Sample records for response function model

  1. Modeling Rabbit Responses to Single and Multiple Aerosol ...

    EPA Pesticide Factsheets

    Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev

  2. Use of selection indices to model the functional response of predators

    USGS Publications Warehouse

    Joly, D.O.; Patterson, B.R.

    2003-01-01

    The functional response of a predator to changing prey density is an important determinant of stability of predatora??prey systems. We show how Manly's selection indices can be used to distinguish between hyperbolic and sigmoidal models of a predator functional response to primary prey density in the presence of alternative prey. Specifically, an inverse relationship between prey density and preference for that prey results in a hyperbolic functional response while a positive relationship can yield either a hyperbolic or sigmoidal functional response, depending on the form and relative magnitudes of the density-dependent preference model, attack rate, and handling time. As an example, we examine wolf (Canis lupus) functional response to moose (Alces alces) density in the presence of caribou (Rangifer tarandus). The use of selection indices to evaluate the form of the functional response has significant advantages over previous attempts to fit Holling's functional response curves to killing-rate data directly, including increased sensitivity, use of relatively easily collected data, and consideration of other explanatory factors (e.g., weather, seasons, productivity).

  3. Implementation of the zooplankton functional response in plankton models: State of the art, recent challenges and future directions

    NASA Astrophysics Data System (ADS)

    Morozov, Andrew; Poggiale, Jean-Christophe; Cordoleani, Flora

    2012-09-01

    The conventional way of describing grazing in plankton models is based on a zooplankton functional response framework, according to which the consumption rate is computed as the product of a certain function of food (the functional response) and the density/biomass of herbivorous zooplankton. A large amount of literature on experimental feeding reports the existence of a zooplankton functional response in microcosms and small mesocosms, which goes a long way towards explaining the popularity of this framework both in mean-field (e.g. NPZD models) and spatially resolved models. On the other hand, the complex foraging behaviour of zooplankton (feeding cycles) as well as spatial heterogeneity of food and grazer distributions (plankton patchiness) across time and space scales raise questions as to the existence of a functional response of herbivores in vivo. In the current review, we discuss limitations of the ‘classical’ zooplankton functional response and consider possible ways to amend this framework to cope with the complexity of real planktonic ecosystems. Our general conclusion is that although the functional response of herbivores often does not exist in real ecosystems (especially in the form observed in the laboratory), this framework can be rather useful in modelling - but it does need some amendment which can be made based on various techniques of model reduction. We also show that the shape of the functional response depends on the spatial resolution (‘frame’) of the model. We argue that incorporating foraging behaviour and spatial heterogeneity in plankton models would not necessarily require the use of individual based modelling - an approach which is now becoming dominant in the literature. Finally, we list concrete future directions and challenges and emphasize the importance of a closer collaboration between plankton biologists and modellers in order to make further progress towards better descriptions of zooplankton grazing.

  4. Simulation-based Bayesian inference for latent traits of item response models: Introduction to the ltbayes package for R.

    PubMed

    Johnson, Timothy R; Kuhn, Kristine M

    2015-12-01

    This paper introduces the ltbayes package for R. This package includes a suite of functions for investigating the posterior distribution of latent traits of item response models. These include functions for simulating realizations from the posterior distribution, profiling the posterior density or likelihood function, calculation of posterior modes or means, Fisher information functions and observed information, and profile likelihood confidence intervals. Inferences can be based on individual response patterns or sets of response patterns such as sum scores. Functions are included for several common binary and polytomous item response models, but the package can also be used with user-specified models. This paper introduces some background and motivation for the package, and includes several detailed examples of its use.

  5. A Bifactor Multidimensional Item Response Theory Model for Differential Item Functioning Analysis on Testlet-Based Items

    ERIC Educational Resources Information Center

    Fukuhara, Hirotaka; Kamata, Akihito

    2011-01-01

    A differential item functioning (DIF) detection method for testlet-based data was proposed and evaluated in this study. The proposed DIF model is an extension of a bifactor multidimensional item response theory (MIRT) model for testlets. Unlike traditional item response theory (IRT) DIF models, the proposed model takes testlet effects into…

  6. Conceptualization of the Sexual Response Models in Men: Are there Differences Between Sexually Functional and Dysfunctional Men?

    PubMed

    Connaughton, Catherine; McCabe, Marita; Karantzas, Gery

    2016-03-01

    Research to validate models of sexual response empirically in men with and without sexual dysfunction (MSD), as currently defined, is limited. To explore the extent to which the traditional linear or the Basson circular model best represents male sexual response for men with MSD and sexually functional men. In total, 573 men completed an online questionnaire to assess sexual function and aspects of the models of sexual response. In total, 42.2% of men (242) were sexually functional, and 57.8% (331) had at least one MSD. Models were built and tested using bootstrapping and structural equation modeling. Fit of models for men with and without MSD. The linear model and the initial circular model were a poor fit for men with and without MSD. A modified version of the circular model demonstrated adequate fit for the two groups and showed important interactions between psychological factors and sexual response for men with and without MSD. Male sexual response was not represented by the linear model for men with or without MSD, excluding possible healthy responsive desire. The circular model provided a better fit for the two groups of men but demonstrated that the relations between psychological factors and phases of sexual response were different for men with and without MSD as currently defined. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  7. Optimal Linking Design for Response Model Parameters

    ERIC Educational Resources Information Center

    Barrett, Michelle D.; van der Linden, Wim J.

    2017-01-01

    Linking functions adjust for differences between identifiability restrictions used in different instances of the estimation of item response model parameters. These adjustments are necessary when results from those instances are to be compared. As linking functions are derived from estimated item response model parameters, parameter estimation…

  8. Models of subjective response to in-flight motion data

    NASA Technical Reports Server (NTRS)

    Rudrapatna, A. N.; Jacobson, I. D.

    1973-01-01

    Mathematical relationships between subjective comfort and environmental variables in an air transportation system are investigated. As a first step in model building, only the motion variables are incorporated and sensitivities are obtained using stepwise multiple regression analysis. The data for these models have been collected from commercial passenger flights. Two models are considered. In the first, subjective comfort is assumed to depend on rms values of the six-degrees-of-freedom accelerations. The second assumes a Rustenburg type human response function in obtaining frequency weighted rms accelerations, which are used in a linear model. The form of the human response function is examined and the results yield a human response weighting function for different degrees of freedom.

  9. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  10. A note on monotonicity of item response functions for ordered polytomous item response theory models.

    PubMed

    Kang, Hyeon-Ah; Su, Ya-Hui; Chang, Hua-Hua

    2018-03-08

    A monotone relationship between a true score (τ) and a latent trait level (θ) has been a key assumption for many psychometric applications. The monotonicity property in dichotomous response models is evident as a result of a transformation via a test characteristic curve. Monotonicity in polytomous models, in contrast, is not immediately obvious because item response functions are determined by a set of response category curves, which are conceivably non-monotonic in θ. The purpose of the present note is to demonstrate strict monotonicity in ordered polytomous item response models. Five models that are widely used in operational assessments are considered for proof: the generalized partial credit model (Muraki, 1992, Applied Psychological Measurement, 16, 159), the nominal model (Bock, 1972, Psychometrika, 37, 29), the partial credit model (Masters, 1982, Psychometrika, 47, 147), the rating scale model (Andrich, 1978, Psychometrika, 43, 561), and the graded response model (Samejima, 1972, A general model for free-response data (Psychometric Monograph no. 18). Psychometric Society, Richmond). The study asserts that the item response functions in these models strictly increase in θ and thus there exists strict monotonicity between τ and θ under certain specified conditions. This conclusion validates the practice of customarily using τ in place of θ in applied settings and provides theoretical grounds for one-to-one transformations between the two scales. © 2018 The British Psychological Society.

  11. Partially Testing a Process Model for Understanding Victim Responses to an Anticipated Worksite Closure

    ERIC Educational Resources Information Center

    Blau, Gary

    2007-01-01

    This study partially tested a recent process model for understanding victim responses to worksite/function closure (W/FC) proposed by Blau [Blau, G. (2006). A process model for understanding victim responses to worksite/function closure. "Human Resource Management Review," 16, 12-28], in a pharmaceutical manufacturing site. Central to the model…

  12. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  13. Strain-specific functional and numerical responses are required to evaluate impacts on predator-prey dynamics.

    PubMed

    Yang, Zhou; Lowe, Chris D; Crowther, Will; Fenton, Andy; Watts, Phillip C; Montagnes, David J S

    2013-02-01

    We use strains recently collected from the field to establish cultures; then, through laboratory studies we investigate how among strain variation in protozoan ingestion and growth rates influences population dynamics and intraspecific competition. We focused on the impact of changing temperature because of its well-established effects on protozoan rates and its ecological relevance, from daily fluctuations to climate change. We show, first, that there is considerable inter-strain variability in thermal sensitivity of maximum growth rate, revealing distinct differences among multiple strains of our model species Oxyrrhis marina. We then intensively examined two representative strains that exhibit distinctly different thermal responses and parameterised the influence of temperature on their functional and numerical responses. Finally, we assessed how these responses alter predator-prey population dynamics. We do this first considering a standard approach, which assumes that functional and numerical responses are directly coupled, and then compare these results with a novel framework that incorporates both functional and numerical responses in a fully parameterised model. We conclude that: (i) including functional diversity of protozoa at the sub-species level will alter model predictions and (ii) including directly measured, independent functional and numerical responses in a model can provide a more realistic account of predator-prey dynamics.

  14. A mathematical function for the description of nutrient-response curve

    PubMed Central

    Ahmadi, Hamed

    2017-01-01

    Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a) has biological interpretation, b) may be used to calculate reliable estimates of nutrient response relationships, and c) provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements. PMID:29161271

  15. Functional Additive Mixed Models

    PubMed Central

    Scheipl, Fabian; Staicu, Ana-Maria; Greven, Sonja

    2014-01-01

    We propose an extensive framework for additive regression models for correlated functional responses, allowing for multiple partially nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our framework includes linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. It accommodates densely or sparsely observed functional responses and predictors which may be observed with additional error and includes both spline-based and functional principal component-based terms. Estimation and inference in this framework is based on standard additive mixed models, allowing us to take advantage of established methods and robust, flexible algorithms. We provide easy-to-use open source software in the pffr() function for the R-package refund. Simulations show that the proposed method recovers relevant effects reliably, handles small sample sizes well and also scales to larger data sets. Applications with spatially and longitudinally observed functional data demonstrate the flexibility in modeling and interpretability of results of our approach. PMID:26347592

  16. Functional Additive Mixed Models.

    PubMed

    Scheipl, Fabian; Staicu, Ana-Maria; Greven, Sonja

    2015-04-01

    We propose an extensive framework for additive regression models for correlated functional responses, allowing for multiple partially nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our framework includes linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. It accommodates densely or sparsely observed functional responses and predictors which may be observed with additional error and includes both spline-based and functional principal component-based terms. Estimation and inference in this framework is based on standard additive mixed models, allowing us to take advantage of established methods and robust, flexible algorithms. We provide easy-to-use open source software in the pffr() function for the R-package refund. Simulations show that the proposed method recovers relevant effects reliably, handles small sample sizes well and also scales to larger data sets. Applications with spatially and longitudinally observed functional data demonstrate the flexibility in modeling and interpretability of results of our approach.

  17. Mixed-effects Gaussian process functional regression models with application to dose-response curve prediction.

    PubMed

    Shi, J Q; Wang, B; Will, E J; West, R M

    2012-11-20

    We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.

  18. OZONE-INDUCED RESPIRATORY SYMPTOMS: EXPOSURE-RESPONSE MODELS AND ASSOCIATION WITH LUNG FUNCTION

    EPA Science Inventory

    Ozone-induced respiratory symptoms are known to be functions of concentration, minute ventilation, and duration of exposure. The purposes of this study were to identify an exposure-response model for symptoms, to determine whether response was related to age, and to assess the re...

  19. An uncertainty model of acoustic metamaterials with random parameters

    NASA Astrophysics Data System (ADS)

    He, Z. C.; Hu, J. Y.; Li, Eric

    2018-01-01

    Acoustic metamaterials (AMs) are man-made composite materials. However, the random uncertainties are unavoidable in the application of AMs due to manufacturing and material errors which lead to the variance of the physical responses of AMs. In this paper, an uncertainty model based on the change of variable perturbation stochastic finite element method (CVPS-FEM) is formulated to predict the probability density functions of physical responses of AMs with random parameters. Three types of physical responses including the band structure, mode shapes and frequency response function of AMs are studied in the uncertainty model, which is of great interest in the design of AMs. In this computation, the physical responses of stochastic AMs are expressed as linear functions of the pre-defined random parameters by using the first-order Taylor series expansion and perturbation technique. Then, based on the linear function relationships of parameters and responses, the probability density functions of the responses can be calculated by the change-of-variable technique. Three numerical examples are employed to demonstrate the effectiveness of the CVPS-FEM for stochastic AMs, and the results are validated by Monte Carlo method successfully.

  20. A predator-prey model with generic birth and death rates for the predator.

    PubMed

    Terry, Alan J

    2014-02-01

    We propose and study a predator-prey model in which the predator has a Holling type II functional response and generic per capita birth and death rates. Given that prey consumption provides the energy for predator activity, and that the predator functional response represents the prey consumption rate per predator, we assume that the per capita birth and death rates for the predator are, respectively, increasing and decreasing functions of the predator functional response. These functions are monotonic, but not necessarily strictly monotonic, for all values of the argument. In particular, we allow the possibility that the predator birth rate is zero for all sufficiently small values of the predator functional response, reflecting the idea that a certain level of energy intake is needed before a predator can reproduce. Our analysis reveals that the model exhibits the behaviours typically found in predator-prey models - extinction of the predator population, convergence to a periodic orbit, or convergence to a co-existence fixed point. For a specific example, in which the predator birth and death rates are constant for all sufficiently small or large values of the predator functional response, we corroborate our analysis with numerical simulations. In the unlikely case where these birth and death rates equal the same constant for all sufficiently large values of the predator functional response, the model is capable of structurally unstable behaviour, with a small change in the initial conditions leading to a more pronounced change in the long-term dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Detector response function of an energy-resolved CdTe single photon counting detector.

    PubMed

    Liu, Xin; Lee, Hyoung Koo

    2014-01-01

    While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV

  2. Modeling the hysteretic moisture and temperature responses of soil carbon decomposition resulting from organo-mineral interactions

    NASA Astrophysics Data System (ADS)

    Tang, J.; Riley, W. J.

    2017-12-01

    Most existing soil carbon cycle models have modeled the moisture and temperature dependence of soil respiration using deterministic response functions. However, empirical data suggest abundant variability in both of these dependencies. We here use the recently developed SUPECA (Synthesizing Unit and Equilibrium Chemistry Approximation) theory and a published dynamic energy budget based microbial model to investigate how soil carbon decomposition responds to changes in soil moisture and temperature under the influence of organo-mineral interactions. We found that both the temperature and moisture responses are hysteretic and cannot be represented by deterministic functions. We then evaluate how the multi-scale variability in temperature and moisture forcing affect soil carbon decomposition. Our results indicate that when the model is run in scenarios mimicking laboratory incubation experiments, the often-observed temperature and moisture response functions can be well reproduced. However, when such response functions are used for model extrapolation involving more transient variability in temperature and moisture forcing (as found in real ecosystems), the dynamic model that explicitly accounts for hysteresis in temperature and moisture dependency produces significantly different estimations of soil carbon decomposition, suggesting there are large biases in models that do not resolve such hysteresis. We call for more studies on organo-mineral interactions to improve modeling of such hysteresis.

  3. An empirical propellant response function for combustion stability predictions

    NASA Technical Reports Server (NTRS)

    Hessler, R. O.

    1980-01-01

    An empirical response function model was developed for ammonium perchlorate propellants to supplant T-burner testing at the preliminary design stage. The model was developed by fitting a limited T-burner data base, in terms of oxidizer size and concentration, to an analytical two parameter response function expression. Multiple peaks are predicted, but the primary effect is of a single peak for most formulations, with notable bulges for the various AP size fractions. The model was extended to velocity coupling with the assumption that dynamic response was controlled primarily by the solid phase described by the two parameter model. The magnitude of velocity coupling was then scaled using an erosive burning law. Routine use of the model for stability predictions on a number of propulsion units indicates that the model tends to overpredict propellant response. It is concluded that the model represents a generally conservative prediction tool, suited especially for the preliminary design stage when T-burner data may not be readily available. The model work included development of a rigorous summation technique for pseudopropellant properties and of a concept for modeling ordered packing of particulates.

  4. A nonlinear filter-bank model of the guinea-pig cochlear nerve: Rate responses

    NASA Astrophysics Data System (ADS)

    Sumner, Christian J.; O'Mard, Lowel P.; Lopez-Poveda, Enrique A.; Meddis, Ray

    2003-06-01

    The aim of this study is to produce a functional model of the auditory nerve (AN) response of the guinea-pig that reproduces a wide range of important responses to auditory stimulation. The model is intended for use as an input to larger scale models of auditory processing in the brain-stem. A dual-resonance nonlinear filter architecture is used to reproduce the mechanical tuning of the cochlea. Transduction to the activity on the AN is accomplished with a recently proposed model of the inner-hair-cell. Together, these models have been shown to be able to reproduce the response of high-, medium-, and low-spontaneous rate fibers from the guinea-pig AN at high best frequencies (BFs). In this study we generate parameters that allow us to fit the AN model to data from a wide range of BFs. By varying the characteristics of the mechanical filtering as a function of the BF it was possible to reproduce the BF dependence of frequency-threshold tuning curves, AN rate-intensity functions at and away from BF, compression of the basilar membrane at BF as inferred from AN responses, and AN iso-intensity functions. The model is a convenient computational tool for the simulation of the range of nonlinear tuning and rate-responses found across the length of the guinea-pig cochlear nerve.

  5. Using Data Augmentation and Markov Chain Monte Carlo for the Estimation of Unfolding Response Models

    ERIC Educational Resources Information Center

    Johnson, Matthew S.; Junker, Brian W.

    2003-01-01

    Unfolding response models, a class of item response theory (IRT) models that assume a unimodal item response function (IRF), are often used for the measurement of attitudes. Verhelst and Verstralen (1993)and Andrich and Luo (1993) independently developed unfolding response models by relating the observed responses to a more common monotone IRT…

  6. Equal Area Logistic Estimation for Item Response Theory

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li

    2009-08-01

    Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.

  7. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2017-03-01

    Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

  8. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response.

    PubMed

    Naumann, Eva A; Fitzgerald, James E; Dunn, Timothy W; Rihel, Jason; Sompolinsky, Haim; Engert, Florian

    2016-11-03

    Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F { X ( t ), t } where F (·,·) is an unknown regression function and X ( t ) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F (·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X ( t ) is a signal from diffusion tensor imaging at position, t , along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online.

  10. Comparison of dose response functions for EBT3 model GafChromic™ film dosimetry system.

    PubMed

    Aldelaijan, Saad; Devic, Slobodan

    2018-05-01

    Different dose response functions of EBT3 model GafChromic™ film dosimetry system have been compared in terms of sensitivity as well as uncertainty vs. error analysis. We also made an assessment of the necessity of scanning film pieces before and after irradiation. Pieces of EBT3 film model were irradiated to different dose values in Solid Water (SW) phantom. Based on images scanned in both reflection and transmission mode before and after irradiation, twelve different response functions were calculated. For every response function, a reference radiochromic film dosimetry system was established by generating calibration curve and by performing the error vs. uncertainty analysis. Response functions using pixel values from the green channel demonstrated the highest sensitivity in both transmission and reflection mode. All functions were successfully fitted with rational functional form, and provided an overall one-sigma uncertainty of better than 2% for doses above 2 Gy. Use of pre-scanned images to calculate response functions resulted in negligible improvement in dose measurement accuracy. Although reflection scanning mode provides higher sensitivity and could lead to a more widespread use of radiochromic film dosimetry, it has fairly limited dose range and slightly increased uncertainty when compared to transmission scan based response functions. Double-scanning technique, either in transmission or reflection mode, shows negligible improvement in dose accuracy as well as a negligible increase in dose uncertainty. Normalized pixel value of the images scanned in transmission mode shows linear response in a dose range of up to 11 Gy. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Jiang, Daqing; Alsaedi, Ahmed; Hayat, Tasawar

    2018-07-01

    A stochastic HIV viral model with both logistic target cell growth and nonlinear immune response function is formulated to investigate the effect of white noise on each population. The existence of the global solution is verified. By employing a novel combination of Lyapunov functions, we obtain the existence of the unique stationary distribution for small white noises. We also derive the extinction of the virus for large white noises. Numerical simulations are performed to highlight the effect of white noises on model dynamic behaviour under the realistic parameters. It is found that the small intensities of white noises can keep the irregular blips of HIV virus and CTL immune response, while the larger ones force the virus infection and immune response to lose efficacy.

  12. Teachers' Perceptions of the Functionality and Effectiveness of the Response to Intervention Model

    ERIC Educational Resources Information Center

    Hernandez, Patricia

    2012-01-01

    The purpose of this study is to investigate teachers' perceptions of the functionality and effectiveness of the response to intervention model. Using a response to intervention (RTI) framework has become a priority for school district as they move to meet federal legislative mandates. Through this study teachers in the southwestern part of the…

  13. A Functional Varying-Coefficient Single-Index Model for Functional Response Data

    PubMed Central

    Li, Jialiang; Huang, Chao; Zhu, Hongtu

    2016-01-01

    Motivated by the analysis of imaging data, we propose a novel functional varying-coefficient single index model (FVCSIM) to carry out the regression analysis of functional response data on a set of covariates of interest. FVCSIM represents a new extension of varying-coefficient single index models for scalar responses collected from cross-sectional and longitudinal studies. An efficient estimation procedure is developed to iteratively estimate varying coefficient functions, link functions, index parameter vectors, and the covariance function of individual functions. We systematically examine the asymptotic properties of all estimators including the weak convergence of the estimated varying coefficient functions, the asymptotic distribution of the estimated index parameter vectors, and the uniform convergence rate of the estimated covariance function and their spectrum. Simulation studies are carried out to assess the finite-sample performance of the proposed procedure. We apply FVCSIM to investigating the development of white matter diffusivities along the corpus callosum skeleton obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. PMID:29200540

  14. A Functional Varying-Coefficient Single-Index Model for Functional Response Data.

    PubMed

    Li, Jialiang; Huang, Chao; Zhu, Hongtu

    2017-01-01

    Motivated by the analysis of imaging data, we propose a novel functional varying-coefficient single index model (FVCSIM) to carry out the regression analysis of functional response data on a set of covariates of interest. FVCSIM represents a new extension of varying-coefficient single index models for scalar responses collected from cross-sectional and longitudinal studies. An efficient estimation procedure is developed to iteratively estimate varying coefficient functions, link functions, index parameter vectors, and the covariance function of individual functions. We systematically examine the asymptotic properties of all estimators including the weak convergence of the estimated varying coefficient functions, the asymptotic distribution of the estimated index parameter vectors, and the uniform convergence rate of the estimated covariance function and their spectrum. Simulation studies are carried out to assess the finite-sample performance of the proposed procedure. We apply FVCSIM to investigating the development of white matter diffusivities along the corpus callosum skeleton obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) study.

  15. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.11)

    NASA Astrophysics Data System (ADS)

    Long, A. J.

    2014-09-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, springflow, groundwater level, solute transport, or cave drip for a measurement point in response to a system input of precipitation, recharge, or solute injection. The RRAWFLOW open-source code is written in the R language and is included in the Supplement to this article along with an example model of springflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution; i.e., the unit hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Other options include the use of user-defined IRFs and different methods to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications. RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  16. Representing life in the Earth system with soil microbial functional traits in the MIMICS model

    NASA Astrophysics Data System (ADS)

    Wieder, W. R.; Grandy, A. S.; Kallenbach, C. M.; Taylor, P. G.; Bonan, G. B.

    2015-02-01

    Projecting biogeochemical responses to global environmental change requires multi-scaled perspectives that consider organismal diversity, ecosystem processes and global fluxes. However, microbes, the drivers of soil organic matter decomposition and stabilization, remain notably absent from models used to project carbon cycle-climate feedbacks. We used a microbial trait-based soil carbon (C) model, with two physiologically distinct microbial communities to improve current estimates of soil C storage and their likely response to perturbations. Drawing from the application of functional traits used to model other ecosystems, we incorporate copiotrophic and oligotrophic microbial functional groups in the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, which incorporates oligotrophic and copiotrophic functional groups, akin to "gleaner" vs. "opportunist" plankton in the ocean, or r vs. K strategists in plant and animals communities. Here we compare MIMICS to a conventional soil C model, DAYCENT, in cross-site comparisons of nitrogen (N) enrichment effects on soil C dynamics. MIMICS more accurately simulates C responses to N enrichment; moreover, it raises important hypotheses involving the roles of substrate availability, community-level enzyme induction, and microbial physiological responses in explaining various soil biogeochemical responses to N enrichment. In global-scale analyses, we show that current projections from Earth system models likely overestimate the strength of the land C sink in response to increasing C inputs with elevated carbon dioxide (CO2). Our findings illustrate that tradeoffs between theory and utility can be overcome to develop soil biogeochemistry models that evaluate and advance our theoretical understanding of microbial dynamics and soil biogeochemical responses to environmental change.

  17. The Esophagiome: concept, status, and future perspectives.

    PubMed

    Gregersen, Hans; Liao, Donghua; Brasseur, James G

    2016-09-01

    The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment. © 2016 New York Academy of Sciences.

  18. Functional response and capture timing in an individual-based model: predation by northern squawfish (Ptychocheilus oregonensis) on juvenile salmonids in the Columbia River

    USGS Publications Warehouse

    Petersen, James H.; DeAngelis, Donald L.

    1992-01-01

    The behavior of individual northern squawfish (Ptychocheilus oregonensis) preying on juvenile salmonids was modeled to address questions about capture rate and the timing of prey captures (random versus contagious). Prey density, predator weight, prey weight, temperature, and diel feeding pattern were first incorporated into predation equations analogous to Holling Type 2 and Type 3 functional response models. Type 2 and Type 3 equations fit field data from the Columbia River equally well, and both models predicted predation rates on five of seven independent dates. Selecting a functional response type may be complicated by variable predation rates, analytical methods, and assumptions of the model equations. Using the Type 2 functional response, random versus contagious timing of prey capture was tested using two related models. ln the simpler model, salmon captures were assumed to be controlled by a Poisson renewal process; in the second model, several salmon captures were assumed to occur during brief "feeding bouts", modeled with a compound Poisson process. Salmon captures by individual northern squawfish were clustered through time, rather than random, based on comparison of model simulations and field data. The contagious-feeding result suggests that salmonids may be encountered as patches or schools in the river.

  19. Representing life in the Earth system with soil microbial functional traits in the MIMICS model

    NASA Astrophysics Data System (ADS)

    Wieder, W. R.; Grandy, A. S.; Kallenbach, C. M.; Taylor, P. G.; Bonan, G. B.

    2015-06-01

    Projecting biogeochemical responses to global environmental change requires multi-scaled perspectives that consider organismal diversity, ecosystem processes, and global fluxes. However, microbes, the drivers of soil organic matter decomposition and stabilization, remain notably absent from models used to project carbon (C) cycle-climate feedbacks. We used a microbial trait-based soil C model with two physiologically distinct microbial communities, and evaluate how this model represents soil C storage and response to perturbations. Drawing from the application of functional traits used to model other ecosystems, we incorporate copiotrophic and oligotrophic microbial functional groups in the MIcrobial-MIneral Carbon Stabilization (MIMICS) model; these functional groups are akin to "gleaner" vs. "opportunist" plankton in the ocean, or r- vs. K-strategists in plant and animal communities. Here we compare MIMICS to a conventional soil C model, DAYCENT (the daily time-step version of the CENTURY model), in cross-site comparisons of nitrogen (N) enrichment effects on soil C dynamics. MIMICS more accurately simulates C responses to N enrichment; moreover, it raises important hypotheses involving the roles of substrate availability, community-level enzyme induction, and microbial physiological responses in explaining various soil biogeochemical responses to N enrichment. In global-scale analyses, we show that MIMICS projects much slower rates of soil C accumulation than a conventional soil biogeochemistry in response to increasing C inputs with elevated carbon dioxide (CO2) - a finding that would reduce the size of the land C sink estimated by the Earth system. Our findings illustrate that tradeoffs between theory and utility can be overcome to develop soil biogeochemistry models that evaluate and advance our theoretical understanding of microbial dynamics and soil biogeochemical responses to environmental change.

  20. Mixture Item Response Theory-MIMIC Model: Simultaneous Estimation of Differential Item Functioning for Manifest Groups and Latent Classes

    ERIC Educational Resources Information Center

    Bilir, Mustafa Kuzey

    2009-01-01

    This study uses a new psychometric model (mixture item response theory-MIMIC model) that simultaneously estimates differential item functioning (DIF) across manifest groups and latent classes. Current DIF detection methods investigate DIF from only one side, either across manifest groups (e.g., gender, ethnicity, etc.), or across latent classes…

  1. Estimating neural response functions from fMRI

    PubMed Central

    Kumar, Sukhbinder; Penny, William

    2014-01-01

    This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246

  2. A Cross-Validation Approach to Approximate Basis Function Selection of the Stall Flutter Response of a Rectangular Wing in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Vio, Gareth A.; Andrianne, Thomas; azak, Norizham Abudl; Dimitriadis, Grigorios

    2012-01-01

    The stall flutter response of a rectangular wing in a low speed wind tunnel is modelled using a nonlinear difference equation description. Static and dynamic tests are used to select a suitable model structure and basis function. Bifurcation criteria such as the Hopf condition and vibration amplitude variation with airspeed were used to ensure the model was representative of experimentally measured stall flutter phenomena. Dynamic test data were used to estimate model parameters and estimate an approximate basis function.

  3. Final state interactions and inclusive nuclear collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Dubey, Rajendra R.

    1993-01-01

    A scattering formalism is developed in a multiple scattering model to describe inclusive momentum distributions for high-energy projectiles. The effects of final state interactions on response functions and momentum distributions are investigated. Calculations for high-energy protons that include shell model response functions are compared with experiments.

  4. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    USGS Publications Warehouse

    Long, Andrew J.

    2015-01-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  5. On the Usefulness of a Multilevel Logistic Regression Approach to Person-Fit Analysis

    ERIC Educational Resources Information Center

    Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas

    2011-01-01

    The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…

  6. Modeling winter wheat phenological responses to water deficits in the Unified Plant Growth Model (UPGM) component of the spatially distributed Agricultural Ecosystem Services (AgES) model

    USDA-ARS?s Scientific Manuscript database

    Accurately predicting phenology in crop simulation models is critical for correctly simulating crop production. While extensive work in modeling phenology has focused on the temperature response function (resulting in robust phenology models), limited work on quantifying the phenological responses t...

  7. Helping as a Function of Empathic Responses and Sociopathy.

    ERIC Educational Resources Information Center

    Marks, Edward L.; And Others

    1982-01-01

    Investigated helping as a function of empathic anxiety (anxiety in response to modeled distress) and individual differences in sociopathic tendencies. Results indicated modeled distress produces increases in anxiety which are positively associated with helping and sociopathic individuals are less likely to help than are nonsociopathic individuals.…

  8. Identification of visual evoked response parameters sensitive to pilot mental state

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.

    1988-01-01

    Systems analysis techniques were developed and demonstrated for modeling the electroencephalographic (EEG) steady state visual evoked response (ssVER), for use in EEG data compression and as an indicator of mental workload. The study focused on steady state frequency domain stimulation and response analysis, implemented with a sum-of-sines (SOS) stimulus generator and an off-line describing function response analyzer. Three major tasks were conducted: (1) VER related systems identification material was reviewed; (2) Software for experiment control and data analysis was developed and implemented; and (3) ssVER identification and modeling was demonstrated, via a mental loading experiment. It was found that a systems approach to ssVER functional modeling can serve as the basis for eventual development of a mental workload indicator. The review showed how transient visual evoked response (tVER) and ssVER research are related at the functional level, the software development showed how systems techniques can be used for ssVER characterization, and the pilot experiment showed how a simple model can be used to capture the basic dynamic response of the ssVER, under varying loads.

  9. Comparing functional responses in predator-infected eco-epidemics models.

    PubMed

    Haque, Mainul; Rahman, Md Sabiar; Venturino, Ezio

    2013-11-01

    The current paper deals with the mathematical models of predator-prey system where a transmissible disease spreads among the predator species only. Four mathematical models are proposed and analysed with several popular predator functional responses in order to show the influence of functional response on eco-epidemic models. The existence, boundedness, uniqueness of solutions of all the models are established. Mathematical analysis including stability and bifurcation are observed. Comparison among the results of these models allows the general conclusion that relevant behaviour of the eco-epidemic predator-prey system, including switching of stability, extinction, persistence and oscillations for any species depends on four important parameters viz. the rate of infection, predator interspecies competition and the attack rate on susceptible predator. The paper ends with a discussion of the biological implications of the analytical and numerical results. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Derivation of the expressions for γ50 and D50 for different individual TCP and NTCP models

    NASA Astrophysics Data System (ADS)

    Stavreva, N.; Stavrev, P.; Warkentin, B.; Fallone, B. G.

    2002-10-01

    This paper presents a complete set of formulae for the position (D50) and the normalized slope (γ50) of the dose-response relationship based on the most commonly used radiobiological models for tumours as well as for normal tissues. The functional subunit response models (critical element and critical volume) are used in the derivation of the formulae for the normal tissue. Binomial statistics are used to describe the tumour control probability, the functional subunit response as well as the normal tissue complication probability. The formulae are derived for the single hit and linear quadratic models of cell kill in terms of the number of fractions and dose per fraction. It is shown that the functional subunit models predict very steep, almost step-like, normal tissue individual dose-response relationships. Furthermore, the formulae for the normalized gradient depend on the cellular parameters α and β when written in terms of number of fractions, but not when written in terms of dose per fraction.

  11. Technical Advance: Live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung

    PubMed Central

    Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias

    2014-01-01

    This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587

  12. Optimal hemodynamic response model for functional near-infrared spectroscopy

    PubMed Central

    Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668

  13. Optimal hemodynamic response model for functional near-infrared spectroscopy.

    PubMed

    Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

  14. Estimation of automobile-driver describing function from highway tests using the double steering wheel

    NASA Technical Reports Server (NTRS)

    Delp, P.; Crossman, E. R. F. W.; Szostak, H.

    1972-01-01

    The automobile-driver describing function for lateral position control was estimated for three subjects from frequency response analysis of straight road test results. The measurement procedure employed an instrumented full size sedan with known steering response characteristics, and equipped with a lateral lane position measuring device based on video detection of white stripe lane markings. Forcing functions were inserted through a servo driven double steering wheel coupling the driver to the steering system proper. Random appearing, Gaussian, and transient time functions were used. The quasi-linear models fitted to the random appearing input frequency response characterized the driver as compensating for lateral position error in a proportional, derivative, and integral manner. Similar parameters were fitted to the Gabor transformed frequency response of the driver to transient functions. A fourth term corresponding to response to lateral acceleration was determined by matching the time response histories of the model to the experimental results. The time histories show evidence of pulse-like nonlinear behavior during extended response to step transients which appear as high frequency remnant power.

  15. Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Fung, Jimmy

    1998-01-01

    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.

  16. Pointwise influence matrices for functional-response regression.

    PubMed

    Reiss, Philip T; Huang, Lei; Wu, Pei-Shien; Chen, Huaihou; Colcombe, Stan

    2017-12-01

    We extend the notion of an influence or hat matrix to regression with functional responses and scalar predictors. For responses depending linearly on a set of predictors, our definition is shown to reduce to the conventional influence matrix for linear models. The pointwise degrees of freedom, the trace of the pointwise influence matrix, are shown to have an adaptivity property that motivates a two-step bivariate smoother for modeling nonlinear dependence on a single predictor. This procedure adapts to varying complexity of the nonlinear model at different locations along the function, and thereby achieves better performance than competing tensor product smoothers in an analysis of the development of white matter microstructure in the brain. © 2017, The International Biometric Society.

  17. Dose-response relationships for environmentally mediated infectious disease transmission models

    PubMed Central

    Eisenberg, Joseph N. S.

    2017-01-01

    Environmentally mediated infectious disease transmission models provide a mechanistic approach to examining environmental interventions for outbreaks, such as water treatment or surface decontamination. The shift from the classical SIR framework to one incorporating the environment requires codifying the relationship between exposure to environmental pathogens and infection, i.e. the dose–response relationship. Much of the work characterizing the functional forms of dose–response relationships has used statistical fit to experimental data. However, there has been little research examining the consequences of the choice of functional form in the context of transmission dynamics. To this end, we identify four properties of dose–response functions that should be considered when selecting a functional form: low-dose linearity, scalability, concavity, and whether it is a single-hit model. We find that i) middle- and high-dose data do not constrain the low-dose response, and different dose–response forms that are equally plausible given the data can lead to significant differences in simulated outbreak dynamics; ii) the choice of how to aggregate continuous exposure into discrete doses can impact the modeled force of infection; iii) low-dose linear, concave functions allow the basic reproduction number to control global dynamics; and iv) identifiability analysis offers a way to manage multiple sources of uncertainty and leverage environmental monitoring to make inference about infectivity. By applying an environmentally mediated infectious disease model to the 1993 Milwaukee Cryptosporidium outbreak, we demonstrate that environmental monitoring allows for inference regarding the infectivity of the pathogen and thus improves our ability to identify outbreak characteristics such as pathogen strain. PMID:28388665

  18. Is There a Need for More than Three Models?

    ERIC Educational Resources Information Center

    Noventa, Stefano; Massidda, Davide; Vidotto, Giulio

    2012-01-01

    An important open issue in Functional Measurement is whether the three most important models of cognitive algebra are sufficient to describe the great majority of possible response behaviors. Generally speaking, the individual response "R" is a function of the subjective scale values "s[subscript k]" and can be imagined as a continuous manifold.…

  19. Semiparametric Item Response Functions in the Context of Guessing

    ERIC Educational Resources Information Center

    Falk, Carl F.; Cai, Li

    2016-01-01

    We present a logistic function of a monotonic polynomial with a lower asymptote, allowing additional flexibility beyond the three-parameter logistic model. We develop a maximum marginal likelihood-based approach to estimate the item parameters. The new item response model is demonstrated on math assessment data from a state, and a computationally…

  20. A Bayesian Beta-Mixture Model for Nonparametric IRT (BBM-IRT)

    ERIC Educational Resources Information Center

    Arenson, Ethan A.; Karabatsos, George

    2017-01-01

    Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…

  1. Model of the transient neurovascular response based on prompt arterial dilation

    PubMed Central

    Kim, Jung Hwan; Khan, Reswanul; Thompson, Jeffrey K; Ress, David

    2013-01-01

    Brief neural stimulation results in a stereotypical pattern of vascular and metabolic response that is the basis for popular brain-imaging methods such as functional magnetic resonance imagine. However, the mechanisms of transient oxygen transport and its coupling to cerebral blood flow (CBF) and oxygen metabolism (CMRO2) are poorly understood. Recent experiments show that brief stimulation produces prompt arterial vasodilation rather than venous vasodilation. This work provides a neurovascular response model for brief stimulation based on transient arterial effects using one-dimensional convection–diffusion transport. Hemoglobin oxygen dissociation is included to enable predictions of absolute oxygen concentrations. Arterial CBF response is modeled using a lumped linear flow model, and CMRO2 response is modeled using a gamma function. Using six parameters, the model successfully fit 161/166 measured extravascular oxygen time courses obtained for brief visual stimulation in cat cerebral cortex. Results show how CBF and CMRO2 responses compete to produce the observed features of the hemodynamic response: initial dip, hyperoxic peak, undershoot, and ringing. Predicted CBF and CMRO2 response amplitudes are consistent with experimental measurements. This model provides a powerful framework to quantitatively interpret oxygen transport in the brain; in particular, its intravascular oxygen concentration predictions provide a new model for fMRI responses. PMID:23756690

  2. Emergence of ratio-dependent and predator-dependent functional responses for pollination mutualism and seed parasitism

    USGS Publications Warehouse

    DeAngelis, Donald L.; Holland, J. Nathaniel

    2006-01-01

    Prey (N) dependence [g(N)], predator (P) dependence [g(P) or g(N,P)], and ratio dependence [f(P/N)] are often seen as contrasting forms of the predator's functional response describing predator consumption rates on prey resources in predator–prey and parasitoid–host interactions. Analogously, prey-, predator-, and ratio-dependent functional responses are apparently alternative functional responses for other types of consumer–resource interactions. These include, for example, the fraction of flowers pollinated or seeds parasitized in pollination (pre-dispersal) seed-parasitism mutualisms, such as those between fig wasps and fig trees or yucca moths and yucca plants. Here we examine the appropriate functional responses for how the fraction of flowers pollinated and seeds parasitized vary with the density of pollinators (predator dependence) or the ratio of pollinator and flower densities (ratio dependence). We show that both types of functional responses can emerge from minor, but biologically important variations on a single model. An individual-based model was first used to describe plant–pollinator interactions. Conditional upon on whether the number of flowers visited by the pollinator was limited by factors other than search time (e.g., by the number of eggs it had to lay, if it was also a seed parasite), and on whether the pollinator could directly find flowers on a plant, or had to search, the simulation results lead to either a predator-dependent or a ratio-dependent functional response. An analytic model was then used to show mathematically how these two cases can arise.

  3. Sensor/Response Coordination In A Tactical Self-Protection System

    NASA Astrophysics Data System (ADS)

    Steinberg, Alan N.

    1988-08-01

    This paper describes a model for integrating information acquisition functions into a response planner within a tactical self-defense system. This model may be used in defining requirements in such applications for sensor systems and for associated processing and control functions. The goal of information acquisition in a self-defense system is generally not that of achieving the best possible estimate of the threat environment; but rather to provide resolution of that environment sufficient to support response decisions. We model the information acquisition problem as that of achieving a partition among possible world states such that the final partition maps into the system's repertoire of possible responses.

  4. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    NASA Astrophysics Data System (ADS)

    Long, A. J.

    2015-03-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  5. First passage time: Connecting random walks to functional responses in heterogeneous environments (Invited)

    NASA Astrophysics Data System (ADS)

    Lewis, M. A.; McKenzie, H.; Merrill, E.

    2010-12-01

    In this talk I will outline first passage time analysis for animals undertaking complex movement patterns, and will demonstrate how first passage time can be used to derive functional responses in predator prey systems. The result is a new approach to understanding type III functional responses based on a random walk model. I will extend the analysis to heterogeneous environments to assess the effects of linear features on functional responses in wolves and elk using GPS tracking data.

  6. Sexual Response Models: Toward a More Flexible Pattern of Women's Sexuality.

    PubMed

    Ferenidou, Fotini; Kirana, Paraskevi-Sofia; Fokas, Konstantinos; Hatzichristou, Dimitrios; Athanasiadis, Loukas

    2016-09-01

    Recent research suggests that none of the current theoretical models can sufficiently describe women's sexual response, because several factors and situations can influence this. To explore individual variations of a sexual model that describes women's sexual responses and to assess the association of endorsement of that model with sexual dysfunctions and reasons to engage in sexual activity. A sample of 157 randomly selected hospital employees completed self-administered questionnaires. Two models were developed: one merged the Master and Johnson model with the Kaplan model (linear) and the other was the Basson model (circular). Sexual function was evaluated by the Female Sexual Function Index and the Brief Sexual Symptom Checklist for Women. The Reasons for Having Sex Questionnaire was administered to investigate the reasons for which women have sex. Women reported that their current sexual experiences were at times consistent with the linear and circular models (66.9%), only the linear model (27%), only the circular model (5.4%), and neither model (0.7%). When the groups were reconfigured to the group that endorsed more than 5 of 10 sexual experiences, 64.3% of women endorsed the linear model, 20.4% chose the linear and circular models, 14.6% chose the circular model, and 0.7% selected neither. The Female Sexual Function Index, demographic factors, having sex for insecurity reasons, and sexual satisfaction correlated with the endorsement of a sexual response model. When these factors were entered in a stepwise logistic regression analysis, only the Female Sexual Function Index and having sex for insecurity reasons maintained a significant association with the sexual response model. The present study emphasizes the heterogeneity of female sexuality, with most of the sample reporting alternating between the linear and circular models. Sexual dysfunctions and having sex for insecurity reasons were associated with the Basson model. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  7. Modeling Answer Change Behavior: An Application of a Generalized Item Response Tree Model

    ERIC Educational Resources Information Center

    Jeon, Minjeong; De Boeck, Paul; van der Linden, Wim

    2017-01-01

    We present a novel application of a generalized item response tree model to investigate test takers' answer change behavior. The model allows us to simultaneously model the observed patterns of the initial and final responses after an answer change as a function of a set of latent traits and item parameters. The proposed application is illustrated…

  8. Local representation of the electronic dielectric response function

    DOE PAGES

    Lu, Deyu; Ge, Xiaochuan

    2015-12-11

    We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized,more » which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.« less

  9. Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation

    PubMed Central

    Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2011-01-01

    We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli. PMID:21841977

  10. Kernel-Smoothing Estimation of Item Characteristic Functions for Continuous Personality Items: An Empirical Comparison with the Linear and the Continuous-Response Models

    ERIC Educational Resources Information Center

    Ferrando, Pere J.

    2004-01-01

    This study used kernel-smoothing procedures to estimate the item characteristic functions (ICFs) of a set of continuous personality items. The nonparametric ICFs were compared with the ICFs estimated (a) by the linear model and (b) by Samejima's continuous-response model. The study was based on a conditioned approach and used an error-in-variables…

  11. Trajectories of positive, negative and general psychopathology symptoms in first episode psychosis and their relationship with functioning over a 2-year follow-up period.

    PubMed

    Abdin, Edimansyah; Chong, Siow Ann; Vaingankar, Janhavi Ajit; Peh, Chao Xu; Poon, Lye Yin; Rao, Sujatha; Verma, Swapna; Subramaniam, Mythily

    2017-01-01

    Few studies have examined the trajectories of symptom severity in first episode psychosis (FEP) and their impact on functioning. This study aimed to identify discrete trajectories of positive, negative and general psychopathological symptoms and functioning, determine predictors of the identified symptom trajectories and subsequently investigate the relationship between symptom and functioning trajectories over the 2-year follow-up period. Data were extracted from the Singapore Early Psychosis Intervention Programme clinical database. Trajectories of the Positive and Negative Syndrome Scale and Global Assessment of Functioning (GAF) scale over the two-year follow up were modelled using latent class growth curve modelling. Two distinct trajectories (early response and stable trajectory and delayed response trajectory) for positive symptoms, four distinct trajectories (early response and stable trajectory, early response and relapse trajectory, slower response and no response trajectory and delayed response trajectory) for negative and general psychopathology symptoms and three distinct trajectories for functioning (high functioning trajectory, moderately stable functioning trajectory and deterioration in functioning trajectory) were identified in our sample. Compared to individuals in the early response and stable trajectory, those in the delayed response trajectory for positive and negative symptoms, early response and relapse for negative and general psychopathology symptoms and slower response and no response trajectories for general psychopathology symptoms were significantly associated with higher odds of having deterioration in functioning over time. Poor symptom trajectories were also significantly predicted by younger age, male gender, unemployed and economically inactive status, lower education, longer duration of untreated psychosis and diagnosis of schizophrenia spectrum and delusional disorders. The results confirm that the symptoms trajectories among patients with FEP are heterogeneous and suggest that a small group of patients may be at higher risk of deterioration in symptom severity and functioning over the 2-year follow-up.

  12. ACIRF user's guide: Theory and examples

    NASA Astrophysics Data System (ADS)

    Dana, Roger A.

    1989-12-01

    Design and evaluation of radio frequency systems that must operate through ionospheric disturbances resulting from high altitude nuclear detonations requires an accurate channel model. This model must include the effects of high gain antennas that may be used to receive the signals. Such a model can then be used to construct realizations of the received signal for use in digital simulations of trans-ionospheric links or for use in hardware channel simulators. The FORTRAN channel model ACIRF (Antenna Channel Impulse Response Function) generates random realizations of the impulse response function at the outputs of multiple antennas. This user's guide describes the FORTRAN program ACIRF (version 2.0) that generates realizations of channel impulse response functions at the outputs of multiple antennas with arbitrary beamwidths, pointing angles, and relatives positions. This channel model is valid under strong scattering conditions when Rayleigh fading statistics apply. Both frozen-in and turbulent models for the temporal fluctuations are included in this version of ACIRF. The theory of the channel model is described and several examples are given.

  13. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  14. Modeling and control of flexible space structures

    NASA Technical Reports Server (NTRS)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  15. Semi-Parametric Item Response Functions in the Context of Guessing. CRESST Report 844

    ERIC Educational Resources Information Center

    Falk, Carl F.; Cai, Li

    2015-01-01

    We present a logistic function of a monotonic polynomial with a lower asymptote, allowing additional flexibility beyond the three-parameter logistic model. We develop a maximum marginal likelihood based approach to estimate the item parameters. The new item response model is demonstrated on math assessment data from a state, and a computationally…

  16. A Multi-Level Model of Moral Functioning Revisited

    ERIC Educational Resources Information Center

    Reed, Don Collins

    2009-01-01

    The model of moral functioning scaffolded in the 2008 "JME" Special Issue is here revisited in response to three papers criticising that volume. As guest editor of that Special Issue I have formulated the main body of this response, concerning the dynamic systems approach to moral development, the problem of moral relativism and the role of…

  17. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    NASA Astrophysics Data System (ADS)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  18. The Singularity Mystery Associated with a Radially Continuous Maxwell Viscoelastic Structure

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.

    1995-01-01

    The singularity problem associated with a radially continuous Maxwell viscoclastic structure is investigated. A special tool called the isolation function is developed. Results calculated using the isolation function show that the discrete model assumption is no longer valid when the viscoelastic parameter becomes a continuous function of radius. Continuous variations in the upper mantle viscoelastic parameter are especially powerful in destroying the mode-like structures. The contribution to the load Love numbers of the singularities is sensitive to the convexity of the viscoelastic parameter models. The difference between the vertical response and the horizontal response found in layered viscoelastic parameter models remains with continuous models.

  19. A Multidimensional Ideal Point Item Response Theory Model for Binary Data

    ERIC Educational Resources Information Center

    Maydeu-Olivares, Albert; Hernandez, Adolfo; McDonald, Roderick P.

    2006-01-01

    We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model…

  20. The uncertainty of crop yield projections is reduced by improved temperature response functions.

    PubMed

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold

    2017-07-17

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  1. The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions

    NASA Technical Reports Server (NTRS)

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.; hide

    2017-01-01

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  2. Technical advance: live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung.

    PubMed

    Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias

    2014-09-01

    This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.

  3. Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime

    NASA Astrophysics Data System (ADS)

    Ochoa, Diego Alejandro; García, Jose Eduardo

    2016-04-01

    The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.

  4. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model

    PubMed Central

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-01-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914

  5. Development of the Complex General Linear Model in the Fourier Domain: Application to fMRI Multiple Input-Output Evoked Responses for Single Subjects

    PubMed Central

    Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281

  6. Development of the complex general linear model in the Fourier domain: application to fMRI multiple input-output evoked responses for single subjects.

    PubMed

    Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.

  7. Mathematical modeling of the aerodynamic characteristics in flight dynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.; Schiff, L. B.

    1984-01-01

    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.

  8. Attention enhances contrast appearance via increased input baseline of neural responses

    PubMed Central

    Cutrone, Elizabeth K.; Heeger, David J.; Carrasco, Marisa

    2014-01-01

    Covert spatial attention increases the perceived contrast of stimuli at attended locations, presumably via enhancement of visual neural responses. However, the relation between perceived contrast and the underlying neural responses has not been characterized. In this study, we systematically varied stimulus contrast, using a two-alternative, forced-choice comparison task to probe the effect of attention on appearance across the contrast range. We modeled performance in the task as a function of underlying neural contrast-response functions. Fitting this model to the observed data revealed that an increased input baseline in the neural responses accounted for the enhancement of apparent contrast with spatial attention. PMID:25549920

  9. Frequency response function (FRF) based updating of a laser spot welded structure

    NASA Astrophysics Data System (ADS)

    Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.

    2018-04-01

    The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, Slobodan; Tomic, Nada; Aldelaijan, Saad

    Purpose: Despite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system. Methods: Functional form [{zeta}= (-1){center_dot}netOD{sup (2/3)}/ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to testmore » the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC Trade-Mark-Sign film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA. Results: Obtained R{sup 2} values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC Trade-Mark-Sign EBT3 film model are well within {+-}2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also found that criteria of 3%/3 mm for an IMRT QA plan and 3%/2 mm for a brachytherapy QA plan are passing 95% gamma function points. Conclusions: In this paper, we demonstrate the use of functional argument to linearize the inherently nonlinear response of a radiochromic film based reference dosimetry system. In this way, relative dosimetry can be conveniently performed using radiochromic film dosimetry system without the need of establishing calibration curve.« less

  11. Dynamic physiological modeling for functional diffuse optical tomography

    PubMed Central

    Diamond, Solomon Gilbert; Huppert, Theodore J.; Kolehmainen, Ville; Franceschini, Maria Angela; Kaipio, Jari P.; Arridge, Simon R.; Boas, David A.

    2009-01-01

    Diffuse optical tomography (DOT) is a noninvasive imaging technology that is sensitive to local concentration changes in oxy- and deoxyhemoglobin. When applied to functional neuroimaging, DOT measures hemodynamics in the scalp and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near-infrared photon migration in tissue and the multitude of physiological systems that affect hemodynamics motivate the use of anatomical and physiological models to improve estimates of the functional hemodynamic response. In this paper, we present a linear state-space model for DOT analysis that models the physiological fluctuations present in the data with either static or dynamic estimation. We demonstrate the approach by using auxiliary measurements of blood pressure variability and heart rate variability as inputs to model the background physiology in DOT data. We evaluate the improvements accorded by modeling this physiology on ten human subjects with simulated functional hemodynamic responses added to the baseline physiology. Adding physiological modeling with a static estimator significantly improved estimates of the simulated functional response, and further significant improvements were achieved with a dynamic Kalman filter estimator (paired t tests, n = 10, P < 0.05). These results suggest that physiological modeling can improve DOT analysis. The further improvement with the Kalman filter encourages continued research into dynamic linear modeling of the physiology present in DOT. Cardiovascular dynamics also affect the blood-oxygen-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI). This state-space approach to DOT analysis could be extended to BOLD fMRI analysis, multimodal studies and real-time analysis. PMID:16242967

  12. Response Errors Explain the Failure of Independent-Channels Models of Perception of Temporal Order

    PubMed Central

    García-Pérez, Miguel A.; Alcalá-Quintana, Rocío

    2012-01-01

    Independent-channels models of perception of temporal order (also referred to as threshold models or perceptual latency models) have been ruled out because two formal properties of these models (monotonicity and parallelism) are not borne out by data from ternary tasks in which observers must judge whether stimulus A was presented before, after, or simultaneously with stimulus B. These models generally assume that observed responses are authentic indicators of unobservable judgments, but blinks, lapses of attention, or errors in pressing the response keys (maybe, but not only, motivated by time pressure when reaction times are being recorded) may make observers misreport their judgments or simply guess a response. We present an extension of independent-channels models that considers response errors and we show that the model produces psychometric functions that do not satisfy monotonicity and parallelism. The model is illustrated by fitting it to data from a published study in which the ternary task was used. The fitted functions describe very accurately the absence of monotonicity and parallelism shown by the data. These characteristics of empirical data are thus consistent with independent-channels models when response errors are taken into consideration. The implications of these results for the analysis and interpretation of temporal order judgment data are discussed. PMID:22493586

  13. OZONE-INDUCED RESPIRATORY SYMPTOMS AND LUNG FUNCTION DECREMENTS IN HUMANS: EXPOSURE-RESPONSE MODELS

    EPA Science Inventory

    Short duration exposure to ozone (<8 hr) is known to result in lung function decrements and respiratory symptoms in humans. The magnitudes of these responses are functions of ozone concentration (C), activity level measured by minute ventilation (Ve), duration of exposure (T), a...

  14. Solving bi-level optimization problems in engineering design using kriging models

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Liu, Xiaojie; Du, Gang

    2018-05-01

    Stackelberg game-theoretic approaches are applied extensively in engineering design to handle distributed collaboration decisions. Bi-level genetic algorithms (BLGAs) and response surfaces have been used to solve the corresponding bi-level programming models. However, the computational costs for BLGAs often increase rapidly with the complexity of lower-level programs, and optimal solution functions sometimes cannot be approximated by response surfaces. This article proposes a new method, namely the optimal solution function approximation by kriging model (OSFAKM), in which kriging models are used to approximate the optimal solution functions. A detailed example demonstrates that OSFAKM can obtain better solutions than BLGAs and response surface-based methods, and at the same time reduce the workload of computation remarkably. Five benchmark problems and a case study of the optimal design of a thin-walled pressure vessel are also presented to illustrate the feasibility and potential of the proposed method for bi-level optimization in engineering design.

  15. Comparing Geant4 hadronic models for the WENDI-II rem meter response function.

    PubMed

    Vanaudenhove, T; Dubus, A; Pauly, N

    2013-01-01

    The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application.

  16. Mathematical Model of Three Species Food Chain Interaction with Mixed Functional Response

    NASA Astrophysics Data System (ADS)

    Ws, Mada Sanjaya; Mohd, Ismail Bin; Mamat, Mustafa; Salleh, Zabidin

    In this paper, we study mathematical model of ecology with a tritrophic food chain composed of a classical Lotka-Volterra functional response for prey and predator, and a Holling type-III functional response for predator and super predator. There are two equilibrium points of the system. In the parameter space, there are passages from instability to stability, which are called Hopf bifurcation points. For the first equilibrium point, it is possible to find bifurcation points analytically and to prove that the system has periodic solutions around these points. Furthermore the dynamical behaviors of this model are investigated. Models for biologically reasonable parameter values, exhibits stable, unstable periodic and limit cycles. The dynamical behavior is found to be very sensitive to parameter values as well as the parameters of the practical life. Computer simulations are carried out to explain the analytical findings.

  17. Improving measurement of injection drug risk behavior using item response theory.

    PubMed

    Janulis, Patrick

    2014-03-01

    Recent research highlights the multiple steps to preparing and injecting drugs and the resultant viral threats faced by drug users. This research suggests that more sensitive measurement of injection drug HIV risk behavior is required. In addition, growing evidence suggests there are gender differences in injection risk behavior. However, the potential for differential item functioning between genders has not been explored. To explore item response theory as an improved measurement modeling technique that provides empirically justified scaling of injection risk behavior and to examine for potential gender-based differential item functioning. Data is used from three studies in the National Institute on Drug Abuse's Criminal Justice Drug Abuse Treatment Studies. A two-parameter item response theory model was used to scale injection risk behavior and logistic regression was used to examine for differential item functioning. Item fit statistics suggest that item response theory can be used to scale injection risk behavior and these models can provide more sensitive estimates of risk behavior. Additionally, gender-based differential item functioning is present in the current data. Improved measurement of injection risk behavior using item response theory should be encouraged as these models provide increased congruence between construct measurement and the complexity of injection-related HIV risk. Suggestions are made to further improve injection risk behavior measurement. Furthermore, results suggest direct comparisons of composite scores between males and females may be misleading and future work should account for differential item functioning before comparing levels of injection risk behavior.

  18. Testing the physiological plausibility of conflicting psychological models of response inhibition: A forward inference fMRI study.

    PubMed

    Criaud, Marion; Longcamp, Marieke; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Sescousse, Guillaume; Strafella, Antonio P; Ballanger, Bénédicte; Boulinguez, Philippe

    2017-08-30

    The neural mechanisms underlying response inhibition and related disorders are unclear and controversial for several reasons. First, it is a major challenge to assess the psychological bases of behaviour, and ultimately brain-behaviour relationships, of a function which is precisely intended to suppress overt measurable behaviours. Second, response inhibition is difficult to disentangle from other parallel processes involved in more general aspects of cognitive control. Consequently, different psychological and anatomo-functional models coexist, which often appear in conflict with each other even though they are not necessarily mutually exclusive. The standard model of response inhibition in go/no-go tasks assumes that inhibitory processes are reactively and selectively triggered by the stimulus that participants must refrain from reacting to. Recent alternative models suggest that action restraint could instead rely on reactive but non-selective mechanisms (all automatic responses are automatically inhibited in uncertain contexts) or on proactive and non-selective mechanisms (a gating function by which reaction to any stimulus is prevented in anticipation of stimulation when the situation is unpredictable). Here, we assessed the physiological plausibility of these different models by testing their respective predictions regarding event-related BOLD modulations (forward inference using fMRI). We set up a single fMRI design which allowed for us to record simultaneously the different possible forms of inhibition while limiting confounds between response inhibition and parallel cognitive processes. We found BOLD dynamics consistent with non-selective models. These results provide new theoretical and methodological lines of inquiry for the study of basic functions involved in behavioural control and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Penalized nonparametric scalar-on-function regression via principal coordinates

    PubMed Central

    Reiss, Philip T.; Miller, David L.; Wu, Pei-Shien; Hua, Wen-Yu

    2016-01-01

    A number of classical approaches to nonparametric regression have recently been extended to the case of functional predictors. This paper introduces a new method of this type, which extends intermediate-rank penalized smoothing to scalar-on-function regression. In the proposed method, which we call principal coordinate ridge regression, one regresses the response on leading principal coordinates defined by a relevant distance among the functional predictors, while applying a ridge penalty. Our publicly available implementation, based on generalized additive modeling software, allows for fast optimal tuning parameter selection and for extensions to multiple functional predictors, exponential family-valued responses, and mixed-effects models. In an application to signature verification data, principal coordinate ridge regression, with dynamic time warping distance used to define the principal coordinates, is shown to outperform a functional generalized linear model. PMID:29217963

  20. Functional interaction-based nonlinear models with application to multiplatform genomics data.

    PubMed

    Davenport, Clemontina A; Maity, Arnab; Baladandayuthapani, Veerabhadran

    2018-05-07

    Functional regression allows for a scalar response to be dependent on a functional predictor; however, not much work has been done when a scalar exposure that interacts with the functional covariate is introduced. In this paper, we present 2 functional regression models that account for this interaction and propose 2 novel estimation procedures for the parameters in these models. These estimation methods allow for a noisy and/or sparsely observed functional covariate and are easily extended to generalized exponential family responses. We compute standard errors of our estimators, which allows for further statistical inference and hypothesis testing. We compare the performance of the proposed estimators to each other and to one found in the literature via simulation and demonstrate our methods using a real data example. Copyright © 2018 John Wiley & Sons, Ltd.

  1. A Comparison of Linking and Concurrent Calibration under the Graded Response Model.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; Cohen, Allan S.

    Applications of item response theory to practical testing problems including equating, differential item functioning, and computerized adaptive testing, require that item parameter estimates be placed onto a common metric. In this study, two methods for developing a common metric for the graded response model under item response theory were…

  2. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture.

    PubMed

    Li, Frank Yonghong; Newton, Paul C D; Lieffering, Mark

    2014-01-01

    Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated CO2 has been tested against long-term experimental data. Here we tested how well the ecosystem model APSIM/AgPasture was able to simulate the results from a free air carbon dioxide enrichment (FACE) experiment on grazed pasture. At this FACE site, during 11 years of CO2 enrichment, a wide range in annual plant production response to CO2 (-6 to +28%) was observed. As well as running the full model, which includes three plant CO2 response functions (plant photosynthesis, nitrogen (N) demand and stomatal conductance), we also tested the influence of these three functions on model predictions. Model/data comparisons showed that: (i) overall the model over-predicted the mean annual plant production response to CO2 (18.5% cf 13.1%) largely because years with small or negative responses to CO2 were not well simulated; (ii) in general seasonal and inter-annual variation in plant production responses to elevated CO2 were well represented by the model; (iii) the observed CO2 enhancement in overall mean legume content was well simulated but year-to-year variation in legume content was poorly captured by the model; (iv) the best fit of the model to the data required all three CO2 response functions to be invoked; (v) using actual legume content and reduced N fixation rate under elevated CO2 in the model provided the best fit to the experimental data. We conclude that in temperate grasslands the N dynamics (particularly the legume content and N fixation activity) play a critical role in pasture production responses to elevated CO2 , and are processes for model improvement. © 2013 John Wiley & Sons Ltd.

  3. An NCME Instructional Module on Latent DIF Analysis Using Mixture Item Response Models

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Suh, Youngsuk; Lee, Woo-yeol

    2016-01-01

    The purpose of this ITEMS module is to provide an introduction to differential item functioning (DIF) analysis using mixture item response models. The mixture item response models for DIF analysis involve comparing item profiles across latent groups, instead of manifest groups. First, an overview of DIF analysis based on latent groups, called…

  4. Basilar-membrane responses to broadband noise modeled using linear filters with rational transfer functions.

    PubMed

    Recio-Spinoso, Alberto; Fan, Yun-Hui; Ruggero, Mario A

    2011-05-01

    Basilar-membrane responses to white Gaussian noise were recorded using laser velocimetry at basal sites of the chinchilla cochlea with characteristic frequencies near 10 kHz and first-order Wiener kernels were computed by cross correlation of the stimuli and the responses. The presence or absence of minimum-phase behavior was explored by fitting the kernels with discrete linear filters with rational transfer functions. Excellent fits to the kernels were obtained with filters with transfer functions including zeroes located outside the unit circle, implying nonminimum-phase behavior. These filters accurately predicted basilar-membrane responses to other noise stimuli presented at the same level as the stimulus for the kernel computation. Fits with all-pole and other minimum-phase discrete filters were inferior to fits with nonminimum-phase filters. Minimum-phase functions predicted from the amplitude functions of the Wiener kernels by Hilbert transforms were different from the measured phase curves. These results, which suggest that basilar-membrane responses do not have the minimum-phase property, challenge the validity of models of cochlear processing, which incorporate minimum-phase behavior. © 2011 IEEE

  5. Different Signal Enhancement Pathways of Attention and Consciousness Underlie Perception in Humans.

    PubMed

    van Boxtel, Jeroen J A

    2017-06-14

    It is not yet known whether attention and consciousness operate through similar or largely different mechanisms. Visual processing mechanisms are routinely characterized by measuring contrast response functions (CRFs). In this report, behavioral CRFs were obtained in humans (both males and females) by measuring afterimage durations over the entire range of inducer stimulus contrasts to reveal visual mechanisms behind attention and consciousness. Deviations relative to the standard CRF, i.e., gain functions, describe the strength of signal enhancement, which were assessed for both changes due to attentional task and conscious perception. It was found that attention displayed a response-gain function, whereas consciousness displayed a contrast-gain function. Through model comparisons, which only included contrast-gain modulations, both contrast-gain and response-gain effects can be explained with a two-level normalization model, in which consciousness affects only the first level and attention affects only the second level. These results demonstrate that attention and consciousness can effectively show different gain functions because they operate through different signal enhancement mechanisms. SIGNIFICANCE STATEMENT The relationship between attention and consciousness is still debated. Mapping contrast response functions (CRFs) has allowed (neuro)scientists to gain important insights into the mechanistic underpinnings of visual processing. Here, the influence of both attention and consciousness on these functions were measured and they displayed a strong dissociation. First, attention lowered CRFs, whereas consciousness raised them. Second, attention manifests itself as a response-gain function, whereas consciousness manifests itself as a contrast-gain function. Extensive model comparisons show that these results are best explained in a two-level normalization model in which consciousness affects only the first level, whereas attention affects only the second level. These findings show dissociations between both the computational mechanisms behind attention and consciousness and the perceptual consequences that they induce. Copyright © 2017 the authors 0270-6474/17/375912-11$15.00/0.

  6. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.

  7. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    NASA Astrophysics Data System (ADS)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of analysing GCMs with the step-experiments. Acknowledgments: This work is supported by the FP7 HELIX project (www.helixclimate.eu) References: Anandarajah, G., Pye, S., Usher, W., Kesicki, F., & Mcglade, C. (2011). TIAM-UCL Global model documentation. https://www.ucl.ac.uk/energy-models/models/tiam-ucl/tiam-ucl-manual Good, P., Gregory, J. M., Lowe, J. A., & Andrews, T. (2013). Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections. Climate Dynamics, 40(3-4), 1041-1053.

  8. Transfer-function-parameter estimation from frequency response data: A FORTRAN program

    NASA Technical Reports Server (NTRS)

    Seidel, R. C.

    1975-01-01

    A FORTRAN computer program designed to fit a linear transfer function model to given frequency response magnitude and phase data is presented. A conjugate gradient search is used that minimizes the integral of the absolute value of the error squared between the model and the data. The search is constrained to insure model stability. A scaling of the model parameters by their own magnitude aids search convergence. Efficient computer algorithms result in a small and fast program suitable for a minicomputer. A sample problem with different model structures and parameter estimates is reported.

  9. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less

  10. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  11. Dynamic response and transfer function of social systems: A neuro-inspired model of collective human activity patterns.

    PubMed

    Lymperopoulos, Ilias N

    2017-10-01

    The interaction of social networks with the external environment gives rise to non-stationary activity patterns reflecting the temporal structure and strength of exogenous influences that drive social dynamical processes far from an equilibrium state. Following a neuro-inspired approach, based on the dynamics of a passive neuronal membrane, and the firing rate dynamics of single neurons and neuronal populations, we build a state-of-the-art model of the collective social response to exogenous interventions. In this regard, we analyze online activity patterns with a view to determining the transfer function of social systems, that is, the dynamic relationship between external influences and the resulting activity. To this end, first we estimate the impulse response (Green's function) of collective activity, and then we show that the convolution of the impulse response with a time-varying external influence field accurately reproduces empirical activity patterns. To capture the dynamics of collective activity when the generating process is in a state of statistical equilibrium, we incorporate into the model a noisy input convolved with the impulse response function, thus precisely reproducing the fluctuations of stationary collective activity around a resting value. The outstanding goodness-of-fit of the model results to empirical observations, indicates that the model explains human activity patterns generated by time-dependent external influences in various socio-economic contexts. The proposed model can be used for inferring the temporal structure and strength of external influences, as well as the inertia of collective social activity. Furthermore, it can potentially predict social activity patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modeling and multi-response optimization of pervaporation of organic aqueous solutions using desirability function approach.

    PubMed

    Cojocaru, C; Khayet, M; Zakrzewska-Trznadel, G; Jaworska, A

    2009-08-15

    The factorial design of experiments and desirability function approach has been applied for multi-response optimization in pervaporation separation process. Two organic aqueous solutions were considered as model mixtures, water/acetonitrile and water/ethanol mixtures. Two responses have been employed in multi-response optimization of pervaporation, total permeate flux and organic selectivity. The effects of three experimental factors (feed temperature, initial concentration of organic compound in feed solution, and downstream pressure) on the pervaporation responses have been investigated. The experiments were performed according to a 2(3) full factorial experimental design. The factorial models have been obtained from experimental design and validated statistically by analysis of variance (ANOVA). The spatial representations of the response functions were drawn together with the corresponding contour line plots. Factorial models have been used to develop the overall desirability function. In addition, the overlap contour plots were presented to identify the desirability zone and to determine the optimum point. The optimal operating conditions were found to be, in the case of water/acetonitrile mixture, a feed temperature of 55 degrees C, an initial concentration of 6.58% and a downstream pressure of 13.99 kPa, while for water/ethanol mixture a feed temperature of 55 degrees C, an initial concentration of 4.53% and a downstream pressure of 9.57 kPa. Under such optimum conditions it was observed experimentally an improvement of both the total permeate flux and selectivity.

  13. Effects of functional constraints and opportunism on the functional structure of a vertebrate predator assemblage.

    PubMed

    Farias, Ariel A; Jaksic, Fabian M

    2007-03-01

    1. Within mainstream ecological literature, functional structure has been viewed as resulting from the interplay of species interactions, resource levels and environmental variability. Classical models state that interspecific competition generates species segregation and guild formation in stable saturated environments, whereas opportunism causes species aggregation on abundant resources in variable unsaturated situations. 2. Nevertheless, intrinsic functional constraints may result in species-specific differences in resource-use capabilities. This could force some degree of functional structure without assuming other putative causes. However, the influence of such constraints has rarely been tested, and their relative contribution to observed patterns has not been quantified. 3. We used a multiple null-model approach to quantify the magnitude and direction (non-random aggregation or divergence) of the functional structure of a vertebrate predator assemblage exposed to variable prey abundance over an 18-year period. Observed trends were contrasted with predictions from null-models designed in an orthogonal fashion to account independently for the effects of functional constraints and opportunism. Subsequently, the unexplained variation was regressed against environmental variables to search for evidence of interspecific competition. 4. Overall, null-models accounting for functional constraints showed the best fit to the observed data, and suggested an effect of this factor in modulating predator opportunistic responses. However, regression models on residual variation indicated that such an effect was dependent on both total and relative abundance of principal (small mammals) and alternative (arthropods, birds, reptiles) prey categories. 5. In addition, no clear evidence for interspecific competition was found, but differential delays in predator functional responses could explain some of the unaccounted variation. Thus, we call for caution when interpreting empirical data in the context of classical models assuming synchronous responses of consumers to resource levels.

  14. A predator-prey model with a holling type I functional response including a predator mutual interference

    USGS Publications Warehouse

    Seo, G.; DeAngelis, D.L.

    2011-01-01

    The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.

  15. Piezoelectric Actuator Modeling Using MSC/NASTRAN and MATLAB

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    2003-01-01

    This paper presents a procedure for modeling structures containing piezoelectric actuators using MSCMASTRAN and MATLAB. The paper describes the utility and functionality of one set of validated modeling tools. The tools described herein use MSCMASTRAN to model the structure with piezoelectric actuators and a thermally induced strain to model straining of the actuators due to an applied voltage field. MATLAB scripts are used to assemble the dynamic equations and to generate frequency response functions. The application of these tools is discussed using a cantilever aluminum beam with a surface mounted piezoelectric actuator as a sample problem. Software in the form of MSCINASTRAN DMAP input commands, MATLAB scripts, and a step-by-step procedure to solve the example problem are provided. Analysis results are generated in terms of frequency response functions from deflection and strain data as a function of input voltage to the actuator.

  16. Testing the dose-response specification in epidemiology: public health and policy consequences for lead.

    PubMed

    Rothenberg, Stephen J; Rothenberg, Jesse C

    2005-09-01

    Statistical evaluation of the dose-response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose-response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear-linear dose response) and natural-log-transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose-response relationship. We found that a log-linear lead-IQ relationship was a significantly better fit than was a linear-linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead-IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 microg/dL to 2.0 microg/dL) was 2.2 times (319 billion dollars) that calculated using a linear-linear dose-response function (149 billion dollars). The Centers for Disease Control and Prevention action limit of 10 microg/dL for children fails to protect against most damage and economic cost attributable to lead exposure.

  17. Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling

    NASA Astrophysics Data System (ADS)

    Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong

    2017-12-01

    Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.

  18. Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    2018-05-01

    Orbital-free density functional theory (OF-DFT) promises to describe the electronic structure of very large quantum systems, being its computational cost linear with the system size. However, the OF-DFT accuracy strongly depends on the approximation made for the kinetic energy (KE) functional. To date, the most accurate KE functionals are nonlocal functionals based on the linear-response kernel of the homogeneous electron gas, i.e., the jellium model. Here, we use the linear-response kernel of the jellium-with-gap model to construct a simple nonlocal KE functional (named KGAP) which depends on the band-gap energy. In the limit of vanishing energy gap (i.e., in the case of metals), the KGAP is equivalent to the Smargiassi-Madden (SM) functional, which is accurate for metals. For a series of semiconductors (with different energy gaps), the KGAP performs much better than SM, and results are close to the state-of-the-art functionals with sophisticated density-dependent kernels.

  19. The effect of stimulus strength on the speed and accuracy of a perceptual decision.

    PubMed

    Palmer, John; Huk, Alexander C; Shadlen, Michael N

    2005-05-02

    Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and accuracy. The theory is also shown to subsume the predictions of Piéron's Law, a power function dependence of response time on stimulus strength. The theory's analytic chronometric function allows one to extend theories of accuracy to response time.

  20. Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

    NASA Astrophysics Data System (ADS)

    Savitri, D.

    2018-01-01

    This articel discusses a predator prey model with anti-predator on intermediate predator using ratio dependent functional responses. Dynamical analysis performed on the model includes determination of equilibrium point, stability and simulation. Three kinds of equilibrium points have been discussed, namely the extinction of prey point, the extinction of intermediate predator point and the extinction of predator point are exists under certain conditions. It can be shown that the result of numerical simulations are in accordance with analitical results

  1. A Note on the Equivalence between Observed and Expected Information Functions with Polytomous IRT Models

    ERIC Educational Resources Information Center

    Magis, David

    2015-01-01

    The purpose of this note is to study the equivalence of observed and expected (Fisher) information functions with polytomous item response theory (IRT) models. It is established that observed and expected information functions are equivalent for the class of divide-by-total models (including partial credit, generalized partial credit, rating…

  2. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  3. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  4. Prediction of Unsteady Aerodynamic Coefficients at High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Murphy, Patrick C.; Klein, Vladislav; Brandon, Jay M.

    2001-01-01

    The nonlinear indicial response method is used to model the unsteady aerodynamic coefficients in the low speed longitudinal oscillatory wind tunnel test data of the 0.1 scale model of the F-16XL aircraft. Exponential functions are used to approximate the deficiency function in the indicial response. Using one set of oscillatory wind tunnel data and parameter identification method, the unknown parameters in the exponential functions are estimated. The genetic algorithm is used as a least square minimizing algorithm. The assumed model structures and parameter estimates are validated by comparing the predictions with other sets of available oscillatory wind tunnel test data.

  5. Vegetable parenting practices scale. Item response modeling analyses

    PubMed Central

    Chen, Tzu-An; O’Connor, Teresia; Hughes, Sheryl; Beltran, Alicia; Baranowski, Janice; Diep, Cassandra; Baranowski, Tom

    2015-01-01

    Objective To evaluate the psychometric properties of a vegetable parenting practices scale using multidimensional polytomous item response modeling which enables assessing item fit to latent variables and the distributional characteristics of the items in comparison to the respondents. We also tested for differences in the ways item function (called differential item functioning) across child’s gender, ethnicity, age, and household income groups. Method Parents of 3–5 year old children completed a self-reported vegetable parenting practices scale online. Vegetable parenting practices consisted of 14 effective vegetable parenting practices and 12 ineffective vegetable parenting practices items, each with three subscales (responsiveness, structure, and control). Multidimensional polytomous item response modeling was conducted separately on effective vegetable parenting practices and ineffective vegetable parenting practices. Results One effective vegetable parenting practice item did not fit the model well in the full sample or across demographic groups, and another was a misfit in differential item functioning analyses across child’s gender. Significant differential item functioning was detected across children’s age and ethnicity groups, and more among effective vegetable parenting practices than ineffective vegetable parenting practices items. Wright maps showed items only covered parts of the latent trait distribution. The harder- and easier-to-respond ends of the construct were not covered by items for effective vegetable parenting practices and ineffective vegetable parenting practices, respectively. Conclusions Several effective vegetable parenting practices and ineffective vegetable parenting practices scale items functioned differently on the basis of child’s demographic characteristics; therefore, researchers should use these vegetable parenting practices scales with caution. Item response modeling should be incorporated in analyses of parenting practice questionnaires to better assess differences across demographic characteristics. PMID:25895694

  6. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.

  7. When can a single-species, density-dependent model capture the dynamics of a consumer-resource system?

    PubMed

    Reynolds, Sara A; Brassil, Chad E

    2013-12-21

    Single-species population models often include density-dependence phenomenologically in order to approximate higher order mechanisms. Here we consider the common scenario in which density-dependence acts via depletion of a renewed resource. When the response of the resource is very quick relative to that of the consumer, the consumer dynamics can be captured by a single-species, density-dependent model. Time scale separation is used to show analytically how the shape of the density-dependent relationship depends on the type of resource and the form of the functional response. Resource types of abiotic, biotic, and biotic with migration are considered, in combination with linear and saturating functional responses. In some cases, we derive familiar forms of single-species models, adding to the justification for their use. In other scenarios novel forms of density-dependence are derived, for example an abiotic resource and a saturating functional response can result in a nonlinear density-dependent relationship in the associated single-species model of the consumer. In this case, the per capita relationship has both concave-up and concave-down sections. © 2013 Published by Elsevier Ltd. All rights reserved.

  8. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    PubMed

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  9. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  10. Functional CAR models for large spatially correlated functional datasets.

    PubMed

    Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S

    2016-01-01

    We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.

  11. The Dutch Identity: A New Tool for the Study of Item Response Models.

    ERIC Educational Resources Information Center

    Holland, Paul W.

    1990-01-01

    The Dutch Identity is presented as a useful tool for expressing the basic equations of item response models that relate the manifest probabilities to the item response functions and the latent trait distribution. Ways in which the identity may be exploited are suggested and illustrated. (SLD)

  12. Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study.

    PubMed

    Zhu, Hongxiao; Morris, Jeffrey S; Wei, Fengrong; Cox, Dennis D

    2017-07-01

    Many scientific studies measure different types of high-dimensional signals or images from the same subject, producing multivariate functional data. These functional measurements carry different types of information about the scientific process, and a joint analysis that integrates information across them may provide new insights into the underlying mechanism for the phenomenon under study. Motivated by fluorescence spectroscopy data in a cervical pre-cancer study, a multivariate functional response regression model is proposed, which treats multivariate functional observations as responses and a common set of covariates as predictors. This novel modeling framework simultaneously accounts for correlations between functional variables and potential multi-level structures in data that are induced by experimental design. The model is fitted by performing a two-stage linear transformation-a basis expansion to each functional variable followed by principal component analysis for the concatenated basis coefficients. This transformation effectively reduces the intra-and inter-function correlations and facilitates fast and convenient calculation. A fully Bayesian approach is adopted to sample the model parameters in the transformed space, and posterior inference is performed after inverse-transforming the regression coefficients back to the original data domain. The proposed approach produces functional tests that flag local regions on the functional effects, while controlling the overall experiment-wise error rate or false discovery rate. It also enables functional discriminant analysis through posterior predictive calculation. Analysis of the fluorescence spectroscopy data reveals local regions with differential expressions across the pre-cancer and normal samples. These regions may serve as biomarkers for prognosis and disease assessment.

  13. Flexible link functions in nonparametric binary regression with Gaussian process priors.

    PubMed

    Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K

    2016-09-01

    In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.

  14. Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors

    PubMed Central

    Li, Dan; Lin, Lizhen; Dey, Dipak K.

    2015-01-01

    Summary In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. PMID:26686333

  15. An Integrated Hydrologic-Economic Modeling Tool for Evaluating Water Management Responses to Climate Change in the Boise River Basin

    NASA Astrophysics Data System (ADS)

    Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.

    2009-12-01

    A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions incorporating crop distribution, evapotranspiration rates, irrigation efficiencies, and crop prices are used to develop water demand-price functions for agricultural water users. Demand functions for municipal and industrial water users are also developed. Recent applications of the integrated model have focused on the hydrologic and economic impacts of demand management alternatives, including large-scale canal lining conservation measures, and market-based water trading between canal diverters and groundwater pumpers. A supply management alternative being investigated involves revising reservoir rule curves to compensate for climate change impacts on timing of reservoir filling.

  16. A generalized partially linear mean-covariance regression model for longitudinal proportional data, with applications to the analysis of quality of life data from cancer clinical trials.

    PubMed

    Zheng, Xueying; Qin, Guoyou; Tu, Dongsheng

    2017-05-30

    Motivated by the analysis of quality of life data from a clinical trial on early breast cancer, we propose in this paper a generalized partially linear mean-covariance regression model for longitudinal proportional data, which are bounded in a closed interval. Cholesky decomposition of the covariance matrix for within-subject responses and generalized estimation equations are used to estimate unknown parameters and the nonlinear function in the model. Simulation studies are performed to evaluate the performance of the proposed estimation procedures. Our new model is also applied to analyze the data from the cancer clinical trial that motivated this research. In comparison with available models in the literature, the proposed model does not require specific parametric assumptions on the density function of the longitudinal responses and the probability function of the boundary values and can capture dynamic changes of time or other interested variables on both mean and covariance of the correlated proportional responses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. The acquisition of conditioned responding.

    PubMed

    Harris, Justin A

    2011-04-01

    This report analyzes the acquisition of conditioned responses in rats trained in a magazine approach paradigm. Following the suggestion by Gallistel, Fairhurst, and Balsam (2004), Weibull functions were fitted to the trial-by-trial response rates of individual rats. These showed that the emergence of responding was often delayed, after which the response rate would increase relatively gradually across trials. The fit of the Weibull function to the behavioral data of each rat was equaled by that of a cumulative exponential function incorporating a response threshold. Thus, the growth in conditioning strength on each trial can be modeled by the derivative of the exponential--a difference term of the form used in many models of associative learning (e.g., Rescorla & Wagner, 1972). Further analyses, comparing the acquisition of responding with a continuously reinforced stimulus (CRf) and a partially reinforced stimulus (PRf), provided further evidence in support of the difference term. In conclusion, the results are consistent with conventional models that describe learning as the growth of associative strength, incremented on each trial by an error-correction process.

  18. Functional modeling of the human auditory brainstem response to broadband stimulationa)

    PubMed Central

    Verhulst, Sarah; Bharadwaj, Hari M.; Mehraei, Golbarg; Shera, Christopher A.; Shinn-Cunningham, Barbara G.

    2015-01-01

    Population responses such as the auditory brainstem response (ABR) are commonly used for hearing screening, but the relationship between single-unit physiology and scalp-recorded population responses are not well understood. Computational models that integrate physiologically realistic models of single-unit auditory-nerve (AN), cochlear nucleus (CN) and inferior colliculus (IC) cells with models of broadband peripheral excitation can be used to simulate ABRs and thereby link detailed knowledge of animal physiology to human applications. Existing functional ABR models fail to capture the empirically observed 1.2–2 ms ABR wave-V latency-vs-intensity decrease that is thought to arise from level-dependent changes in cochlear excitation and firing synchrony across different tonotopic sections. This paper proposes an approach where level-dependent cochlear excitation patterns, which reflect human cochlear filter tuning parameters, drive AN fibers to yield realistic level-dependent properties of the ABR wave-V. The number of free model parameters is minimal, producing a model in which various sources of hearing-impairment can easily be simulated on an individualized and frequency-dependent basis. The model fits latency-vs-intensity functions observed in human ABRs and otoacoustic emissions while maintaining rate-level and threshold characteristics of single-unit AN fibers. The simulations help to reveal which tonotopic regions dominate ABR waveform peaks at different stimulus intensities. PMID:26428802

  19. Biocontrol in an impulsive predator-prey model.

    PubMed

    Terry, Alan J

    2014-10-01

    We study a model for biological pest control (or "biocontrol") in which a pest population is controlled by a program of periodic releases of a fixed yield of predators that prey on the pest. Releases are represented as impulsive increases in the predator population. Between releases, predator-pest dynamics evolve according to a predator-prey model with some fairly general properties: the pest population grows logistically in the absence of predation; the predator functional response is either of Beddington-DeAngelis type or Holling type II; the predator per capita birth rate is bounded above by a constant multiple of the predator functional response; and the predator per capita death rate is allowed to be decreasing in the predator functional response and increasing in the predator population, though the special case in which it is constant is permitted too. We prove that, when the predator functional response is of Beddington-DeAngelis type and the predators are not sufficiently voracious, then the biocontrol program will fail to reduce the pest population below a particular economic threshold, regardless of the frequency or yield of the releases. We prove also that our model possesses a pest-eradication solution, which is both locally and globally stable provided that predators are sufficiently voracious and that releases occur sufficiently often. We establish, curiously, that the pest-eradication solution can be locally stable whilst not being globally stable, the upshot of which is that, if we delay a biocontrol response to a new pest invasion, then this can change the outcome of the response from pest eradication to pest persistence. Finally, we state a number of specific examples for our model, and, for one of these examples, we corroborate parts of our analysis by numerical simulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Novel biomarker-based model for the prediction of sorafenib response and overall survival in advanced hepatocellular carcinoma: a prospective cohort study.

    PubMed

    Kim, Hwi Young; Lee, Dong Hyeon; Lee, Jeong-Hoon; Cho, Young Youn; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Yoon, Jung-Hwan

    2018-03-20

    Prediction of the outcome of sorafenib therapy using biomarkers is an unmet clinical need in patients with advanced hepatocellular carcinoma (HCC). The aim was to develop and validate a biomarker-based model for predicting sorafenib response and overall survival (OS). This prospective cohort study included 124 consecutive HCC patients (44 with disease control, 80 with progression) with Child-Pugh class A liver function, who received sorafenib. Potential serum biomarkers (namely, hepatocyte growth factor [HGF], fibroblast growth factor [FGF], vascular endothelial growth factor receptor-1, CD117, and angiopoietin-2) were tested. After identifying independent predictors of tumor response, a risk scoring system for predicting OS was developed and 3-fold internal validation was conducted. A risk scoring system was developed with six covariates: etiology, platelet count, Barcelona Clinic Liver Cancer stage, protein induced by vitamin K absence-II, HGF, and FGF. When patients were stratified into low-risk (score ≤ 5), intermediate-risk (score 6), and high-risk (score ≥ 7) groups, the model provided good discriminant functions on tumor response (concordance [c]-index, 0.884) and 12-month survival (area under the curve [AUC], 0.825). The median OS was 19.0, 11.2, and 6.1 months in the low-, intermediate-, and high-risk group, respectively (P < 0.001). In internal validation, the model maintained good discriminant functions on tumor response (c-index, 0.825) and 12-month survival (AUC, 0.803), and good calibration functions (all P > 0.05 between expected and observed values). This new model including serum FGF and HGF showed good performance in predicting the response to sorafenib and survival in patients with advanced HCC.

  1. Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.

    In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accountedmore » for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.« less

  2. Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia

    NASA Astrophysics Data System (ADS)

    Wang, H.; Guan, H.; Deng, R.; Simmons, C. T.

    2013-12-01

    Canopy conductance response to environmental conditions is a critical component in land surface hydrological modeling. This response is often formulated as a combination of response functions of each influencing factor (solar radiation, air temperature, vapor pressure deficit, and soil water availability). These functions are climate and vegetation specific. Thus, it is important to determine the most appropriate combination of response functions and their parameter values for a specific environment. We will present a method for this purpose based on field measurements and an optimization scheme. The study was performed on Drooping Sheoak (Allocasuarina verticillata) in Adelaide South Australia. Sap flow and stem water potential were measured in a year together with microclimate variables. Canopy conductance was calculated from the inversed Penman-Monteith (PM) equation, which was then used to examine the performance of 36 combinations of various response functions. Parameters in the models were optimized using a DiffeRential Evolution Adaptive Metropolis (DREAM) model based on a training dataset. The testing results show that the best combination gave a correlation coefficient of 0.97, and root mean square error of 0.0006 m/s in comparison to the PM-calculated values. The maximum stomatal conductance given by this combination is 0.0075 m/s, equivalent to a minimum stomatal resistance of 133 s/m. This is close to the number (150 s/m) used in Noah land surface model for evergreen needle-leaf trees. It is surprising that for all combinations, the optimized parameter of the temperature response function is against its physical meaning. This is likely related to the inter-dependence between air temperature and vapor pressure deficit. Supported by the results, we suggest that the effects of vapor pressure deficit and air temperature should be represented together, so as to be consistent with the physics.

  3. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    PubMed

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. When Do Short-Wave Cones Signal Blue or Red? A Solution Introducing the Concept of Primary and Secondary Cone Outputs

    PubMed Central

    2016-01-01

    A recent paper by Oh and Sakata investigates the “incompletely solved mystery” of how the three cone responses map onto perceived hue, and particularly the S cone’s well-known problematic contribution to blueness and redness. Citing previous workers, they argue the twentieth century traditional multistage model does not satisfactorily account for color appearance. In their experiment, increasing S cone excitation with shortening wavelength from about 480–460 nm increased perceived blueness up to the unique Blue point at 470 nm, when (a) it began decreasing and (b) redness perception began increasing. The authors asked, What mechanism can be responsible for such functions? I demonstrate a solution. First, it is shown the problem does not lie in the traditional opponent color chromatic responses yellow-blue, red-green (y-b, r-g, which accurately predict the above functions), but in the traditional multistage model of mapping cone responses to chromatic response functions. Arguably, this is due to the S cone’s hypothetically signaling both blueness and redness by the same mechanism rather than by different, independent, mechanisms. Hence a new distinction or mechanism is proposed for a more accurate model, that introduces the new terms primary and secondary cone outputs. However, this distinction requires that the cones S, M, L each directly produce one of the three spectral chromatic responses b, g, y. Such a model was recently published, based on extremely high correlation of SML cone responsivities with the three spectral (bgy) chromatic responses. This model encodes the former directly onto the latter one-to-one as cone primary outputs, whilst S and L cones have a further or secondary function where each produces one of the two spectral lobes of r chromatic response. The proposed distinction between primary and secondary cone outputs is a new concept and useful tool in detailing cone outputs to chromatic channels, and provides a solution to the above “incompletely solved mystery.” Thus the S cone has a primary output producing the total b chromatic response and a secondary output that shares with the L cone the production of r chromatic response, thus aligning with Oh and Sokata’s results. The model similarly maps L cone to yellowness as primary output and to redness as secondary output. PMID:27110938

  5. Optimization of response surface and neural network models in conjugation with desirability function for estimation of nutritional needs of methionine, lysine, and threonine in broiler chickens.

    PubMed

    Mehri, Mehran

    2014-07-01

    The optimization algorithm of a model may have significant effects on the final optimal values of nutrient requirements in poultry enterprises. In poultry nutrition, the optimal values of dietary essential nutrients are very important for feed formulation to optimize profit through minimizing feed cost and maximizing bird performance. This study was conducted to introduce a novel multi-objective algorithm, desirability function, for optimization the bird response models based on response surface methodology (RSM) and artificial neural network (ANN). The growth databases on the central composite design (CCD) were used to construct the RSM and ANN models and optimal values for 3 essential amino acids including lysine, methionine, and threonine in broiler chicks have been reevaluated using the desirable function in both analytical approaches from 3 to 16 d of age. Multi-objective optimization results showed that the most desirable function was obtained for ANN-based model (D = 0.99) where the optimal levels of digestible lysine (dLys), digestible methionine (dMet), and digestible threonine (dThr) for maximum desirability were 13.2, 5.0, and 8.3 g/kg of diet, respectively. However, the optimal levels of dLys, dMet, and dThr in the RSM-based model were estimated at 11.2, 5.4, and 7.6 g/kg of diet, respectively. This research documented that the application of ANN in the broiler chicken model along with a multi-objective optimization algorithm such as desirability function could be a useful tool for optimization of dietary amino acids in fractional factorial experiments, in which the use of the global desirability function may be able to overcome the underestimations of dietary amino acids resulting from the RSM model. © 2014 Poultry Science Association Inc.

  6. Simulating bimodal tall fescue growth with a degree-day-based process-oriented plant model

    USDA-ARS?s Scientific Manuscript database

    Plant growth simulation models have a temperature response function driving development, with a base temperature and an optimum temperature defined. Such growth simulation models often function well when plant development rate shows a continuous change throughout the growing season. This approach ...

  7. Testing the Dose–Response Specification in Epidemiology: Public Health and Policy Consequences for Lead

    PubMed Central

    Rothenberg, Stephen J.; Rothenberg, Jesse C.

    2005-01-01

    Statistical evaluation of the dose–response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose–response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear–linear dose response) and natural-log–transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose–response relationship. We found that a log-linear lead–IQ relationship was a significantly better fit than was a linear–linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead–IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 μg/dL to 2.0 μg/dL) was 2.2 times ($319 billion) that calculated using a linear–linear dose–response function ($149 billion). The Centers for Disease Control and Prevention action limit of 10 μg/dL for children fails to protect against most damage and economic cost attributable to lead exposure. PMID:16140626

  8. A Review of the Combination of Experimental Measurements and Fibril-Reinforced Modeling for Investigation of Articular Cartilage and Chondrocyte Response to Loading

    PubMed Central

    Wilson, Wouter; Isaksson, Hanna; Jurvelin, Jukka S.; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The function of articular cartilage depends on its structure and composition, sensitively impaired in disease (e.g. osteoarthritis, OA). Responses of chondrocytes to tissue loading are modulated by the structure. Altered cell responses as an effect of OA may regulate cartilage mechanotransduction and cell biosynthesis. To be able to evaluate cell responses and factors affecting the onset and progression of OA, local tissue and cell stresses and strains in cartilage need to be characterized. This is extremely challenging with the presently available experimental techniques and therefore computational modeling is required. Modern models of articular cartilage are inhomogeneous and anisotropic, and they include many aspects of the real tissue structure and composition. In this paper, we provide an overview of the computational applications that have been developed for modeling the mechanics of articular cartilage at the tissue and cellular level. We concentrate on the use of fibril-reinforced models of cartilage. Furthermore, we introduce practical considerations for modeling applications, including also experimental tests that can be combined with the modeling approach. At the end, we discuss the prospects for patient-specific models when aiming to use finite element modeling analysis and evaluation of articular cartilage function, cellular responses, failure points, OA progression, and rehabilitation. PMID:23653665

  9. Building the analytical response in frequency domain of AC biased bolometers. Application to Planck/HFI

    NASA Astrophysics Data System (ADS)

    Sauvé, Alexandre; Montier, Ludovic

    2016-12-01

    Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν < 1 Hz, and secondly the Analog To digital Converter (ADC) component had been insufficiently characterized on-ground. These two problems require an exquisite knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. Goal: We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. Method: The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.

  10. The frequency response of dynamic friction: Enhanced rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cabboi, A.; Putelat, T.; Woodhouse, J.

    2016-07-01

    The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.

  11. Different Approaches to Covariate Inclusion in the Mixture Rasch Model

    ERIC Educational Resources Information Center

    Li, Tongyun; Jiao, Hong; Macready, George B.

    2016-01-01

    The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo…

  12. Modeling Fan Effects on the Time Course of Associative Recognition

    PubMed Central

    Schneider, Darryl W.; Anderson, John R.

    2011-01-01

    We investigated the time course of associative recognition using the response signal procedure, whereby a stimulus is presented and followed after a variable lag by a signal indicating that an immediate response is required. More specifically, we examined the effects of associative fan (the number of associations that an item has with other items in memory) on speed–accuracy tradeoff functions obtained in a previous response signal experiment involving briefly studied materials and in a new experiment involving well-learned materials. High fan lowered asymptotic accuracy or the rate of rise in accuracy across lags, or both. We developed an Adaptive Control of Thought–Rational (ACT-R) model for the response signal procedure to explain these effects. The model assumes that high fan results in weak associative activation that slows memory retrieval, thereby decreasing the probability that retrieval finishes in time and producing a speed–accuracy tradeoff function. The ACT-R model provided an excellent account of the data, yielding quantitative fits that were as good as those of the best descriptive model for response signal data. PMID:22197797

  13. Green's functions for analysis of dynamic response of wheel/rail to vertical excitation

    NASA Astrophysics Data System (ADS)

    Mazilu, Traian

    2007-09-01

    An analytical model to simulate wheel/rail interaction using the Green's functions method is proposed in this paper. The model consists of a moving wheel on a discretely supported rail. Particularly for this model of rail, the bending and the longitudinal displacement are coupled due to the rail pad and a complex model of the rail pad is adopted. An efficient method for solving a time-domain analysis for wheel/rail interaction is presented. The method is based on the properties of the rail's Green functions and starting to these functions, a track's Green matrix is assembled for the numerical simulations of wheel/rail response due to three kinds of vertical excitations: the steady-state interaction, the rail corrugation and the wheel flat. The study points to influence of the worn rail—rigid contact—on variation in the wheel/rail contact force. The concept of pinned-pinned inhibitive rail pad is also presented.

  14. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Korte, John J.; Mauery, Timothy M.; Mistree, Farrokh

    1998-01-01

    In this paper, we compare and contrast the use of second-order response surface models and kriging models for approximating non-random, deterministic computer analyses. After reviewing the response surface method for constructing polynomial approximations, kriging is presented as an alternative approximation method for the design and analysis of computer experiments. Both methods are applied to the multidisciplinary design of an aerospike nozzle which consists of a computational fluid dynamics model and a finite-element model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations, and four optimization problems m formulated and solved using both sets of approximation models. The second-order response surface models and kriging models-using a constant underlying global model and a Gaussian correlation function-yield comparable results.

  15. Determining A Purely Symbolic Transfer Function from Symbol Streams: Theory and Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Christopher H

    Transfer function modeling is a \\emph{standard technique} in classical Linear Time Invariant and Statistical Process Control. The work of Box and Jenkins was seminal in developing methods for identifying parameters associated with classicalmore » $(r,s,k)$$ transfer functions. Discrete event systems are often \\emph{used} for modeling hybrid control structures and high-level decision problems. \\emph{Examples include} discrete time, discrete strategy repeated games. For these games, a \\emph{discrete transfer function in the form of} an accurate hidden Markov model of input-output relations \\emph{could be used to derive optimal response strategies.} In this paper, we develop an algorithm \\emph{for} creating probabilistic \\textit{Mealy machines} that act as transfer function models for discrete event dynamic systems (DEDS). Our models are defined by three parameters, $$(l_1, l_2, k)$ just as the Box-Jenkins transfer function models. Here $$l_1$$ is the maximal input history lengths to consider, $$l_2$$ is the maximal output history lengths to consider and $k$ is the response lag. Using related results, We show that our Mealy machine transfer functions are optimal in the sense that they maximize the mutual information between the current known state of the DEDS and the next observed input/output pair.« less

  16. Xylem traits, leaf longevity and growth phenology predict growth and mortality response to defoliation in northern temperate forests.

    PubMed

    Foster, Jane R

    2017-09-01

    Defoliation outbreaks are biological disturbances that alter tree growth and mortality in temperate forests. Trees respond to defoliation in many ways; some recover rapidly, while others decline gradually or die. Functional traits such as xylem anatomy, growth phenology or non-structural carbohydrate (NSC) storage could explain these responses, but idiosyncratic measures used by defoliation studies have frustrated efforts to generalize among species. Here, I test for functional differences with published growth and mortality data from 37 studies, including 24 tree species and 11 defoliators from North America and Eurasia. I synthesized data into standardized variables suitable for numerical models and used linear mixed-effects models to test the hypotheses that responses to defoliation vary among species and functional groups. Standardized data show that defoliation responses vary in shape and degree. Growth decreased linearly or curvilinearly, least in ring-porous Quercus and deciduous conifers (by 10-40% per 100% defoliation), whereas growth of diffuse-porous hardwoods and evergreen conifers declined by 40-100%. Mortality increased exponentially with defoliation, most rapidly for evergreen conifers, then diffuse-porous, then ring-porous species and deciduous conifers (Larix). Goodness-of-fit for functional-group models was strong (R2c = 0.61-0.88), if lower than species-specific mixed-models (R2c = 0.77-0.93), providing useful alternatives when species data are lacking. These responses are consistent with functional differences in leaf longevity, wood growth phenology and NSC storage. When defoliator activity lags behind wood-growth, either because xylem-growth precedes budburst (Quercus) or defoliator activity peaks later (sawflies on Larix), impacts on annual wood-growth will always be lower. Wood-growth phenology of diffuse-porous species and evergreen conifers coincides with defoliation and responds more drastically, and lower axial NSC storage makes them more vulnerable to mortality as stress accumulates. These functional differences in response apply in general to disturbances that cause spring defoliation and provide a framework that should be incorporated into forest growth and vegetation models. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Stability analysis and nonstandard Grünwald-Letnikov scheme for a fractional order predator-prey model with ratio-dependent functional response

    NASA Astrophysics Data System (ADS)

    Suryanto, Agus; Darti, Isnani

    2017-12-01

    In this paper we discuss a fractional order predator-prey model with ratio-dependent functional response. The dynamical properties of this model is analyzed. Here we determine all equilibrium points of this model including their existence conditions and their stability properties. It is found that the model has two type of equilibria, namely the predator-free point and the co-existence point. If there is no co-existence equilibrium, i.e. when the coefficient of conversion from the functional response into the growth rate of predator is less than the death rate of predator, then the predator-free point is asymptotically stable. On the other hand, if the co-existence point exists then this equilibrium is conditionally stable. We also construct a nonstandard Grnwald-Letnikov (NSGL) numerical scheme for the propose model. This scheme is a combination of the Grnwald-Letnikov approximation and the nonstandard finite difference scheme. This scheme is implemented in MATLAB and used to perform some simulations. It is shown that our numerical solutions are consistent with the dynamical properties of our fractional predator-prey model.

  18. Uncertainty analysis of signal deconvolution using a measured instrument response function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartouni, E. P.; Beeman, B.; Caggiano, J. A.

    2016-10-05

    A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). Here, we investigate the National Ignition Facility (NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to the uncertainty estimate of the physical model’s parameters. Finally, we apply a Bayesian analysis to properly account for IRF uncertainties in calculating the ln-likelihood function used to find the optimummore » physical parameters.« less

  19. Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity

    NASA Astrophysics Data System (ADS)

    Hattaf, Khalid; Mahrouf, Marouane; Adnani, Jihad; Yousfi, Noura

    2018-01-01

    In this paper, we propose a stochastic delayed epidemic model with specific functional response. The time delay represents temporary immunity period, i.e., time from recovery to becoming susceptible again. We first show that the proposed model is mathematically and biologically well-posed. Moreover, the extinction of the disease and the persistence in the mean are established in the terms of a threshold value R0S which is smaller than the basic reproduction number R0 of the corresponding deterministic system.

  20. Plant hydraulic diversity buffers forest ecosystem responses to drought

    NASA Astrophysics Data System (ADS)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  1. A model of microsaccade-related neural responses induced by short-term depression in thalamocortical synapses

    PubMed Central

    Yuan, Wu-Jie; Dimigen, Olaf; Sommer, Werner; Zhou, Changsong

    2013-01-01

    Microsaccades during fixation have been suggested to counteract visual fading. Recent experiments have also observed microsaccade-related neural responses from cellular record, scalp electroencephalogram (EEG), and functional magnetic resonance imaging (fMRI). The underlying mechanism, however, is not yet understood and highly debated. It has been proposed that the neural activity of primary visual cortex (V1) is a crucial component for counteracting visual adaptation. In this paper, we use computational modeling to investigate how short-term depression (STD) in thalamocortical synapses might affect the neural responses of V1 in the presence of microsaccades. Our model not only gives a possible synaptic explanation for microsaccades in counteracting visual fading, but also reproduces several features in experimental findings. These modeling results suggest that STD in thalamocortical synapses plays an important role in microsaccade-related neural responses and the model may be useful for further investigation of behavioral properties and functional roles of microsaccades. PMID:23630494

  2. Individualized Cognitive Modeling for Close-Loop Task Mitigation

    NASA Technical Reports Server (NTRS)

    Zhang, Guangfan; Xu, Roger; Wang, Wei; Li, Jiang; Schnell, Tom; Keller, Mike

    2010-01-01

    An accurate real-time operator functional state assessment makes it possible to perform task management, minimize risks, and improve mission performance. In this paper, we discuss the development of an individualized operator functional state assessment model that identifies states likely leading to operational errors. To address large individual variations, we use two different approaches to build a model for each individual using its data as well as data from subjects with similar responses. If a subject's response is similar to that of the individual of interest in a specific functional state, all the training data from this subject will be used to build the individual model. The individualization methods have been successfully verified and validated with a driving test data set provided by University of Iowa. With the individualized models, the mean squared error can be significantly decreased (by around 20%).

  3. Adaptive behaviour and multiple equilibrium states in a predator-prey model.

    PubMed

    Pimenov, Alexander; Kelly, Thomas C; Korobeinikov, Andrei; O'Callaghan, Michael J A; Rachinskii, Dmitrii

    2015-05-01

    There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Changes in expression of genes involved in apoptosis in activated human T-cells in response to modeled microgravity

    NASA Astrophysics Data System (ADS)

    Ward, Nancy E.; Pellis, Neal R.; Risin, Diana; Risin, Semyon A.; Liu, Wenbin

    2006-09-01

    Space flights result in remarkable effects on various physiological systems, including a decline in cellular immune functions. Previous studies have shown that exposure to microgravity, both true and modeled, can cause significant changes in numerous lymphocyte functions. The purpose of this study was to search for microgravity-sensitive genes, and specifically for apoptotic genes influenced by the microgravity environment and other genes related to immune response. The experiments were performed on anti-CD3 and IL-2 activated human T cells. To model microgravity conditions we have utilized the NASA rotating wall vessel bioreactor. Control lymphocytes were cultured in static 1g conditions. To assess gene expression we used DNA microarray chip technology. We had shown that multiple genes (approximately 3-8% of tested genes) respond to microgravity conditions by 1.5 and more fold change in expression. There is a significant variability in the response. However, a certain reproducible pattern in gene response could be identified. Among the genes showing reproducible changes in expression in modeled microgravity, several genes involved in apoptosis as well as in immune response were identified. These are IL-7 receptor, Granzyme B, Beta-3-endonexin, Apo2 ligand and STAT1. Possible functional consequences of these changes are discussed.

  5. Comparison of two optimization algorithms for fuzzy finite element model updating for damage detection in a wind turbine blade

    NASA Astrophysics Data System (ADS)

    Turnbull, Heather; Omenzetter, Piotr

    2018-03-01

    vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.

  6. Person Response Functions and the Definition of Units in the Social Sciences

    ERIC Educational Resources Information Center

    Engelhard, George, Jr.; Perkins, Aminah F.

    2011-01-01

    Humphry (this issue) has written a thought-provoking piece on the interpretation of item discrimination parameters as scale units in item response theory. One of the key features of his work is the description of an item response theory (IRT) model that he calls the logistic measurement function that combines aspects of two traditions in IRT that…

  7. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands.

    Treesearch

    D.W. Peterson; P.B. Reich; K.J. Wrage

    2007-01-01

    We measured plant functional group cover and tree canopy cover on permanent plots within a long-term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Understory woody plant cover was highest in unburned woodlands and was negatively correlated with fire...

  8. Response functions for dimers and square-symmetric molecules in four-wave-mixing experiments with polarized light

    NASA Astrophysics Data System (ADS)

    Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.

    2005-07-01

    Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.

  9. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits.

    PubMed

    Sperry, John S; Wang, Yujie; Wolfe, Brett T; Mackay, D Scott; Anderegg, William R L; McDowell, Nate G; Pockman, William T

    2016-11-01

    Ecosystem models have difficulty predicting plant drought responses, partially from uncertainty in the stomatal response to water deficits in soil and atmosphere. We evaluate a 'supply-demand' theory for water-limited stomatal behavior that avoids the typical scaffold of empirical response functions. The premise is that canopy water demand is regulated in proportion to threat to supply posed by xylem cavitation and soil drying. The theory was implemented in a trait-based soil-plant-atmosphere model. The model predicted canopy transpiration (E), canopy diffusive conductance (G), and canopy xylem pressure (P canopy ) from soil water potential (P soil ) and vapor pressure deficit (D). Modeled responses to D and P soil were consistent with empirical response functions, but controlling parameters were hydraulic traits rather than coefficients. Maximum hydraulic and diffusive conductances and vulnerability to loss in hydraulic conductance dictated stomatal sensitivity and hence the iso- to anisohydric spectrum of regulation. The model matched wide fluctuations in G and P canopy across nine data sets from seasonally dry tropical forest and piñon-juniper woodland with < 26% mean error. Promising initial performance suggests the theory could be useful in improving ecosystem models. Better understanding of the variation in hydraulic properties along the root-stem-leaf continuum will simplify parameterization. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Modeling Sodium Iodide Detector Response Using Parametric Equations

    DTIC Science & Technology

    2013-03-22

    MCNP particle current and pulse height tally functions, backscattering photons are quantified as a function of material thickness and energy...source – detector – scattering medium arrangements were modeled in MCNP using the pulse height tally functions, integrated over a 70 keV – 360 keV energy...15  4.1  MCNP

  11. Computational methods to predict railcar response to track cross-level variations

    DOT National Transportation Integrated Search

    1976-09-01

    The rocking response of railroad freight cars to track cross-level variations is studied using: (1) a reduced complexity digital simulation model, and (2) a quasi-linear describing function analysis. The reduced complexity digital simulation model em...

  12. A Bayesian Semiparametric Item Response Model with Dirichlet Process Priors

    ERIC Educational Resources Information Center

    Miyazaki, Kei; Hoshino, Takahiro

    2009-01-01

    In Item Response Theory (IRT), item characteristic curves (ICCs) are illustrated through logistic models or normal ogive models, and the probability that examinees give the correct answer is usually a monotonically increasing function of their ability parameters. However, since only limited patterns of shapes can be obtained from logistic models…

  13. Locally Dependent Latent Trait Model and the Dutch Identity Revisited.

    ERIC Educational Resources Information Center

    Ip, Edward H.

    2002-01-01

    Proposes a class of locally dependent latent trait models for responses to psychological and educational tests. Focuses on models based on a family of conditional distributions, or kernel, that describes joint multiple item responses as a function of student latent trait, not assuming conditional independence. Also proposes an EM algorithm for…

  14. Ordinal probability effect measures for group comparisons in multinomial cumulative link models.

    PubMed

    Agresti, Alan; Kateri, Maria

    2017-03-01

    We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.

  15. Influence of tyre-road contact model on vehicle vibration response

    NASA Astrophysics Data System (ADS)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  16. A Model-Free Diagnostic for Single-Peakedness of Item Responses Using Ordered Conditional Means

    ERIC Educational Resources Information Center

    Polak, Marike; De Rooij, Mark; Heiser, Willem J.

    2012-01-01

    In this article we propose a model-free diagnostic for single-peakedness (unimodality) of item responses. Presuming a unidimensional unfolding scale and a given item ordering, we approximate item response functions of all items based on ordered conditional means (OCM). The proposed OCM methodology is based on Thurstone & Chave's (1929) "criterion…

  17. Two mechanisms of rephasal of circadian rhythms in response to a 180 deg phase shift /simulated 12-hr time zone change/

    NASA Technical Reports Server (NTRS)

    Deroshia, C. W.; Winget, C. M.; Bond, G. H.

    1976-01-01

    A model developed by Wever (1966) is considered. The model describes the behavior of circadian rhythms in response to photoperiod phase shifts simulating time zone changes, as a function of endogenous periodicity, light intensity, and direction of phase shift. A description is given of an investigation conducted to test the model upon the deep body temperature rhythm in unrestrained subhuman primates. An evaluation is conducted regarding the applicability of the model in predicting the type and duration of desynchronization induced by simulated time zone changes as a function of endogenous periodicity.

  18. On the Gause predator-prey model with a refuge: a fresh look at the history.

    PubMed

    Křivan, Vlastimil

    2011-04-07

    This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Prospects of second generation artificial intelligence tools in calibration of chemical sensors.

    PubMed

    Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Ramam, Veluri Anantha; Rao, Gollapalli Nageswara; Rao, Vaddadi Venkata Panakala

    2005-05-01

    Multivariate data driven calibration models with neural networks (NNs) are developed for binary (Cu++ and Ca++) and quaternary (K+, Ca++, NO3- and Cl-) ion-selective electrode (ISE) data. The response profiles of ISEs with concentrations are non-linear and sub-Nernstian. This task represents function approximation of multi-variate, multi-response, correlated, non-linear data with unknown noise structure i.e. multi-component calibration/prediction in chemometric parlance. Radial distribution function (RBF) and Fuzzy-ARTMAP-NN models implemented in the software packages, TRAJAN and Professional II, are employed for the calibration. The optimum NN models reported are based on residuals in concentration space. Being a data driven information technology, NN does not require a model, prior- or posterior- distribution of data or noise structure. Missing information, spikes or newer trends in different concentration ranges can be modeled through novelty detection. Two simulated data sets generated from mathematical functions are modeled as a function of number of data points and network parameters like number of neurons and nearest neighbors. The success of RBF and Fuzzy-ARTMAP-NNs to develop adequate calibration models for experimental data and function approximation models for more complex simulated data sets ensures AI2 (artificial intelligence, 2nd generation) as a promising technology in quantitation.

  20. Developing of discrimination experiment to find most adequate model of plant’s multi-nutrient functional response

    NASA Astrophysics Data System (ADS)

    Saltykov, M. Yu; Bartsev, S. I.

    2017-02-01

    To create reliable Closed Ecological Life Support Systems (CELSS) it is necessary to have models which can predict CELSS dynamic with good accuracy. However it was shown that conventional ecological models cannot describe CELSS correctly if it is closed by more than one element. This problem can be solved by means more complex models than conventional ones - so called flexible metabolism models. However it is possible that CELSS also can be described correctly in “semi-conventional” framework - when only one trophic level is described by flexible metabolism model. Another problem in CELSS modeling is existence of different and incompatible hypotheses about relationships between plants growth rate and amounts of nutrients (functional responses). Difficulty of testing these hypotheses is associated with multi-nutrient dependency of growth rate and comprehensive experimental studies are expensive and time-consuming. This work is devoted to testing the hypothesis that “semi-conventional” approach is enough to describe CELSS, and to planning the discrimination experiment on selecting correct type of the plant’s functional response. To do that three different models of plants (one flexible and two conventional) were investigated both in the scope of CELSS model, and in hemostat model. Numerical simulations show that each of the models has typical patterns which can be determined in experiment with real plants.

  1. Timescales of Land Surface Evapotranspiration Response

    NASA Technical Reports Server (NTRS)

    Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max

    1997-01-01

    Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.

  2. Computational Modeling in Concert with Laboratory Studies: Application to B Cell Differentiation

    EPA Science Inventory

    Remediation is expensive, so accurate prediction of dose-response is important to help control costs. Dose response is a function of biological mechanisms. Computational models of these mechanisms improve the efficiency of research and provide the capability for prediction.

  3. Bounded influence function based inference in joint modelling of ordinal partial linear model and accelerated failure time model.

    PubMed

    Chakraborty, Arindom

    2016-12-01

    A common objective in longitudinal studies is to characterize the relationship between a longitudinal response process and a time-to-event data. Ordinal nature of the response and possible missing information on covariates add complications to the joint model. In such circumstances, some influential observations often present in the data may upset the analysis. In this paper, a joint model based on ordinal partial mixed model and an accelerated failure time model is used, to account for the repeated ordered response and time-to-event data, respectively. Here, we propose an influence function-based robust estimation method. Monte Carlo expectation maximization method-based algorithm is used for parameter estimation. A detailed simulation study has been done to evaluate the performance of the proposed method. As an application, a data on muscular dystrophy among children is used. Robust estimates are then compared with classical maximum likelihood estimates. © The Author(s) 2014.

  4. Linking Tropical Forest Function to Hydraulic Traits in a Size-Structured and Trait-Based Model

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Gloor, M.; Fauset, S.; Fyllas, N.; Galbraith, D.; Baker, T. R.; Rowland, L.; Fisher, R.; Binks, O.; Sevanto, S.; Xu, C.; Jansen, S.; Choat, B.; Mencuccini, M.; McDowell, N. G.; Meir, P.

    2015-12-01

    A major weakness of forest ecosystem models is their inability to capture the diversity of responses to changes in water availability, severely hampering efforts to predict the fate of tropical forests under climate change. Such models often prescribe moisture sensitivity using heuristic response functions that are uniform across all individuals and lack important knowledge about trade-offs in hydraulic traits. We address this weakness by implementing a process representation of plant hydraulics into an individual- and trait-based model (Trait Forest Simulator; TFS) intended for application at discrete sites where community-level distributions of stem and leaf trait spectra (wood density, leaf mass per area, leaf nitrogen and phosphorus content) are known. The model represents a trade-off in the safety and efficiency of water conduction in xylem tissue through hydraulic traits, while accounting for the counteracting effects of increasing hydraulic path length and xylem conduit taper on whole-plant hydraulic resistance with increasing tree size. Using existing trait databases and additional meta-analyses from the rich literature on tropical tree ecophysiology, we obtained all necessary hydraulic parameters associated with xylem conductivity, vulnerability curves, pressure-volume curves, and hydraulic architecture (e.g., leaf-to-sapwood area ratios) as a function of the aforementioned traits and tree size. Incorporating these relationships in the model greatly improved the diversity of tree response to seasonal changes in water availability as well as in response to drought, as determined by comparison with field observations and experiments. Importantly, this individual- and trait-based framework provides a testbed for identifying both critical processes and functional traits needed for inclusion in coarse-scale Dynamic Global Vegetation Models, which will lead to reduced uncertainty in the future state of tropical forests.

  5. Development and Retrospective Clinical Assessment of a Patient-Specific Closed-Form Integro-Differential Equation Model of Plasma Dilution.

    PubMed

    Atlas, Glen; Li, John K-J; Amin, Shawn; Hahn, Robert G

    2017-01-01

    A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler's formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly "adaptable" and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time.

  6. Development and Retrospective Clinical Assessment of a Patient-Specific Closed-Form Integro-Differential Equation Model of Plasma Dilution

    PubMed Central

    Atlas, Glen; Li, John K-J; Amin, Shawn; Hahn, Robert G

    2017-01-01

    A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler’s formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly “adaptable” and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time. PMID:29123436

  7. Groundwater response to changing water-use practices in sloping aquifers using convolution of transient response functions

    USDA-ARS?s Scientific Manuscript database

    This study examines the impact of a sloping base on the movement of transients through groundwater systems. Dimensionless variables and regression of model results are employed to develop functions relating the transient change in saturated thickness to the distance upgradient and downgradient from ...

  8. Prediction of Phyllosticta citricarpa using an hourly infection model and validation with prevalence data from South Africa and Australia

    USDA-ARS?s Scientific Manuscript database

    A simple hourly infection model was used for a risk assessment of citrus black spot (CBS) caused by Phyllosticta citricarpa. The infection model contained a temperature-moisture response function and also included functions to simulate ascospore release and dispersal of pycnidiospores. A validatio...

  9. Modeling conflict and error in the medial frontal cortex.

    PubMed

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  10. Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed

    2018-01-01

    In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

  11. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    USGS Publications Warehouse

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-11-19

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  12. Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed

    2018-06-01

    In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

  13. The Use of Dispersion Relations For The Geomagnetic Transfer Functions

    NASA Astrophysics Data System (ADS)

    Marcuello, A.; Queralt, P.; Ledo, J. J.

    The magnetotelluric responses are complex magnitudes, where real and imaginary parts contain the same information on the geoelectrical structure. It seems possible, from very general hypotheses on the geoelectrical models (causality, stability and passivity), to apply the Kramers-Krönig dispersion relations to the magnetotelluric responses (impedance, geomagnetic transfer functions,...). In particular, the applica- bility of these relations to the impedance is a current point of discussion, but there are not many examples of their application to the geomagnetic transfer functions (tipper). The aim of this paper is to study how the relations of dispersion are applied to the real and imaginary part of the geomagnetic transfer functions, and to check its validity. For this reason, we have considered data (or responses) from two- and three-dimensional structures, and for these data, we have taken two situations: 1.- Responses that have been synthetically generated from numerical modelling, that allows us to control the quality of the data. 2.- Responses obtained from fieldwork, that are affected by exper- imental error. Additionally, we have also explored the use of these relations to extrap- olate the geomagnetic transfer functions outside the interval of measured frequencies, in order to obtain constrains on the values of these extrapolated data. The results have shown that the dispersion relations are accomplished for the geomag- netic transfer functions, and they can offer information about how these responses are behaved outside (but near) the range of measured frequencies.

  14. Round window closure affects cochlear responses to suprathreshold stimuli.

    PubMed

    Cai, Qunfeng; Whitcomb, Carolyn; Eggleston, Jessica; Sun, Wei; Salvi, Richard; Hu, Bo Hua

    2013-12-01

    The round window acts as a vent for releasing inner ear pressure and facilitating basilar membrane vibration. Loss of this venting function affects cochlear function, which leads to hearing impairment. In an effort to identify functional changes that might be used in clinical diagnosis of round window atresia, the current investigation was designed to examine how the cochlea responds to suprathreshold stimuli following round window closure. Prospective, controlled, animal study. A rat model of round window occlusion (RWO) was established. With this model, the thresholds of auditory brainstem responses (ABR) and the input/output (IO) functions of distortion product otoacoustic emissions (DPOAEs) and acoustic startle responses were examined. Round window closure caused a mild shift in the thresholds of the auditory brainstem response (13.5 ± 9.1 dB). It also reduced the amplitudes of the distortion product otoacoustic emissions and the slope of the input/output functions. This peripheral change was accompanied by a significant reduction in the amplitude, but not the threshold, of the acoustic startle reflex, a motor response to suprathreshold sounds. In addition to causing mild increase in the threshold of the auditory brainstem response, round window occlusion reduced the slopes of both distortion product otoacoustic emissions and startle reflex input/output functions. These changes differ from those observed for typical conductive or sensory hearing loss, and could be present in patients with round window atresia. However, future clinical observations in patients are needed to confirm these findings. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  15. A Point-process Response Model for Spike Trains from Single Neurons in Neural Circuits under Optogenetic Stimulation

    PubMed Central

    Luo, X.; Gee, S.; Sohal, V.; Small, D.

    2015-01-01

    Optogenetics is a new tool to study neuronal circuits that have been genetically modified to allow stimulation by flashes of light. We study recordings from single neurons within neural circuits under optogenetic stimulation. The data from these experiments present a statistical challenge of modeling a high frequency point process (neuronal spikes) while the input is another high frequency point process (light flashes). We further develop a generalized linear model approach to model the relationships between two point processes, employing additive point-process response functions. The resulting model, Point-process Responses for Optogenetics (PRO), provides explicit nonlinear transformations to link the input point process with the output one. Such response functions may provide important and interpretable scientific insights into the properties of the biophysical process that governs neural spiking in response to optogenetic stimulation. We validate and compare the PRO model using a real dataset and simulations, and our model yields a superior area-under-the- curve value as high as 93% for predicting every future spike. For our experiment on the recurrent layer V circuit in the prefrontal cortex, the PRO model provides evidence that neurons integrate their inputs in a sophisticated manner. Another use of the model is that it enables understanding how neural circuits are altered under various disease conditions and/or experimental conditions by comparing the PRO parameters. PMID:26411923

  16. Increased sensory noise and not muscle weakness explains changes in non-stepping postural responses following stance perturbations in healthy elderly.

    PubMed

    Afschrift, Maarten; De Groote, Friedl; Verschueren, Sabine; Jonkers, Ilse

    2018-01-01

    The response to stance perturbations changes with age. The shift from an ankle to a hip strategy with increasing perturbation magnitude occurs at lower accelerations in older than in young adults. This strategy shift has been related to age-related changes in muscle and sensory function. However, the effect of isolated changes in muscle or sensory function on the responses following stance perturbations cannot be determined experimentally since changes in muscle and sensory function occur simultaneously. Therefore, we used predictive simulations to estimate the effect of isolated changes in (rates of change in) maximal joint torques, functional base of support, and sensory noise on the response to backward platform translations. To evaluate whether these modeled changes in muscle and sensory function could explain the observed changes in strategy; simulated postural responses with a torque-driven double inverted pendulum model controlled using optimal state feedback were compared to measured postural responses in ten healthy young and ten healthy older adults. The experimentally observed peak hip angle during the response was significantly larger (5°) and the functional base of support was smaller (0.04m) in the older than in the young adults but peak joint torques and rates of joint torque were similar during the recovery. The addition of noise to the sensed states in the predictive simulations could explain the observed increase in peak hip angle in the elderly, whereas changes in muscle function could not. Hence, our results suggest that strength training alone might be insufficient to improve postural control in elderly. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of space flight on interferon production - mechanistic studies

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1991-01-01

    Ground-based models were studied for the effects of space flight on immune responses. Most time was spent on the model for the antiorthostatic, hypokinetic, hypodynamic suspension model for rats. Results indicate that suspension is useful for modeling the effects of spaceflight on functional immune responses, such as interferon and interleukin production. It does not appear to be useful for modeling shifts in leukocyte sub-populations. Calcium and 1,25-dihydroxyvitamin D sub 3 appear to play a pivitol role in regulating shifts in immune responses due to suspension. The macrophage appears to be an important target cell for the effects of suspension on immune responses.

  18. NLTE steady-state response matrix method.

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; More, R. M.

    2000-05-01

    A connection between atomic kinetics and non-equilibrium thermodynamics has been recently established by using a collisional-radiative model modified to include line absorption. The calculated net emission can be expressed as a non-local thermodynamic equilibrium (NLTE) symmetric response matrix. In the paper, this connection is extended to both cases of the average-atom model and the Busquet's model (RAdiative-Dependent IOnization Model, RADIOM). The main properties of the response matrix still remain valid. The RADIOM source function found in the literature leads to a diagonal response matrix, stressing the absence of any frequency redistribution among the frequency groups at this order of calculation.

  19. Dynamic Response of Layered TiB/Ti Functionally Graded Material Specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, Larry; Beberniss, Tim; Chapman, Ben

    2008-02-15

    This paper covers the dynamic response of rectangular (25.4x101.6x3.175 mm) specimens manufactured from layers of TiB/Ti. The layers contained volume fractions of TiB that varied from 0 to 85% and thus formed a functionally graded material. Witness samples of the 85% TiB material were also tested to provide a baseline for the statistical variability of the test techniques. Static and dynamic tests were performed to determine the in situ material properties and fundamental frequencies. Damping in the material/ fixture was also found from the dynamic response. These tests were simulated using composite beam theory which gave an analytical solution, andmore » using finite element analysis. The response of the 85% TiB specimens was found to be much more uniform than the functionally graded material and the dynamic response more uniform than the static response. A least squares analysis of the data using the analytical solutions were used to determine the elastic modulus and Poisson's ratio of each layer. These results were used to model the response in the finite element analysis. The results indicate that current analytical and numerical methods for modeling the material give similar and adequate predictions for natural frequencies if the measured property values were used. The models did not agree as well if the properties from the manufacturer or those of Hill and Linn were used.« less

  20. Comparison of Response Surface and Kriging Models in the Multidisciplinary Design of an Aerospike Nozzle

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.

    1998-01-01

    The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.

  1. Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss.

    PubMed

    Verhulst, Sarah; Altoè, Alessandro; Vasilkov, Viacheslav

    2018-03-01

    Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. A Scaling Model for the Anthropocene Climate Variability with Projections to 2100

    NASA Astrophysics Data System (ADS)

    Hébert, Raphael; Lovejoy, Shaun

    2017-04-01

    The determination of the climate sensitivity to radiative forcing is a fundamental climate science problem with important policy implications. We use a scaling model, with a limited set of parameters, which can directly calculate the forced globally-average surface air temperature response to anthropogenic and natural forcings. At timescales larger than an inner scale τ, which we determine as the ocean-atmosphere coupling scale at around 2 years, the global system responds, approximately, linearly, so that the variability may be decomposed into additive forced and internal components. The Ruelle response theory extends the classical linear response theory for small perturbations to systems far from equilibrium. Our model thus relates radiative forcings to a forced temperature response by convolution with a suitable Green's function, or climate response function. Motivated by scaling symmetries which allow for long range dependence, we assume a general scaling form, a scaling climate response function (SCRF) which is able to produce a wide range of responses: a power-law truncated at τ. This allows us to analytically calculate the climate sensitivity at different time scales, yielding a one-to-one relation from the transient climate response to the equilibrium climate sensitivity which are estimated, respectively, as 1.6+0.3-0.2K and 2.4+1.3-0.6K at the 90 % confidence level. The model parameters are estimated within a Bayesian framework, with a fractional Gaussian noise error model as the internal variability, from forcing series, instrumental surface temperature datasets and CMIP5 GCMs Representative Concentration Pathways (RCP) scenario runs. This observation based model is robust and projections for the coming century are made following the RCP scenario 2.6, 4.5 and 8.5, yielding in the year 2100, respectively : 1.5 +0.3)_{-0.2K, 2.3 ± 0.4 K and 4.0 ± 0.6 K at the 90 % confidence level. For comparison, the associated projections from a CMIP5 multi-model ensemble(MME) (32 models) are: 1.7 ± 0.8 K, 2.6 ± 0.8 K and 4.8 ± 1.3 K. Therefore, our projection uncertainty is less than half the structural uncertainty of this CMIP5 MME.

  3. Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor.

    PubMed

    Bridge, L J; Mead, J; Frattini, E; Winfield, I; Ladds, G

    2018-04-07

    Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often assume an agonist producing a single functional response via a single active state of the receptor. These models have largely been analysed assuming steady-state conditions. There is now much experimental evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous functional responses, with ligands having the potential to activate different signalling pathways to varying extents-a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy. Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an agonist's bias with respect to different pathways may vary dynamically. Efforts towards understanding the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways will clearly be aided by extending current equilibrium binding and biased activation models to include G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based on ordinary differential equations for multiple cubic ternary complex activation models with G protein cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at a single receptor for the first time, at the level of active G protein (α GTP ), towards the analysis of dynamic functional responses. The model is generally applicable to systems with N G G proteins and N* active receptor states. Numerical simulations for N G =N * =2 reveal new insights into the effects of system parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, highlighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this model to 'wet' experimental data for two competing G proteins (G i and G s ) that become activated upon stimulation of the adenosine A 1 receptor with adenosine derivative compounds. Finally, we show that our model can qualitatively describe the temporal dynamics of this competing G protein activation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Implications of Nonlinear Concentration Response Curve for Ozone related Mortality on Health Burden Assessment

    EPA Science Inventory

    We characterize the sensitivity of the ozone attributable health burden assessment with respect to different modeling strategies of concentration-response function. For this purpose, we develop a flexible Bayesian hierarchical model allowing for a nonlinear ozone risk curve with ...

  5. Exchange Energy Density Functionals that reproduce the Linear Response Function of the Free Electron Gas

    NASA Astrophysics Data System (ADS)

    García-Aldea, David; Alvarellos, J. E.

    2009-03-01

    We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).

  6. Rasch Measurement and Item Banking: Theory and Practice.

    ERIC Educational Resources Information Center

    Nakamura, Yuji

    The Rasch Model is an item response theory, one parameter model developed that states that the probability of a correct response on a test is a function of the difficulty of the item and the ability of the candidate. Item banking is useful for language testing. The Rasch Model provides estimates of item difficulties that are meaningful,…

  7. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.

  8. The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chonggang; Christoffersen, Bradley

    The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems andmore » the Earth system under changing climate and other forcings.« less

  9. Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution.

    PubMed

    Müller, Karl-Heinz; Chow, Edith; Wieczorek, Lech; Raguse, Burkhard; Cooper, James S; Hubble, Lee J

    2011-10-28

    We investigate the response dynamics of 1-hexanethiol-functionalized gold nanoparticle chemiresistors exposed to the analyte octane in aqueous solution. The dynamic response is studied as a function of the analyte-water flow velocity, the thickness of the gold nanoparticle film and the analyte concentration. A theoretical model for analyte limited mass-transport is used to model the analyte diffusion into the film, the partitioning of the analyte into the 1-hexanethiol capping layers and the subsequent swelling of the film. The degree of swelling is then used to calculate the increase of the electron tunnel resistance between adjacent nanoparticles which determines the resistance change of the film. In particular, the effect of the nonlinear relationship between resistance and swelling on the dynamic response is investigated at high analyte concentration. Good agreement between experiment and the theoretical model is achieved. This journal is © the Owner Societies 2011

  10. Effects of spatial grouping on the functional response of predators

    USGS Publications Warehouse

    Cosner, C.; DeAngelis, D.L.; Ault, J.S.; Olson, D.B.

    1999-01-01

    A unified mechanistic approach is given for the derivation of various forms of functional response in predator-prey models. The derivation is based on the principle-of-mass action but with the crucial refinement that the nature of the spatial distribution of predators and/or opportunities for predation are taken into account in an implicit way. If the predators are assumed to have a homogeneous spatial distribution, then the derived functional response is prey-dependent. If the predators are assumed to form a dense colony or school in a single (possibly moving) location, or if the region where predators can encounter prey is assumed to be of limited size, then the functional response depends on both predator and prey densities in a manner that reflects feeding interference between predators. Depending on the specific assumptions, the resulting functional response may be of Beddington-DeAngelis type, of Hassell-Varley type, or ratio-dependent.

  11. A general framework for numerical simulation of improvised explosive device (IED)-detection scenarios using density functional theory (DFT) and terahertz (THz) spectra.

    PubMed

    Shabaev, Andrew; Lambrakos, Samuel G; Bernstein, Noam; Jacobs, Verne L; Finkenstadt, Daniel

    2011-04-01

    We have developed a general framework for numerical simulation of various types of scenarios that can occur for the detection of improvised explosive devices (IEDs) through the use of excitation using incident electromagnetic waves. A central component model of this framework is an S-matrix representation of a multilayered composite material system. Each layer of the system is characterized by an average thickness and an effective electric permittivity function. The outputs of this component are the reflectivity and the transmissivity as functions of frequency and angle of the incident electromagnetic wave. The input of the component is a parameterized analytic-function representation of the electric permittivity as a function of frequency, which is provided by another component model of the framework. The permittivity function is constructed by fitting response spectra calculated using density functional theory (DFT) and parameter adjustment according to any additional information that may be available, e.g., experimentally measured spectra or theory-based assumptions concerning spectral features. A prototype simulation is described that considers response characteristics for THz excitation of the high explosive β-HMX. This prototype simulation includes a description of a procedure for calculating response spectra using DFT as input to the Smatrix model. For this purpose, the DFT software NRLMOL was adopted. © 2011 Society for Applied Spectroscopy

  12. Electromagnetic scaling functions within the Green's function Monte Carlo approach

    DOE PAGES

    Rocco, N.; Alvarez-Ruso, L.; Lovato, A.; ...

    2017-07-24

    We have studied the scaling properties of the electromagnetic response functions of 4He and 12C nuclei computed by the Green's function Monte Carlo approach, retaining only the one-body current contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic and nonrelativistic cases and compared to experiment for various kinematics. The characteristic asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of the nonrelativistic nature of the model. The results are mostly consistent with scaling of zeroth, first, and second kinds. Our analysis reveals a direct correspondence between the scaling and the nucleon-densitymore » response functions. In conclusion, the scaling function obtained from the proton-density response displays scaling of the first kind, even more evidently than the longitudinal and transverse scaling functions« less

  13. Electromagnetic scaling functions within the Green's function Monte Carlo approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco, N.; Alvarez-Ruso, L.; Lovato, A.

    We have studied the scaling properties of the electromagnetic response functions of 4He and 12C nuclei computed by the Green's function Monte Carlo approach, retaining only the one-body current contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic and nonrelativistic cases and compared to experiment for various kinematics. The characteristic asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of the nonrelativistic nature of the model. The results are mostly consistent with scaling of zeroth, first, and second kinds. Our analysis reveals a direct correspondence between the scaling and the nucleon-densitymore » response functions. In conclusion, the scaling function obtained from the proton-density response displays scaling of the first kind, even more evidently than the longitudinal and transverse scaling functions« less

  14. A model-independent comparison of the rates of uptake and short term retention of 47Ca and 85Sr by the skeleton.

    PubMed

    Reeve, J; Hesp, R

    1976-12-22

    1. A method has been devised for comparing the impulse response functions of the skeleton for two or more boneseeking tracers, and for estimating the contribution made by measurement errors to the differences between any pair of impulse response functions. 2. Comparisons were made between the calculated impulse response functions for 47Ca and 85Sr obtained in simultaneous double tracer studies in sixteen subjects. Collectively the differences between the 47Ca and 85Sr functions could be accounted for entirely by measurement errors. 3. Because the calculation of an impulse response function requires fewer a priori assumptions than other forms of mathematical analysis, and automatically corrects for differences induced by recycling of tracer and non-identical rates of excretory plasma clearance of tracer, it is concluded that differences shown in previous in vivo studies between the fluxes of Ca and Sr into bone can be fully accounted for by undetermined oversimplifications in the various mathematical models used to analyse the results of those studies. 85Sr is therefore an adequate tracer for bone calcium in most in vivo studies.

  15. Robust, Adaptive Functional Regression in Functional Mixed Model Framework.

    PubMed

    Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S

    2011-09-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.

  16. Robust, Adaptive Functional Regression in Functional Mixed Model Framework

    PubMed Central

    Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.

    2012-01-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015

  17. Bayesian spatiotemporal model of fMRI data using transfer functions.

    PubMed

    Quirós, Alicia; Diez, Raquel Montes; Wilson, Simon P

    2010-09-01

    This research describes a new Bayesian spatiotemporal model to analyse BOLD fMRI studies. In the temporal dimension, we describe the shape of the hemodynamic response function (HRF) with a transfer function model. The spatial continuity and local homogeneity of the evoked responses are modelled by a Gaussian Markov random field prior on the parameter indicating activations. The proposal constitutes an extension of the spatiotemporal model presented in a previous approach [Quirós, A., Montes Diez, R. and Gamerman, D., 2010. Bayesian spatiotemporal model of fMRI data, Neuroimage, 49: 442-456], offering more flexibility in the estimation of the HRF and computational advantages in the resulting MCMC algorithm. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on a real data set from a block-design fMRI experiment. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Development and Modification of a Response Class via Positive and Negative Reinforcement: A Translational Approach

    ERIC Educational Resources Information Center

    Mendres, Amber E.; Borrero, John C.

    2010-01-01

    When responses function to produce the same reinforcer, a response class exists. Researchers have examined response classes in applied settings; however, the challenges associated with conducting applied research on response class development have recently necessitated the development of an analogue response class model. To date, little research…

  19. ASSESSMENT OF ALLERGIC IMMUNE RESPONSES TO INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    We are using a mouse model to assess immune and inflammatory responses as well as changes in respiratory function and pathology characteristic of allergic asthma to fungal extracts M. anisopliae (MACA), S. chartarum (SCE), and P. chrysogenum (PCE). This model will be useful to a...

  20. Hydrograph separation for karst watersheds using a two-domain rainfall-discharge model

    USGS Publications Warehouse

    Long, Andrew J.

    2009-01-01

    Highly parameterized, physically based models may be no more effective at simulating the relations between rainfall and outflow from karst watersheds than are simpler models. Here an antecedent rainfall and convolution model was used to separate a karst watershed hydrograph into two outflow components: one originating from focused recharge in conduits and one originating from slow flow in a porous annex system. In convolution, parameters of a complex system are lumped together in the impulse-response function (IRF), which describes the response of the system to an impulse of effective precipitation. Two parametric functions in superposition approximate the two-domain IRF. The outflow hydrograph can be separated into flow components by forward modeling with isolated IRF components, which provides an objective criterion for separation. As an example, the model was applied to a karst watershed in the Madison aquifer, South Dakota, USA. Simulation results indicate that this watershed is characterized by a flashy response to storms, with a peak response time of 1 day, but that 89% of the flow results from the slow-flow domain, with a peak response time of more than 1 year. This long response time may be the result of perched areas that store water above the main water table. Simulation results indicated that some aspects of the system are stationary but that nonlinearities also exist.

  1. Understanding Individual-Level Change through the Basis Functions of a Latent Curve Model

    ERIC Educational Resources Information Center

    Blozis, Shelley A.; Harring, Jeffrey R.

    2017-01-01

    Latent curve models have become a popular approach to the analysis of longitudinal data. At the individual level, the model expresses an individual's response as a linear combination of what are called "basis functions" that are common to all members of a population and weights that may vary among individuals. This article uses…

  2. Stepwise Analysis of Differential Item Functioning Based on Multiple-Group Partial Credit Model.

    ERIC Educational Resources Information Center

    Muraki, Eiji

    1999-01-01

    Extended an Item Response Theory (IRT) method for detection of differential item functioning to the partial credit model and applied the method to simulated data using a stepwise procedure. Then applied the stepwise DIF analysis based on the multiple-group partial credit model to writing trend data from the National Assessment of Educational…

  3. Assessment of Differential Item Functioning under Cognitive Diagnosis Models: The DINA Model Example

    ERIC Educational Resources Information Center

    Li, Xiaomin; Wang, Wen-Chung

    2015-01-01

    The assessment of differential item functioning (DIF) is routinely conducted to ensure test fairness and validity. Although many DIF assessment methods have been developed in the context of classical test theory and item response theory, they are not applicable for cognitive diagnosis models (CDMs), as the underlying latent attributes of CDMs are…

  4. Timing in a Variable Interval Procedure: Evidence for a Memory Singularity

    PubMed Central

    Matell, Matthew S.; Kim, Jung S.; Hartshorne, Loryn

    2013-01-01

    Rats were trained in either a 30s peak-interval procedure, or a 15–45s variable interval peak procedure with a uniform distribution (Exp 1) or a ramping probability distribution (Exp 2). Rats in all groups showed peak shaped response functions centered around 30s, with the uniform group having an earlier and broader peak response function and rats in the ramping group having a later peak function as compared to the single duration group. The changes in these mean functions, as well as the statistics from single trial analyses, can be better captured by a model of timing in which memory is represented by a single, average, delay to reinforcement compared to one in which all durations are stored as a distribution, such as the complete memory model of Scalar Expectancy Theory or a simple associative model. PMID:24012783

  5. Functional response of Hippodamia convergens to Sitobion avenae on wheat plants in the laboratory

    USDA-ARS?s Scientific Manuscript database

    We investigated predation by adult convergent lady beetle, Hippodamia convergens Guerin-Meneville, on English grain aphid, Sitobion avenae L., on wheat, Triticum aestivum L., plants in a laboratory arena and developed a functional response model for the number of aphids eaten by an adult female conv...

  6. Do Quercus ilex woodlands undergo abrupt non-linear functional changes in response to human disturbance along a climatic gradient?

    NASA Astrophysics Data System (ADS)

    Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente

    2017-04-01

    Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.

  7. Functional Data Analysis Applied to Modeling of Severe Acute Mucositis and Dysphagia Resulting From Head and Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Jamie A., E-mail: jamie.dean@icr.ac.uk; Wong, Kee H.; Gay, Hiram

    Purpose: Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue–sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. Methods and Materials: FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogrammore » data. The reduced dose data were input into functional logistic regression models (functional partial least squares–logistic regression [FPLS-LR] and functional principal component–logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate–response associations, assessed using bootstrapping. Results: The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/−0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/−0.96, 0.79/−0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. Conclusions: FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling.« less

  8. Functional Data Analysis Applied to Modeling of Severe Acute Mucositis and Dysphagia Resulting From Head and Neck Radiation Therapy.

    PubMed

    Dean, Jamie A; Wong, Kee H; Gay, Hiram; Welsh, Liam C; Jones, Ann-Britt; Schick, Ulrike; Oh, Jung Hun; Apte, Aditya; Newbold, Kate L; Bhide, Shreerang A; Harrington, Kevin J; Deasy, Joseph O; Nutting, Christopher M; Gulliford, Sarah L

    2016-11-15

    Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue-sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogram data. The reduced dose data were input into functional logistic regression models (functional partial least squares-logistic regression [FPLS-LR] and functional principal component-logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate-response associations, assessed using bootstrapping. The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/-0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/-0.96, 0.79/-0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. MULTISCALE ADAPTIVE SMOOTHING MODELS FOR THE HEMODYNAMIC RESPONSE FUNCTION IN FMRI*

    PubMed Central

    Wang, Jiaping; Zhu, Hongtu; Fan, Jianqing; Giovanello, Kelly; Lin, Weili

    2012-01-01

    In the event-related functional magnetic resonance imaging (fMRI) data analysis, there is an extensive interest in accurately and robustly estimating the hemodynamic response function (HRF) and its associated statistics (e.g., the magnitude and duration of the activation). Most methods to date are developed in the time domain and they have utilized almost exclusively the temporal information of fMRI data without accounting for the spatial information. The aim of this paper is to develop a multiscale adaptive smoothing model (MASM) in the frequency domain by integrating the spatial and temporal information to adaptively and accurately estimate HRFs pertaining to each stimulus sequence across all voxels in a three-dimensional (3D) volume. We use two sets of simulation studies and a real data set to examine the finite sample performance of MASM in estimating HRFs. Our real and simulated data analyses confirm that MASM outperforms several other state-of-art methods, such as the smooth finite impulse response (sFIR) model. PMID:24533041

  10. Differential Item Functioning Assessment in Cognitive Diagnostic Modeling: Application of the Wald Test to Investigate DIF in the DINA Model

    ERIC Educational Resources Information Center

    Hou, Likun; de la Torre, Jimmy; Nandakumar, Ratna

    2014-01-01

    Analyzing examinees' responses using cognitive diagnostic models (CDMs) has the advantage of providing diagnostic information. To ensure the validity of the results from these models, differential item functioning (DIF) in CDMs needs to be investigated. In this article, the Wald test is proposed to examine DIF in the context of CDMs. This study…

  11. Model-experiment synthesis at two FACE sites in the southeastern US. Forest ecosystem responses to elevated CO[2]. (Invited)

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; Zaehle, S.; De Kauwe, M. G.; Medlyn, B. E.; Dietze, M.; Hickler, T.; Iversen, C. M.; Jain, A. K.; Luo, Y.; McCarthy, H. R.; Parton, W. J.; Prentice, C.; Thornton, P. E.; Wang, S.; Wang, Y.; Warlind, D.; Warren, J.; Weng, E.; Hanson, P. J.; Oren, R.; Norby, R. J.

    2013-12-01

    Ecosystem observations from two long-term Free-Air CO[2] Enrichment (FACE) experiments (Duke forest and Oak Ridge forest) were used to evaluate the assumptions of 11 terrestrial ecosystem models and the consequences of those assumptions for the responses of ecosystem water, carbon (C) and nitrogen (N) fluxes to elevated CO[2] (eCO[2]). Nitrogen dynamics were the main constraint on simulated productivity responses to eCO[2]. At Oak Ridge some models reproduced the declining response of C and N fluxes, while at Duke none of the models were able to maintain the observed sustained responses. C and N cycles are coupled through a number of complex interactions, which causes uncertainty in model simulations in multiple ways. Nonetheless, the major difference between models and experiments was a larger than observed increase in N-use efficiency and lower than observed response of N uptake. The results indicate that at Duke there were mechanisms by which trees accessed additional N in response to eCO[2] that were not represented in the ecosystem models, and which did not operate with the same efficiency at Oak Ridge. Sequestration of the additional productivity under eCO[2] into forest biomass depended largely on C allocation. Allocation assumptions were classified into three main categories--fixed partitioning coefficients, functional relationships and a partial (leaf allocation only) optimisation. The assumption which best constrained model results was a functional relationship between leaf area and sapwood area (pipe-model) and increased root allocation when nitrogen or water were limiting. Both, productivity and allocation responses to eCO[2] determined the ecosystem-level response of LAI, which together with the response of stomatal conductance (and hence water-use efficiency; WUE) determined the ecosystem response of transpiration. Differences in the WUE response across models were related to the representation of the relationship of stomatal conductance to CO[2] and the relative importance of the combined boundary and aerodynamic resistances in the total resistance to leaf-atmosphere water transport.

  12. Regulation of C:N:P stoichiometry of microbes and soil organic matter by optimizing enzyme allocation: an omics-informed model study

    NASA Astrophysics Data System (ADS)

    Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.

    2017-12-01

    Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.

  13. Simulation of fMRI signals to validate dynamic causal modeling estimation

    NASA Astrophysics Data System (ADS)

    Anandwala, Mobin; Siadat, Mohamad-Reza; Hadi, Shamil M.

    2012-03-01

    Through cognitive tasks certain brain areas are activated and also receive increased blood to them. This is modeled through a state system consisting of two separate parts one that deals with the neural node stimulation and the other blood response during that stimulation. The rationale behind using this state system is to validate existing analysis methods such as DCM to see what levels of noise they can handle. Using the forward Euler's method this system was approximated in a series of difference equations. What was obtained was the hemodynamic response for each brain area and this was used to test an analysis tool to estimate functional connectivity between each brain area with a given amount of noise. The importance of modeling this system is to not only have a model for neural response but also to compare to actual data obtained through functional imaging scans.

  14. Constitutive Models Based on Compressible Plastic Flows

    NASA Technical Reports Server (NTRS)

    Rajendran, A. M.

    1983-01-01

    The need for describing materials under time or cycle dependent loading conditions has been emphasized in recent years by several investigators. In response to the need, various constitutive models describing the nonlinear behavior of materials under creep, fatigue, or other complex loading conditions were developed. The developed models for describing the fully dense (non-porous) materials were mostly based on uncoupled plasticity theory. The improved characterization of materials provides a better understanding of the structual response under complex loading conditions. The pesent studies demonstrate that the rate or time dependency of the response of a porous aggregate can be incorporated into the nonlinear constitutive behavior of a porous solid by appropriately modeling the incompressible matrix behavior. It is also sown that the yield function which wads determined by a continuum mechanics approach must be verified by appropriate experiments on void containing sintered materials in order to obtain meaningful numbers for the constants that appear in the yield function.

  15. A mathematical model to describe the nonlinear elastic properties of the gastrocnemius tendon of chickens.

    PubMed

    Foutz, T L

    1991-03-01

    A phenomenological model was developed to describe the nonlinear elastic behavior of the avian gastrocnemius tendon. Quasistatic uniaxial tensile tests were used to apply a deformation and resulting load on the tendon at a deformation rate of 5 mm/min. Plots of deformation versus load indicated a nonlinear loading response. By calculating engineering stress and engineering strain, the experimental data were normalized for tendon shape. The elastic response was determined from stress-strain curves and was found to vary with engineering strain. The response to the applied engineering strain could best be described by a mathematical model that combined a linear function and a nonlinear function. Three parameters in the model were developed to represent the nonlinear elastic behavior of the tendon, thereby allowing analysis of elasticity without prior knowledge of engineering strain. This procedure reduced the amount of data needed for the statistical analysis of nonlinear elasticity.

  16. Understanding Southern Ocean SST Trends in Historical Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2017-04-01

    Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes that drive SST trends in the real SO.

  17. Bayesian inference in an item response theory model with a generalized student t link function

    NASA Astrophysics Data System (ADS)

    Azevedo, Caio L. N.; Migon, Helio S.

    2012-10-01

    In this paper we introduce a new item response theory (IRT) model with a generalized Student t-link function with unknown degrees of freedom (df), named generalized t-link (GtL) IRT model. In this model we consider only the difficulty parameter in the item response function. GtL is an alternative to the two parameter logit and probit models, since the degrees of freedom (df) play a similar role to the discrimination parameter. However, the behavior of the curves of the GtL is different from those of the two parameter models and the usual Student t link, since in GtL the curve obtained from different df's can cross the probit curves in more than one latent trait level. The GtL model has similar proprieties to the generalized linear mixed models, such as the existence of sufficient statistics and easy parameter interpretation. Also, many techniques of parameter estimation, model fit assessment and residual analysis developed for that models can be used for the GtL model. We develop fully Bayesian estimation and model fit assessment tools through a Metropolis-Hastings step within Gibbs sampling algorithm. We consider a prior sensitivity choice concerning the degrees of freedom. The simulation study indicates that the algorithm recovers all parameters properly. In addition, some Bayesian model fit assessment tools are considered. Finally, a real data set is analyzed using our approach and other usual models. The results indicate that our model fits the data better than the two parameter models.

  18. Vegetation function and non-uniqueness of the hydrological response

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.

    2012-04-01

    Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.

  19. Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response

    NASA Astrophysics Data System (ADS)

    Lv, Cuifang; Huang, Lihong; Yuan, Zhaohui

    2014-01-01

    In this paper, an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response is investigated. One main feature of this model is that an eclipse stage for the infected cells is included and a portion of these cells is reverted to uninfected cells. We derive the basic reproduction number R1 and the immune response reproduction number R2 for the HIV-1 infection model. By constructing Lyapunov functions, the global stabilities for the equilibria have been analyzed.

  20. Development and validation of age-dependent FE human models of a mid-sized male thorax.

    PubMed

    El-Jawahri, Raed E; Laituri, Tony R; Ruan, Jesse S; Rouhana, Stephen W; Barbat, Saeed D

    2010-11-01

    The increasing number of people over 65 years old (YO) is an important research topic in the area of impact biomechanics, and finite element (FE) modeling can provide valuable support for related research. There were three objectives of this study: (1) Estimation of the representative age of the previously-documented Ford Human Body Model (FHBM) -- an FE model which approximates the geometry and mass of a mid-sized male, (2) Development of FE models representing two additional ages, and (3) Validation of the resulting three models to the extent possible with respect to available physical tests. Specifically, the geometry of the model was compared to published data relating rib angles to age, and the mechanical properties of different simulated tissues were compared to a number of published aging functions. The FHBM was determined to represent a 53-59 YO mid-sized male. The aforementioned aging functions were used to develop FE models representing two additional ages: 35 and 75 YO. The rib model was validated against human rib specimens and whole rib tests, under different loading conditions, with and without modeled fracture. In addition, the resulting three age-dependent models were validated by simulating cadaveric tests of blunt and sled impacts. The responses of the models, in general, were within the cadaveric response corridors. When compared to peak responses from individual cadavers similar in size and age to the age-dependent models, some responses were within one standard deviation of the test data. All the other responses, but one, were within two standard deviations.

  1. A cognitive computational model inspired by the immune system response.

    PubMed

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.

  2. A Cognitive Computational Model Inspired by the Immune System Response

    PubMed Central

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective. PMID:25003131

  3. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    PubMed

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Working-memory capacity protects model-based learning from stress.

    PubMed

    Otto, A Ross; Raio, Candace M; Chiang, Alice; Phelps, Elizabeth A; Daw, Nathaniel D

    2013-12-24

    Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive-dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response--believed to have detrimental effects on prefrontal cortex function--should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress.

  5. Estimation of Graded Response Model Parameters Using MULTILOG.

    ERIC Educational Resources Information Center

    Baker, Frank B.

    1997-01-01

    Describes an idiosyncracy of the MULTILOG (D. Thissen, 1991) parameter estimation process discovered during a simulation study involving the graded response model. A misordering reflected in boundary function location parameter estimates resulted in a large negative contribution to the true score followed by a large positive contribution. These…

  6. On the Complexity of Item Response Theory Models.

    PubMed

    Bonifay, Wes; Cai, Li

    2017-01-01

    Complexity in item response theory (IRT) has traditionally been quantified by simply counting the number of freely estimated parameters in the model. However, complexity is also contingent upon the functional form of the model. We examined four popular IRT models-exploratory factor analytic, bifactor, DINA, and DINO-with different functional forms but the same number of free parameters. In comparison, a simpler (unidimensional 3PL) model was specified such that it had 1 more parameter than the previous models. All models were then evaluated according to the minimum description length principle. Specifically, each model was fit to 1,000 data sets that were randomly and uniformly sampled from the complete data space and then assessed using global and item-level fit and diagnostic measures. The findings revealed that the factor analytic and bifactor models possess a strong tendency to fit any possible data. The unidimensional 3PL model displayed minimal fitting propensity, despite the fact that it included an additional free parameter. The DINA and DINO models did not demonstrate a proclivity to fit any possible data, but they did fit well to distinct data patterns. Applied researchers and psychometricians should therefore consider functional form-and not goodness-of-fit alone-when selecting an IRT model.

  7. The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions

    ERIC Educational Resources Information Center

    Molenaar, Dylan; Dolan, Conor V.; de Boeck, Paul

    2012-01-01

    The Graded Response Model (GRM; Samejima, "Estimation of ability using a response pattern of graded scores," Psychometric Monograph No. 17, Richmond, VA: The Psychometric Society, 1969) can be derived by assuming a linear regression of a continuous variable, Z, on the trait, [theta], to underlie the ordinal item scores (Takane & de Leeuw in…

  8. Model for the dynamic responses of taste receptor cells to salty stimuli. I. Function of lipid bilayer membranes.

    PubMed Central

    Naito, M; Fuchikami, N; Sasaki, N; Kambara, T

    1991-01-01

    The dynamic response of the lipid bilayer membrane is studied theoretically using a microscopic model of the membrane. The time courses of membrane potential variations due to monovalent salt stimulation are calculated explicitly under various conditions. A set of equations describing the time evolution of membrane surface potential and diffusion potential is derived and solved numerically. It is shown that a rather simple membrane such as lipid bilayer has functions capable of reproducing the following properties of dynamic response observed in gustatory receptor potential. Initial transient depolarization does not occur under Ringer adaptation but does under water. It appears only for comparatively rapid flows of stimuli, the peak height of transient response is expressed by a power function of the flow rate, and the membrane potential gradually decreases after reaching its peak under long and strong stimulation. The dynamic responses in the present model arise from the differences between the time dependences in the surface potential phi s and the diffusion potential phi d across a membrane. Under salt stimulation phi d cannot immediately follow the variation in phi s because of the delay due to the charging up of membrane capacitance. It is suggested that lipid bilayer in the apical membrane is the most probable agency producing the initial phasic response to the stimulation. PMID:1873461

  9. COBRA ATD multispectral camera response model

    NASA Astrophysics Data System (ADS)

    Holmes, V. Todd; Kenton, Arthur C.; Hilton, Russell J.; Witherspoon, Ned H.; Holloway, John H., Jr.

    2000-08-01

    A new multispectral camera response model has been developed in support of the US Marine Corps (USMC) Coastal Battlefield Reconnaissance and Analysis (COBRA) Advanced Technology Demonstration (ATD) Program. This analytical model accurately estimates response form five Xybion intensified IMC 201 multispectral cameras used for COBRA ATD airborne minefield detection. The camera model design is based on a series of camera response curves which were generated through optical laboratory test performed by the Naval Surface Warfare Center, Dahlgren Division, Coastal Systems Station (CSS). Data fitting techniques were applied to these measured response curves to obtain nonlinear expressions which estimates digitized camera output as a function of irradiance, intensifier gain, and exposure. This COBRA Camera Response Model was proven to be very accurate, stable over a wide range of parameters, analytically invertible, and relatively simple. This practical camera model was subsequently incorporated into the COBRA sensor performance evaluation and computational tools for research analysis modeling toolbox in order to enhance COBRA modeling and simulation capabilities. Details of the camera model design and comparisons of modeled response to measured experimental data are presented.

  10. Modeling procedures for handling qualities evaluation of flexible aircraft

    NASA Technical Reports Server (NTRS)

    Govindaraj, K. S.; Eulrich, B. J.; Chalk, C. R.

    1981-01-01

    This paper presents simplified modeling procedures to evaluate the impact of flexible modes and the unsteady aerodynamic effects on the handling qualities of Supersonic Cruise Aircraft (SCR). The modeling procedures involve obtaining reduced order transfer function models of SCR vehicles, including the important flexible mode responses and unsteady aerodynamic effects, and conversion of the transfer function models to time domain equations for use in simulations. The use of the modeling procedures is illustrated by a simple example.

  11. Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J. 2011. Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environmental Modelling & Software. 26(6): 804-816.

    Treesearch

    Satoshi Hirabayashi; Chuck Kroll; David Nowak

    2011-01-01

    The Urban Forest Effects-Deposition model (UFORE-D) was developed with a component-based modeling approach. Functions of the model were separated into components that are responsible for user interface, data input/output, and core model functions. Taking advantage of the component-based approach, three UFORE-D applications were developed: a base application to estimate...

  12. Atomoxetine restores the response inhibition network in Parkinson’s disease

    PubMed Central

    Rae, Charlotte L.; Nombela, Cristina; Rodríguez, Patricia Vázquez; Ye, Zheng; Hughes, Laura E.; Jones, P. Simon; Ham, Timothy; Rittman, Timothy; Coyle-Gilchrist, Ian; Regenthal, Ralf; Sahakian, Barbara J.; Barker, Roger A.; Robbins, Trevor W.

    2016-01-01

    Abstract Parkinson’s disease impairs the inhibition of responses, and whilst impulsivity is mild for some patients, severe impulse control disorders affect ∼10% of cases. Based on preclinical models we proposed that noradrenergic denervation contributes to the impairment of response inhibition, via changes in the prefrontal cortex and its subcortical connections. Previous work in Parkinson’s disease found that the selective noradrenaline reuptake inhibitor atomoxetine could improve response inhibition, gambling decisions and reflection impulsivity. Here we tested the hypotheses that atomoxetine can restore functional brain networks for response inhibition in Parkinson’s disease, and that both structural and functional connectivity determine the behavioural effect. In a randomized, double-blind placebo-controlled crossover study, 19 patients with mild-to-moderate idiopathic Parkinson’s disease underwent functional magnetic resonance imaging during a stop-signal task, while on their usual dopaminergic therapy. Patients received 40 mg atomoxetine or placebo, orally. This regimen anticipates that noradrenergic therapies for behavioural symptoms would be adjunctive to, not a replacement for, dopaminergic therapy. Twenty matched control participants provided normative data. Arterial spin labelling identified no significant changes in regional perfusion. We assessed functional interactions between key frontal and subcortical brain areas for response inhibition, by comparing 20 dynamic causal models of the response inhibition network, inverted to the functional magnetic resonance imaging data and compared using random effects model selection. We found that the normal interaction between pre-supplementary motor cortex and the inferior frontal gyrus was absent in Parkinson’s disease patients on placebo (despite dopaminergic therapy), but this connection was restored by atomoxetine. The behavioural change in response inhibition (improvement indicated by reduced stop-signal reaction time) following atomoxetine correlated with structural connectivity as measured by the fractional anisotropy in the white matter underlying the inferior frontal gyrus. Using multiple regression models, we examined the factors that influenced the individual differences in the response to atomoxetine: the reduction in stop-signal reaction time correlated with structural connectivity and baseline performance, while disease severity and drug plasma level predicted the change in fronto-striatal effective connectivity following atomoxetine. These results suggest that (i) atomoxetine increases sensitivity of the inferior frontal gyrus to afferent inputs from the pre-supplementary motor cortex; (ii) atomoxetine can enhance downstream modulation of frontal-subcortical connections for response inhibition; and (iii) the behavioural consequences of treatment are dependent on fronto-striatal structural connections. The individual differences in behavioural responses to atomoxetine highlight the need for patient stratification in future clinical trials of noradrenergic therapies for Parkinson’s disease. PMID:27343257

  13. Effects of degeneracy and response function in a diffusion predator-prey model

    NASA Astrophysics Data System (ADS)

    Li, Shanbing; Wu, Jianhua; Dong, Yaying

    2018-04-01

    In this paper, we consider positive solutions of a diffusion predator-prey model with a degeneracy under the Dirichlet boundary conditions. We first obtain sufficient conditions of the existence of positive solutions by the Leray-Schauder degree theory, and then analyze the limiting behavior of positive solutions as the growth rate of the predator goes to infinity and the conversion rates of the predator goes to zero, respectively. It is shown that these results for Holling II response function (i.e. m  >  0) reveal interesting contrast with that for the classical Lotka-Volterra predator-prey model (i.e. m  =  0).

  14. Development of a human adaptive immune system in cord blood cell-transplanted mice.

    PubMed

    Traggiai, Elisabetta; Chicha, Laurie; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G

    2004-04-02

    Because ethical restrictions limit in vivo studies of the human hemato-lymphoid system, substitute human to small animal xenotransplantation models have been employed. Existing models, however, sustain only limited development and maintenance of human lymphoid cells and rarely produce immune responses. Here we show that intrahepatic injection of CD34+ human cord blood cells into conditioned newborn Rag2-/-gammac-/- mice leads to de novo development of B, T, and dendritic cells; formation of structured primary and secondary lymphoid organs; and production of functional immune responses. This provides a valuable model to study development and function of the human adaptive immune system in vivo.

  15. Effect of Differential Item Functioning on Test Equating

    ERIC Educational Resources Information Center

    Kabasakal, Kübra Atalay; Kelecioglu, Hülya

    2015-01-01

    This study examines the effect of differential item functioning (DIF) items on test equating through multilevel item response models (MIRMs) and traditional IRMs. The performances of three different equating models were investigated under 24 different simulation conditions, and the variables whose effects were examined included sample size, test…

  16. The Bilingual Advertising Decision.

    ERIC Educational Resources Information Center

    Grin, Francois

    1994-01-01

    Examines the relationship between linguistic plurality and the rationale of advertising decisions. The article presents a simple model of sales to different language groups as a function of the level of advertising in each language, language attitudes, incomes, and an advertising response function. The model is intended as a benchmark, and several…

  17. Adjacent-Categories Mokken Models for Rater-Mediated Assessments

    PubMed Central

    Wind, Stefanie A.

    2016-01-01

    Molenaar extended Mokken’s original probabilistic-nonparametric scaling models for use with polytomous data. These polytomous extensions of Mokken’s original scaling procedure have facilitated the use of Mokken scale analysis as an approach to exploring fundamental measurement properties across a variety of domains in which polytomous ratings are used, including rater-mediated educational assessments. Because their underlying item step response functions (i.e., category response functions) are defined using cumulative probabilities, polytomous Mokken models can be classified as cumulative models based on the classifications of polytomous item response theory models proposed by several scholars. In order to permit a closer conceptual alignment with educational performance assessments, this study presents an adjacent-categories variation on the polytomous monotone homogeneity and double monotonicity models. Data from a large-scale rater-mediated writing assessment are used to illustrate the adjacent-categories approach, and results are compared with the original formulations. Major findings suggest that the adjacent-categories models provide additional diagnostic information related to individual raters’ use of rating scale categories that is not observed under the original formulation. Implications are discussed in terms of methods for evaluating rating quality. PMID:29795916

  18. Computational principles underlying recognition of acoustic signals in grasshoppers and crickets.

    PubMed

    Ronacher, Bernhard; Hennig, R Matthias; Clemens, Jan

    2015-01-01

    Grasshoppers and crickets independently evolved hearing organs and acoustic communication. They differ considerably in the organization of their auditory pathways, and the complexity of their songs, which are essential for mate attraction. Recent approaches aimed at describing the behavioral preference functions of females in both taxa by a simple modeling framework. The basic structure of the model consists of three processing steps: (1) feature extraction with a bank of 'LN models'-each containing a linear filter followed by a nonlinearity, (2) temporal integration, and (3) linear combination. The specific properties of the filters and nonlinearities were determined using a genetic learning algorithm trained on a large set of different song features and the corresponding behavioral response scores. The model showed an excellent prediction of the behavioral responses to the tested songs. Most remarkably, in both taxa the genetic algorithm found Gabor-like functions as the optimal filter shapes. By slight modifications of Gabor filters several types of preference functions could be modeled, which are observed in different cricket species. Furthermore, this model was able to explain several so far enigmatic results in grasshoppers. The computational approach offered a remarkably simple framework that can account for phenotypically rather different preference functions across several taxa.

  19. Prediction of spectral acceleration response ordinates based on PGA attenuation

    USGS Publications Warehouse

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  20. Functional response and population dynamics for fighting predator, based on activity distribution.

    PubMed

    Garay, József; Varga, Zoltán; Gámez, Manuel; Cabello, Tomás

    2015-03-07

    The classical Holling type II functional response, describing the per capita predation as a function of prey density, was modified by Beddington and de Angelis to include interference of predators that increases with predator density and decreases the number of killed prey. In the present paper we further generalize the Beddington-de Angelis functional response, considering that all predator activities (searching and handling prey, fight and recovery) have time duration, the probabilities of predator activities depend on the encounter probabilities, and hence on the prey and predator abundance, too. Under these conditions, the aim of the study is to introduce a functional response for fighting the predator and to analyse the corresponding dynamics, when predator-predator-prey encounters also occur. From this general approach, the Holling type functional responses can also be obtained as particular cases. In terms of the activity distribution, we give biologically interpretable sufficient conditions for stable coexistence. We consider two-individual (predator-prey) and three-individual (predator-predator-prey) encounters. In the three-individual encounter model there is a relatively higher fighting rate and a lower killing rate. Using numerical simulation, we surprisingly found that when the intrinsic prey growth rate and the conversion rate are small enough, the equilibrium predator abundance is higher in the three-individual encounter case. The above means that, when the equilibrium abundance of the predator is small, coexistence appears first in the three-individual encounter model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Convergence in the temperature response of leaf respiration across biomes and plant functional types

    PubMed Central

    Heskel, Mary A.; O’Sullivan, Odhran S.; Reich, Peter B.; Tjoelker, Mark G.; Weerasinghe, Lasantha K.; Penillard, Aurore; Egerton, John J. G.; Creek, Danielle; Bloomfield, Keith J.; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R.; Martinez-de la Torre, Alberto; Griffin, Kevin L.; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H.; Atkin, Owen K.

    2016-01-01

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates. PMID:27001849

  2. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    PubMed

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-05

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

  3. Executive functioning complaints and escitalopram treatment response in late-life depression.

    PubMed

    Manning, Kevin J; Alexopoulos, George S; Banerjee, Samprit; Morimoto, Sarah Shizuko; Seirup, Joanna K; Klimstra, Sibel A; Yuen, Genevieve; Kanellopoulos, Theodora; Gunning-Dixon, Faith

    2015-05-01

    Executive dysfunction may play a key role in the pathophysiology of late-life depression. Executive dysfunction can be assessed with cognitive tests and subjective report of difficulties with executive skills. The present study investigated the association between subjective report of executive functioning complaints and time to escitalopram treatment response in older adults with major depressive disorder (MDD). 100 older adults with MDD (58 with executive functioning complaints and 42 without executive functioning complaints) completed a 12-week trial of escitalopram. Treatment response over 12 weeks, as measured by repeated Hamilton Depression Rating Scale scores, was compared for adults with and without executive complaints using mixed-effects modeling. Mixed effects analysis revealed a significant group × time interaction, F(1, 523.34) = 6.00, p = 0.01. Depressed older adults who reported executive functioning complaints at baseline demonstrated a slower response to escitalopram treatment than those without executive functioning complaints. Self-report of executive functioning difficulties may be a useful prognostic indicator for subsequent speed of response to antidepressant medication. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Overcoming pain thresholds with multilevel models-an example using quantitative sensory testing (QST) data.

    PubMed

    Hirschfeld, Gerrit; Blankenburg, Markus R; Süß, Moritz; Zernikow, Boris

    2015-01-01

    The assessment of somatosensory function is a cornerstone of research and clinical practice in neurology. Recent initiatives have developed novel protocols for quantitative sensory testing (QST). Application of these methods led to intriguing findings, such as the presence lower pain-thresholds in healthy children compared to healthy adolescents. In this article, we (re-) introduce the basic concepts of signal detection theory (SDT) as a method to investigate such differences in somatosensory function in detail. SDT describes participants' responses according to two parameters, sensitivity and response-bias. Sensitivity refers to individuals' ability to discriminate between painful and non-painful stimulations. Response-bias refers to individuals' criterion for giving a "painful" response. We describe how multilevel models can be used to estimate these parameters and to overcome central critiques of these methods. To provide an example we apply these methods to data from the mechanical pain sensitivity test of the QST protocol. The results show that adolescents are more sensitive to mechanical pain and contradict the idea that younger children simply use more lenient criteria to report pain. Overall, we hope that the wider use of multilevel modeling to describe somatosensory functioning may advance neurology research and practice.

  5. SENSITIVITY OF NORMAL THEORY METHODS TO MODEL MISSPECIFICATION IN THE CALCULATION OF UPPER CONFIDENCE LIMITS ON THE RISK FUNCTION FOR CONTINUOUS RESPONSES. (R825385)

    EPA Science Inventory

    Normal theory procedures for calculating upper confidence limits (UCL) on the risk function for continuous responses work well when the data come from a normal distribution. However, if the data come from an alternative distribution, the application of the normal theory procedure...

  6. Serial and Parallel Attentive Visual Searches: Evidence from Cumulative Distribution Functions of Response Times

    ERIC Educational Resources Information Center

    Sung, Kyongje

    2008-01-01

    Participants searched a visual display for a target among distractors. Each of 3 experiments tested a condition proposed to require attention and for which certain models propose a serial search. Serial versus parallel processing was tested by examining effects on response time means and cumulative distribution functions. In 2 conditions, the…

  7. Assessing the Item Response Theory with Covariate (IRT-C) Procedure for Ascertaining Differential Item Functioning

    ERIC Educational Resources Information Center

    Tay, Louis; Vermunt, Jeroen K.; Wang, Chun

    2013-01-01

    We evaluate the item response theory with covariates (IRT-C) procedure for assessing differential item functioning (DIF) without preknowledge of anchor items (Tay, Newman, & Vermunt, 2011). This procedure begins with a fully constrained baseline model, and candidate items are tested for uniform and/or nonuniform DIF using the Wald statistic.…

  8. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.

    PubMed

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf

    2018-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.

  9. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models

    PubMed Central

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf

    2017-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977

  10. Systems approach provides management control of complex programs

    NASA Technical Reports Server (NTRS)

    Dudek, E. F., Jr.; Mc Carthy, J. F., Jr.

    1970-01-01

    Integrated program management process provides management visual assistance through three interrelated charts - system model that identifies each function to be performed, matrix that identifies personnel responsibilities for these functions, process chart that breaks down the functions into discrete tasks.

  11. Rasch measurement: the Arm Activity measure (ArmA) passive function sub-scale.

    PubMed

    Ashford, Stephen; Siegert, Richard J; Alexandrescu, Roxana

    2016-01-01

    To evaluate the conformity of the Arm Activity measure (ArmA) passive function sub-scale to the Rasch model. A consecutive cohort of patients (n = 92) undergoing rehabilitation, including upper limb rehabilitation and spasticity management, at two specialist rehabilitation units were included. Rasch analysis was used to examine scaling and conformity to the model. Responses were analysed using Rasch unidimensional measurement models (RUMM 2030). The following aspects were considered: overall model and individual item fit statistics and fit residuals, internal reliability, item response threshold ordering, item bias, local dependency and unidimensionality. ArmA contains both active and passive function sub-scales, but in this analysis only the passive function sub-scale was considered. Four of the seven items in the ArmA passive function sub-scale initially had disordered thresholds. These items were rescored to four response options, which resulted in ordered thresholds for all items. Once the items with disordered thresholds had been rescored, item bias was not identified for age, global disability level or diagnosis, but with a small difference in difficulty between males and females for one item of the scale. Local dependency was not observed and the unidimensionality of the sub-scale was supported and good fit to the Rasch model was identified. The person separation index (PSI) was 0.95 indicating that the scale is able to reliably differentiate at least two groups of patients. The ArmA passive function sub-scale was shown in this evaluation to conform to the Rasch model once disordered thresholds had been addressed. Using the logit scores produced by the Rasch model it was possible to convert this back to the original scale range. Implications for Rehabilitation The ArmA passive function sub-scale was shown, in this evaluation, to conform to the Rasch model once disordered thresholds had been addressed and therefore to be a clinically applicable and potentially useful hierarchical measure. Using Rasch logit scores it has be possible to convert back to the original ordinal scale range and provide an indication of real change to enable evaluation of clinical outcome of importance to patients and clinicians.

  12. Q&A: How do gene regulatory networks control environmental responses in plants?

    PubMed

    Sun, Ying; Dinneny, José R

    2018-04-11

    A gene regulatory network (GRN) describes the hierarchical relationship between transcription factors, associated proteins, and their target genes. Studying GRNs allows us to understand how a plant's genotype and environment are integrated to regulate downstream physiological responses. Current efforts in plants have focused on defining the GRNs that regulate functions such as development and stress response and have been performed primarily in genetically tractable model plant species such as Arabidopsis thaliana. Future studies will likely focus on how GRNs function in non-model plants and change over evolutionary time to allow for adaptation to extreme environments. This broader understanding will inform efforts to engineer GRNs to create tailored crop traits.

  13. Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality.

    PubMed

    Cox, Louis Anthony Tony

    2017-08-01

    Concentration-response (C-R) functions relating concentrations of pollutants in ambient air to mortality risks or other adverse health effects provide the basis for many public health risk assessments, benefits estimates for clean air regulations, and recommendations for revisions to existing air quality standards. The assumption that C-R functions relating levels of exposure and levels of response estimated from historical data usefully predict how future changes in concentrations would change risks has seldom been carefully tested. This paper critically reviews literature on C-R functions for fine particulate matter (PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid causal models for predicting effects of interventions that change concentrations. The few papers that explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their predictions about effects of interventions. A large literature on modern causal inference algorithms for observational data has been little used in C-R modeling. Applying these methods to publicly available data from Boston and the South Coast Air Quality Management District around Los Angeles shows that C-R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentrations from one year to the next do not help to predict corresponding changes in average elderly mortality rates in either location. Thus, the assumption that estimated C-R relations predict effects of pollution-reducing interventions may not be true. Better causal modeling methods are needed to better predict how reducing air pollution would affect public health.

  14. Terrestrial Microgravity Model and Threshold Gravity Simulation sing Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successiblly simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  15. Bifurcation and Stability in a Delayed Predator-Prey Model with Mixed Functional Responses

    NASA Astrophysics Data System (ADS)

    Yafia, R.; Aziz-Alaoui, M. A.; Merdan, H.; Tewa, J. J.

    2015-06-01

    The model analyzed in this paper is based on the model set forth by Aziz Alaoui et al. [Aziz Alaoui & Daher Okiye, 2003; Nindjin et al., 2006] with time delay, which describes the competition between the predator and prey. This model incorporates a modified version of the Leslie-Gower functional response as well as that of Beddington-DeAngelis. In this paper, we consider the model with one delay consisting of a unique nontrivial equilibrium E* and three others which are trivial. Their dynamics are studied in terms of local and global stabilities and of the description of Hopf bifurcation at E*. At the third trivial equilibrium, the existence of the Hopf bifurcation is proven as the delay (taken as a parameter of bifurcation) that crosses some critical values.

  16. The ethological trap: functional and numerical responses of highly efficient invasive predators driving prey extinctions.

    PubMed

    Spencer, Ricky-John; Van Dyke, James U; Thompson, Michael B

    2016-10-01

    Ecological traps are threats to organisms, and exist in a range of biological systems. A subset of ecological trap theory is the "ethological trap," whereby behaviors canalized by past natural selection become traps when environments change rapidly. Invasive predators are major threats to imperiled species and their ability to exploit canalized behaviors of naive prey is particularly important for the establishment of the predator and the decline of the native prey. Our study uses ecological theory to demonstrate that invasive predator controls require shifts in management priorities. Total predation rate (i.e., total response) is the product of both the functional response and numerical response of predators to prey. Functional responses are the changes in the rate of prey consumption by individual predators, relative to prey abundance. Numerical responses are the aggregative rates of prey consumption by all predators relative to prey density, which change with predator density via reproduction or migration, in response to changes in prey density. Traditional invasive predator management methods focus on reducing predator populations, and thus manage for numerical responses. These management efforts fail to manage for functional responses, and may not eliminate impacts of highly efficient individual predators. We explore this problem by modeling the impacts of functional and numerical responses of invasive foxes depredating imperiled Australian turtle nests. Foxes exhibit exceptionally efficient functional responses. A single fox can destroy >95% of turtle nests in a nesting area, which eliminates juvenile recruitment. In this case, the ethological trap is the "Arribada" nesting strategy, an emergent behavior whereby most turtles in a population nest simultaneously in the same nesting grounds. Our models show that Arribada nesting events do not oversaturate foxes, and small numbers of foxes depredate all of the nests in a given Arribada. Widely scattering nests may reduce fox predation rates, but the long generation times of turtles combined with their rapid recent decline suggests that evolutionary responses in nesting strategy may be unlikely. Our study demonstrates that reducing populations of highly efficient invasive predators is insufficient for preserving native prey species. Instead, management must reduce individual predator efficiency, independent of reducing predator population size. © 2016 by the Ecological Society of America.

  17. Terrestrial Microgravity Model and Threshold Gravity Simulation using Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars. The paper will discuss experiments md modeling work to date in support of this project.

  18. Assessing items on the SF-8 Japanese version for health-related quality of life: a psychometric analysis based on the nominal categories model of item response theory.

    PubMed

    Tokuda, Yasuharu; Okubo, Tomoya; Ohde, Sachiko; Jacobs, Joshua; Takahashi, Osamu; Omata, Fumio; Yanai, Haruo; Hinohara, Shigeaki; Fukui, Tsuguya

    2009-06-01

    The Short Form-8 (SF-8) questionnaire is a commonly used 8-item instrument of health-related quality of life (QOL) and provides a health profile of eight subdimensions. Our aim was to examine the psychometric properties of the Japanese version of the SF-8 instrument using methodology based on nominal categories model. Using data from an adjusted random sample from a nationally representative panel, the nominal categories modeling was applied to SF-8 items to characterize coverage of the latent trait (theta). Probabilities for response choices were described as functions on the latent trait. Information functions were generated based on the estimated item parameters. A total of 3344 participants (53%, women; median age, 35 years) provided responses. One factor was retained (eigenvalue, 4.65; variance proportion of 0.58) and used as theta. All item response category characteristic curves satisfied the monotonicity assumption in accurate order with corresponding ordinal responses. Four items (general health, bodily pain, vitality, and mental health) cover most of the spectrum of theta, while the other four items (physical function, role physical [role limitations because of physical health], social functioning, and role emotional [role limitations because of emotional problems] ) cover most of the negative range of theta. Information function for all items combined peaked at -0.7 of theta (information = 18.5) and decreased with increasing theta. The SF-8 instrument performs well among those with poor QOL across the continuum of the latent trait and thus can recognize more effectively persons with relatively poorer QOL than those with relatively better QOL.

  19. The development of regulatory functions from birth to 5 years: insights from premature infants.

    PubMed

    Feldman, Ruth

    2009-01-01

    This study examined physiological, emotional, and attentional regulatory functions as predictors of self-regulation in 125 infants followed 7 times from birth to 5 years. Physiological regulation was assessed by neonatal vagal tone and sleep-wake cyclicity; emotion regulation by response to stress at 3, 6, and 12 months; and attention regulation by focused attention and delayed response in the 2nd year. Executive functions, behavior adaptation, and self-restraint were measured at 5 years. Regulatory functions showed stability across time, measures, and levels. Structural modeling demonstrated both mediated paths from physiological to self-regulation through emotional and attentional processes and direct continuity between vagal tone and each level of regulation. Results support the coherence of the regulation construct and are consistent with neurobiological models on self and consciousness.

  20. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  1. Dynamic response of NASA Rotor Test Apparatus and Sikorsky S-76 hub mounted in the 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Hoque, Muhammed S.

    1994-01-01

    A shake test was conducted in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center, using the NASA Ames Rotor Test Apparatus (RTA) and the Sikorsky S-76 rotor hub. The primary objective of this shake test was to determine the modal properties of the RTA, the S-76 rotor hub, and the model support system installed in the wind tunnel. Random excitation was applied at the rotor hub, and vibration responses were measured using accelerometers mounted at various critical locations on the model and the model support system. Transfer functions were computed using the load cell data and the accelerometer responses. The transfer function data were used to compute the system modal parameters with the aid of modal analysis software.

  2. Probing the Relative Importance of Different Attributes in L2 Reading and Listening Comprehension Items: An Application of Cognitive Diagnostic Models

    ERIC Educational Resources Information Center

    Yi, Yeon-Sook

    2017-01-01

    The present study examines the relative importance of attributes within and across items by applying four cognitive diagnostic assessment models. The current study utilizes the function of the models that can indicate inter-attribute relationships that reflect the response behaviors of examinees to analyze scored test-taker responses to four forms…

  3. Effects of modal truncation and condensation methods on the Frequency Response Function of a stage reducer connected by rigid coupling to a planetary gear system

    NASA Astrophysics Data System (ADS)

    Bouslema, Marwa; Frikha, Ahmed; Abdennadhar, Moez; Fakhfakh, Tahar; Nasri, Rachid; Haddar, Mohamed

    2017-12-01

    The present paper is aimed at the application of a substructure methodology, based on the Frequency Response Function (FRF) simulation technique, to analyze the vibration of a stage reducer connected by a rigid coupling to a planetary gear system. The computation of the vibration response was achieved using the FRF-based substructuring method. First of all, the two subsystems were analyzed separately and their FRF were obtained. Then the coupled model was analyzed indirectly using the substructuring technique. A comparison between the full system response and the coupled model response using the FRF substructuring was investigated to validate the coupling method. Furthermore, a parametric study of the effect of the shaft coupling stiffness on the FRF was discussed and the effects of modal truncation and condensation methods on the FRF of subsystems were analyzed.

  4. Patterns of Children’s Adrenocortical Reactivity to Interparental Conflict and Associations with Child Adjustment: A Growth Mixture Modeling Approach

    PubMed Central

    Koss, Kalsea J.; George, Melissa R. W.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark; Sturge-Apple, Melissa L.

    2013-01-01

    Examining children’s physiological functioning is an important direction for understanding the links between interparental conflict and child adjustment. Utilizing growth mixture modeling, the present study examined children’s cortisol reactivity patterns in response to a marital dispute. Analyses revealed three different patterns of cortisol responses, consistent with both a sensitization and an attenuation hypothesis. Child-rearing disagreements and perceived threat were associated with children exhibiting a rising cortisol pattern whereas destructive conflict was related to children displaying a flat pattern. Physiologically rising patterns were also linked with emotional insecurity and internalizing and externalizing behaviors. Results supported a sensitization pattern of responses as maladaptive for children in response to marital conflict with evidence also linking an attenuation pattern with risk. The present study supports children’s adrenocortical functioning as one mechanism through which interparental conflict is related to children’s coping responses and psychological adjustment. PMID:22545835

  5. Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable

    ERIC Educational Resources Information Center

    du Toit, Stephen H. C.; Cudeck, Robert

    2009-01-01

    A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…

  6. Item Response Theory Using Hierarchical Generalized Linear Models

    ERIC Educational Resources Information Center

    Ravand, Hamdollah

    2015-01-01

    Multilevel models (MLMs) are flexible in that they can be employed to obtain item and person parameters, test for differential item functioning (DIF) and capture both local item and person dependence. Papers on the MLM analysis of item response data have focused mostly on theoretical issues where applications have been add-ons to simulation…

  7. Teacher Leader Model Standards and the Functions Assumed by National Board Certified Teachers

    ERIC Educational Resources Information Center

    Swan Dagen, Allison; Morewood, Aimee; Smith, Megan L.

    2017-01-01

    The Teacher Leader Model Standards (TLMS) were created to stimulate discussion around the leadership responsibilities teachers assume in schools. This study used the TLMS to gauge the self-reported leadership responsibilities of National Board Certified Teachers (NBCTs). The NBCTs reported engaging in all domains of the TLMS, most frequently with…

  8. Dynamical influence processes on networks: general theory and applications to social contagion.

    PubMed

    Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan

    2013-08-01

    We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.

  9. A trust region-based approach to optimize triple response systems

    NASA Astrophysics Data System (ADS)

    Fan, Shu-Kai S.; Fan, Chihhao; Huang, Chia-Fen

    2014-05-01

    This article presents a new computing procedure for the global optimization of the triple response system (TRS) where the response functions are non-convex quadratics and the input factors satisfy a radial constrained region of interest. The TRS arising from response surface modelling can be approximated using a nonlinear mathematical program that considers one primary objective function and two secondary constraint functions. An optimization algorithm named the triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the non-degenerate TRS. In TRSALG, the Lagrange multipliers of the secondary functions are determined using the Hooke-Jeeves search method and the Lagrange multiplier of the radial constraint is located using the trust region method within the global optimality space. The proposed algorithm is illustrated in terms of three examples appearing in the quality-control literature. The results of TRSALG compared to a gradient-based method are also presented.

  10. Modeling Effective Dosages in Hormetic Dose-Response Studies

    PubMed Central

    Belz, Regina G.; Piepho, Hans-Peter

    2012-01-01

    Background Two hormetic modifications of a monotonically decreasing log-logistic dose-response function are most often used to model stimulatory effects of low dosages of a toxicant in plant biology. As just one of these empirical models is yet properly parameterized to allow inference about quantities of interest, this study contributes the parameterized functions for the second hormetic model and compares the estimates of effective dosages between both models based on 23 hormetic data sets. Based on this, the impact on effective dosage estimations was evaluated, especially in case of a substantially inferior fit by one of the two models. Methodology/Principal Findings The data sets evaluated described the hormetic responses of four different test plant species exposed to 15 different chemical stressors in two different experimental dose-response test designs. Out of the 23 data sets, one could not be described by any of the two models, 14 could be better described by one of the two models, and eight could be equally described by both models. In cases of misspecification by any of the two models, the differences between effective dosages estimates (0–1768%) greatly exceeded the differences observed when both models provided a satisfactory fit (0–26%). This suggests that the conclusions drawn depending on the model used may diverge considerably when using an improper hormetic model especially regarding effective dosages quantifying hormesis. Conclusions/Significance The study showed that hormetic dose responses can take on many shapes and that this diversity can not be captured by a single model without risking considerable misinterpretation. However, the two empirical models considered in this paper together provide a powerful means to model, prove, and now also to quantify a wide range of hormetic responses by reparameterization. Despite this, they should not be applied uncritically, but after statistical and graphical assessment of their adequacy. PMID:22438929

  11. Inferring neural activity from BOLD signals through nonlinear optimization.

    PubMed

    Vakorin, Vasily A; Krakovska, Olga O; Borowsky, Ron; Sarty, Gordon E

    2007-11-01

    The blood oxygen level-dependent (BOLD) fMRI signal does not measure neuronal activity directly. This fact is a key concern for interpreting functional imaging data based on BOLD. Mathematical models describing the path from neural activity to the BOLD response allow us to numerically solve the inverse problem of estimating the timing and amplitude of the neuronal activity underlying the BOLD signal. In fact, these models can be viewed as an advanced substitute for the impulse response function. In this work, the issue of estimating the dynamics of neuronal activity from the observed BOLD signal is considered within the framework of optimization problems. The model is based on the extended "balloon" model and describes the conversion of neuronal signals into the BOLD response through the transitional dynamics of the blood flow-inducing signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin concentration. Global optimization techniques are applied to find a control input (the neuronal activity and/or the biophysical parameters in the model) that causes the system to follow an admissible solution to minimize discrepancy between model and experimental data. As an alternative to a local linearization (LL) filtering scheme, the optimization method escapes the linearization of the transition system and provides a possibility to search for the global optimum, avoiding spurious local minima. We have found that the dynamics of the neural signals and the physiological variables as well as the biophysical parameters can be robustly reconstructed from the BOLD responses. Furthermore, it is shown that spiking off/on dynamics of the neural activity is the natural mathematical solution of the model. Incorporating, in addition, the expansion of the neural input by smooth basis functions, representing a low-pass filtering, allows us to model local field potential (LFP) solutions instead of spiking solutions.

  12. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    PubMed

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  13. Why are you telling me that? A conceptual model of the social function of autobiographical memory.

    PubMed

    Alea, Nicole; Bluck, Susan

    2003-03-01

    In an effort to stimulate and guide empirical work within a functional framework, this paper provides a conceptual model of the social functions of autobiographical memory (AM) across the lifespan. The model delineates the processes and variables involved when AMs are shared to serve social functions. Components of the model include: lifespan contextual influences, the qualitative characteristics of memory (emotionality and level of detail recalled), the speaker's characteristics (age, gender, and personality), the familiarity and similarity of the listener to the speaker, the level of responsiveness during the memory-sharing process, and the nature of the social relationship in which the memory sharing occurs (valence and length of the relationship). These components are shown to influence the type of social function served and/or, the extent to which social functions are served. Directions for future empirical work to substantiate the model and hypotheses derived from the model are provided.

  14. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.

    2003-04-01

    Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.

  15. The Transfer Function Model as a Tool to Study and Describe Space Weather Phenomena

    NASA Technical Reports Server (NTRS)

    Porter, Hayden S.; Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Transfer Function Model (TFM) is a semi-analytical, linear model that is designed especially to describe thermospheric perturbations associated with magnetic storms and substorm. activity. It is a multi-constituent model (N2, O, He H, Ar) that accounts for wind induced diffusion, which significantly affects not only the composition and mass density but also the temperature and wind fields. Because the TFM adopts a semianalytic approach in which the geometry and temporal dependencies of the driving sources are removed through the use of height-integrated Green's functions, it provides physical insight into the essential properties of processes being considered, which are uncluttered by the accidental complexities that arise from particular source geometrie and time dependences. Extending from the ground to 700 km, the TFM eliminates spurious effects due to arbitrarily chosen boundary conditions. A database of transfer functions, computed only once, can be used to synthesize a wide range of spatial and temporal sources dependencies. The response synthesis can be performed quickly in real-time using only limited computing capabilities. These features make the TFM unique among global dynamical models. Given these desirable properties, a version of the TFM has been developed for personal computers (PC) using advanced platform-independent 3D visualization capabilities. We demonstrate the model capabilities with simulations for different auroral sources, including the response of ducted gravity waves modes that propagate around the globe. The thermospheric response is found to depend strongly on the spatial and temporal frequency spectra of the storm. Such varied behavior is difficult to describe in statistical empirical models. To improve the capability of space weather prediction, the TFM thus could be grafted naturally onto existing statistical models using data assimilation.

  16. Theoretical relationship between vibration transmissibility and driving-point response functions of the human body.

    PubMed

    Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W; Wu, John Z

    2013-11-25

    The relationship between the vibration transmissibility and driving-point response functions (DPRFs) of the human body is important for understanding vibration exposures of the system and for developing valid models. This study identified their theoretical relationship and demonstrated that the sum of the DPRFs can be expressed as a linear combination of the transmissibility functions of the individual mass elements distributed throughout the system. The relationship is verified using several human vibration models. This study also clarified the requirements for reliably quantifying transmissibility values used as references for calibrating the system models. As an example application, this study used the developed theory to perform a preliminary analysis of the method for calibrating models using both vibration transmissibility and DPRFs. The results of the analysis show that the combined method can theoretically result in a unique and valid solution of the model parameters, at least for linear systems. However, the validation of the method itself does not guarantee the validation of the calibrated model, because the validation of the calibration also depends on the model structure and the reliability and appropriate representation of the reference functions. The basic theory developed in this study is also applicable to the vibration analyses of other structures.

  17. Multi-gas interaction modeling on decorated semiconductor interfaces: A novel Fermi distribution-based response isotherm and the inverse hard/soft acid/base concept

    NASA Astrophysics Data System (ADS)

    Laminack, William; Gole, James

    2015-12-01

    A unique MEMS/NEMS approach is presented for the modeling of a detection platform for mixed gas interactions. Mixed gas analytes interact with nanostructured decorating metal oxide island sites supported on a microporous silicon substrate. The Inverse Hard/Soft acid/base (IHSAB) concept is used to assess a diversity of conductometric responses for mixed gas interactions as a function of these nanostructured metal oxides. The analyte conductometric responses are well represented using a combination diffusion/absorption-based model for multi-gas interactions where a newly developed response absorption isotherm, based on the Fermi distribution function is applied. A further coupling of this model with the IHSAB concept describes the considerations in modeling of multi-gas mixed analyte-interface, and analyte-analyte interactions. Taking into account the molecular electronic interaction of both the analytes with each other and an extrinsic semiconductor interface we demonstrate how the presence of one gas can enhance or diminish the reversible interaction of a second gas with the extrinsic semiconductor interface. These concepts demonstrate important considerations in the array-based formats for multi-gas sensing and its applications.

  18. Identification of measurement differences between English and Spanish language versions of the Mini-Mental State Examination. Detecting differential item functioning using MIMIC modeling.

    PubMed

    Jones, Richard N

    2006-11-01

    Knowledge of the extent to which measurement of adult cognitive functioning differs between Spanish and English language administrations of the Mini-Mental State Examination (MMSE) is critical for inclusive, representative, and valid research of older adults in the United States. We sought to demonstrate the use of an item response theory (IRT) based structural equation model, that is, the MIMIC model (multiple indicators, multiple causes), to evaluate MMSE responses for evidence of differential item functioning (DIF) attributable to language of administration. We studied participants in a dementia case registry study (n = 1546), 42% of whom were examined with the Spanish language MMSE. Twelve of 21 items were identified as having significant uniform DIF. The 4 most discrepant included orientation to season, orientation to state, repeat phrase, and follow command. DIF accounted for two-thirds of the observed difference in underlying level of cognitive functioning between Spanish- and English-language administration groups. Failing to account for measurement differences may lead to spurious inferences regarding language group differences in level of underlying level of cognitive functioning. The MIMIC model can be used to detect and adjust for such measurement differences in substantive research.

  19. Design and Operation of a Vibration-Acoustic-Thermal Apparatus for Identifying Variations in Free and Forced Response of Sandwich Panels Due to Combined Loading

    NASA Astrophysics Data System (ADS)

    Ellmer, Claudia; Adams, Douglas E.; White, Jonathan R.; Jata, Kumar

    2008-02-01

    Combined vibration, thermal, and acoustic environments cause significant changes in the free and forced response characteristics of spacecraft metallic, ceramic, and carbon thermal protection systems, exhaust wash structures in fixed wing aircraft, and ground vehicle components exposed to blast loading. When structural components become damaged, the effects of combined loads are even more apparent on the structural response. A new combined vibration-acoustic-thermal apparatus designed to simultaneously expose specimens up to 4' by 4' with 10 g vibration up to either 100 Hz or 1 inch displacement vibrations, 140 dB acoustic pressures, and >400 °F temperatures will first be described in this paper. Then observations from experiments conducted on a sandwich metallic panel exposed to thermal loads will be described. Modal impact and active sensor data will be utilized to extract frequency response function models that change as a function of the loading. These frequency response models indicate significant changes in the free response properties of the panel. For example, it will be shown that temperature changes cause the resonant frequencies of the panel to decrease resulting in higher response amplitudes. Likewise, acoustic pressure loads distributed across the panel will be shown to change as a function of temperature.

  20. Generalized fluid impulse functions for oscillating marine structures

    NASA Astrophysics Data System (ADS)

    Janardhanan, K.; Price, W. G.; Wu, Y.

    1992-03-01

    A selection of generalized impulse response functions is presented for a variety of rigid and flexible marine structures (i.e. mono-hull, SWATH, floating drydock and twin dock, fixed flexible pile). These functions are determined from calculated and experimental frequency-dependent hydrodynamic data, and the characteristics of these data depend on the type of structure considered. This information is reflected in the shape and duration of the generalized impulse response functions which are pre-requisites for a generalized integro-differential mathematical model describing the dynamic behaviour of the structures to seaway excitation.

  1. Single toxin dose-response models revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidenko, Eugene, E-mail: eugened@dartmouth.edu

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the fourmore » models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.« less

  2. Simulating Vibrations in a Complex Loaded Structure

    NASA Technical Reports Server (NTRS)

    Cao, Tim T.

    2005-01-01

    The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.

  3. Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity

    PubMed Central

    Yin, Xinyou

    2013-01-01

    Background Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2]. Analysis A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth. Conclusions The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity. PMID:23388883

  4. A metabolomics and mouse models approach to study inflammatory and immune responses to radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornace, Albert J.; Li, Henghong

    2013-12-02

    The three-year project entitled "A Metabolomics and Mouse Models Approach to Study Inflammatory and Immune Responses to Radiation" was initiated in September 2009. The overall objectives of this project were to investigate the acute and persistent effects of low dose radiation on T cell lymphocyte function and physiology, as well the contributions of these cells to radiation-induced inflammatory responses. Inflammation after ionizing radiation (IR), even at low doses, may impact a variety of disease processes, including infectious disease, cardiovascular disease, cancer, and other potentially inflammatory disorders. There were three overall specific aims: 1. To investigate acute and persistent effects ofmore » low dose radiation on T cell subsets and function; 2. A genetic approach with mouse models to investigate p38 MAPK pathways that are involved in radiation-induced inflammatory signaling; 3. To investigate the effect of radiation quality on the inflammatory response. We have completed the work proposed in these aims.« less

  5. The resilience and functional role of moss in boreal and arctic ecosystems.

    PubMed

    Turetsky, M R; Bond-Lamberty, B; Euskirchen, E; Talbot, J; Frolking, S; McGuire, A D; Tuittila, E-S

    2012-10-01

    Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries - permafrost formation and thaw, peat accumulation, development of microtopography - and there is a need for studies that increase our understanding of slow, long-term dynamical processes. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. The resilience and functional role of moss in boreal and arctic ecosystems

    USGS Publications Warehouse

    Turetsky, M.; Bond-Lamberty, B.; Euskirchen, E.S.; Talbot, J. J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S.

    2012-01-01

    Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries – permafrost formation and thaw, peat accumulation, development of microtopography – and there is a need for studies that increase our understanding of slow, long-term dynamical processes.

  7. Effect Size Measures for Differential Item Functioning in a Multidimensional IRT Model

    ERIC Educational Resources Information Center

    Suh, Youngsuk

    2016-01-01

    This study adapted an effect size measure used for studying differential item functioning (DIF) in unidimensional tests and extended the measure to multidimensional tests. Two effect size measures were considered in a multidimensional item response theory model: signed weighted P-difference and unsigned weighted P-difference. The performance of…

  8. Detection of Differential Item Functioning Using the Lasso Approach

    ERIC Educational Resources Information Center

    Magis, David; Tuerlinckx, Francis; De Boeck, Paul

    2015-01-01

    This article proposes a novel approach to detect differential item functioning (DIF) among dichotomously scored items. Unlike standard DIF methods that perform an item-by-item analysis, we propose the "LR lasso DIF method": logistic regression (LR) model is formulated for all item responses. The model contains item-specific intercepts,…

  9. Item Response Theory with Covariates (IRT-C): Assessing Item Recovery and Differential Item Functioning for the Three-Parameter Logistic Model

    ERIC Educational Resources Information Center

    Tay, Louis; Huang, Qiming; Vermunt, Jeroen K.

    2016-01-01

    In large-scale testing, the use of multigroup approaches is limited for assessing differential item functioning (DIF) across multiple variables as DIF is examined for each variable separately. In contrast, the item response theory with covariate (IRT-C) procedure can be used to examine DIF across multiple variables (covariates) simultaneously. To…

  10. Graft function assessment in mouse models of single- and dual- kidney transplantation.

    PubMed

    Wang, Lei; Wang, Ximing; Jiang, Shan; Wei, Jin; Buggs, Jacentha; Fu, Liying; Zhang, Jie; Liu, Ruisheng

    2018-05-23

    Animal models of kidney transplantation (KTX) are widely used in studying immune response of hosts to implanted grafts. Additionally, KTX can be used in generating kidney-specific knockout animal models by transplantation of kidneys from donors with global knockout of a gene to wild type recipients or vise verse. Dual kidney transplantation (DKT) provides a more physiological environment for recipients than single kidney transplantation (SKT). However, DKT in mice is rare due to technical challenges. In this study, we successfully performed DKT in mice and compared the hemodynamic response and graft function with SKT. The surgical time, complications and survival rate of DKT were not significantly different from SKT, where survival rates were above 85%. Mice with DKT showed less injury and quicker recovery with lower plasma creatinine (Pcr) and higher GFR than SKT mice (Pcr = 0.34 and 0.17 mg/dl in DKT vs. 0.50 and 0.36 mg/dl in SKT at 1 and 3 days, respectively; GFR = 215 and 131 µl/min for DKT and SKT, respectively). In addition, the DKT exhibited better renal functional reserve and long-term outcome of renal graft function than SKT based on the response to acute volume expansion. In conclusion, we have successfully generated a mouse DKT model. The hemodynamic responses of DKT better mimic physiological situations with less kidney injury and better recovery than SKT because of reduced confounding factors such as single nephron hyperfiltration. We anticipate DKT in mice will provide an additional tool for evaluation of renal significance in physiology and disease.

  11. A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward.

    PubMed

    Tan, Can Ozan; Bullock, Daniel

    2008-10-01

    Recently, dopamine (DA) neurons of the substantia nigra pars compacta (SNc) were found to exhibit sustained responses related to reward uncertainty, in addition to the phasic responses related to reward-prediction errors (RPEs). Thus, cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of DA signals. Here we simulate a local circuit model to show how learned uncertainty responses are generated, along with phasic RPE responses, on single trials. Both types of simulated DA responses exhibit the empirically observed dependencies on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model's three major pathways compute expected values of cues, timed predictions of reward magnitudes, and uncertainties associated with these predictions. The first two pathways' computations refine those modeled by Brown et al. (1999). The third, newly modeled, pathway involves medium spiny projection neurons (MSPNs) of the striatal matrix, whose axons corelease GABA and substance P, both at synapses with GABAergic neurons in the substantia nigra pars reticulata (SNr) and with distal dendrites (in SNr) of DA neurons whose somas are located in ventral SNc. Corelease enables efficient computation of uncertainty responses that are a nonmonotonic function of the conditional probability of reward, and variability in striatal cholinergic transmission can explain observed individual differences in the amplitudes of uncertainty responses. The involvement of matricial MSPNs and cholinergic transmission within the striatum implies a relation between uncertainty in cue-reward contingencies and action-selection functions of the basal ganglia.

  12. Antimicrobial Barrier of an in vitro Oral Epithelial Model

    PubMed Central

    Kimball, Janet R.; Nittayananta, Wipawee; Klausner, Mitchell; Chung, Whasun O.; Dale, Beverly A.

    2008-01-01

    Objective Oral epithelia function as a microbial barrier and are actively involved in recognizing and responding to bacteria. Our goal was to examine a tissue engineered model of buccal epithelium for its response to oral bacteria and proinflammatory cytokines and compare the tissue responses with those of a submerged monolayer cell culture. Design The tissue model was characterized for keratin and β-defensin expression. Altered expression of β-defensins was evaluated by RT-PCR after exposure of the apical surface to oral bacteria and after exposure to TNF-α in the medium. These were compared to the response in traditional submerged oral epithelial cell culture. Results The buccal model showed expression of differentiation specific keratin 13, hBD1 and hBD3 in the upper half of the tissue; hBD2 was not detected. hBD1 mRNA was constitutively expressed, while hBD2 mRNA increased 2-fold after exposure of the apical surface to three oral bacteria tested and hBD3 mRNA increased in response to the non-pathogenic bacteria tested. In contrast, hBD2 mRNA increased 3–600 fold in response to bacteria in submerged cell culture. HBD2 mRNA increased over 100 fold in response to TNF-α in the tissue model and 50 fold in submerged cell culture. Thus, the tissue model is capable of upregulating hBD2, however, the minimal response to bacteria suggests that the tissue has an effective antimicrobial barrier due to its morphology, differentiation, and defensin expression. Conclusions The oral mucosal model is differentiated, expresses hBD1 and hBD3, and has an intact surface with a functional antimicrobial barrier. PMID:16815238

  13. Applicability of common stomatal conductance models in maize under varying soil moisture conditions.

    PubMed

    Wang, Qiuling; He, Qijin; Zhou, Guangsheng

    2018-07-01

    In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Predator-dependent functional response in wolves: from food limitation to surplus killing.

    PubMed

    Zimmermann, Barbara; Sand, Håkan; Wabakken, Petter; Liberg, Olof; Andreassen, Harry Peter

    2015-01-01

    The functional response of a predator describes the change in per capita kill rate to changes in prey density. This response can be influenced by predator densities, giving a predator-dependent functional response. In social carnivores which defend a territory, kill rates also depend on the individual energetic requirements of group members and their contribution to the kill rate. This study aims to provide empirical data for the functional response of wolves Canis lupus to the highly managed moose Alces alces population in Scandinavia. We explored prey and predator dependence, and how the functional response relates to the energetic requirements of wolf packs. Winter kill rates of GPS-collared wolves and densities of cervids were estimated for a total of 22 study periods in 15 wolf territories. The adult wolves were identified as the individuals responsible for providing kills to the wolf pack, while pups could be described as inept hunters. The predator-dependent, asymptotic functional response models (i.e. Hassell-Varley type II and Crowley-Martin) performed best among a set of 23 competing linear, asymptotic and sigmoid models. Small wolf packs acquired >3 times as much moose biomass as required to sustain their field metabolic rate (FMR), even at relatively low moose abundances. Large packs (6-9 wolves) acquired less biomass than required in territories with low moose abundance. We suggest the surplus killing by small packs is a result of an optimal foraging strategy to consume only the most nutritious parts of easy accessible prey while avoiding the risk of being detected by humans. Food limitation may have a stabilizing effect on pack size in wolves, as supported by the observed negative relationship between body weight of pups and pack size. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  15. R package PRIMsrc: Bump Hunting by Patient Rule Induction Method for Survival, Regression and Classification

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    PRIMsrc is a novel implementation of a non-parametric bump hunting procedure, based on the Patient Rule Induction Method (PRIM), offering a unified treatment of outcome variables, including censored time-to-event (Survival), continuous (Regression) and discrete (Classification) responses. To fit the model, it uses a recursive peeling procedure with specific peeling criteria and stopping rules depending on the response. To validate the model, it provides an objective function based on prediction-error or other specific statistic, as well as two alternative cross-validation techniques, adapted to the task of decision-rule making and estimation in the three types of settings. PRIMsrc comes as an open source R package, including at this point: (i) a main function for fitting a Survival Bump Hunting model with various options allowing cross-validated model selection to control model size (#covariates) and model complexity (#peeling steps) and generation of cross-validated end-point estimates; (ii) parallel computing; (iii) various S3-generic and specific plotting functions for data visualization, diagnostic, prediction, summary and display of results. It is available on CRAN and GitHub. PMID:26798326

  16. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression.

    PubMed

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-05-01

    Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1-CXCR2 and CX3CL1-CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  17. Robustness of weighted networks

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Cassi, Davide

    2018-01-01

    Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.

  18. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression

    PubMed Central

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-01-01

    Aims Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Methods and results Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1–CXCR2 and CX3CL1–CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. Conclusion CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. PMID:25765938

  19. Daily Spouse Responsiveness Predicts Longer-Term Trajectories of Physical Function

    PubMed Central

    Wilson, Stephanie J.; Martire, Lynn M.; Sliwinski, Martin J.

    2017-01-01

    Everyday interpersonal experiences may underlie the well-established link between close relationships and physical health, but multitemporal designs necessary for strong conclusions about temporal sequence are rare. The current study of 145 knee osteoarthritis patients and their spouses focused on a novel pattern in everyday interactions, daily spouse responsiveness—the degree to which spouse responses are calibrated to changes in patients’ everyday verbal pain expression. Using couple-level slopes, multilevel latent-variable growth models tested associations between three types of daily spouse responsiveness (empathic, solicitous, and punishing), as measured during a 3-week experience-sampling study, and change in patient physical function across 18 months. As predicted, patients whose spouses were more empathically responsive to their pain expression showed better physical function over time compared to those whose spouses were less empathically responsive. This study points to daily responsiveness, a theoretically rooted operationalization of spouse sensitivity, as important for long-term changes in objective physical function. PMID:28459650

  20. Handling times and saturating transmission functions in a snail-worm symbiosis.

    PubMed

    Hopkins, Skylar R; McGregor, Cari M; Belden, Lisa K; Wojdak, Jeremy M

    2018-06-16

    All dynamic species interaction models contain an assumption that describes how contact rates scale with population density. Choosing an appropriate contact-density function is important, because different functions have different implications for population dynamics and stability. However, this choice can be challenging, because there are many possible functions, and most are phenomenological and thus difficult to relate to underlying ecological processes. Using one such phenomenological function, we described a nonlinear relationship between field transmission rates and host density in a common snail-oligochaete symbiosis. We then used a well-known contact function from predator-prey models, the Holling Type II functional response, to describe and predict host snail contact rates in the laboratory. The Holling Type II functional response accurately described both the nonlinear contact-density relationship and the average contact duration that we observed. Therefore, we suggest that contact rates saturate with host density in this system because each snail contact requires a non-instantaneous handling time, and additional possible contacts do not occur during that handling time. Handling times and nonlinear contact rates might also explain the nonlinear relationship between symbiont transmission and snail density that we observed in the field, which could be confirmed by future work that controls for other potential sources of seasonal variation in transmission rates. Because most animal contacts are not instantaneous, the Holling Type II functional response might be broadly relevant to diverse host-symbiont systems.

  1. A simple model for strong ground motions and response spectra

    USGS Publications Warehouse

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  2. Energy-density field approach for low- and medium-frequency vibroacoustic analysis of complex structures using a statistical computational model

    NASA Astrophysics Data System (ADS)

    Kassem, M.; Soize, C.; Gagliardini, L.

    2009-06-01

    In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.

  3. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnet, T.; Denis-Petit, D.; Gobet, F.

    2013-01-15

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Region Aquitaine) accelerator at the Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, amore » model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.« less

  4. Frequency-response identification of XV-15 tilt-rotor aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1987-01-01

    The timely design and development of the next generation of tilt-rotor aircraft (JVX) depend heavily on the in-depth understanding of existing XV-15 dynamics and the availability of fully validated simulation models. Previous studies have considered aircraft and simulation trim characteristics, but analyses of basic flight vehicle dynamics were limited to qualitative pilot evaluation. The present study has the following objectives: documentation and evaluation of XV-15 bare-airframe dynamics; comparison of aircraft and simulation responses; and development of a validated transfer-function description of the XV-15 needed for future studies. A nonparametric frequency-response approach is used which does not depend on assumed model order or structure. Transfer-function representations are subsequently derived which fit the frequency responses in the bandwidth of greatest concern for piloted handling-qualities and control-system applications.

  5. Variation of yield loci in finite element analysis by considering texture evolution for AA5042 aluminum sheets

    NASA Astrophysics Data System (ADS)

    Yoon, Jonghun; Kim, Kyungjin; Yoon, Jeong Whan

    2013-12-01

    Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material's response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.

  6. Linear response and correlation of a self-propelled particle in the presence of external fields

    NASA Astrophysics Data System (ADS)

    Caprini, Lorenzo; Marini Bettolo Marconi, Umberto; Vulpiani, Angelo

    2018-03-01

    We study the non-equilibrium properties of non interacting active Ornstein-Uhlenbeck particles (AOUP) subject to an external nonuniform field using a Fokker-Planck approach with a focus on the linear response and time-correlation functions. In particular, we compare different methods to compute these functions including the unified colored noise approximation (UCNA). The AOUP model, described by the position of the particle and the active force acting on it, is usually mapped into a Markovian process, describing the motion of a fictitious passive particle in terms of its position and velocity, where the effect of the activity is transferred into a position-dependent friction. We show that the form of the response function of the AOUP depends on whether we put the perturbation on the position and keep unperturbed the active force in the original variables or perturb the position and maintain unperturbed the velocity in the transformed variables. Indeed, as a result of the change of variables the perturbation on the position becomes a perturbation both on the position and on the fictitious velocity. We test these predictions by considering the response for three types of convex potentials: quadratic, quartic and double-well potential. Moreover, by comparing the response of the AOUP model with the corresponding response of the UCNA model we conclude that although the stationary properties are fairly well approximated by the UCNA, the non equilibrium properties are not, an effect which is not negligible when the persistence time is large.

  7. Grief responses, coping processes, and social support of widows: research with Roy's model.

    PubMed

    Robinson, J H

    1995-01-01

    This ex post facto descriptive correlational design study of widows during their second year of bereavement utilizes Roy's adaptation model as a guiding framework. Contextual stimuli (social support, social network, income/education, spiritual beliefs) were related to the cognator function (coping process), which was related to adaptation outcome (grief response). Significant moderate positive relationships were found between social support and coping process, and between social network and coping process. A significant relationship was also found between coping process and grief response. The path model accounted for 18% explained variance.

  8. An efficient formulation of Krylov's prediction model for train induced vibrations based on the dynamic reciprocity theorem.

    PubMed

    Degrande, G; Lombaert, G

    2001-09-01

    In Krylov's analytical prediction model, the free field vibration response during the passage of a train is written as the superposition of the effect of all sleeper forces, using Lamb's approximate solution for the Green's function of a halfspace. When this formulation is extended with the Green's functions of a layered soil, considerable computational effort is required if these Green's functions are needed in a wide range of source-receiver distances and frequencies. It is demonstrated in this paper how the free field response can alternatively be computed, using the dynamic reciprocity theorem, applied to moving loads. The formulation is based on the response of the soil due to the moving load distribution for a single axle load. The equations are written in the wave-number-frequency domain, accounting for the invariance of the geometry in the direction of the track. The approach allows for a very efficient calculation of the free field vibration response, distinguishing the quasistatic contribution from the effect of the sleeper passage frequency and its higher harmonics. The methodology is validated by means of in situ vibration measurements during the passage of a Thalys high-speed train on the track between Brussels and Paris. It is shown that the model has good predictive capabilities in the near field at low and high frequencies, but underestimates the response in the midfrequency band.

  9. Hybrid NN/SVM Computational System for Optimizing Designs

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2009-01-01

    A computational method and system based on a hybrid of an artificial neural network (NN) and a support vector machine (SVM) (see figure) has been conceived as a means of maximizing or minimizing an objective function, optionally subject to one or more constraints. Such maximization or minimization could be performed, for example, to optimize solve a data-regression or data-classification problem or to optimize a design associated with a response function. A response function can be considered as a subset of a response surface, which is a surface in a vector space of design and performance parameters. A typical example of a design problem that the method and system can be used to solve is that of an airfoil, for which a response function could be the spatial distribution of pressure over the airfoil. In this example, the response surface would describe the pressure distribution as a function of the operating conditions and the geometric parameters of the airfoil. The use of NNs to analyze physical objects in order to optimize their responses under specified physical conditions is well known. NN analysis is suitable for multidimensional interpolation of data that lack structure and enables the representation and optimization of a succession of numerical solutions of increasing complexity or increasing fidelity to the real world. NN analysis is especially useful in helping to satisfy multiple design objectives. Feedforward NNs can be used to make estimates based on nonlinear mathematical models. One difficulty associated with use of a feedforward NN arises from the need for nonlinear optimization to determine connection weights among input, intermediate, and output variables. It can be very expensive to train an NN in cases in which it is necessary to model large amounts of information. Less widely known (in comparison with NNs) are support vector machines (SVMs), which were originally applied in statistical learning theory. In terms that are necessarily oversimplified to fit the scope of this article, an SVM can be characterized as an algorithm that (1) effects a nonlinear mapping of input vectors into a higher-dimensional feature space and (2) involves a dual formulation of governing equations and constraints. One advantageous feature of the SVM approach is that an objective function (which one seeks to minimize to obtain coefficients that define an SVM mathematical model) is convex, so that unlike in the cases of many NN models, any local minimum of an SVM model is also a global minimum.

  10. Methods for scalar-on-function regression.

    PubMed

    Reiss, Philip T; Goldsmith, Jeff; Shang, Han Lin; Ogden, R Todd

    2017-08-01

    Recent years have seen an explosion of activity in the field of functional data analysis (FDA), in which curves, spectra, images, etc. are considered as basic functional data units. A central problem in FDA is how to fit regression models with scalar responses and functional data points as predictors. We review some of the main approaches to this problem, categorizing the basic model types as linear, nonlinear and nonparametric. We discuss publicly available software packages, and illustrate some of the procedures by application to a functional magnetic resonance imaging dataset.

  11. Increased sensitivity of thyroid hormone-mediated signaling despite prolonged fasting.

    PubMed

    Martinez, Bridget; Scheibner, Michael; Soñanez-Organis, José G; Jaques, John T; Crocker, Daniel E; Ortiz, Rudy M

    2017-10-01

    Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model

    NASA Astrophysics Data System (ADS)

    Kooi, Henk; Beaumont, Christopher

    1996-02-01

    Linear systems analysis is used to investigate the response of a surface processes model (SPM) to tectonic forcing. The SPM calculates subcontinental scale denudational landscape evolution on geological timescales (1 to hundreds of million years) as the result of simultaneous hillslope transport, modeled by diffusion, and fluvial transport, modeled by advection and reaction. The tectonically forced SPM accommodates the large-scale behavior envisaged in classical and contemporary conceptual geomorphic models and provides a framework for their integration and unification. The following three model scales are considered: micro-, meso-, and macroscale. The concepts of dynamic equilibrium and grade are quantified at the microscale for segments of uniform gradient subject to tectonic uplift. At the larger meso- and macroscales (which represent individual interfluves and landscapes including a number of drainage basins, respectively) the system response to tectonic forcing is linear for uplift geometries that are symmetric with respect to baselevel and which impose a fully integrated drainage to baselevel. For these linear models the response time and the transfer function as a function of scale characterize the model behavior. Numerical experiments show that the styles of landscape evolution depend critically on the timescales of the tectonic processes in relation to the response time of the landscape. When tectonic timescales are much longer than the landscape response time, the resulting dynamic equilibrium landscapes correspond to those envisaged by Hack (1960). When tectonic timescales are of the same order as the landscape response time and when tectonic variations take the form of pulses (much shorter than the response time), evolving landscapes conform to the Penck type (1972) and to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The behavior of the SPM highlights the importance of phase shifts or delays of the landform response and sediment yield in relation to the tectonic forcing. Finally, nonlinear behavior resulting from more general uplift geometries is discussed. A number of model experiments illustrate the importance of "fundamental form," which is an expression of the conformity of antecedent topography with the current tectonic regime. Lack of conformity leads to models that exhibit internal thresholds and a complex response.

  13. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    NASA Astrophysics Data System (ADS)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  14. Quantitative Nuclease Protection Assays (qNPA) as Windows into Chemical-Induced Adaptive Response in Cultures of Primary Human Hepatocytes (Concentration and Time-Response)

    EPA Science Inventory

    Cultures of primary human hepatocytes have been shown to be dynamic in vitro model systems that retain liver-like functionality (e.g. metabolism, transport, induction). We have utilized these culture models to interrogate 309 ToxCast chemicals. The study design characterized both...

  15. A Mixture Rasch Model with a Covariate: A Simulation Study via Bayesian Markov Chain Monte Carlo Estimation

    ERIC Educational Resources Information Center

    Dai, Yunyun

    2013-01-01

    Mixtures of item response theory (IRT) models have been proposed as a technique to explore response patterns in test data related to cognitive strategies, instructional sensitivity, and differential item functioning (DIF). Estimation proves challenging due to difficulties in identification and questions of effect size needed to recover underlying…

  16. Item Response Theory Models for Wording Effects in Mixed-Format Scales

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Chen, Hui-Fang; Jin, Kuan-Yu

    2015-01-01

    Many scales contain both positively and negatively worded items. Reverse recoding of negatively worded items might not be enough for them to function as positively worded items do. In this study, we commented on the drawbacks of existing approaches to wording effect in mixed-format scales and used bi-factor item response theory (IRT) models to…

  17. A Density Functional Approach to Polarizable Models: A Kim-Gordon-Response Density Interaction Potential for Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabacchi, G; Hutter, J; Mundy, C

    2005-04-07

    A combined linear response--frozen electron density model has been implemented in a molecular dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory, and a response contribution determined by the instaneous ionic configuration of the system. The method is free from empirical pair-potentials and the parameterization protocol involves only calculations on properly chosen subsystems. They apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparablemore » to Kohn-Sham density functional calculations.« less

  18. Theoretical modeling of electron mobility in superfluid {sup 4}He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitken, Frédéric; Bonifaci, Nelly; Haeften, Klaus von

    The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid {sup 4}He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavitymore » sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed “exotic ion” data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.« less

  19. Reducing attenuation in exposure-response relationships by exposure modeling and grouping: the relationship between wood dust exposure and lung function.

    PubMed

    Teschke, Kay; Spierings, Judith; Marion, Stephen A; Demers, Paul A; Davies, Hugh W; Kennedy, Susan M

    2004-12-01

    In a study of wood dust exposure and lung function, we tested the effect on the exposure-response relationship of six different exposure metrics using the mean measured exposure of each subject versus the mean exposure based on various methods of grouping subjects, including job-based groups and groups based on an empirical model of the determinants of exposure. Multiple linear regression was used to examine the association between wood dust concentration and forced expiratory volume in 1s (FEV(1)), adjusting for age, sex, height, race, pediatric asthma, and smoking. Stronger point estimates of the exposure-response relationships were observed when exposures were based on increasing levels of aggregation, allowing the relationships to be found statistically significant in four of the six metrics. The strongest point estimates were found when exposures were based on the determinants of exposure model. Determinants of exposure modeling offers the potential for improvement in risk estimation equivalent to or beyond that from job-based exposure grouping.

  20. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    PubMed

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non-independence, eucalypt responses to N were not associated with functional traits (although post-hoc analyses show a phylogenetic pattern in specific root length similar to that of responses to N), nor were responses differentially limited by P. Overall, our model results suggest that phylogeny is a powerful predictor of winners and losers in anthropogenic N enrichment scenarios in Tasmanian eucalypts, which may have implications for other species. © 2017 by the Ecological Society of America.

  1. Full Waveform Modeling of Transient Electromagnetic Response Based on Temporal Interpolation and Convolution Method

    NASA Astrophysics Data System (ADS)

    Qi, Youzheng; Huang, Ling; Wu, Xin; Zhu, Wanhua; Fang, Guangyou; Yu, Gang

    2017-07-01

    Quantitative modeling of the transient electromagnetic (TEM) response requires consideration of the full transmitter waveform, i.e., not only the specific current waveform in a half cycle but also the bipolar repetition. In this paper, we present a novel temporal interpolation and convolution (TIC) method to facilitate the accurate TEM modeling. We first calculate the temporal basis response on a logarithmic scale using the fast digital-filter-based methods. Then, we introduce a function named hamlogsinc in the framework of discrete signal processing theory to reconstruct the basis function and to make the convolution with the positive half of the waveform. Finally, a superposition procedure is used to take account of the effect of previous bipolar waveforms. Comparisons with the established fast Fourier transform method demonstrate that our TIC method can get the same accuracy with a shorter computing time.

  2. ACE Over Expression in Myelomonocytic Cells: Effect on a Mouse Model of Alzheimer's Disease

    PubMed Central

    Koronyo-Hamaoui, Maya; Shah, Kandarp; Koronyo, Yosef; Bernstein, Ellen; Giani, Jorge F.; Janjulia, Tea; Black, Keith L.; Shi, Peng D.; Gonzalez-Villalobos, Romer A.; Fuchs, Sebastien; Shen, Xiao Z.; Bernstein, Kenneth E.

    2014-01-01

    While it is well known that angiotensin converting enzyme (ACE) plays an important role in blood pressure control, ACE also has effects on renal function, hematopoiesis, reproduction, and aspects of the immune response. ACE 10/10 mice over express ACE in myelomonocytic cells. Macrophages from these mice have an increased polarization towards a pro-inflammatory phenotype that results in a very effective immune response to challenge by tumors or bacterial infection. In a mouse model of Alzheimer's disease (AD), the ACE 10/10 phenotype provides significant protection against AD pathology, including reduced inflammation, reduced burden of the neurotoxic amyloid-β protein and preserved cognitive function. Taken together, these studies show that increased myelomonocytic ACE expression in mice alters the immune response to better defend against many different types of pathologic insult, including the cognitive decline observed in an animal model of AD. PMID:24792094

  3. Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem

    USGS Publications Warehouse

    Dale, B.W.; Adams, Layne G.; Bowyer, R.T.

    1994-01-01

    1. We investigated the functional response of wolves (Canis lupus) to varying abundance of ungulate prey to test the hypothesis that switching from alternate prey to preferred prey results in regulation of a caribou (Rangifer tarandus) population at low densities. 2. We determined prey selection, kill rates, and prey abundance for four wolf packs during three 30-day periods in March 1989, March 1990, November 1990, and created a simple discrete model to evaluate the potential for the expected numerical and observed functional responses of wolves to regulate caribou populations. 3. We observed a quickly decelerating type II functional response that, in the absence of numerical response, implicates an anti-regulatory effect of wolf predation on barren-ground caribou dynamics. 4. There was little potential for regulation caused by the multiplicative effect of increasing functional and numerical responses because of presence of alternative prey. This resulted in high wolf:caribou ratios at low prey densities which precluded the effects of an increasing functional response. 5. Inversely density-dependent predation by other predators, such as bears, reduces the potential for predators to regulate caribou populations at low densities, and small reductions in predation by one predator may have disproportionately large effects on the total predation rate.

  4. Understanding Lymphatic Valve Function via Computational Modeling

    NASA Astrophysics Data System (ADS)

    Wolf, Ki; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander

    2017-11-01

    The lymphatic system is a crucial part to the circulatory system with many important functions, such as transport of interstitial fluid, fatty acid, and immune cells. Lymphatic vessels' contractile walls and valves allow lymph flow against adverse pressure gradients and prevent back flow. Yet, the effect of lymphatic valves' geometric and mechanical properties to pumping performance and lymphatic dysfunctions like lymphedema is not well understood. Our coupled fluid-solid computational model based on lattice Boltzmann model and lattice spring model investigates the dynamics and effectiveness of lymphatic valves in resistance minimization, backflow prevention, and viscoelastic response under different geometric and mechanical properties, suggesting the range of lymphatic valve parameters with effective pumping performance. Our model also provides more physiologically relevant relations of the valve response under varied conditions to a lumped parameter model of the lymphatic system giving an integrative insight into lymphatic system performance, including its failure due to diseases. NSF CMMI-1635133.

  5. Rank-preserving regression: a more robust rank regression model against outliers.

    PubMed

    Chen, Tian; Kowalski, Jeanne; Chen, Rui; Wu, Pan; Zhang, Hui; Feng, Changyong; Tu, Xin M

    2016-08-30

    Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Guidelines for Use of the Approximate Beta-Poisson Dose-Response Model.

    PubMed

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2017-07-01

    For dose-response analysis in quantitative microbial risk assessment (QMRA), the exact beta-Poisson model is a two-parameter mechanistic dose-response model with parameters α>0 and β>0, which involves the Kummer confluent hypergeometric function. Evaluation of a hypergeometric function is a computational challenge. Denoting PI(d) as the probability of infection at a given mean dose d, the widely used dose-response model PI(d)=1-(1+dβ)-α is an approximate formula for the exact beta-Poisson model. Notwithstanding the required conditions α<β and β>1, issues related to the validity and approximation accuracy of this approximate formula have remained largely ignored in practice, partly because these conditions are too general to provide clear guidance. Consequently, this study proposes a probability measure Pr(0 < r < 1 | α̂, β̂) as a validity measure (r is a random variable that follows a gamma distribution; α̂ and β̂ are the maximum likelihood estimates of α and β in the approximate model); and the constraint conditions β̂>(22α̂)0.50 for 0.02<α̂<2 as a rule of thumb to ensure an accurate approximation (e.g., Pr(0 < r < 1 | α̂, β̂) >0.99) . This validity measure and rule of thumb were validated by application to all the completed beta-Poisson models (related to 85 data sets) from the QMRA community portal (QMRA Wiki). The results showed that the higher the probability Pr(0 < r < 1 | α̂, β̂), the better the approximation. The results further showed that, among the total 85 models examined, 68 models were identified as valid approximate model applications, which all had a near perfect match to the corresponding exact beta-Poisson model dose-response curve. © 2016 Society for Risk Analysis.

  7. Pain and the defense response: structural equation modeling reveals a coordinated psychophysiological response to increasing painful stimulation.

    PubMed

    Donaldson, Gary W; Chapman, C Richard; Nakamura, Yoshi; Bradshaw, David H; Jacobson, Robert C; Chapman, Christopher N

    2003-03-01

    The defense response theory implies that individuals should respond to increasing levels of painful stimulation with correlated increases in affectively mediated psychophysiological responses. This paper employs structural equation modeling to infer the latent processes responsible for correlated growth in the pain report, evoked potential amplitudes, pupil dilation, and skin conductance of 92 normal volunteers who experienced 144 trials of three levels of increasingly painful electrical stimulation. The analysis assumed a two-level model of latent growth as a function of stimulus level. The first level of analysis formulated a nonlinear growth model for each response measure, and allowed intercorrelations among the parameters of these models across individuals. The second level of analysis posited latent process factors to account for these intercorrelations. The best-fitting parsimonious model suggests that two latent processes account for the correlations. One of these latent factors, the activation threshold, determines the initial threshold response, while the other, the response gradient, indicates the magnitude of the coherent increase in response with stimulus level. Collectively, these two second-order factors define the defense response, a broad construct comprising both subjective pain evaluation and physiological mechanisms.

  8. Analysis and control of the METC fluid-bed gasifier. Quarterly report, October 1994--January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farell, A.E.; Reddy, S.

    1995-03-01

    This document summarizes work performed for the period 10/1/94 to 2/1/95. The initial phase of the work focuses on developing a simple transfer function model of the Fluidized Bed Gasifier (FBG). This transfer function model will be developed based purely on the gasifier responses to step changes in gasifier inputs (including reactor air, convey air, cone nitrogen, FBG pressure, and coal feedrate). This transfer function model will represent a linear, dynamic model that is valid near the operating point at which the data was taken. In addition, a similar transfer function model will be developed using MGAS in order tomore » assess MGAS for use as a model of the FBG for control systems analysis.« less

  9. Interaction Models for Functional Regression.

    PubMed

    Usset, Joseph; Staicu, Ana-Maria; Maity, Arnab

    2016-02-01

    A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data.

  10. Modeling the double charge exchange response function for a tetraneutron system

    NASA Astrophysics Data System (ADS)

    Lazauskas, R.; Carbonell, J.; Hiyama, E.

    2017-07-01

    This work is an attempt to model the 4 n response function of a recent RIKEN experimental study of the double charge exchange  4 He( 8 He, 8 Be) 4n reaction in order to put in evidence an eventual enhancement mechanism of the zero-energy cross section, including a near-threshold resonance. This resonance can indeed be reproduced only by adding to the standard nuclear Hamiltonian an unphysically large T =3/2 attractive 3 n -force that destroys the neighboring nuclear chart. No other mechanisms, like cusps or related structures, were found.

  11. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    NASA Astrophysics Data System (ADS)

    Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  12. Variable selection with stepwise and best subset approaches

    PubMed Central

    2016-01-01

    While purposeful selection is performed partly by software and partly by hand, the stepwise and best subset approaches are automatically performed by software. Two R functions stepAIC() and bestglm() are well designed for stepwise and best subset regression, respectively. The stepAIC() function begins with a full or null model, and methods for stepwise regression can be specified in the direction argument with character values “forward”, “backward” and “both”. The bestglm() function begins with a data frame containing explanatory variables and response variables. The response variable should be in the last column. Varieties of goodness-of-fit criteria can be specified in the IC argument. The Bayesian information criterion (BIC) usually results in more parsimonious model than the Akaike information criterion. PMID:27162786

  13. Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation

    NASA Astrophysics Data System (ADS)

    Quetin, G. R.; Swann, A. L. S.

    2017-12-01

    Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models.

  14. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  15. Multicategorical Spline Model for Item Response Theory.

    ERIC Educational Resources Information Center

    Abrahamowicz, Michal; Ramsay, James O.

    1992-01-01

    A nonparametric multicategorical model for multiple-choice data is proposed as an extension of the binary spline model of J. O. Ramsay and M. Abrahamowicz (1989). Results of two Monte Carlo studies illustrate the model, which approximates probability functions by rational splines. (SLD)

  16. A Membrane Model from Implicit Elasticity Theory

    PubMed Central

    Freed, A. D.; Liao, J.; Einstein, D. R.

    2014-01-01

    A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079

  17. Comment on "Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcing" by S. Lovejoy and C. Varotsos (2016)

    NASA Astrophysics Data System (ADS)

    Rypdal, Kristoffer; Rypdal, Martin

    2016-07-01

    Lovejoy and Varotsos (2016) (L&V) analyse the temperature response to solar, volcanic, and solar plus volcanic forcing in the Zebiak-Cane (ZC) model, and to solar and solar plus volcanic forcing in the Goddard Institute for Space Studies (GISS) E2-R model. By using a simple wavelet filtering technique they conclude that the responses in the ZC model combine subadditively on timescales from 50 to 1000 years. Nonlinear response on shorter timescales is claimed by analysis of intermittencies in the forcing and the temperature signal for both models. The analysis of additivity in the ZC model suffers from a confusing presentation of results based on an invalid approximation, and from ignoring the effect of internal variability. We present tests without this approximation which are not able to detect nonlinearity in the response, even without accounting for internal variability. We also demonstrate that internal variability will appear as subadditivity if it is not accounted for. L&V's analysis of intermittencies is based on a mathematical result stating that the intermittencies of forcing and response are the same if the response is linear. We argue that there are at least three different factors that may invalidate the application of this result for these data. It is valid only for a power-law response function; it assumes power-law scaling of structure functions of forcing as well as temperature signal; and the internal variability, which is strong at least on the short timescales, will exert an influence on temperature intermittence which is independent of the forcing. We demonstrate by a synthetic example that the differences in intermittencies observed by L&V easily can be accounted for by these effects under the assumption of a linear response. Our conclusion is that the analysis performed by L&V does not present valid evidence for a detectable nonlinear response in the global temperature in these climate models.

  18. The Information Function for the One-Parameter Logistic Model: Is it Reliability?

    ERIC Educational Resources Information Center

    Doran, Harold C.

    2005-01-01

    The information function is an important statistic in item response theory (IRT) applications. Although the information function is often described as the IRT version of reliability, it differs from the classical notion of reliability from a critical perspective: replication. This article first explores the information function for the…

  19. Recoil polarization measurements for neutral pion electroproduction at Q2=1(GeV/c)2 near the Δ resonance

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.; Gayou, O.; Roché, R. E.; Chai, Z.; Jones, M. K.; Sarty, A. J.; Frullani, S.; Aniol, K.; Beise, E. J.; Benmokhtar, F.; Bertozzi, W.; Boeglin, W. U.; Botto, T.; Brash, E. J.; Breuer, H.; Brown, E.; Burtin, E.; Calarco, J. R.; Cavata, C.; Chang, C. C.; Chant, N. S.; Chen, J.-P.; Coman, M.; Crovelli, D.; Leo, R. De; Dieterich, S.; Escoffier, S.; Fissum, K. G.; Garde, V.; Garibaldi, F.; Georgakopoulos, S.; Gilad, S.; Gilman, R.; Glashausser, C.; Hansen, J.-O.; Higinbotham, D. W.; Hotta, A.; Huber, G. M.; Ibrahim, H.; Iodice, M.; Jager, C. W. De; Jiang, X.; Klimenko, A.; Kozlov, A.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissière, G.; Lerose, J. J.; Lindgren, R. A.; Liyange, N.; Lolos, G. J.; Lourie, R. W.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; McAleer, S.; Meekins, D.; Michaels, R.; Milbrath, B. D.; Mitchell, J.; Nappa, J.; Neyret, D.; Perdrisat, C. F.; Potokar, M.; Punjabi, V. A.; Pussieux, T.; Ransome, R. D.; Roos, P. G.; Rvachev, M.; Saha, A.; Širca, S.; Suleiman, R.; Strauch, S.; Templon, J. A.; Todor, L.; Ulmer, P. E.; Urciuoli, G. M.; Weinstein, L. B.; Wijsooriya, K.; Wojtsekhowski, B.; Zheng, X.; Zhu, L.

    2007-02-01

    We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q2=1.0(GeV/c)2 in 10 bins of 1.17⩽W⩽1.35 GeV across the Δ resonance. A total of 16 independent response functions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near the physical mass, W=MΔ≈1.232 GeV, but the variation among models is large for response functions governed by imaginary parts, and for both types of response functions, the variation increases rapidly with W>MΔ. We performed a multipole analysis that adjusts suitable subsets of ℓπ⩽2 amplitudes with higher partial waves constrained by baseline models. This analysis provides both real and imaginary parts. The fitted multipole amplitudes are nearly model independent—there is very little sensitivity to the choice of baseline model or truncation scheme. By contrast, truncation errors in the traditional Legendre analysis of N→Δ quadrupole ratios are not negligible. Parabolic fits to the W dependence around MΔ for the multiple analysis gives values for Re(S1+/M1+)=(-6.61±0.18)% and Re(E1+/M1+)=(-2.87±0.19)% for the pπ0 channel at W=1.232 GeV and Q2=1.0(GeV/c)2 that are distinctly larger than those from the Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S0+/M1+)=(+7.1±0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe.

  20. Parent Ratings of ADHD Symptoms: Generalized Partial Credit Model Analysis of Differential Item Functioning across Gender

    ERIC Educational Resources Information Center

    Gomez, Rapson

    2012-01-01

    Objective: Generalized partial credit model, which is based on item response theory (IRT), was used to test differential item functioning (DIF) for the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.), inattention (IA), and hyperactivity/impulsivity (HI) symptoms across boys and girls. Method: To accomplish this, parents completed…

  1. The Feasibility of Quality Function Deployment (QFD) as an Assessment and Quality Assurance Model

    ERIC Educational Resources Information Center

    Matorera, D.; Fraser, W. J.

    2016-01-01

    Business schools are globally often seen as structured, purpose-driven, multi-sector and multi-perspective organisations. This article is based on the response of a graduate school to an innovative industrial Quality Function Deployment-based model (QFD), which was to be adopted initially in a Master's degree programme for quality assurance…

  2. Estimating of aquifer parameters from the single-well water-level measurements in response to advancing longwall mine by using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Buyuk, Ersin; Karaman, Abdullah

    2017-04-01

    We estimated transmissivity and storage coefficient values from the single well water-level measurements positioned ahead of the mining face by using particle swarm optimization (PSO) technique. The water-level response to the advancing mining face contains an semi-analytical function that is not suitable for conventional inversion shemes because the partial derivative is difficult to calculate . Morever, the logaritmic behaviour of the model create difficulty for obtaining an initial model that may lead to a stable convergence. The PSO appears to obtain a reliable solution that produce a reasonable fit between water-level data and model function response. Optimization methods have been used to find optimum conditions consisting either minimum or maximum of a given objective function with regard to some criteria. Unlike PSO, traditional non-linear optimization methods have been used for many hydrogeologic and geophysical engineering problems. These methods indicate some difficulties such as dependencies to initial model, evolution of the partial derivatives that is required while linearizing the model and trapping at local optimum. Recently, Particle swarm optimization (PSO) became the focus of modern global optimization method that is inspired from the social behaviour of birds of swarms, and appears to be a reliable and powerful algorithms for complex engineering applications. PSO that is not dependent on an initial model, and non-derivative stochastic process appears to be capable of searching all possible solutions in the model space either around local or global optimum points.

  3. A computer tool for a minimax criterion in binary response and heteroscedastic simple linear regression models.

    PubMed

    Casero-Alonso, V; López-Fidalgo, J; Torsney, B

    2017-01-01

    Binary response models are used in many real applications. For these models the Fisher information matrix (FIM) is proportional to the FIM of a weighted simple linear regression model. The same is also true when the weight function has a finite integral. Thus, optimal designs for one binary model are also optimal for the corresponding weighted linear regression model. The main objective of this paper is to provide a tool for the construction of MV-optimal designs, minimizing the maximum of the variances of the estimates, for a general design space. MV-optimality is a potentially difficult criterion because of its nondifferentiability at equal variance designs. A methodology for obtaining MV-optimal designs where the design space is a compact interval [a, b] will be given for several standard weight functions. The methodology will allow us to build a user-friendly computer tool based on Mathematica to compute MV-optimal designs. Some illustrative examples will show a representation of MV-optimal designs in the Euclidean plane, taking a and b as the axes. The applet will be explained using two relevant models. In the first one the case of a weighted linear regression model is considered, where the weight function is directly chosen from a typical family. In the second example a binary response model is assumed, where the probability of the outcome is given by a typical probability distribution. Practitioners can use the provided applet to identify the solution and to know the exact support points and design weights. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics.

    PubMed

    Santhanam, Navaneetha; Kumanchik, Lee; Guo, Xiufang; Sommerhage, Frank; Cai, Yunqing; Jackson, Max; Martin, Candace; Saad, George; McAleer, Christopher W; Wang, Ying; Lavado, Andrea; Long, Christopher J; Hickman, James J

    2018-06-01

    There are currently no functional neuromuscular junction (hNMJ) systems composed of human cells that could be used for drug evaluations or toxicity testing in vitro. These systems are needed to evaluate NMJs for diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy or other neurodegenerative diseases or injury states. There are certainly no model systems, animal or human, that allows for isolated treatment of motoneurons or muscle capable of generating dose response curves to evaluate pharmacological activity of these highly specialized functional units. A system was developed in which human myotubes and motoneurons derived from stem cells were cultured in a serum-free medium in a BioMEMS construct. The system is composed of two chambers linked by microtunnels to enable axonal outgrowth to the muscle chamber that allows separate stimulation of each component and physiological NMJ function and MN stimulated tetanus. The muscle's contractions, induced by motoneuron activation or direct electrical stimulation, were monitored by image subtraction video recording for both frequency and amplitude. Bungarotoxin, BOTOX ® and curare dose response curves were generated to demonstrate pharmacological relevance of the phenotypic screening device. This quantifiable functional hNMJ system establishes a platform for generating patient-specific NMJ models by including patient-derived iPSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A Moisture Function of Soil Heterotrophic Respiration Derived from Pore-scale Mechanisms

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Todd-Brown, K. E.; Bond-Lamberty, B. P.; Bailey, V.; Liu, C.

    2017-12-01

    Soil heterotrophic respiration (HR) is an important process controlling carbon (C) flux, but its response to changes in soil water content (θ) is poorly understood. Earth system models (ESMs) use empirical moisture functions developed from specific sites to describe the HR-θ relationship in soils, introducing significant uncertainty. Generalized models derived from mechanisms that control substrate availability and microbial respiration are thus urgently needed. Here we derive, present, and test a novel moisture function fp developed from pore-scale mechanisms. This fp encapsulates primary physicochemical and biological processes controlling HR response to moisture variation in soils. We tested fp against a wide range of published data for different soil types, and found that fp reliably predicted diverse HR- relationships. The mathematical relationship between the parameters in fp and macroscopic soil properties such as porosity and organic C content was also established, enabling to estimate fp using soil properties. Compared with empirical moisture functions used in ESMs, this derived fp could reduce uncertainty in predicting the response of soil organic C stock to climate changes. In addition, this work is one of the first studies to upscale a mechanistic soil HR model based on pore-scale processes, thus linking the pore-scale mechanisms with macroscale observations.

  6. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future.

    PubMed

    Rauch, Scott L; Shin, Lisa M; Phelps, Elizabeth A

    2006-08-15

    The prevailing neurocircuitry models of anxiety disorders have been amygdalocentric in form. The bases for such models have progressed from theoretical considerations, extrapolated from research in animals, to in vivo human imaging data. For example, one current model of posttraumatic stress disorder (PTSD) has been highly influenced by knowledge from rodent fear conditioning research. Given the phenomenological parallels between fear conditioning and the pathogenesis of PTSD, we have proposed that PTSD is characterized by exaggerated amygdala responses (subserving exaggerated acquisition of fear associations and expression of fear responses) and deficient frontal cortical function (mediating deficits in extinction and the capacity to suppress attention/response to trauma-related stimuli), as well as deficient hippocampal function (mediating deficits in appreciation of safe contexts and explicit learning/memory). Neuroimaging studies have yielded convergent findings in support of this model. However, to date, neuroimaging investigations of PTSD have not principally employed conditioning and extinction paradigms per se. The recent development of such imaging probes now sets the stage for directly testing hypotheses regarding the neural substrates of fear conditioning and extinction abnormalities in PTSD.

  7. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models

    NASA Astrophysics Data System (ADS)

    Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.

    2017-03-01

    We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.

  8. Probabilistic SSME blades structural response under random pulse loading

    NASA Technical Reports Server (NTRS)

    Shiao, Michael; Rubinstein, Robert; Nagpal, Vinod K.

    1987-01-01

    The purpose is to develop models of random impacts on a Space Shuttle Main Engine (SSME) turbopump blade and to predict the probabilistic structural response of the blade to these impacts. The random loading is caused by the impact of debris. The probabilistic structural response is characterized by distribution functions for stress and displacements as functions of the loading parameters which determine the random pulse model. These parameters include pulse arrival, amplitude, and location. The analysis can be extended to predict level crossing rates. This requires knowledge of the joint distribution of the response and its derivative. The model of random impacts chosen allows the pulse arrivals, pulse amplitudes, and pulse locations to be random. Specifically, the pulse arrivals are assumed to be governed by a Poisson process, which is characterized by a mean arrival rate. The pulse intensity is modelled as a normally distributed random variable with a zero mean chosen independently at each arrival. The standard deviation of the distribution is a measure of pulse intensity. Several different models were used for the pulse locations. For example, three points near the blade tip were chosen at which pulses were allowed to arrive with equal probability. Again, the locations were chosen independently at each arrival. The structural response was analyzed both by direct Monte Carlo simulation and by a semi-analytical method.

  9. Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function

    PubMed Central

    Scaplen, Kristin M.; Kaun, Karla R.

    2016-01-01

    Abstract In a complex environment, animals learn from their responses to stimuli and events. Appropriate response to reward and punishment can promote survival, reproduction and increase evolutionary fitness. Interestingly, the neural processes underlying these responses are remarkably similar across phyla. In all species, dopamine is central to encoding reward and directing motivated behaviors, however, a comprehensive understanding of how circuits encode reward and direct motivated behaviors is still lacking. In part, this is a result of the sheer diversity of neurons, the heterogeneity of their responses and the complexity of neural circuits within which they are found. We argue that general features of reward circuitry are common across model organisms, and thus principles learned from invertebrate model organisms can inform research across species. In particular, we discuss circuit motifs that appear to be functionally equivalent from flies to primates. We argue that a comparative approach to studying and understanding reward circuit function provides a more comprehensive understanding of reward circuitry, and informs disorders that affect the brain’s reward circuitry. PMID:27328845

  10. Calculation of the static in-flight telescope-detector response by deconvolution applied to point-spread function for the geostationary earth radiation budget experiment.

    PubMed

    Matthews, Grant

    2004-12-01

    The Geostationary Earth Radiation Budget (GERB) experiment is a broadband satellite radiometer instrument program intended to resolve remaining uncertainties surrounding the effect of cloud radiative feedback on future climate change. By use of a custom-designed diffraction-aberration telescope model, the GERB detector spatial response is recovered by deconvolution applied to the ground calibration point-spread function (PSF) measurements. An ensemble of randomly generated white-noise test scenes, combined with the measured telescope transfer function results in the effect of noise on the deconvolution being significantly reduced. With the recovered detector response as a base, the same model is applied in construction of the predicted in-flight field-of-view response of each GERB pixel to both short- and long-wave Earth radiance. The results of this study can now be used to simulate and investigate the instantaneous sampling errors incurred by GERB. Also, the developed deconvolution method may be highly applicable in enhancing images or PSF data for any telescope system for which a wave-front error measurement is available.

  11. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    NASA Technical Reports Server (NTRS)

    Kanekal, S. G.; Li, X.; Baker, D. N.; Selesnick, R. S.; Hoxie, V. C.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 megaelectronvolts, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  12. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  13. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact.

    PubMed

    Pareja, Jennifer C Munoz; Keeley, Kristen; Duhaime, Ann-Christine; Dodge, Carter P

    2016-01-01

    The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.

  14. Threshold and Beyond: Modeling The Intensity Dependence of Auditory Responses

    PubMed Central

    2007-01-01

    In many studies of auditory-evoked responses to low-intensity sounds, the response amplitude appears to increase roughly linearly with the sound level in decibels (dB), corresponding to a logarithmic intensity dependence. But the auditory system is assumed to be linear in the low-intensity limit. The goal of this study was to resolve the seeming contradiction. Based on assumptions about the rate-intensity functions of single auditory-nerve fibers and the pattern of cochlear excitation caused by a tone, a model for the gross response of the population of auditory nerve fibers was developed. In accordance with signal detection theory, the model denies the existence of a threshold. This implies that regarding the detection of a significant stimulus-related effect, a reduction in sound intensity can always be compensated for by increasing the measurement time, at least in theory. The model suggests that the gross response is proportional to intensity when the latter is low (range I), and a linear function of sound level at higher intensities (range III). For intensities in between, it is concluded that noisy experimental data may provide seemingly irrefutable evidence of a linear dependence on sound pressure (range II). In view of the small response amplitudes that are to be expected for intensity range I, direct observation of the predicted proportionality with intensity will generally be a challenging task for an experimenter. Although the model was developed for the auditory nerve, the basic conclusions are probably valid for higher levels of the auditory system, too, and might help to improve models for loudness at threshold. PMID:18008105

  15. Predicting the Responses of Soil Nitrite-Oxidizers to Multi-Factorial Global Change: A Trait-Based Approach

    DOE PAGES

    Le Roux, Xavier; Bouskill, Nicholas J.; Niboyet, Audrey; ...

    2016-05-17

    Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO 2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundancemore » and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO 2 +Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.« less

  16. Predicting the Responses of Soil Nitrite-Oxidizers to Multi-Factorial Global Change: A Trait-Based Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Roux, Xavier; Bouskill, Nicholas J.; Niboyet, Audrey

    Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO 2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundancemore » and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO 2 +Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.« less

  17. Linearized blade row compression component model. Stability and frequency response analysis of a J85-3 compressor

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Moszee, R. H.; Steenken, W. G.

    1976-01-01

    NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.

  18. Aerodynamic mathematical modeling - basic concepts

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Schiff, L. B.

    1981-01-01

    The mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers is reviewed. Bryan's original formulation, linear aerodynamic indicial functions, and superposition are considered. These concepts are extended into the nonlinear regime. The nonlinear generalization yields a form for the aerodynamic response that can be built up from the responses to a limited number of well defined characteristic motions, reproducible in principle either in wind tunnel experiments or flow field computations. A further generalization leads to a form accommodating the discontinuous and double valued behavior characteristics of hysteresis in the steady state aerodynamic response.

  19. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron

    2013-01-01

    Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.

  20. Stem mortality in surface fires: Part II, experimental methods for characterizing the thermal response of tree stems to heating by fires

    Treesearch

    D. M. Jimenez; B. W. Butler; J. Reardon

    2003-01-01

    Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...

  1. Software life cycle dynamic simulation model: The organizational performance submodel

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  2. Prediction of lung function response for populations exposed to a wide range of ozone conditions

    EPA Science Inventory

    Abstract Context: A human exposure-response (E-R) model that has previously been demonstrated to accurately predict population mean FEV1 response to ozone exposure has been proposed as the foundation for future risk assessments for ambient ozone. Objective: Fit the origi...

  3. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder.

    PubMed

    Poirier, Guillaume L; Huang, Wei; Tam, Kelly; DiFranza, Joseph R; King, Jean A

    2017-09-01

    Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. A new method to approximate load-displacement relationships of spinal motion segments for patient-specific multi-body models of scoliotic spine.

    PubMed

    Jalalian, Athena; Tay, Francis E H; Arastehfar, Soheil; Liu, Gabriel

    2017-06-01

    Load-displacement relationships of spinal motion segments are crucial factors in characterizing the stiffness of scoliotic spine models to mimic the spine responses to loads. Although nonlinear approach to approximation of the relationships can be superior to linear ones, little mention has been made to deriving personalized nonlinear load-displacement relationships in previous studies. A method is developed for nonlinear approximation of load-displacement relationships of spinal motion segments to assist characterizing in vivo the stiffness of spine models. We propose approximation by tangent functions and focus on rotational displacements in lateral direction. The tangent functions are characterized using lateral bending test. A multi-body model was characterized to 18 patients and utilized to simulate four spine positions; right bending, left bending, neutral, and traction. The same was done using linear functions to assess the performance of the proposed tangent function in comparison with the linear function. Root-mean-square error (RMSE) of the displacements estimated by the tangent functions was 44 % smaller than the linear functions. This shows the ability of our tangent function in approximation of the relationships for a range of infinitesimal to large displacements involved in the spine movement to the four positions. In addition, the models based on the tangent functions yielded 67, 55, and 39 % smaller RMSEs of Ferguson angles, locations of vertebrae, and orientations of vertebrae, respectively, implying better estimates of spine responses to loads. Overall, it can be concluded that our method for approximating load-displacement relationships of spinal motion segments can offer good estimates of scoliotic spine stiffness.

  5. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice

    PubMed Central

    Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena

    2017-01-01

    Abstract CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60–80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. PMID:28369421

  6. ON NONSTATIONARY STOCHASTIC MODELS FOR EARTHQUAKES.

    USGS Publications Warehouse

    Safak, Erdal; Boore, David M.

    1986-01-01

    A seismological stochastic model for earthquake ground-motion description is presented. Seismological models are based on the physical properties of the source and the medium and have significant advantages over the widely used empirical models. The model discussed here provides a convenient form for estimating structural response by using random vibration theory. A commonly used random process for ground acceleration, filtered white-noise multiplied by an envelope function, introduces some errors in response calculations for structures whose periods are longer than the faulting duration. An alternate random process, filtered shot-noise process, eliminates these errors.

  7. Cross-orientation suppression in human visual cortex

    PubMed Central

    Heeger, David J.

    2011-01-01

    Cross-orientation suppression was measured in human primary visual cortex (V1) to test the normalization model. Subjects viewed vertical target gratings (of varying contrasts) with or without a superimposed horizontal mask grating (fixed contrast). We used functional magnetic resonance imaging (fMRI) to measure the activity in each of several hypothetical channels (corresponding to subpopulations of neurons) with different orientation tunings and fit these orientation-selective responses with the normalization model. For the V1 channel maximally tuned to the target orientation, responses increased with target contrast but were suppressed when the horizontal mask was added, evident as a shift in the contrast gain of this channel's responses. For the channel maximally tuned to the mask orientation, a constant baseline response was evoked for all target contrasts when the mask was absent; responses decreased with increasing target contrast when the mask was present. The normalization model provided a good fit to the contrast-response functions with and without the mask. In a control experiment, the target and mask presentations were temporally interleaved, and we found no shift in contrast gain, i.e., no evidence for suppression. We conclude that the normalization model can explain cross-orientation suppression in human visual cortex. The approach adopted here can be applied broadly to infer, simultaneously, the responses of several subpopulations of neurons in the human brain that span particular stimulus or feature spaces, and characterize their interactions. In addition, it allows us to investigate how stimuli are represented by the inferred activity of entire neural populations. PMID:21775720

  8. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.

    PubMed

    Kwon, H W; Choi, M Y

    2014-01-07

    Stomata respond in a common pattern to various hydraulic perturbations on any part of the 'soil-plant-air' system: initial transient 'wrong-way' responses and final stationary 'right-way' responses. In order to describe this pattern on the basis of statistical physics, we propose a simple model where turgor pressure of a cell is taken to be a power function of its volume, and obtain results in qualitative agreement with experimental data for responses to a variety of hydraulic perturbations: Firstly, stationary stomatal conductance as a function of the vapor pressure deficit divides into three regimes characterized by sensitivities of the stomatal conductance and the transpiration rate with respect to vapor pressure deficit; secondly, for every hydraulic perturbation, the initial transient 'wrong-way' responses always appear; thirdly, on condition that water is supplied insufficiently, stomatal oscillations are often observed; finally, stomatal responses following leaf excision exhibit, after the initial transient wrong-way responses, slow relaxation to stomatal closing. In particular, comparison of areoles having different numbers of stomata demonstrates that areoles with small numbers of stomata tend to provoke lack of water in the soil as well as in the plant. In addition, our model also describes well dependence of the stomatal conductance on temperature. It may be extended further to describe stomatal responses to other environmental factors such as carbon dioxide, light, and temperature. © 2013 Elsevier Ltd. All rights reserved.

  9. Moisture diffusion through a corrugated fiberboard under compressive loading : its deformation and stiffness response

    Treesearch

    Adeeb A. Rahman; Thomas J. Urbanik; Mustafa Mahamid

    2002-01-01

    This research develops a model using finite element to study the response of a panel made of a typical commercial corrugated fireboard due to an induced moisture function at one side of the fiberboard. The model predicts how the moisture diffusion will permeate through the fiberboard's layers (medium and liners) providing information on moisture content at any...

  10. Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event

    NASA Astrophysics Data System (ADS)

    Huo, Liang'an; Jiang, Jiehui; Gong, Sixing; He, Bing

    2016-05-01

    Rumor transmission has become an important issue in emergency event. In this paper, a rumor transmission model with Holling-type II functional response was proposed, which provides excellent explanations of the scientific knowledge effect with rumor spreading. By a global analysis of the model and studying the stability of the rumor-free equilibrium and the rumor-endemic equilibrium, we found that the number of infective individuals equal to zero or positive integer as time went on. A numerical simulation is carried out to illustrate the feasibility of our main results. The results will provide the theoretical support to rumor control in emergency event and also provide decision makers references for the public opinions management.

  11. The esophagiome: integrated anatomical, mechanical, and physiological analysis of the esophago-gastric segment.

    PubMed

    Zhao, Jingbo; McMahon, Barry; Fox, Mark; Gregersen, Hans

    2018-06-10

    Esophageal diseases are highly prevalent and carry significant socioeconomic burden. Despite the apparently simple function of the esophagus, we still struggle to better understand its physiology and pathophysiology. The assessment of large data sets and application of multiscale mathematical organ models have gained attention as part of the Physiome Project. This has long been recognized in cardiology but has only recently gained attention for the gastrointestinal(GI) tract. The term "esophagiome" implies a holistic assessment of esophageal function, from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. These anatomical, mechanical, and physiological models underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease. Functional models incorporate anatomical details with sensory-motor responses, especially related to biomechanical functions such as bolus transport. Our review builds on previous reviews and focuses on assessment of detailed anatomical and geometric data using advanced imaging technology for evaluation of gastro-esophageal reflux disease (GERD), and on esophageal mechanophysiology assessed using technologies that distend the esophagus. Integration of mechanics- and physiology-based analysis is a useful characteristic of the esophagiome. Experimental data on pressures and geometric characteristics are useful for the validation of mathematical and computer models of the esophagus that may provide predictions of novel endoscopic, surgical, and pharmaceutical treatment options. © 2018 New York Academy of Sciences.

  12. Predicting vertically-nonsequential wetting patterns with a source-responsive model

    USGS Publications Warehouse

    Nimmo, John R.; Mitchell, Lara

    2013-01-01

    Water infiltrating into soil of natural structure often causes wetting patterns that do not develop in an orderly sequence. Because traditional unsaturated flow models represent a water advance that proceeds sequentially, they fail to predict irregular development of water distribution. In the source-responsive model, a diffuse domain (D) represents flow within soil matrix material following traditional formulations, and a source-responsive domain (S), characterized in terms of the capacity for preferential flow and its degree of activation, represents preferential flow as it responds to changing water-source conditions. In this paper we assume water undergoing rapid source-responsive transport at any particular time is of negligibly small volume; it becomes sensible at the time and depth where domain transfer occurs. A first-order transfer term represents abstraction from the S to the D domain which renders the water sensible. In tests with lab and field data, for some cases the model shows good quantitative agreement, and in all cases it captures the characteristic patterns of wetting that proceed nonsequentially in the vertical direction. In these tests we determined the values of the essential characterizing functions by inverse modeling. These functions relate directly to observable soil characteristics, rendering them amenable to evaluation and improvement through hydropedologic development.

  13. Quantifying traditional Chinese medicine patterns using modern test theory: an example of functional constipation.

    PubMed

    Shen, Minxue; Cui, Yuanwu; Hu, Ming; Xu, Linyong

    2017-01-13

    The study aimed to validate a scale to assess the severity of "Yin deficiency, intestine heat" pattern of functional constipation based on the modern test theory. Pooled longitudinal data of 237 patients with "Yin deficiency, intestine heat" pattern of constipation from a prospective cohort study were used to validate the scale. Exploratory factor analysis was used to examine the common factors of items. A multidimensional item response model was used to assess the scale with the presence of multidimensionality. The Cronbach's alpha ranged from 0.79 to 0.89, and the split-half reliability ranged from 0.67 to 0.79 at different measurements. Exploratory factor analysis identified two common factors, and all items had cross factor loadings. Bidimensional model had better goodness of fit than the unidimensional model. Multidimensional item response model showed that the all items had moderate to high discrimination parameters. Parameters indicated that the first latent trait signified intestine heat, while the second trait characterized Yin deficiency. Information function showed that items demonstrated highest discrimination power among patients with moderate to high level of disease severity. Multidimensional item response theory provides a useful and rational approach in validating scales for assessing the severity of patterns in traditional Chinese medicine.

  14. Design Optimization Tool for Synthetic Jet Actuators Using Lumped Element Modeling

    NASA Technical Reports Server (NTRS)

    Gallas, Quentin; Sheplak, Mark; Cattafesta, Louis N., III; Gorton, Susan A. (Technical Monitor)

    2005-01-01

    The performance specifications of any actuator are quantified in terms of an exhaustive list of parameters such as bandwidth, output control authority, etc. Flow-control applications benefit from a known actuator frequency response function that relates the input voltage to the output property of interest (e.g., maximum velocity, volumetric flow rate, momentum flux, etc.). Clearly, the required performance metrics are application specific, and methods are needed to achieve the optimal design of these devices. Design and optimization studies have been conducted for piezoelectric cantilever-type flow control actuators, but the modeling issues are simpler compared to synthetic jets. Here, lumped element modeling (LEM) is combined with equivalent circuit representations to estimate the nonlinear dynamic response of a synthetic jet as a function of device dimensions, material properties, and external flow conditions. These models provide reasonable agreement between predicted and measured frequency response functions and thus are suitable for use as design tools. In this work, we have developed a Matlab-based design optimization tool for piezoelectric synthetic jet actuators based on the lumped element models mentioned above. Significant improvements were achieved by optimizing the piezoceramic diaphragm dimensions. Synthetic-jet actuators were fabricated and benchtop tested to fully document their behavior and validate a companion optimization effort. It is hoped that the tool developed from this investigation will assist in the design and deployment of these actuators.

  15. Classical Testing in Functional Linear Models.

    PubMed

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.

  16. Classical Testing in Functional Linear Models

    PubMed Central

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155

  17. Inter-species activity correlations reveal functional correspondences between monkey and human brain areas

    PubMed Central

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G.; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A.; Vanduffel, Wim

    2012-01-01

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. In cases where functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assess similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by means of temporal correlation. Using natural vision data, we reveal regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This novel framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models. PMID:22306809

  18. Genetic evaluation and selection response for growth in meat-type quail through random regression models using B-spline functions and Legendre polynomials.

    PubMed

    Mota, L F M; Martins, P G M A; Littiere, T O; Abreu, L R A; Silva, M A; Bonafé, C M

    2018-04-01

    The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.

  19. Water and Solute Flux Simulation Using Hydropedology Survey Data in South African Catchments

    NASA Astrophysics Data System (ADS)

    Lorentz, Simon; van Tol, Johan; le Roux, Pieter

    2017-04-01

    Hydropedology surveys include linking soil profile information in hillslope transects in order to define dominant subsurface flow mechanisms and pathways. This information is useful for deriving hillslope response functions, which aid storage and travel time estimates of water and solute movement in the sub-surface. In this way, the "soft" data of the hydropedological survey can be included in simple hydrological models, where detailed modelling of processes and pathways is prohibitive. Hydropedology surveys were conducted in two catchments and the information used to improve the prediction of water and solute responses. Typical hillslope response functions are then derived using a 2-D finite element model of the hydropedological features. Similar response types are mapped. These mapped response units are invoked in a simple SCS based, hydrological and solute transport model to yield water and solute fluxes at the catchment outlets. The first catchment (1.6 km2) comprises commercial forestry in a sedimentary geology of sandstone and mudstone formation while the second catchment (6.1 km2) includes mine waste impoundments in a granitic geology. In this paper, we demonstrate the method of combining hydropedological interpretation with catchment hydrology and solute transport simulation. The forested catchment, with three dominant hillslope response types, have solute response times in excess of 90 days, whereas the granitic responses occur within 10 days. The use of the hydropedological data improves the solute distribution response and storage simulation, compared to simulations without the hydropedology interpretation. The hydrological responses are similar, with and without the use of the hydropedology data, but the simulated distribution of water in the catchment is improved using the techniques demonstrated.

  20. Integrating an incident management system within a continuity of operations programme: case study of the Bank of Canada.

    PubMed

    Loop, Carole

    2013-01-01

    Carrying out critical business functions without interruption requires a resilient and robust business continuity framework. By embedding an industry-standard incident management system within its business continuity structure, the Bank of Canada strengthened its response plan by enabling timely response to incidents while maintaining a strong focus on business continuity. A total programme approach, integrating the two disciplines, provided for enhanced recovery capabilities. While the value of an effective and efficient response organisation is clear, as demonstrated by emergency events around the world, incident response structures based on normal operating hierarchy can experience unique challenges. The internationally-recognised Incident Command System (ICS) model addresses these issues and reflects the five primary incident management functions, each contributing to the overall strength and effectiveness of the response organisation. The paper focuses on the Bank of Canada's successful implementation of the ICS model as its incident management and continuity of operations programmes evolved to reflect current best practices.

  1. Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test

    NASA Technical Reports Server (NTRS)

    Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert

    2005-01-01

    Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '

  2. Characterization of nonGaussian atmospheric turbulence for prediction of aircraft response statistics

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1977-01-01

    Mathematical expressions were derived for the exceedance rates and probability density functions of aircraft response variables using a turbulence model that consists of a low frequency component plus a variance modulated Gaussian turbulence component. The functional form of experimentally observed concave exceedance curves was predicted theoretically, the strength of the concave contribution being governed by the coefficient of variation of the time fluctuating variance of the turbulence. Differences in the functional forms of response exceedance curves and probability densities also were shown to depend primarily on this same coefficient of variation. Criteria were established for the validity of the local stationary assumption that is required in the derivations of the exceedance curves and probability density functions. These criteria are shown to depend on the relative time scale of the fluctuations in the variance, the fluctuations in the turbulence itself, and on the nominal duration of the relevant aircraft impulse response function. Metrics that can be generated from turbulence recordings for testing the validity of the local stationary assumption were developed.

  3. The interaction of spatial scale and predator-prey functional response

    USGS Publications Warehouse

    Blaine, T.W.; DeAngelis, D.L.

    1997-01-01

    Predator-prey models with a prey-dependent functional response have the property that the prey equilibrium value is determined only by predator characteristics. However, in observed natural systems (for instance, snail-periphyton interactions in streams) the equilibrium periphyton biomass has been shown experimentally to be influenced by both snail numbers and levels of available limiting nutrient in the water. Hypothesizing that the observed patchiness in periphyton in streams may be part of the explanation for the departure of behavior of the equilibrium biomasses from predictions of the prey-dependent response of the snail-periphyton system, we developed and analyzed a spatially-explicit model of periphyton in which snails were modeled as individuals in their movement and feeding, and periphyton was modeled as patches or spatial cells. Three different assumptions on snail movement were used: (1) random movement between spatial cells, (2) tracking by snails of local abundances of periphyton, and (3) delayed departure of snails from cells to reduce costs associated with movement. Of these assumptions, only the third strategy, based on an herbivore strategy of staying in one patch until local periphyton biomass concentration falls below a certain threshold amount, produced results in which both periphyton and snail biomass increased with nutrient input. Thus, if data are averaged spatially over the whole system, we expect that a ratio-dependent functional response may be observed if the herbivore behaves according to the third assumption. Both random movement and delayed cell departure had the result that spatial heterogeneity of periphyton increased with nutrient input.

  4. Modeling vibration response and damping of cables and cabled structures

    NASA Astrophysics Data System (ADS)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  5. Assessing item fit for unidimensional item response theory models using residuals from estimated item response functions.

    PubMed

    Haberman, Shelby J; Sinharay, Sandip; Chon, Kyong Hee

    2013-07-01

    Residual analysis (e.g. Hambleton & Swaminathan, Item response theory: principles and applications, Kluwer Academic, Boston, 1985; Hambleton, Swaminathan, & Rogers, Fundamentals of item response theory, Sage, Newbury Park, 1991) is a popular method to assess fit of item response theory (IRT) models. We suggest a form of residual analysis that may be applied to assess item fit for unidimensional IRT models. The residual analysis consists of a comparison of the maximum-likelihood estimate of the item characteristic curve with an alternative ratio estimate of the item characteristic curve. The large sample distribution of the residual is proved to be standardized normal when the IRT model fits the data. We compare the performance of our suggested residual to the standardized residual of Hambleton et al. (Fundamentals of item response theory, Sage, Newbury Park, 1991) in a detailed simulation study. We then calculate our suggested residuals using data from an operational test. The residuals appear to be useful in assessing the item fit for unidimensional IRT models.

  6. Modelling and optimization of semi-solid processing of 7075 Al alloy

    NASA Astrophysics Data System (ADS)

    Binesh, B.; Aghaie-Khafri, M.

    2017-09-01

    The new modified strain-induced melt activation (SIMA) process presented by Binesh and Aghaie-Khafri was optimized using a response surface methodology to improve the thixotropic characteristics of semi-solid 7075 alloy. The responses, namely the average grain size and the shape factor, were considered as functions of three independent input variables: effective strain, isothermal holding temperature and time. Mathematical models for the responses were developed using the regression analysis technique, and the adequacy of the models was validated by the analysis of variance method. The calculated results correlated fairly well with the experiments. It was found that all the first- and second-order terms of the independent parameters and the interactive terms of the effective strain and holding time were statistically significant for the responses. In order to simultaneously optimize the responses, the desirable values for the effective strain, holding temperature and time were predicted to be 5.1, 609 °C and 14 min, respectively, when employing the desirability function approach. Based on the optimization results, a significant improvement in the average grain size and shape factor of the semi-solid slurry prepared by the new modified SIMA process was observed.

  7. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.

    PubMed

    Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad

    2018-04-25

    Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    PubMed

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  9. Chip level modeling of LSI devices

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1984-01-01

    The advent of Very Large Scale Integration (VLSI) technology has rendered the gate level model impractical for many simulation activities critical to the design automation process. As an alternative, an approach to the modeling of VLSI devices at the chip level is described, including the specification of modeling language constructs important to the modeling process. A model structure is presented in which models of the LSI devices are constructed as single entities. The modeling structure is two layered. The functional layer in this structure is used to model the input/output response of the LSI chip. A second layer, the fault mapping layer, is added, if fault simulations are required, in order to map the effects of hardware faults onto the functional layer. Modeling examples for each layer are presented. Fault modeling at the chip level is described. Approaches to realistic functional fault selection and defining fault coverage for functional faults are given. Application of the modeling techniques to single chip and bit slice microprocessors is discussed.

  10. Gravity and neuronal adaptation, in vitro and in vivo-from neuronal cells up to neuromuscular responses: a first model.

    PubMed

    Kohn, Florian P M; Ritzmann, Ramona

    2018-03-01

    For decades it has been shown that acute changes in gravity have an effect on neuronal systems of human and animals on different levels, from the molecular level to the whole nervous system. The functional properties and gravity-dependent adaptations of these system levels have been investigated with no or barely any interconnection. This review summarizes the gravity-dependent adaptation processes in human and animal organisms from the in vitro cellular level with its biophysical properties to the in vivo motor responses and underlying sensorimotor functions of human subjects. Subsequently, a first model for short-term adaptation of neuronal transmission is presented and discussed for the first time, which integrates the responses of the different levels of organization to changes in gravity.

  11. Dynamic regulation of heart rate during acute hypotension: new insight into baroreflex function

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Behbehani, K.; Crandall, C. G.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2001-01-01

    To examine the dynamic properties of baroreflex function, we measured beat-to-beat changes in arterial blood pressure (ABP) and heart rate (HR) during acute hypotension induced by thigh cuff deflation in 10 healthy subjects under supine resting conditions and during progressive lower body negative pressure (LBNP). The quantitative, temporal relationship between ABP and HR was fitted by a second-order autoregressive (AR) model. The frequency response was evaluated by transfer function analysis. Results: HR changes during acute hypotension appear to be controlled by an ABP error signal between baseline and induced hypotension. The quantitative relationship between changes in ABP and HR is characterized by a second-order AR model with a pure time delay of 0.75 s containing low-pass filter properties. During LBNP, the change in HR/change in ABP during induced hypotension significantly decreased, as did the numerator coefficients of the AR model and transfer function gain. Conclusions: 1) Beat-to-beat HR responses to dynamic changes in ABP may be controlled by an error signal rather than directional changes in pressure, suggesting a "set point" mechanism in short-term ABP control. 2) The quantitative relationship between dynamic changes in ABP and HR can be described by a second-order AR model with a pure time delay. 3) The ability of the baroreflex to evoke a HR response to transient changes in pressure was reduced during LBNP, which was due primarily to a reduction of the static gain of the baroreflex.

  12. Evaluation of Internal Construct Validity and Unidimensionality of the Brachial Assessment Tool, A Patient-Reported Outcome Measure for Brachial Plexus Injury.

    PubMed

    Hill, Bridget; Pallant, Julie; Williams, Gavin; Olver, John; Ferris, Scott; Bialocerkowski, Andrea

    2016-12-01

    To evaluate the internal construct validity and dimensionality of a new patient-reported outcome measure for people with traumatic brachial plexus injury (BPI) based on the International Classification of Functioning, Disability and Health definition of activity. Cross-sectional study. Outpatient clinics. Adults (age range, 18-82y) with a traumatic BPI (N=106). There were 106 people with BPI who completed a 51-item 5-response questionnaire. Responses were analyzed in 4 phases (missing responses, item correlations, exploratory factor analysis, and Rasch analysis) to evaluate the properties of fit to the Rasch model, threshold response, local dependency, dimensionality, differential item functioning, and targeting. Not applicable, as this study addresses the development of an outcome measure. Six items were deleted for missing responses, and 10 were deleted for high interitem correlations >.81. The remaining 35 items, while demonstrating fit to the Rasch model, showed evidence of local dependency and multidimensionality. Items were divided into 3 subscales: dressing and grooming (8 items), arm and hand (17 items), and no hand (6 items). All 3 subscales demonstrated fit to the model with no local dependency, minimal disordered thresholds, no unidimensionality or differential item functioning for age, time postinjury, or self-selected dominance. Subscales were combined into 3 subtests and demonstrated fit to the model, no misfit, and unidimensionality, allowing calculation of a summary score. This preliminary analysis supports the internal construct validity of the Brachial Assessment Tool, a unidimensional targeted 4-response patient-reported outcome measure designed to solely assess activity after traumatic BPI regardless of level of injury, age at recruitment, premorbid limb dominance, and time postinjury. Further examination is required to determine test-retest reliability and responsiveness. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. From inflammation to wound healing: using a simple model to understand the functional versatility of murine macrophages.

    PubMed

    Childs, Lauren M; Paskow, Michael; Morris, Sidney M; Hesse, Matthias; Strogatz, Steven

    2011-11-01

    Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur.

  14. From Inflammation to Wound Healing: Using a Simple Model to Understand the Functional Versatility of Murine Macrophages

    PubMed Central

    Paskow, Michael; Morris, Sidney M.; Hesse, Matthias; Strogatz, Steven

    2011-01-01

    Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur. PMID:21347813

  15. Simple Climate Model Evaluation Using Impulse Response Tests

    NASA Astrophysics Data System (ADS)

    Schwarber, A.; Hartin, C.; Smith, S. J.

    2017-12-01

    Simple climate models (SCMs) are central tools used to incorporate climate responses into human-Earth system modeling. SCMs are computationally inexpensive, making them an ideal tool for a variety of analyses, including consideration of uncertainty. Despite their wide use, many SCMs lack rigorous testing of their fundamental responses to perturbations. Here, following recommendations of a recent National Academy of Sciences report, we compare several SCMs (Hector-deoclim, MAGICC 5.3, MAGICC 6.0, and the IPCC AR5 impulse response function) to diagnose model behavior and understand the fundamental system responses within each model. We conduct stylized perturbations (emissions and forcing/concentration) of three different chemical species: CO2, CH4, and BC. We find that all 4 models respond similarly in terms of overall shape, however, there are important differences in the timing and magnitude of the responses. For example, the response to a BC pulse differs over the first 20 years after the pulse among the models, a finding that is due to differences in model structure. Such perturbation experiments are difficult to conduct in complex models due to internal model noise, making a direct comparison with simple models challenging. We can, however, compare the simplified model response from a 4xCO2 step experiment to the same stylized experiment carried out by CMIP5 models, thereby testing the ability of SCMs to emulate complex model results. This work allows an assessment of how well current understanding of Earth system responses are incorporated into multi-model frameworks by way of simple climate models.

  16. An adaptive two-stage dose-response design method for establishing proof of concept.

    PubMed

    Franchetti, Yoko; Anderson, Stewart J; Sampson, Allan R

    2013-01-01

    We propose an adaptive two-stage dose-response design where a prespecified adaptation rule is used to add and/or drop treatment arms between the stages. We extend the multiple comparison procedures-modeling (MCP-Mod) approach into a two-stage design. In each stage, we use the same set of candidate dose-response models and test for a dose-response relationship or proof of concept (PoC) via model-associated statistics. The stage-wise test results are then combined to establish "global" PoC using a conditional error function. Our simulation studies showed good and more robust power in our design method compared to conventional and fixed designs.

  17. Spectral response analysis of PVDF capacitive sensors

    NASA Astrophysics Data System (ADS)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  18. Allogeneic Transplantation of Müller-Derived Retinal Ganglion Cells Improves Retinal Function in a Feline Model of Ganglion Cell Depletion

    PubMed Central

    Becker, Silke; Eastlake, Karen; Jayaram, Hari; Jones, Megan F.; Brown, Robert A.; McLellan, Gillian J.; Charteris, David G.; Khaw, Peng T.

    2016-01-01

    Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA). Unlike previous observations in the rat, transplantation of hMGSC-derived RGCs into the feline vitreous formed aggregates and elicited a severe inflammatory response without improving visual function. In contrast, allogeneic transplantation of feline MGSC (fMGSC)-derived RGCs into the vitrectomized eye improved the scotopic threshold response (STR) of the electroretinogram (ERG). Despite causing functional improvement, the cells did not attach onto the retina and formed aggregates on peripheral vitreous remnants, suggesting that vitreous may constitute a barrier for cell attachment onto the retina. This was confirmed by observations that cellular scaffolds of compressed collagen and enriched preparations of fMGSC-derived RGCs facilitated cell attachment. Although cells did not migrate into the RGC layer or the optic nerve, they significantly improved the STR and the photopic negative response of the ERG, indicative of increased RGC function. These results suggest that MGSCs have a neuroprotective ability that promotes partial recovery of impaired RGC function and indicate that cell attachment onto the retina may be necessary for transplanted cells to confer neuroprotection to the retina. Significance Müller glia with stem cell characteristics are present in the adult human retina, but they do not have regenerative ability. These cells, however, have potential for development of cell therapies to treat retinal disease. Using a feline model of retinal ganglion cell (RGC) depletion, cell grafting methods to improve RGC function have been developed. Using cellular scaffolds, allogeneic transplantation of Müller glia-derived RGC promoted cell attachment onto the retina and enhanced retinal function, as judged by improvement of the photopic negative and scotopic threshold responses of the electroretinogram. The results suggest that the improvement of RGC function observed may be ascribed to the neuroprotective ability of these cells and indicate that attachment of the transplanted cells onto the retina is required to promote effective neuroprotection. PMID:26718648

  19. Computational modeling of heterogeneity and function of CD4+ T cells

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Andrew, Tricity; Eden, Kristin; Mei, Yongguo; Hoops, Stefan; Bassaganya-Riera, Josep

    2014-01-01

    The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation. PMID:25364738

  20. Chemiresistive Graphene Sensors for Ammonia Detection.

    PubMed

    Mackin, Charles; Schroeder, Vera; Zurutuza, Amaia; Su, Cong; Kong, Jing; Swager, Timothy M; Palacios, Tomás

    2018-05-09

    The primary objective of this work is to demonstrate a novel sensor system as a convenient vehicle for scaled-up repeatability and the kinetic analysis of a pixelated testbed. This work presents a sensor system capable of measuring hundreds of functionalized graphene sensors in a rapid and convenient fashion. The sensor system makes use of a novel array architecture requiring only one sensor per pixel and no selector transistor. The sensor system is employed specifically for the evaluation of Co(tpfpp)ClO 4 functionalization of graphene sensors for the detection of ammonia as an extension of previous work. Co(tpfpp)ClO 4 treated graphene sensors were found to provide 4-fold increased ammonia sensitivity over pristine graphene sensors. Sensors were also found to exhibit excellent selectivity over interfering compounds such as water and common organic solvents. The ability to monitor a large sensor array with 160 pixels provides insights into performance variations and reproducibility-critical factors in the development of practical sensor systems. All sensors exhibit the same linearly related responses with variations in response exhibiting Gaussian distributions, a key finding for variation modeling and quality engineering purposes. The mean correlation coefficient between sensor responses was found to be 0.999 indicating highly consistent sensor responses and excellent reproducibility of Co(tpfpp)ClO 4 functionalization. A detailed kinetic model is developed to describe sensor response profiles. The model consists of two adsorption mechanisms-one reversible and one irreversible-and is shown capable of fitting experimental data with a mean percent error of 0.01%.

  1. Thermo-mechanical characterization of silicone foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangaswamy, Partha; Smith, Nickolaus A.; Cady, Carl M.

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compressionmore » for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures« less

  2. Reduced order modeling, statistical analysis and system identification for a bladed rotor with geometric mistuning

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Vinod

    Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model (ROM) of a bladed rotor. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data of blades' geometries and sector analyses using ANSYS. For the first time ROM of a geometrically mistuned industrial scale rotor (Transonic rotor) with large size of Finite Element (FE) model is generated using MMDA. Two methods for estimating mass and stiffness mistuning matrices are used a) exact computation from sector FE analysis, b) estimates based on POD mistuning parameters. Modal characteristics such as mistuned natural frequencies, mode shapes and forced harmonic response are obtained from ROM for various cases, and results are compared with full rotor ANSYS analysis and other ROM methods such as Subset of Nominal Modes (SNM) and Fundamental Model of Mistuning (FMM). Accuracy of MMDA ROM is demonstrated with variations in number of POD features and geometric mistuning parameters. It is shown for the aforementioned case b) that the high accuracy of ROM studied in previous work with Academic rotor does not directly translate to the Transonic rotor. Reasons for such mismatch in results are investigated and attributed to higher mistuning in Transonic rotor. Alternate solutions such as estimation of sensitivities via least squares, and interpolation of mass and stiffness matrices on manifolds are developed, and their results are discussed. Statistics such as mean and standard deviations of forced harmonic response peak amplitude are obtained from random permutations, and are shown to have similar results as those of Monte Carlo simulations. These statistics are obtained and compared for 3 degree of freedom (DOF) lumped parameter model (LPM) of rotor, Academic rotor and Transonic rotor. A state -- estimator based on MMDA ROM and Kalman filter is also developed for offline or online estimation of harmonic forcing function from measurements of forced response. Forcing function is estimated for synchronous excitation of 3DOF rotor model, Academic rotor and Transonic rotor from measurement of response at few nodes. For asynchronous excitation forcing function is estimated only for 3DOF rotor model and Academic rotor from measurement of response. The impact of number of measurement locations and accuracy of ROM on the estimation of forcing function is discussed. iv.

  3. Directive and incentive functions of affective action consequences: an ideomotor approach.

    PubMed

    Eder, Andreas B; Rothermund, Klaus; De Houwer, Jan; Hommel, Bernhard

    2015-07-01

    Five experiments examined whether affective consequences become associated with the responses producing them and whether anticipations of positive and negative action outcomes influence action control differently. In a learning phase, one response produced pleasant and another response unpleasant visual effects. In a subsequent test phase, the same actions were carried out in response to a neutral feature of affective stimuli. Results showed that responses were faster when the irrelevant valence of the response cue matched the valence of the response outcome, but only when the responses still produced outcomes. These results suggest that affective action consequences have a directive function in that they facilitate the selection of the associated response over other responses, even when the response outcome is unpleasant (Experiment 4A). Results of another experiment showed that affective action consequences can also have an incentive function in that responses with pleasant outcomes are generally facilitated relative to responses with unpleasant outcomes. However, this motivational effect was seen only in a free-choice test (Experiment 5). The results suggest that behavioral impulses induced by ideomotor processes are constrained by the motivational evaluation of the anticipated action outcome. A model that integrates motivational factors into ideomotor theory is presented.

  4. A Maximum Likelihood Approach to Functional Mapping of Longitudinal Binary Traits

    PubMed Central

    Wang, Chenguang; Li, Hongying; Wang, Zhong; Wang, Yaqun; Wang, Ningtao; Wang, Zuoheng; Wu, Rongling

    2013-01-01

    Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits. PMID:23183762

  5. A Multidimensional Ideal Point Item Response Theory Model for Binary Data.

    PubMed

    Maydeu-Olivares, Albert; Hernández, Adolfo; McDonald, Roderick P

    2006-12-01

    We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model yields closed form expressions for the cell probabilities. We estimate and test the goodness of fit of the model using only information contained in the univariate and bivariate moments of the data. Also, we pit the new model against the multidimensional normal ogive model estimated using NOHARM in four applications involving (a) attitudes toward censorship, (b) satisfaction with life, (c) attitudes of morality and equality, and (d) political efficacy. The normal PDF model is not invariant to simple operations such as reverse scoring. Thus, when there is no natural category to be modeled, as in many personality applications, it should be fit separately with and without reverse scoring for comparisons.

  6. Predicting the Best Fit: A Comparison of Response Surface Models for Midazolam and Alfentanil Sedation in Procedures With Varying Stimulation.

    PubMed

    Liou, Jing-Yang; Ting, Chien-Kun; Mandell, M Susan; Chang, Kuang-Yi; Teng, Wei-Nung; Huang, Yu-Yin; Tsou, Mei-Yung

    2016-08-01

    Selecting an effective dose of sedative drugs in combined upper and lower gastrointestinal endoscopy is complicated by varying degrees of pain stimulation. We tested the ability of 5 response surface models to predict depth of sedation after administration of midazolam and alfentanil in this complex model. The procedure was divided into 3 phases: esophagogastroduodenoscopy (EGD), colonoscopy, and the time interval between the 2 (intersession). The depth of sedation in 33 adult patients was monitored by Observer Assessment of Alertness/Scores. A total of 218 combinations of midazolam and alfentanil effect-site concentrations derived from pharmacokinetic models were used to test 5 response surface models in each of the 3 phases of endoscopy. Model fit was evaluated with objective function value, corrected Akaike Information Criterion (AICc), and Spearman ranked correlation. A model was arbitrarily defined as accurate if the predicted probability is <0.5 from the observed response. The effect-site concentrations tested ranged from 1 to 76 ng/mL and from 5 to 80 ng/mL for midazolam and alfentanil, respectively. Midazolam and alfentanil had synergistic effects in colonoscopy and EGD, but additivity was observed in the intersession group. Adequate prediction rates were 84% to 85% in the intersession group, 84% to 88% during colonoscopy, and 82% to 87% during EGD. The reduced Greco and Fixed alfentanil concentration required for 50% of the patients to achieve targeted response Hierarchy models performed better with comparable predictive strength. The reduced Greco model had the lowest AICc with strong correlation in all 3 phases of endoscopy. Dynamic, rather than fixed, γ and γalf in the Hierarchy model improved model fit. The reduced Greco model had the lowest objective function value and AICc and thus the best fit. This model was reliable with acceptable predictive ability based on adequate clinical correlation. We suggest that this model has practical clinical value for patients undergoing procedures with varying degrees of stimulation.

  7. Regional variation in growth response of Coastal Douglas-fir to nitrogen fertilizer in the Pacific Northwest.

    Treesearch

    C.E. Peterson; J.W. Hazard

    1990-01-01

    Hypothesis testing for differences in growth responses among physiographic strata, thinning levels, and fertilizer dosage levels resulted in a set of empirical models for predicting volume increment response of even aged coastal Douglas-fir to nitrogen fertilizer. Absolute and percent responses are estimated for stands both thinned and unthinned, as a function of...

  8. Behavioural modelling of irrigation decision making under water scarcity

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern for farmers in areas of aquifer depletion or recurrent drought, the stochastic model demonstrates that partial-area irrigation is optimal irrespective of the size of water supply restrictions. This effect is not produced by the aggregate model, which cannot account for the variability of the production function with changes in irrigated area that control intraseasonal irrigation application rates. In addition, the aggregate model overstates the willingness of a risk-averse farmer to adjust on the intensive margin in response to water supply restrictions. This is due to the inability of aggregate models to specify correctly the production risk associated with intensive margin adjustments. Consequently, aggregate models give unrealistic estimates of water demand and underestimate the negative impacts on profitability of declining groundwater resources. Reliance on aggregate models will limit the ability of socio-hydrology to guide policy responses to groundwater scarcity. Our stochastic methodology provides a more realistic tool to study the management of groundwater in coupled human-water systems.

  9. A time-frequency analysis method to obtain stable estimates of magnetotelluric response function based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Cai, Jianhua

    2017-05-01

    The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.

  10. Numerical and functional responses of intestinal helminths in three rajid skates: evidence for competition between parasites?

    PubMed

    Randhawa, Haseeb S

    2012-11-01

    Host-parasite interactions generally involve communities of parasites. Within these communities, species will co-exist and/or interact with one another in a manner either benefiting the species involved or to the detriment of one or more of the species. At the level of helminth infracommunities, evidence for intra- and inter-specific competition includes numerical responses, i.e. those regulating helminth intensity of infection, and functional responses, i.e. where the presence of competitors modifies the realised niche of infrapopulations. The objectives of this study are to assess the numerical and functional responses of helminths in infracommunities from 3 rajid skates using general linear models. Despite a lack of numerical responses, functional responses to intra- and inter-specific interactions were observed. A positive correlation between the number of individuals in an infrapopulation and its niche breadth (functional response) was observed for the tapeworms Pseudanthobothrium spp. and Echeneibothrium spp., in all their respective hosts, and for the nematode Pseudanisakis sp. in the little skate. Evidence for inter-specific competition includes niche shifts in Pseudanthobothrium purtoni (ex little skate) and Pseudanisakis sp. (ex thorny skate) in the presence of Pseudanisakis sp. and the tapeworm Grillotia sp., respectively. These results are consistent with other studies in providing evidence for competition between helminths of skates.

  11. ESTABLISHING VERBAL REPERTOIRES IN CHILDREN WITH AUTISM USING FUNCTION-BASED VIDEO MODELING

    PubMed Central

    Plavnick, Joshua B; Ferreri, Summer J

    2011-01-01

    Previous research suggests that language-training procedures for children with autism might be enhanced following an assessment of conditions that evoke emerging verbal behavior. The present investigation examined a methodology to teach recognizable mands based on environmental variables known to evoke participants' idiosyncratic communicative responses in the natural environment. An alternating treatments design was used during Experiment 1 to identify the variables that were functionally related to gestures emitted by 4 children with autism. Results showed that gestures functioned as requests for attention for 1 participant and as requests for assistance to obtain a preferred item or event for 3 participants. Video modeling was used during Experiment 2 to compare mand acquisition when video sequences were either related or unrelated to the results of the functional analysis. An alternating treatments within multiple probe design showed that participants repeatedly acquired mands during the function-based condition but not during the nonfunction-based condition. In addition, generalization of the response was observed during the former but not the latter condition. PMID:22219527

  12. Establishing verbal repertoires in children with autism using function-based video modeling.

    PubMed

    Plavnick, Joshua B; Ferreri, Summer J

    2011-01-01

    Previous research suggests that language-training procedures for children with autism might be enhanced following an assessment of conditions that evoke emerging verbal behavior. The present investigation examined a methodology to teach recognizable mands based on environmental variables known to evoke participants' idiosyncratic communicative responses in the natural environment. An alternating treatments design was used during Experiment 1 to identify the variables that were functionally related to gestures emitted by 4 children with autism. Results showed that gestures functioned as requests for attention for 1 participant and as requests for assistance to obtain a preferred item or event for 3 participants. Video modeling was used during Experiment 2 to compare mand acquisition when video sequences were either related or unrelated to the results of the functional analysis. An alternating treatments within multiple probe design showed that participants repeatedly acquired mands during the function-based condition but not during the nonfunction-based condition. In addition, generalization of the response was observed during the former but not the latter condition.

  13. Controllably Inducing and Modeling Optical Response from Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Lombardo, Nicholas; Naumov, Anton

    Graphene, a novel 2-dimensional sp2-hybridized allotrope of Carbon, has unique electrical and mechanical properties. While it is naturally a highly conductive zero band gap semiconductor, graphene does not exhibit optical emission. It has been shown that functionalization with oxygen-containing groups elicits an opening of band gap in graphene. In this work, we aim to induce an optical response in graphene via controlled oxidation, and then explore potential origins of its photoluminescence through mathematical modeling. We employ timed ozone treatment of initially non-fluorescent reduced graphene oxide (RGO) to produce graphene oxide (GO) with specific optical properties. Oxidized material exhibits substantial changes in the absorption spectra and a broad photoluminescence feature, centered at 532 nm, which suggests the appearance of a band gap. We then explore a number of possible mechanisms for the origin of GO photoluminescence via PM3 and ab initio calculations on a functionalized single sheet of graphene. By adjusting modeling parameters to fit experimentally obtained optical transition energies we estimate the size of the sp2 graphitic regions in GO and the arrangement of functional groups that could be responsible for the observed emission.

  14. The nonlinear aeroelastic characteristics of a folding wing with cubic stiffness

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Yang, Zhichun; Gu, Yingsong; Wang, Xiaochen

    2017-07-01

    This paper focuses on the nonlinear aeroelastic characteristics of a folding wing in the quasi-steady condition (namely at fixed folding angles) and during the morphing process. The structure model of the folding wing is formulated by the Lagrange equations, and the constraint equation is used to describe the morphing strategy. The aerodynamic influence coefficient matrices at several folding angles are calculated by the Doublet Lattice method, and described as rational functions in the Laplace domain by the rational function approximation, and then the Kriging agent model technique is adopted to interpolate the coefficient matrices of the rational functions, and the aerodynamics model of the folding wing during the morphing process is built. The aeroelastic responses of the folding wing with cubic stiffness are simulated, and the results show that the motion types of aeroelastic responses in the quasi-steady condition and during the morphing process are all sensitive to the initial condition and folding angle. During the morphing process, the transition of the motion types is observed. And apart from the period of transition, the aeroelastic response at some folding angles may exhibit different motion types, which can be found from the results in the quasi-steady condition.

  15. Community Colleges and Market Responsiveness: A Conceptual Analysis and Proposed Model

    ERIC Educational Resources Information Center

    Adams, Jimmy L.; Edmonson, Stacey L.; Slate, John R.

    2013-01-01

    In this article, we explore the functions of the traditional community college and its expanding mission in regard to its responsiveness to changing economic conditions and workforce development needs. To date, few researchers have specifically addressed market responsiveness in community college settings across the United States. In addition, we…

  16. Response to Martini and Habeck: Semiochemical dose-response curves fit by kinetic formation functions

    USDA-ARS?s Scientific Manuscript database

    Martini and Habeck (2014) correctly describe the conceptual simulation model of Byers (2013) where molecules in an odor filament pass by an antenna causing an electrophysiological antennographic (EAG) response that is proportional to how many of the receptors are hit at least once by a molecule. Inc...

  17. Antiorthostatic suspension for 14 days does not diminish the oxidative response of neutrophils in mice

    NASA Technical Reports Server (NTRS)

    Smolen, J. E.; Fossett, M. C.; Joe, Y.; Prince, J. E.; Priest, E.; Kanwar, S.; Smith, C. W.

    2000-01-01

    The effects of long-term spaceflight on inflammatory responses have not been well-studied in either humans or animals. It is thus important to determine if the functions of immune and inflammatory cells are altered in models of spaceflight. One such animal model is antiorthostatic suspension (AOS), in which the experimental animal is subjected to a head-down tilt that mimics both the stress and the cephalad fluid shift experienced in spaceflight. A previous study reported that the peritoneal neutrophils from mice experiencing AOS generated less superoxide than unsuspended controls. We expanded on this study using several different stimuli and measuring the oxidative response of murine neutrophils in a variety of ways. These responses included the rate, lag period, and dose/response characteristics for superoxide generation, FACS analysis with dihydrodichlorofluorescein as a substrate, and a chemiluminescence response with luminol as a substrate. We also examined phagocytosis of three different microorganisms. While some effects of orthostatic suspension (attributable to the stress of the apparatus) were observed, no clear effects of AOS on oxidative function of the peritoneal neutrophils were seen.

  18. Highly efficient model updating for structural condition assessment of large-scale bridges.

    DOT National Transportation Integrated Search

    2015-02-01

    For eciently updating models of large-scale structures, the response surface (RS) method based on radial basis : functions (RBFs) is proposed to model the input-output relationship of structures. The key issues for applying : the proposed method a...

  19. Unifying Time to Contact Estimation and Collision Avoidance across Species

    PubMed Central

    Keil, Matthias S.; López-Moliner, Joan

    2012-01-01

    The -function and the -function are phenomenological models that are widely used in the context of timing interceptive actions and collision avoidance, respectively. Both models were previously considered to be unrelated to each other: is a decreasing function that provides an estimation of time-to-contact (ttc) in the early phase of an object approach; in contrast, has a maximum before ttc. Furthermore, it is not clear how both functions could be implemented at the neuronal level in a biophysically plausible fashion. Here we propose a new framework – the corrected modified Tau function – capable of predicting both -type (“”) and -type (“”) responses. The outstanding property of our new framework is its resilience to noise. We show that can be derived from a firing rate equation, and, as , serves to describe the response curves of collision sensitive neurons. Furthermore, we show that predicts the psychophysical performance of subjects determining ttc. Our new framework is thus validated successfully against published and novel experimental data. Within the framework, links between -type and -type neurons are established. Therefore, it could possibly serve as a model for explaining the co-occurrence of such neurons in the brain. PMID:22915999

  20. Possible Effects of Synaptic Imbalances on Oligodendrocyte–Axonic Interactions in Schizophrenia: A Hypothetical Model

    PubMed Central

    Mitterauer, Bernhard J.; Kofler-Westergren, Birgitta

    2011-01-01

    A model of glial–neuronal interactions is proposed that could be explanatory for the demyelination identified in brains with schizophrenia. It is based on two hypotheses: (1) that glia–neuron systems are functionally viable and important for normal brain function, and (2) that disruption of this postulated function disturbs the glial categorization function, as shown by formal analysis. According to this model, in schizophrenia receptors on astrocytes in glial–neuronal synaptic units are not functional, loosing their modulatory influence on synaptic neurotransmission. Hence, an unconstrained neurotransmission flux occurs that hyperactivates the axon and floods the cognate receptors of neurotransmitters on oligodendrocytes. The excess of neurotransmitters may have a toxic effect on oligodendrocytes and myelin, causing demyelination. In parallel, an increasing impairment of axons may disconnect neuronal networks. It is formally shown how oligodendrocytes normally categorize axonic information processing via their processes. Demyelination decomposes the oligodendrocyte–axonic system making it incapable to generate categories of information. This incoherence may be responsible for symptoms of disorganization in schizophrenia, such as thought disorder, inappropriate affect and incommunicable motor behavior. In parallel, the loss of oligodendrocytes affects gap junctions in the panglial syncytium, presumably responsible for memory impairment in schizophrenia. PMID:21647404

  1. Simulation of growth of Adirondack conifers in relation to global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.; Raynal, D.J.

    1993-06-01

    Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of treesmore » are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.« less

  2. Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems.

    PubMed

    Makni, Salima; Beckmann, Christian; Smith, Steve; Woolrich, Mark

    2008-10-01

    In Penny et al. [Penny, W., Ghahramani, Z., Friston, K.J. 2005. Bilinear dynamical systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457) 983-993], a particular case of the Linear Dynamical Systems (LDSs) was used to model the dynamic behavior of the BOLD response in functional MRI. This state-space model, called bilinear dynamical system (BDS), is used to deconvolve the fMRI time series in order to estimate the neuronal response induced by the different stimuli of the experimental paradigm. The BDS model parameters are estimated using an expectation-maximization (EM) algorithm proposed by Ghahramani and Hinton [Ghahramani, Z., Hinton, G.E. 1996. Parameter Estimation for Linear Dynamical Systems. Technical Report, Department of Computer Science, University of Toronto]. In this paper we introduce modifications to the BDS model in order to explicitly model the spatial variations of the haemodynamic response function (HRF) in the brain using a non-parametric approach. While in Penny et al. [Penny, W., Ghahramani, Z., Friston, K.J. 2005. Bilinear dynamical systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457) 983-993] the relationship between neuronal activation and fMRI signals is formulated as a first-order convolution with a kernel expansion using basis functions (typically two or three), in this paper, we argue in favor of a spatially adaptive GLM in which a local non-parametric estimation of the HRF is performed. Furthermore, in order to overcome the overfitting problem typically associated with simple EM estimates, we propose a full Variational Bayes (VB) solution to infer the BDS model parameters. We demonstrate the usefulness of our model which is able to estimate both the neuronal activity and the haemodynamic response function in every voxel of the brain. We first examine the behavior of this approach when applied to simulated data with different temporal and noise features. As an example we will show how this method can be used to improve interpretability of estimates from an independent component analysis (ICA) analysis of fMRI data. We finally demonstrate its use on real fMRI data in one slice of the brain.

  3. MIMO system identification using frequency response data

    NASA Technical Reports Server (NTRS)

    Medina, Enrique A.; Irwin, R. D.; Mitchell, Jerrel R.; Bukley, Angelia P.

    1992-01-01

    A solution to the problem of obtaining a multi-input, multi-output statespace model of a system from its individual input/output frequency responses is presented. The Residue Identification Algorithm (RID) identifies the system poles from a transfer function model of the determinant of the frequency response data matrix. Next, the residue matrices of the modes are computed guaranteeing that each input/output frequency response is fitted in the least squares sense. Finally, a realization of the system is computed. Results of the application of RID to experimental frequency responses of a large space structure ground test facility are presented and compared to those obtained via the Eigensystem Realization Algorithm.

  4. Assessment of physiological noise modelling methods for functional imaging of the spinal cord.

    PubMed

    Kong, Yazhuo; Jenkinson, Mark; Andersson, Jesper; Tracey, Irene; Brooks, Jonathan C W

    2012-04-02

    The spinal cord is the main pathway for information between the central and the peripheral nervous systems. Non-invasive functional MRI offers the possibility of studying spinal cord function and central sensitisation processes. However, imaging neural activity in the spinal cord is more difficult than in the brain. A significant challenge when dealing with such data is the influence of physiological noise (primarily cardiac and respiratory), and currently there is no standard approach to account for these effects. We have previously studied the various sources of physiological noise for spinal cord fMRI at 1.5T and proposed a physiological noise model (PNM) (Brooks et al., 2008). An alternative de-noising strategy, selective averaging filter (SAF), was proposed by Deckers et al. (2006). In this study we reviewed and implemented published physiological noise correction methods at higher field (3T) and aimed to find the optimal models for gradient-echo-based BOLD acquisitions. Two general techniques were compared: physiological noise model (PNM) and selective averaging filter (SAF), along with regressors designed to account for specific signal compartments and physiological processes: cerebrospinal fluid (CSF), motion correction (MC) parameters, heart rate (HR), respiration volume per time (RVT), and the associated cardiac and respiratory response functions. Functional responses were recorded from the cervical spinal cord of 18 healthy subjects in response to noxious thermal and non-noxious punctate stimulation. The various combinations of models and regressors were compared in three ways: the model fit residuals, regression model F-tests and the number of activated voxels. The PNM was found to outperform SAF in all three tests. Furthermore, inclusion of the CSF regressor was crucial as it explained a significant amount of signal variance in the cord and increased the number of active cord voxels. Whilst HR, RVT and MC explained additional signal (noise) variance, they were also found (in particular HR and RVT) to have a negative impact on the parameter estimates (of interest)--as they may be correlated with task conditions e.g. noxious thermal stimuli. Convolution with previously published cardiac and respiratory impulse response functions was not found to be beneficial. The other novel aspect of current study is the investigation of the influence of pre-whitening together with PNM regressors on spinal fMRI data. Pre-whitening was found to reduce non-white noise, which was not accounted for by physiological noise correction, and decrease false positive detection rates. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Predicting long-term carbon sequestration in response to CO 2 enrichment: How and why do current ecosystem models differ?

    DOE PAGES

    Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; ...

    2015-04-27

    Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO 2. Free-Air CO 2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO 2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO 2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO 2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluatemore » whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO 2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO 2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO 2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO 2.« less

  6. Influence of confining layers' heterogeneity on the barometric response functions in semi-confined aquifers

    NASA Astrophysics Data System (ADS)

    Redaelli, Marco; Perulero Serrano, Raul

    2017-04-01

    It has been shown that Barometric Response Functions (BRFs) can provide a useful tool for detecting the occurrence of highly conducive bodies which span across aquifer confining layers and can potentially give rise to pathways for pollutant migration (Hussein et al 2013, Odling et al 2015). Analytical models employed to estimate BRFs from geological system properties assume homogeneity within the aquifer and its confining layer. These assumptions are rarely satisfied in practice. Our study focusses on the impact on predicted BRFs of heterogeneous distribution of high conductivity geomaterials within the confining layer. The work is grounded on a suite of three-dimensional, transient numerical computations of groundwater flow in a confining layer-aquifer system for i) a perfectly homogeneous two-layer setting where a single highly conducive block is fully penetrating the confining layer and ii) a heterogeneous two-layer system where hydraulic conductivity in the confining layer is modelled as a stochastic process. Our numerical results are interpreted through a comparison against those associated with an analytical model which assumes system homogeneity. Monitoring points located in the middle of the modelled aquifer domain, mimicking screened boreholes in field conditions, are used to extract water level records. The output is used to obtain the corresponding BRFs (in terms of gain and phase components) and compared vis-a-vis the selected analytical solution. The results show a wide variety of BRF responses, especially in the gain component, which vary from almost confined to unconfined scenarios. Our simulations show that the BRFs are a viable tool to improve understanding of the degree of spatial continuity within low permeability heterogeneous geological materials such as glacial till which is frequently found overlying water bearing units across the UK and other localities worldwide. As such, it has the potential to improve groundwater vulnerability assessment protocols. The results are promising and support the merit of additional developments through, e.g., numerical Monte Carlo simulations which can be performed to extract meaningful statistical information on the nature of BRFs as a function of randomly heterogeneous confining layers. Keywords: groundwater vulnerability, numerical modeling, barometric response functions, semi-confined aquifers References Hussein M.E.A., Odling N.E. & Clark R.A. (2013). Borehole water level response to barometric pressure as an indicator of aquifer vulnerability, Water Resources Research, 49: 7102-7119. Odling N.E, Perulero Serrano R., Hussein M.E.A, Riva M. & Guadagnini A. (2015). Detecting the vulnerability of groundwater in semi-confined aquifers using barometric response functions, Journal of Hydrology, 520: 143-156.

  7. The perfect family: decision making in biparental care.

    PubMed

    Akçay, Erol; Roughgarden, Joan

    2009-10-13

    Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other's effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory. We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents' behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family), and one where they do not communicate, and act independently (the almost perfect family). The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents' allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents' allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make decisions, factors that have largely been overlooked in previous models.

  8. KERIS: kaleidoscope of gene responses to inflammation between species

    PubMed Central

    Li, Peng; Tompkins, Ronald G; Xiao, Wenzhong

    2017-01-01

    A cornerstone of modern biomedical research is the use of animal models to study disease mechanisms and to develop new therapeutic approaches. In order to help the research community to better explore the similarities and differences of genomic response between human inflammatory diseases and murine models, we developed KERIS: kaleidoscope of gene responses to inflammation between species (available at http://www.igenomed.org/keris/). As of June 2016, KERIS includes comparisons of the genomic response of six human inflammatory diseases (burns, trauma, infection, sepsis, endotoxin and acute respiratory distress syndrome) and matched mouse models, using 2257 curated samples from the Inflammation and the Host Response to Injury Glue Grant studies and other representative studies in Gene Expression Omnibus. A researcher can browse, query, visualize and compare the response patterns of genes, pathways and functional modules across different diseases and corresponding murine models. The database is expected to help biologists choosing models when studying the mechanisms of particular genes and pathways in a disease and prioritizing the translation of findings from disease models into clinical studies. PMID:27789704

  9. Rasch validation of the Arabic version of the lower extremity functional scale.

    PubMed

    Alnahdi, Ali H

    2018-02-01

    The purpose of this study was to examine the internal construct validity of the Arabic version of the Lower Extremity Functional Scale (20-item Arabic LEFS) using Rasch analysis. Patients (n = 170) with lower extremity musculoskeletal dysfunction were recruited. Rasch analysis of 20-item Arabic LEFS was performed. Once the initial Rasch analysis indicated that the 20-item Arabic LEFS did not fit the Rasch model, follow-up analyses were conducted to improve the fit of the scale to the Rasch measurement model. These modifications included removing misfitting individuals, changing item scoring structure, removing misfitting items, addressing bias caused by response dependency between items and differential item functioning (DIF). Initial analysis indicated deviation of the 20-item Arabic LEFS from the Rasch model. Disordered thresholds in eight items and response dependency between six items were detected with the scale as a whole did not meet the requirement of unidimensionality. Refinements led to a 15-item Arabic LEFS that demonstrated excellent internal consistency (person separation index [PSI] = 0.92) and satisfied all the requirement of the Rasch model. Rasch analysis did not support the 20-item Arabic LEFS as a unidimensional measure of lower extremity function. The refined 15-item Arabic LEFS met all the requirement of the Rasch model and hence is a valid objective measure of lower extremity function. The Rasch-validated 15-item Arabic LEFS needs to be further tested in an independent sample to confirm its fit to the Rasch measurement model. Implications for Rehabilitation The validity of the 20-item Arabic Lower Extremity Functional Scale to measure lower extremity function is not supported. The 15-item Arabic version of the LEFS is a valid measure of lower extremity function and can be used to quantify lower extremity function in patients with lower extremity musculoskeletal disorders.

  10. Causal Responsibility and Counterfactuals

    PubMed Central

    Lagnado, David A; Gerstenberg, Tobias; Zultan, Ro'i

    2013-01-01

    How do people attribute responsibility in situations where the contributions of multiple agents combine to produce a joint outcome? The prevalence of over-determination in such cases makes this a difficult problem for counterfactual theories of causal responsibility. In this article, we explore a general framework for assigning responsibility in multiple agent contexts. We draw on the structural model account of actual causation (e.g., Halpern & Pearl, 2005) and its extension to responsibility judgments (Chockler & Halpern, 2004). We review the main theoretical and empirical issues that arise from this literature and propose a novel model of intuitive judgments of responsibility. This model is a function of both pivotality (whether an agent made a difference to the outcome) and criticality (how important the agent is perceived to be for the outcome, before any actions are taken). The model explains empirical results from previous studies and is supported by a new experiment that manipulates both pivotality and criticality. We also discuss possible extensions of this model to deal with a broader range of causal situations. Overall, our approach emphasizes the close interrelations between causality, counterfactuals, and responsibility attributions. PMID:23855451

  11. Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment.

    PubMed

    Maloney, Susan E; Creeley, Catherine E; Hartman, Richard E; Yuede, Carla M; Zorumski, Charles F; Jevtovic-Todorovic, Vesna; Dikranian, Krikor; Noguchi, Kevin K; Farber, Nuri B; Wozniak, David F

    2018-03-14

    Fifteen years ago Olney and colleagues began using animal models to evaluate the effects of anesthetic and sedative agents (ASAs) on neurodevelopment. The results from ongoing studies indicate that, under certain conditions, exposure to these drugs during development induces an acute elevated apoptotic neurodegenerative response in the brain and long-term functional impairments. These animal models have played a significant role in bringing attention to the possible adverse effects of exposing the developing brain to ASAs when few concerns had been raised previously in the medical community. The apoptotic degenerative response resulting from neonatal exposure to ASAs has been replicated in many studies in both rodents and non-human primates, suggesting that a similar effect may occur in humans. In both rodents and non-human primates, significantly increased levels of apoptotic degeneration are often associated with functional impairments later in life. However, behavioral deficits following developmental ASA exposure have not been consistently reported even when significantly elevated levels of apoptotic degeneration have been documented in animal models. In the present work, we review this literature and propose a rodent model for assessing potential functional deficits following neonatal ASA exposure with special reference to experimental design and procedural issues. Our intent is to improve test sensitivity and replicability for detecting subtle behavioral effects, and thus enhance the translational significance of ASA models. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less

  13. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai; ...

    2016-07-14

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less

  14. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  15. A Descriptive Guide to Trade Space Analysis

    DTIC Science & Technology

    2015-09-01

    Development QFD Quality Function Deployment RSM Response Surface Method RSE Response Surface Equation SE Systems Engineering SME Subject Matter...surface equations ( RSEs ) as surrogate models. It uses the RSEs with Monte Carlo simulation to quantitatively explore changes across the surfaces to

  16. MODELING STREAM-AQUIFIER INTERACTIONS WITH LINEAR RESPONSE FUNCTIONS

    EPA Science Inventory

    The problem of stream-aquifer interactions is pertinent to conjunctive-use management of water resources and riparian zone hydrology. Closed form solutions are derived for stream-aquifer interactions in rates and volumes expressed as convolution integrals of impulse response and ...

  17. Application and interpretation of functional data analysis techniques to differential scanning calorimetry data from lupus patients.

    PubMed

    Kendrick, Sarah K; Zheng, Qi; Garbett, Nichola C; Brock, Guy N

    2017-01-01

    DSC is used to determine thermally-induced conformational changes of biomolecules within a blood plasma sample. Recent research has indicated that DSC curves (or thermograms) may have different characteristics based on disease status and, thus, may be useful as a monitoring and diagnostic tool for some diseases. Since thermograms are curves measured over a range of temperature values, they are considered functional data. In this paper we apply functional data analysis techniques to analyze differential scanning calorimetry (DSC) data from individuals from the Lupus Family Registry and Repository (LFRR). The aim was to assess the effect of lupus disease status as well as additional covariates on the thermogram profiles, and use FD analysis methods to create models for classifying lupus vs. control patients on the basis of the thermogram curves. Thermograms were collected for 300 lupus patients and 300 controls without lupus who were matched with diseased individuals based on sex, race, and age. First, functional regression with a functional response (DSC) and categorical predictor (disease status) was used to determine how thermogram curve structure varied according to disease status and other covariates including sex, race, and year of birth. Next, functional logistic regression with disease status as the response and functional principal component analysis (FPCA) scores as the predictors was used to model the effect of thermogram structure on disease status prediction. The prediction accuracy for patients with Osteoarthritis and Rheumatoid Arthritis but without Lupus was also calculated to determine the ability of the classifier to differentiate between Lupus and other diseases. Data were divided 1000 times into separate 2/3 training and 1/3 test data for evaluation of predictions. Finally, derivatives of thermogram curves were included in the models to determine whether they aided in prediction of disease status. Functional regression with thermogram as a functional response and disease status as predictor showed a clear separation in thermogram curve structure between cases and controls. The logistic regression model with FPCA scores as the predictors gave the most accurate results with a mean 79.22% correct classification rate with a mean sensitivity = 79.70%, and specificity = 81.48%. The model correctly classified OA and RA patients without Lupus as controls at a rate of 75.92% on average with a mean sensitivity = 79.70% and specificity = 77.6%. Regression models including FPCA scores for derivative curves did not perform as well, nor did regression models including covariates. Changes in thermograms observed in the disease state likely reflect covalent modifications of plasma proteins or changes in large protein-protein interacting networks resulting in the stabilization of plasma proteins towards thermal denaturation. By relating functional principal components from thermograms to disease status, our Functional Principal Component Analysis model provides results that are more easily interpretable compared to prior studies. Further, the model could also potentially be coupled with other biomarkers to improve diagnostic classification for lupus.

  18. Screening vaccine formulations for biological activity using fresh human whole blood

    PubMed Central

    Brookes, Roger H; Hakimi, Jalil; Ha, Yukyung; Aboutorabian, Sepideh; Ausar, Salvador F; Hasija, Manvi; Smith, Steven G; Todryk, Stephen M; Dockrell, Hazel M; Rahman, Nausheen

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression. PMID:24401565

  19. Screening vaccine formulations for biological activity using fresh human whole blood.

    PubMed

    Brookes, Roger H; Hakimi, Jalil; Ha, Yukyung; Aboutorabian, Sepideh; Ausar, Salvador F; Hasija, Manvi; Smith, Steven G; Todryk, Stephen M; Dockrell, Hazel M; Rahman, Nausheen

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression.

  20. Atomoxetine restores the response inhibition network in Parkinson's disease.

    PubMed

    Rae, Charlotte L; Nombela, Cristina; Rodríguez, Patricia Vázquez; Ye, Zheng; Hughes, Laura E; Jones, P Simon; Ham, Timothy; Rittman, Timothy; Coyle-Gilchrist, Ian; Regenthal, Ralf; Sahakian, Barbara J; Barker, Roger A; Robbins, Trevor W; Rowe, James B

    2016-08-01

    Parkinson's disease impairs the inhibition of responses, and whilst impulsivity is mild for some patients, severe impulse control disorders affect ∼10% of cases. Based on preclinical models we proposed that noradrenergic denervation contributes to the impairment of response inhibition, via changes in the prefrontal cortex and its subcortical connections. Previous work in Parkinson's disease found that the selective noradrenaline reuptake inhibitor atomoxetine could improve response inhibition, gambling decisions and reflection impulsivity. Here we tested the hypotheses that atomoxetine can restore functional brain networks for response inhibition in Parkinson's disease, and that both structural and functional connectivity determine the behavioural effect. In a randomized, double-blind placebo-controlled crossover study, 19 patients with mild-to-moderate idiopathic Parkinson's disease underwent functional magnetic resonance imaging during a stop-signal task, while on their usual dopaminergic therapy. Patients received 40 mg atomoxetine or placebo, orally. This regimen anticipates that noradrenergic therapies for behavioural symptoms would be adjunctive to, not a replacement for, dopaminergic therapy. Twenty matched control participants provided normative data. Arterial spin labelling identified no significant changes in regional perfusion. We assessed functional interactions between key frontal and subcortical brain areas for response inhibition, by comparing 20 dynamic causal models of the response inhibition network, inverted to the functional magnetic resonance imaging data and compared using random effects model selection. We found that the normal interaction between pre-supplementary motor cortex and the inferior frontal gyrus was absent in Parkinson's disease patients on placebo (despite dopaminergic therapy), but this connection was restored by atomoxetine. The behavioural change in response inhibition (improvement indicated by reduced stop-signal reaction time) following atomoxetine correlated with structural connectivity as measured by the fractional anisotropy in the white matter underlying the inferior frontal gyrus. Using multiple regression models, we examined the factors that influenced the individual differences in the response to atomoxetine: the reduction in stop-signal reaction time correlated with structural connectivity and baseline performance, while disease severity and drug plasma level predicted the change in fronto-striatal effective connectivity following atomoxetine. These results suggest that (i) atomoxetine increases sensitivity of the inferior frontal gyrus to afferent inputs from the pre-supplementary motor cortex; (ii) atomoxetine can enhance downstream modulation of frontal-subcortical connections for response inhibition; and (iii) the behavioural consequences of treatment are dependent on fronto-striatal structural connections. The individual differences in behavioural responses to atomoxetine highlight the need for patient stratification in future clinical trials of noradrenergic therapies for Parkinson's disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

  1. Threshold Gravity Determination and Artificial Gravity Studies Using Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required (magnitude and duration)? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for a variable gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  2. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    NASA Astrophysics Data System (ADS)

    TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-01

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  3. Regional radiation dose-response modeling of functional liver in hepatocellular carcinoma patients with longitudinal sulfur colloid SPECT/CT: a proof of concept.

    PubMed

    Price, Ryan G; Apisarnthanarax, Smith; Schaub, Stephanie K; Nyflot, Matthew J; Chapman, Tobias R; Matesan, Manuela; Vesselle, Hubert J; Bowen, Stephen R

    2018-06-19

    We report on patient-specific quantitative changes in longitudinal sulfur colloid SPECT/CT as a function of regional radiation dose distributions to normal liver in a cohort of hepatocellular carcinoma patients. Dose-response thresholds and slopes varied with baseline liver function metrics, and extreme values were found in patients with fatal hepatotoxicity. Dose-response modeling of normal liver in individual HCC patients has potential to characterize in vivo radiosensitivity, identify high risk subgroups, and personalize treatment planning dose constraints. Hepatotoxicity risk in hepatocellular carcinoma (HCC) patients is modulated by radiation dose delivered to normal liver tissue, but reported dose-response data are limited. Our prior work established baseline [ 99m Tc]sulfur colloid (SC) SPECT/CT liver function imaging biomarkers that predict clinical outcomes. We conducted a proof-of-concept investigation with longitudinal SC SPECT/CT to characterize patient-specific radiation dose-response relationships as surrogates for liver radiosensitivity. SC SPECT/CT images of 15 HCC patients with variable Child-Pugh status (8 CP-A, 7 CP-B/C) were acquired in treatment position prior to and 1 month (nominal) after SBRT (n=6) or proton therapy (n=9). Localized rigid registrations between pre/post-treatment CT to planning CT scans were performed, and transformations were applied to pre/post-treatment SC SPECT images. Radiotherapy doses were converted to EQD2 α/β=3 and Gy (RBE), and binned in 5 GyEQD2 increments within tumor-subtracted livers. Mean dose and percent change (%ΔSC) between pre- and post-treatment SPECT uptake, normalized to regions receiving < 5 GyEQD2, were calculated in each binned dose region. Dose-response data were parameterized by sigmoid functions (double exponential) consisting of maximum reduction (%ΔSC max ), dose midpoint (D mid ), and dose-response slope (α mid ) parameters. Individual patient sigmoid dose-response curves had high goodness-of-fit (median R 2 = 0.96, range 0.76-0.99). Large inter-patient variability was observed, with median (range) in %ΔSC max of 44% (20-75%), D mid of 13 Gy (4-27 GyEQD2), and α mid of 0.11 GyEQD2 -1 (0.04-0.29 GyEQD2 -1 ), respectively. Eight of 15 patients had %ΔSC max = 20-45%, while 7/15 had %ΔSC max = 60-75%, with subgroups made up of variable baseline liver function status and radiation treatment modality. Fatal hepatotoxicity occurred in patients (2/15) with low TLF (< 0.12) and low D mid (< 7 GyEQD2). Longitudinal SC SPECT/CT imaging revealed patient-specific variations in dose-response, and may identify patients with poor baseline liver function and increased sensitivity to radiation therapy. Validation of this regional liver dose-response modeling concept as a surrogate for patient-specific radiosensitivity has potential to guide HCC therapy regimen selection and planning constraints. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    PubMed Central

    Buckley, Katherine M.; Rast, Jonathan P.

    2017-01-01

    The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN) approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17), are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism. PMID:29109720

  5. Perception of differences in naturalistic dynamic scenes, and a V1-based model.

    PubMed

    To, Michelle P S; Gilchrist, Iain D; Tolhurst, David J

    2015-01-16

    We investigate whether a computational model of V1 can predict how observers rate perceptual differences between paired movie clips of natural scenes. Observers viewed 198 pairs of movies clips, rating how different the two clips appeared to them on a magnitude scale. Sixty-six of the movie pairs were naturalistic and those remaining were low-pass or high-pass spatially filtered versions of those originals. We examined three ways of comparing a movie pair. The Spatial Model compared corresponding frames between each movie pairwise, combining those differences using Minkowski summation. The Temporal Model compared successive frames within each movie, summed those differences for each movie, and then compared the overall differences between the paired movies. The Ordered-Temporal Model combined elements from both models, and yielded the single strongest predictions of observers' ratings. We modeled naturalistic sustained and transient impulse functions and compared frames directly with no temporal filtering. Overall, modeling naturalistic temporal filtering improved the models' performance; in particular, the predictions of the ratings for low-pass spatially filtered movies were much improved by employing a transient impulse function. The correlations between model predictions and observers' ratings rose from 0.507 without temporal filtering to 0.759 (p = 0.01%) when realistic impulses were included. The sustained impulse function and the Spatial Model carried more weight in ratings for normal and high-pass movies, whereas the transient impulse function with the Ordered-Temporal Model was most important for spatially low-pass movies. This is consistent with models in which high spatial frequency channels with sustained responses primarily code for spatial details in movies, while low spatial frequency channels with transient responses code for dynamic events. © 2015 ARVO.

  6. Lung pathology in response to repeated exposure to Staphylococcus aureus in congenic residual function cystic fibrosis mice does not increase in response to decreased CFTR levels or increased bacterial load.

    PubMed

    Davidson, Donald J; Webb, Sheila; Teague, Peter; Govan, John R W; Dorin, Julia R

    2004-01-01

    To establish the role of defects in murine Cftr in the susceptibility to Staphylococcus aureus lung disease using mouse models of cystic fibrosis (CF), congenic or inbred strains. We describe the histopathological analyses of CF mice repeatedly exposed by aerosolisation to a CF isolate of S. aureus, using residual function Cftr mice and compound heterozygotes generated by intercrossing these with Cftr 'null' mice, all congenic on the C57Bl6/N background. We demonstrate that mice congenic on the C57Bl/6 background develop significantly more severe lung pathology than non-CF littermates in response to repeated exposure to the most frequent early CF lung pathogen S. aureus. Furthermore, reducing the level of Cftr by half in compound heterozygote mice does not impact upon disease severity, even in response to an increased bacterial dose. These results are consistent with an airway clearance defect, or abnormal inflammatory response secondary to Cftr mutation. These studies confirm the primary role for Cftr mutation in the development of this lung phenotype. In addition, these results demonstrate that a further 50% decrease in residual wild-type Cftr mRNA levels in this model does not impact the severity of the histopathological response to S. aureus, suggesting a critical threshold level for functional CFTR. Copyright 2004 S. Karger AG, Basel

  7. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice.

    PubMed

    Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena; Pizzorusso, Tommaso

    2017-06-15

    CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60-80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. © The Author 2017. Published by Oxford University Press.

  8. Taking into account the impact of attrition on the assessment of response shift and true change: a multigroup structural equation modeling approach.

    PubMed

    Verdam, Mathilde G E; Oort, Frans J; van der Linden, Yvette M; Sprangers, Mirjam A G

    2015-03-01

    Missing data due to attrition present a challenge for the assessment and interpretation of change and response shift in HRQL outcomes. The objective was to handle such missingness and to assess response shift and 'true change' with the use of an attrition-based multigroup structural equation modeling (SEM) approach. Functional limitations and health impairments were measured in 1,157 cancer patients, who were treated with palliative radiotherapy for painful bone metastases, before [time (T) 0], every week after treatment (T1 through T12), and then monthly for up to 2 years (T13 through T24). To handle missing data due to attrition, the SEM procedure was extended to a multigroup approach, in which we distinguished three groups: short survival (3-5 measurements), medium survival (6-12 measurements), and long survival (>12 measurements). Attrition after third, sixth, and 13th measurement occasions was 11, 24, and 41 %, respectively. Results show that patterns of change in functional limitations and health impairments differ between patients with short, medium, or long survival. Moreover, three response-shift effects were detected: recalibration of 'pain' and 'sickness' and reprioritization of 'physical functioning.' If response-shift effects would not have been taken into account, functional limitations and health impairments would generally be underestimated across measurements. The multigroup SEM approach enables the analysis of data from patients with different patterns of missing data due to attrition. This approach does not only allow for detection of response shift and assessment of true change across measurements, but also allow for detection of differences in response shift and true change across groups of patients with different attrition rates.

  9. The Impact of Family Functioning on Caregiver Burden among Caregivers of Veterans with Congestive Heart Failure

    ERIC Educational Resources Information Center

    Moore, Crystal Dea

    2010-01-01

    A cross-sectional study of 76 family caregivers of older veterans with congestive heart failure utilized the McMaster model of family functioning to examine the impact of family functioning variables (problem solving, communication, roles, affective responsiveness, and affective involvement) on caregiver burden dimensions (relationship burden,…

  10. Examining Differential Math Performance by Gender and Opportunity to Learn

    ERIC Educational Resources Information Center

    Albano, Anthony D.; Rodriguez, Michael C.

    2013-01-01

    Although a substantial amount of research has been conducted on differential item functioning in testing, studies have focused on detecting differential item functioning rather than on explaining how or why it may occur. Some recent work has explored sources of differential functioning using explanatory and multilevel item response models. This…

  11. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors

    PubMed Central

    Woods, Emily C.; McBride, Shonna M.

    2017-01-01

    Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens. PMID:28153747

  12. Determining Concentration of Nanoparticles from Ellipsometry

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa; Kempen, Lothar U.; Chipman, Russell

    2008-01-01

    A method of using ellipsometry or polarization analysis of light in total internal reflection of a surface to determine the number density of gold nanoparticles on a smooth substrate has been developed. The method can be modified to enable determination of densities of sparse distributions of nanoparticles in general, and is expected to be especially useful for measuring gold-nanoparticle-labeled biomolecules on microarrays. The method is based on theoretical calculations of the ellipsometric responses of gold nanoparticles. Elements of the calculations include the following: For simplicity, the gold nanoparticles are assumed to be spherical and to have the same radius. The distribution of gold nanoparticles is assumed to be a sub-monolayer (that is, sparser than a monolayer). The optical response of the sub-monolayer is modeled by use of a thin-island-film theory, according to which the polarizabilities parallel and perpendicular to the substrate are functions of the wavelength of light, the dielectric functions (permittivities expressed as complex functions of frequency or wavelength) of the gold and the suspending medium (in this case, the suspending medium is air), the fraction of the substrate area covered by the nanoparticles, and the radius of the nanoparticles. For the purpose of the thin-island-film theory, the dielectric function of the gold nanoparticles is modeled as the known dielectric function of bulk gold plus a correction term that is necessitated by the fact that the mean free path length for electrons in gold decreases with decreasing radius, in such a manner as to cause the imaginary part of the dielectric function to increase with decreasing radius (see figure). The correction term is a function of the nanoparticle radius, the wavelength of light, the mean free path and the Fermi speed of electrons in bulk gold, the plasma frequency of gold, and the speed of light in a vacuum. These models are used to calculate ellipsometric responses for various concentrations of gold nanoparticles having an assumed radius. The modeled data indicates distinct spectral features for both the real and the imaginary part of the dielectric function. An ellipsometric measurement would determine this distinct feature and thus can be used to measure nanoparticle concentration. By "ellipsometric responses" is meant the intensities of light measured in various polarization states as functions of the angle of incidence and the polarization states of the incident light. These calculated ellipsometric responses are used as calibration curves: Data from subsequent ellipsometric measurements on real specimens are compared with the calibration curves. The concentration of the nanoparticles on a specimen is assumed to be that of the calibration curve that most closely matches the data pertaining to that specimen.

  13. Reduced order modeling of head related transfer functions for virtual acoustic displays

    NASA Astrophysics Data System (ADS)

    Willhite, Joel A.; Frampton, Kenneth D.; Grantham, D. Wesley

    2003-04-01

    The purpose of this work is to improve the computational efficiency in acoustic virtual applications by creating and testing reduced order models of the head related transfer functions used in localizing sound sources. State space models of varying order were generated from zero-elevation Head Related Impulse Responses (HRIRs) using Kungs Single Value Decomposition (SVD) technique. The inputs to the models are the desired azimuths of the virtual sound sources (from minus 90 deg to plus 90 deg, in 10 deg increments) and the outputs are the left and right ear impulse responses. Trials were conducted in an anechoic chamber in which subjects were exposed to real sounds that were emitted by individual speakers across a numbered speaker array, phantom sources generated from the original HRIRs, and phantom sound sources generated with the different reduced order state space models. The error in the perceived direction of the phantom sources generated from the reduced order models was compared to errors in localization using the original HRIRs.

  14. A study of material damping in large space structures

    NASA Technical Reports Server (NTRS)

    Highsmith, A. L.; Allen, D. H.

    1989-01-01

    A constitutive model was developed for predicting damping as a function of damage in continuous fiber reinforced laminated composites. The damage model is a continuum formulation, and uses internal state variables to quantify damage and its subsequent effect on material response. The model is sensitive to the stacking sequence of the laminate. Given appropriate baseline data from unidirectional material, and damping as a function of damage in one crossply laminate, damage can be predicted as a function of damage in other crossply laminates. Agreement between theory and experiment was quite good. A micromechanics model was also developed for examining the influence of damage on damping. This model explicitly includes crack surfaces. The model provides reasonable predictions of bending stiffness as a function of damage. Damping predictions are not in agreement with the experiment. This is thought to be a result of dissipation mechanisms such as friction, which are not presently included in the analysis.

  15. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  16. Two-dimensional lattice-fluid model with waterlike anomalies.

    PubMed

    Buzano, C; De Stefanis, E; Pelizzola, A; Pretti, M

    2004-06-01

    We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.

  17. Analysis of the transfer function for layered piezoelectric ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Gutiérrrez-Reyes, E.; García-Segundo, C.; García-Valenzuela, A.; Reyes-Ramírez, B.; Gutiérrez-Juárez, G.; Guadarrama-Santana, A.

    2017-06-01

    We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.

  18. Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

    NASA Astrophysics Data System (ADS)

    Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.

    We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.

  19. [Cognitive Functions in the Prefrontal Association Cortex; Transitive Inference and the Lateral Prefrontal Cortex].

    PubMed

    Tanaka, Shingo; Oguchi, Mineki; Sakagami, Masamichi

    2016-11-01

    To behave appropriately in a complex and uncertain world, the brain makes use of several distinct learning systems. One such system is called the "model-free process", via which conditioning allows the association between a stimulus or response and a given reward to be learned. Another system is called the "model-based process". Via this process, the state transition between a stimulus and a response is learned so that the brain is able to plan actions prior to their execution. Several studies have tried to relate the difference between model-based and model-free processes to the difference in functions of the lateral prefrontal cortex (LPFC) and the striatum. Here, we describe a series of studies that demonstrate the ability of LPFC neurons to categorize visual stimuli by their associated behavioral responses and to generate abstract information. If LPFC neurons utilize abstract code to associate a stimulus with a reward, they should be able to infer similar relationships between other stimuli of the same category and their rewards without direct experience of these stimulus-reward contingencies. We propose that this ability of LPFC neurons to utilize abstract information can contribute to the model-based learning process.

  20. DEVELOPMENT AND MODIFICATION OF A RESPONSE CLASS VIA POSITIVE AND NEGATIVE REINFORCEMENT: A TRANSLATIONAL APPROACH

    PubMed Central

    Mendres, Amber E; Borrero, John C

    2010-01-01

    When responses function to produce the same reinforcer, a response class exists. Researchers have examined response classes in applied settings; however, the challenges associated with conducting applied research on response class development have recently necessitated the development of an analogue response class model. To date, little research has examined response classes that are strengthened by negative reinforcement. The current investigation was designed to develop a laboratory model of a response class through positive reinforcement (i.e., points exchangeable for money) and through negative reinforcement (i.e., the avoidance of scheduled point losses) with 11 college students as participants and clicks as the operant. Results of both the positive and negative reinforcement evaluations showed that participants usually selected the least effortful response that produced points or the avoidance of point losses, respectively. The applied implications of the findings are discussed, along with the relevance of the present model to the study of punishment and resurgence. PMID:21541150

  1. A phenomenological model for simulating the chemo-responsive shape memory effect in polymers undergoing a permeation transition

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Huang, Wei Min; Leng, Jinsong

    2014-04-01

    We present a phenomenological model for studying the constitutive relations and working mechanism of the chemo-responsive shape memory effect (SME) in shape memory polymers (SMPs). On the basis of the solubility parameter equation, diffusion model and permeation transition model, a phenomenological model is derived for quantitatively identifying the influential factors in the chemically induced SME in SMPs. After this, a permeability parallel model and series model are implemented in order to couple the constitutive relations of the permeability coefficient, stress and relaxation time as a function of stretch, separately. The inductive effect of the permeability transition on the transition temperature is confirmed as the driving force for the chemo-responsive SME. Furthermore, the analytical result from the phenomenological model is compared with the available experimental results and the simulation of a semi-empirical model reported in the literature for verification.

  2. Extracting scene feature vectors through modeling, volume 3

    NASA Technical Reports Server (NTRS)

    Berry, J. K.; Smith, J. A.

    1976-01-01

    The remote estimation of the leaf area index of winter wheat at Finney County, Kansas was studied. The procedure developed consists of three activities: (1) field measurements; (2) model simulations; and (3) response classifications. The first activity is designed to identify model input parameters and develop a model evaluation data set. A stochastic plant canopy reflectance model is employed to simulate reflectance in the LANDSAT bands as a function of leaf area index for two phenological stages. An atmospheric model is used to translate these surface reflectances into simulated satellite radiance. A divergence classifier determines the relative similarity between model derived spectral responses and those of areas with unknown leaf area index. The unknown areas are assigned the index associated with the closest model response. This research demonstrated that the SRVC canopy reflectance model is appropriate for wheat scenes and that broad categories of leaf area index can be inferred from the procedure developed.

  3. Finite Element Aircraft Simulation of Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.

    1997-01-01

    A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.

  4. Suppression of antigen-specific lymphocyte activation in modeled microgravity

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pride, M. W.; Brown, E. L.; Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  5. Value of eddy-covariance data for individual-based, forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2014-05-01

    Individual-based forest gap models simulate tree growth and carbon fluxes on large time scales. They are a well established tool to predict forest dynamics and successions. However, the effect of climatic variables on processes of such individual-based models is uncertain (e.g. the effect of temperature or soil moisture on the gross primary production (GPP)). Commonly, functional relationships and parameter values that describe the effect of climate variables on the model processes are gathered from various vegetation models of different spatial scales. Though, their accuracies and parameter values have not been validated for the specific model scales of individual-based forest gap models. In this study, we address this uncertainty by linking Eddy-covariance (EC) data and a forest gap model. The forest gap model FORMIND is applied on the Norwegian spruce monoculture forest at Wetzstein in Thuringia, Germany for the years 2003-2008. The original parameterizations of climatic functions are adapted according to the EC-data. The time step of the model is reduced to one day in order to adapt to the high resolution EC-data. The FORMIND model uses functional relationships on an individual level, whereas the EC-method measures eco-physiological responses at the ecosystem level. However, we assume that in homogeneous stands as in our study, functional relationships for both methods are comparable. The model is then validated at the spruce forest Waldstein, Germany. Results show that the functional relationships used in the model, are similar to those observed with the EC-method. The temperature reduction curve is well reflected in the EC-data, though parameter values differ from the originally expected values. For example at the freezing point, the observed GPP is 30% higher than predicted by the forest gap model. The response of observed GPP to soil moisture shows that the permanent wilting point is 7 vol-% lower than the value derived from the literature. The light response curve, integrated over the canopy and the forest stand, is underestimated compared to the measured data. The EC-method measures a yearly carbon balance of 13 mol(CO2)m-2 for the Wetzstein site. The model with the original parameterization overestimates the yearly carbon balance by nearly 5 mol(CO2)m-2 while the model with an EC-based parameterization fits the measured data very well. The parameter values derived from EC-data are applied on the spruce forest Waldstein and clearly improve estimates of the carbon balance.

  6. A Membrane Model from Implicit Elasticity Theory. Application to Visceral Pleura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freed, Alan D.; Liao, Jun; Einstein, Daniel R.

    2013-11-27

    A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal energy function. The theory utilizes Biot’s (Lond Edinb Dublin Philos Mag J Sci 27:468–489, 1939) definitions for stress and strain that, in one-dimension, are the stress/strain measures adopted by Fung (Am J Physiol 28:1532–1544, 1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from amore » porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly nonlinear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model.« less

  7. Global excitation of wave phenomena in a dissipative multiconstituent medium. I - Transfer function of the earth's thermosphere. II - Impulsive perturbations in the earth's thermosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.

    1984-01-01

    A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.

  8. Thirty Years of Nonparametric Item Response Theory.

    ERIC Educational Resources Information Center

    Molenaar, Ivo W.

    2001-01-01

    Discusses relationships between a mathematical measurement model and its real-world applications. Makes a distinction between large-scale data matrices commonly found in educational measurement and smaller matrices found in attitude and personality measurement. Also evaluates nonparametric methods for estimating item response functions and…

  9. Landscape structure and climate influences on hydrologic response

    NASA Astrophysics Data System (ADS)

    Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.

    2011-12-01

    Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.

  10. Functional and structural insights into novel DREB1A transcription factors in common wheat (Triticum aestivum L.): A molecular modeling approach.

    PubMed

    Kumar, Anuj; Kumar, Sanjay; Kumar, Upendra; Suravajhala, Prashanth; Gajula, M N V Prasad

    2016-10-01

    Triticum aestivum L. known as common wheat is one of the most important cereal crops feeding a large and growing population. Various environmental stress factors including drought, high salinity and heat etc. adversely affect wheat production in a significant manner. Dehydration-responsive element-binding (DREB1A) factors, a class of transcription factors (TF) play an important role in combating drought stress. It is known that DREB1A specifically interacts with the dehydration responsive elements (DRE/CRT) inducing expression of genes involved in environmental stress tolerance in plants. Despite its critical interplay in plants, the structural and functional aspects of DREB1A TF in wheat remain unresolved. Previous studies showed that wheat DREBs (DREB1 and DREB2) were isolated using various methods including yeast two-hybrid screens but no extensive structural models were reported. In this study, we made an extensive in silico study to gain insight into DREB1A TF and reported the location of novel DREB1A in wheat chromosomes. We inferred the three-dimensional structural model of DREB1A using homology modelling and further evaluated them using molecular dynamics(MD) simulations yielding refined modelled structures. Our biochemical function predictions suggested that the wheat DREB1A orthologs have similar biochemical functions and pathways to that of AtDREB1A. In conclusion, the current study presents a structural perspective of wheat DREB1A and helps in understanding the molecular basis for the mechanism of DREB1A in response to environmental stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The resilience and functional role of moss in boreal and arctic ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turetsky, Merritt; Bond-Lamberty, Benjamin; Euskirchen, Eugenie S.

    2012-08-24

    Mosses in boreal and arctic ecosystems are ubiquitous components of plant communities, represent an important component of plant diversity, and strongly influence the cycling of water, nutrients, energy and carbon. Here we use a literature review and synthesis as well as model simulations to explore the role of moss in ecological stability and resilience. Our literature review of moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories in boreal and arctic regions. Our modeling simulations suggest that loss of moss within northern plant communities will reduce soil carbon accumulation primarily by influencingmore » decomposition rates and soil nitrogen availability. While two models (HPM and STM-TEM) showed a significant effect of moss removal, results from the Biome-BGC and DVM-TEM models suggest that northern, moss-rich ecosystems would need to experience extreme perturbation before mosses were eliminated. We highlight a number of issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, phenotypical plasticity in traits, and whether the effects of moss on ecosystem processes scale with local abundance. We also suggest that as more models explore issues related to ecological resilience, issues related to both parameter and conceptual uncertainty should be addressed: are the models more limited by uncertainty in the parameterization of the processes included or by what is not represented in the model at all? It seems clear from our review that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species.« less

  12. Maximum Marginal Likelihood Estimation of a Monotonic Polynomial Generalized Partial Credit Model with Applications to Multiple Group Analysis.

    PubMed

    Falk, Carl F; Cai, Li

    2016-06-01

    We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest order polynomial. Our approach extends Liang's (A semi-parametric approach to estimate IRFs, Unpublished doctoral dissertation, 2007) method for dichotomous item responses to the case of polytomous data. Furthermore, item parameter estimation is implemented with maximum marginal likelihood using the Bock-Aitkin EM algorithm, thereby facilitating multiple group analyses useful in operational settings. Our approach is demonstrated on both educational and psychological data. We present simulation results comparing our approach to more standard IRF estimation approaches and other non-parametric and semi-parametric alternatives.

  13. Response Strength in Extreme Multiple Schedules

    PubMed Central

    McLean, Anthony P; Grace, Randolph C; Nevin, John A

    2012-01-01

    Four pigeons were trained in a series of two-component multiple schedules. Reinforcers were scheduled with random-interval schedules. The ratio of arranged reinforcer rates in the two components was varied over 4 log units, a much wider range than previously studied. When performance appeared stable, prefeeding tests were conducted to assess resistance to change. Contrary to the generalized matching law, logarithms of response ratios in the two components were not a linear function of log reinforcer ratios, implying a failure of parameter invariance. Over a 2 log unit range, the function appeared linear and indicated undermatching, but in conditions with more extreme reinforcer ratios, approximate matching was observed. A model suggested by McLean (1991), originally for local contrast, predicts these changes in sensitivity to reinforcer ratios somewhat better than models by Herrnstein (1970) and by Williams and Wixted (1986). Prefeeding tests of resistance to change were conducted at each reinforcer ratio, and relative resistance to change was also a nonlinear function of log reinforcer ratios, again contrary to conclusions from previous work. Instead, the function suggests that resistance to change in a component may be determined partly by the rate of reinforcement and partly by the ratio of reinforcers to responses. PMID:22287804

  14. Structural stability of nonlinear population dynamics.

    PubMed

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  15. Structural stability of nonlinear population dynamics

    NASA Astrophysics Data System (ADS)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  16. Generalized analytic solutions and response characteristics of magnetotelluric fields on anisotropic infinite faults

    NASA Astrophysics Data System (ADS)

    Bing, Xue; Yicai, Ji

    2018-06-01

    In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.

  17. Bayes Factor Covariance Testing in Item Response Models.

    PubMed

    Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip

    2017-12-01

    Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.

  18. Semi-empirical and phenomenological instrument functions for the scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Feuchtwang, T. E.; Cutler, P. H.; Notea, A.

    1988-08-01

    Recent progress in the development of a convenient algorithm for the determination of a quantitative local density of states (LDOS) of the sample, from data measured in the STM, is reviewd. It is argued that the sample LDOS strikes a good balance between the information content of a surface characteristic and effort required to obtain it experimentally. Hence, procedures to determine the sample LDOS as directly and as tip-model independently as possible are emphasized. The solution of the STM's "inverse" problem in terms of novel versions of the instrument (or Green) function technique is considered in preference to the well known, more direct solutions. Two types of instrument functions are considered: Approximations of the basic tip-instrument function obtained from the transfer Hamiltonian theory of the STM-STS. And, phenomenological instrument functions devised as a systematic scheme for semi-empirical first order corrections of "ideal" models. The instrument function, in this case, describes the corrections as the response of an independent component of the measuring apparatus inserted between the "ideal" instrument and the measured data. This linear response theory of measurement is reviewed and applied. A procedure for the estimation of the consistency of the model and the systematic errors due to the use of an approximate instrument function is presented. The independence of the instrument function techniques from explicit microscopic models of the tip is noted. The need for semi-empirical, as opposed to strictly empirical or analytical determination of the instrument function is discussed. The extension of the theory to the scanning tunneling spectrometer is noted, as well as its use in a theory of resolution.

  19. A Comparison of Measurement Equivalence Methods Based on Confirmatory Factor Analysis and Item Response Theory.

    ERIC Educational Resources Information Center

    Flowers, Claudia P.; Raju, Nambury S.; Oshima, T. C.

    Current interest in the assessment of measurement equivalence emphasizes two methods of analysis, linear, and nonlinear procedures. This study simulated data using the graded response model to examine the performance of linear (confirmatory factor analysis or CFA) and nonlinear (item-response-theory-based differential item function or IRT-Based…

  20. SPIROMETRIC RESPONSE TO OZONE (O3) IN YOUNG ADULTS AS A FUNCTION OF BODY MAASS INDEX (BMI)

    EPA Science Inventory

    Recent studies in murine models of obesity have shown enhanced responsiveness to ozone in obese vs. lean mice. To assess whether previous human ozone exposure data from our laboratory support an effect of BMI on the spirometric response to ozone we analyzed the post-O3 percent de...

Top