are typically encountered with geo-monitoring in mountainous regions, e.g. with glaciers, landslides or volcanoes. We propose and explain an approach for the mitigation of atmospheric influences based on the theory of intrinsic random functions of order k (IRF-k) generalizing existing approaches based on ordinary least squares estimation of trend functions. This class of random functions retains convenient computational properties allowing for rigorous statistical inference while still permitting to model stochastic spatial phenomena which are non-stationary in mean and variance. We explore the correspondence between the properties of the IRF-k and the properties of the measurement process. In an exemplary case study, we find that our method reduces the time needed to obtain reliable estimates of glacial movements from 12 h down to 0.5 h compared to simple temporal averaging procedures.
Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response
Arnaud, Noëlla; Dabo, Stéphanie; Akazawa, Daisuke; Fukasawa, Masayoshi; Shinkai-Ouchi, Fumiko; Hugon, Jacques; Wakita, Takaji; Meurs, Eliane F.
2011-01-01
Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response. PMID:22022264
McDonald, Jacqueline U.; Kaforou, Myrsini; Clare, Simon; Hale, Christine; Ivanova, Maria; Huntley, Derek; Dorner, Marcus; Wright, Victoria J.; Levin, Michael; Martinon-Torres, Federico; Herberg, Jethro A.
2016-01-01
ABSTRACT Greater understanding of the functions of host gene products in response to infection is required. While many of these genes enable pathogen clearance, some enhance pathogen growth or contribute to disease symptoms. Many studies have profiled transcriptomic and proteomic responses to infection, generating large data sets, but selecting targets for further study is challenging. Here we propose a novel data-mining approach combining multiple heterogeneous data sets to prioritize genes for further study by using respiratory syncytial virus (RSV) infection as a model pathogen with a significant health care impact. The assumption was that the more frequently a gene is detected across multiple studies, the more important its role is. A literature search was performed to find data sets of genes and proteins that change after RSV infection. The data sets were standardized, collated into a single database, and then panned to determine which genes occurred in multiple data sets, generating a candidate gene list. This candidate gene list was validated by using both a clinical cohort and in vitro screening. We identified several genes that were frequently expressed following RSV infection with no assigned function in RSV control, including IFI27, IFIT3, IFI44L, GBP1, OAS3, IFI44, and IRF7. Drilling down into the function of these genes, we demonstrate a role in disease for the gene for interferon regulatory factor 7, which was highly ranked on the list, but not for IRF1, which was not. Thus, we have developed and validated an approach for collating published data sets into a manageable list of candidates, identifying novel targets for future analysis. IMPORTANCE Making the most of “big data” is one of the core challenges of current biology. There is a large array of heterogeneous data sets of host gene responses to infection, but these data sets do not inform us about gene function and require specialized skill sets and training for their utilization. Here we describe an approach that combines and simplifies these data sets, distilling this information into a single list of genes commonly upregulated in response to infection with RSV as a model pathogen. Many of the genes on the list have unknown functions in RSV disease. We validated the gene list with new clinical, in vitro, and in vivo data. This approach allows the rapid selection of genes of interest for further, more-detailed studies, thus reducing time and costs. Furthermore, the approach is simple to use and widely applicable to a range of diseases. PMID:27822537
Fink, Karin; Martin, Lydie; Mukawera, Esperance; Chartier, Stéfany; De Deken, Xavier; Brochiero, Emmanuelle; Miot, Françoise; Grandvaux, Nathalie
2013-01-01
Airway epithelial cells are key initial innate immune responders in the fight against respiratory viruses, primarily via the secretion of antiviral and proinflammatory cytokines that act in an autocrine/paracrine fashion to trigger the establishment of an antiviral state. It is currently thought that the early antiviral state in airway epithelial cells primarily relies on IFNβ secretion and the subsequent activation of the interferon-stimulated gene factor 3 (ISGF3) transcription factor complex, composed of STAT1, STAT2 and IRF9, which regulates the expression of a panoply of interferon-stimulated genes encoding proteins with antiviral activities. However, the specific pathways engaged by the synergistic action of different cytokines during viral infections, and the resulting physiological outcomes are still ill-defined. Here, we unveil a novel delayed antiviral response in the airways, which is initiated by the synergistic autocrine/paracrine action of IFNβ and TNFα, and signals through a non-canonical STAT2- and IRF9-dependent, but STAT1-independent cascade. This pathway ultimately leads to the late induction of the DUOX2 NADPH oxidase expression. Importantly, our study uncovers that the development of the antiviral state relies on DUOX2-dependent H2O2 production. Key antiviral pathways are often targeted by evasion strategies evolved by various pathogenic viruses. In this regard, the importance of the novel DUOX2-dependent antiviral pathway is further underlined by the observation that the human respiratory syncytial virus is able to subvert DUOX2 induction. PMID:23545780
ERIC Educational Resources Information Center
Khatib, Mohammad; Miri, Mowla
2016-01-01
Transmission-based language classrooms have been mostly dominated by teachers' authority, as reflected in IRF (Teacher Initiation, Student Response, Teacher Follow up/Feedback) architecture of their discourses. By contrast, Critical Pedagogy (CP) has been after fostering multivocality in and out of classroom borders. Which qualities of teacher…
Shah, Neepa; Maguire, Maureen G; Martin, Daniel F; Shaffer, James; Ying, Gui-Shuang; Grunwald, Juan E; Toth, Cynthia A; Jaffe, Glenn J; Daniel, Ebenezer
2016-04-01
To describe morphologic and visual outcomes in eyes with angiographic cystoid macular edema (CME) treated with ranibizumab or bevacizumab for neovascular age-related macular degeneration (nAMD). Prospective cohort study within a randomized clinical trial. A total of 1185 CATT study subjects. Baseline fluorescein angiography (FA) images of all CATT study eyes were evaluated for CME. Grading of other characteristics on optical coherence tomography (OCT) and photographic images at baseline and during 2-year follow-up was completed by readers at the CATT Reading Centers. Three groups were created on the basis of baseline CME and intraretinal fluid (IRF) status: (1) CME, (2) IRF without CME, (3) neither CME nor IRF. Visual acuity (VA) and total central retinal thickness (CRT) on OCT at baseline, year 1, and year 2. Among 1131 participants with images of sufficient quality for determining CME and IRF at baseline, 92 (8.1%) had CME, 766 (67.7%) had IRF without CME, and 273 (24.1%) had neither. At baseline, eyes with CME had worse mean VA (letters) than eyes with IRF without CME and eyes with neither CME nor IRF (52 vs. 60 vs. 66 letters, P < 0.001); higher mean total CRT (μm) on OCT (514 vs. 472 vs. 404, P < 0.001); and greater hemorrhage, retinal angiomatous proliferation (RAP) lesions, and classic choroidal neovascularization (CNV). All groups showed improvement in VA at follow-up; however, the CME group started and ended with the worst VA among the 3 groups. Central retinal thickness, although higher at baseline for the CME group, was similar at 1 and 2 years follow-up for all groups. More eyes with CME (65.3%) developed scarring during 2 years of follow-up compared with eyes with IRF without CME (43.8%) and eyes with neither CME nor IRF (32.5%; P < 0.001). In CATT, eyes with CME had worse baseline and follow-up VA, although all groups showed similar rates of improvement in VA during 2 years of follow-up. Cystoid macular edema seems to be a marker for poorer visual outcomes in nAMD because of underlying baseline retinal dysfunction and subsequent scarring. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Molinari, Luisa; Mameli, Consuelo; Gnisci, Augusto
2013-09-01
A sequential analysis of classroom discourse is needed to investigate the conditions under which the triadic initiation-response-feedback (IRF) pattern may host different teaching orientations. The purpose of the study is twofold: first, to describe the characteristics of classroom discourse and, second, to identify and explore the different interactive sequences that can be captured with a sequential statistical analysis. Twelve whole-class activities were video recorded in three Italian primary schools. We observed classroom interaction as it occurs naturally on an everyday basis. In total, we collected 587 min of video recordings. Subsequently, 828 triadic IRF patterns were extracted from this material and analysed with the programme Generalized Sequential Query (GSEQ). The results indicate that classroom discourse may unfold in different ways. In particular, we identified and described four types of sequences. Dialogic sequences were triggered by authentic questions, and continued through further relaunches. Monologic sequences were directed to fulfil the teachers' pre-determined didactic purposes. Co-constructive sequences fostered deduction, reasoning, and thinking. Scaffolding sequences helped and sustained children with difficulties. The application of sequential analyses allowed us to show that interactive sequences may account for a variety of meanings, thus making a significant contribution to the literature and research practice in classroom discourse. © 2012 The British Psychological Society.
Regulation of Innate Immune Responses by Bovine Herpesvirus 1 and Infected Cell Protein 0 (bICP0)
Jones, Clinton
2009-01-01
Bovine herpesvirus 1 (BoHV-1) infected cell protein 0 (bICP0) is an important transcriptional regulatory protein that stimulates productive infection. In transient transfection assays, bICP0 also inhibits interferon dependent transcription. bICP0 can induce degradation of interferon stimulatory factor 3 (IRF3), a cellular transcription factor that is crucial for activating beta interferon (IFN-β) promoter activity. Recent studies also concluded that interactions between bICP0 and IRF7 inhibit trans-activation of IFN-β promoter activity. The C3HC4 zinc RING (really important new gene) finger located near the amino terminus of bICP0 is important for all known functions of bICP0. A recombinant virus that contains a single amino acid change in a well conserved cysteine residue of the C3HC4 zinc RING finger of bICP0 grows poorly in cultured cells, and does not reactivate from latency in cattle confirming that the C3HC4 zinc RING finger is crucial for viral growth and pathogenesis. A bICP0 deletion mutant does not induce plaques in permissive cells, but induces autophagy in a cell type dependent manner. In summary, the ability of bICP0 to stimulate productive infection, and repress IFN dependent transcription plays a crucial role in the BoHV-1 infection cycle. PMID:21994549
Kristjansdottir, G; Sandling, J K; Bonetti, A; Roos, I M; Milani, L; Wang, C; Gustafsdottir, S M; Sigurdsson, S; Lundmark, A; Tienari, P J; Koivisto, K; Elovaara, I; Pirttilä, T; Reunanen, M; Peltonen, L; Saarela, J; Hillert, J; Olsson, T; Landegren, U; Alcina, A; Fernández, O; Leyva, L; Guerrero, M; Lucas, M; Izquierdo, G; Matesanz, F; Syvänen, A-C
2008-01-01
Background: IRF5 is a transcription factor involved both in the type I interferon and the toll-like receptor signalling pathways. Previously, IRF5 has been found to be associated with systemic lupus erythematosus, rheumatoid arthritis and inflammatory bowel diseases. Here we investigated whether polymorphisms in the IRF5 gene would be associated with yet another disease with features of autoimmunity, multiple sclerosis (MS). Methods: We genotyped nine single nucleotide polymorphisms and one insertion-deletion polymorphism in the IRF5 gene in a collection of 2337 patients with MS and 2813 controls from three populations: two case–control cohorts from Spain and Sweden, and a set of MS trio families from Finland. Results: Two single nucleotide polymorphism (SNPs) (rs4728142, rs3807306), and a 5 bp insertion-deletion polymorphism located in the promoter and first intron of the IRF5 gene, showed association signals with values of p<0.001 when the data from all cohorts were combined. The predisposing alleles were present on the same common haplotype in all populations. Using electrophoretic mobility shift assays we observed allele specific differences in protein binding for the SNP rs4728142 and the 5 bp indel, and by a proximity ligation assay we demonstrated increased binding of the transcription factor SP1 to the risk allele of the 5 bp indel. Conclusion: These findings add IRF5 to the short list of genes shown to be associated with MS in more than one population. Our study adds to the evidence that there might be genes or pathways that are common in multiple autoimmune diseases, and that the type I interferon system is likely to be involved in the development of these diseases. PMID:18285424
Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang
2016-08-01
Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels.
Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang
2016-01-01
Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156
Abruzzese, Maria Pia; Bilotta, Maria Teresa; Fionda, Cinzia; Zingoni, Alessandra; Soriani, Alessandra; Vulpis, Elisabetta; Borrelli, Cristiana; Zitti, Beatrice; Petrucci, Maria Teresa; Ricciardi, Maria Rosaria; Molfetta, Rosa; Paolini, Rossella; Santoni, Angela; Cippitelli, Marco
2016-12-01
Anti-cancer immune responses may contribute to the control of tumors after conventional chemotherapy, and different observations have indicated that chemotherapeutic agents can induce immune responses resulting in cancer cell death and immune-stimulatory side effects. Increasing experimental and clinical evidence highlight the importance of natural killer (NK) cells in immune responses toward multiple myeloma (MM), and combination therapies able to enhance the activity of NK cells against MM are showing promise in treating this hematologic cancer. The epigenetic readers of acetylated histones bromodomain and extra-terminal (BET) proteins are critical regulators of gene expression. In cancer, they can upregulate transcription of key oncogenes such as cMYC, IRF4, and BCL-2. In addition, the activity of these proteins can regulate the expression of osteoclastogenic cytokines during cancer progression. Here, we investigated the effect of BET bromodomain protein inhibition, on the expression of NK cell-activating ligands in MM cells. Five MM cell lines [SKO-007(J3), U266, RPMI-8226, ARP-1, JJN3] and CD138 + MM cells isolated from MM patients were used to investigate the activity of BET bromodomain inhibitors (BETi) (JQ1 and I-BET151) and of the selective BRD4-degrader proteolysis targeting chimera (PROTAC) (ARV-825), on the expression and function of several NK cell-activating ligands (NKG2DLs and DNAM-1Ls), using flow cytometry, real-time PCR, transient transfections, and degranulation assays. Our results indicate that inhibition of BET proteins via small molecule inhibitors or their degradation via a hetero-bifunctional PROTAC probe can enhance the expression of MICA, a ligand of the NKG2D receptor, in human MM cell lines and primary malignant plasma cells, rendering myeloma cells more efficient to activate NK cell degranulation. Noteworthy, similar results were obtained using selective CBP/EP300 bromodomain inhibition. Mechanistically, we found that BETi-mediated inhibition of cMYC correlates with the upregulation of miR-125b-5p and the downregulation of the cMYC/miR-125b-5p target gene IRF4, a transcriptional repressor of MICA. These findings provide new insights on the immuno-mediated antitumor activities of BETi and further elucidate the molecular mechanisms that regulate NK cell-activating ligand expression in MM.
Chrabot, Beverly S.; Kariuki, Silvia N.; Zervou, Maria I.; Feng, Xuan; Arrington, Jasmine; Jolly, Meenakshi; Boumpas, Dimitrios T.; Reder, Anthony T.; Goulielmos, George N.; Niewold, Timothy B.
2013-01-01
Alleles of IRF8 are associated with susceptibility to both systemic lupus erythematosus (SLE) and multiple sclerosis (MS). While high type I interferon (IFN) is thought to be causal in SLE, type I IFN is used as a therapy in MS. We investigated whether IRF8 alleles were associated with type I IFN levels or serologic profiles in SLE and MS. Alleles which have been previously associated with SLE or MS were genotyped in SLE and MS patients. The MS-associated rs17445836G allele was associated with anti-dsDNA autoantibodies in SLE patients (meta-analysis OR=1.92). The same allele was associated with decreased serum IFN activity in SLE patients with anti-dsDNA antibodies, and with decreased type I IFN-induced gene expression in PBMC from anti-dsDNA negative SLE patients. In secondary progressive MS patients, rs17445836G was associated with decreased serum type I IFN. Rs17445836G was associated with increased IRF8 expression in SLE patient B cells. In summary, IRF8 rs17445836G is associated with human autoimmune disease characterized by low type I IFN levels, and this may have pharmacogenetic relevance as type I IFN is modulated in SLE and MS. The association with autoantibodies and increased IRF8 expression in B cells supports a role for rs17445836G in humoral tolerance. PMID:23965942
Barnea-Yizhar, Ofer; Ram, Sigal; Kovalev, Ekaterina; Azriel, Aviva; Rand, Ulfert; Nakayama, Manabu; Hauser, Hansjörg; Gepstein, Lior; Levi, Ben-Zion
2016-01-01
Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron’s properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation. PMID:27257682
Hardigan, Trevor; Spitler, Kathryn; Matsumoto, Takayuki; Carrillo-Sepulveda, Maria Alicia
2015-11-01
Activation of Toll-like receptor 3 (TLR3), a pattern recognition receptor of the innate immune system, is associated with vascular complications. However, whether activation of TLR3 alters vascular contractility is unknown. We, therefore, hypothesized that TLR3 activation augments vascular contractility and activates vascular smooth muscle cell (VSMC) contractile apparatus proteins. Male mice were treated with polyinosinic-polycytidylic acid (Poly I:C group, 14 days), a TLR3 agonist; control mice received saline (vehicle, 14 days). At the end of protocol, blood pressure was measured by tail cuff method. Aortas were isolated and assessed for contractility experiments using a wire myograph. Aortic protein content was used to determine phosphorylated/total interferon regulatory factor 3 (IRF3), a downstream target of TLR3 signaling, and ERK1/2 using Western blot. We investigated the TLR3/IRF3/ERK1/2 signaling pathway and contractile-related proteins such as phosphorylated/total myosin light chain (MLC) and caldesmon (CaD) in aortic VSMC primary cultures. Poly I:C-treated mice exhibited (vs. vehicle-treated mice) (1) elevated systolic blood pressure. Moreover, Poly I:C treatment (2) enhanced aortic phenylephrine-induced maximum contraction, which was suppressed by PD98059 (ERK1/2 inhibitor), and (3) increased aortic levels of phosphorylated IRF3 and ERK1/2. Stimulation of mouse aortic VSMCs with Poly I:C resulted in increased phosphorylation of IRF3, ERK1/2, MLC, and CaD. Inhibition of ERK1/2 abolished Poly I:C-mediated phosphorylation of MLC and CaD. Our data provide functional evidence for the role of TLR3 in vascular contractile events, suggesting TLR3 as a potential new therapeutic target in vascular dysfunction and regulation of blood pressure.
Royer, Pierre-Joseph; Rogers, Andrew J; Wooldridge, Karl G; Tighe, Patrick; Mahdavi, Jafar; Rittig, Michael G; Ala'Aldeen, Dlawer
2013-11-01
We have investigated the response of primary human meningothelial cells to Neisseria meningitidis. Through a transcriptome analysis, we provide a comprehensive examination of the response of meningothelial cells to bacterial infection. A wide range of chemokines are elicited which act to attract and activate the main players of innate and adaptive immunity. We showed that meningothelial cells expressed a high level of Toll-like receptor 4 (TLR4), and, using a gene silencing strategy, we demonstrated the contribution of this pathogen recognition receptor in meningothelial cell activation. Secretion of interleukin-6 (IL-6), CXCL10, and CCL5 was almost exclusively TLR4 dependent and relied on MyD88 and TRIF adaptor cooperation. In contrast, IL-8 induction was independent of the presence of TLR4, MyD88, and TRIF. Transcription factors NF-κB p65, p38 mitogen-activated protein kinase (MAPK), Jun N-terminal protein kinase (JNK1), IRF3, and IRF7 were activated after contact with bacteria. Interestingly, the protein kinase IRAK4 was found to play a minor role in the meningothelial cell response to Neisseria infection. Our work highlights the role of meningothelial cells in the development of an immune response and inflammation in the central nervous system (CNS) in response to meningococcal infection. It also sheds light on the complexity of intracellular signaling after TLR triggering.
Investigating the Personality Inventory for DSM-5 using self and spouse reports.
Jopp, Andrew M; South, Susan C
2015-04-01
Two new clinical tools, the Personality Inventory for DSM-5 (PID-5) and its informant report version, the PID-5-IRF, were developed to assess personality pathology as described by the new trait-based model within Section III of DSM-5. The current study used both self and spousal reports to evaluate agreement between the PID-5 and the PID-5-IRF and to determine the extent to which these measures capture personality pathology as conceptualized in Section II of DSM-5. A nonclinical sample (N = 96 individuals) of recently married couples completed the self-report PID-5, the PID-5-IRF, and the SNAP-2 to assess self-reported DSM-IV PD criteria. Analyses found good to excellent agreement between spousal reports on the PID-5 and the PID-5-IRF for facets in the negative affectivity, detachment, and antagonism domains. In addition, both the PID-5 and the PID-5-IRF each individually accounted for a significant proportion of variance in self-reported DSM-IV PD criteria. Implications for the present findings are discussed.
Brisco, Meredith A; Zile, Michael R; Hanberg, Jennifer S; Wilson, F Perry; Parikh, Chirag R; Coca, Steven G; Tang, W H Wilson; Testani, Jeffrey M
2016-10-01
Worsening renal function (WRF) is a common endpoint in decompensated heart failure clinical trials because of associations between WRF and adverse outcomes. However, WRF has not universally been identified as a poor prognostic sign, challenging the validity of WRF as a surrogate endpoint. Our aim was to describe the associations between changes in creatinine and adverse outcomes in a clinical trial of decongestive therapies. We investigated the association between changes in creatinine and the composite endpoint of death, rehospitalization or emergency room visit within 60 days in 301 patients in the Diuretic Optimization Strategies Evaluation (DOSE) trial. WRF was defined as an increase in creatinine >0.3 mg/dL and improvement in renal function (IRF) as a decrease >0.3 mg/dL. When examining linear changes in creatinine from baseline to 72 hours (the coprimary endpoint of DOSE), increasing creatinine was associated with lower risk for the composite outcome (HR = 0.81 per 0.3 mg/dL increase, 95% CI 0.67-0.98, P = .026). Compared with patients with stable renal function (n = 219), WRF (n = 54) was not associated with the composite endpoint (HR = 1.17, 95% CI = 0.77-1.78, P = .47). However, compared with stable renal function, there was a strong relationship between IRF (n = 28) and the composite endpoint (HR = 2.52, 95% CI = 1.57-4.03, P < .001). The coprimary endpoint of the DOSE trial, a linear increase in creatinine, was paradoxically associated with improved outcomes. This was driven by absence of risk attributable to WRF and a strong risk associated with IRF. These results argue against using changes in serum creatinine as a surrogate endpoint in trials of decongestive strategies. Copyright © 2016 Elsevier Inc. All rights reserved.
Cytosolic sensing of immuno-stimulatory DNA, the enemy within.
Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia
2018-02-01
In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.
Injury risk functions for frontal oblique collisions.
Andricevic, Nino; Junge, Mirko; Krampe, Jonas
2018-03-09
The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set. Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes-a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured). IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18-64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes. The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.
Identification and utility of innate immune system evasion mechanisms of ASFV.
Correia, Sílvia; Ventura, Sónia; Parkhouse, Robert Michael
2013-04-01
The interferon (IFN) system is an early innate anti-virus host defense mechanism that takes place shortly after entry of the pathogen and long before the onset of adaptive immunity. Thus, African swine fever virus (ASFV), as an acute and persistent virus in pigs, is predicted to have evolved multiple genes for the manipulation and evasion of interferon. Although, ASFV is known to interfere with signaling pathways controlling the transcription of cytokines, surprisingly no individual virus gene manipulating the induction or impact of IFN has been described. Since an initial bioinformatics search of the ASFV genome failed to identify potential antagonists of the IFN response, our strategy was to functionally screen early expressed, "unassigned" ASFV genes without existing homologies, particularly from MGFs 360 and 530, in luciferase reporter assays for their inhibition of the induction and impact of IFN. Specifically, we used reporter plasmids containing the luciferase gene under the control of: (1) the IFN-β promoter, to screen for inhibition of induction of type I IFN stimulated by the addition of Poly(I:C); (2) the ISRE DNA elements, to screen for the inhibition of the impact of type I IFN; and (3) the GAS DNA elements to screen for the inhibition of the impact of type II IFN. Our initial experiments revealed six ASFV genes inhibiting one or more of the three luciferase assays. From these, we have selected a total of 3 genes for presentation. The ASFV A276R gene from MGF360 inhibited the induction of IFN-β via both the TLR3 and the cytosolic pathways, targeting IRF3, but not IRF7 or NF-κB. The ASFV A528R inhibited the induction of both NF-κB and IRF3 branches of the type I IFN induction signaling pathway and the impact of IFN response via both IFN type I and type II stimulation. The ASFV I329L gene is a functional viral TLR3 homologue inhibiting the induction of IFN at the level of TRIF. Thus, these genes reduce the IFN response by targeting different intracellular signaling intermediates. Their deletion from wild type virus may strengthen the host interferon response and so provide an attenuated form with more restricted virus spread after the initial infection, perhaps "buying" sufficient time to allow the development of a protective adaptive immune response. The demonstration of multiple ASFV genes for the evasion of IFN responses will demand technology to construct viruses with multiple gene deletions. An alternative would be a multigene DNA vaccine. Finally, our work clearly demonstrates that unassigned viral genes may be viewed as a repository of host evasion strategies, only identifiable through functional assays. These may be considered to be "ready-made tools" for the experimental manipulation of cell biology and immune responses in health and disease and, as proof of concept, we have constructed a T-cell restricted transgenic mouse expressing the ASFV gene A238L, a dual inhibitor of NF-κB and NFAT activation. The resulting T cell restricted A238L transgenic mice developed a lymphoma with a phenotype reminiscent of some acute lymphoblastic lymphomas. In contrast, transgenic mice similarly expressing a mutant A238L solely inhibiting transcription mediated by NF-κB were indistinguishable from wild type mice, suggesting a transgene-NFAT-dependent transformation. Elucidation of the molecular events associated with the development of this virus host evasion molecule induced tumor may clarify some mechanisms of tumorigenesis in general, and in the development of T cell acute lymphoblastic leukemia in particular. Copyright © 2012 Elsevier B.V. All rights reserved.
Dedollarization in Turkey after decades of dollarization: A myth or reality?
NASA Astrophysics Data System (ADS)
Metin-Özcan, Kıvılcım; Us, Vuslat
2007-11-01
The paper analyzes dollarization in the Turkish economy given the evidence on dedollarization signals. On conducting a Vector Autoregression (VAR) model, the empirical evidence suggests that dollarization has mostly been shaped by macroeconomic imbalances as measured by exchange rate depreciation volatility, inflation volatility and expectations. Furthermore, the generalized impulse response function (IRF) analysis, in addition to the analysis of variance decomposition (VDC) gives support to the notion that dollarization seems to sustain its persistent nature, thus hysteresis still prevails. Hence, unfavorable macroeconomic conditions apparently contribute to dollarization while dollarization itself contains inertia. Furthermore, dedollarization that presumably started after 2001 has lost headway after May 2006. Thus, it seems too early to conclude that dollarization changed its route to dedollarization.
NASA Astrophysics Data System (ADS)
Grim, Gary; Eckart, Mark; Hartouni, Edward; Hatarik, Robert; Moore, Alastair; Root, Jaben; Sayre, Daniel; Schlossberg, David; Waltz, Cory
2017-10-01
In mid-2017 the NIF implemented quartz based neutron time-of-flight (nToF) detectors which have a faster and narrower impulse response function (IRF) relative to traditional scintillator detectors. In this presentation we report on comparisons between fusion neutron first moments as measured by quartz and scintillator based detectors using DT layered implosions at the NIF. We report on the change in precision presaged by the quartz converter and quantify the change in both in shot, line-of-site velocity variability. as well as, shot-to-shot variation. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-734511-DRAFT.
IRF-1 and miRNA126 modulate inflammatory VCAM-1 expression in response to a high fat meal
USDA-ARS?s Scientific Manuscript database
Rationale: High-fat diets accompanied by hypertriglyceridemia increase an individual’s risk for developing atherosclerosis. An early event in this process is monocyte recruitment through binding to VCAM-1 on inflamed arterial endothelium. Diets high in polyunsaturated fatty acids (PUFAs) may provide...
ISG15 counteracts Listeria monocytogenes infection
Radoshevich, Lilliana; Impens, Francis; Ribet, David; Quereda, Juan J; Nam Tham, To; Nahori, Marie-Anne; Bierne, Hélène; Dussurget, Olivier; Pizarro-Cerdá, Javier; Knobeloch, Klaus-Peter; Cossart, Pascale
2015-01-01
ISG15 is an interferon-stimulated, linear di-ubiquitin-like protein, with anti-viral activity. The role of ISG15 during bacterial infection remains elusive. We show that ISG15 expression in nonphagocytic cells is dramatically induced upon Listeria infection. Surprisingly this induction can be type I interferon independent and depends on the cytosolic surveillance pathway, which senses bacterial DNA and signals through STING, TBK1, IRF3 and IRF7. Most importantly, we observed that ISG15 expression restricts Listeria infection in vitro and in vivo. We made use of stable isotope labeling in tissue culture (SILAC) to identify ISGylated proteins that could be responsible for the protective effect. Strikingly, infection or overexpression of ISG15 leads to ISGylation of ER and Golgi proteins, which correlates with increased secretion of cytokines known to counteract infection. Together, our data reveal a previously uncharacterized ISG15-dependent restriction of Listeria infection, reinforcing the view that ISG15 is a key component of the innate immune response. DOI: http://dx.doi.org/10.7554/eLife.06848.001 PMID:26259872
Ultra-fast HPM detectors improve NAD(P)H FLIM
NASA Astrophysics Data System (ADS)
Becker, Wolfgang; Wetzker, Cornelia; Benda, Aleš
2018-02-01
Metabolic imaging by NAD(P)H FLIM requires the decay functions in the individual pixels to be resolved into the decay components of bound and unbound NAD(P)H. Metabolic information is contained in the lifetime and relative amplitudes of the components. The separation of the decay components and the accuracy of the amplitudes and lifetimes improves substantially by using ultra-fast HPM-100-06 and HPM-100-07 hybrid detectors. The IRF width in combination with the Becker & Hickl SPC-150N and SPC-150NX TCSPC modules is less than 20 ps. An IRF this fast does not interfere with the fluorescence decay. The usual deconvolution process in the data analysis then virtually becomes a simple curve fitting, and the parameters of the NAD(P)H decay components are obtained at unprecedented accuracy.
DNA-binding regulates site-specific ubiquitination of IRF-1.
Landré, Vivien; Pion, Emmanuelle; Narayan, Vikram; Xirodimas, Dimitris P; Ball, Kathryn L
2013-02-01
Understanding the determinants for site-specific ubiquitination by E3 ligase components of the ubiquitin machinery is proving to be a challenge. In the present study we investigate the role of an E3 ligase docking site (Mf2 domain) in an intrinsically disordered domain of IRF-1 [IFN (interferon) regulatory factor-1], a short-lived IFNγ-regulated transcription factor, in ubiquitination of the protein. Ubiquitin modification of full-length IRF-1 by E3 ligases such as CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and MDM2 (murine double minute 2), which dock to the Mf2 domain, was specific for lysine residues found predominantly in loop structures that extend from the DNA-binding domain, whereas no modification was detected in the more conformationally flexible C-terminal half of the protein. The E3 docking site was not available when IRF-1 was in its DNA-bound conformation and cognate DNA-binding sequences strongly suppressed ubiquitination, highlighting a strict relationship between ligase binding and site-specific modification at residues in the DNA-binding domain. Hyperubiquitination of a non-DNA-binding mutant supports a mechanism where an active DNA-bound pool of IRF-1 is protected from polyubiquitination and degradation.
Harris, Gabrielle M; Collins-McNeil, Janice; Yang, Qing; Nguyen, Vu Q C; Hirsch, Mark A; Rhoads, Charles F; Guerrier, Tami; Thomas, J George; Pugh, Terrence M; Hamm, Deanna; Pereira, Carol; Prvu Bettger, Janet
2017-01-01
To examine the prevalence of poststroke depression (PSD) among African American stroke survivors and the association of depression with functional status at inpatient rehabilitation facility (IRF) discharge. Secondary data analysis was conducted of a patient cohort who received care at 3 IRFs in the United States from 2009 to 2011. Functional status was measured by the Functional Independence Measure (FIM). Multiple linear regression models were used to examine associations of PSD and FIM motor and cognitive scores. Of 458 African American stroke survivors, 48.5% were female, 84% had an ischemic stroke, and the mean age was 60.8 ± 13.6 years. Only 15.4% (n = 71) had documentation of PSD. Bivariate analyses to identify factors associated with depression identified a higher percentage of patients with depression than without who were retired due to disability (17.1% versus 11.6%) or employed (31.4% versus 19.6%) prestroke (P = .041). Dysphagia, cognitive deficits, and a lower admission motor FIM score were also significantly more common among those with depression. There was no significant relationship between depression and functional status after adjusting for patient characteristics. In this study, 15% of the African Americans who received rehabilitation after a stroke had documentation of PSD but this was not associated with functional status at discharge. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq.
Jaitin, Diego Adhemar; Weiner, Assaf; Yofe, Ido; Lara-Astiaso, David; Keren-Shaul, Hadas; David, Eyal; Salame, Tomer Meir; Tanay, Amos; van Oudenaarden, Alexander; Amit, Ido
2016-12-15
In multicellular organisms, dedicated regulatory circuits control cell type diversity and responses. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. Here, we present CRISP-seq, an integrated method for massively parallel single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-pooled screens. We show that profiling the genomic perturbation and transcriptome in the same cell enables us to simultaneously elucidate the function of multiple factors and their interactions. We applied CRISP-seq to probe regulatory circuits of innate immunity. By sampling tens of thousands of perturbed cells in vitro and in mice, we identified interactions and redundancies between developmental and signaling-dependent factors. These include opposing effects of Cebpb and Irf8 in regulating the monocyte/macrophage versus dendritic cell lineages and differential functions for Rela and Stat1/2 in monocyte versus dendritic cell responses to pathogens. This study establishes CRISP-seq as a broadly applicable, comprehensive, and unbiased approach for elucidating mammalian regulatory circuits. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Fang, E-mail: fhua2@emory.edu; Wang, Jun; Sayeed, Iqbal
TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined themore » activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.« less
Conservation of Toll-like receptor signaling pathways in teleost fish
Purcell, M.K.; Smith, K.D.; Aderem, A.; Hood, L.; Winton, J.R.; Roach, J.C.
2006-01-01
In mammals, toll-like receptors (TLR) recognize ligands, including pathogen-associated molecular patterns (PAMPs), and respond with ligand-specific induction of genes. In this study, we establish evolutionary conservation in teleost fish of key components of the TLR-signaling pathway that act as switches for differential gene induction, including MYD88, TIRAP, TRIF, TRAF6, IRF3, and IRF7. We further explore this conservation with a molecular phylogenetic analysis of MYD88. To the extent that current genomic analysis can establish, each vertebrate has one ortholog to each of these genes. For molecular tree construction and phylogeny inference, we demonstrate a methodology for including genes with only partial primary sequences without disrupting the topology provided by the high-confidence full-length sequences. Conservation of the TLR-signaling molecules suggests that the basic program of gene regulation by the TLR-signaling pathway is conserved across vertebrates. To test this hypothesis, leukocytes from a model fish, rainbow trout (Oncorhynchus mykiss), were stimulated with known mammalian TLR agonists including: diacylated and triacylated forms of lipoprotein, flagellin, two forms of LPS, synthetic double-stranded RNA, and two imidazoquinoline compounds (loxoribine and R848). Trout leukocytes responded in vitro to a number of these agonists with distinct patterns of cytokine expression that correspond to mammalian responses. Our results support the key prediction from our phylogenetic analyses that strong selective pressure of pathogenic microbes has preserved both TLR recognition and signaling functions during vertebrate evolution.
Fan, Xuxu; Han, Shichong; Yan, Dan; Gao, Yuan; Wei, Yanquan; Liu, Xiangtao; Liao, Ying; Guo, Huichen; Sun, Shiqi
2017-01-01
Autophagy-related protein ATG5-ATG12 is an essential complex for the autophagophore elongation in autophagy, which has been reported to be involved in foot-and-mouth disease virus (FMDV) replication. Previous reports show that ATG5-ATG12 positively or negatively regulates type I interferon (IFN-α/β) pathway during virus infection. In this study, we found that FMDV infection rapidly induced LC3 lipidation and GFP-LC3 subcellular redistribution at the early infection stage in PK-15 cells. Along with infection time course to 2–5 h.p.i., the levels of LC3II and ATG5-ATG12 were gradually reduced. Further study showed that ATG5-ATG12 was degraded by viral protein 3Cpro, demonstrating that FMDV suppresses autophagy along with viral protein production. Depletion of ATG5-ATG12 by siRNA knock down significantly increased the FMDV yields, whereas overexpression of ATG5-ATG12 had the opposite effects, suggesting that degradation of ATG5-ATG12 benefits virus growth. Further experiment showed that overexpression of ATG5-ATG12 positively regulated NF-кB pathway during FMDV infection, marked with promotion of IKKα/β phosphorylation and IκBα degradation, inhibition of p65 degradation, and facilitation of p65 nuclear translocation. Meanwhile, ATG5-ATG12 also promoted the phosphorylation of TBK1 and activation of IRF3 via preventing TRAF3 degradation. The positive regulation of NF-кB and IRF3 pathway by ATG5-ATG12 resulted in enhanced expression of IFN-β, chemokines/cytokines, and IFN stimulated genes, including anti-viral protein PKR. Altogether, above findings suggest that ATG5-ATG12 positively regulate anti-viral NF-κB and IRF3 signaling during FMDV infection, thereby limiting FMDV proliferation. FMDV has evolved mechanisms to counteract the antiviral function of ATG5-ATG12, via degradation of them by viral protein 3Cpro. PMID:28102839
Fan, Xuxu; Han, Shichong; Yan, Dan; Gao, Yuan; Wei, Yanquan; Liu, Xiangtao; Liao, Ying; Guo, Huichen; Sun, Shiqi
2017-01-19
Autophagy-related protein ATG5-ATG12 is an essential complex for the autophagophore elongation in autophagy, which has been reported to be involved in foot-and-mouth disease virus (FMDV) replication. Previous reports show that ATG5-ATG12 positively or negatively regulates type I interferon (IFN-α/β) pathway during virus infection. In this study, we found that FMDV infection rapidly induced LC3 lipidation and GFP-LC3 subcellular redistribution at the early infection stage in PK-15 cells. Along with infection time course to 2-5 h.p.i., the levels of LC3II and ATG5-ATG12 were gradually reduced. Further study showed that ATG5-ATG12 was degraded by viral protein 3C pro , demonstrating that FMDV suppresses autophagy along with viral protein production. Depletion of ATG5-ATG12 by siRNA knock down significantly increased the FMDV yields, whereas overexpression of ATG5-ATG12 had the opposite effects, suggesting that degradation of ATG5-ATG12 benefits virus growth. Further experiment showed that overexpression of ATG5-ATG12 positively regulated NF-кB pathway during FMDV infection, marked with promotion of IKKα/β phosphorylation and IκBα degradation, inhibition of p65 degradation, and facilitation of p65 nuclear translocation. Meanwhile, ATG5-ATG12 also promoted the phosphorylation of TBK1 and activation of IRF3 via preventing TRAF3 degradation. The positive regulation of NF-кB and IRF3 pathway by ATG5-ATG12 resulted in enhanced expression of IFN-β, chemokines/cytokines, and IFN stimulated genes, including anti-viral protein PKR. Altogether, above findings suggest that ATG5-ATG12 positively regulate anti-viral NF-κB and IRF3 signaling during FMDV infection, thereby limiting FMDV proliferation. FMDV has evolved mechanisms to counteract the antiviral function of ATG5-ATG12, via degradation of them by viral protein 3C pro .
NASA Astrophysics Data System (ADS)
Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.
2016-03-01
Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.
Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V; Ikegami, Tetsuro
2011-11-01
Rift Valley fever virus (RVFV), which causes hemorrhagic fever, neurological disorders or blindness in humans, and a high rate abortion and fetal malformation in ruminants, has been classified as a HHS/USDA overlap select agent and a risk group 3 pathogen. It belongs to the genus Phlebovirus in the family Bunyaviridae and is one of the most virulent members of this family. Several reverse genetics systems for the RVFV MP-12 vaccine strain as well as wild-type RVFV strains, including ZH548 and ZH501, have been developed since 2006. The MP-12 strain (which is a risk group 2 pathogen and a non-select agent) is highly attenuated by several mutations in its M- and L-segments, but still carries virulent S-segment RNA, which encodes a functional virulence factor, NSs. The rMP12-C13type (C13type) carrying 69% in-frame deletion of NSs ORF lacks all the known NSs functions, while it replicates as efficient as does MP-12 in VeroE6 cells lacking type-I IFN. NSs induces a shut-off of host transcription including interferon (IFN)-beta mRNA and promotes degradation of double-stranded RNA-dependent protein kinase (PKR) at the post-translational level. IFN-beta is transcriptionally upregulated by interferon regulatory factor 3 (IRF-3), NF-kB and activator protein-1 (AP-1), and the binding of IFN-beta to IFN-alpha/beta receptor (IFNAR) stimulates the transcription of IFN-alpha genes or other interferon stimulated genes (ISGs), which induces host antiviral activities, whereas host transcription suppression including IFN-beta gene by NSs prevents the gene upregulations of those ISGs in response to viral replication although IRF-3, NF-kB and activator protein-1 (AP-1) can be activated by RVFV7. Thus, NSs is an excellent target to further attenuate MP-12, and to enhance host innate immune responses by abolishing the IFN-beta suppression function. Here, we describe a protocol for generating a recombinant MP-12 encoding mutated NSs, and provide an example of a screening method to identify NSs mutants lacking the function to suppress IFN-beta mRNA synthesis. In addition to its essential role in innate immunity, type-I IFN is important for the maturation of dendritic cells and the induction of an adaptive immune response. Thus, NSs mutants inducing type-I IFN are further attenuated, but at the same time are more efficient at stimulating host immune responses than wild-type MP-12, which makes them ideal candidates for vaccination approaches.
Morse, Herbert C.
2011-01-01
IRF8 (Interferon Regulatory Factor 8) is a transcription factor expressed throughout B cell differentiation except for mature plasma cells. Previous studies showed it is part of the transcriptional network governing B cell specification and commitment in the bone marrow, regulates the distribution of mature B cells into the splenic follicular and marginal zone compartments, and is expressed at highest levels in germinal center (GC) B cells. Here, we investigated the transcriptional programs and signaling pathways affected by IRF8 in human and mouse GC B cells as defined by ChIP-chip analyses and transcriptional profiling. We show that IRF8 binds a large number of genes by targeting two distinct motifs, half of which are also targeted by PU.1. Over 70% of the binding sites localized to proximal and distal promoter regions with ∼25% being intragenic. There was significant enrichment among targeted genes for those involved in innate and adaptive immunity with over 30% previously defined as interferon stimulated genes. We also showed that IRF8 target genes contributes to multiple aspects of the biology of mature B cells including critical components of the molecular crosstalk among GC B cells, T follicular helper cells, and follicular dendritic cells. PMID:22096565
Li, Yan-Feng; Lee, Koon-Guan; Ou, Xijun; Lam, Kong-Peng
2014-01-01
Stimulation of TLR7/9 by their respective ligands leads to the activation of IκB kinase α (IKKα) and Interferon Regulatory Factor 1 (IRF-1) and results in interferon (IFN)-β production in conventional dendritic cells (cDC). However, which other signaling molecules are involved in IKKα and IRF-1 activation during TLR7/9 signaling pathway are not known. We and others have shown that Bruton's Tyrosine Kinase (BTK) played a part in TLR9-mediated cytokine production in B cells and macrophages. However, it is unclear if BTK participates in TLR7/9-induced IFN-β production in cDC. In this study, we show that BTK is required for IFN-β synthesis in cDC upon TLR7/9 stimulation and that stimulated BTK-deficient cDC are defective in the induction of IKKα/β phosphorylation and IRF-1 activation. In addition, we demonstrate that Protein Kinase C µ (PKCµ) is also required for TLR7/9-induced IRF-1 activation and IFN-β upregulation in cDC and acts downstream of BTK. Taken together, we have uncovered two new molecules, BTK and PKCµ, that are involved in TLR7/9-triggered IFN-β production in cDC.
Defining response to anti-VEGF therapies in neovascular AMD.
Amoaku, W M; Chakravarthy, U; Gale, R; Gavin, M; Ghanchi, F; Gibson, J; Harding, S; Johnston, R L; Kelly, S P; Kelly, S; Lotery, A; Mahmood, S; Menon, G; Sivaprasad, S; Talks, J; Tufail, A; Yang, Y
2015-06-01
The introduction of anti-vascular endothelial growth factor (anti-VEGF) has made significant impact on the reduction of the visual loss due to neovascular age-related macular degeneration (n-AMD). There are significant inter-individual differences in response to an anti-VEGF agent, made more complex by the availability of multiple anti-VEGF agents with different molecular configurations. The response to anti-VEGF therapy have been found to be dependent on a variety of factors including patient's age, lesion characteristics, lesion duration, baseline visual acuity (VA) and the presence of particular genotype risk alleles. Furthermore, a proportion of eyes with n-AMD show a decline in acuity or morphology, despite therapy or require very frequent re-treatment. There is currently no consensus as to how to classify optimal response, or lack of it, with these therapies. There is, in particular, confusion over terms such as 'responder status' after treatment for n-AMD, 'tachyphylaxis' and 'recalcitrant' n-AMD. This document aims to provide a consensus on definition/categorisation of the response of n-AMD to anti-VEGF therapies and on the time points at which response to treatment should be determined. Primary response is best determined at 1 month following the last initiation dose, while maintained treatment (secondary) response is determined any time after the 4th visit. In a particular eye, secondary responses do not mirror and cannot be predicted from that in the primary phase. Morphological and functional responses to anti-VEGF treatments, do not necessarily correlate, and may be dissociated in an individual eye. Furthermore, there is a ceiling effect that can negate the currently used functional metrics such as >5 letters improvement when the baseline VA is good (ETDRS>70 letters). It is therefore important to use a combination of both the parameters in determining the response.The following are proposed definitions: optimal (good) response is defined as when there is resolution of fluid (intraretinal fluid; IRF, subretinal fluid; SRF and retinal thickening), and/or improvement of >5 letters, subject to the ceiling effect of good starting VA. Poor response is defined as <25% reduction from the baseline in the central retinal thickness (CRT), with persistent or new IRF, SRF or minimal or change in VA (that is, change in VA of 0+4 letters). Non-response is defined as an increase in fluid (IRF, SRF and CRT), or increasing haemorrhage compared with the baseline and/or loss of >5 letters compared with the baseline or best corrected vision subsequently. Poor or non-response to anti-VEGF may be due to clinical factors including suboptimal dosing than that required by a particular patient, increased dosing intervals, treatment initiation when disease is already at an advanced or chronic stage), cellular mechanisms, lesion type, genetic variation and potential tachyphylaxis); non-clinical factors including poor access to clinics or delayed appointments may also result in poor treatment outcomes. In eyes classified as good responders, treatment should be continued with the same agent when disease activity is present or reactivation occurs following temporary dose holding. In eyes that show partial response, treatment may be continued, although re-evaluation with further imaging may be required to exclude confounding factors. Where there is persistent, unchanging accumulated fluid following three consecutive injections at monthly intervals, treatment may be withheld temporarily, but recommenced with the same or alternative anti-VEGF if the fluid subsequently increases (lesion considered active). Poor or non-response to anti-VEGF treatments requires re-evaluation of diagnosis and if necessary switch to alternative therapies including other anti-VEGF agents and/or with photodynamic therapy (PDT). Idiopathic polypoidal choroidopathy may require treatment with PDT monotherapy or combination with anti-VEGF. A committee comprised of retinal specialists with experience of managing patients with n-AMD similar to that which developed the Royal College of Ophthalmologists Guidelines to Ranibizumab was assembled. Individual aspects of the guidelines were proposed by the committee lead (WMA) based on relevant reference to published evidence base following a search of Medline and circulated to all committee members for discussion before approval or modification. Each draft was modified according to feedback from committee members until unanimous approval was obtained in the final draft. A system for categorising the range of responsiveness of n-AMD lesions to anti-VEGF therapy is proposed. The proposal is based primarily on morphological criteria but functional criteria have been included. Recommendations have been made on when to consider discontinuation of therapy either because of success or futility. These guidelines should help clinical decision-making and may prevent over and/or undertreatment with anti-VEGF therapy.
Morelli, E; Leone, E; Cantafio, M E Gallo; Di Martino, M T; Amodio, N; Biamonte, L; Gullà, A; Foresta, U; Pitari, M R; Botta, C; Rossi, M; Neri, A; Munshi, N C; Anderson, K C; Tagliaferri, P; Tassone, P
2015-01-01
Interferon regulatory factor 4 (IRF4) is an attractive therapeutic target in multiple myeloma (MM). We here report that expression of IRF4 mRNA inversely correlates with microRNA (miR)-125b in MM patients. Moreover, we provide evidence that miR-125b is downregulated in TC2/3 molecular MM subgroups and in established cell lines. Importantly, constitutive expression of miR-125b-5p by lentiviral vectors or transfection with synthetic mimics impaired growth and survival of MM cells and overcame the protective role of bone marrow stromal cells in vitro. Apoptotic and autophagy-associated cell death were triggered in MM cells on miR-125b-5p ectopic expression. Importantly, we found that the anti-MM activity of miR-125b-5p was mediated via direct downregulation of IRF4 and its downstream effector BLIMP-1. Moreover, inhibition of IRF4 translated into downregulation of c-Myc, caspase-10 and cFlip, relevant IRF4-downstream effectors. Finally, in vivo intra-tumor or systemic delivery of formulated miR-125b-5p mimics against human MM xenografts in severe combined immunodeficient/non-obese diabetic mice induced significant anti-tumor activity and prolonged survival. Taken together, our findings provide evidence that miR-125b, differently from other hematologic malignancies, has tumor-suppressor activity in MM. Furthermore, our data provide proof-of-concept that synthetic miR-125b-5p mimics are promising anti-MM agents to be validated in early clinical trials. PMID:25987254
Identification of a Druggable Pathway Controlling Glioblastoma Invasiveness.
Pencheva, Nora; de Gooijer, Mark C; Vis, Daniel J; Wessels, Lodewyk F A; Würdinger, Tom; van Tellingen, Olaf; Bernards, René
2017-07-05
Diffuse and uncontrollable brain invasion is a hallmark of glioblastoma (GBM), but its mechanism is understood poorly. We developed a 3D ex vivo organotypic model to study GBM invasion. We demonstrate that invading GBM cells upregulate a network of extracellular matrix (ECM) components, including multiple collagens, whose expression correlates strongly with grade and clinical outcome. We identify interferon regulatory factor 3 (IRF3) as a transcriptional repressor of ECM factors and show that IRF3 acts as a suppressor of GBM invasion. Therapeutic activation of IRF3 by inhibiting casein kinase 2 (CK2)-a negative regulator of IRF3-downregulated the expression of ECM factors and suppressed GBM invasion in ex vivo and in vivo models across a panel of patient-derived GBM cell lines representative of the main molecular GBM subtypes. Our data provide mechanistic insight into the invasive capacity of GBM tumors and identify a potential therapy to inhibit GBM invasion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
VISA is an adapter protein required for virus-triggered IFN-beta signaling.
Xu, Liang-Guo; Wang, Yan-Yi; Han, Ke-Jun; Li, Lian-Yun; Zhai, Zhonghe; Shu, Hong-Bing
2005-09-16
Viral infection or stimulation of TLR3 triggers signaling cascades, leading to activation of the transcription factors IRF-3 and NF-kappaB, which collaborate to induce transcription of type I interferon (IFN) genes. In this study, we identified a protein termed VISA (for virus-induced signaling adaptor) as a critical component in the IFN-beta signaling pathways. VISA recruits IRF-3 to the cytoplasmic viral dsRNA sensor RIG-I. Depletion of VISA inhibits virus-triggered and RIG-I-mediated activation of IRF-3, NF-kappaB, and the IFN-beta promoter, suggesting that VISA plays a central role in virus-triggered TLR3-independent IFN-beta signaling. Our data also indicate that VISA interacts with TRIF and TRAF6 and mediates bifurcation of the TLR3-triggered NF-kappaB and IRF-3 activation pathways. These findings suggest that VISA is critically involved in both virus-triggered TLR3-independent and TLR3-mediated antiviral IFN signaling.
Uyangaa, Erdenebelig; Kim, Seong Bum; Kim, Jin Hyoung; Kim, Bum Seok; Kim, Koanhoi; Eo, Seong Kug
2014-01-01
Japanese encephalitis (JE) is major emerging neurologic disease caused by JE virus. To date, the impact of TLR molecules on JE progression has not been addressed. Here, we determined whether each TLR modulates JE, using several TLR-deficient mouse strains (TLR2, TLR3, TLR4, TLR7, TLR9). Surprisingly, among the tested TLR-deficient mice there were contrasting results in TLR3−/− and TLR4−/− mice, i.e. TLR3−/− mice were highly susceptible to JE, whereas TLR4−/− mice showed enhanced resistance to JE. TLR3 ablation induced severe CNS inflammation characterized by early infiltration of inflammatory CD11b+Ly-6Chigh monocytes along with profoundly increased viral burden, proinflammatory cytokine/chemokine expression as well as BBB permeability. In contrast, TLR4−/− mice showed mild CNS inflammation manifested by reduced viral burden, leukocyte infiltration and proinflammatory cytokine expression. Interestingly, TLR4 ablation provided potent in vivo systemic type I IFN innate response, as well as ex vivo type I IFN production associated with strong induction of antiviral PRRs (RIG-I, MDA5), transcription factors (IRF-3, IRF-7), and IFN-dependent (PKR, Oas1, Mx) and independent ISGs (ISG49, ISG54, ISG56) by alternative activation of IRF3 and NF-κB in myeloid-derived DCs and macrophages, as compared to TLR3−/− myeloid-derived cells which were more permissive to viral replication through impaired type I IFN innate response. TLR4 ablation also appeared to mount an enhanced type I IFN innate and humoral, CD4+ and CD8+ T cell responses, which were mediated by altered immune cell populations (increased number of plasmacytoid DCs and NK cells, reduced CD11b+Ly-6Chigh monocytes) and CD4+Foxp3+ Treg number in lymphoid tissue. Thus, potent type I IFN innate and adaptive immune responses in the absence of TLR4 were closely coupled with reduced JE lethality. Collectively, these results suggest that a balanced triggering of TLR signal array by viral components during JE progression could be responsible for determining disease outcome through regulating negative and positive factors. PMID:25188232
Morphometric analysis of astrocytes in brainstem respiratory regions.
Sheikhbahaei, Shahriar; Morris, Brian; Collina, Jared; Anjum, Sommer; Znati, Sami; Gamarra, Julio; Zhang, Ruli; Gourine, Alexander V; Smith, Jeffrey C
2018-06-11
Astrocytes, the most abundant and structurally complex glial cells of the central nervous system, are proposed to play an important role in modulating the activities of neuronal networks, including respiratory rhythm-generating circuits of the preBötzinger complex (preBötC) located in the ventrolateral medulla of the brainstem. However, structural properties of astrocytes residing within different brainstem regions are unknown. In this study astrocytes in the preBötC, an intermediate reticular formation (IRF) region with respiratory-related function, and a region of the nucleus tractus solitarius (NTS) in adult rats were reconstructed and their morphological features were compared. Detailed morphological analysis revealed that preBötC astrocytes are structurally more complex than those residing within the functionally distinct neighboring IRF region, or the NTS, located at the dorsal aspect of the medulla oblongata. Structural analyses of the brainstem microvasculature indicated no significant regional differences in vascular properties. We hypothesize that high morphological complexity of preBötC astrocytes reflects their functional role in providing structural/metabolic support and modulation of the key neuronal circuits essential for breathing, as well as constraints imposed by arrangements of associated neurons and/or other local structural features of the brainstem parenchyma. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
...This proposed rule would implement section 3004 of the Affordable Care Act, which establishes a new quality reporting program that provides for a 2 percent reduction in the annual increase factor beginning in 2014 for failure to report quality data to the Secretary of Health and Human Services. This proposed rule would also update the prospective payment rates for inpatient rehabilitation facilities (IRFs) for Federal fiscal year 2012 (for discharges occurring on or after October 1, 2011 and on or before September 30, 2012) as required by the Social Security Act (the Act). The Act requires the Secretary to publish in the Federal Register on or before the August 1 that precedes the start of each FY the classification and weighting factors for the IRF prospective payment system (PPS) case-mix groups and a description of the methodology and data used in computing the prospective payment rates for that fiscal year. We are also proposing to consolidate, clarify, and revise existing policies regarding IRF hospitals and IRF units of hospitals to eliminate unnecessary confusion and enhance consistency. Furthermore, in accordance with the general principles of the President's January 18, 2011 Executive Order entitled ``Improving Regulation and Regulatory Review,'' we are proposing to amend existing regulatory provisions regarding ``new'' facilities and changes in the bed size and square footage of IRFs and inpatient psychiatric facilities (IPFs) to improve clarity and remove obsolete material.
The immunomodulatory activities of pullulan and its derivatives in human pDC-like CAL-1 cell line.
Wang, Fang; Qiao, Linan; Chen, Liwei; Zhang, Cong; Wang, Yan; Wang, Yinsong; Liu, Yuanyuan; Zhang, Ning
2016-05-01
In this study, acidic and alkaline pullulan derivates were synthesized and their immunomodulatory activities compared to pullulan were investigated in human pDC-like CAL-1 cell line. Pullulan was reacted respectively with succinic anhydride and N-(-2-aminoethyl)-1,3-propanediamine/N,N-carbonyl diimidazole to form acidic pullulan monosuccinate (SUPL) and alkaline pullulan-g-N-(-2-aminoethyl)-1,3-propanediamine (AMPL). In CAL-1 cells, pullulan, SUPL and AMPL up-regulated the mRNA expressions of type I interferons (IFN), including IFN-α and IFN-β1, and some other proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-23 (IL-23), and also significantly enhanced the protein expressions of IFN-α and TNF-α. The activation of nuclear factor kappa B (NF-κB) and the nuclear translocations of interferon regulation factors (IRFs), including IRF-3 and IRF-5, exhibited pivotal roles in the immune responses induced by pullulan, SUPL and AMPL. By comparison, pullulan and SUPL displayed weak effects on the activation of CAL-1 cells, but AMPL showed remarkably enhanced immunomodulatory activities, which were comparable to that induced by R848, an agonist for Toll-like receptor (TLR) 7/8. Our results suggested that AMPL, as an alkaline pullulan derivative, could be used as a potent immunomodulatory agent in the food and pharmacological fields. Copyright © 2016 Elsevier B.V. All rights reserved.
Identification and regulatory analysis of rainbow trout tapasin and tapasin-related genes
Landis, E.D.; Palti, Y.; Dekoning, J.; Drew, R.; Phillips, R.B.; Hansen, J.D.
2006-01-01
Tapasin (TAPBP) is a key member of MHC class Ia antigen-loading complexes, bridging the class Ia molecule to the transporter associated with antigen presentation (TAP). As part of an ongoing study of MHC genomics in rainbow trout, we have identified two rainbow trout TAPBP genes (Onmy-TAPBP.a and .b) and a similar but distinct TAPBP-related gene (Onmy-TAPBP-R) that had previously only been described in mammals. Physical and genetic mapping indicate that Onmy-TAPBP.a is on chromosome 18 in the MHC class Ia region and that Onmy-TAPBP.b resides on chromosome 14 in the MHC class Ib region. There are also at least two copies of TAPBP-R, Onmy-TAPBP-R.a and Onmy-TAPBP-R.b, located on chromosomes 2 and 3, respectively. Due to the central role of TAPBP expression during acute viral infection, we have characterized the transcriptional profile and regulatory regions for both Onmy-TAPBP and Onmy-TAPBP-R. Transcription of both genes increased during acute infection with infectious hematapoeitic necrosis virus (IHNV) in a fashion indicative of interferon-mediated regulation. Promoter-reporter assays in STE-137 cells demonstrate that the trout TAPBP and TAPBP-R promoters respond to interferon regulatory factors, Onmy-IRF1 and Onmy-IRF2. Overall, TAPBP is expressed at higher levels than TAPBP-R in nai??ve tissues and TAPBP transcription is more responsive to viral infection and IRF1 and 2 binding. ?? Springer-Verlag 2006.
McComb, Scott; Cessford, Erin; Alturki, Norah A; Joseph, Julie; Shutinoski, Bojan; Startek, Justyna B; Gamero, Ana M; Mossman, Karen L; Sad, Subash
2014-08-05
Myeloid cells play a critical role in perpetuating inflammation during various chronic diseases. Recently the death of macrophages through programmed necrosis (necroptosis) has emerged as an important mechanism in inflammation and pathology. We evaluated the mechanisms that lead to the induction of necrotic cell death in macrophages. Our results indicate that type I IFN (IFN-I) signaling is a predominant mechanism of necroptosis, because macrophages deficient in IFN-α receptor type I (IFNAR1) are highly resistant to necroptosis after stimulation with LPS, polyinosinic-polycytidylic acid, TNF-α, or IFN-β in the presence of caspase inhibitors. IFN-I-induced necroptosis occurred through both mechanisms dependent on and independent of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and led to persistent phosphorylation of receptor-interacting protein 3 (Rip3) kinase, which resulted in potent necroptosis. Although various IFN-regulatory factors (IRFs) facilitated the induction of necroptosis in response to IFN-β, IRF-9-STAT1- or -STAT2-deficient macrophages were highly resistant to necroptosis. Our results indicate that IFN-β-induced necroptosis of macrophages proceeds through tonic IFN-stimulated gene factor 3 (ISGF3) signaling, which leads to persistent expression of STAT1, STAT2, and IRF9. Induction of IFNAR1/Rip3-dependent necroptosis also resulted in potent inflammatory pathology in vivo. These results reveal how IFN-I mediates acute inflammation through macrophage necroptosis.
McComb, Scott; Cessford, Erin; Alturki, Norah A.; Joseph, Julie; Shutinoski, Bojan; Startek, Justyna B.; Gamero, Ana M.; Mossman, Karen L.; Sad, Subash
2014-01-01
Myeloid cells play a critical role in perpetuating inflammation during various chronic diseases. Recently the death of macrophages through programmed necrosis (necroptosis) has emerged as an important mechanism in inflammation and pathology. We evaluated the mechanisms that lead to the induction of necrotic cell death in macrophages. Our results indicate that type I IFN (IFN-I) signaling is a predominant mechanism of necroptosis, because macrophages deficient in IFN-α receptor type I (IFNAR1) are highly resistant to necroptosis after stimulation with LPS, polyinosinic-polycytidylic acid, TNF-α, or IFN-β in the presence of caspase inhibitors. IFN-I–induced necroptosis occurred through both mechanisms dependent on and independent of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and led to persistent phosphorylation of receptor-interacting protein 3 (Rip3) kinase, which resulted in potent necroptosis. Although various IFN-regulatory factors (IRFs) facilitated the induction of necroptosis in response to IFN−β, IRF-9–STAT1– or -STAT2–deficient macrophages were highly resistant to necroptosis. Our results indicate that IFN-β–induced necroptosis of macrophages proceeds through tonic IFN-stimulated gene factor 3 (ISGF3) signaling, which leads to persistent expression of STAT1, STAT2, and IRF9. Induction of IFNAR1/Rip3–dependent necroptosis also resulted in potent inflammatory pathology in vivo. These results reveal how IFN-I mediates acute inflammation through macrophage necroptosis. PMID:25049377
Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M
2014-02-01
Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment. Copyright © 2013 John Wiley & Sons, Ltd.
Abdallah, Fatma; Hassanin, Ola
2015-12-01
Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.
The N-terminus of Bunyamwera orthobunyavirus NSs protein is essential for interferon antagonism.
van Knippenberg, Ingeborg; Carlton-Smith, Charlie; Elliott, Richard M
2010-08-01
Bunyamwera virus NSs protein is involved in the inhibition of cellular transcription and the interferon (IFN) response, and it interacts with the Med8 component of Mediator. A spontaneous mutant of a recombinant NSs-deleted Bunyamwera virus (rBUNdelNSs2) was identified and characterized. This mutant virus, termed mBUNNSs22, expresses a 21 aa N-terminally truncated form of NSs. Like rBUNdelNSs2, mBUNNSs22 is attenuated in IFN-deficient cells, and to a greater extent in IFN-competent cells. Both rBUNdelNSs2 and mBUNNSs22 are potent IFN inducers and their growth can be rescued by depleting cellular IRF3. Strikingly, despite encoding an NSs protein that contains the Med8 interaction domain, mBUNNSs22 fails to block RNA polymerase II activity during infection. Overall, our data suggest that both the interaction of NSs with Med8 and a novel unidentified function of the NSs N-terminus, seem necessary for Bunyamwera virus to counteract host antiviral responses.
Meet the terminator: The phosphatase PP2A puts brakes on IRF-3 activation.
Chattopadhyay, Saurabh; Sen, Ganes C
2014-04-24
Cellular interferon response to microbial infection is transient. In a recent paper in Immunity, Long et al. (2014) identify protein phosphatase 2A (PP2A) as a deactivator of phospho-interferon regulatory factor 3, the key transcription factor for interferon synthesis, thus providing one basis for the observed transiency. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Abd-Kadir, Jan; Hardman, Frank
2007-01-01
This paper explores the discourse of whole class teaching in Kenyan and Nigerian primary school English lessons. Twenty lessons were analysed using a system of discourse analysis focusing on the teacher-led three-part exchange sequence of Initiation-Response-Feedback (IRF). The focus of the analysis was on the first and third part of the IRF…
Lee, Hye-Ra; Mitra, Jaba; Lee, Stacy; Gao, Shou-Jiang; Oh, Tae-Kwang; Kim, Myung Hee; Ha, Taekjip; Jung, Jae U
2016-01-15
Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates the host cell cycle to create an environment optimal for its viral-DNA replication during the lytic life cycle. We report here that KSHV vIRF4 targets the β-catenin/CBP cofactor and blocks its occupancy on the cyclin D1 promoter, suppressing the G1-S cell cycle progression and enhancing KSHV replication. This shows that KSHV vIRF4 suppresses host G1-S transition, possibly providing an intracellular milieu favorable for its replication. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Emerging Role of Ubiquitination in Antiviral RIG-I Signaling
Maelfait, Jonathan
2012-01-01
Summary: Detection of viruses by the innate immune system involves the action of specialized pattern recognition receptors. Intracellular RIG-I receptors sense the presence of viral nucleic acids in infected cells and trigger signaling pathways that lead to the production of proinflammatory and antiviral proteins. Over the past few years, posttranslational modification of RIG-I and downstream signaling proteins by different types of ubiquitination has been found to be a key event in the regulation of RIG-I-induced NF-κB and interferon regulatory factor 3 (IRF3) activation. Multiple ubiquitin ligases, deubiquitinases, and ubiquitin binding scaffold proteins contribute to both positive and negative regulation of the RIG-I-induced antiviral immune response. A better understanding of the function and activity of these proteins might eventually lead to the development of novel therapeutic approaches for management of viral diseases. PMID:22390971
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype specific vaccine formulations exist but require about 5-7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine ...
Growing the Greater Campus: The Use of Institutionally Related Foundations in Real Estate Activities
ERIC Educational Resources Information Center
Sullivan, Kevin G.; Malone, Jason B.
2015-01-01
Public colleges and universities have long turned to institutionally related foundations ("IRFs") to raise private support and manage endowments and other financial assets. From the start, however, IRFs have also served as vehicles enabling public institutions to engage in real estate transactions and related entrepreneurial ventures…
Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4 T Cells.
Myers, Darienne R; Lau, Tannia; Markegard, Evan; Lim, Hyung W; Kasler, Herbert; Zhu, Minghua; Barczak, Andrea; Huizar, John P; Zikherman, Julie; Erle, David J; Zhang, Weiguo; Verdin, Eric; Roose, Jeroen P
2017-05-23
CD4 + T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4 + T cells avoid spontaneous engagement of feedforward mechanisms but retain a prepared state. T cells lacking the adaptor molecule LAT demonstrate impaired TCR-induced signals yet cause a spontaneous lymphoproliferative T helper 2 (T H 2) cell syndrome in mice. Thus, LAT constitutes an unexplained maintenance cue. Here, we demonstrate that tonic signals through LAT constitutively export the repressor HDAC7 from the nucleus of CD4 + T cells. Without such tonic signals, HDAC7 target genes Nur77 and Irf4 are repressed. We reveal that Nur77 suppresses CD4 + T cell proliferation and uncover a suppressive role for Irf4 in T H 2 polarization; halving Irf4 gene-dosage leads to increases in GATA3 + and IL-4 + cells. Our studies reveal that naive CD4 + T cells are dynamically tuned by tonic LAT-HDAC7 signals. Published by Elsevier Inc.
Poulin, Lionel Franz; Salio, Mariolina; Griessinger, Emmanuel; Anjos-Afonso, Fernando; Craciun, Ligia; Chen, Ji-Li; Keller, Anna M.; Joffre, Olivier; Zelenay, Santiago; Nye, Emma; Le Moine, Alain; Faure, Florence; Donckier, Vincent; Sancho, David; Cerundolo, Vincenzo; Bonnet, Dominique
2010-01-01
In mouse, a subset of dendritic cells (DCs) known as CD8α+ DCs has emerged as an important player in the regulation of T cell responses and a promising target in vaccination strategies. However, translation into clinical protocols has been hampered by the failure to identify CD8α+ DCs in humans. Here, we characterize a population of human DCs that expresses DNGR-1 (CLEC9A) and high levels of BDCA3 and resembles mouse CD8α+ DCs in phenotype and function. We describe the presence of such cells in the spleens of humans and humanized mice and report on a protocol to generate them in vitro. Like mouse CD8α+ DCs, human DNGR-1+ BDCA3hi DCs express Necl2, CD207, BATF3, IRF8, and TLR3, but not CD11b, IRF4, TLR7, or (unlike CD8α+ DCs) TLR9. DNGR-1+ BDCA3hi DCs respond to poly I:C and agonists of TLR8, but not of TLR7, and produce interleukin (IL)-12 when given innate and T cell–derived signals. Notably, DNGR-1+ BDCA3+ DCs from in vitro cultures efficiently internalize material from dead cells and can cross-present exogenous antigens to CD8+ T cells upon treatment with poly I:C. The characterization of human DNGR-1+ BDCA3hi DCs and the ability to grow them in vitro opens the door for exploiting this subset in immunotherapy. PMID:20479117
The Jak-STAT pathway stimulated by interferon alpha or interferon beta.
Horvath, Curt M
2004-11-23
Type I interferons, such as interferon alpha and interferon beta (IFN-alpha and beta), signal through a Janus kinase (Jak) to signal transduction and activator of transcription (STAT) pathway to stimulate gene expression. In response to ligand binding, the receptors dimerize, Jaks phosphorylate STAT1 and STAT2, which then dimerize and interact with a third transcriptional regulator IFN regulatory factor 9 (IRF9) to stimulate gene expression. IFN-alpha is the main innate antiviral cytokine and is essential for effective immune response to viral infection. The animation shows activation of STAT-responsive gene expression in response to type I IFNs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
...This final rule will implement section 3004 of the Affordable Care Act, which establishes a new quality reporting program that provides for a 2 percent reduction in the annual increase factor beginning in 2014 for failure to report quality data to the Secretary of Health and Human Services. This final rule will also update the prospective payment rates for inpatient rehabilitation facilities (IRFs) for Federal fiscal year (FY) 2012 (for discharges occurring on or after October 1, 2011 and on or before September 30, 2012) as required under section 1886(j)(3)(C) of the Social Security Act (the Act). Section 1886(j)(5) of the Act requires the Secretary to publish in the Federal Register on or before the August 1 that precedes the start of each FY the classification and weighting factors for the IRF prospective payment system (PPS) case-mix groups and a description of the methodology and data used in computing the prospective payment rates for that fiscal year. We are also consolidating, clarifying, and revising existing policies regarding IRF hospitals and IRF units of hospitals to eliminate unnecessary confusion and enhance consistency. Furthermore, in accordance with the general principles of the President's January 18, 2011 Executive Order entitled ``Improving Regulation and Regulatory Review,'' we are amending existing regulatory provisions regarding ''new'' facilities and changes in the bed size and square footage of IRFs and inpatient psychiatric facilities (IPFs) to improve clarity and remove obsolete material.
Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Fujii, Nobuhiro
2004-01-01
Natural infection with measles virus (MeV) is initiated when the virus reaches epithelial cells in the respiratory tract, oropharynx, or conjunctivae. Human epithelial cells infected with MeV frequently show growth suppression. In this study, we investigated the possible mechanisms for this suppression. The bronchiolar epithelial cell A549 showed growth arrest in G0/G1 following MeV infection or treatment with gamma interferon (IFN-γ). IFN regulatory factor-1 (IRF-1) was upregulated during MeV infection, although A549 did not produce IFN-γ. Cells of the cervical squamous cell line SiHa persistently infected with various strains of MeV displayed slower growth than uninfected SiHa cells, although the growth rates varied depending on the MeV strain. Transfection of antisense-oriented IRF-1 cDNA released the MeV-infected SiHa cells from growth suppression. Although these infected cells did not produce IFN-γ and suppressed IFN-α/β-induced Jak1 phosphorylation, Jak1 was constitutively phosphorylated. The growth rates negatively correlated with levels of both IRF-1 expression and constitutively phosphorylated Jak1. These results indicate that MeV upregulates IRF-1 in a manner that is independent of IFN but dependent on the JAK/STAT pathway. This induction of IRF-1 appears to suppress cell growth, although the extent seems to vary among MeV strains. PMID:15078941
Onboard Autonomous Corrections for Accurate IRF Pointing.
NASA Astrophysics Data System (ADS)
Jorgensen, J. L.; Betto, M.; Denver, T.
2002-05-01
Over the past decade, the Noise Equivalent Angle (NEA) of onboard attitude reference instruments, has decreased from tens-of-arcseconds to the sub-arcsecond level. This improved performance is partly due to improved sensor-technology with enhanced signal to noise ratios, partly due to improved processing electronics which allows for more sophisticated and faster signal processing. However, the main reason for the increased precision, is the application of onboard autonomy, which apart from simple outlier rejection also allows for removal of "false positive" answers, and other "unexpected" noise sources, that otherwise would degrade the quality of the measurements (e.g. discrimination between signals caused by starlight and ionizing radiation). The utilization of autonomous signal processing has also provided the means for another onboard processing step, namely the autonomous recovery from lost in space, where the attitude instrument without a priori knowledge derive the absolute attitude, i.e. in IRF coordinates, within fractions of a second. Combined with precise orbital state or position data, the absolute attitude information opens for multiple ways to improve the mission performance, either by reducing operations costs, by increasing pointing accuracy, by reducing mission expendables, or by providing backup decision information in case of anomalies. The Advanced Stellar Compass's (ASC) is a miniature, high accuracy, attitude instrument which features fully autonomous operations. The autonomy encompass all direct steps from automatic health checkout at power-on, over fully automatic SEU and SEL handling and proton induced sparkle removal, to recovery from "lost in space", and optical disturbance detection and handling. But apart from these more obvious autonomy functions, the ASC also features functions to handle and remove the aforementioned residuals. These functions encompass diverse operators such as a full orbital state vector model with automatic cloud filtered GPS updates, a world time clock, astrometric correction tables, and a attitude output transform system, that allow the ASC to deliver the spacecraft attitude relative to the Inertial Reference Frame (IRF) in realtime. This paper describes the operations of the onboard autonomy of the ASC, which in realtime removes the residuals from the attitude measurements, whereby a timely IRF attitude at arcsecond level, is delivered to the AOCS (or sent to ground). A discussion about achievable robustness and accuracy is given, and compared to inflight results from the operations of the two Advanced Stellar Compass's (ASC), which are flying in LEO onboard the German geo-potential research satellite CHAMP. The ASC's onboard CHAMP are dual head versions, i.e. each processing unit is attached to two star camera heads. The dual head configuration is primarily employed to achieve a carefree AOCS control with respect to the Sun, Moon and Earth, and to increase the attitude accuracy, but it also enables onboard estimation and removal of thermal generated biases.
Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.
Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan
2017-06-01
H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.
Proinflammatory TLR signaling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages
Jin, Jin; Xiao, Yichuan; Hu, Hongbo; Zou, Qiang; Li, Yanchuan; Gao, Yanpan; Ge, Wei; Cheng, Xuhong; Sun, Shao-Cong
2014-01-01
Signal transduction from toll-like receptors (TLRs) is important for innate immunity against infections, but deregulated TLR signaling contributes to inflammatory disorders. Here we show that myeloid cell-specific ablation of TRAF2 greatly promotes TLR-stimulated proinflammatory cytokine expression in macrophages and exacerbates colitis in an animal model of inflammatory bowel disease. TRAF2 deficiency does not enhance upstream signaling events, but it causes accumulation of two transcription factors, c-Rel and IRF5, known to mediate proinflammatory cytokine induction. Interestingly, TRAF2 controls the fate of c-Rel and IRF5 via a proteasome-dependent mechanism that also requires TRAF3 and the E3 ubiquitin ligase cIAP. We further show that TRAF2 also regulates inflammatory cytokine production in tumor-associated macrophages and facilitates tumor growth. These findings demonstrate an unexpected anti-inflammatory function of TRAF2 and suggest a proteasome-dependent mechanism that limits the proinflammatory TLR signaling. PMID:25565375
Control of developmentally primed erythroid genes by combinatorial co-repressor actions
Stadhouders, Ralph; Cico, Alba; Stephen, Tharshana; Thongjuea, Supat; Kolovos, Petros; Baymaz, H. Irem; Yu, Xiao; Demmers, Jeroen; Bezstarosti, Karel; Maas, Alex; Barroca, Vilma; Kockx, Christel; Ozgur, Zeliha; van Ijcken, Wilfred; Arcangeli, Marie-Laure; Andrieu-Soler, Charlotte; Lenhard, Boris; Grosveld, Frank; Soler, Eric
2015-01-01
How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. PMID:26593974
Xu, Tianjun; Chu, Qing; Cui, Junxia; Bi, Dekun
2018-01-15
Effectively recognizing invading viruses and subsequently inducing innate antiviral immunity are essential for host antiviral defense. Although these processes are closely regulated by the host to maintain immune balance, viruses have evolved the ability to downregulate or upregulate these processes for their survival. MicroRNAs (miRNAs) are a family of small noncoding RNAs that play vital roles in modulating host immune response. Accumulating evidence demonstrates that host miRNAs as mediators are involved in regulating viral replication and host antiviral immunity in mammals. However, the underlying regulatory mechanisms in fish species are still poorly understood. Here, we found that rhabdovirus infection significantly upregulated host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulated RNA virus-triggered type I interferon (IFN) and antiviral gene production, thus facilitating viral replication. Furthermore, miR-3570 was found to target and posttranscriptionally downregulate mitochondrial antiviral signaling protein (MAVS), which functions as a platform for innate antiviral signal transduction. Moreover, we demonstrated that miR-3570 suppressed the expression of MAVS, thereby inhibiting MAVS-mediated NF-κB and IRF3 signaling. The collective results demonstrated a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miRNA. IMPORTANCE RNA viral infection could upregulate host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulates RNA virus-triggered type I IFN and antiviral gene production, thus facilitating viral replication. Remarkably, miR-3570 could target and inhibit MAVS expression, which thus modulates MAVS-mediated NF-κB and IRF3 signaling. The collective results of this study suggest a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miR-3570. Thus, a novel mechanism for virus evasion in fish is proposed. Copyright © 2018 American Society for Microbiology.
Alpha Power Modulates Perception Independently of Endogenous Factors.
Brüers, Sasskia; VanRullen, Rufin
2018-01-01
Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and perception is not a mere consequence of fluctuations in endogenous factors.
Huang, Chen; Du, Yinping; Yu, Zhibin; Zhang, Qiong; Liu, Yihao; Tang, Jun; Shi, Jishu; Feng, Wen-Hai
2016-06-22
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant etiological agents in the swine industry worldwide. It has been reported that PRRSV infection can modulate host immune responses, and innate immune evasion is thought to play a vital role in PRRSV pathogenesis. In this study, we demonstrated that highly pathogenic PRRSV (HP-PRRSV) infection specifically down-regulated virus-induced signaling adaptor (VISA), a unique adaptor molecule that is essential for retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) signal transduction. Moreover, we verified that nsp4 inhibited IRF3 activation induced by signaling molecules, including RIG-I, MDA5, VISA, and TBK1, but not IRF3. Subsequently, we demonstrated that HP-PRRSV nsp4 down-regulated VISA and suppressed type I IFN induction. Importantly, VISA was cleaved by nsp4 and released from mitochondrial membrane, which interrupted the downstream signaling of VISA. However, catalytically inactive mutant of nsp4 abolished its ability to cleave VISA. Interestingly, nsp4 of typical PRRSV strain CH-1a had no effect on VISA. Taken together, these findings reveal a strategy evolved by HP-PRRSV to counteract anti-viral innate immune signaling, which complements the known PRRSV-mediated immune-evasion mechanisms.
Bortell, Nikki; Basova, Liana; Najera, Julia A; Morsey, Brenda; Fox, Howard S; Marcondes, Maria Cecilia Garibaldi
2018-06-01
Microglia and macrophages are the main non-neuronal subsets of myeloid origin in the brain, and are critical regulators in neurodegenerative disorders, where inflammation is a key factor. Since HIV infection results in neurological perturbations that are similar to those in aging, we examined microglial and infiltrating myeloid subsets in the search for changes that might resemble the ones in aging. For that, we used the SIV infection in rhesus macaques to model neuroAIDS. We found that Sirt-1, a molecule that impacts survival and health in many models, was decreased in cell preparations containing a majority of microglia and myeloid cells from the brain of infected macaques. The role of Sirt-1 in neuroAIDS is unknown. We hypothesized that Sirt-1 silencing functions are affected by SIV. Mapping of Sirt-1 binding patterns to chromatin revealed that the number of Sirt-1-bound genes was 29.6% increased in myeloid cells from infected animals with mild or no detectable neuropathology, but 51% was decreased in severe neuropathology, compared to controls. Importantly, Sirt-1-bound genes in controls largely participate in neuroinflammation. Promoters of type I IFN pathway genes IRF7, IRF1, IFIT1, and AIF1, showed Sirt-1 binding in controls, which was consistently lost after infection, together with higher transcription. Loss of Sirt-1 binding was also found in brains from old uninfected animals, suggesting a common regulation. The role of Sirt-1 in regulating these inflammatory markers was confirmed in two different in vitro models, where Sirt-1 blockage modulated IRF7, IRF1 and AIF1 levels both in human macrophage cell lines and in human blood-derived monocytes from various normal donors, stimulated with a TLR9 agonist. Our data suggests that Sirt-1-inflammatory gene silencing is disturbed by SIV infection, resembling aging in brains. These findings may impact our knowledge on the contribution of myeloid subsets to the neurological consequences of HIV infection, aggravated and overlapping with the aging process.
Zhu, Jianzhong; Smith, Kevin; Hsieh, Paishiun N.; Mburu, Yvonne K.; Chattopadhyay, Saurabh; Sen, Ganes C.; Sarkar, Saumendra N.
2010-01-01
Toll-like Receptor 3 (TLR3) is one of the major innate immune sensors of double stranded RNA (dsRNA). The signal transduction pathway activated by TLR3, upon binding to dsRNA, leads to the activation of two major transcription factors: NF-κB and IRF3. In an effort to identify specific chemical modulators of TLR3-IRF3 signal transduction pathway we developed a cell-based read out system. Using the interferon stimulated gene 56 (ISG56) promoter driven firefly luciferase gene stably integrated in a TLR3 expressing HEK293 cell line, we were able to generate a cell line where treatment with dsRNA resulted in a dose dependent induction of luciferase activity. A screen of two pharmacologically active compound libraries using this system, identified a number of TLR3-IRF3 signaling pathway modulators. Among them we focused on a subset of inhibitors and characterized their mode of action. Several antipsychotic drugs, such as Sertraline, Trifluoperazine and Fluphenazine were found to be direct inhibitors of the innate immune signaling pathway. These inhibitors also showed the ability to inhibit ISG56 induction mediated by TLR4 and TLR7/8 pathways. Interestingly, they did not show significant effect on TLR3, TLR7 and TLR8 mediated NF-κB activation. Detailed analysis of the signaling pathway indicated that these drugs may be exerting their inhibitory effects on IRF3 via PI3K signaling pathway. The data presented here provides mechanistic explanation of possible anti-inflammatory roles of some antipsychotic drugs. PMID:20382888
Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia.
Yin, C Cameron; Jain, Nitin; Mehrotra, Meenakshi; Zhagn, Jianhua; Protopopov, Alexei; Zuo, Zhuang; Pemmaraju, Naveen; DiNardo, Courtney; Hirsch-Ginsberg, Cheryl; Wang, Sa A; Medeiros, L Jeffrey; Chin, Lynda; Patel, Keyur P; Ravandi, Farhad; Futreal, Andrew; Bueso-Ramos, Carlos E
2015-01-01
Acute promyelocytic leukemia (APL) is characterized by the fusion of retinoic acid receptor alpha (RARA) with promyelocytic leukemia (PML) or, rarely, other gene partners. This report presents a patient with APL with a novel fusion between RARA and the interferon regulatory factor 2 binding protein 2 (IRF2BP2) genes. A bone marrow examination in a 19-year-old woman who presented with ecchymoses and epistaxis showed morphologic and immunophenotypic features consistent with APL. PML oncogenic domain antibody was positive. Results of fluorescence in situ hybridization, conventional cytogenetics, reverse transcription-polymerase chain reaction (RT-PCR), and oligonucleotide microarray for PML-RARA and common APL variant translocations were negative. Next-generation RNA-sequencing analysis followed by RT-PCR and direct sequencing revealed distinct breakpoints within IRF2BP2 exon 2 and RARA intron 2. The patient received all-trans retinoic acid, arsenic, and gemtuzumab ozogamicin, and achieved complete remission. However, the disease relapsed 10 months later, 2 months after consolidation therapy. This is the first report showing involvement of IRF2BP2 in APL, and it expands the list of novel RARA partners identified in APL. Copyright © 2015 by the National Comprehensive Cancer Network.
Cano, Margarita; Drouilhet, Laurence; Plisson-Petit, Florence; Bardou, Philippe; Fabre, Stéphane; Servin, Bertrand; Sarry, Julien; Woloszyn, Florent; Mulsant, Philippe; Foulquier, Didier; Carrière, Fabien; Aletru, Mathias; Rodde, Nathalie; Cauet, Stéphane; Bouchez, Olivier; Pirson, Maarten; Tosser-Klopp, Gwenola; Allain, Daniel
2017-01-01
Abstract The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the “woolly” allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3′ UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation. PMID:28379502
Elghzaly, Ashraf A; Metwally, Shereen S; El-Chennawi, Farha A; Elgayaar, Maha A; Mosaad, Youssef M; El-Toraby, Ehab E; Hegab, Mohsen M; Ibrahim, Saleh M
2015-07-01
To replicate a single nucleotide polymorphism (SNP) of known genes for lupus (IRF5 rs10488631, PTPN22 rs2476601, BLK rs2736340 and TNFAIP3 rs5029939) and other autoimmune diseases (CD28 rs1980422, IL2RA rs2104286 and KIF5A rs1678542) on a newly studied Egyptian cohort to investigate the genetic disparity with different studied ethnic groups in relation to lupus susceptibility. 170 Egyptian patients from Egypt Delta with SLE and 241 matched healthy controls were genotyped by Taqman real time PCR for the selected SNPs. The results revealed significant association with IRF5 (p<0.0001) and PTPN22 (p=0.008) and insignificant association with KIF5A, CD28, IL2RA, BLK and TNFAIP3 genes. This study may provide an additional evidence for the association between IRF5 and PTPN22 and lupus susceptibility and may exclude it for CD28, IL2RA, and KIF5A. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Arimoto, Kei-ichiro; Funami, Kenji; Saeki, Yasushi; Tanaka, Keiji; Okawa, Katsuya; Takeuchi, Osamu; Akira, Shizuo; Murakami, Yoshiki; Shimotohno, Kunitada
2010-01-01
The rapid induction of type I IFN is a central event of the innate defense against viral infections and is tightly regulated by a number of cellular molecules. Viral components induce strong type I IFN responses through the activation of toll-like receptors (TLRs) and intracellular cytoplasmic receptors such as an RNA helicase RIG-I and/or MDA5. According to recent studies, the NF-κB essential modulator (NEMO, also called IKKγ) is crucial for this virus-induced antiviral response. However, the precise roles of signal activation by NEMO adaptor have not been elucidated. Here, we show that virus-induced IRF3 and NF-κB activation depends on the K(lys)-27-linked polyubiquitination to NEMO by the novel ubiquitin E3 ligase triparite motif protein 23 (TRIM23). Virus-induced IRF3 and NF-κB activation, as well as K27-linked NEMO polyubiquitination, were abrogated in TRIM23 knockdown cells, whereas TRIM23 knockdown had no effect on TNFα-mediated NF-κB activation. Furthermore, in NEMO-deficient mouse embryo fibroblast cells, IFN-stimulated response element-driven reporter activity was restored by ectopic expression of WT NEMO, as expected, but only partial recovery by NEMO K165/309/325/326/344R multipoints mutant on which TRIM23-mediated ubiquitin conjugation was substantially reduced. Thus, we conclude that TRIM23-mediated ubiquitin conjugation to NEMO is essential for TLR3- and RIG-I/MDA5-mediated antiviral innate and inflammatory responses. PMID:20724660
Kocić, Gordana; Radenkovic, Sonja; Cvetkovic, Tatjana; Cencic, Avrelija; Carluccio, Francesco; Musovic, Dijana; Nikolić, Goran; Jevtović-Stoimenov, Tatjana; Sokolović, Dusan; Milojkovic, Boban; Basic, Jelena; Veljkovic, Andrej; Stojanović, Svetlana
2010-05-01
Chronic renal failure (CRF) is a condition associated with the risk of cardiovascular complications. Systemic inflammatory response, initiated by the pathogen-associated molecular-pattern (PAMP) molecules, exerts many similarities with the damage-associated molecular-pattern (DAMP) molecule-induced systemic response. Up to now, a number of DAMP molecules were identified. We hypothesized that the available circulating nucleic acids, acting as DAMPs, may modulate immunoinflammatory reaction in CRF. Patients with the different stages of chronic kidney disease, kidney transplantation, and patients on dialysis were included in the study. Obtained results about higher concentration of circulating ribonucleic acid (RNA), according to the stages of kidney diseases, may contribute to the hypothesis that damaged kidney tissue releases nucleic acids. Circulating RNAs expressed maximal absorbance peak at 270 nm in spectrophotometric scan analysis, which corresponded to polyC, compared to different standard samples. During in vitro conditions, by using the culture of human residential macrophages, circulating RNA isolated from patients with IV-V-stage renal diseases, patients on hemodialysis, and patients who underwent renal transplantation were able to significantly change signal transduction proteins related to inflammation and antiviral response. They significantly increased the intracellular concentration of active nuclear transcription factor nuclear factor kappa B (NF-kappaB), interferon regulatory factors (IRF)-3, and IRF-7 and significantly decreased melanoma differentiation-associated protein-5 (MDA-5) and p38. In this way, it seems that circulating RNA, acting as DAMP, may contribute to the mechanisms of additional inflammatory reaction, possible immune destruction, and decreased antiviral response, related to complications in kidney diseases.
Towards two-photon excited endogenous fluorescence lifetime imaging microendoscopy
Hage, C. H.; Leclerc, P.; Brevier, J.; Fabert, M.; Le Nézet, C.; Kudlinski, A.; Héliot, L.; Louradour, F.
2017-01-01
In situ fluorescence lifetime imaging microscopy (FLIM) in an endoscopic configuration of the endogenous biomarker nicotinamide adenine dinucleotide (NADH) has a great potential for malignant tissue diagnosis. Moreover, two-photon nonlinear excitation provides intrinsic optical sectioning along with enhanced imaging depth. We demonstrate, for the first time to our knowledge, nonlinear endogenous FLIM in a fibered microscope with proximal detection, applied to NADH in cultured cells, as a first step to a nonlinear endomicroscope, using a double-clad microstructured fiber with convenient fiber length (> 3 m) and excitation pulse duration (≈50 fs). Fluorescence photons are collected by the fiber inner cladding and we show that its contribution to the impulse response function (IRF), which originates from its intermodal and chromatic dispersions, is small (< 600 ps) and stable for lengths up to 8 m and allows for short lifetime measurements. We use the phasor representation as a quick visualization tool adapted to the endoscopy speed requirements. PMID:29359093
de Almeida, Leonardo A.; Carvalho, Natalia B.; Oliveira, Fernanda S.; Lacerda, Thais L. S.; Vasconcelos, Anilton C.; Nogueira, Lucas; Bafica, Andre; Silva, Aristóbolo M.; Oliveira, Sergio C.
2011-01-01
Type I interferons (IFNs) are cytokines that orchestrate diverse immune responses to viral and bacterial infections. Although typically considered to be most important molecules in response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. In this study, we addressed the role of type I IFN signaling during Brucella abortus infection, a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Herein, we have shown that B. abortus induced IFN-β in macrophages and splenocytes. Further, IFN-β induction by Brucella was mediated by IRF3 signaling pathway and activates IFN-stimulated genes via STAT1 phosphorylation. In addition, IFN-β expression induced by Brucella is independent of TLRs and TRIF signaling but MyD88-dependent, a pathway not yet described for Gram-negative bacteria. Furthermore, we have identified Brucella DNA as the major bacterial component to induce IFN-β and our study revealed that this molecule operates through a mechanism dependent on RNA polymerase III to be sensed probably by an unknown receptor via the adaptor molecule STING. Finally, we have demonstrated that IFN-αβR KO mice are more resistant to infection suggesting that type I IFN signaling is detrimental to host control of Brucella. This resistance phenotype is accompanied by increased IFN-γ and NO production by IFN-αβR KO spleen cells and reduced apoptosis. PMID:21829705
Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann
2011-02-04
La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.
Cheng, Brian Chi Yan; Yu, Hua; Su, Tao; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Cao, Hui-Hui; Tse, Anfernee Kai-Wing; Kwan, Hiu-Yee; Yu, Zhi-Ling
2015-11-04
As documented in the Chinese Materia Medica Grand Dictionary (), a herbal formula (RL) consisting of Rosae Multiflorae Fructus (multiflora rose hips) and Lonicerae Japonicae Flos (Japanese honeysuckle flowers) has traditionally been used in treating inflammatory disorders. RL was previously reported to inhibit the expression of various inflammatory mediators regulated by NF-κB and MAPKs that are components of the TLR4 signalling pathways. This study aims to provide further justification for clinical application of RL in treating inflammatory disorders by further delineating the involvement of the TLR4 signalling cascades in the effects of RL on inflammatory mediators. RL consisting of Rosae Multiflorae Fructus and Lonicerae Japonicae Flos (in 5:3 ratio) was extracted using absolute ethanol. We investigated the effect of RL on the production of cytokines and chemokines that are regulated by three key transcription factors of the TLR4 signalling pathways AP-1, NF-κB and IRF3 in LPS-stimulated RAW264.7 cells using the multiplex biometric immunoassay. Phosphorylation of AP-1, NF-κB, IRF3, IκB-α, IKKα/β, Akt, TAK1, TBK1, IRAK-1 and IRAK-4 were examined in LPS-stimulated RAW264.7 cells and THP-1 cells using Western blotting. Nuclear localizations of AP-1, NF-κB and IRF3 were also examined using Western blotting. RL reduced the secretion of various pro-inflammatory cytokines and chemokines regulated by transcription factors AP-1, NF-κB and IRF3. Phosphorylation and nuclear protein levels of these transcription factors were decreased by RL treatment. Moreover, RL inhibited the activation/phosphorylation of IκB-α, IKKα/β, TAK1, TBK1 and IRAK-1. Suppression of the IRAK-1/TAK1 and TBK1/IRF3 signalling pathways was associated with the effect of RL on inflammatory mediators in LPS-stimulated RAW264.7 and THP-1 cells. This provides further pharmacological basis for the clinical application of RL in the treatment of inflammatory disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effects of payment changes on trends in post-acute care.
Buntin, Melinda Beeuwkes; Colla, Carrie Hoverman; Escarce, José J
2009-08-01
To test how the implementation of new Medicare post-acute payment systems affected the use of inpatient rehabilitation facilities (IRFs), skilled nursing facilities (SNFs), and home health agencies. Medicare acute hospital, IRF, and SNF claims; provider of services file; enrollment file; and Area Resource File data. We used multinomial logit models to measure realized access to post-acute care and to predict how access to alternative sites of care changed in response to prospective payment systems. A file was constructed linking data for elderly Medicare patients discharged from acute care facilities between 1996 and 2003 with a diagnosis of hip fracture, stroke, or lower extremity joint replacement. Although the effects of the payment systems on the use of post-acute care varied, most reduced the use of the site of care they directly affected and boosted the use of alternative sites of care. Payment system changes do not appear to have differentially affected the severely ill. Payment system incentives play a significant role in determining where Medicare beneficiaries receive their post-acute care. Changing these incentives results in shifting of patients between post-acute sites.
Chen, Shun; Yang, Chao; Zhang, Wei; Mahalingam, Suresh; Wang, Mingshu; Cheng, Anchun
2018-05-06
Infections with viruses in the Flaviviridae family have a vast global and economic impact because of the high morbidity and mortality. The pathogenesis of Flaviviridae infections is very complex and not fully understood because these viruses can inhibit multiple immune pathways including the complement system, NK cells, and IFN induction and signalling pathways. The non-structural (NS) 5 and 5A proteins of Flaviviridae viruses are highly conserved and play an important role in resisting host immunity through various evasion mechanisms. This review summarizes the strategies used by the NS5 and 5A proteins of Flaviviridae viruses for evading the innate immune response by inhibiting pattern recognition receptor (PRR) signalling pathways (TLR/MyD88, IRF7), suppressing interferon (IFN) signalling pathways (IFN-γRs, STAT1, STAT2), and impairing the function of IFN-stimulated genes (ISGs) (e.g. protein kinase R [PKR], oligoadenylate synthase [OAS]). All of these immune evasion mechanisms depend on the interaction of NS5 or NS5A with cellular proteins, such as MyD88 and IRF7, IFN-αRs, IFN-γRs, STAT1, STAT2, PKR and OAS. NS5 is the most attractive target for the discovery of broad spectrum compounds against Flaviviridae virus infection. The methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities of NS5 are the main therapeutic targets for antiviral drugs against Flaviviridae virus infection. Based on our site mapping, the sites involved in immune evasion provide some potential and promising targets for further novel antiviral therapeutics. Copyright © 2018 Elsevier Inc. All rights reserved.
CORRECTING FOR INTERSTELLAR SCATTERING DELAY IN HIGH-PRECISION PULSAR TIMING: SIMULATION RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palliyaguru, Nipuni; McLaughlin, Maura; Stinebring, Daniel
2015-12-20
Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any methodmore » to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse “jitter” is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.« less
DNA methylation in inflammatory genes among children with obstructive sleep apnea.
Kim, Jinkwan; Bhattacharjee, Rakesh; Khalyfa, Abdelnaby; Kheirandish-Gozal, Leila; Capdevila, Oscar Sans; Wang, Yang; Gozal, David
2012-02-01
Pediatric obstructive sleep apnea (OSA) leads to multiple end-organ morbidities that are mediated by the cumulative burden of oxidative stress and inflammation. Because not all children with OSA exhibit increased systemic inflammation, genetic and environmental factors may be affecting patterns of DNA methylation in genes subserving inflammatory functions. DNA from matched children with OSA with and without high levels of high-sensitivity C-reactive protein (hsCRP) were assessed for DNA methylation levels of 24 inflammatory-related genes. Primer-based polymerase chain reaction assays in a case-control setting involving 47 OSA cases and 31 control subjects were conducted to confirm the findings; hsCRP and myeloid-related protein (MRP) 8/14 levels were also assayed. Forkhead box P3 (FOXP3) and interferon regulatory factor 1 (IRF1) showed higher methylation in six children with OSA and high hsCRP levels compared with matched children with OSA and low hsCRP levels (P < 0.05). In the case-control cohort, children with OSA and high CRP levels had higher log FOXP3 DNA methylation levels compared with children with OSA and low CRP levels and control subjects. IRF1 did not exhibit significant differences. FOXP3 DNA methylation levels correlated with hsCRP and MRP 8/14 levels and with apnea-hypopnea index (AHI), BMI z score, and apolipoprotein B levels. A stepwise multiple regression model showed that AHI was independently associated with FOXP3 DNA methylation levels (P < 0.03). The FOXP3 gene, which regulates expression of T regulatory lymphocytes, is more likely to display increased methylation among children with OSA who exhibit increased systemic inflammatory responses. Thus, epigenetic modifications may constitute an important determinant of inflammatory phenotype in OSA, and FOXP3 DNA methylation levels may provide a potential biomarker for end-organ vulnerability.
Adenosine Deaminase Acting on RNA 1 (ADAR1) Suppresses the Induction of Interferon by Measles Virus
Li, Zhiqun; Okonski, Kristina M.
2012-01-01
ADAR1, the interferon (IFN)-inducible adenosine deaminase acting on RNA, catalyzes the C-6 deamination of adenosine (A) to produce inosine (I) in RNA substrates with a double-stranded character. Because double-stranded RNA is a known inducer of IFN, we tested the role of ADAR1 in IFN induction following virus infection. HeLa cells made stably deficient in ADAR1 (ADAR1kd) were compared to vector control (CONkd) and protein kinase PKR-deficient (PKRkd) cells for IFN-β induction following infection with either parental (wild-type [WT]) recombinant Moraten vaccine strain measles virus (MV) or isogenic knockout mutants deficient for either V (Vko) or C (Cko) protein expression. We observed potent IFN-β transcript induction in ADAR1kd cells by all three viruses; in contrast, in ADAR1-sufficient CONkd cells, only the Cko mutant virus was an effective inducer and the IFN-β RNA induction was amplified by PKR. The enhanced IFN-β transcript-inducing capacity of the WT and Vko viruses seen in ADAR1-deficient cells correlated with the enhanced activation of PKR, IFN regulatory factor IRF3, and activator of transcription ATF2, reaching levels similar to those seen in Cko virus-infected cells. However, the level of IFN-β protein produced was not proportional to the level of IFN-β RNA but rather correlated inversely with the level of activated PKR. These results suggest that ADAR1 functions as an important suppressor of MV-mediated responses, including the activation of PKR and IRF3 and the induction of IFN-β RNA. Our findings further implicate a balanced interplay between PKR and ADAR1 in modulating IFN-β protein production following virus infection. PMID:22278222
Hoffman, Jeanne M; Donoso Brown, Elena; Chan, Leighton; Dikmen, Sureyya; Temkin, Nancy; Bell, Kathleen R
2012-08-01
To evaluate the impact of Medicare's inpatient rehabilitation facility (IRF) prospective payment system (PPS) on use of inpatient rehabilitation for individuals with traumatic brain injury (TBI). Retrospective cohort study of patients with TBI. One hundred twenty-three level I and II trauma centers across the U.S. who contributed data to the National Trauma Data Bank. Patients (N=135,842) with TBI and an Abbreviated Injury Score of the head of 2 or greater admitted to trauma centers between 1995 and 2004. None. Discharge location: IRF, skilled nursing facility, home, and other hospitals. Compared with inpatient rehabilitation admissions before IRF PPS came into effect, demographic characteristics of admitted patients changed. Those admitted to acute care trauma centers after PPS was enacted (January 2002) were older and nonwhite. No differences were found in rates of injury between men and women. Over time, there was a significant drop in the percent of patients being discharged to inpatient rehabilitation, which varied by region, but was found across all insurance types. In a logistic regression, after controlling for patient characteristics (age, sex, race), injury characteristics (cause, severity), insurance type, and facility, the odds of being discharged to an IRF after a TBI decreased 16% after Medicare's IRF PPS system was enacted. The enactment of the Medicare PPS appears to be associated with a reduction in the chance that patients receive inpatient rehabilitation treatment after a TBI. The impact of these changes on the cost, quality of care, and patient outcome is unknown and should be addressed in future studies. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
MACHIDA, KEIGO; TSUKIYAMA-KOHARA, KYOKO; SEKIGUCH, SATOSHI; SEIKE, EIJI; TÓNE, SHIGENOBU; HAYASHI, YUKIKO; TOBITA, YOSHIMI; KASAMA, YURI; SHIMIZU, MASUMI; TAKAHASHI, HIDEMI; TAYA, CHYOJI; YONEKAWA, HIROMICHI; TANAKA, NOBUYUKI; KOHARA, MICHINORI
2014-01-01
BACKGROUND & AIMS The molecular mechanisms of lymphoproliferation associated with the disruption of interferon (IFN) signaling and chronic hepatitis C virus (HCV) infection are poorly understood. Lymphomas are extrahepatic manifestations of HCV infection; we sought to clarify the molecular mechanisms of these processes. METHODS We established interferon regulatory factor-1– null (irf-1−/−) mice with inducible and persistent expression of HCV structural proteins (irf-1/CN2 mice). All the mice (n = 900) were observed for at least 600 days after Cre/loxP switching. Histologic analyses, as well as analyses of lymphoproliferation, sensitivity to Fas-induced apoptosis, colony formation, and cytokine production, were performed. Proteins associated with these processes were also assessed. RESULTS Irf-1/CN2 mice had extremely high incidences of lymphomas and lymphoproliferative disorders and displayed increased mortality. Disruption of irf-1 reduced the sensitivity to Fas-induced apoptosis and decreased the levels of caspases-3/7 and caspase-9 messenger RNA species and enzymatic activities. Furthermore, the irf-1/CN2 mice showed decreased activation of caspases-3/7 and caspase-9 and increased levels of interleukin (IL)-2, IL-10, and Bcl-2, as well as increased Bcl-2 expression, which promoted oncogenic transformation of lymphocytes. IL-2 and IL-10 were induced by the HCV core protein in splenocytes. CONCLUSIONS Disruption of IFN signaling resulted in development of lymphoma, indicating that differential signaling occurs in lymphocytes compared with liver. This mouse model, in which HCV expression and disruption of IFN signaling synergize to promote lymphoproliferation, will be an important tool for the development of therapeutic agents that target the lymphoproliferative pathway. PMID:19362089
Singh, Manvender; Brahma, Biswajit; Maharana, Jitendra; Patra, Mahesh Chandra; Kumar, Sushil; Mishra, Purusottam; Saini, Megha; De, Bidhan Chandra; Mahanty, Sourav; Datta, Tirtha Kumar; De, Sachinandan
2014-01-01
RIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I) response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals. Critical binding site residues of the receptors are evolutionary conserved among mammals. Molecular dynamics simulations suggested that RIG1 and MDA5 follow a similar, if not identical, dsRNA binding pattern that has been previously reported in human. Moreover, binding free energy calculation revealed that MDA5 had a greater affinity towards dsRNA compared to RIG1. Constitutive expressions of RLR genes were ubiquitous in different tissues without being specific to immune organs. Poly I:C stimulation induced elevated expressions of IFN-β and IFN-stimulated genes (ISGs) through interferon regulatory factors (IRFs) mediated pathway in buffalo foetal fibroblast cells. The present study provides crucial insights into the structure and function of RIG1 and MDA5 receptors in buffalo. PMID:24587036
RNA sensor LGP2 inhibits TRAF ubiquitin ligase to negatively regulate innate immune signaling.
Parisien, Jean-Patrick; Lenoir, Jessica J; Mandhana, Roli; Rodriguez, Kenny R; Qian, Kenin; Bruns, Annie M; Horvath, Curt M
2018-06-01
The production of type I interferon (IFN) is essential for cellular barrier functions and innate and adaptive antiviral immunity. In response to virus infections, RNA receptors RIG-I and MDA5 stimulate a mitochondria-localized signaling apparatus that uses TRAF family ubiquitin ligase proteins to activate master transcription regulators IRF3 and NFκB, driving IFN and antiviral target gene expression. Data indicate that a third RNA receptor, LGP2, acts as a negative regulator of antiviral signaling by interfering with TRAF family proteins. Disruption of LGP2 expression in cells results in earlier and overactive transcriptional responses to virus or dsRNA LGP2 associates with the C-terminus of TRAF2, TRAF3, TRAF5, and TRAF6 and interferes with TRAF ubiquitin ligase activity. TRAF interference is independent of LGP2 ATP hydrolysis, RNA binding, or its C-terminal domain, and LGP2 can regulate TRAF-mediated signaling pathways in trans , including IL-1β, TNFα, and cGAMP These findings provide a unique mechanism for LGP2 negative regulation through TRAF suppression and extend the potential impact of LGP2 negative regulation beyond the IFN antiviral response. © 2018 The Authors.
Critical Contribution of RAL GTPases to Growth and Survival of Breast Cancer Cells
2007-04-01
similar to the NFkB p50 dimerization domain that falls into the IPT/TIG family of protein domains (Fukai et al., 2003). Given that GTP-bound RalB and TBK1...RalB and Sec5 are required for IRF-3 but not p65 responsiveness to TLR3 activation. HBECs were cotransfected with a plasmid expressing GFP together with...RalA andSec8 were not limiting for this response (Figures 6D and 6E). Poly(I:C)-induced mobilization of p65 NFkB nuclear accumulation is independent of
Gambara, Guido; Desideri, Marianna; Stoppacciaro, Antonella; Padula, Fabrizio; De Cesaris, Paola; Starace, Donatella; Tubaro, Andrea; del Bufalo, Donatella; Filippini, Antonio; Ziparo, Elio; Riccioli, Anna
2015-01-01
Toll-like receptors (TLRs) are a family of highly conserved transmembrane proteins expressed in epithelial and immune cells that recognize pathogen associated molecular patterns. Besides their role in immune response against infections, numerous studies have shown an important role of different TLRs in cancer, indicating these receptors as potential targets for cancer therapy. We previously demonstrated that the activation of TLR3 by the synthetic double-stranded RNA analogue poly I:C induces apoptosis of androgen-sensitive prostate cancer (PCa) LNCaP cells and, much less efficiently, of the more aggressive PC3 cell line. Therefore, in this study we selected LNCaP cells to investigate the mechanism of TLR3-mediated apoptosis and the in vivo efficacy of poly I:C-based therapy. We show that interferon regulatory factor-3 (IRF-3) signalling plays an essential role in TLR3-mediated apoptosis in LNCaP cells through the activation of the intrinsic and extrinsic apoptotic pathways. Interestingly, hardly any apoptosis was induced by poly I:C in normal prostate epithelial cells RWPE-1. We also demonstrate for the first time the direct anticancer effect of poly I:C as a single therapeutic agent in a well-established human androgen-sensitive PCa xenograft model, by showing that tumour growth is highly impaired in poly I:C-treated immunodeficient mice. Immunohistochemical analysis of PCa xenografts highlights the antitumour role of poly I:C in vivo both on cancer cells and, indirectly, on endothelial cells. Notably, we show the presence of TLR3 and IRF-3 in both human normal and PCa clinical samples, potentially envisaging poly I:C-based therapy for PCa. PMID:25444175
Functional Motifs Responsible for Human Metapneumovirus M2-2-mediated Innate Immune Evasion
Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J.; Wood, Thomas G.; Bao, Xiaoyong
2016-01-01
Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. PMID:27743962
Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.
Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong
2016-12-01
Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.
RING domain is essential for the antiviral activity of TRIM25 from orange spotted grouper.
Yang, Ying; Huang, Youhua; Yu, Yepin; Yang, Min; Zhou, Sheng; Qin, Qiwei; Huang, Xiaohong
2016-08-01
Tripartite motif-containing 25 (TRIM25) has been demonstrated to exert crucial roles in the regulation of innate immune signaling. However, the roles of fish TRIM25 in antiviral immune response still remained uncertain. Here, a novel fish TRIM25 gene from orange spotted grouper (EcTRIM25) was cloned and its roles in grouper virus infection were elucidated. EcTRIM25 encoded a 734-aa protein which shared 68% identity to large yellow croaker (Larimichthys crocea). Amino acid alignment showed that EcTRIM25 contained three conserved domains, including a RING-finger domain, a B box/coiled-coil domain and a SPRY domain. In healthy grouper, the transcript of EcTRIM25 was predominantly detected in skin, spleen and intestine. After stimulation with Singapore grouper iridovirus (SGIV) or poly I:C, the relative expression of EcTRIM25 in grouper spleen was significantly increased at the early stage of injection. Subcellular localization analysis showed that EcTRIM25 distributed throughout the cytoplasm in grouper cells. Notably, the deletion RING domain affected its accurate localization and displayed microtubule like structures or bright aggregates in GS cells. After incubation with SGIV or red spotted grouper nervous necrosis virus (RGNNV), overexpression of full length of EcTRIM25 in vitro significantly decreased the viral gene transcription of SGIV and RGNNV. Consistently, the deletion of RING domain obviously affected the inhibitory effect of EcTRIM25. Furthermore, overexpression of EcTRIM25 significantly increased the expression level of interferon related signaling molecules, including interferon regulatory factor (IRF) 3, interferon-induced 35-kDa protein (IFP35), MXI, IRF7 and myeloid differentiation factor 88 (MyD88), suggesting that the positive regulation of interferon immune response by EcTRIM25 might affected RGNNV replication directly. Meanwhile, the expression levels of pro-inflammation cytokines were differently regulated by the ectopic expression of EcTRIM25. We proposed that the regulation of IRF7, MyD88 and pro-inflammation cytokines might contribute more important roles in SGIV infection. In addition, the RING domain of EcTRIM25 also played critical roles in the regulation of interferon immune and inflammation response. Together, our results will provide new evidences that the RING domain was essential for the antiviral action of fish TRIM25 against iridovirus and nodavirus infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antiviral function of grouper MDA5 against iridovirus and nodavirus.
Huang, Youhua; Yu, Yepin; Yang, Ying; Yang, Min; Zhou, Linli; Huang, Xiaohong; Qin, Qiwei
2016-07-01
Melanoma differentiation-associated gene 5 (MDA5) is a critical member of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family which can recognize viral RNA and enhances antiviral response in host cells. In this study, a MDA5 homolog from orange spotted grouper (Epinephelus coioides) (EcMDA5) was cloned, and its roles on grouper virus infection were characterized. The full-length EcMDA5 cDNA encoded a polypeptide of 982 amino acids with 74% identity with MDA5 homolog from rock bream (Oplegnathus fasciatus). Amino acid alignment analysis indicated that EcMDA5 contained three functional domains: two caspase activation and recruitment domain (CARDs), a DEAD box helicase-like (DExDc) domain, a helicase superfamily C-terminal domain (HELICc), and a C-terminal regulatory domain (RD). Upon challenge with Singapore grouper iridovirus (SGIV) or polyinosin-polycytidylic acid (poly I:C), the transcript of EcMDA5 was significantly up-regulated especially at the early stage post-injection. Under fluorescence microscopy, we observed that EcMDA5 mostly localized in the cytoplasm of grouper spleen (GS) cells. Interestingly, during virus infection, the distribution pattern of EcMDA5 was significantly altered in SGIV infected cells, but not in red spotted grouper nervous necrosis virus (RGNNV) infected cells, suggested that EcMDA5 might interact with viral proteins during SGIV infection. The ectopic expression of EcMDA5 in vitro obviously delayed virus infection induced cytopathic effect (CPE) progression and significantly inhibited viral gene transcription of RGNNV and SGIV. Moreover, overexpression of EcMDA5 not only significantly increased interferon (IFN) and IFN-stimulated response element (ISRE) promoter activities in a dose dependent manner, but also enhanced the expression of IRF3, IRF7 and TRAF6. In addition, the transcription level of the proinflammatory factors, including TNF-α, IL-6 and IL-8 were differently altered by EcMDA5 overexpression during SGIV or RGNNV infection, suggesting that the regulation on proinflammatory cytokines by EcMDA5 were also important for RGNNV infection. Together, our results demonstrated for the first time that the inhibitory effect of fish MDA5 on iridovirus replication might be mainly through the regulation of proinflammatory cytokines. Copyright © 2016 Elsevier Ltd. All rights reserved.
Omura, Hiroki; Oikawa, Daisuke; Nakane, Takanori; Kato, Megumi; Ishii, Ryohei; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu
2016-01-01
In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway. PMID:27721487
Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus.
Hartman, Amy L; Bird, Brian H; Towner, Jonathan S; Antoniadou, Zoi-Anna; Zaki, Sherif R; Nichol, Stuart T
2008-03-01
Zaire ebolavirus causes a rapidly progressing hemorrhagic disease with high mortality. Identification of the viral virulence factors that contribute to the severity of disease induced by Ebola virus is critical for the design of therapeutics and vaccines against the disease. Given the rapidity of disease progression, virus interaction with the innate immune system early in the course of infection likely plays an important role in determining the outcome of the disease. The Ebola virus VP35 protein inhibits the activation of IRF-3, a critical transcription factor for the induction of early antiviral immunity. Previous studies revealed that a single amino acid change (R312A) in VP35 renders the protein unable to inhibit IRF-3 activation. A reverse-genetics-generated, mouse-adapted, recombinant Ebola virus that encodes the R312A mutation in VP35 was produced. We found that relative to the case for wild-type virus containing the authentic VP35 sequence, this single amino acid change in VP35 renders the virus completely attenuated in mice. Given that these viruses differ by only a single amino acid in the IRF-3 inhibitory domain of VP35, the level of alteration of virulence is remarkable and highlights the importance of VP35 for the pathogenesis of Ebola virus.
Sarkar, Sanjay; Balasuriya, Udeni B R; Horohov, David W; Chambers, Thomas M
2016-05-01
Equine herpesvirus-1 (EHV-1) is a major respiratory viral pathogen of horses, causing upper respiratory tract disease, abortion, neonatal death, and neurological disease that may lead to paralysis and death. EHV-1 replicates initially in the respiratory epithelium and then spreads systemically to endothelial cells lining the small blood vessels in the uterus and spinal cord leading to abortion and EHM in horses. Like other herpesviruses, EHV-1 employs a variety of mechanisms for immune evasion including suppression of type-I interferon (IFN) production in equine endothelial cells (EECs). Previously we have shown that the neuropathogenic T953 strain of EHV-1 inhibits type-I IFN production in EECs and this is mediated by a viral late gene product. But the mechanism of inhibition was not known. Here we show that T953 strain infection of EECs induced degradation of endogenous IRF-3 protein. This in turn interfered with the activation of IRF-3 signaling pathways. EHV-1 infection caused the activation of the NF-κB signaling pathways, suggesting that inhibition of type-I IFN production is probably due to interference in IRF-3 and not NF-κB signal transduction. Copyright © 2016 Elsevier B.V. All rights reserved.
Honda, Kenya; Yanai, Hideyuki; Mizutani, Tatsuaki; Negishi, Hideo; Shimada, Naoya; Suzuki, Nobutaka; Ohba, Yusuke; Takaoka, Akinori; Yeh, Wen-Chen; Taniguchi, Tadatsugu
2004-01-01
Toll-like receptor (TLR) activation is central to immunity, wherein the activation of the TLR9 subfamily members TLR9 and TLR7 results in the robust induction of type I IFNs (IFN-α/β) by means of the MyD88 adaptor protein. However, it remains unknown how the TLR signal “input” can be processed through MyD88 to “output” the induction of the IFN genes. Here, we demonstrate that the transcription factor IRF-7 interacts with MyD88 to form a complex in the cytoplasm. We provide evidence that this complex also involves IRAK4 and TRAF6 and provides the foundation for the TLR9-dependent activation of the IFN genes. The complex defined in this study represents an example of how the coupling of the signaling adaptor and effector kinase molecules together with the transcription factor regulate the processing of an extracellular signal to evoke its versatile downstream transcriptional events in a cell. Thus, we propose that this molecular complex may function as a cytoplasmic transductional-transcriptional processor. PMID:15492225
Huang, Chen; Du, Yinping; Yu, Zhibin; Zhang, Qiong; Liu, Yihao; Tang, Jun; Shi, Jishu; Feng, Wen-hai
2016-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant etiological agents in the swine industry worldwide. It has been reported that PRRSV infection can modulate host immune responses, and innate immune evasion is thought to play a vital role in PRRSV pathogenesis. In this study, we demonstrated that highly pathogenic PRRSV (HP-PRRSV) infection specifically down-regulated virus-induced signaling adaptor (VISA), a unique adaptor molecule that is essential for retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) signal transduction. Moreover, we verified that nsp4 inhibited IRF3 activation induced by signaling molecules, including RIG-I, MDA5, VISA, and TBK1, but not IRF3. Subsequently, we demonstrated that HP-PRRSV nsp4 down-regulated VISA and suppressed type I IFN induction. Importantly, VISA was cleaved by nsp4 and released from mitochondrial membrane, which interrupted the downstream signaling of VISA. However, catalytically inactive mutant of nsp4 abolished its ability to cleave VISA. Interestingly, nsp4 of typical PRRSV strain CH-1a had no effect on VISA. Taken together, these findings reveal a strategy evolved by HP-PRRSV to counteract anti-viral innate immune signaling, which complements the known PRRSV-mediated immune-evasion mechanisms. PMID:27329948
Virulent Poxviruses Inhibit DNA Sensing by Preventing STING Activation
Georgana, Iliana; Sumner, Rebecca P.; Towers, Greg J.
2018-01-01
ABSTRACT Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerizes and translocates from the endoplasmic reticulum (ER) to a perinuclear region to mediate IRF-3 activation. Poxviruses are double-stranded DNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here, we investigated the activation of innate immune signaling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerized and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerization and phosphorylation during infection and in response to transfected DNA and cyclic GMP-AMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence. IMPORTANCE Poxviruses are double-stranded DNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as efficient oncolytics in virotherapy. The successful therapeutic use of VACV depends on a detailed understanding of its ability to modulate host innate immune responses. DNA sensing is a critical cellular mechanism for pathogen detection and activation of innate immunity that is centrally coordinated by the endoplasmic reticulum-resident protein STING. Here, STING is shown to mediate immune activation in response to MVA, but not in response to virulent VACV strains or other virulent poxviruses, which prevent STING activation and DNA sensing during infection and after DNA transfection. These results provide new insights into poxvirus immune evasion and have implications in the rational design of VACV-based therapeutics. PMID:29491158
Fang, Shaohong; Xu, Yanwen; Zhang, Yun; Tian, Jiangtian; Li, Ji; Li, Zhaoying; He, Zhongze; Chai, Ruikai; Liu, Fang; Zhang, Tongshuai; Yang, Shuang; Pei, Chunying; Liu, Xinxin; Lin, Peng; Xu, Hongwei; Yu, Bo; Li, Hulun; Sun, Bo
2016-08-01
Atherosclerosis is a chronic inflammatory vascular disease related to macrophages uptake of low-density lipoprotein and their subsequent transformation into foam cells. M1 (inflammatory)/M2 (anti-inflammatory) balance was suggested to impact disease progression. In this study, we investigated whether the immunity related GTPase (Irgm1) regulates macrophage polarization during atherosclerosis development. We used apolipoprotein E (ApoE) knockout and Irgm1 haplodeficient mice and induced atherosclerosis with high-cholesterol diet for the indicated months. Atherosclerotic arteries were collected from patients undergoing vascular surgery, to determine the lesional expression of Irgm1 and distribution of M1/M2 populations. Our results showed that IRGM/Irgm1 expression was increased in atherosclerotic artery samples (1.7-fold, p=0.0045) compared with non-atherosclerotic arteries, which was consistent with findings in the murine experimental atherosclerosis model (1.9-fold, p=0.0002). IRGM/Irgm1 expression was mostly found in lesional M1 macrophages. Haplodeficiency of Irgm1 in ApoE(-/-) mice resulted in reduced infiltrating M1 macrophages in atheroma (94%, p=0.0002) and delayed development of atherosclerotic plaques. In vitro experiments also confirmed that Irgm1 haplodeficiency reduced iNOS expression of polarized M1 macrophages (81%, p=0.0034), with negligible impact on the M2 phenotype. Moreover, we found that Irgm1 haplodeficiency in mice significantly reduced expression level of M1 function-related transcription factors, interferon regulatory factor (Irf) 5 and Irf8, but not Irf4, an M2-related transcription factor. This study shows that Irgm1/IRGM participates in the polarization of M1 macrophage and promotes development of atheroma in murine experimental atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sadik, Christian D; Bachmann, Malte; Pfeilschifter, Josef; Mühl, Heiko
2009-08-01
U1-snRNA is an integral part of the U1 ribonucleoprotein pivotal for pre-mRNA splicing. Toll-like receptor (TLR) signaling has recently been associated with immunoregulatory capacities of U1-snRNA. Using lung A549 epithelial/carcinoma cells, we report for the first time on interferon regulatory factor (IRF)-3 activation initiated by endosomally delivered U1-snRNA. This was associated with expression of the IRF3-inducible genes interferon-beta (IFN-beta), CXCL10/IP-10 and indoleamine 2,3-dioxygenase. Mutational analysis of the U1-snRNA-activated IFN-beta promoter confirmed the crucial role of the PRDIII element, previously proven pivotal for promoter activation by IRF3. Notably, expression of these parameters was suppressed by bafilomycin A(1), an inhibitor of endosomal acidification, implicating endosomal TLR activation. Since resiquimod, an agonist of TLR7/8, failed to stimulate A549 cells, data suggest TLR3 to be of prime relevance for cellular activation. To assess the overall regulatory potential of U1-snRNA-activated epithelial cells on cytokine production, co-cultivation with peripheral blood mononuclear cells (PBMC) was performed. Interestingly, A549 cells activated by U1-snRNA reinforced phytohemagglutinin-induced interleukin-10 release by PBMC but suppressed that of tumor necrosis factor-alpha, indicating an anti-inflammatory potential of U1-snRNA. Since U1-snRNA is enriched in apoptotic bodies and epithelial cells are capable of performing efferocytosis, the present data in particular connect to immunobiological aspects of apoptosis at host/environment interfaces.
Urruticoechea, Ander; Rizwanullah, Mohammed; Im, Seock-Ah; Ruiz, Antonio Carlos Sánchez; Láng, István; Tomasello, Gianluca; Douthwaite, Hannah; Badovinac Crnjevic, Tanja; Heeson, Sarah; Eng-Wong, Jennifer; Muñoz, Montserrat
2017-09-10
Purpose To assess the efficacy and safety of trastuzumab plus capecitabine with or without pertuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who experienced disease progression during or after trastuzumab-based therapy and received a prior taxane. Patients and Methods Patients were randomly assigned to arm A: trastuzumab 8 mg/kg → 6 mg/kg once every 3 weeks plus capecitabine 1,250 mg/m 2 twice a day (2 weeks on, 1 week off, every 3 weeks); or arm B: pertuzumab 840 mg → 420 mg once every 3 weeks plus trastuzumab at the same dose and schedule as arm A plus capecitabine 1,000 mg/m 2 on the same schedule as arm A. The primary end point was independent review facility-assessed progression-free survival (IRF PFS). Secondary end points included overall survival (OS) and safety. Hierarchical testing procedures were used to control type I error for statistical testing of IRF PFS, OS, and objective response rate. Results Randomly assigned (intent-to-treat) populations were 224 and 228 patients in arms A and B, respectively. Median IRF PFS at 28.6 and 25.3 months' median follow-up was 9.0 v 11.1 months (hazard ratio, 0.82; 95% CI, 0.65 to 1.02; P = .0731) and interim OS was 28.1 v 36.1 months (hazard ratio, 0.68; 95% CI, 0.51 to 0.90). The most common adverse events (all grades; incidence of ≥ 10% in either arm and ≥ 5% difference between arms) were hand-foot syndrome, nausea, and neutropenia in arm A, and diarrhea, rash, and nasopharyngitis in arm B. Conclusion The addition of pertuzumab to trastuzumab and capecitabine did not significantly improve IRF PFS. An 8-month increase in median OS to 36.1 months with pertuzumab was observed. Statistical significance for OS cannot be claimed because of the hierarchical testing of OS after the primary PFS end point; however, the magnitude of OS difference is in keeping with prior experience of pertuzumab in metastatic breast cancer. No new safety signals were identified.
Oliva, Joan; Bardag-Gorce, Fawzia; Li, Jun; French, Barbara A; French, Samuel W
2011-01-01
Toll-like receptors (TLR) play a role in mediating the proinflammatory response, fibrogenesis and carcinogenesis in chronic liver diseases such as alcoholic liver disease, non-alcoholic liver disease, hepatitis C and hepatocellular carcinoma. This is true in experimental models of these diseases. For this reason, we investigated the TLR proinflammatory response in the chronic intragastric tube feeding rat model of alcohol liver disease. The methyl donor S-adenosylmethionine was also fed to prevent the gene expression changes induced by ethanol. Ethanol feeding tended to increase the up regulation of the gene expression of TLR2 and TLR4. SAMe feeding prevented this. TLR4 and MyD88 protein levels were significantly increased by ethanol and this was prevented by SAMe. This is the first report where ethanol feeding induced TLR2 and SAMe prevented the induction by ethanol. CD34, FOS, interferon responsive factor 1 (IRF-1), Jun, TLR 1,2,3,4,6 and 7 and Traf-6 were found to be up regulated as seen by microarray analysis where rats were sacrified at high blood alcohol levels compared to pair fed controls. Il-6, IL-10 and IFNγ were also up regulated by high blood levels of ethanol. The gene expression of CD14, MyD88 and TNFR1SF1 were not up regulated by ethanol but were down regulated by SAMe. The gene expression of IL-1R1 and IRF1 tended to be up regulated by ethanol and this was prevented by feeding SAMe. The results suggest that SAMe, fed chronically prevents activation of TLR pathways caused by ethanol. In this way the proinflammatory response, fibrogenesis, cirrhosis and hepatocellular carcinoma formation due to alcohol liver disease could be prevented by SAMe. PMID:21276439
Stuart, Jennifer H; Sumner, Rebecca P; Lu, Yongxu; Snowden, Joseph S; Smith, Geoffrey L
2016-12-01
The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.
Optoelectronic Aspects of Avionic Systems II
1975-05-01
and a O.lpF bypass capacitor on the orange high- voltage lead which projects from the side of the connector . The black and white lead is ground. The...shows the 907nm response vs bias characteristic for the PIN-040A. Notice that the "turn-off" transient is the same for all bias voltages . Increasing...162V 187 40 80 120 160 Reverse Bias Voltage - (Volts) 200 Figure 48. TISL59 Avalanche Gain Vs Bias 154 IT iii irf
Translations on USSR Military Affairs No. 1314
1977-11-01
COMMERCE i; V *: "vA^.^ \\:\\ ’ ’ •" ..’ V :.’" • V ".’-."’ v •.’.’IrfS E ^ti SPRINGFIELD, VA. 22161 j- V /.’.. K^&f&jg...L. Mikryukov ; VOYENNO-ISTORICHESKIY ZHURNAL, Sep 77).. 23 - a - [III - USSR - 4] POSTWAR IDEOLOGICAL INDOCTRINATION WORK REVIEWED...Voyenizdat, 1969, p 439. building them up in every possible manner. During this difficult period the CPSU was guided by V . I. Lenin’s teaching
IRF-4 and c-Rel expression in antiviral-resistant adult T-cell leukemia/lymphoma
Ramos, Juan Carlos; Ruiz, Phillip; Ratner, Lee; Reis, Isildinha M.; Brites, Carlos; Pedroso, Celia; Byrne, Gerald E.; Toomey, Ngoc L.; Andela, Valentine; Harhaj, Edward W.; Lossos, Izidore S.
2007-01-01
Adult T-cell leukemia/lymphoma (ATLL) is a generally fatal malignancy. Most ATLL patients fare poorly with conventional chemotherapy; however, antiviral therapy with zidovudine (AZT) and interferon alpha (IFN-α) has produced long-term clinical remissions. We studied primary ATLL tumors and identified molecular features linked to sensitivity and resistance to antiviral therapy. Enhanced expression of the proto-oncogene c-Rel was noted in 9 of 27 tumors. Resistant tumors exhibited c-Rel (6 of 10; 60%) more often than did sensitive variants (1 of 9; 11%). This finding was independent of the disease form. Elevated expression of the putative c-Rel target, interferon regulatory factor-4 (IRF-4), was observed in 10 (91%) of 11 nonresponders and in all tested patients with c-Rel+ tumors and occurred in the absence of the HTLV-1 oncoprotein Tax. In contrast, tumors in complete responders did not express c-Rel or IRF-4. Gene rearrangement studies demonstrated the persistence of circulating T-cell clones in long-term survivors maintained on antiviral therapy. The expression of nuclear c-Rel and IRF-4 occurs in the absence of Tax in primary ATLL and is associated with antiviral resistance. These molecular features may help guide treatment. AZT and IFN-α is a suppressive rather than a curative regimen, and patients in clinical remission should remain on maintenance therapy indefinitely. PMID:17138822
Sekulic, Aleksandar; Migden, Michael R; Basset-Seguin, Nicole; Garbe, Claus; Gesierich, Anja; Lao, Christopher D; Miller, Chris; Mortier, Laurent; Murrell, Dedee F; Hamid, Omid; Quevedo, Jorge F; Hou, Jeannie; McKenna, Edward; Dimier, Natalie; Williams, Sarah; Schadendorf, Dirk; Hauschild, Axel
2017-05-16
In the primary analysis of the ERIVANCE BCC trial, vismodegib, the first US Food and Drug Administration-approved Hedgehog pathway inhibitor, showed objective response rates (ORRs) by independent review facility (IRF) of 30% and 43% in metastatic basal cell carcinoma (mBCC) and locally advanced BCC (laBCC), respectively. ORRs by investigator review were 45% (mBCC) and 60% (laBCC). Herein, we present long-term safety and final investigator-assessed efficacy results in patients with mBCC or laBCC. One hundred four patients with measurable advanced BCC received oral vismodegib 150 mg once daily until disease progression or intolerable toxicity. The primary end point was IRF-assessed ORR. Secondary end points included ORR, duration of response (DOR), progression-free survival, overall survival (OS), and safety. At data cutoff (39 months after completion of accrual), 8 patients were receiving the study drug (69 patients in survival follow-up). Investigator-assessed ORR was 48.5% in the mBCC group (all partial responses) and 60.3% in the laBCC group (20 patients had complete response and 18 patients had partial response). ORRs were comparable across patient subgroups, including aggressive histologic subtypes (eg, infiltrative BCC). Median DOR was 14.8 months (mBCC) and 26.2 months (laBCC). Median OS was 33.4 months in the mBCC cohort and not estimable in the laBCC cohort. Adverse events remained consistent with clinical experience. Thirty-three deaths (31.7%) were reported; none were related to vismodegib. This long-term update of the ERIVANCE BCC trial demonstrated durability of response, efficacy across patient subgroups, and manageable long-term safety of vismodegib in patients with advanced BCC. This study was registered prospectively with Clinicaltrials.gov , number NCT00833417 on January 30, 2009.
Effects of Payment Changes on Trends in Post-Acute Care
Buntin, Melinda Beeuwkes; Colla, Carrie Hoverman; Escarce, José J
2009-01-01
Objective To test how the implementation of new Medicare post-acute payment systems affected the use of inpatient rehabilitation facilities (IRFs), skilled nursing facilities (SNFs), and home health agencies. Data Sources Medicare acute hospital, IRF, and SNF claims; provider of services file; enrollment file; and Area Resource File data. Study Design We used multinomial logit models to measure realized access to post-acute care and to predict how access to alternative sites of care changed in response to prospective payment systems. Data Extraction Methods A file was constructed linking data for elderly Medicare patients discharged from acute care facilities between 1996 and 2003 with a diagnosis of hip fracture, stroke, or lower extremity joint replacement. Principal Findings Although the effects of the payment systems on the use of post-acute care varied, most reduced the use of the site of care they directly affected and boosted the use of alternative sites of care. Payment system changes do not appear to have differentially affected the severely ill. Conclusions Payment system incentives play a significant role in determining where Medicare beneficiaries receive their post-acute care. Changing these incentives results in shifting of patients between post-acute sites. PMID:19490159
Gurramkonda, Venkatesh Babu; Syed, Altaf Hussain; Murthy, Jyotsna; Lakkakula, Bhaskar V K S
2017-06-26
Transcription factors are very diverse family of proteins involved in activating or repressing the transcription of a gene at a given time. Several studies using animal models demonstrated the role of transcription factor genes in craniofacial development. We aimed to investigate the association of IRF6 intron-6 polymorphism in the non-syndromic cleft lip with or without Palate in a south Indian population. 173 unrelated nonsyndromic cleft lip with or without Palate patients and 176 controls without clefts patients were genotyped for IRF6 rs2235375 variant by allele-specific amplification using the KASPar single nucleotide polymorphism genotyping system. The association between interferon regulatory factor-6 gene intron-6 dbSNP208032210:g.G>C (rs2235375) single nucleotide polymorphism and non-syndromic cleft lip with or without palate risk was investigated by chi-square test. There were significant differences in genotype or allele frequencies of rs2235375 single nucleotide polymorphism between controls and cases with non-syndromic cleft lip with or without palate. IRF6 rs2235375 variant was significantly associated with increased risk of non-syndromic cleft lip with or without palate in co-dominant, dominant (OR: 1.19; 95% CI 1.03-2.51; p=0.034) and allelic models (OR: 1.40; 95% CI 1.04-1.90; p=0.028). When subset analysis was applied significantly increased risk was observed in cleft palate only group (OR dominant: 4.33; 95% CI 1.44-12.97; p=0.005). These results suggest that IRF6 rs2235375 SNP play a major role in the pathogenesis and risk of developing non-syndromic cleft lip with or without palate. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Malik, Nazma; Vollmer, Stefan; Nanda, Sambit Kumar; Lopez-Pelaez, Marta; Prescott, Alan; Gray, Nathanael; Cohen, Philip
2015-06-15
PLK (Polo-like kinase) inhibitors, such as BI-2536, have been reported to suppress IFNB (encoding IFNβ, interferon β) gene transcription induced by ligands that activate TLR3 (Toll-like receptor 3) and TLR4. In the present study, we found that BI-2536 is likely to exert this effect by preventing the interaction of the transcription factors IRF3 (interferon-regulatory factor 3) and c-Jun with the IFNB promoter, but without affecting the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1}-catalysed phosphorylation of IRF3 at Ser³⁹⁶, the dimerization and nuclear translocation of IRF3 or the phosphorylation of c-Jun and ATF2 (activating transcription factor 2). Although BI-2536 inhibits few other kinases tested, it interacts with BET (bromodomain and extra-terminal) family members and displaces them from acetylated lysine residues on histones. We found that BET inhibitors that do not inhibit PLKs phenocopied the effect of BI-2536 on IFNB gene transcription. Similarly, BET inhibitors blocked the interaction of IRF5 with the IFNB promoter and the secretion of IFNβ induced by TLR7 or TLR9 ligands in the human plasmacytoid dendritic cell line GEN2.2, but without affecting the nuclear translocation of IRF5. We found that the BET family member BRD4 (bromodomain-containing protein 4) was associated with the IFNB promoter and that this interaction was enhanced by TLR3- or TLR4-ligation and prevented by BI-2536 and other BET inhibitors. Our results establish that BET family members are essential for TLR-stimulated IFNB gene transcription by permitting transcription factors to interact with the IFNB promoter. They also show that the interaction of the IFNB promoter with BRD4 is regulated by TLR ligation and that BI-2536 is likely to suppress IFNB gene transcription by targeting BET family members. © 2015 The Author(s).
Fine mapping of the celiac disease-associated LPP locus reveals a potential functional variant.
Almeida, Rodrigo; Ricaño-Ponce, Isis; Kumar, Vinod; Deelen, Patrick; Szperl, Agata; Trynka, Gosia; Gutierrez-Achury, Javier; Kanterakis, Alexandros; Westra, Harm-Jan; Franke, Lude; Swertz, Morris A; Platteel, Mathieu; Bilbao, Jose Ramon; Barisani, Donatella; Greco, Luigi; Mearin, Luisa; Wolters, Victorien M; Mulder, Chris; Mazzilli, Maria Cristina; Sood, Ajit; Cukrowska, Bozena; Núñez, Concepción; Pratesi, Riccardo; Withoff, Sebo; Wijmenga, Cisca
2014-05-01
Using the Immunochip for genotyping, we identified 39 non-human leukocyte antigen (non-HLA) loci associated to celiac disease (CeD), an immune-mediated disease with a worldwide frequency of ∼1%. The most significant non-HLA signal mapped to the intronic region of 70 kb in the LPP gene. Our aim was to fine map and identify possible functional variants in the LPP locus. We performed a meta-analysis in a cohort of 25 169 individuals from six different populations previously genotyped using Immunochip. Imputation using data from the Genome of the Netherlands and 1000 Genomes projects, followed by meta-analysis, confirmed the strong association signal on the LPP locus (rs2030519, P = 1.79 × 10(-49)), without any novel associations. The conditional analysis on this top SNP-indicated association to a single common haplotype. By performing haplotype analyses in each population separately, as well as in a combined group of the four populations that reach the significant threshold after correction (P < 0.008), we narrowed down the CeD-associated region from 70 to 2.8 kb (P = 1.35 × 10(-44)). By intersecting regulatory data from the ENCODE project, we found a functional SNP, rs4686484 (P = 3.12 × 10(-49)), that maps to several B-cell enhancer elements and a highly conserved region. This SNP was also predicted to change the binding motif of the transcription factors IRF4, IRF11, Nkx2.7 and Nkx2.9, suggesting its role in transcriptional regulation. We later found significantly low levels of LPP mRNA in CeD biopsies compared with controls, thus our results suggest that rs4686484 is the functional variant in this locus, while LPP expression is decreased in CeD.
Materials-Process Interactions in Ternary Alloy Semiconductors.
1984-08-01
high, the surface potential can be * modulated . PECVD SiO. appears to be a viable candidate as a gate dielectric for * Irf ,fO-4A)s MISFETs...it is desirable to integrate the detectors with circuits capable of performing signal processing functions. These circuits can either be fabricated in...to be a major problem in In0. 5 3Ga 0.* 47 s. 25 S. . . . . 13821 -1 R I (a) CROSS SECTION KEYBOARD 210M ANNEALING CHAMBER GATE TRIGG TRIAC
Identification of DreI as an Antiviral Factor Regulated by RLR Signaling Pathway
Li, Shun; Sun, Fan; Zhang, Yi-Bing; Gui, Jian-Fang; Zhang, Qi-Ya
2012-01-01
Background Retinoic acid-inducible gene I (RIG-I)–like receptors (RLRs) had been demonstrated to prime interferon (IFN) response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV)-induced gene 2 (Gig2), had been suggested to play important role in host antiviral response. Methodology/Principal Findings In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI), and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV) and recombinant IFN (rIFN), showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE) in the 5′ flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV) infection in EPC (Epithelioma papulosum cyprinid) cells. Conclusions/Significance These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway. PMID:22412872
NASA Astrophysics Data System (ADS)
Johnson, Lawrence; Ferry, Cécile; Poinssot, Christophe; Lovera, Patrick
2005-11-01
A source-term model for the short-term release of radionuclides from spent nuclear fuel (SNF) has been developed. It provides quantitative estimates of the fraction of various radionuclides that are expected to be released rapidly (the instant release fraction, or IRF) when water contacts the UO 2 or MOX fuel after container breaching in a geological repository. The estimates are based on correlation of leaching data for radionuclides with fuel burnup and fission gas release. Extrapolation of the data to higher fuel burnup values is based on examination of data on fuel restructuring, such as rim development, and on fission gas release data, which permits bounding IRF values to be estimated assuming that radionuclide releases will be less than fission gas release. The consideration of long-term solid-state changes influencing the IRF prior to canister breaching is addressed by evaluating alpha self-irradiation enhanced diffusion, which may gradually increase the accumulation of fission products at grain boundaries.
Yu, Xiao; Cai, Baowei; Wang, Mingjun; Tan, Peng; Ding, Xilai; Wu, Jian; Li, Jian; Li, Qingtian; Liu, Pinghua; Xing, Changsheng; Wang, Helen Y; Su, Xin-Zhuan; Wang, Rong-Fu
2016-11-15
Type I interferon (IFN) is critical for controlling pathogen infection; however, its regulatory mechanisms in plasmacytoid cells (pDCs) still remain unclear. Here, we have shown that nucleic acid sensors cGAS-, STING-, MDA5-, MAVS-, or transcription factor IRF3-deficient mice produced high amounts of type I IFN-α and IFN-β (IFN-α/β) in the serum and were resistant to lethal plasmodium yoelii YM infection. Robust IFN-α/β production was abolished when gene encoding nucleic acid sensor TLR7, signaling adaptor MyD88, or transcription factor IRF7 was ablated or pDCs were depleted. Further, we identified SOCS1 as a key negative regulator to inhibit MyD88-dependent type I IFN signaling in pDCs. Finally, we have demonstrated that pDCs, cDCs, and macrophages were required for generating IFN-α/β-induced subsequent protective immunity. Thus, our findings have identified a critical regulatory mechanism of type I IFN signaling in pDCs and stage-specific function of immune cells in generating potent immunity against lethal YM infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Amiri Jahromi, Rakhshan; Nasiri, Mahboobeh; Jahromi, Athar Rasekh
2017-01-01
This study aimed to examine the association of three functional IRF5 rs10954213, rs3757385, and rs41298401 polymorphisms with susceptibility to unexplained recurrent pregnancy loss (RPL) among Iranian women from south of Iran. 176 women with unexplained RPL and 173 healthy postmenopausal controls were enrolled in this case-control study. Genotyping of the polymorphisms rs10954213 and rs3757385 was carried out using touchdown tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS PCR), and polymorphism rs41298401 was typed using PCR-restriction fragment length polymorphism (PCR-RFLP). Genotype frequencies were significantly different between RPL cases and controls regarding AG heterozygote genotype of rs10954213, GT genotype of rs3757385, and GG genotype of rs41298401. In addition, allele variants (G for rs10954213, T for rs3757385, and G for rs41298401) showed protective role against RPL, while GG haplotype of two first variants was shown to be a susceptibility factor for the disease. These data provide the first evidence, to our knowledge, of the protective role of the studied IRF5 gene polymorphisms against unexplained RPL among Iranian women from south of Iran.
Importance and Difficulties of Pursuing rTMS Research in Acute Stroke
Chappuis, Diane M.; Finkelstein, Marsha J.; Frost, Kate L.; Leuty, Lynette K.; McNulty, Allison L.; Oddsson, Lars I. E.; Seifert, Erin M.; Kimberley, Teresa J.
2017-01-01
Abstract Although much research has been done on repetitive transcranial magnetic stimulation (rTMS) in chronic stroke, only sparse research has been done in acute stroke despite the particularly rich potential for neuroplasticity in this stage. We attempted a preliminary clinical trial in one active, high-quality inpatient rehabilitation facility (IRF) in the -United States. But after enrolling only 4 patients in the grant period, the study was stopped because of low enrollment. The purpose of this paper is to offer a perspective describing the important physiologic rationale for including rTMS in the early phase of stroke, the reasons for our poor patient enrollment in our attempted study, and recommendations to help future studies succeed. We conclude that, if scientists and clinicians hope to enhance stroke outcomes, more attention must be directed to leveraging conventional rehabilitation with neuromodulation in the acute phase of stroke when the capacity for neuroplasticity is optimal. Difficulties with patient enrollment must be addressed by reassessing traditional inclusion and exclusion criteria. Factors that shorten patients’ length of stay in the IRF must also be reassessed at all policy-making levels to make ethical decisions that promote higher functional outcomes while retaining cost consciousness. PMID:28426872
Baril, Martin; Racine, Marie-Eve; Penin, François; Lamarre, Daniel
2009-02-01
The mitochondrial antiviral signaling (MAVS) protein plays a central role in innate antiviral immunity. Upon recognition of a virus, intracellular receptors of the RIG-I-like helicase family interact with MAVS to trigger a signaling cascade. In this study, we investigate the requirement of the MAVS structure for enabling its signaling by structure-function analyses and resonance energy transfer approaches in live cells. We now report the essential role of the MAVS oligomer in signal transduction and map the transmembrane domain as the main determinant of dimerization. A combination of mutagenesis and computational methods identified a cluster of residues making favorable van der Waals interactions at the MAVS dimer interface. We also correlated the activation of IRF3 and NF-kappaB with MAVS oligomerization rather than its mitochondrial localization. Finally, we demonstrated that MAVS oligomerization is disrupted upon expression of HCV NS3/4A protease, suggesting a mechanism for the loss of antiviral signaling. Altogether, our data suggest that the MAVS oligomer is essential in the formation of a multiprotein membrane-associated signaling complex and enables downstream activation of IRF3 and NF-kappaB in antiviral innate immunity.
Satpathy, Ansuman T.; Briseño, Carlos G.; Cai, Xiongwei; Michael, Drew G.; Chou, Chun; Hsiung, Sunnie; Bhattacharya, Deepta; Speck, Nancy A.
2014-01-01
Runx1 and Cbfβ are critical for the establishment of definitive hematopoiesis and are implicated in leukemic transformation. Despite the absolute requirements for these factors in the development of hematopoietic stem cells and lymphocytes, their roles in the development of bone marrow progenitor subsets have not been defined. Here, we demonstrate that Cbfβ is essential for the development of Flt3+ macrophage-dendritic cell (DC) progenitors in the bone marrow and all DC subsets in the periphery. Besides the loss of DC progenitors, pan-hematopoietic Cbfb-deficient mice also lack CD105+ erythroid progenitors, leading to severe anemia at 3 to 4 months of age. Instead, Cbfb deficiency results in aberrant progenitor differentiation toward granulocyte-macrophage progenitors (GMPs), resulting in a myeloproliferative phenotype with accumulation of GMPs in the periphery and cellular infiltration of the liver. Expression of the transcription factor Irf8 is severely reduced in Cbfb-deficient progenitors, and overexpression of Irf8 restors DC differentiation. These results demonstrate that Runx proteins and Cbfβ restrict granulocyte lineage commitment to facilitate multilineage hematopoietic differentiation and thus identify their novel tumor suppressor function in myeloid leukemia. PMID:24677539
Cauvi, David M; Cauvi, Gabrielle; Toomey, Christopher B; Jacquinet, Eric; Pollard, Kenneth Michael
2017-07-01
IFN-γ has been found to be robustly important to disease pathogenesis in both idiopathic and induced models of murine lupus. In transgenic mice, over production of IFN-γ in the skin results in an inflammatory response and autoimmunity. This suggests that localized exposure to environmental factors that induce autoimmunity may be associated with expression of an IFN-γ-dependent inflammatory response. Using murine mercury-induced autoimmunity (mHgIA), the severity of inflammation and proinflammatory cytokine expression, including the cellular source of IFN-γ, were assessed at the site of subcutaneous exposure and in secondary lymphoid organs. Exposure induced a localized chronic inflammation comprising both innate and adaptive immune cells but only CD8+ T and NK cells were reduced in the absence of IFN-γ. IFN-γ+ cells began to appear as early as day 1 and comprised both resident (γδ T) and infiltrating cells (CD8+ T, NKT, CD11c+). The requirements for inflammation were examined in mice deficient in genes required (Ifng, Il6) or not required (Casp1) for mHgIA. None of these genes were essential for induction of inflammation, however IFN-γ and IL-6 were required for exacerbation of other proinflammatory cytokines. Additionally, lack of IFN-γ or IL-6 impacted expression of genes regulated by either IFN-γ or type I IFN. Significantly, both IFN-γ and IL-6 were required for increased expression of IRF-1 which regulates IFN stimulated genes and is required for mHgIA. Thus IRF-1 may be at the nexus of the interplay between IFN-γ and IL-6 in exacerbating a xenobiotic-induced inflammatory response, regulation of interferon responsive genes and autoimmunity. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pryke, Kara M.; Abraham, Jinu; Sali, Tina M.; Gall, Bryan J.; Archer, Iris; Liu, Andrew; Bambina, Shelly; Baird, Jason; Gough, Michael; Chakhtoura, Marita; Haddad, Elias K.; Kirby, Ilsa T.; Nilsen, Aaron; Streblow, Daniel N.; Hirsch, Alec J.; Smith, Jessica L.
2017-01-01
ABSTRACT The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy’s potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity. PMID:28465426
Hamad, Mustafa; Amen, Omar; Mahmoud, Mohamed; Hassanin, Ola; Saif-Edin, Mostafa
2018-06-01
Avian influenza (AI) vaccines are widely used to control and eliminate the ongoing avian influenza virus epidemic in Egypt. A strict vaccination policy with inactivated AI vaccines has been widely applied, however the virus still circulating, evolving and causing great negative impact to the poultry sector in Egypt. Therefore, an updated poultry vaccination policy using different vaccine technologies might be valuable as an innovative additional control strategy of AIV in Egypt. In the present study, the effectiveness of different avian influenza (AI) vaccination schedules was evaluated in 300 commercial layer chicks (ISA White) using either the oil-emulsion baculovirus-H5-prototype vaccine (baculovirus-H5 prototype) or turkey herpesvirus (HVT) vector vaccine containing the hemagglutinin (HA) gene from H5N1 strain (rHVT-H5), applied alone or in combination and in different settings. Vaccination with either two injections of the baculovirus-H5 prototype, a single injection of rHVT-H5 or priming with rHVT-H5 at 1 day old followed by boosting with the baculovirus-H5 prototype induced AI-HI protective antibody responses starting as early as 3 to 4 weeks of age and lasting up to the end of the rearing period (16 weeks). A single vaccination with the baculovirus-H5 prototype did not generate a protective antibody titre for the entire rearing period. Furthermore, the present study elucidated that vaccination once or twice with the baculovirus-H5 vaccine prototype activated the chicken interferon-alpha (Ch-IFN-alpha) signalling pathway via transduction of antiviral components, e.g., Mx1 and IRF7. Birds immunized once with rHVT-H5 at 1 day old did not show activation of the Mx1 and IRF7 transcripts; however, following boosting with the baculovirus-H5 prototype vaccine, up-regulation of Mx1 and IRF7 was observed. Based on our findings, it can be concluded that either reinforcement with two injections of the baculovirus-H5 prototype or prime-boost vaccination (rHVT-H5 at 1 day old followed by the baculovirus-H5 prototype vaccine at 8 days old) is a successful strategy to induce both innate and humoral immune responses and could be recommended for the layer production sector over the entire rearing period, especially in AI-endemic areas.
Virulent poxviruses inhibit DNA sensing by preventing STING activation.
Georgana, Iliana; Sumner, Rebecca P; Towers, Greg J; Maluquer de Motes, Carlos
2018-02-28
Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerises and translocates from the ER to a perinuclear region to mediate IRF-3 activation. Poxviruses are dsDNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here we investigated the activation of innate immune signalling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerised and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerisation and phosphorylation during infection and in response to transfected DNA and cGAMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence. IMPORTANCE Poxviruses are dsDNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as efficient oncolytics in virotherapy. The successful therapeutic use of VACV depends on a detailed understanding of its ability to modulate host innate immune responses. DNA sensing is a critical cellular mechanism for pathogen detection and activation of innate immunity that is centrally coordinated by the ER-resident protein STING. Here STING is shown to mediate immune activation in response to MVA, but not to virulent VACV strains or other virulent poxviruses, which prevent STING activation and DNA sensing during infection and after DNA transfection. These results provide new insights into poxvirus immune evasion and have implications in the rational design of VACV-based therapeutics. Copyright © 2018 Georgana et al.
Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11
Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E.; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D.; David, Michael
2013-01-01
In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway1. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination. PMID:23000900
Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.
Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D; David, Michael
2012-11-01
In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.
Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.
Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E
2017-11-01
Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Díaz, Tania; Rodríguez, Vanina; Lozano, Ester; Mena, Mari-Pau; Calderón, Marcos; Rosiñol, Laura; Martínez, Antonio; Tovar, Natalia; Pérez-Galán, Patricia; Bladé, Joan; Roué, Gaël; de Larrea, Carlos Fernández
2017-01-01
Most patients with multiple myeloma treated with current therapies, including immunomodulatory drugs, eventually develop relapsed/refractory disease. Clinical activity of lenalidomide relies on degradation of Ikaros and the consequent reduction in IRF4 expression, both required for myeloma cell survival and involved in the regulation of MYC transcription. Thus, we sought to determine the combinational effect of an MYC-interfering therapy with lenalidomide/dexamethasone. We analyzed the potential therapeutic effect of the combination of the BET bromodomain inhibitor CPI203 with the lenalidomide/dexamethasone regimen in myeloma cell lines. CPI203 exerted a dose-dependent cell growth inhibition in cell lines, indeed in lenalidomide/dexamethasone-resistant cells (median response at 0.5 μM: 65.4%), characterized by G1 cell cycle blockade and a concomitant inhibition of MYC and Ikaros signaling. These effects were potentiated by the addition of lenalidomide/dexamethasone. Results were validated in primary plasma cells from patients with multiple myeloma co-cultured with the mesenchymal stromal cell line stromaNKtert. Consistently, the drug combination evoked a 50% reduction in cell proliferation and correlated with basal Ikaros mRNA expression levels (P=0.04). Finally, in a SCID mouse xenotransplant model of myeloma, addition of CPI203 to lenalidomide/dexamethasone decreased tumor burden, evidenced by a lower glucose uptake and increase in the growth arrest marker GADD45B, with simultaneous downregulation of key transcription factors such as MYC, Ikaros and IRF4. Taken together, our data show that the combination of a BET bromodomain inhibitor with a lenalidomide-based regimen may represent a therapeutic approach to improve the response in relapsed/refractory patients with multiple myeloma, even in cases with suboptimal prior response to immunomodulatory drugs. PMID:28751557
von Bary, Christian; Deneke, Thomas; Arentz, Thomas; Schade, Anja; Lehrmann, Heiko; Fredersdorf, Sabine; Baldaranov, Dobri; Maier, Lars; Schlachetzki, Felix
2017-01-01
Left atrial pulmonary vein isolation (PVI) is an accepted treatment option for patients with symptomatic atrial fibrillation (AF). This procedure can be complicated by stroke or silent cerebral embolism. Online measurement of microembolic signals (MESs) by transcranial Doppler (TCD) may be useful for characterizing thromboembolic burden during PVI. In this prospective multicenter trial, we investigated the burden, characteristics, and composition of MES during left atrial catheter ablation using a variety of catheter technologies. PVI was performed in a total of 42 patients using the circular-shaped multielectrode pulmonary vein ablation catheter (PVAC) technology in 23, an irrigated radiofrequency (IRF) in 14, and the cryoballoon (CB) technology in 5 patients. TCD was used to detect the total MES burden and sustained thromboembolic showers (TESs) of >30 s. During TES, the site of ablation within the left atrium was registered. MES composition was classified manually into "solid," "gaseous," or "equivocal" by off-line expert assessment. The total MES burden was higher when using IRF compared to CB (2,336 ± 1,654 vs. 593 ± 231; p = 0.007) and showed a tendency toward a higher burden when using IRF compared to PVAC (2,336 ± 1,654 vs. 1,685 ± 2,255; p = 0.08). TES occurred more often when using PVAC compared to IRF (1.5 ± 2 vs. 0.4 ± 1.3; p = 0.04) and most frequently when ablation was performed close to the left superior pulmonary vein (LSPV). Of the MES, 17.004 (23%) were characterized as definitely solid, 13.204 (18%) as clearly gaseous, and 44.366 (59%) as equivocal. We investigated the burden and characteristics of MES during left atrial catheter ablation for AF. All ablation techniques applied in this study generated a relevant number of MES. There was a significant difference in total MES burden using IRF compared to CB and a tendency toward a higher burden using IRF compared to PVAC. The highest TES burden was found in the PVAC group, particularly during ablation close to the LSPV. The composition of thromboembolic particles was balanced. The impact of MES, TES, and composition of thromboembolic particles on neurological outcome needs to be evaluated further. (Clinical Trial Registration: Deutsches Register Klinischer Studien, https://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00003465. DRKS00003465.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Kim C.; He, Biao; Teng, Michael N.
2007-11-10
Paramyxoviruses have been shown to produce proteins that inhibit interferon production and signaling. For human respiratory syncytial virus (RSV), the nonstructural NS1 and NS2 proteins have been shown to have interferon antagonist activity through an unknown mechanism. To understand further the functions of NS1 and NS2, we generated recombinant RSV in which both NS1 and NS2 were replaced by the PIV5 V protein, which has well-characterized IFN antagonist activities ({delta}NS1/2-V). Expression of V was able to partially inhibit IFN responses in {delta}NS1/2-V-infected cells. In addition, the replication kinetics of {delta}NS1/2-V were intermediate between {delta}NS1/2 and wild-type (rA2) in A549 cells.more » However, expression of V did not affect the ability of {delta}NS1/2-V to activate IRF3 nuclear translocation and IFN{beta} transcription. These data indicate that V was able to replace some of the IFN inhibitory functions of the RSV NS1 and NS2 proteins, but also that NS1 and NS2 have functions in viral replication beyond IFN antagonism.« less
Jääskeläinen, Kirsi M; Kaukinen, Pasi; Minskaya, Ekaterina S; Plyusnina, Angelina; Vapalahti, Olli; Elliott, Richard M; Weber, Friedemann; Vaheri, Antti; Plyusnin, Alexander
2007-10-01
The S RNA genome segment of hantaviruses carried by Arvicolinae and Sigmodontinae rodents encodes the nucleocapsid (N) protein and has an overlapping (+1) open reading frame (ORF) for a putative nonstructural protein (NSs). The aim of this study was to determine whether the ORF is functional. A protein corresponding to the predicted size of Tula virus (TULV) NSs was detected using coupled in vitro transcription and translation from a cloned S segment cDNA, and a protein corresponding to the predicted size of Puumala virus (PUUV) NSs was detected in infected cells by Western blotting with an anti-peptide serum. The activities of the interferon beta (IFN-beta) promoter, and nuclear factor kappa B (NF-kappaB)- and interferon regulatory factor-3 (IRF-3) responsive promoters, were inhibited in COS-7 cells transiently expressing TULV or PUUV NSs. Also IFN-beta mRNA levels in IFN-competent MRC5 cells either infected with TULV or transiently expressing NSs were decreased. These data demonstrate that Tula and Puumala hantaviruses have a functional NSs ORF. The findings may explain why the NSs ORF has been preserved in the genome of most hantaviruses during their long evolution and why hantavirus-infected cells secrete relatively low levels of IFNs. (c) 2007 Wiley-Liss, Inc.
Rhabdovirus evasion of the interferon system.
Rieder, Martina; Conzelmann, Karl-Klaus
2009-09-01
The family Rhabdoviridae contains important pathogens of humans, livestock, and crops, including the insect-transmitted vesicular stomatitis virus (VSV) and the neurotropic rabies virus (RV), which is directly transmitted between mammals. In spite of a highly similar organization of RNA genomes, proteins, and virus particles, cell biology of VSV and RV is divergent in several aspects, particularly with respect to their interplay with the cellular host defense. While infection with both rhabdoviruses is recognized via viral triphosphate RNAs by the cytoplasmic RNA helicase/translocase RIG-I, the viral counteractions to limit the response are contrasting. VSV infection is characterized by a rapid general shutdown of host gene expression and severe cytopathic effects, due to multiple activities of the matrix (M) protein affecting host polymerase functions and mRNA nuclear export, and by rapid and high-level virus replication. In contrast, RV spread and transmission relies on preserving the integrity of host cells, particularly of neurons. While a general cell shutdown by RV M is not observed, RV phosphoprotein (P) has developed independent functions to interfere with activation of IRFs and with STAT signaling. The molecular mechanisms employed are different from those of the paramyxovirus P gene products serving similar functions, and illustrate evolution of IFN antagonists to specifically support virus survival in the natural niches.
Zhou, Li; Li, Jie-Liang; Zhou, Yu; Liu, Jin-Biao; Zhuang, Ke; Gao, Jian-Feng; Liu, Shi; Sang, Ming; Wu, Jian-Guo; Ho, Wen-Zhe
2015-12-01
Is it possible to immunologically activate human cervical epithelial cells to produce antiviral factors that inhibit herpes simplex virus type 2 (HSV-2) replication? Our results indicate that human cervical epithelial cells possess a functional TLR3/RIG-I signaling system, the activation of which can mount an Interferon-λ (IFN-λ)-mediated anti-HSV-2 response. There is limited information about the role of cervical epithelial cells in genital innate immunity against HSV-2 infection. We examined the expression of toll-like receptors (TLRs) and retinoic acid-inducible I (RIG-I) in End1/E6E7 cells by real-time PCR. The IFN-λ induced by TLR3 and RIG-I activation of End1/E6E7 cells was also examined by real-time PCR and ELISA. HSV-2 infection of End1/E6E7 cells was evaluated by the real-time PCR detection of HSV-2 gD expression. The antibody to IL-10Rβ was used to determine whether IFN-λ contributes to TLR3/RIG-I mediated HSV-2 inhibition. Expression of interferon regulatory factor 3 (IRF3), IRF7, IFN-stimulated gene 56 (ISG56), 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA) were determined by the real-time PCR and western blot. End1/E6E7 cells were transfected with shRNA to knockdown the IRF3, IRF7 or RIG-I expression. Student's t-test and post Newman-Keuls test were used to analyze stabilized differences in the immunological parameters above between TLR3/RIG-I-activated cells and control cells. Human cervical epithelial cells expressed functional TLR3 and RIG-I, which could be activated by poly I:C and 5'ppp double-strand RNAs (5'ppp dsRNA), resulting in the induction of endogenous interferon lambda (IFN-λ). The induced IFN-λ contributed to TLR3/RIG-I-mediated inhibition of HSV-2 replication in human cervical epithelial cells, as an antibody to IL-10Rβ, an IFN-λ receptor subunit, could compromise TLR3/RIG-I-mediated inhibition of HSV-2. Further studies showed that TLR3/RIG-I signaling in the cervical epithelial cells by dsRNA induced the expression of the IFN-stimulated genes (ISGs), ISG56, 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA), the key antiviral elements in the IFN signaling pathway. In addition, we observed that the topical treatment of genital mucosa with poly I:C could protect mice from genital HSV-2 infection. Future prospective studies with primary cells and suitable animal models are needed in order to confirm these outcomes. The findings provide direct and compelling evidence that there is intracellular expression and regulation of IFN-λ in human cervical epithelial cells, which may have a key role in the innate genital protection against viral infections. Not applicable. This work was supported by the National Natural Science Foundation of China (81301428 to L.Z. and 81271334 to W.-Z.H.), the Fundamental Research Funds for the Central Universities (2042015kf0188 to L.Z.), the China Postdoctoral Science Foundation (2013M531745 to L.Z.), the Development Program of China ('973', 2012CB518900 to W.-Z.H.) from the Ministry of Science and Technology of the People's Republic of China, grants (DA12815 and DA022177 to W.-Z.H.) from the National Institute on Drug Abuse (NIDA) and the open project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (WDCM005 to M.S.). The authors declare no competing financial interests. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Selective Activation of Human Dendritic Cells by OM-85 through a NF-kB and MAPK Dependent Pathway
Scutera, Sara; Somma, Paolo; Salvi, Valentina; Musso, Tiziana; Tabbia, Giuseppe; Bardessono, Marco; Pasquali, Christian; Mantovani, Alberto; Sozzani, Silvano; Bosisio, Daniela
2013-01-01
OM-85 (Broncho-Vaxom®, Broncho-Munal®, Ommunal®, Paxoral®, Vaxoral®), a product made of the water soluble fractions of 21 inactivated bacterial strain patterns responsible for respiratory tract infections, is used for the prevention of recurrent upper respiratory tract infections and acute exacerbations in chronic obstructive pulmonary disease patients. OM-85 is able to potentiate both innate and adaptive immune responses. However, the molecular mechanisms responsible for OM-85 activation are still largely unknown. Purpose of this study was to investigate the impact of OM-85 stimulation on human dendritic cell functions. We show that OM-85 selectively induced NF-kB and MAPK activation in human DC with no detectable action on the interferon regulatory factor (IRF) pathway. As a consequence, chemokines (i.e. CXCL8, CXCL6, CCL3, CCL20, CCL22) and B-cell activating cytokines (i.e. IL-6, BAFF and IL-10) were strongly upregulated. OM-85 also synergized with the action of classical pro-inflammatory stimuli used at suboptimal concentrations. Peripheral blood mononuclear cells from patients with COPD, a pathological condition often associated with altered PRR expression pattern, fully retained the capability to respond to OM-85. These results provide new insights on the molecular mechanisms of OM-85 activation of the immune response and strengthen the rational for its use in clinical settings. PMID:24386121
Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuehai; Huang, Ziyang, E-mail: huangziyang666@126.com; Lu, Huixia
2012-07-13
Highlights: Black-Right-Pointing-Pointer Titers of ANA and anti-dsDNA antibodies were higher in ApoE{sup -/-} than C57B6/L mice. Black-Right-Pointing-Pointer Spleen was greater and splenocyte apoptosis lower in ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer Level of TLR4 was lower in spleen tissue of ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. Black-Right-Pointing-Pointer The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE{sup -/-}) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE{sup -/-}more » mice. The spleens of all ApoE{sup -/-} and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE{sup -/-} mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE{sup -/-} mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE{sup -/-} than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE{sup -/-} spleen tissue. The down-regulation of TLR4 signal molecules induced by LPS led to decreased expression of Bax and increased serum titers of ANA and anti-dsDNA antibody. Therefore, the TLR4 signal pathway may participate in maintaining the balance of splenocyte apoptosis and autoantibody production in ApoE{sup -/-} mice.« less
Host genetic variation influences gene expression response to rhinovirus infection.
Çalışkan, Minal; Baker, Samuel W; Gilad, Yoav; Ober, Carole
2015-04-01
Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.
Dengue Virus Subverts Host Innate Immunity by Targeting Adaptor Protein MAVS
He, Zhenjian; Zhu, Xun; Wen, Weitao; Yuan, Jie; Hu, Yiwen; Chen, Jiahui; An, Shu; Dong, Xinhuai; Lin, Cuiji; Yu, Jianchen; Wu, Jueheng; Yang, Yi; Cai, Junchao; Li, Jun
2016-01-01
ABSTRACT Dengue virus (DENV) is the most common mosquito-borne virus infecting humans and is currently a serious global health challenge. To establish infection in its host cells, DENV must subvert the production and/or antiviral effects of interferon (IFN). The aim of this study was to understand the mechanisms by which DENV suppresses IFN production. We determined that DENV NS4A interacts with mitochondrial antiviral signaling protein (MAVS), which was previously found to activate NF-κB and IFN regulatory factor 3 (IRF3), thus inducing type I IFN in the mitochondrion-associated endoplasmic reticulum membranes (MAMs). We further demonstrated that NS4A is associated with the N-terminal CARD-like (CL) domain and the C-terminal transmembrane (TM) domain of MAVS. This association prevented the binding of MAVS to RIG-I, resulting in the repression of RIG-I-induced IRF3 activation and, consequently, the abrogation of IFN production. Collectively, our findings illustrate a new molecular mechanism by which DENV evades the host immune system and suggest new targets for anti-DENV strategies. IMPORTANCE Type I interferon (IFN) constitutes the first line of host defense against invading viruses. To successfully establish infection, dengue virus (DENV) must counteract either the production or the function of IFN. The mechanism by which DENV suppresses IFN production is poorly understood and characterized. In this study, we demonstrate that the DENV NS4A protein plays an important role in suppressing interferon production through binding MAVS and disrupting the RIG-I–MAVS interaction in mitochondrion-associated endoplasmic reticulum membranes (MAMs). Our study reveals that MAVS is a novel host target of NS4A and provides a molecular mechanism for DENV evasion of the host innate immune response. These findings have important implications for understanding the pathogenesis of DENV and may provide new insights into using NS4A as a therapeutic and/or prevention target. PMID:27252539
Identification of genes whose expression is altered by obesity throughout the arterial tree.
Padilla, Jaume; Jenkins, Nathan T; Thorne, Pamela K; Martin, Jeffrey S; Rector, R Scott; Davis, J Wade; Laughlin, M Harold
2014-11-15
We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications.
Identification of genes whose expression is altered by obesity throughout the arterial tree
Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Davis, J. Wade; Laughlin, M. Harold
2014-01-01
We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications. PMID:25271210
The hematopoietic cell-specific transcription factor PU.1 is critical for expression of CD11c.
Yashiro, Takuya; Kasakura, Kazumi; Oda, Yoshihito; Kitamura, Nao; Inoue, Akihito; Nakamura, Shusuke; Yokoyama, Hokuto; Fukuyama, Kanako; Hara, Mutsuko; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Makoto; Nishiyama, Chiharu
2017-02-01
PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family, which plays an important role in the development of dendritic cells (DCs). CD11c (encoded by Itgax) is well established as a characteristic marker of hematopoietic lineages including DCs. In the present study, we analyzed the role of PU.1 (encoded by Spi-1) in the expression of CD11c. When small interfering RNA (siRNA) for Spi-1 was introduced into bone marrow-derived DCs (BMDCs), the mRNA level and cell surface expression of CD11c were dramatically reduced. Using reporter assays, the TTCC sequence at -56/-53 was identified to be critical for PU.1-mediated activation of the promoter. An EMSA showed that PU.1 directly bound to this region. ChIP assays demonstrated that a significant amount of PU.1 bound to this region on chromosomal DNA in BMDCs, which was decreased in LPS-stimulated BMDCs in accordance with the reduced levels of mRNAs of Itgax and Spi-1, and the histone acetylation degree. Enforced expression of exogenous PU.1 induced the expression of the CD11c protein on the cell surface of mast cells, whereas control transfectants rarely expressed CD11c. Quantitative RT-PCR also showed that the expression of a transcription factor Irf4, which is a partner molecule of PU.1, was reduced in PU.1-knocked down BMDCs. IRF4 transactivated the Itgax gene in a synergistic manner with PU.1. Taken together, these results indicate that PU.1 functions as a positive regulator of CD11c gene expression by directly binding to the Itgax promoter and through transactivation of the Irf4 gene. © The Japanese Society for Immunology. 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chang, M X; Nie, P; Xie, H X; Sun, B J; Gao, Q
2005-01-01
The cDNAs and genes of two different types of leucine-rich repeat-containing proteins from grass carp (Ctenopharyngodon idellus) were cloned. Homology search revealed that the two genes, designated as GC-GARP and GC-LRG, have 37% and 32% deduced amino-acid sequence similarities with human glycoprotein A repetitions predominant precursor (GARP) and leucine-rich alpha2-glycoprotein (LRG), respectively. The cDNAs of GC-GARP and GC-LRG encoded 664 and 339 amino acid residues, respectively. GC-GARP and GC-LRG contain many distinct structural and/or functional motifs of the leucine-rich repeat (LRR) subfamily, such as multiple conserved 11-residue segments with the consensus sequence LxxLxLxxN/CxL (x can be any amino acid). The genes GC-GARP and GC-LRG consist of two exons, with 4,782 bp and 2,119 bp in total length, respectively. The first exon of each gene contains a small 5'-untranslated region and partial open reading frame. The putative promoter region of GC-GARP was found to contain transcription factor binding sites for GATA-1, IRF4, Oct-1, IRF-7, IRF-1, AP1, GATA-box and NFAT, and the promoter region of GC-LRG for MYC-MAX, MEIS1, ISRE, IK3, HOXA9 and C/EBP alpha. Phylogenetic analysis showed that GC-GARP and mammalian GARPs were clustered into one branch, while GC-LRG and mammalian LRGs were in another branch. The GC-GARP gene was only detected in head kidney, and GC-LRG in the liver, spleen and heart in the copepod (Sinergasilus major)-infected grass carp, indicating the induction of gene expression by the parasite infection. The results obtained in the present study provide insight into the structure of fish LRR genes, and further study should be carried out to understand the importance of LRR proteins in host-pathogen interactions.
Iqbal, Jawed; Ansari, Mairaj Ahmed; Kumar, Binod; Dutta, Dipanjan; Roy, Arunava; Chikoti, Leela; Pisano, Gina; Dutta, Sujoy; Veettil, Mohanan Valiya; Chandran, Bala
2016-01-01
IFI16 (gamma-interferon-inducible protein 16), a predominantly nuclear protein involved in transcriptional regulation, also functions as an innate immune response DNA sensor and induces the IL-1β and antiviral type-1 interferon-β (IFN-β) cytokines. We have shown that IFI16, in association with BRCA1, functions as a sequence independent nuclear sensor of episomal dsDNA genomes of KSHV, EBV and HSV-1. Recognition of these herpesvirus genomes resulted in IFI16 acetylation, BRCA1-IFI16-ASC-procaspase-1 inflammasome formation, cytoplasmic translocation, and IL-1β generation. Acetylated IFI16 also interacted with cytoplasmic STING and induced IFN-β. However, the identity of IFI16 associated nuclear proteins involved in STING activation and the mechanism is not known. Mass spectrometry of proteins precipitated by anti-IFI16 antibodies from uninfected endothelial cell nuclear lysate revealed that histone H2B interacts with IFI16. Single and double proximity ligation microscopy, immunoprecipitation, EdU-genome labeled virus infection, and chromatin immunoprecipitation studies demonstrated that H2B is associated with IFI16 and BRCA1 in the nucleus in physiological conditions. De novo KSHV and HSV-1 infection as well as latent KSHV and EBV infection induces the cytoplasmic distribution of H2B-IFI16, H2B-BRCA1 and IFI16-ASC complexes. Vaccinia virus (dsDNA) cytoplasmic replication didn’t induce the redistribution of nuclear H2B-IFI16 or H2B into the cytoplasm. H2B is critical in KSHV and HSV-1 genome recognition by IFI16 during de novo infection. Viral genome sensing by IFI16-H2B-BRCA1 leads to BRCA1 dependent recruitment of p300, and acetylation of H2B and IFI16. BRCA1 knockdown or inhibition of p300 abrogated the acetylation of H2B-IFI16 or H2B. Ran-GTP protein mediated the translocation of acetylated H2B and IFI16 to the cytoplasm along with BRCA1 that is independent of IFI16-ASC inflammasome. ASC knockdown didn’t affect the acetylation of H2B, its cytoplasmic transportation, and the association of STING with IFI16 and H2B during KSHV infection. Absence of H2B didn’t affect IFI16-ASC association and cytoplasmic distribution and thus demonstrating that IFI16-H2B complex is independent of IFI16-ASC-procaspase-1-inflammasome complex formed during infection. The H2B-IFI16-BRCA1 complex interacted with cGAS and STING in the cytoplasm leading to TBK1 and IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-β production. Silencing of H2B, cGAS and STING inhibited IFN-β induction but not IL-1β secretion, and cGAMP activity is significantly reduced by H2B and IFI16 knockdown during infection. Silencing of ASC inhibited IL-1β secretion but not IFN-β secretion during de novo KSHV and HSV-1 infection. These studies identify H2B as an innate nuclear sensor mediating a novel extra chromosomal function, and reveal that two IFI16 complexes mediate KSHV and HSV-1 genome recognition responses, with recognition by the IFI16-BRCA1-H2B complex resulting in IFN-β responses and recognition by IFI16-BRCA1 resulting in inflammasome responses. PMID:27764250
Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo.
Ulges, Alexander; Klein, Matthias; Reuter, Sebastian; Gerlitzki, Bastian; Hoffmann, Markus; Grebe, Nadine; Staudt, Valérie; Stergiou, Natascha; Bohn, Toszka; Brühl, Till-Julius; Muth, Sabine; Yurugi, Hajime; Rajalingam, Krishnaraj; Bellinghausen, Iris; Tuettenberg, Andrea; Hahn, Susanne; Reißig, Sonja; Haben, Irma; Zipp, Frauke; Waisman, Ari; Probst, Hans-Christian; Beilhack, Andreas; Buchou, Thierry; Filhol-Cochet, Odile; Boldyreff, Brigitte; Breloer, Minka; Jonuleit, Helmut; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias
2015-03-01
The quality of the adaptive immune response depends on the differentiation of distinct CD4(+) helper T cell subsets, and the magnitude of an immune response is controlled by CD4(+)Foxp3(+) regulatory T cells (Treg cells). However, how a tissue- and cell type-specific suppressor program of Treg cells is mechanistically orchestrated has remained largely unexplored. Through the use of Treg cell-specific gene targeting, we found that the suppression of allergic immune responses in the lungs mediated by T helper type 2 (TH2) cells was dependent on the activity of the protein kinase CK2. Genetic ablation of the β-subunit of CK2 specifically in Treg cells resulted in the proliferation of a hitherto-unexplored ILT3(+) Treg cell subpopulation that was unable to control the maturation of IRF4(+)PD-L2(+) dendritic cells required for the development of TH2 responses in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiyomiya, Hiroyasu; Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580; Ariyoshi, Wataru
2015-05-01
Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, includingmore » Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.« less
Global source attribution of sulfate concentration and direct and indirect radiative forcing
NASA Astrophysics Data System (ADS)
Yang, Yang; Wang, Hailong; Smith, Steven J.; Easter, Richard; Ma, Po-Lun; Qian, Yun; Yu, Hongbin; Li, Can; Rasch, Philip J.
2017-07-01
The global source-receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010-2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with -0.31 W m-2 contributed by anthropogenic sulfate and -0.11 W m-2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17-84 % to the total DRF. East Asia has the largest contribution of 20-30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of -0.44 W m-2. DMS has the largest contribution, explaining -0.23 W m-2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.
Sequestration of radioactive iodine in silver-palladium phases in commercial spent nuclear fuel
NASA Astrophysics Data System (ADS)
Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.
2016-12-01
Radioactive iodine is the Achilles' heel in the design for the safe geological disposal of spent uranium oxide (UO2) nuclear fuel. Furthermore, iodine's high volatility and aqueous solubility were mainly responsible for the high early doses released during the accident at Fukushima Daiichi in 2011. Studies Kienzler et al., however, have indicated that the instant release fraction (IRF) of radioiodine (131/129I) does not correlate directly with increasing fuel burn-up. In fact, there is a peak in the release of iodine at around 50-60 MW d/kgU, and with increasing burn-up, the IRF of 131/129I decreases. The reasons for this decrease have not fully been understood. We have performed microscopic analysis of chemically processed high burn-up UO2 fuel (80 MW d/kgU) and have found recalcitrant nano-particles containing, Pd, Ag, I, and Br, possibly consistent with a high pressure phase of silver iodide in the undissolved residue. It is likely that increased levels of Ag and Pd from 239Pu fission in high burnup fuels leads to the formation of these metal halides. The occurrence of these phases in UO2 nuclear fuels may reduce the impact of long-lived 129I on the repository performance assessment calculations.
Chang, Ruey-Yi; Hsu, Ta-Wen; Chen, Yen-Lin; Liu, Shu-Fan; Tsai, Yi-Jer; Lin, Yun-Tong; Chen, Yi-Shiuan; Fan, Yi-Hsin
2013-09-27
Noncoding RNA (ncRNA) plays a critical role in modulating a broad range of diseases. All arthropod-borne flaviviruses produce short fragment ncRNA (sfRNA) collinear with highly conserved regions of the 3'-untranslated region (UTR) in the viral genome. We show that the molar ratio of sfRNA to genomic RNA in Japanese encephalitis virus (JEV) persistently infected cells is greater than that in acutely infected cells, indicating an sfRNA role in establishing persistent infection. Transfecting excess quantities of sfRNA into JEV-infected cells reduced interferon-β (IFN-β) promoter activity by 57% and IFN-β mRNA levels by 52%, compared to mock-transfected cells. Transfection of sfRNA into JEV-infected cells also reduced phosphorylation of interferon regulatory factor-3 (IRF-3), the IFN-β upstream regulator, and blocked roughly 30% of IRF-3 nuclear localization. Furthermore, JEV-infected sfRNA transfected cells produced 23% less IFN-β-stimulated apoptosis than mock-transfected groups did. Taken together, these results suggest that sfRNA plays a role against host-cell antiviral responses, prevents cells from undergoing apoptosis, and thus contributes to viral persistence. Copyright © 2013 Elsevier B.V. All rights reserved.
Kobayashi, Toshihiko; Shimabukuro-Demoto, Shiho; Yoshida-Sugitani, Reiko; Furuyama-Tanaka, Kaori; Karyu, Hitomi; Sugiura, Yuki; Shimizu, Yukiko; Hosaka, Toshiaki; Goto, Motohito; Kato, Norihiro; Okamura, Tadashi; Suematsu, Makoto; Yokoyama, Shigeyuki; Toyama-Sorimachi, Noriko
2014-09-18
SLC15A4 is a lysosome-resident, proton-coupled amino-acid transporter that moves histidine and oligopeptides from inside the lysosome to the cytosol of eukaryotic cells. SLC15A4 is required for Toll-like receptor 7 (TLR7)- and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid dendritic cells (pDCs) and is involved in the pathogenesis of certain diseases including lupus-like autoimmunity. How SLC15A4 contributes to diseases is largely unknown. Here we have shown that B cell SLC15A4 was crucial for TLR7-triggered IFN-I and autoantibody productions in a mouse lupus model. SLC15A4 loss disturbed the endolysosomal pH regulation and probably the v-ATPase integrity, and these changes were associated with disruption of the mTOR pathway, leading to failure of the IFN regulatory factor 7 (IRF7)-IFN-I regulatory circuit. Importantly, SLC15A4's transporter activity was necessary for the TLR-triggered cytokine production. Our findings revealed that SLC15A4-mediated optimization of the endolysosomal state is integral to a TLR7-triggered, mTOR-dependent IRF7-IFN-I circuit that leads to autoantibody production. Copyright © 2014 Elsevier Inc. All rights reserved.
Viral degradasome hijacks mitochondria to suppress innate immunity
Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen
2013-01-01
The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405
Park, Se-Jeong; Lee, Mi-Young; Son, Bu-Soon; Youn, Hyung-Sun
2009-07-01
Toll-like receptors (TLRs) are primary sensors that detect a wide variety of microbial components involving induction of innate immune responses. After recognition of microbial components, TLRs trigger the activation of myeloid differential factor 88 (MyD88) and Toll-interleukin-1 (IL-1) receptor domain-containing adapter inducing interferon-beta (TRIF)-dependent downstream signaling pathways. 6-Shoagol, an active ingredient of ginger, inhibits the MyD88-dependent signaling pathway by inhibiting inhibitor-kappaB kinase activity. Inhibitor-kappaB kinase is a key kinase in nuclear factor kappaB (NF-kappaB) activation. However, it is not known whether 6-shogaol inhibits the TRIF-dependent signaling pathway. Our goal was to identify the molecular target of 6-shogaol in the TRIF-dependent pathway of TLRs. 6-Shogaol inhibited the activation of interferon-regulatory factor 3 (IRF3) induced by lipopolysaccharide (LPS) and by polyriboinosinic polyribocytidylic acid (poly[I:C]), overexpression of TRIF, TANK-binding kinase1 (TBK1), and IRF3. Furthermore, 6-shogaol inhibited TBK1 activity in vitro. Together, these results suggest that 6-shogaol inhibits the TRIF-dependent signaling pathway of TLRs by targeting TBK1, and, they imply that 6-shogaol can modulate TLR-derived immune/inflammatory target gene expression induced by microbial infection.
Auranofin, as an anti-rheumatic gold compound suppresses LPS-induced homodimerization of TLR4
Youn, Hyung S.; Lee, Joo Y.; Saitoh, Shin I.; Miyake, Kensuke; Hwang, Daniel H.
2009-01-01
Toll-like receptors (TLRs), which are activated by invading microorganisms or endogenous molecules, evoke immune and inflammatory responses. TLR activation is closely linked to the development of many chronic inflammatory diseases including rheumatoid arthritis. Auranofin, an Au(I) compound, is a well-known and long-used anti-rheumatic drug. However, the mechanism as to how auranofin relieves the symptom of rheumatoid arthritis has not been fully clarified. Our results demonstrated that auranofin suppressed TLR4-mediated activation of transcription factors, NF-κB and IRF3 and expression of COX-2, a pro-inflammatory enzyme. This suppression was well correlated with the inhibitory effect of auranofin on the homodimerization of TLR4 induced by an agonist. Furthermore, auranofin inhibited NF-κ activation induced by MyD88-dependent downstream signaling components of TLR4, MyD88, IKKβ, and p65. IRF3 activation induced by MyD88-independent signaling components, TRIF and TBK1, was also downregulated by auranofin. Our results first demonstrate that auranofin suppresses the multiple steps in TLR4 signaling, especially the homodimerization of TLR4. The results suggest that the suppression of TLR4 activity by auranofin may be the molecular mechanism through which auranofin exerts anti-rheumatic activity. PMID:17034761
Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K
2010-10-01
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an estimate of the current density at every time point. We then carried out a correlation between the time series of visual contrast changes in the movie with that of EEG voxels. We found the most significant correlations in visual area V1, just as seen in previous fMRI studies (Bartels A, Zeki, S, Logothetis NK. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 2008;18(3):705-717), but on the time scale of milliseconds rather than of seconds. To obtain an estimate of how the EEG signal relates to the BOLD signal, we calculated the IRF between the BOLD signal and the estimated current density in area V1. We found that this IRF was very similar to that observed using combined intracortical recordings and fMRI experiments in nonhuman primates. Taken together, these findings open a new approach to noninvasive mapping of the brain. It allows, firstly, the localization of feature-selective brain areas during natural viewing conditions with the temporal resolution of EEG. Secondly, it provides a tool to assess EEG/BOLD transfer functions during processing of more natural stimuli. This is especially useful in combined EEG/fMRI experiments, where one can now potentially study neural-hemodynamic relationships across the whole brain volume in a noninvasive manner. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro, E-mail: fujii@sapmed.ac.j
2011-05-25
Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression ofmore » C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-{gamma} signaling pathway via inhibition of phosphorylated STAT1 dimerization.« less
NASA Astrophysics Data System (ADS)
Martínez-Torrents, A.; Serrano-Purroy, D.; Casas, I.; De Pablo, J.
2018-02-01
The contact of the coolant with the fuel pin during irradiation produces a gradient of temperature in the fuel pellet that segregates the radionuclides (RN) depending on its volatility and reactivity. This segregation determines the Instant Release Fraction (IRF), an important source of radiological risk in the performance assessment (PA) of a Deep Geologic Repository (DGR). RN segregation was studied radially in previous papers. In the present work, it was studied axially, taking into special consideration the cutting position of the solid sample to be studied. Iodine and caesium were the RN with the highest release, while the contribution of rubidium, strontium, molybdenum and technetium to the IRF depended on their chemical state. The interpellet presence (known also as dishing) effect was clearly observed for caesium, increasing its release by one order of magnitude. According to these results, one of the major contributions to the IRF comes from the RN trapped in the dishing and has to be considered in the sampling and data interpretation that will be performed for the PA of the DGR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongyi; Sivapalan, Murugesu
2011-05-26
This paper investigates the effects of spatial heterogeneity of runoff generation processes on the scaling behavior of event runoff responses in a natural catchment, the Illinois River Basin near Tahlequah in Oklahoma. A previous study in this basin had revealed a systematic spatial trend in the relative dominance of different runoff generation mechanisms, with the fraction of total runoff generation due to the subsurface stormflow mechanism shown to increase in the downstream direction, while surface runoff generation by saturation excess showed a corresponding decrease. These trends were attributable to corresponding systematic trends in landscape properties, namely, saturated hydraulic conductivity ofmore » soils and topographic slope. Considering the differences in the timing of hillslope responses between the different runoff generation mechanisms, this paper then explores their impacts on the runoff routing responses, including how they change with increasing spatial scale. For this purpose we utilize a distributed, physically based hydrological model, with a fully hydraulic stream network routing component. The model is used to generate instantaneous response functions (IRF) for nested catchments of a range of sizes along the river network, as well as quantitative measures of their shape, e.g., peak and time-to-peak. In order to decipher and separate the effects of landscape heterogeneity from those due to basin geomorphology and hydrologic regime, the model simulations are carried out for three hypothetical cases that make assumptions about regarding landscape properties (uniform, a systematic trend, and heterogeneity plus the trend), repeating these simulations under wet and dry antecedent conditions. The simulations produced expected (consistent with previous theoretical studies) and also somewhat surprising results. For example, the power-law relationship between peak of the IRF and drainage area is shown to be flatter under wet conditions than under dry conditions, even though the (faster) saturation excess mechanism is more dominant under wet conditions. This result appears to be caused by partial area runoff generation: under wet conditions, the fraction of saturation area is about 30%, while under dry conditions it is less than 10% for the same input of rainfall. This means travel times associated with overland flow (that mostly contributes to the peak and time to peak) are in fact longer under wet conditions than during dry conditions. The power-law relationship between peak and drainage area also exhibits a scaling break at around 1000 km2, and this can be shown to be related to the peculiar shape of the catchment, which is reflected in a corresponding scaling break in the mainstream length versus drainage area relationship (i.e., Hack’s Law) at about 1,000 km2.« less
Epigenetic Testing for Breast Cancer Risk Stratification
2012-10-01
The genes selected for this validation were: ER-POS: GSTP1 , HBA2, BNC1, and WDR66 ER-NEG: IRF7, PECI, ARTN, VCAN, ADM, LIPG, and PLAU Figure 1...6 maintained in only a small fraction of the tumor cells. Only BNC1, CCNA1, and GSTP1 show noticeable expansion of the methylated population in...ADM 0.820 0.609 ARTN 0.192 0.138 GSTP1 0.218 0.070 LIPG 0.090 0.011 CCNA1 0.655 0.428 VCAN 0.301 0.128 IRF7 0.483 0.496 HBA2 cND ND PLAU ND ND
The interferon response circuit in antiviral host defense.
Haller, O; Weber, F
2009-01-01
Viruses have learned to multiply in the face of a powerful innate and adaptive immune response of the host. They have evolved multiple strategies to evade the interferon (IFN) system which would otherwise limit virus growth at an early stage of infection. IFNs induce the synthesis of a range of antiviral proteins which serve as cell-autonomous intrinsic restriction factors. For example, the dynamin-like MxA GTPase inhibits the multiplication of influenza and bunyaviruses (such as La Crosse virus, Hantaan virus, Rift Valley Fever virus, and Crimean-Congo hemorrhagic fever virus) by binding and sequestering the nucleocapsid protein into large perinuclear complexes. To overcome such intracellular restrictions, virulent viruses either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. Many viruses produce specialized proteins to disarm the danger signal or express virulence genes that target members of the IFN regulatory factor family (IRFs) or components of the JAK-STAT signaling pathway. An alternative evasion strategy is based on extreme viral replication speed which out-competes the IFN response. The identification of viral proteins with IFN antagonistic functions has great implications for disease prevention and therapy. Virus mutants lacking IFN antagonistic properties represent safe yet highly immunogenic candidate vaccines. Furthermore, novel drugs intercepting viral IFN-antagonists could be used to disarm the viral intruders.
He, Haiyang; Wu, Yuzhang
2013-01-01
Rotavirus (RV) is the most common cause of severe diarrhea among infants and young children. Currently, there is no specific drug available against rotavirus, largely due to the lack of an ideal target molecule which has hampered drug development. Our previous studies have revealed that cyclosporin A (CsA) might be potentially useful as an anti-RV drug. We therefore used both cellular and mouse models to study the immunological safety and effectiveness of CsA as an anti-RV drug. We found that CsA treatment of HT-29 cells before, during, and after viral infection efficiently inhibited Wa strain RV replication and restored IFN-β expression in a HT-29 cell line model. Exploring the underlying mechanisms showed that CsA promoted Interferon Regulatory Factor-5 (IRF-5) expression (a key positive regulator of the type I IFN signaling pathway), but not IRF-1, IRF-3, or IRF-7. Additionally, CsA inhibited SOCS-1 expression (the key negative regulator of IFN-α/β), but not SOCS-2 or SOCS-3. The antiviral effect of CsA was confirmed in an RV-infected neonatal mouse model by evaluation of antigen clearance and assessment of changes in intestinal tissue pathology. Also, no differences in T cell frequency or proliferation between the CsA- and vehicle-treated groups were observed. Thus, both our in vitro and in vivo findings suggest that CsA, through modulating the expression of key regulators in IFN signaling pathway, promote type I IFN-based intracellular innate immunity in RV host cells. These findings suggest that CsA may be a useful candidate to develop a new anti-RV strategy, although further evaluation and characterization of CsA on RV-induced diarrhea are warranted. PMID:23990993
Global source attribution of sulfate concentration and direct and indirect radiative forcing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Wang, Hailong; Smith, Steven J.
The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO 2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggestingmore » that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is –0.42 W m –2, with –0.31 W m –2 contributed by anthropogenic sulfate and –0.11 W m –2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of –0.44 W m –2. DMS has the largest contribution, explaining –0.23 W m –2 of the global sulfate incremental IRF. Here, incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.« less
Global source attribution of sulfate concentration and direct and indirect radiative forcing
Yang, Yang; Wang, Hailong; Smith, Steven J.; ...
2017-07-25
The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO 2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggestingmore » that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is –0.42 W m –2, with –0.31 W m –2 contributed by anthropogenic sulfate and –0.11 W m –2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of –0.44 W m –2. DMS has the largest contribution, explaining –0.23 W m –2 of the global sulfate incremental IRF. Here, incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.« less
Rodriguez-Torres, Sebastian; Friess, Leah; Michailidi, Christina; Cok, Jaime; Combe, Juan; Vargas, Gloria; Prado, William; Soudry, Ethan; Pérez, Jimena; Yudin, Tikki; Mancinelli, Andrea; Unger, Helen; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Berg, Douglas E.; Hayashi, Masamichi; Sidransky, David; Gilman, Robert H.; Guerrero-Preston, Rafael
2017-01-01
Clinically useful molecular tools to triage gastric cancer patients are not currently available. We aimed to develop a molecular tool to predict gastric cancer risk in endoscopy-driven biopsies obtained from high-risk gastric cancer clinics in low resource settings. We discovered and validated a DNA methylation biomarker panel in endoscopic samples obtained from 362 patients seen between 2004 and 2009 in three high-risk gastric cancer clinics in Lima, Perú, and validated it in 306 samples from the Cancer Genome Atlas project (“TCGA”). Global, epigenome wide and gene-specific DNA methylation analyses were used in a Phase I Biomarker Development Trial to identify a continuous biomarker panel that combines a Global DNA Methylation Index (GDMI) and promoter DNA methylation levels of IRF4, ELMO1, CLIP4 and MSC. We observed an inverse association between the GDMI and histological progression to gastric cancer, when comparing gastritis patients without metaplasia (mean = 5.74, 95% CI, 4.97−6.50), gastritis patients with metaplasia (mean = 4.81, 95% CI, 3.77−5.84), and gastric cancer cases (mean = 3.38, 95% CI, 2.82−3.94), respectively (p < 0.0001). Promoter methylation of IRF4 (p < 0.0001), ELMO1 (p < 0.0001), CLIP4 (p < 0.0001), and MSC (p < 0.0001), is also associated with increasing severity from gastritis with no metaplasia to gastritis with metaplasia and gastric cancer. Our findings suggest that IRF4, ELMO1, CLIP4 and MSC promoter methylation coupled with a GDMI>4 are useful molecular tools for gastric cancer risk stratification in endoscopic biopsies. PMID:28418867