Science.gov

Sample records for response imaging evaluation

  1. Imaging in evaluation of response to neoadjuvant breast cancer treatment

    PubMed Central

    Ollivier, L; Balu-Maestro, C; Leclère, J

    2005-01-01

    The role of imaging for patients treated with neoadjuvant therapy for breast cancer is not only to evaluate the therapeutic response in terms of tumour shrinkage, but also to predict the histological response to chemotherapy, which is correlated to survival. Surgery and histopathological analysis after neoadjuvant therapy allow for an objective assessment of the accuracy of imaging techniques in evaluating response. The aim of this study is to compare the value of the different conventional and functional imaging techniques for determining response to neoadjuvant chemotherapy in breast cancer treatment. PMID:16154816

  2. Visible hyperspectral imaging evaluating the cutaneous response to ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Ilias, Michail A.; Häggblad, Erik; Anderson, Chris; Salerud, E. Göran

    2007-02-01

    In vivo diagnostics of skin diseases as well as understanding of the skin biology constitute a field demanding characterization of physiological and anatomical parameters. Biomedical optics has been successfully used, to qualitatively and quantitatively estimate the microcirculatory conditions of superficial skin. Capillaroscopy, laser Doppler techniques and spectroscopy, all elucidate different aspects of microcirculation, e.g. capillary anatomy and distribution, tissue perfusion and hemoglobin oxygenation. We demonstrate the use of a diffuse reflectance hyperspectral imaging system for spatial and temporal characterization of tissue oxygenation, important to skin viability. The system comprises: light source, liquid crystal tunable filter, camera objective, CCD camera, and the decomposition of the spectral signature into relative amounts of oxy- and deoxygenized hemoglobin as well as melanin in every pixel resulting in tissue chromophore images. To validate the system, we used a phototesting model, creating a graded inflammatory response of a known geometry, in order to evaluate the ability to register spatially resolved reflectance spectra. The obtained results demonstrate the possibility to describe the UV inflammatory response by calculating the change in tissue oxygen level, intimately connected to a tissue's metabolism. Preliminary results on the estimation of melanin content are also presented.

  3. Computerized PET/CT image analysis in the evaluation of tumour response to therapy

    PubMed Central

    Wang, J; Zhang, H H

    2015-01-01

    Current cancer therapy strategy is mostly population based, however, there are large differences in tumour response among patients. It is therefore important for treating physicians to know individual tumour response. In recent years, many studies proposed the use of computerized positron emission tomography/CT image analysis in the evaluation of tumour response. Results showed that computerized analysis overcame some major limitations of current qualitative and semiquantitative analysis and led to improved accuracy. In this review, we summarize these studies in four steps of the analysis: image registration, tumour segmentation, image feature extraction and response evaluation. Future works are proposed and challenges described. PMID:25723599

  4. Prediction and Early Evaluation of Anticancer Therapy Response: From Imaging of Drug Efflux Pumps to Targeted Therapy Response.

    PubMed

    Meng, Qingqing; Li, Zheng; Li, Shaoshun

    2016-01-01

    Multidrug resistance (MDR) describes the resistance of tumor cells to chemotherapy and has been ascribed to the overexpression of drug efflux pumps. Molecular imaging of drug efflux pumps is helpful to identify the patients who may be resistant to the chemotherapy and thus will avoid the unnecessary treatment and increase the therapeutic effectiveness. Imaging probes targeting drug efflux pumps can non-invasively evaluate the Pgp function and play an important role in identification of MDR, prediction of response, and monitoring MDR modulation. On the other hand, new anticancer agents based on molecular targets such as epidermal growth factor receptor (EGFR) and angiogenic factor receptor may potentially be combined with chemotherapeutic drugs to overcome the MDR. Imaging of molecular targets visualize treatment response of patients at molecular level vividly and help to select right patients for certain targeted anticancer therapy. Among all the imaging modalities, nuclear imaging including positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging has the greatest promise for rapid translation to the clinic and can realize quantitative visualization of biochemical processes in vivo. In this review, we will summarize the nuclear imaging probes utilized for predicting and evaluating the early anticancer therapy response.99mTc labeled agents and PET based radiopharmaceuticals like 18F-Paclitaxel, 11C-Verapamil for drug efflux pumps imaging will be discussed here. Moreover, molecular imaging probes used for targeted therapy response evaluation like 18F-Tamoxifen,89Zr-Trastuzumab will also be introduced in this review.

  5. Digital Image Analysis for Morphometric Evaluation of Tissue Response after Implanting Alloplastic Vascular Prostheses

    NASA Astrophysics Data System (ADS)

    Zippel, Roland; Hoene, Andreas; Walschus, Uwe; Jarchow, Raymond; Ueberrueck, Torsten; Patrzyk, Maciej; Schlosser, Michael; Wilhelm, Lutz

    2006-07-01

    The aim of this study was to examine the suitability of digital image analysis, using the KS400 software system, for the morphometric evaluation of the tissue response after prosthesis implantation in an animal model. Twenty-four female pigs aged 10 weeks were implanted with infrarenal Dacron® prostheses for 14, 21, 28, and 116 days. Following the explantation and investigation of the neointima region, the expression of beta-1-integrin, the proliferation rate by means of Ki-67 positive cells, and the intima thickness were evaluated as exemplary parameters of the tissue response after implantation. Frozen tissue sections were immunohistochemically stained and subsequently examined using computer-aided image analysis. A maximum expression of 32.9% was observed for beta-1-integrin 14 days after implantation, gradually declining over time to 9.8% after 116 days. The proliferation rate was found to be 19% on day 14, increasing to 39% on day 21 with a subsequent gradual decline to 5% after 116 days. The intima thickness increased from 189.9 [mu]m on day 14 to 1228.0 [mu]m on day 116. In conclusion, digital image analysis was found to be an efficient and reproducible method for the morphometric evaluation of a peri-prosthetic tissue response.

  6. Magnetic Resonance Imaging and Other Imaging Modalities in Diagnostic and Tumor Response Evaluation.

    PubMed

    Lambregts, Doenja M J; Maas, Monique; Stokkel, Marcel P M; Beets-Tan, Regina G H

    2016-07-01

    Functional imaging is emerging as a valuable contributor to the clinical management of patients with rectal cancer. Techniques such as diffusion-weighted magnetic resonance imaging, perfusion imaging, and positron emission tomography can offer meaningful insights into tissue architecture, vascularity, and metabolism. Moreover, new techniques targeting other aspects of tumor biology are now being developed and studied. This study reviews the potential role of functional imaging for the diagnosis, treatment monitoring, and assessment of prognosis in patients with rectal cancer.

  7. A framework for the analysis and evaluation of optical imaging systems with arbitrary response functions

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng

    The scientific applications and engineering aspects of multispectral and hyperspectral imaging systems have been studied extensively. The traditional geometric spectral imaging system model is specifically developed aiming at spectral sensors with spectrally non-overlapping bands. Spectral imaging systems with overlapping bands also exist. For example, the quantum-dot infrared photodetectors (QDIPs) for midwave- and longwave-infrared (IR) imaging systems exhibit highly overlapping spectral responses tunable through the bias voltages applied. This makes it possible to build spectrally tunable imaging system in IR range based on single QDIP. Furthermore, the QDIP based system can be operated as being adaptive to scenes. Other optical imaging systems like the human eye and some polarimetric sensing systems also have overlapping bands. To analyze such sensors, a functional analysis-based framework is provided in this dissertation. The framework starts from the mathematical description of the interaction between sensor and the radiation from scene reaching it. A geometric model of the spectral imaging process is provided based on the framework. The spectral response functions and the scene spectra are considered as vectors inside an 1-dimensional spectral space. The spectral imaging process is abstracted to represent a projection of scene spectrum onto sensor. The projected spectrum, which is the least-square error reconstruction of the scene vectors, contains the useful information for image processing. Spectral sensors with arbitrary spectral response functions are can be analyzed with this model. The framework leads directly to an image pre-processing algorithm to remove the data correlation between bands. Further discussion shows that this model can also serve the purpose of sensor evaluation, and thus facilitates comparison between different sensors. The spectral shapes and the Signal-to-Noise Ratios (SNR) of different bands are seen to influence the sensor

  8. Evaluation of chemotherapy response in ovarian cancer treatment using quantitative CT image biomarkers: a preliminary study

    NASA Astrophysics Data System (ADS)

    Qiu, Yuchen; Tan, Maxine; McMeekin, Scott; Thai, Theresa; Moore, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2015-03-01

    The purpose of this study is to identify and apply quantitative image biomarkers for early prediction of the tumor response to the chemotherapy among the ovarian cancer patients participated in the clinical trials of testing new drugs. In the experiment, we retrospectively selected 30 cases from the patients who participated in Phase I clinical trials of new drug or drug agents for ovarian cancer treatment. Each case is composed of two sets of CT images acquired pre- and post-treatment (4-6 weeks after starting treatment). A computer-aided detection (CAD) scheme was developed to extract and analyze the quantitative image features of the metastatic tumors previously tracked by the radiologists using the standard Response Evaluation Criteria in Solid Tumors (RECIST) guideline. The CAD scheme first segmented 3-D tumor volumes from the background using a hybrid tumor segmentation scheme. Then, for each segmented tumor, CAD computed three quantitative image features including the change of tumor volume, tumor CT number (density) and density variance. The feature changes were calculated between the matched tumors tracked on the CT images acquired pre- and post-treatments. Finally, CAD predicted patient's 6-month progression-free survival (PFS) using a decision-tree based classifier. The performance of the CAD scheme was compared with the RECIST category. The result shows that the CAD scheme achieved a prediction accuracy of 76.7% (23/30 cases) with a Kappa coefficient of 0.493, which is significantly higher than the performance of RECIST prediction with a prediction accuracy and Kappa coefficient of 60% (17/30) and 0.062, respectively. This study demonstrated the feasibility of analyzing quantitative image features to improve the early predicting accuracy of the tumor response to the new testing drugs or therapeutic methods for the ovarian cancer patients.

  9. IMAGE-GUIDED EVALUATION AND MONITORING OF TREATMENT RESPONSE IN PATIENTS WITH DRY EYE DISEASE

    PubMed Central

    Hamrah, Pedram

    2014-01-01

    Dry eye disease (DED) is one of the most common ocular disorders worldwide. The pathophysiological mechanisms involved in the development of DED are not well understood and thus treating DED has been a significant challenge for ophthalmologists. Most of the currently available diagnostic tests demonstrate low correlation to patient symptoms and have low reproducibility. Recently, sophisticated in vivo imaging modalities have become available for patient care, namely, in vivo confocal microscopy (IVCM) and optical coherence tomography (OCT). These emerging modalities are powerful and non-invasive, allowing real-time visualization of cellular and anatomical structures of the cornea and ocular surface. Here we discuss how, by providing both qualitative and quantitative assessment, these techniques can be used to demonstrate early subclinical disease, grade layer-by-layer severity, and allow monitoring of disease severity by cellular alterations. Imaging-guided stratification of patients may also be possible in conjunction with clinical examination methods. Visualization of subclinical changes and stratification of patients in vivo, allows objective image-guided evaluation of tailored treatment response based on cellular morphological alterations specific to each patient. This image-guided approach to DED may ultimately improve patient outcomes and allow studying the efficacy of novel therapies in clinical trials. PMID:24696045

  10. SU-E-QI-20: A Review of Advanced PET and CT Image Features for the Evaluation of Tumor Response

    SciTech Connect

    Lu, W

    2014-06-15

    Purpose: To review the literature in using quantitative PET and CT image features for the evaluation of tumor response. Methods: We reviewed and summarized more than fifty papers that use advanced, quantitative PET/CT image features for the evaluation of tumor response. We also discussed future works on extracting disease-specific features, combining multiple and complementary features in response modeling, delineating tumor in multimodality images, and exploring biological explanations of these advanced features. Results: Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features (characterizing spatial distribution of FDG uptake) have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Conclusions: Advanced, quantitative FDG PET/CT image features have been shown promising for the evaluation of tumor response. With the emerging multi-modality imaging performed at multiple time points for each patient, it becomes more important to analyze the serial images quantitatively, select and combine both complementary and contradictory information from various sources, for accurate and personalized evaluation of tumor response to therapy.

  11. SU-E-J-275: Review - Computerized PET/CT Image Analysis in the Evaluation of Tumor Response to Therapy

    SciTech Connect

    Lu, W; Wang, J; Zhang, H

    2015-06-15

    Purpose: To review the literature in using computerized PET/CT image analysis for the evaluation of tumor response to therapy. Methods: We reviewed and summarized more than 100 papers that used computerized image analysis techniques for the evaluation of tumor response with PET/CT. This review mainly covered four aspects: image registration, tumor segmentation, image feature extraction, and response evaluation. Results: Although rigid image registration is straightforward, it has been shown to achieve good alignment between baseline and evaluation scans. Deformable image registration has been shown to improve the alignment when complex deformable distortions occur due to tumor shrinkage, weight loss or gain, and motion. Many semi-automatic tumor segmentation methods have been developed on PET. A comparative study revealed benefits of high levels of user interaction with simultaneous visualization of CT images and PET gradients. On CT, semi-automatic methods have been developed for only tumors that show marked difference in CT attenuation between the tumor and the surrounding normal tissues. Quite a few multi-modality segmentation methods have been shown to improve accuracy compared to single-modality algorithms. Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Predictive models based on machine learning technique have been constructed for correlating selected image features to response. These models showed improved performance compared to current methods using cutoff value of a single measurement for tumor response. Conclusion: This review showed that

  12. Diffusion-Weighted MR Imaging of Hepatocellular Carcinoma: Current Value in Clinical Evaluation of Tumor Response to Locoregional Treatment.

    PubMed

    Yuan, Zheng; Zhang, Jian; Yang, Huan; Ye, Xiao-Dan; Xu, Li-Chao; Li, Wen-Tao

    2016-01-01

    The established size-based image biomarkers for tumor burden measurement continue to be applied to solid tumors, as size measurement can easily be used in clinical practice. However, in the setting of novel targeted therapies and liver-directed locoregional treatments for hepatocellular carcinoma (HCC), simple tumor anatomic changes can be less informative and usually appear later than biologic changes. Functional magnetic resonance (MR) imaging has the potential to be a promising technique for assessment of HCC response to therapy. Diffusion-weighted MR imaging is now widely used as a standard imaging modality to evaluate the liver. This review discusses the current clinical value of diffusion-weighted MR imaging in the evaluation of tumor response after nonsurgical locoregional treatment of HCC.

  13. Evaluation of Neoadjuvant Chemotherapy Response with Dynamic Contrast Enhanced Breast Magnetic Resonance Imaging in Locally Advanced Invasive Breast Cancer

    PubMed Central

    Gezer, Naciye Sinem; Orbay, Özge; Balcı, Pınar; Durak, Merih Guray; Demirkan, Binnaz; Saydam, Serdar

    2014-01-01

    Objective The reliability of traditional methods such as physical examination, ultrasonography (US) and mammography is limited in determining the type of treatment response in patients with neoadjuvant chemotherapy (NAC) application for locally advanced breast cancer (LABC). Dynamic contrast-enhanced magnetic resonance imaging (MRI) is gaining popularity in the evaluation of NAC response. This study aimed to compare NAC response as determined by dynamic contrast-enhanced breast MRI in patients with LABC to histopathology that is the gold standard; and evaluate the compatibility of MRI, mammography and US with response types. Materials and Methods The US, mammography and MRI findings of 38 patients who received NAC with a diagnosis of locally advanced breast cancer and surgical treatment were retrospectively analyzed and compared to histopathology results. Type of response to treatment was determined according to the “Criteria in Solid Tumors Response Evolution 1.1” by mammography, US and MRI criteria. The relationship between response types as defined by all three imaging modalities and histopathology were evaluated, and the correlation of response type as detected by MRI and pathological response and histopathological type of breast cancer was further determined. For statistical analysis, the chi-square, paired t test, correlation and kappa tests were used. Results There is a statistical moderate positive correlation between response type according to pathology and MRI (kappa: 0.63). There was a weak correlation between response type according to mammography or US and according to pathology (kappa: 0.2). When the distribution of treatment response by MRI is stratified according to histopathological types, partial response was higher in all histopathological types similar to the type of pathologic response. When compared with pathology MRI detected treatment response accurately in 84.2% of the patients. Conclusion Dynamic contrast-enhanced breast MRI appears to

  14. A New Approach to Evaluate Drug Treatment Response of Ovarian Cancer Patients Based on Deformable Image Registration

    PubMed Central

    Tan, Maxine; Li, Zheng; Qiu, Yuchen; McMeekin, Scott D.; Thai, Theresa C.; Ding, Kai; Moore, Kathleen N.; Liu, Hong; Zheng, Bin

    2016-01-01

    Although Response Evaluation Criteria in Solid Tumors (RECIST) is the current clinical guideline to assess size change of solid tumors after therapeutic treatment, it has a relatively lower association to the clinical outcome of progression free survival (PFS) of the patients. In this paper, we presented a new approach to assess responses of ovarian cancer patients to new chemotherapy drugs in clinical trials. We first developed and applied a multi-resolution B-spline based deformable image registration method to register two sets of computed tomography (CT) image data acquired pre- and post-treatment. The B-spline difference maps generated from the co-registered CT images highlight the regions related to the volumetric growth or shrinkage of the metastatic tumors, and density changes related to variation of necrosis inside the solid tumors. Using a testing dataset involving 19 ovarian cancer patients, we compared patients’ response to the treatment using the new image registration method and RECIST guideline. The results demonstrated that using the image registration method yielded higher association with the six-month PFS outcomes of the patients than using RECIST. The image registration results also provided a solid foundation of developing new computerized quantitative image feature analysis schemes in the future studies. PMID:26336119

  15. Functional evaluation of hemodynamic response during neural activation using optical microangiography integrated with dual-wavelength laser speckle imaging

    PubMed Central

    Qin, Jia; Shi, Lei; Wang, Hequn; Reif, Roberto; Wang, Ruikang K.

    2014-01-01

    Abstract. Evaluation of spatiotemporal hemodynamic and metabolic responses during neural activation is crucial in studying brain function. We explore the use of a noninvasive multifunctional optical imaging system to measure these responses in a mouse brain upon electrically stimulated neural activation, with the cranium left intact. The system is developed by integrating an optical microangiography (OMAG) imaging system with a dual-wavelength laser speckle imaging (DW-LSI) system. The DW-LSI, running at an image acquisition speed of ∼100  Hz, is used to extract the large-scale two-dimensional map, revealing the localized response of blood flow, hemoglobin concentration, and metabolic rate of oxygen change. Guided by DW-LSI, the OMAG is, however, used to image the response of individual blood vessels with its unique depth-resolved capability. We show that the integrated system is capable of investigating neural activation, thus is potentially valuable in the preclinical study of the mechanism of neurovascular coupling. PMID:24549439

  16. The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft models

    PubMed Central

    Hussain, Nosheen; Connah, David; Ugail, Hassan; Cooper, Patricia A.; Falconer, Robert A.; Patterson, Laurence H.; Shnyder, Steven D.

    2016-01-01

    Non-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodology’s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use. PMID:27491535

  17. Evaluation of Treatment Associated Inflammatory Response on Diffusion Weighted-MRI and FDG-PET Imaging Biomarkers

    PubMed Central

    Galbán, Craig J.; Bhojani, Mahaveer S; Lee, Kuei C.; Meyer, Charles R.; Van Dort, Marcian; Kuszpit, Kyle; Koeppe, Robert A.; Ranga, Rajesh; Moffat, Bradford A.; Johnson, Timothy D.; Chenevert, Thomas L.; Rehemtulla, Alnawaz; Ross, Brian D.

    2010-01-01

    Purpose Functional imaging biomarkers of cancer treatment response offer the potential for early determination of outcome through assessment of biochemical, physiological, and micro-environmental readouts. Cell death may result in an immunological response thus complicating interpretation of biomarker readouts. This study evaluated the temporal impact of treatment-associated inflammatory activity on diffusion-MRI and FDG-PET imaging biomarkers to delineate the effects of the inflammatory response on imaging readouts. Experimental Design Rats with intracerebral 9L gliosarcomas were separated into four groups consisting of control, an immunosuppressive agent dexamethasone (Dex), 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), and BCNU+Dex (BCNU+Dex). Animals were imaged using diffusion-weighted MRI and FDG-PET at 0, 3 and 7 days post-treatment. Results In the BCNU and BCNU+Dex treated animal groups, diffusion values increased progressively over the 7 day study period to about 23% over baseline. FDG %SUV decreased at day 3 (−30.9%) but increased over baseline levels at day 7 (+20.1%). FDG-PET of BCNU+Dex treated animals were found to have %SUV reductions of −31.4% and −24.7% at days 3 and 7, respectively following treatment. Activated macrophages were observed on day 7 in the BCNU treatment group with much fewer found in the BCNU+Dex group. Conclusions Results revealed treatment-associated inflammatory response following tumor therapy resulted in accentuation of tumor diffusion response along with a corresponding increase in tumor FDG uptake due to the presence of glucose-consuming activated macrophages. The dynamics and magnitude of potential inflammatory response should be considered when interpreting imaging biomarker results. PMID:20160061

  18. Evaluation of Soft Tissue Sarcoma Response to Preoperative Chemoradiotherapy Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Huang, Wei; Beckett, Brooke R.; Tudorica, Alina; Meyer, Janelle M.; Afzal, Aneela; Chen, Yiyi; Mansoor, Atiya; Hayden, James B.; Doung, Yee-Cheen; Hung, Arthur Y.; Holtorf, Megan L.; Aston, Torrie J.; Ryan, Christopher W.

    2016-01-01

    This study aims to assess the utility of quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters in comparison with imaging tumor size for early prediction and evaluation of soft tissue sarcoma response to preoperative chemoradiotherapy. In total, 20 patients with intermediate- to high-grade soft tissue sarcomas received either a phase I trial regimen of sorafenib + chemoradiotherapy (n = 8) or chemoradiotherapy only (n = 12), and underwent DCE-MRI at baseline, after 2 weeks of treatment with sorafenib or after the first chemotherapy cycle, and after therapy completion. MRI tumor size in the longest diameter (LD) was measured according to the RECIST (Response Evaluation Criteria In Solid Tumors) guidelines. Pharmacokinetic analyses of DCE-MRI data were performed using the Shutter-Speed model. After only 2 weeks of treatment with sorafenib or after 1 chemotherapy cycle, Ktrans (rate constant for plasma/interstitium contrast agent transfer) and its percent change were good early predictors of optimal versus suboptimal pathological response with univariate logistic regression C statistics values of 0.90 and 0.80, respectively, whereas RECIST LD percent change was only a fair predictor (C = 0.72). Post-therapy Ktrans, ve (extravascular and extracellular volume fraction), and kep (intravasation rate constant), not RECIST LD, were excellent (C > 0.90) markers of therapy response. Several DCE-MRI parameters before, during, and after therapy showed significant (P < .05) correlations with percent necrosis of resected tumor specimens. In conclusion, absolute values and percent changes of quantitative DCE-MRI parameters provide better early prediction and evaluation of the pathological response of soft tissue sarcoma to preoperative chemoradiotherapy than the conventional measurement of imaging tumor size change. PMID:28066805

  19. Evaluation of laser treatment response of vascular skin disorders in relation to skin properties using multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    de Roode, Rowland; Noordmans, Herke Jan; Rem, Alex; Couwenberg, Sharon; Verdaasdonk, Rudolf

    2008-02-01

    There can be a large variation in response between laser treatments of vascular malformations like port-wine stains even in one patient. This could be ascribed to variations in the skin properties like tint (melanin) and perfusion (redness) which will influence the effectiveness of the laser dosimetry. To obtain a better understanding of the relation between skin properties just before treatment, laser dosimetry and clinical response, a multi-spectral dermatoscope is applied. A sequence of calibrated images is captured from 400 to 720 nm. Images at the treatment laser wavelength (532 nm) show the absorbing structures during laser exposure. Images of different treatment sessions of one patient were matched with dedicated registration software to quantify the results of the laser treatment (change in blood vessels structure, effect on pigment). For feasibility, images were collected from 5 patients and used to determine the optimal wavelength combination strategies. The image matching software gives an objective impression of the improvement, e.g. the clearing of the port-wine stain over time or pigment reactions, which will facilitate the discussion with the patient about the end point of treatment. The multi-spectral dermatoscope and software developed enables the evaluation of large patient series which will result in objective data to advise the dermatologist on the optimal laser dosimetry in future in relation to the skin properties.

  20. Responsive Image Inline Filter

    SciTech Connect

    Freeman, Ian

    2016-10-20

    RIIF is a contributed module for the Drupal php web application framework (drupal.org). It is written as a helper or sub-module of other code which is part of version 8 "core Drupal" and is intended to extend its functionality. It allows Drupal to resize images uploaded through the user-facing text editor within the Drupal GUI (a.k.a. "inline images") for various browser widths. This resizing is already done foe other images through the parent "Responsive Image" core module. This code extends that functionality to inline images.

  1. Evaluating the bending response of two osseointegrated transfemoral implant systems using 3D digital image correlation.

    PubMed

    Thompson, Melanie L; Backman, David; Branemark, Rickard; Mechefske, Chris K

    2011-05-01

    Osseointegrated transfemoral implants have been introduced as a prosthetic solution for above knee amputees. They have shown great promise, providing an alternative for individuals who could not be accommodated by conventional, socket-based prostheses; however, the occurrence of device failures is of concern. In an effort to improve the strength and longevity of the device, a new design has been proposed. This study investigates the mechanical behavior of the new taper-based assembly in comparison to the current hex-based connection for osseointegrated transfemoral implant systems. This was done to better understand the behavior of components under loading, in order to optimize the assembly specifications and improve the useful life of the system. Digital image correlation was used to measure surface strains on two assemblies during static loading in bending. This provided a means to measure deformation over the entire sample and identify critical locations as the assembly was subjected to a series of loading conditions. It provided a means to determine the effects of tightening specifications and connection geometry on the material response and mechanical behavior of the assemblies. Both osseoinegrated assemblies exhibited improved strength and mechanical performance when tightened to a level beyond the current specified tightening torque of 12 N m. This was shown by decreased strain concentration values and improved distribution of tensile strain. Increased tightening torque provides an improved connection between components regardless of design, leading to increased torque retention, decreased peak tensile strain values, and a more gradual, primarily compressive distribution of strains throughout the assembly.

  2. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    PubMed

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  3. Program Evaluation Particularly Responsive Evaluation

    ERIC Educational Resources Information Center

    Stake, Robert E.

    2011-01-01

    In this paper, the author talks about some recent developments in the methodology of program evaluation and about what he calls "responsive evaluation." He discusses two models for program evaluation, namely (1) informal study or self-study; and (2) the pretest/posttest model. Then, he describes an approach that he has been working on, which will…

  4. A B-spline image registration based CAD scheme to evaluate drug treatment response of ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Tan, Maxine; Li, Zheng; Moore, Kathleen; Thai, Theresa; Ding, Kai; Liu, Hong; Zheng, Bin

    2016-03-01

    Ovarian cancer is the second most common cancer amongst gynecologic malignancies, and has the highest death rate. Since the majority of ovarian cancer patients (>75%) are diagnosed in the advanced stage with tumor metastasis, chemotherapy is often required after surgery to remove the primary ovarian tumors. In order to quickly assess patient response to the chemotherapy in the clinical trials, two sets of CT examinations are taken pre- and post-therapy (e.g., after 6 weeks). Treatment efficacy is then evaluated based on Response Evaluation Criteria in Solid Tumors (RECIST) guideline, whereby tumor size is measured by the longest diameter on one CT image slice and only a subset of selected tumors are tracked. However, this criterion cannot fully represent the volumetric changes of the tumors and might miss potentially problematic unmarked tumors. Thus, we developed a new CAD approach to measure and analyze volumetric tumor growth/shrinkage using a cubic B-spline deformable image registration method. In this initial study, on 14 sets of pre- and post-treatment CT scans, we registered the two consecutive scans using cubic B-spline registration in a multiresolution (from coarse to fine) framework. We used Mattes mutual information metric as the similarity criterion and the L-BFGS-B optimizer. The results show that our method can quantify volumetric changes in the tumors more accurately than RECIST, and also detect (highlight) potentially problematic regions that were not originally targeted by radiologists. Despite the encouraging results of this preliminary study, further validation of scheme performance is required using large and diverse datasets in future.

  5. Responsive Evaluation: An Interpretation.

    ERIC Educational Resources Information Center

    Lewy, Arieh

    1977-01-01

    Stake's concept of responsive evaluation is designed to provide various decision makers with the kind of information desired and in the form most helpful for making decisions. Compared with formal research procedures, this approach has both advantages and disadvantages. It may also provide a valuable supplement to formal evaluation. (CTM)

  6. CRT image recording evaluation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Performance capabilities and limitations of a fiber optic coupled line scan CRT image recording system were investigated. The test program evaluated the following components: (1). P31 phosphor CRT with EMA faceplate; (2). P31 phosphor CRT with clear clad faceplate; (3). Type 7743 semi-gloss dry process positive print paper; (4). Type 777 flat finish dry process positive print paper; (5). Type 7842 dry process positive film; and (6). Type 1971 semi-gloss wet process positive print paper. Detailed test procedures used in each test are provided along with a description of each test, the test data, and an analysis of the results.

  7. Noninvasive In Vivo Imaging to Evaluate Immune Responses and Antimicrobial Therapy against Staphylococcus aureus and USA300 MRSA Skin Infections

    PubMed Central

    Cho, John S.; Zussman, Jamie; Donegan, Niles P.; Irene Ramos, Romela; Garcia, Nairy C.; Uslan, Daniel Z.; Iwakura, Yoichiro; Simon, Scott I.; Cheung, Ambrose L.; Modlin, Robert L.; Kim, Jenny; Miller, Lloyd S.

    2011-01-01

    Staphylococcus aureus skin infections represent a significant public health threat because of the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). As greater understanding of protective immune responses and more effective antimicrobial therapies are needed, a S. aureus skin wound infection model was developed in which full-thickness scalpel cuts on the backs of mice were infected with a bioluminescent S. aureus (methicillin sensitive) or USA300 community-acquired MRSA strain and in vivo imaging was used to noninvasively monitor the bacterial burden. In addition, the infection-induced inflammatory response was quantified using in vivo fluorescence imaging of LysEGFP mice. Using this model, we found that both IL-1α and IL-1β contributed to host defense during a wound infection, whereas IL-1β was more critical during an intradermal S. aureus infection. Furthermore, treatment of a USA300 MRSA skin infection with retapamulin ointment resulted in up to 85-fold reduction in bacterial burden and a 53% decrease in infection-induced inflammation. In contrast, mupirocin ointment had minimal clinical activity against this USA300 strain, resulting in only a 2-fold reduction in bacterial burden. Taken together, this S. aureus wound infection model provides a valuable preclinical screening method to investigate cutaneous immune responses and the efficacy of topical antimicrobial therapies. PMID:21191403

  8. Histological Evaluation of Prostate Tissue Response to Image-Guided Transurethral Thermal Therapy After a 48h Recovery Period

    NASA Astrophysics Data System (ADS)

    Boyes, Aaron; Tang, Kee; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    Image-guided transurethral ultrasound thermal therapy shows strong potential for sparing of critical adjacent structures during prostate cancer treatment. Preclinical experiments were conducted to provide further information on the extent of the treatment margin. Four experiments were carried out in a canine model to investigate the pathology of this margin during the early stages of recovery and were compared to previous results obtained immediately post-treatment. Sedated animals were placed in a 1.5T clinical MRI, and the heating device was positioned accurately within the prostatic urethra with image guidance. Using an MRI-compatible system, the ultrasound device was rotated 365° treating a prescribed volume contained within the gland. Quantitative temperature maps were acquired throughout the treatment, providing feedback information for device control. Animals were allowed to recover and, after 48h, an imaging protocol including T2 and contrast enhanced (CE) MRI was repeated before the animals were sacrificed. Prostate sections were stained with H&E. Careful slice alignment methods during histological procedures and image registration were employed to ensure good correspondence between MR images and microscopy. Although T2 MRI revealed no lesion acutely, a hypo-intense region was clearly visible 2 days post-treatment. The lesion volume defined by CE-MRI increased appreciably during this time. Whole-mount H&E sections showed that the margin between coagulated and normal-appearing cells narrowed during recovery, typically to a width of under 1mm compared to 3mm acutely. These results illustrate the high level of precision achievable with transurethral thermal therapy and suggest methods to monitor the physiological response non-invasively.

  9. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Rizvi, Imran; Blanden, Adam R.; Massodi, Iqbal; Glidden, Michael D.; Pogue, Brian W.; Hasan, Tayyaba

    2014-01-01

    While it is increasingly recognized that three-dimensional (3D) cell culture models recapitulate drug responses of human cancers with more fidelity than monolayer cultures, a lack of quantitative analysis methods limit their implementation for reliable and routine assessment of emerging therapies. Here, we introduce an approach based on computational analysis of fluorescence image data to provide high-content readouts of dose-dependent cytotoxicity, growth inhibition, treatment-induced architectural changes and size-dependent response in 3D tumour models. We demonstrate this approach in adherent 3D ovarian and pancreatic multiwell extracellular matrix tumour overlays subjected to a panel of clinically relevant cytotoxic modalities and appropriately designed controls for reliable quantification of fluorescence signal. This streamlined methodology reads out the high density of information embedded in 3D culture systems, while maintaining a level of speed and efficiency traditionally achieved with global colorimetric reporters in order to facilitate broader implementation of 3D tumour models in therapeutic screening.

  10. Ultrasonic Evaluation and Imaging

    SciTech Connect

    Crawford, Susan L.; Anderson, Michael T.; Diaz, Aaron A.; Larche, Michael R.; Prowant, Matthew S.; Cinson, Anthony D.

    2015-10-01

    Ultrasonic evaluation of materials for material characterization and flaw detection is as simple as manually moving a single-element probe across a speci-men and looking at an oscilloscope display in real time or as complex as automatically (under computer control) scanning a phased-array probe across a specimen and collecting encoded data for immediate or off-line data analyses. The reliability of the results in the second technique is greatly increased because of a higher density of measurements per scanned area and measurements that can be more precisely related to the specimen geometry. This chapter will briefly discuss applications of the collection of spatially encoded data and focus primarily on the off-line analyses in the form of data imaging. Pacific Northwest National Laboratory (PNNL) has been involved with as-sessing and advancing the reliability of inservice inspections of nuclear power plant components for over 35 years. Modern ultrasonic imaging techniques such as the synthetic aperture focusing technique (SAFT), phased-array (PA) technolo-gy and sound field mapping have undergone considerable improvements to effec-tively assess and better understand material constraints.

  11. Magnetic resonance imaging of the cirrhotic liver: diagnosis of hepatocellular carcinoma and evaluation of response to treatment - Part 1

    PubMed Central

    Ramalho, Miguel; Matos, António P.; AlObaidy, Mamdoh; Velloni, Fernanda; Altun, Ersan; Semelka, Richard C.

    2017-01-01

    Magnetic resonance imaging (MRI) is the modern gold standard for the noninvasive evaluation of the cirrhotic liver. The combination of arterial phase hyperenhancement and delayed wash-out allows a definitive diagnosis of hepatocellular carcinoma (HCC) in patients with liver cirrhosis or chronic liver disease, without the requirement for confirmatory biopsy. That pattern is highly specific and has been endorsed in Western and Asian diagnostic guidelines. However, the sensitivity of the combination is relatively low for small HCCs. In this two-part review paper, we will address MRI of the cirrhotic liver. In this first part, we provide a brief background on liver cirrhosis and HCC, followed by descriptions of imaging surveillance of liver cirrhosis and the diagnostic performance of the different imaging modalities used in clinical settings. We then describe some of the requirements for the basic MRI technique, as well as the standard MRI protocol, and provide a detailed description of the appearance of various types of hepatocellular nodules encountered in the setting of the carcinogenic pathway in the cirrhotic liver, ranging from regenerative nodules to HCC. PMID:28298731

  12. SLI Thermal Imaging Requirements Evaluation

    NASA Astrophysics Data System (ADS)

    Hoffman, E. H.; Woody, L. M.; Wirth, S. M.; Smith, D. S.

    2015-12-01

    The Landsat program has provided a continuous record of global terrestrial imagery since 1972. This data record is an invaluable resource for determining long term trends and monitoring rates of change in land usage, forest health, water quality, and glacier retreat. In 2014, the National Aeronautics and Space Administration (NASA), supported by the United States Geological Survey (USGS), initiated the sustainable land imaging (SLI) architecture study to develop an affordable system design for acquiring future terrestrial imagery compatible with the existing Landsat data record. The principal objective has been to leverage recent advances in focal plane technologies to enable smaller, lower-cost instruments and launch options. We present an evaluation of the trade space implied by the SLI thermal imaging requirements as well as the performance potential of enabling technologies. Multiple approaches, each incorporating measured performance data for state-of-the-art detectors, are investigated to simultaneously optimize instrument mass and volume, spatial response, radiometric sensitivity, and radiometric uncertainty.

  13. Image recognition and consistency of response

    NASA Astrophysics Data System (ADS)

    Haygood, Tamara M.; Ryan, John; Liu, Qing Mary A.; Bassett, Roland; Brennan, Patrick C.

    2012-02-01

    Purpose: To investigate the connection between conscious recognition of an image previously encountered in an experimental setting and consistency of response to the experimental question.
    Materials and Methods: Twenty-four radiologists viewed 40 frontal chest radiographs and gave their opinion as to the position of a central venous catheter. One-to-three days later they again viewed 40 frontal chest radiographs and again gave their opinion as to the position of the central venous catheter. Half of the radiographs in the second set were repeated images from the first set and half were new. The radiologists were asked of each image whether it had been included in the first set. For this study, we are evaluating only the 20 repeated images. We used the Kruskal-Wallis test and Fisher's exact test to determine the relationship between conscious recognition of a previously interpreted image and consistency in interpretation of the image.
    Results. There was no significant correlation between recognition of the image and consistency in response regarding the position of the central venous catheter. In fact, there was a trend in the opposite direction, with radiologists being slightly more likely to give a consistent response with respect to images they did not recognize than with respect to those they did recognize.
    Conclusion: Radiologists' recognition of previously-encountered images in an observer-performance study does not noticeably color their interpretation on the second encounter.

  14. Body image inflexibility mediates the relationship between body image evaluation and maladaptive body image coping strategies.

    PubMed

    Mancuso, Serafino G

    2016-03-01

    Body image inflexibility, the unwillingness to experience negative appearance-related thoughts and emotions, is associated with negative body image and eating disorder symptoms. The present study investigated whether body image inflexibility mediated the relationship between body image evaluation and maladaptive body image coping strategies (appearance-fixing and experiential avoidance) in a college and community sample comprising 156 females aged 18-51 years (M=22.76, SD=6.96). Controlling for recruitment source (college vs. community), body image inflexibility fully mediated the relationship between body image evaluation and maladaptive body image coping strategies. Results indicated that an unwillingness to experience negative appearance-related thoughts and emotions is likely responsible for negative body image evaluation's relationship to appearance-fixing behaviours and experiential avoidance. Findings support extant evidence that interventions that explicitly target body image inflexibility, such as Acceptance and Commitment Therapy, may have utility in treating body dissatisfaction in nonclinical populations.

  15. Role of Dynamic Magnetic Resonance Imaging in the Evaluation of Tumor Response to Preoperative Concurrent Radiochemotherapy for Large Breast Cancers: A Prospective Phase II Study

    SciTech Connect

    Bollet, Marc A. Thibault, Fabienne; Bouillon, Kim; Meunier, Martine; Sigal-Zafrani, Brigitte; Savignoni, Alexia; Dieras, Veronique; Nos, Claude; Salmon, Remy; Fourquet, Alain

    2007-09-01

    Purpose: To evaluate the accuracy of clinical examination and of three imaging modalities (ultrasound [US] scan, mammography, and magnetic resonance imaging [MRI]) to assess the tumor response of breast cancer to a preoperative regimen of concurrent radiochemotherapy for large breast cancers, using pathologic data as the reference. Methods and Materials: Sixty women were accrued. Treatment consisted of 4 cycles of (5-fluorouracil-vinorelbine) chemotherapy with, starting with the second cycle of chemotherapy, locoregional radiotherapy to the breast and the internal mammary and supraclavicular and infraclavicular lymph nodes. Breast surgery and axillary lymph node dissection were subsequently performed. Breast imaging assessments were performed both before chemotherapy and preoperatively. Results: The correlation coefficients between tumor dimension at imaging and pathology were statistically significant for US scan (r = 0.4; p = 0.006) and MRI (r = 0.4; p = 0.004) but not for clinical examination (r 0.2; p = 0.16) or mammography (r = -0.15; p = 0.31). Furthermore, the area under the receiver operating characteristic curve for MRI was 0.81, compared with 0.67 for US scan. At the optimal threshold score, MRI performed with 81% sensitivity and 75% specificity. Conclusion: Compared with clinical examination, US scan, or mammography, MRI substantially improved the prediction of pathologic tumor response to preoperative concurrent radiochemotherapy for large breast cancers.

  16. Noninvasive imaging of immune responses

    PubMed Central

    Rashidian, Mohammad; Keliher, Edmund J.; Bilate, Angelina M.; Duarte, Joao N.; Wojtkiewicz, Gregory R.; Jacobsen, Johanne Tracey; Cragnolini, Juanjo; Swee, Lee Kim; Victora, Gabriel D.; Weissleder, Ralph; Ploegh, Hidde L.

    2015-01-01

    At their margins, tumors often contain neutrophils, dendritic cells, and activated macrophages, which express class II MHC and CD11b products. The interplay between stromal cells, tumor cells, and migratory cells such as lymphocytes creates opportunities for noninvasive imaging of immune responses. We developed alpaca-derived antibody fragments specific for mouse class II MHC and CD11b products, expressed on the surface of a variety of myeloid cells. We validated these reagents by flow cytometry and two-photon microscopy to obtain images at cellular resolution. To enable noninvasive imaging of the targeted cell populations, we developed a method to site-specifically label VHHs [the variable domain (VH) of a camelid heavy-chain only antibody] with 18F or 64Cu. Radiolabeled VHHs rapidly cleared the circulation (t1/2 ≈ 20 min) and clearly visualized lymphoid organs. We used VHHs to explore the possibility of imaging inflammation in both xenogeneic and syngeneic tumor models, which resulted in detection of tumors with remarkable specificity. We also imaged the infiltration of myeloid cells upon injection of complete Freund’s adjuvant. Both anti-class II MHC and anti-CD11b VHHs detected inflammation with excellent specificity. Given the ease of manufacture and labeling of VHHs, we believe that this method could transform the manner in which antitumor responses and/or infectious events may be tracked. PMID:25902531

  17. The Role of Diffusion-Weighted Magnetic Resonance Imaging in the Treatment Response Evaluation of Hepatocellular Carcinoma Patients Treated With Radiation Therapy

    SciTech Connect

    Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Choi, Yunseon; Jung, Sang Hoon; Paik, Seung Woon; Kim, Seong Hyun; Jeong, Woo Kyoung; Kim, Young Kon

    2014-07-15

    Purpose: We investigated the role of diffusion-weighted magnetic resonance imaging (DW MRI) as a response evaluation indicator for hepatocellular carcinoma (HCC) treated with radiation therapy (RT). Methods and Materials: Inclusion criteria of this retrospective study were DW MRI acquisition within 1 month before and 3 to 5 months after RT. In total, 48 patients were enrolled. Two radiation oncologists measured the apparent diffusion coefficient (ADC). Possible predictive factors, including alteration of the ADC value before and 3 to 5 month after RT, in relation to local progression-free survival (LPFS) were analyzed and compared. Results: Three months after RT, 6 patients (12.5%) showed a complete response, and 27 patients (56.3%) showed a partial response when evaluated using the modified response evaluation criteria in solid tumors (mRECIST). The average ADC ± SD values were 1.21 ± 0.27 ( × 10{sup −3} mm{sup 2}/s) before and 1.41 ± 0.36 ( × 10{sup −3} mm{sup 2}/s) after RT (P<.001). The most significant prognostic factor related to LPFS was mRECIST (P<.001). The increment of ADC value (≥20%) was also a significant factor (P=.02), but RECIST (version 1.1; P=.11) was not. When RECIST was combined with the increment of ADC value (≥20%), the LPFS rates were significantly different between the groups (P=.004), and the area under the curve value (0.745) was comparable with that of mRECIST (0.765). Conclusions: ADC value change before and after RT in HCC was closely related to LPFS. ADC value and RECIST may substitute for mRECIST in patients who cannot receive contrast agents.

  18. The Evaluator's Responsibility for Utilization.

    ERIC Educational Resources Information Center

    Patton, Michael Quinn

    1988-01-01

    The role of the evaluator in insuring utilization and quality of evaluation results is discussed. Topics covered include a utilization-focused vision of accountability, overcoming staff fears of evaluation, eliciting the right information from users, situational responsiveness, and advocacy. (TJH)

  19. Infrared image quality evaluation method without reference image

    NASA Astrophysics Data System (ADS)

    Yue, Song; Ren, Tingting; Wang, Chengsheng; Lei, Bo; Zhang, Zhijie

    2013-09-01

    Since infrared image quality depends on many factors such as optical performance and electrical noise of thermal imager, image quality evaluation becomes an important issue which can conduce to both image processing afterward and capability improving of thermal imager. There are two ways of infrared image quality evaluation, with or without reference image. For real-time thermal image, the method without reference image is preferred because it is difficult to get a standard image. Although there are various kinds of methods for evaluation, there is no general metric for image quality evaluation. This paper introduces a novel method to evaluate infrared image without reference image from five aspects: noise, clarity, information volume and levels, information in frequency domain and the capability of automatic target recognition. Generally, the basic image quality is obtained from the first four aspects, and the quality of target is acquired from the last aspect. The proposed method is tested on several infrared images captured by different thermal imagers. Calculate the indicators and compare with human vision results. The evaluation shows that this method successfully describes the characteristics of infrared image and the result is consistent with human vision system.

  20. Referenceless image quality evaluation for whole slide imaging

    PubMed Central

    Hashimoto, Noriaki; Bautista, Pinky A.; Yamaguchi, Masahiro; Ohyama, Nagaaki; Yagi, Yukako

    2012-01-01

    Objective: The image quality in whole slide imaging (WSI) is one of the most important issues for the practical use of WSI scanners. In this paper, we proposed an image quality evaluation method for scanned slide images in which no reference image is required. Methods: While most of the conventional methods for no-reference evaluation only deal with one image degradation at a time, the proposed method is capable of assessing both blur and noise by using an evaluation index which is calculated using the sharpness and noise information of the images in a given training data set by linear regression analysis. The linear regression coefficients can be determined in two ways depending on the purpose of the evaluation. For objective quality evaluation, the coefficients are determined using a reference image with mean square error as the objective value in the analysis. On the other hand, for subjective quality evaluation, the subjective scores given by human observers are used as the objective values in the analysis. The predictive linear regression models for the objective and subjective image quality evaluations, which were constructed using training images, were then used on test data wherein the calculated objective values are construed as the evaluation indices. Results: The results of our experiments confirmed the effectiveness of the proposed image quality evaluation method in both objective and subjective image quality measurements. Finally, we demonstrated the application of the proposed evaluation method to the WSI image quality assessment and automatic rescanning in the WSI scanner. PMID:22530177

  1. EVALUATING HYDROLOGICAL RESPONSE TO ...

    EPA Pesticide Factsheets

    Studies of future management and policy options based on different assumptions provide a mechanism to examine possible outcomes and especially their likely benefits or consequences. Planning and assessment in land and water resource management are evolving toward complex, spatially explicit regional assessments. These problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extensive data requirements and the difficult task of building input parameter files, however, have long been an obstacle to the timely and cost-effective use of such complex models by resource managers. The U.S. EPA Landscape Ecology Branch in collaboration with the USDA-ARS Southwest Watershed Research Center has developed a geographic information system (GIS) tool to facilitate this process. A GIS provides the framework within which spatially distributed data are collected and used to prepare model input files, and model results are evaluated. The Automated Geospatial Watershed Assessment (AGWA) tool uses widely available standardized spatial datasets that can be obtained via the internet at no cost to the user. The data are used to develop input parameter files for KINEROS2 and SWAT, two watershed runoff and erosion simulation models that operate at different spatial and temporal scales. AGWA automates the process of transforming digital data into simulation model results and provides a visualization tool

  2. Evaluation of a Simplified Intravoxel Incoherent Motion (IVIM) Analysis of Diffusion-Weighted Imaging for Prediction of Tumor Size Changes and Imaging Response in Breast Cancer Liver Metastases Undergoing Radioembolization: A Retrospective Single Center Analysis.

    PubMed

    Pieper, Claus C; Sprinkart, Alois M; Meyer, Carsten; König, Roy; Schild, Hans H; Kukuk, Guido M; Mürtz, Petra

    2016-04-01

    To investigate the value of a simplified intravoxel incoherent motion (IVIM) analysis for evaluation of therapy-induced tumor changes and response of breast cancer liver metastases (mBRC) undergoing radioembolization.In 21 females (mean age 54 years, range 43-72) with mBRC tumor size changes and response evaluation criteria in solid tumors (RECIST) response to 26 primary radioembolization procedures were analyzed. Standard 1.5-T liver magnetic resonance imaging including respiratory-gated diffusion-weighted imaging (DWI) with b0 = 0 s/mm, b1 = 50 s/mm, b2 = 800 s/mm before and 6 weeks after each treatment was performed. In addition to the apparent diffusion coefficient (ADC)(0,800), the estimated diffusion coefficient D' and the perfusion fraction f' were determined using a simplified IVIM approach. For each radioembolization, the 2 largest treated metastases (if available) were analyzed. Lesions were categorized according to size changes into group A (reduction of longest diameter [LD]) and group B (LD increase) after 3 months. Radioembolization procedures were further categorized into "response" (partial response and stable disease) and "nonresponse" (progressive disease) according to RECIST after 3 months. ADC and D' are given in 10 mm/s.Forty-five metastases were analyzed. Thirty-two lesions were categorized as A; 13 as B. Before therapy, group A lesions showed significantly larger f'-values than B (P = 0.001), but ADC(0,800) and D' did not differ. After therapy, in group A lesions the ADC(0,800)- and D'-values increased and f' decreased (P < 0.0001); in contrast in group B lesions f' increased (P = 0.001). Groups could be differentiated by preinterventional f' and by changes of D' and f' between pre and postinterventional imaging (area under the curve [AUC] of 0.903, 0.747 and 1.0, respectively).Preinterventional parameters did not differ between responders and nonresponders according to RECIST. ADC(0,800)- and D'-values showed a

  3. [A method of iris image quality evaluation].

    PubMed

    Murat, Hamit; Mao, Dawei; Tong, Qinye

    2006-04-01

    Iris image quality evaluation plays a very important part in iris computer recognition. An iris image quality evaluation method was introduced into this study to distinguish good image from bad image caused by pupil distortion, blurred boundary, two circles appearing not concentric, and severe occlusion by eyelids and eyelashes. The tests based on this method gave good results.

  4. Information Science and Responsive Evaluation

    ERIC Educational Resources Information Center

    Stake, Robert E.

    2014-01-01

    Responsive evaluation builds upon the methods of informal evaluation in disciplined ways: getting personally acquainted with the evaluand, observation of activities, interviewing people who are in different ways familiar with the evaluand, searching documents that reveal what happened in the past or somewhere else. It calls for sustained effort to…

  5. Evaluation of a Simplified Intravoxel Incoherent Motion (IVIM) Analysis of Diffusion-Weighted Imaging for Prediction of Tumor Size Changes and Imaging Response in Breast Cancer Liver Metastases Undergoing Radioembolization

    PubMed Central

    Pieper, Claus C.; Sprinkart, Alois M.; Meyer, Carsten; König, Roy; Schild, Hans H.; Kukuk, Guido M.; Mürtz, Petra

    2016-01-01

    Abstract To investigate the value of a simplified intravoxel incoherent motion (IVIM) analysis for evaluation of therapy-induced tumor changes and response of breast cancer liver metastases (mBRC) undergoing radioembolization. In 21 females (mean age 54 years, range 43–72) with mBRC tumor size changes and response evaluation criteria in solid tumors (RECIST) response to 26 primary radioembolization procedures were analyzed. Standard 1.5-T liver magnetic resonance imaging including respiratory-gated diffusion-weighted imaging (DWI) with b0 = 0 s/mm2, b1 = 50 s/mm2, b2 = 800 s/mm2 before and 6 weeks after each treatment was performed. In addition to the apparent diffusion coefficient (ADC)(0,800), the estimated diffusion coefficient D′ and the perfusion fraction f′ were determined using a simplified IVIM approach. For each radioembolization, the 2 largest treated metastases (if available) were analyzed. Lesions were categorized according to size changes into group A (reduction of longest diameter [LD]) and group B (LD increase) after 3 months. Radioembolization procedures were further categorized into “response” (partial response and stable disease) and “nonresponse” (progressive disease) according to RECIST after 3 months. ADC and D′ are given in 10−6 mm2/s. Forty-five metastases were analyzed. Thirty-two lesions were categorized as A; 13 as B. Before therapy, group A lesions showed significantly larger f′-values than B (P = 0.001), but ADC(0,800) and D′ did not differ. After therapy, in group A lesions the ADC(0,800)- and D′-values increased and f′ decreased (P < 0.0001); in contrast in group B lesions f′ increased (P = 0.001). Groups could be differentiated by preinterventional f′ and by changes of D′ and f′ between pre and postinterventional imaging (area under the curve [AUC] of 0.903, 0.747 and 1.0, respectively). Preinterventional parameters did not differ between responders and nonresponders

  6. Vibration response imaging: a novel noninvasive tool for evaluating the initial therapeutic effect of noninvasive positive pressure ventilation in patients with acute exacerbation of chronic obstructive pulmonary disease

    PubMed Central

    2012-01-01

    Background The popular methods for evaluating the initial therapeutic effect (ITE) of noninvasive positive pressure ventilation (NPPV) can only roughly reflect the therapeutic outcome of a patient’s ventilation because they are subjective, invasive and time-delayed. In contrast, vibration response imaging (VRI) can monitor the function of a patient’s ventilation over the NPPV therapy in a non-invasive manner. This study aimed to investigate the value of VRI in evaluating the ITE of NPPV for patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Methods Thirty-six AECOPD patients received VRI at three time points: before NPPV treatment (T1), at 15 min of NPPV treatment (T2), and at 15 min after the end of NPPV treatment (T4). Blood gas analysis was also performed at T1 and at 2 hours of NPPV treatment (T3). Thirty-nine healthy volunteers also received VRI at T1 and T2. VRI examination at the time point T2 in either the patients or volunteers did not require any interruption of the on-going NPPV. The clinical indices at each time point were compared between the two groups. Moreover, correlations between the PaCO2 changes (T3 vs T1) and abnormal VRI scores (AVRIS) changes (T2 vs T1) were analyzed. Results No significant AVRIS differences were found between T1 and T2 in the healthy controls (8.51 ± 3.36 vs. 8.53 ± 3.57, P > 0.05). The AVRIS, dynamic score, MEF score and EVP score showed a significant decrease in AECOPD patients at T2 compared with T1 (P < 0.05), but a significant increase at T4 compared with T2 (P < 0.05). We also found a positive correlation (R2 = 0.6399) between the PaCO2 changes (T3 vs T1) and AVRIS changes (T2 vs T1). Conclusions VRI is a promising noninvasive tool for evaluating the initial therapeutic effects of NPPV in AECOPD patients and predicting the success of NPPV in the early stage. PMID:22856613

  7. Response Classification Images in Vernier Acuity

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Beard, B. L.; Ellis, Stephen R. (Technical Monitor)

    1997-01-01

    Orientation selective and local sign mechanisms have been proposed as the basis for vernier acuity judgments. Linear image features contributing to discrimination can be determined for a two choice task by adding external noise to the images and then averaging the noises separately for the four types of stimulus/response trials. This method is applied to a vernier acuity task with different spatial separations to compare the predictions of the two theories. Three well-practiced observers were presented around 5000 trials of a vernier stimulus consisting of two dark horizontal lines (5 min by 0.3 min) within additive low-contrast white noise. Two spatial separations were tested, abutting and a 10 min horizontal separation. The task was to determine whether the target lines were aligned or vertically offset. The noises were averaged separately for the four stimulus/response trial types (e.g., stimulus = offset, response = aligned). The sum of the two 'not aligned' images was then subtracted from the sum of the 'aligned' images to obtain an overall image. Spatially smoothed images were quantized according to expected variability in the smoothed images to allow estimation of the statistical significance of image features. The response images from the 10 min separation condition are consistent with the local sign theory, having the appearance of two linear operators measuring vertical position with opposite sign. The images from the abutting stimulus have the same appearance with the two operators closer together. The image predicted by an oriented filter model is similar, but has its greatest weight in the abutting region, while the response images fall to nonsignificance there. The response correlation image method, previously demonstrated for letter discrimination, clarifies the features used in vernier acuity.

  8. Image analysis of neuropsychological test responses

    NASA Astrophysics Data System (ADS)

    Smith, Stephen L.; Hiller, Darren L.

    1996-04-01

    This paper reports recent advances in the development of an automated approach to neuropsychological testing. High performance image analysis algorithms have been developed as part of a convenient and non-invasive computer-based system to provide an objective assessment of patient responses to figure-copying tests. Tests of this type are important in determining the neurological function of patients following stroke through evaluation of their visuo-spatial performance. Many conventional neuropsychological tests suffer from the serious drawback that subjective judgement on the part of the tester is required in the measurement of the patient's response which leads to a qualitative neuropsychological assessment that can be both inconsistent and inaccurate. Results for this automated approach are presented for three clinical populations: patients suffering right hemisphere stroke are compared with adults with no known neurological disorder and a population comprising normal school children of 11 years is presented to demonstrate the sensitivity of the technique. As well as providing a more reliable and consistent diagnosis this technique is sufficiently sensitive to monitor a patient's progress over a period of time and will provide the neuropsychologist with a practical means of evaluating the effectiveness of therapy or medication administered as part of a rehabilitation program.

  9. Non-Hodgkin lymphoma response evaluation with MRI texture classification

    PubMed Central

    Harrison, Lara CV; Luukkaala, Tiina; Pertovaara, Hannu; Saarinen, Tuomas O; Heinonen, Tomi T; Järvenpää, Ritva; Soimakallio, Seppo; Kellokumpu-Lehtinen, Pirkko-Liisa I; Eskola, Hannu J; Dastidar, Prasun

    2009-01-01

    Background To show magnetic resonance imaging (MRI) texture appearance change in non-Hodgkin lymphoma (NHL) during treatment with response controlled by quantitative volume analysis. Methods A total of 19 patients having NHL with an evaluable lymphoma lesion were scanned at three imaging timepoints with 1.5T device during clinical treatment evaluation. Texture characteristics of images were analyzed and classified with MaZda application and statistical tests. Results NHL tissue MRI texture imaged before treatment and under chemotherapy was classified within several subgroups, showing best discrimination with 96% correct classification in non-linear discriminant analysis of T2-weighted images. Texture parameters of MRI data were successfully tested with statistical tests to assess the impact of the separability of the parameters in evaluating chemotherapy response in lymphoma tissue. Conclusion Texture characteristics of MRI data were classified successfully; this proved texture analysis to be potential quantitative means of representing lymphoma tissue changes during chemotherapy response monitoring. PMID:19545438

  10. Using Responsive Evaluation To Evaluate a Professional Conference.

    ERIC Educational Resources Information Center

    Speigel, Amy N.; Bruning, Roger H.; Giddings, Lisa

    1999-01-01

    Incorporated responsive evaluation methods into the structure of a professional conference and illustrated the usefulness of these techniques in evaluating conferences. Discusses the implications of this pilot study of responsive evaluation. (SLD)

  11. Evaluating Image Browsers Using Structured Annotation.

    ERIC Educational Resources Information Center

    Muller, Wolfgang; Marchand-Mailet, Stephane; Muller, Henning; Squire, David McG.; Pun, Thierry

    2001-01-01

    Addresses the problem of benchmarking image browsers. Existence of different search paradigms for image browsers makes it difficult to compare them. Currently, the only admissible evaluation method involves conducting large-scale user studies. An automatic image browser benchmark is proposed that uses structured text annotation of the image…

  12. Evaluation metric of an image understanding result

    NASA Astrophysics Data System (ADS)

    Hemery, Baptiste; Laurent, Helene; Emile, Bruno; Rosenberger, Christophe

    2015-01-01

    Image processing algorithms include methods that process images from their acquisition to the extraction of useful information for a given application. Among interpretation algorithms, some are designed to detect, localize, and identify one or several objects in an image. The problem addressed is the evaluation of the interpretation results of an image or a video given an associated ground truth. Challenges are multiple, such as the comparison of algorithms, evaluation of an algorithm during its development, or the definition of its optimal settings. We propose a new metric for evaluating the interpretation result of an image. The advantage of the proposed metric is to evaluate a result by taking into account the quality of the localization, recognition, and detection of objects of interest in the image. Several parameters allow us to change the behavior of this metric for a given application. Its behavior has been tested on a large database and showed interesting results.

  13. Hyperspectral imaging for nondestructive evaluation of tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Machine vision methods for quality and defect evaluation of tomatoes have been studied for online sorting and robotic harvesting applications. We investigated the use of a hyperspectral imaging system for quality evaluation and defect detection for tomatoes. Hyperspectral reflectance images were a...

  14. Evaluating Similarity Measures for Brain Image Registration.

    PubMed

    Razlighi, Q R; Kehtarnavaz, N; Yousefi, S

    2013-10-01

    Evaluation of similarity measures for image registration is a challenging problem due to its complex interaction with the underlying optimization, regularization, image type and modality. We propose a single performance metric, named robustness, as part of a new evaluation method which quantifies the effectiveness of similarity measures for brain image registration while eliminating the effects of the other parts of the registration process. We show empirically that similarity measures with higher robustness are more effective in registering degraded images and are also more successful in performing intermodal image registration. Further, we introduce a new similarity measure, called normalized spatial mutual information, for 3D brain image registration whose robustness is shown to be much higher than the existing ones. Consequently, it tolerates greater image degradation and provides more consistent outcomes for intermodal brain image registration.

  15. Image capture: simulation of sensor responses from hyperspectral images.

    PubMed

    Vora, P L; Farrell, J E; Tietz, J D; Brainard, D H

    2001-01-01

    This paper describes the design and performance of an image capture simulator. The general model underlying the simulator assumes that the image capture device contains multiple classes of sensors with different spectral sensitivities and that each sensor responds in a known way to irradiance over most of its operating range. The input to the simulator is a set of narrow-band images of the scene taken with a custom-designed hyperspectral camera system. The parameters for the simulator are the number of sensor classes, the sensor spectral sensitivities, the noise statistics and number of quantization levels for each sensor class, the spatial arrangement of the sensors and the exposure duration. The output of the simulator is the raw image data that would have been acquired by the simulated image capture device. To test the simulator, we acquired images of the same scene both with the hyperspectral camera and with a calibrated Kodak DCS-200 digital color camera. We used the simulator to predict the DCS-200 output from the hyperspectral data. The agreement between simulated and acquired images validated the image capture response model and our simulator implementation. We believe the simulator will provide a useful tool for understanding the effect of varying the design parameters of an image capture device.

  16. Electromagnetic imaging methods for nondestructive evaluation applications.

    PubMed

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions.

  17. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  18. Process perspective on image quality evaluation

    NASA Astrophysics Data System (ADS)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  19. DoD Advanced, Image-Evaluation Program

    DTIC Science & Technology

    1974-06-01

    Module 40 14 Two-Port, Image- Evaluation Concept 43 15 Basic Schematic for System Responsivity Measurements 48 16 Basic Schematic for System Spatial...Response Measurements 49 17 Basic Schematic for System Resoltivity Response Measurements 50 18 Example of Point Source Spreading 62 viii TABLES Table...Hybrid Target Generator Component Specifications (Visible) 31 Target Pattern Specifications 32 6 Extended Basic Commands 38-39 Typical Software Supported

  20. Performance evaluation of image segmentation algorithms on microscopic image data.

    PubMed

    Beneš, Miroslav; Zitová, Barbara

    2015-01-01

    In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown.

  1. MR imaging evaluation of the postoperative meniscus.

    PubMed

    Russo, A; Capasso, R; Varelli, C; Laporta, A; Carbone, M; D'Agosto, G; Giovine, S; Zappia, M; Reginelli, A

    2017-03-01

    MR imaging has been widely evaluated in the assessment of patients with recurrent or residual symptoms following meniscal surgery. Importantly, the causes of such symptoms may relate to failure or complication of the surgical procedure, a possible recurrent or residual meniscal tear, or may be related to other causes of joint symptoms, including tears of the contralateral meniscus, or local hyaline cartilage, or marrow abnormalities subjacent to or distant to the meniscal surgical site. The complex diagnostic issues involved in the MR imaging evaluation of the postoperative meniscus were identified in early MR imaging studies. The knowledge of the normal MR imaging appearance of the knee after the more common repair procedures will allow radiologists to recognize complications associated with such procedures. In this article, we discuss the MR imaging evaluation of the knee after meniscal surgery.

  2. Evaluation of Carotid Plaque Using Ultrasound Imaging

    PubMed Central

    2016-01-01

    Traditional risk factors for predicting of cardiovascular disease are not always effective predictors for development of cardiovascular events. This review summarizes several newly developed noninvasive imaging techniques for evaluating carotid plaques and their role in cardiovascular disease risk. PMID:27358696

  3. Changing CS Features Alters Evaluative Responses in Evaluative Conditioning

    ERIC Educational Resources Information Center

    Unkelbach, Christian; Stahl, Christoph; Forderer, Sabine

    2012-01-01

    Evaluative conditioning (EC) refers to changes in people's evaluative responses toward initially neutral stimuli (CSs) by mere spatial and temporal contiguity with other positive or negative stimuli (USs). We investigate whether changing CS features from conditioning to evaluation also changes people's evaluative response toward these CSs. We used…

  4. Evaluation of imaging performance of major image guidance systems

    PubMed Central

    Chan, MF; Yang, J; Song, Y; Burman, C; Chan, P; Li, S

    2011-01-01

    Purpose: The imaging characteristics of two popular kV cone-beam CT (CBCT) and two MVCT systems utilised in image-guided radiation therapy (IGRT) were evaluated. Materials and methods: The study was performed on Varian Clinac iX, Elekta Synergy S, Siemens Oncor, and Tomotherapy. A CT phantom (Catphan-504, Phantom Laboratory, Salem, NY) was scanned for measurements of image quality including image noise, uniformity, density accuracy, spatial resolution, contrast linearity, and contrast resolution. The measurement results were analysed using in-house image analysis software. Reproducibility, position correction, and geometric accuracy were also evaluated with markers in a smaller alignment phantom. The performance evaluation compared volumetric image properties from these four systems with those from a conventional diagnostic CT (CCT). Results: It was shown that the linearity of the two kV CBCT was fairly consistent with CCT. The Elekta CBCT with half-circle 27-cm FOV had higher CT numbers than the other three systems. The image noises of the Elekta kV CBCT, Siemens MV CBCT, and Tomotherapy fan-beam CT (FBCT) are about 2–4 times higher than that of the Varian CBCT. The spatial resolutions of two kV CBCTs and two MV CBCTs were 8-11 lp/cm and 3-5 lp/cm, respectively. Conclusion: Elekta CBCT provided a faster image reconstruction and low dose per scan for half-circle scanning. Varian CBCT had relatively lower image noise. Tomotherapy FBCT had the best uniformity. PMID:22287985

  5. Imaging Leukocyte Responses in the Kidney.

    PubMed

    Finsterbusch, Michaela; Kitching, A Richard; Hickey, Michael J

    2017-03-01

    The kidney can be negatively affected by a range of innate and adaptive immune responses, resulting in alterations in the functions of the kidney and, in some cases, progression to renal failure. In many of these responses, infiltration of blood-borne leukocytes into the kidney is central to the response. In addition, a large population of mononuclear phagocytes resident in the kidney can modulate these responses. A great deal of research has investigated both the mechanisms of leukocyte recruitment to the kidney and the actions of immune cells resident within the kidney. Because of the dynamic nature of the processes whereby leukocytes enter sites of inflammation, in vivo imaging has been one of the key approaches used for understanding leukocyte recruitment as it occurs throughout the body, and this is also true for kidney. However, imaging this organ and its complicated microvasculature during different forms of renal pathology presents a unique set of challenges. In this review, we examine the approaches used for intravital imaging of the kidney and summarize the insights gained from these studies regarding the mechanisms of leukocyte entry into the kidney during inflammation and the actions of immune cells within this organ.

  6. Research on image scrambling degree evaluation method

    NASA Astrophysics Data System (ADS)

    Bai, Sen; Liao, Xiaofeng; Chen, Jinyu; Liu, Yijun; Wang, Xiao

    2005-12-01

    This paper discussed the evaluation problem of image scrambling degree (ISD). Inspired by the evaluation method of image texture characteristics, three new metrics for assessing objectively the ISD were proposed. The first method utilized the performance of energy concentration of Walsh transformation (WT), which took into account the properties that a good ISD measurement method should be contented. The second method used angular second moment (ASM) of image gray level co-occurrence matrix (GLCM). The third method combined the entropy of GLCM with image texture characteristic. Experimental results show that the proposed metrics are effective to assess the ISD, which correlates well with subjective assessment. Considering the computational complexity, the first evaluation method based on WT is remarkably superior to the method based on ASM and GLCM in terms of the time cost.

  7. Consistency of response and image recognition, pulmonary nodules

    PubMed Central

    Liu, M A Q; Galvan, E; Bassett, R; Murphy, W A; Matamoros, A; Marom, E M

    2014-01-01

    Objective: To investigate the effect of recognition of a previously encountered radiograph on consistency of response in localized pulmonary nodules. Methods: 13 radiologists interpreted 40 radiographs each to locate pulmonary nodules. A few days later, they again interpreted 40 radiographs. Half of the images in the second set were new. We asked the radiologists whether each image had been in the first set. We used Fisher's exact test and Kruskal–Wallis test to evaluate the correlation between recognition of an image and consistency in its interpretation. We evaluated the data using all possible recognition levels—definitely, probably or possibly included vs definitely, probably or possibly not included by collapsing the recognition levels into two and by eliminating the “possibly included” and “possibly not included” scores. Results: With all but one of six methods of looking at the data, there was no significant correlation between consistency in interpretation and recognition of the image. When the possibly included and possibly not included scores were eliminated, there was a borderline statistical significance (p = 0.04) with slightly greater consistency in interpretation of recognized than that of non-recognized images. Conclusion: We found no convincing evidence that radiologists' recognition of images in an observer performance study affects their interpretation on a second encounter. Advances in knowledge: Conscious recognition of chest radiographs did not result in a greater degree of consistency in the tested interpretation than that in the interpretation of images that were not recognized. PMID:24697724

  8. Immunofluorescence Imaging of DNA Damage Response Proteins

    PubMed Central

    Bennett, Brian T.; Bewersdorf, Jörg; Knight, Kendall L.

    2013-01-01

    Immunofluorescence imaging has provided captivating visual evidence for numerous cellular events, from vesicular trafficking, organelle maturation and cell division to nuclear processes including the appearance of various proteins and chromatin components in distinct foci in response to DNA damaging agents. With the advent of new super-resolution microscope technologies such as 4Pi microscopy, standard immunofluorescence protocols deserve some reevaluation in order to take full advantage of these new technological accomplishments. Here we describe several methodological considerations that will help overcome some of the limitations that may result from the use of currently applied procedures, with particular attention paid to the analysis of possible colocalization of fluorescent signals. We conclude with an example of how application of optimized methods led to a breakthrough in super-resolution imaging of nuclear events occurring in response to DNA damage. PMID:19245833

  9. Improving Beta Test Evaluation Response Rates: A Meta-Evaluation

    ERIC Educational Resources Information Center

    Russ-Eft, Darlene; Preskill, Hallie

    2005-01-01

    This study presents a meta-evaluation of a beta-test of a customer service training program. The initial evaluation showed a low response rate. Therefore, the meta-evaluation focused on issues related to the conduct of the initial evaluation and reasons for nonresponse. The meta-evaluation identified solutions to the nonresponse problem as related…

  10. Evaluation of allergic response using dynamic thermography

    NASA Astrophysics Data System (ADS)

    Rokita, E.; Rok, T.; Tatoń, G.

    2015-03-01

    Skin dynamic termography supplemented by a mathematical model is presented as an objective and sensitive indicator of the skin prick test result. Termographic measurements were performed simultaneously with routine skin prick tests. The IR images were acquired every 70 s up to 910 s after skin prick. In the model histamine is treated as the principal mediator of the allergic reaction. Histamine produces vasolidation and the engorged vessels are responsible for an increase in skin temperature. The model parameters were determined by fitting the analytical solutions to the spatio-temporal distributions of the differences between measured and baseline temperatures. The model reproduces experimental data very well (coefficient of determination = 0.805÷0.995). The method offers a set of parameters to describe separately skin allergic reaction and skin reactivity. The release of histamine after allergen injection is the best indicator of allergic response. The diagnostic parameter better correlates with the standard evaluation of a skin prick test (correlation coefficient = 0.98) than the result of the thermographic planimetric method based on temperature and heated area determination (0.81). The high sensitivity of the method allows for determination of the allergic response in patients with the reduced skin reactivity.

  11. The Practice and Politics of Responsive Evaluation

    ERIC Educational Resources Information Center

    Abma, Tineke

    2006-01-01

    Responsive evaluation offers a perspective in which evaluation is reframed from the assessment of program interventions on the basis of policy makers' goals to an engagement with and among all stakeholders about the value and meaning of their practice. Responsive evaluators have to be extra sensitive to power relations given the deliberate…

  12. Dual-Enzyme-Loaded Multifunctional Hybrid Nanogel System for Pathological Responsive Ultrasound Imaging and T2-Weighted Magnetic Resonance Imaging.

    PubMed

    Wang, Xia; Niu, Dechao; Li, Pei; Wu, Qing; Bo, Xiaowan; Liu, Boji; Bao, Song; Su, Teng; Xu, Huixiong; Wang, Qigang

    2015-06-23

    A dual-enzyme-loaded multifunctional hybrid nanogel probe (SPIO@GCS/acryl/biotin-CAT/SOD-gel, or SGC) has been developed for dual-modality pathological responsive ultrasound (US) imaging and enhanced T2-weighted magnetic resonance (MR) imaging. This probe is composed of functionalized superparamagnetic iron oxide particles, a dual enzyme species (catalase and superoxide dismutase), and a polysaccharide cationic polymer glycol chitosan gel. The dual-modality US/MR imaging capabilities of the hybrid nanogel for responsive US imaging and enhanced T2-weighted MR imaging have been evaluated both in vitro and in vivo. These results show that the hybrid nanogel SGC can exhibit efficient dual-enzyme biocatalysis with pathological species for responsive US imaging. SGC also demonstrates increased accumulation in acidic environments for enhanced T2-weighted MR imaging. Further research on these nanogel systems may lead to the development of more efficient US/MR contrast agents.

  13. Evaluation Tools for Image Information Mining System

    NASA Astrophysics Data System (ADS)

    Daschiel, H.; Datcu, M.

    2004-09-01

    In this article, we present tools for the evaluation of a knowledge-drivencontent-based image information mining system. In order to provide users fast access to the content of large remote sensing image archives, the system is composed of two main modules. The first includes computationally intensive algorithms for off-line data ingestion in the database, feature extraction and indexing. The second module consists of a graphical human-machine interface that manages the interactive learning and image information mining functions. According to the system architecture, the implemented evaluation tools determine the objective technical quality of the system and include subjective human factors, too. Since the query performance of the mining system mainly depends on the data sets stored in the archive, we first analyze the complexityof image data. Based on the stochastic nature of user-defined semantic cover-type labels, the system retrieves the most relevant images using probabilistic measurements. We evaluate the man-machine communication dialogue and system operation in order to determine the quality of semantic labels. Finally, we verify the man-machine interfaceby using measurements like time for loading the learning applet, time for computing the probabilistic search results and time for label training.

  14. Evaluating fusion techniques for multi-sensor satellite image data

    SciTech Connect

    Martin, Benjamin W; Vatsavai, Raju

    2013-01-01

    Satellite image data fusion is a topic of interest in many areas including environmental monitoring, emergency response, and defense. Typically any single satellite sensor cannot provide all of the benefits offered by a combination of different sensors (e.g., high-spatial but low spectral resolution vs. low-spatial but high spectral, optical vs. SAR). Given the respective strengths and weaknesses of the different types of image data, it is beneficial to fuse many types of image data to extract as much information as possible from the data. Our work focuses on the fusion of multi-sensor image data into a unified representation that incorporates the potential strengths of a sensor in order to minimize classification error. Of particular interest is the fusion of optical and synthetic aperture radar (SAR) images into a single, multispectral image of the best possible spatial resolution. We explore various methods to optimally fuse these images and evaluate the quality of the image fusion by using K-means clustering to categorize regions in the fused images and comparing the accuracies of the resulting categorization maps.

  15. Local wavefield velocity imaging for damage evaluation

    NASA Astrophysics Data System (ADS)

    Chia, Chen Ciang; Gan, Chia Sheng; Mustapha, F.

    2017-02-01

    Ultrasonic Propagation Imaging or Acoustic Wavefield Imaging has been widely used to evaluate structural damages and internal features. Inspecting complete wavefield time history for damage identification is tedious and error-prone. A more effective way is by extracting damage-related information into a single image. A wavefield velocity imaging method that maps the local estimates of group or phase velocity is proposed. Actual velocity values rather than arbitrarily-scaled intensities are mapped, enabling damage sizing without the need of supervised training or inspecting wavefield propagation video. Performance of the proposed method was tested by inspecting a 100 mm by 100 mm area of a 2 mm thick stainless steel specimen. Local phase velocity maps of A0 mode showed a half-thickness hole of 2 mm diameter as significant change in local phase velocity from the nominal 2 m/ms. Full width at half maximum of relevant velocity profiles proved the accuracy and consistency of the damage sizing.

  16. 19F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model

    PubMed Central

    Jakob, Peter; Ohlsen, Knut

    2013-01-01

    Background The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of 19F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. Methods/Principal findings Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of 19F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the 19F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. Conclusions 19F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection. PMID:23724049

  17. Response Bias in Hospice Evaluation.

    ERIC Educational Resources Information Center

    Hayslip, Bert, Jr.; And Others

    1991-01-01

    Analyzed response bias among 34 recipients of care in hospice. Found nonrespondents to have better bereavement prognoses and tended to care for patients who were younger, male, and in program for shorter time. Nonrespondents were in contact with staff less than were respondents. Data are consistent with earlier research showing significant…

  18. A Ranking Method for Evaluating Constructed Responses

    ERIC Educational Resources Information Center

    Attali, Yigal

    2014-01-01

    This article presents a comparative judgment approach for holistically scored constructed response tasks. In this approach, the grader rank orders (rather than rate) the quality of a small set of responses. A prior automated evaluation of responses guides both set formation and scaling of rankings. Sets are formed to have similar prior scores and…

  19. Lung cancer: evaluation with MR imaging during and after irradiation.

    PubMed

    Yankelevitz, D F; Henschke, C I; Batata, M; Kim, Y S; Chu, F

    1994-01-01

    We used magnetic resonance (MR) imaging to evaluate treatment response of 10 consecutive lung cancer patients while they were receiving radiation therapy. Patients were scanned before treatment, during treatment, at completion of treatment, and if possible, at 3-month intervals thereafter. The initial tumor response to radiation was increasing signal intensity and increasing heterogeneity, best seen on T2-weighted images. Small tumors virtually disappeared, whereas larger masses remained as complex cystic structures or developed cavities. The adjacent irradiated lung parenchyma had increased signal on both the T1- and T2-weighted images as early as 17 days after start of treatment. The signal intensity continued to increase for several months after treatment, but subsequently decreased.

  20. Performance Evaluation of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I.; Villacorta, Juan J.

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  1. Protection performance evaluation regarding imaging sensors hardened against laser dazzling

    NASA Astrophysics Data System (ADS)

    Ritt, Gunnar; Koerber, Michael; Forster, Daniel; Eberle, Bernd

    2015-05-01

    Electro-optical imaging sensors are widely distributed and used for many different purposes, including civil security and military operations. However, laser irradiation can easily disturb their operational capability. Thus, an adequate protection mechanism for electro-optical sensors against dazzling and damaging is highly desirable. Different protection technologies exist now, but none of them satisfies the operational requirements without any constraints. In order to evaluate the performance of various laser protection measures, we present two different approaches based on triangle orientation discrimination on the one hand and structural similarity on the other hand. For both approaches, image analysis algorithms are applied to images taken of a standard test scene with triangular test patterns which is superimposed by dazzling laser light of various irradiance levels. The evaluation methods are applied to three different sensors: a standard complementary metal oxide semiconductor camera, a high dynamic range camera with a nonlinear response curve, and a sensor hardened against laser dazzling.

  2. Evaluation of various deformable image registration algorithms for thoracic images.

    PubMed

    Kadoya, Noriyuki; Fujita, Yukio; Katsuta, Yoshiyuki; Dobashi, Suguru; Takeda, Ken; Kishi, Kazuma; Kubozono, Masaki; Umezawa, Rei; Sugawara, Toshiyuki; Matsushita, Haruo; Jingu, Keiichi

    2014-01-01

    We evaluated the accuracy of one commercially available and three publicly available deformable image registration (DIR) algorithms for thoracic four-dimensional (4D) computed tomography (CT) images. Five patients with esophagus cancer were studied. Datasets of the five patients were provided by DIR-lab (dir-lab.com) and consisted of thoracic 4D CT images and a coordinate list of anatomical landmarks that had been manually identified. Expert landmark correspondence was used for evaluating DIR spatial accuracy. First, the manually measured displacement vector field (mDVF) was obtained from the coordinate list of anatomical landmarks. Then the automatically calculated displacement vector field (aDVF) was calculated by using the following four DIR algorithms: B-spine implemented in Velocity AI (Velocity Medical, Atlanta, GA, USA), free-form deformation (FFD), Horn-Schunk optical flow (OF) and Demons in DIRART of MATLAB software. Registration error is defined as the difference between mDVF and aDVF. The mean 3D registration errors were 2.7 ± 0.8 mm for B-spline, 3.6 ± 1.0 mm for FFD, 2.4 ± 0.9 mm for OF and 2.4 ± 1.2 mm for Demons. The results showed that reasonable accuracy was achieved in B-spline, OF and Demons, and that these algorithms have the potential to be used for 4D dose calculation, automatic image segmentation and 4D CT ventilation imaging in patients with thoracic cancer. However, for all algorithms, the accuracy might be improved by using the optimized parameter setting. Furthermore, for B-spline in Velocity AI, the 3D registration error was small with displacements of less than ∼10 mm, indicating that this software may be useful in this range of displacements.

  3. Culturally Responsive Evaluation Meets Systems-Oriented Evaluation

    ERIC Educational Resources Information Center

    Thomas, Veronica G.; Parsons, Beverly A.

    2017-01-01

    The authors of this article each bring a different theoretical background to their evaluation practice. The first author has a background of attention to culturally responsive evaluation (CRE), while the second author has a background of attention to systems theories and their application to evaluation. Both have had their own evolution of…

  4. Renal amyloidosis. Evaluation by gallium imaging

    SciTech Connect

    Lee, V.W.; Skinner, M.; Cohen, A.S.; Ngai, S.; Peng, T.T.

    1986-09-01

    A study has been performed to evaluate the efficacy of gallium imaging in the detection of renal amyloidosis. Ten of the 11 patients who had biopsy-proven renal amyloidosis demonstrated marked uptake in both kidneys. One patient revealed moderate gallium uptake in his kidneys. None of the patients had underlying renal or extrarenal pathology other than amyloidosis, which could account for renal gallium uptake (renal infection, neoplasm, hepatic failure or frequent blood transfusions). Four patients also had extrarenal foci of abnormal gallium uptake, suggesting other sites of amyloid deposits. Our data strongly suggest that gallium imaging has a high sensitivity for detection of renal amyloidosis. Its specificity is enhanced significantly by careful review of the clinical history to exclude other known causes of renal gallium uptake. Potentially, gallium imaging may be used to monitor the progress of patients under experimental therapy.

  5. Current imaging strategies for the evaluation of uterine cervical cancer

    PubMed Central

    Bourgioti, Charis; Chatoupis, Konstantinos; Moulopoulos, Lia Angela

    2016-01-01

    Uterine cervical cancer still remains an important socioeconomic issue because it largely affects women of reproductive age. Prognosis is highly depended on extent of the disease at diagnosis and, therefore, accurate staging is crucial for optimal management. Cervical cancer is clinically staged, according to International Federation of Gynecology and Obstetrics guidelines, but, currently, there is increased use of cross sectional imaging modalities [computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography-CT (PET-CT)] for the study of important prognostic factors like tumor size, parametrial invasion, endocervical extension, pelvic side wall or adjacent/distal organs involvement and lymph node status. Imaging indications also include cervical cancer follow-up, evaluation of tumor response to treatment and selection of suitable candidates for less radical surgeries like radical trachelectomy for fertility preservation. The preferred imaging method for local cervical cancer evaluation is MRI; CT is equally effective for evaluation of extrauterine spread of the disease. PET-CT shows high diagnostic performance for the detection of tumor relapse and metastatic lymph nodes. The aim of this review is to familiarize radiologists with the MRI appearance of cervical carcinoma and to discuss the indications of cross sectional imaging during the course of the disease in patients with cervical carcinoma. PMID:27158421

  6. [Acute response of right ventricular function to iloprost inhalations in patients with pulmonary arterial hypertension: preliminary evaluation 
with cardiac magnetic resonance imaging].

    PubMed

    Lu, Qingqing; Li, Dong; Yang, Zhenwen; Han, Yan; Cui, Qian; Zhang, Zhang; Yu, Tielian

    2015-03-01

    背景与目的 肺动脉高压(pulmonary arterial hypertension, PAH)是以肺循环压力异常增高为特征的进展性疾病,可引起右心室(right ventricle, RV)功能进行性衰竭,最终导致死亡。因此RV功能的评估在PAH的诊断、随访中起着重要作用。心脏磁共振成像(cardiac magnetic resonance imaging, CMRI)成为无创评价心室功能的参照标准,尤其是RV功能。本研究通过CMRI评估吸入伊洛前列素对PAH患者RV功能影响的即刻效应。方法 2012年3月-2014年3月PAH患者48例,吸入单剂量20 μg的伊洛前列素溶液前、后立即进行CMRI检查,测量RV的舒张末期容积(end-diastolic volume, EDV)、收缩末期容积(end-systolic volume, ESV)、每搏输出量(stroke volume, SV)、射血分数(ejection fraction, EF)、心输出量(cardiac output, CO)、舒张末期面积(end-diastolic area, EDA)及收缩末期面积(end-systolic area, ESA)。RV面积变化百分比(percentage of RV area change, %RVAC)由公式[%RVAC=(EDA-ESA)/EDA×100%]计算获得。采用Wilcoxon符号秩和检验或配对t检验分析吸入伊洛前列素前、后RV功能参数变化。P<0.05为差异有统计学意义。结果 吸入伊洛前列素后,患者的RV功能改善,RV EDV、RV ESV显著下降(P=0.007, P<0.001),RV SV、RV EF及%RVAC增加(P=0.014, P=0.009, P=0.006),RV CO无变化(P=0.851)。结论 吸入伊洛前列素能立即明显改善PAH患者的RV功能,CMRI能准确、无创地评估该即刻效应。.

  7. Hyperspectral and multispectral imaging for evaluating food safety and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral imaging technologies have been developed rapidly during the past decade. This paper presents hyperspectral and multispectral imaging technologies in the area of food safety and quality evaluation, with an introduction, demonstration, and summarization of the spectral imaging techniques avai...

  8. Behavioral Response Research Evaluation Workshop (BRREW)

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Behavioral Response Research Evaluation Workshop (BRREW...N000141512664 http://www.creem.st-and.ac.uk LONG-TERM GOALS The behavioral response of marine mammals to Navy sonar exposure has been a research...The overall objective is to review the status and future of research into behavioral responses of marine mammals to naval sonar exposure in order to

  9. Comparative effectiveness of imaging modalities to determine metastatic breast cancer treatment response.

    PubMed

    Lee, Christoph I; Gold, Laura S; Nelson, Heidi D; Chou, Roger; Ramsey, Scott D; Sullivan, Sean D

    2015-02-01

    We performed a systematic review to address the comparative effectiveness of different imaging modalities in evaluating treatment response among metastatic breast cancer patients. We searched seven multidisciplinary electronic databases for relevant publications (January 2003-December 2013) and performed dual abstraction of details and results for all clinical studies that involved stage IV breast cancer patients and evaluated imaging for detecting treatment response. Among 159 citations reviewed, 17 single-institution, non-randomized, observational studies met our inclusion criteria. Several studies demonstrate that changes in PET/CT standard uptake values are associated with changes in tumor volume as determined by bone scan, MRI, and/or CT. However, no studies evaluated comparative test performance between modalities or determined relationships between imaging findings and subsequent clinical decisions. Evidence for imaging's effectiveness in determining treatment response among metastatic breast cancer patients is limited. More rigorous research is needed to address imaging's value in this patient population.

  10. Use of Responsive Evaluation in Statewide Program Evaluation

    ERIC Educational Resources Information Center

    Kalman, Marjorie

    1976-01-01

    A summer school program stressing basic skills for migrant children in a rural Illinois community was assessed according to Stake's responsive evaluation model. Informal communication, program activities, audience needs, and participant values were emphasized in this case study. This evaluation method provided useful information for the state's…

  11. Use of Responsive Evaluation in Statewide Program Evaluation.

    ERIC Educational Resources Information Center

    Kalman, Marjorie

    The objective of this paper is to discuss the utilization of Stake's theory of responsive evaluation by a unit in state government charged with the evaluation of the Illinois Migrant Program. Through interviews with state and local Title I staff, we were able to discover program purposes and concerns and to later conceptualize these concerns into…

  12. Evaluation of Deconvolution Methods for PRISM Images

    NASA Astrophysics Data System (ADS)

    Schwind, Peter; Palubinskas, Gintautas; Storch, Tobias; Muller, Rupert

    2008-11-01

    Within the scope of a project by the European Space Agency (ESA), the German Aerospace Center (DLR) is responsible for the establishment of prototype processors for ALOS/AVNIR-2 and ALOS/PRISM data. This processing chain not only includes radiometric and geometric correction for ALOS/AVNIR-2 and ALOS/PRISM but also atmospheric correction for ALOS/AVNIR-2. In addition to that an optional deconvolution step for the ALOS/PRISM data is offered to improve the image quality. This paper gives a short introduction into the processing chain as a whole and a more in-depth look into the deconvolution strategies taken into consideration for ALOS/PRISM images.

  13. A versatile nondestructive evaluation imaging workstation

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1994-01-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  14. A versatile nondestructive evaluation imaging workstation

    NASA Astrophysics Data System (ADS)

    Chern, E. James; Butler, David W.

    1994-02-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  15. Evaluation of imaging characteristics in CTDI phantom size on contrast imaging

    NASA Astrophysics Data System (ADS)

    Jeon, Pil-Hyun; Lee, Won-Hyung; Jeon, Seong-Su; Kim, Hee-Joung

    2015-03-01

    Recently, there have been several physics and clinical studies on the use of lower tube potentials in CT imaging, with the purpose of improving image quality or further reducing radiation dose. We investigated an experimental study using a series of different sized, polymethyl methacrylate (PMMA) phantoms, demonstrating the potential strategy for dose reduction and to distinguish component of plaque by imaging their energy responses using CT. We investigated the relationship between different sizes of cylinderic PMMA-equivalent phantoms with diameter of 12, 16, 20, 24, and 32 cm and used contrast at various tube voltages (80, 100, 120, and 140 kVp) using a 16-detector row CT scanner. The contrast represented CT numbers as different materials for the water, calcium chloride, and iodine. Phantom insertions also allow quantitative measures of image noise, contrast, contrast-to-noise ratio (CNR) and figure of merit (FOM). When evaluating FOM, it was found that the lower kVp provided the better CNR. An experimental study was performed to demonstrate reduced dose for both dose efficient and practical feasibility for different patient sizes and diagnostic tasks by relating achievable CNR and the volume CT dose index (CTDIvol). The use of spectra optimized to the specific application could provide further improvements of distinguishing iodine, calcium and plaque component for patient size. The purpose of this study was to evaluate variations in image noise and contrast using different tube potentials in a CTDI phantom on contrast imaging.

  16. Techniques to evaluate the quality of medical images

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, Marlen

    2014-11-01

    There is not a perfect agree in the definition of medical image quality from the physician and physicist point of view. The present conference analyzes the standard techniques used to grade image quality. In the first place, an analysis about how viewing conditions related to environment, monitor used or physician experience determines the subjective evaluation is done. After that, the physics point of view is analyzed including the advantage and disadvantage of the main published methods like: Quality Control Tests, Mathematical metrics, Modulation Transfer Function, Noise Power Spectrum, System Response Curve and Mathematical observers. Each method is exemplified with the results of updated papers. We concluded that the most successful methods up to the present have been those which include simulations of the Human Visual System. They have good correlation between the results of the objective metrics and the subjective evaluation made by the observers.

  17. Measured responsivities of generation II and hybrid image intensifiers

    SciTech Connect

    Yates, G.J.; King, N.S.P.; Thomas, M.C.

    1995-07-01

    We have measured the absolute and coupled system responsivities of several image intensifier types at several wavelengths in the visible spectrum. Intensifiers characterized include microchannel plate (MCP) generation II proximity-focused and hybrid generation I/generation II electrostatic-focused designs. Configurations including single plate, double plate, nominal and high strip current MCPs, and standard S20 and super generation II enhanced S-20 photocathodes were evaluated. Absolute responsivity measurements were performed using NIST-traceable radiometry instrumentation. The normalized relative sensitivities and overall optical luminous gain performance provided by individual intensifiers when similarly coupled to either high resolution 10-bit RS-170 CCD or FPS cameras are presented along with their radiometric data.

  18. University Social Responsibility and Brand Image of Private Universities in Bangkok

    ERIC Educational Resources Information Center

    Plungpongpan, Jirawan; Tiangsoongnern, Leela; Speece, Mark

    2016-01-01

    Purpose: The purpose of this paper is to examine the effects of university social responsibility (USR) on the brand image of private universities in Thailand. Brand image is important for entry into the consideration set as prospective students evaluate options for university study. USR activities may be implicit or explicit, i.e., actively…

  19. Hyperspectral range imaging for transportation systems evaluation

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.

    2016-04-01

    Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.

  20. Lateral hip pain: does imaging predict response to localized injection?

    PubMed

    Walker, Peter; Kannangara, Siri; Bruce, Warwick J M; Michael, Dean; Van der Wall, H

    2007-04-01

    Lateral hip pain is a common complaint in patients with a history of lower back pain from spinal disease. These patients often are diagnosed and treated for trochanteric bursitis because of localized pain and tenderness in the lateral hip. We presumed numerous scintigraphic features could provide diagnostic criteria for diagnosing gluteus medius tendinitis and trochanteric bursitis. A study was designed to assess the scintigraphic criteria for diagnosis of trochanteric bursitis and to evaluate the relationship of trochanteric bursitis to gluteus medius tendinitis and lumbar degenerative disease in predicting relapse after injection. We evaluated 97 patients with greater trochanteric pain syndrome to find a correlation between trochanteric bursitis, gluteus medius tendinitis, and spinal degenerative disease using scintigraphy and magnetic resonance imaging. We also evaluated predictors for responding to trochanteric injection of local anesthetic/glucocorticoid injection. We found a correlation between lumbar degenerative disease, gluteus medius tendinopathy, and trochanteric bursitis. Of these, 30 of 48 patients (63%) responded to injection of local anesthetic and glucocorticoids. The major predictor of relapse of pain after injection in 18 patients was the presence of moderate to severe lumbar degenerative disease seen on scintigraphic imaging. We propose a mechanistic model of the greater trochanteric pain syndrome to explain the interrelationship and response to therapy. Scintigraphy can provide sensitive and specific diagnoses of gluteus medius tendinitis and trochanteric bursitis.

  1. The simulation of adaptive optical image even and pulse noise and research of image quality evaluation

    NASA Astrophysics Data System (ADS)

    Wen, Changli; Xu, Yuannan; Xu, Rong; Liu, Changhai; Men, Tao; Niu, Wei

    2013-09-01

    As optical image becomes more and more important in adaptive optics area, and adaptive optical telescopes play a more and more important role in the detection system on the ground, and the images we get are so many that we need find a suitable method to choose good quality images automatically in order to save human power, people pay more and more attention in image's evaluation methods and their characteristics. According to different image degradation model, the applicability of different image's quality evaluation method will be different. Researchers have paid most attention in how to improve or build new method to evaluate degraded images. Now we should change our way to take some research in the models of degradation of images, the reasons of image degradation, and the relations among different degraded images and different image quality evaluation methods. In this paper, we build models of even noise and pulse noise based on their definition and get degraded images using these models, and we take research in six kinds of usual image quality evaluation methods such as square error method, sum of multi-power of grey scale method, entropy method, Fisher function method, Sobel method, and sum of grads method, and we make computer software for these methods to use easily to evaluate all kinds of images input. Then we evaluate the images' qualities with different evaluation methods and analyze the results of six kinds of methods, and finally we get many important results. Such as the characteristics of every method for evaluating qualities of degraded images of even noise, the characteristics of every method for evaluating qualities of degraded images of pulse noise, and the best method to evaluate images which affected by tow kinds of noise both and the characteristics of this method. These results are important to image's choosing automatically, and this will help we to manage the images we get through adaptive optical telescopes base on the ground.

  2. Fuzzy Index to Evaluate Edge Detection in Digital Images.

    PubMed

    Perez-Ornelas, Felicitas; Mendoza, Olivia; Melin, Patricia; Castro, Juan R; Rodriguez-Diaz, Antonio; Castillo, Oscar

    2015-01-01

    In literature, we can find different metrics to evaluate the detected edges in digital images, like Pratt's figure of merit (FOM), Jaccard's index (JI) and Dice's coefficient (DC). These metrics compare two images, the first one is the reference edges image, and the second one is the detected edges image. It is important to mention that all existing metrics must binarize images before their evaluation. Binarization step causes information to be lost because an incomplete image is being evaluated. In this paper, we propose a fuzzy index (FI) for edge evaluation that does not use a binarization step. In order to process all detected edges, images are represented in their fuzzy form and all calculations are made with fuzzy sets operators and fuzzy Euclidean distance between both images. Our proposed index is compared to the most used metrics using synthetic images, with good results.

  3. Fuzzy Index to Evaluate Edge Detection in Digital Images

    PubMed Central

    Perez-Ornelas, Felicitas; Mendoza, Olivia; Melin, Patricia; Castro, Juan R.; Rodriguez-Diaz, Antonio; Castillo, Oscar

    2015-01-01

    In literature, we can find different metrics to evaluate the detected edges in digital images, like Pratt's figure of merit (FOM), Jaccard’s index (JI) and Dice’s coefficient (DC). These metrics compare two images, the first one is the reference edges image, and the second one is the detected edges image. It is important to mention that all existing metrics must binarize images before their evaluation. Binarization step causes information to be lost because an incomplete image is being evaluated. In this paper, we propose a fuzzy index (FI) for edge evaluation that does not use a binarization step. In order to process all detected edges, images are represented in their fuzzy form and all calculations are made with fuzzy sets operators and fuzzy Euclidean distance between both images. Our proposed index is compared to the most used metrics using synthetic images, with good results. PMID:26115362

  4. Pupil responses to high-level image content.

    PubMed

    Naber, Marnix; Nakayama, Ken

    2013-05-17

    The link between arousal and pupil dilation is well studied, but it is less known that other cognitive processes can trigger pupil responses. Here we present evidence that pupil responses can be induced by high-level scene processing, independent of changes in low-level features or arousal. In Experiment 1, we recorded changes in pupil diameter of observers while they viewed a variety of natural scenes with or without a sun that were presented either upright or inverted. Image inversion had the strongest effect on the pupil responses. The pupil constricted more to the onset of upright images as compared to inverted images. Furthermore, the amplitudes of pupil constrictions to viewing images containing a sun were larger relative to control images. In Experiment 2, we presented cartoon versions of upright and inverted pictures that included either a sun or a moon. The image backgrounds were kept identical across conditions. Similar to Experiment 1, upright images triggered pupil constrictions with larger amplitudes than inverted images and images of the sun evoked greater pupil contraction than images of the moon. We suggest that the modulations of pupil responses were due to higher-level interpretations of image content.

  5. Physiological imaging of electrical trauma and therapeutic responses

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Tu; Matthews, K.; Aarsvold, John N.; Mintzer, Robert A.; Yasillo, Nicholas J.; Hannig, Jurgen; Capelli-Schellpfefer, M.; Cooper, Malcolm; Lee, Raphael C.

    2000-04-01

    In victims of electrical trauma, electroporation of cell membrane, in which lipid bilayer is permeabilized by thermal and electrical forces, is thought to be a substantial cause of tissue damage. It has been suggested that certain mild surfactant in low concentration could induce sealing of permeabilized lipid bilayers, thus repairing cell membranes that had not been extensively damaged. With an animal model of electrically injured hind limb of rats, we have demonstrated and validated the use of radiotracer imaging technique to assess the physiology of the damaged tissues after electrical shock and of their repairs after applying surfactant as a therapeutic strategy. For example, using Tc-99m labeled pyrophosphate (PYP), which follows calcium in cellular function and is known to accumulate in damaged tissues, we have established a physiological imaging approach for assessment of the extent of tissue injury for diagnosis and surgical planning, as well as for evaluation of responses to therapy. With the use of a small, hand-held, miniature gamma camera, this physiological imaging method can be employed at patient's bedside and even in the field, for example, at accident site or during transfer for emergency care, rapid diagnosis, and prompt treatment in order to maximize the chance for tissue survival.

  6. Positron autoradiography for intravascular imaging: feasibility evaluation.

    PubMed

    Shikhaliev, Polad M; Xu, Tong; Ducote, Justin L; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-21

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and

  7. Positron autoradiography for intravascular imaging: feasibility evaluation

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Ducote, Justin L.; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-01

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and

  8. Evaluation of lung tumor response to therapy: Current and emerging techniques.

    PubMed

    Coche, E

    2016-10-01

    Lung tumor response to therapy may be evaluated in most instances by morphological criteria such as RECIST 1.1 on computed tomography (CT) or magnetic resonance imaging (MRI). However, those criteria are limited because they are based on tumoral dimensional changes and do not take into account other morphologic criteria such as density evaluation, functional or metabolic changes that may occur following conventional or targeted chemotherapy. New techniques such as dual-energy CT, PET-CT, MRI including diffusion-weighted MRI has to be considered into the new technical armamentarium for tumor response evaluation. Integration of all informations provided by the different imaging modalities has to be integrated and represents probably the future goal of tumor response evaluation. The aim of the present paper is to review the current and emerging imaging criteria used to evaluate the response of therapy in the field of lung cancer.

  9. Image Familiarization Sharpens Response Dynamics of Neurons in Inferotemporal Cortex

    PubMed Central

    Meyer, Travis; Walker, Christopher; Cho, Raymond Y.; Olson, Carl R.

    2015-01-01

    Repeated viewing of an image over days and weeks induces a marked reduction in the strength with which neurons in monkey inferotemporal cortex respond to it. The processing advantage that attaches to this reduction is unknown. One possibility is that truncation of the response to a familiar image leaves neurons in a state of readiness to respond to ensuing images and thus enhances their ability to track rapidly changing displays. We have explored this possibility by assessing neuronal responses to familiar and novel images in rapid serial visual displays. Inferotemporal neurons respond more strongly to familiar than to novel images in such displays. The effect is stronger among putative inhibitory neurons than among putative excitatory neurons. A comparable effect occurs at the level of the scalp potential in humans. We conclude that long-term familiarization sharpens the response dynamics of neurons in both monkey and human extrastriate visual cortex. PMID:25151263

  10. Evaluating glaucoma damage: emerging imaging technologies

    PubMed Central

    Kostanyan, Tigran; Wollstein, Gadi; Schuman, Joel S

    2015-01-01

    The use of ocular imaging tools to estimate structural and functional damage in glaucoma has become a common clinical practice and a substantial focus of vision research. The evolution of the imaging technologies through increased scanning speed, penetration depth, image registration and development of multimodal devices has the potential to detect the pathology more reliably and in earlier stages. This review is focused on new ocular imaging modalities used for glaucoma diagnosis. PMID:27087829

  11. Finger vein image quality evaluation using support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2013-02-01

    In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.

  12. Comprehensive evaluation for fused images of multispectral and panchromatic images based on entropy weight method

    NASA Astrophysics Data System (ADS)

    Xia, Xiaojie; Yuan, Yan; Su, Lijuan; Hu, Liang

    2016-09-01

    An evaluation model of image fusion based on entropy weight method is put forward to resolve evaluation issue for fused results of multispectral and panchromatic images, such as the lack of overall importance in single factor metric evaluation and the discrepancy among different categories of characteristic evaluation. In this way, several single factor metrics in different aspects of image are selected to form a metric set, then the entropy weights for each single factor index are calculated based on entropy weight method, thus a new comprehensive evaluation index is obtained to evaluate each fused image and images with higher spectral resolution and spatial resolution can be acquired. Experimental analysis shows that the proposed method is of versatility, objectivity and rationality and performs well on the evaluation of fused results of multispectral and panchromatic images.

  13. Evaluation of improvement of diffuse optical imaging of brain function by high-density probe arrangements and imaging algorithms

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Kurihara, Kazuki; Okada, Eiji

    2016-04-01

    Diffuse optical imaging has been applied to measure the localized hemodynamic responses to brain activation. One of the serious problems with diffuse optical imaging is the limitation of the spatial resolution caused by the sparse probe arrangement and broadened spatial sensitivity profile for each probe pair. High-density probe arrangements and an image reconstruction algorithm considering the broadening of the spatial sensitivity can improve the spatial resolution of the image. In this study, the diffuse optical imaging of the absorption change in the brain is simulated to evaluate the effect of the high-density probe arrangements and imaging methods. The localization error, equivalent full-width half maximum and circularity of the absorption change in the image obtained by the mapping and reconstruction methods from the data measured by five probe arrangements are compared to quantitatively evaluate the imaging methods and probe arrangements. The simple mapping method is sufficient for the density of the measurement points up to the double-density probe arrangement. The image reconstruction method considering the broadening of the spatial sensitivity of the probe pairs can effectively improve the spatial resolution of the image obtained from the probe arrangements higher than the quadruple density, in which the distance between the neighboring measurement points is 10.6 mm.

  14. Imaging of non-Hodgkin lymphomas: diagnosis and response-adapted strategies.

    PubMed

    El-Galaly, Tarec Christoffer; Hutchings, Martin

    2015-01-01

    Optimal lymphoma management requires accurate pretreatment staging and reliable assessment of response, both during and after therapy. Positron emission tomography with computerized tomography (PET/CT) combines functional and anatomical imaging and provides the most sensitive and accurate methods for lymphoma imaging. New guidelines for lymphoma imaging and recently revised criteria for lymphoma staging and response assessment recommend PET/CT staging, treatment monitoring, and response evaluation in all FDG-avid lymphomas, while CT remains the method of choice for non-FDG-avid histologies. Since interim PET imaging has high prognostic value in lymphoma, a number of trials investigate PET-based, response-adapted therapy for non-Hodgkin lymphomas (NHL). PET response is the main determinant of response according to the new response criteria, but PET/CT has little or no role in routine surveillance imaging, the value which is itself questionable. This review presents from a clinical point of view the evidence for the use of imaging and primarily PET/CT in NHL before, during, and after therapy. The reader is given an overview of the current PET-based interventional NHL trials and an insight into possible future developments in the field, including new PET tracers.

  15. Spectral response of the Viking lander camera: Preliminary evaluation

    NASA Technical Reports Server (NTRS)

    Kelly, W. L., IV; Huck, F. O.; Arvidson, R. E.

    1975-01-01

    One of the objectives of the Viking lander imaging investigation is to obtain color and near-infrared multispectral panoramas of the Martian surface using six spectral channels in the 0.4 to 1.1 microns wavelength range. This data can be compared with data obtained by imaging a reference test chart to construct approximate spectral reflectance curves that can then be matched to laboratory standards to aid in identifying surface materials. Some channels exhibit appreciable out-of-band spectral responses, making data reduction and interpretation difficult. A preliminary evaluation of predicted multispectral data for eight geological materials reveals that fairly good reflectance estimates can be made for those materials which have monotonically increasing or decreasing reflectances. Reflectance estimates for materials with more complex reflectances often do not reveal important spectral features and sometimes provide misleading results.

  16. Image-Word Pairing-Congruity Effect on Affective Responses

    NASA Astrophysics Data System (ADS)

    Sanabria Z., Jorge C.; Cho, Youngil; Sambai, Ami; Yamanaka, Toshimasa

    The present study explores the effects of familiarity on affective responses (pleasure and arousal) to Japanese ad elements, based on the schema incongruity theory. Print ads showing natural scenes (landscapes) were used to create the stimuli (images and words). An empirical study was conducted to measure subjects' affective responses to image-word combinations that varied in terms of incongruity. The level of incongruity was based on familiarity levels, and was statistically determined by a variable called ‘pairing-congruity status’. The tested hypothesis proposed that even highly familiar image-word combinations, when combined incongruously, would elicit strong affective responses. Subjects assessed the stimuli using bipolar scales. The study was effective in tracing interactions between familiarity, pleasure and arousal, although the incongruous image-word combinations did not elicit the predicted strong effects on pleasure and arousal. The results suggest a need for further research incorporating kansei (i.e., creativity) into the process of stimuli selection.

  17. Elbow magnetic resonance imaging: imaging anatomy and evaluation.

    PubMed

    Hauptfleisch, Jennifer; English, Collette; Murphy, Darra

    2015-04-01

    The elbow is a complex joint. Magnetic resonance imaging (MRI) is often the imaging modality of choice in the workup of elbow pain, especially in sports injuries and younger patients who often have either a history of a chronic repetitive strain such as the throwing athlete or a distinct traumatic injury. Traumatic injuries and alternative musculoskeletal pathologies can affect the ligaments, musculotendinous, cartilaginous, and osseous structures of the elbow as well as the 3 main nerves to the upper limb, and these structures are best assessed with MRI.Knowledge of the complex anatomy of the elbow joint as well as patterns of injury and disease is important for the radiologist to make an accurate diagnosis in the setting of elbow pain. This chapter will outline elbow anatomy, basic imaging parameters, compartmental pathology, and finally applications of some novel MRI techniques.

  18. Bioresorbable vascular scaffold restenosis: intravascular imaging evaluation.

    PubMed

    Fabris, Enrico; Kilic, Ismail Dogu; Caiazzo, Gianluca; Serdoz, Roberta; Foin, Nicolas; Sinagra, Gianfranco; Di Mario, Carlo

    2015-11-21

    The mechanism of restenosis in bioresorbable vascular scaffold (BVS) may be different from that of metallic stents and it is still poorly investigated. Intravascular imaging techniques are useful tools for corroborating or excluding possible mechanisms of intra-scaffold restenosis. In these novel devices intravascular imaging should be systematically used for a better comprehension of the in-scaffold restenosis mechanism.

  19. Therapy response evaluation with positron emission tomography-computed tomography.

    PubMed

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice.

  20. Performance evaluation methodology for historical document image binarization.

    PubMed

    Ntirogiannis, Konstantinos; Gatos, Basilis; Pratikakis, Ioannis

    2013-02-01

    Document image binarization is of great importance in the document image analysis and recognition pipeline since it affects further stages of the recognition process. The evaluation of a binarization method aids in studying its algorithmic behavior, as well as verifying its effectiveness, by providing qualitative and quantitative indication of its performance. This paper addresses a pixel-based binarization evaluation methodology for historical handwritten/machine-printed document images. In the proposed evaluation scheme, the recall and precision evaluation measures are properly modified using a weighting scheme that diminishes any potential evaluation bias. Additional performance metrics of the proposed evaluation scheme consist of the percentage rates of broken and missed text, false alarms, background noise, character enlargement, and merging. Several experiments conducted in comparison with other pixel-based evaluation measures demonstrate the validity of the proposed evaluation scheme.

  1. Progress in Evaluating Quantitative Optical Gas Imaging

    EPA Science Inventory

    Development of advanced fugitive emission detection and assessment technologies that facilitate cost effective leak and malfunction mitigation strategies is an ongoing goal shared by industry, regulators, and environmental groups. Optical gas imaging (OGI) represents an importan...

  2. Performance evaluation of infrared imaging system in field test

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Guo, Xiaodong; Ren, Tingting; Zhang, Zhi-jie

    2014-11-01

    Infrared imaging system has been applied widely in both military and civilian fields. Since the infrared imager has various types and different parameters, for system manufacturers and customers, there is great demand for evaluating the performance of IR imaging systems with a standard tool or platform. Since the first generation IR imager was developed, the standard method to assess the performance has been the MRTD or related improved methods which are not perfect adaptable for current linear scanning imager or 2D staring imager based on FPA detector. For this problem, this paper describes an evaluation method based on the triangular orientation discrimination metric which is considered as the effective and emerging method to evaluate the synthesis performance of EO system. To realize the evaluation in field test, an experiment instrument is developed. And considering the importance of operational environment, the field test is carried in practical atmospheric environment. The test imagers include panoramic imaging system and staring imaging systems with different optics and detectors parameters (both cooled and uncooled). After showing the instrument and experiment setup, the experiment results are shown. The target range performance is analyzed and discussed. In data analysis part, the article gives the range prediction values obtained from TOD method, MRTD method and practical experiment, and shows the analysis and results discussion. The experimental results prove the effectiveness of this evaluation tool, and it can be taken as a platform to give the uniform performance prediction reference.

  3. Evaluation of edge effect due to phase contrast imaging for mammography.

    PubMed

    Matsuo, Satoru; Katafuchi, Tetsuro; Tohyama, Keiko; Morishita, Junji; Yamada, Katsuhiko; Fujita, Hiroshi

    2005-08-01

    It is well-known that the edge effect produced by phase contrast imaging results in the edge enhancement of x-ray images and thereby sharpens those images. It has recently been reported that phase contrast imaging using practical x-ray tubes with small focal spots has improved image sharpness as observed in the phase contrast imaging with x-ray from synchrotron radiation or micro-focus x-ray tubes. In this study, we conducted the phase contrast imaging of a plastic fiber and plant seeds using a customized mammography equipment with a 0.1 mm focal spot, and the improvement of image sharpness was evaluated in terms of spatial frequency response of the images. We observed that the image contrast of the plastic fiber was increased by edge enhancement, and, as predicted elsewhere, spectral analysis revealed that as the spatial frequencies of the x-ray images increased, so did the sharpness gained through phase contrast imaging. Thus, phase contrast imaging using a practical molybdenum anode tube with a 0.1 mm-focal spot would benefit mammography, in which the morphological detectability of small species such as microcalcifications is of great concern. And detectability of tumor-surrounded glandular tissues in dense breast would be also improved by the phase contrast imaging.

  4. Spectral and fluorescence imaging of immune system and tissue response to an immunogenic agent

    NASA Astrophysics Data System (ADS)

    Choe, Se-woon; Acharya, Abhinav; Keselowsky, Benjamin G.; Sorg, Brian S.

    2009-05-01

    Imaging of immune system and tissue response to immunogenic agents can be important to the development of new biomaterials. Additionally, quantitative functional imaging can be useful for testing and evaluation of methods to alter or control the immune system response to implanted materials. In this preliminary study, we employ spectral imaging and fluorescence imaging to measure immune system and tissue response to implanted immunogenic agents. Poly (D,L lactide-co-glycolide) (PLGA) with a 50:50 composition was used to create immunogenic microparticles (MPs). Lipopolysaccharide (LPS) encapsulated in the MPs was used to provoke a tissue immune response in mice and encapsulated fluorescein isothiocyanate (FITC) was used to fluorescently label the MPs for imaging. Control MPs did not contain LPS. The MPs were delivered at 50 particles/μL in a total volume of 20μL by subcutaneous injection in the skin of a nude mouse in a dorsal skin-fold window chamber preparation. Cultured immune cells from a mouse leukemic monocyte macrophage cell line were exogenously labeled with the fluorescent dye DiD in solution at a concentration of 8000cells/μL. Immediately after window chamber surgery and implantation of the MPs, 100μL of the fluorescent macrophage solution was administered via the tail vein. Fluorescence imaging was used to track MPs and macrophages while spectral imaging was used for imaging and measurement of hemoglobin saturation in the tissue microvasculature. Imaging was performed periodically over about three days. The spectral and fluorescence imaging combination enabled detailed observations of the macrophage response and functional effects on the tissue.

  5. Monitoring human melanocytic cell responses to piperine using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Phillips, Kevin G.; Sonka, Julia; Yelma, Aznegashe; Reddy, Neha; Vanka, Meenakshi; Thuillier, Philippe; Soumyanath, Amala; Jacques, Steven

    2011-03-01

    Vitiligo is a depigmentary disease characterized by melanocyte loss attributed most commonly to autoimmune mechanisms. Currently vitiligo has a high incidence (1% worldwide) but a poor set of treatment options. Piperine, a compound found in black pepper, is a potential treatment for the depigmentary skin disease vitiligo, due to its ability to stimulate mouse epidermal melanocyte proliferation in vitro and in vivo. The present study investigates the use of multispectral imaging and an image processing technique based on local contrast to quantify the stimulatory effects of piperine on human melanocyte proliferation in reconstructed epidermis. We demonstrate the ability of the imaging method to quantify increased pigmentation in response to piperine treatment. The quantization of melanocyte stimulation by the proposed imaging technique illustrates the potential use of this technology to quickly assess therapeutic responses of vitiligo tissue culture models to treatment non-invasively.

  6. Satellite image collection modeling for large area hazard emergency response

    NASA Astrophysics Data System (ADS)

    Liu, Shufan; Hodgson, Michael E.

    2016-08-01

    Timely collection of critical hazard information is the key to intelligent and effective hazard emergency response decisions. Satellite remote sensing imagery provides an effective way to collect critical information. Natural hazards, however, often have large impact areas - larger than a single satellite scene. Additionally, the hazard impact area may be discontinuous, particularly in flooding or tornado hazard events. In this paper, a spatial optimization model is proposed to solve the large area satellite image acquisition planning problem in the context of hazard emergency response. In the model, a large hazard impact area is represented as multiple polygons and image collection priorities for different portion of impact area are addressed. The optimization problem is solved with an exact algorithm. Application results demonstrate that the proposed method can address the satellite image acquisition planning problem. A spatial decision support system supporting the optimization model was developed. Several examples of image acquisition problems are used to demonstrate the complexity of the problem and derive optimized solutions.

  7. Quantitative image quality evaluation for cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  8. Spectral analysis for evaluation of myocardial tracers for medical imaging

    SciTech Connect

    Huesman, Ronald H.; Reutter, Bryan W.; Marshall, Robert C.

    2000-10-11

    Kinetic analysis of dynamic tracer data is performed with the goal of evaluating myocardial radiotracers for cardiac nuclear medicine imaging. Data from experiments utilizing the isolated rabbit heart model are acquired by sampling the venous blood after introduction of a tracer of interest and a reference tracer. We have taken the approach that the kinetics are properly characterized by an impulse response function which describes the difference between the reference molecule (which does not leave the vasculature) and the molecule of interest which is transported across the capillary boundary and is made available to the cell. Using this formalism we can model the appearance of the tracer of interest in the venous output of the heart as a convolution of the appearance of the reference tracer with the impulse response. In this work we parameterize the impulse response function as the sum of a large number of exponential functions whose predetermined decay constants form a spectrum, and each is required only to have a nonnegative coefficient. This approach, called spectral analysis, has the advantage that it allows conventional compartmental analysis without prior knowledge of the number of compartments which the physiology may require or which the data will support.

  9. Geometric and Radiometric Evaluation of Rasat Images

    NASA Astrophysics Data System (ADS)

    Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar

    2016-06-01

    RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  10. Evaluation of a cloud-based local-read paradigm for imaging evaluations in oncology clinical trials for lung cancer

    PubMed Central

    Kobayashi, Naomi; Bonnard, Eric; Charbonnier, Colette; Yamamichi, Junta; Mizobe, Hideaki; Kimura, Shinya

    2015-01-01

    Background Although tumor response evaluated with radiological imaging is frequently used as a primary endpoint in clinical trials, it is difficult to obtain precise results because of inter- and intra-observer differences. Purpose To evaluate usefulness of a cloud-based local-read paradigm implementing software solutions that standardize imaging evaluations among international investigator sites for clinical trials of lung cancer. Material and Methods Two studies were performed: KUMO I and KUMO I Extension. KUMO I was a pilot study aiming at demonstrating the feasibility of cloud implementation and identifying issues regarding variability of evaluations among sites. Chest CT scans at three time-points from baseline to progression, from 10 patients with lung cancer who were treated with EGFR tyrosine kinase inhibitors, were evaluated independently by two oncologists (Japan) and one radiologist (France), through a cloud-based software solution. The KUMO I Extension was performed based on the results of KUMO I. Results KUMO I showed discordance rates of 40% for target lesion selection, 70% for overall response at the first time-point, and 60% for overall response at the second time-point. Since the main reason for the discordance was differences in the selection of target lesions, KUMO I Extension added a cloud-based quality control service to achieve a consensus on the selection of target lesions, resulting in an improved rate of agreement of response evaluations. Conclusion The study shows the feasibility of imaging evaluations at investigator sites, based on cloud services for clinical studies involving multiple international sites. This system offers a step forward in standardizing evaluations of images among widely dispersed sites. PMID:26668754

  11. A tool for designing digital test objects for module performance evaluation in medical digital imaging.

    PubMed

    Kocsis, O; Costaridou, L; Efstathopoulos, E P; Lymberopoulos, D; Panayiotakis, G

    1999-01-01

    Currently, medical digital imaging systems are characterized by the introduction of additional modules such as digital display, image compression and image processing, as well as film printing and digitization. These additional modules require performance evaluation to ensure high image quality. A tool for designing computer-generated test objects applicable to performance evaluation of these modules is presented. The test objects can be directly used as digital images in the case of film printing, display, compression and image processing, or indirectly as images on film in the case of digitization. The performance evaluation approach is quality control protocol based. Digital test object design is user-driven according to specifications related to the requirements of the modules being tested. The available quality control parameters include input/output response curve, high contrast resolution, low contrast discrimination, noise, geometric distortion and field uniformity. The tool has been designed and implemented according to an object oriented approach in Visual C++ 5.0, and its user interface is based on the Microsoft Foundation Class Library version 4.2, which provides interface items such as windows, dialog boxes, lists, buttons, etc. The compatibility with DICOM 3.0 part 10 image formats specifications allows the integration of the tool in the existing software framework for medical digital imaging systems. The capability of the tool is demonstrated by direct use of the test objects in case of image processing, and indirect use of the test objects in case of film digitization.

  12. Lower-Dark-Current, Higher-Blue-Response CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce

    2008-01-01

    Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.

  13. Millimeter-wave imaging sensor data evaluation

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Ibbott, Anthony C.

    1987-01-01

    A passive 3-mm radiometer system with a mechanically scanned antenna was built for use on a small aircraft or an Unmanned Aerial Vehicle to produce real near-real-time, moderate-resolution (0.5) images of the ground. One of the main advantages of this passive imaging sensor is that it is able to provide surveillance information through dust, smoke, fog and clouds when visual and IR systems are unusable. It can also be used for a variety of remote sensing applications, such as measurements of surface moisture, surface temperature, vegetation extent and snow cover. It is also possible to detect reflective objects under vegetation cover.

  14. PIRATE: pediatric imaging response assessment and targeting environment

    NASA Astrophysics Data System (ADS)

    Glenn, Russell; Zhang, Yong; Krasin, Matthew; Hua, Chiaho

    2010-02-01

    By combining the strengths of various imaging modalities, the multimodality imaging approach has potential to improve tumor staging, delineation of tumor boundaries, chemo-radiotherapy regime design, and treatment response assessment in cancer management. To address the urgent needs for efficient tools to analyze large-scale clinical trial data, we have developed an integrated multimodality, functional and anatomical imaging analysis software package for target definition and therapy response assessment in pediatric radiotherapy (RT) patients. Our software provides quantitative tools for automated image segmentation, region-of-interest (ROI) histogram analysis, spatial volume-of-interest (VOI) analysis, and voxel-wise correlation across modalities. To demonstrate the clinical applicability of this software, histogram analyses were performed on baseline and follow-up 18F-fluorodeoxyglucose (18F-FDG) PET images of nine patients with rhabdomyosarcoma enrolled in an institutional clinical trial at St. Jude Children's Research Hospital. In addition, we combined 18F-FDG PET, dynamic-contrast-enhanced (DCE) MR, and anatomical MR data to visualize the heterogeneity in tumor pathophysiology with the ultimate goal of adaptive targeting of regions with high tumor burden. Our software is able to simultaneously analyze multimodality images across multiple time points, which could greatly speed up the analysis of large-scale clinical trial data and validation of potential imaging biomarkers.

  15. [Possibility of using vibration response imaging in resuscitation and intensive care].

    PubMed

    Vinshtok, Iu L; Zelenin, G B; Gulitskiĭ, K E

    2010-01-01

    Lung monitoring and visualization in intensive care unit (ICU) patients is a difficult task. Chest X-ray and auscultation are the most commonly used methods today. The new technique vibration response imaging (VRI) based on the vibration that is generated by airflow in the lung and that is its surrogate manifestation allows visualization of lung function. This method provides clinicians with an easy-to-use, non-radiation, non-invasive acoustic-based imaging technique of visual and quantitative evaluation of the lung. VRI objective dynamic image is a clinical addition to the existing static visual modalities used in the ICU.

  16. Measurement of static convergence and accommodation responses to images of integral photography and binocular stereoscopy.

    PubMed

    Hiura, Hitoshi; Komine, Kazuteru; Arai, Jun; Mishina, Tomoyuki

    2017-02-20

    Static convergence and accommodation responses were measured by comparing integral photography images, binocular stereoscopic images, and real objects in a measurement range from 450 to 900 mm. The experimental results were evaluated with a multiple comparison test. It was found that six of the ten observers did not have an accommodation-convergence conflict in viewing integral photography in the range. Moreover, the required resolution was found to be 0.7 or more and less than 1.4 cycles per degree for inducing accommodation. In conclusion, integral photography can provide a natural 3D image that looks like a real object.

  17. Evaluation of Multimodal Imaging Biomarkers of Prostate Cancer

    DTIC Science & Technology

    2014-09-01

    scan duration ~ 21 min). PET imaging was performed on a Concorde Microsystems microPET Focus 220. Approximately 120 uCi of tracer was administered...acquired anatomic MRI and PET data in orthotopic tumors within the Pten/p53 mouse model, to assess tumor volume, track growth and tumor angiogenesis...In fic speciregards to PET imaging, we have further characterized the use of FMISO, FDHT and TSPO imaging to evaluate tumor hypoxia, androgen

  18. Reflected light imaging of ON and OFF responses in frog retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Liu, Lei; Li, Yang-Guo

    2009-02-01

    Using a near infrared (NIR) light flood-illumination imager equipped with a high-speed CCD camera, we demonstrated reflected light imaging of stimulus-evoked retinal ON and OFF responses in isolated, but intact, frog eye. Both fast and slow transient intrinsic optical signals (IOSs) were observed. Fast optical response occurred immediately after the stimulus onset, and correlated tightly with the ON and OFF edges of the visible light stimulus. High resolution images revealed both positive (increasing) and negative (decreasing) IOSs, and dynamic optical change at individual CCD pixels could often exceed 10% of the background light intensity. Our experiment on isolated eye suggests that further development of fast, high resolution fundus imager will allow robust detection of fast IOSs in vivo, and thus allow noninvasive, three-dimensional evaluation of retinal neural function.

  19. Using short-wave infrared imaging for fruit quality evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    Quality evaluation of agricultural and food products is important for processing, inventory control, and marketing. Fruit size and surface quality are two important quality factors for high-quality fruit such as Medjool dates. Fruit size is usually measured by length that can be done easily by simple image processing techniques. Surface quality evaluation on the other hand requires more complicated design, both in image acquisition and image processing. Skin delamination is considered a major factor that affects fruit quality and its value. This paper presents an efficient histogram analysis and image processing technique that is designed specifically for real-time surface quality evaluation of Medjool dates. This approach, based on short-wave infrared imaging, provides excellent image contrast between the fruit surface and delaminated skin, which allows significant simplification of image processing algorithm and reduction of computational power requirements. The proposed quality grading method requires very simple training procedure to obtain a gray scale image histogram for each quality level. Using histogram comparison, each date is assigned to one of the four quality levels and an optimal threshold is calculated for segmenting skin delamination areas from the fruit surface. The percentage of the fruit surface that has skin delamination can then be calculated for quality evaluation. This method has been implemented and used for commercial production and proven to be efficient and accurate.

  20. Imaging Evaluation of Dogs and Cats with Dysphagia

    PubMed Central

    Pollard, Rachel E.

    2012-01-01

    The current literature is reviewed in this paper regarding the application of diagnostic imaging in the evaluation of swallowing disorders of the dog. The applications of radiography, contrast radiography, and contrast videofluoroscopy are discussed with pertinent case examples provided for emphasis. The indications for image-guided interventions are also described. PMID:23762579

  1. Super-resolution image reconstruction for ultrasonic nondestructive evaluation.

    PubMed

    Li, Shanglei; Chu, Tsuchin Philip

    2013-12-01

    Ultrasonic testing is one of the most successful nondestructive evaluation (NDE) techniques for the inspection of carbon-fiber-reinforced polymer (CFRP) materials. This paper discusses the application of the iterative backprojection (IBP) super-resolution image reconstruction technique to carbon epoxy laminates with simulated defects to obtain high-resolution images for NDE. Super-resolution image reconstruction is an approach used to overcome the inherent resolution limitations of an existing ultrasonic system. It can greatly improve the image quality and allow more detailed inspection of the region of interest (ROI) with high resolution, improving defect evaluation and accuracy. First, three artificially simulated delamination defects in a CFRP panel were considered to evaluate and validate the application of the IBP method. The results of the validation indicate that both the contrast-tonoise ratio (CNR) and the peak signal-to-noise ratio (PSNR) value of the super-resolution result are better than the bicubic interpolation method. Then, the IBP method was applied to the low-resolution ultrasonic C-scan image sequence with subpixel displacement of two types of defects (delamination and porosity) which were obtained by the micro-scanning imaging technique. The result demonstrated that super-resolution images achieved better visual quality with an improved image resolution compared with raw C-scan images.

  2. Model of Host-Pathogen Interaction Dynamics Links In Vivo Optical Imaging and Immune Responses

    PubMed Central

    Ale, Angelique; Crepin, Valerie F.; Collins, James W.; Constantinou, Nicholas; Habibzay, Maryam; Babtie, Ann C.

    2016-01-01

    ABSTRACT Tracking disease progression in vivo is essential for the development of treatments against bacterial infection. Optical imaging has become a central tool for in vivo tracking of bacterial population development and therapeutic response. For a precise understanding of in vivo imaging results in terms of disease mechanisms derived from detailed postmortem observations, however, a link between the two is needed. Here, we develop a model that provides that link for the investigation of Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli (EPEC). We connect in vivo disease progression of C57BL/6 mice infected with bioluminescent bacteria, imaged using optical tomography and X-ray computed tomography, to postmortem measurements of colonic immune cell infiltration. We use the model to explore changes to both the host immune response and the bacteria and to evaluate the response to antibiotic treatment. The developed model serves as a novel tool for the identification and development of new therapeutic interventions. PMID:27821583

  3. Advanced imaging techniques in the therapeutic response of transarterial chemoembolization for hepatocellular carcinoma

    PubMed Central

    Yang, Ke; Zhang, Xiao-Ming; Yang, Lin; Xu, Hao; Peng, Juan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the major causes of morbidity and mortality in patients with chronic liver disease. Transarterial chemoembolization (TACE) can significantly improve the survival rate of patients with HCC and is the first treatment choice for patients who are not suitable for surgical resections. The evaluation of the response to TACE treatment affects not only the assessment of the therapy efficacy but also the development of the next step in the treatment plan. The use of imaging to examine changes in tumor volume to assess the response of solid tumors to treatment has been controversial. In recent years, the emergence of new imaging technology has made it possible to observe the response of tumors to treatment prior to any morphological changes. In this article, the advances in studies reporting the use of computed tomography perfusion imaging, diffusion-weighted magnetic resonance imaging (MRI), intravoxel incoherent motion, diffusion kurtosis imaging, magnetic resonance spectroscopy, magnetic resonance perfusion-weighted imaging, blood oxygen level-dependent MRI, positron emission tomography (PET)/computed tomography and PET/MRI to assess the TACE treatment response are reviewed. PMID:27239110

  4. Image Understanding Architecture Prototype Evaluation and Development

    DTIC Science & Technology

    1993-06-01

    database at the intermediate level is a more fundamental requirement than supporting particular algorithms. -i.. vii I TABLE OF CONTENTS I...57 I 3.3 Intermediate-level Symbolic Representation (ISR) Database ............ 64 3.3.1 Intermediate Symbolic Representation (ISR...ICAP, because the ICAP representation is in approximate registration with the original image events in the CAAPP. The ICAP serves as a database for the

  5. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    PubMed

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks.

  6. Quantification of Kr-81m ventilation image response to methacholine

    SciTech Connect

    Byrom, E.; Chausow, A.; Ryo, U.Y.; Kim, I.; Pinsky, S.

    1984-01-01

    Ventilation imaging with Kr-81m was used to study the response of regional ventilation to bronchial provocation with methacholine. Subjects were imaged seated, for 2 min, following inhalation of methacoline. Then maximal flow at 30% of vital capacity (MEF-30p) and forced expiratory volume in 1 sec (FEV 1) were measured. The procedure was repeated for 11 doses. Total ventilation is constant by design. Regional changes between each image (T) and a baseline image (B) were measured from a difference image (D), where D/sub i/=(S.T/sub i/-B/sub i/)/sqrt (S/sup 2/.T/sub i/+B/sub i/), and S normalizes T to the same total counts as B. The D/sub i/ values have a gaussian distribution with standard deviation (SD)=1, if B, T are independent images of the same object. The area of mismatch (AOM) between the D/sub i/ histogram and the ideal qaussian curve, and its SD, were calculated. Thresholds of significant response were established at 2.0 for SD, 1100 for AOM to allow for the effects of repositioning. Three subjects undertook the provocation study. In subject number 1(2,3), MEF-30p fell below 70% of baseline after dose number 8(7,6); a region of reduced ventilation was seen in D, at the left lung base, after dose 6(4,5); SD rose above the threshold after dose 7(6,7); AOM after dose 8(6,7). In subjects 2 and 3, FEV 1 fell below 80% of baseline after dose 10. In conclusion SD, AOM are as sensitive as MEF-30p in detecting response to methacholine: and more sensitive than FEV 1. The D images may be more sensitive, if repositioning artifacts can be avoided.

  7. Functional evaluation of telemedicine with super high definition images and B-ISDN.

    PubMed

    Takeda, H; Matsumura, Y; Okada, T; Kuwata, S; Komori, M; Takahashi, T; Minatom, K; Hashimoto, T; Wada, M; Fujio, Y

    1998-01-01

    In order to determine whether a super high definition (SHD) image running at a series of 2048 resolution x 2048 line x 60 frame/sec was capable of telemedicine, we established a filing system for medical images and two experiments for transmission of high quality images were performed. All images of various types, produced from one case of ischemic heart disease were digitized and registered into the filing system. Images consisted of plain chest x-ray, electrocardiogram, ultrasound cardiogram, cardiac scintigram, coronary angiogram, left ventriculogram and so on. All images were animated and totaled a number of 243. We prepared a graphic user interface (GUI) for image retrieval based on the medical events and modalities. Twenty one cardiac specialists evaluated quality of the SHD images to be somewhat poor compared to the original pictures but sufficient for making diagnoses, and effective as a tool for teaching and case study purposes. The system capability of simultaneously displaying several animated images was especially deemed effective in grasping comprehension of diagnosis. Efficient input methods and creating capacity of filing all produced images are future issue. Using B-ISDN network, the SHD file was prefetched to the servers at Kyoto University Hospital and BBCC (Bradband ISDN Business chance & Culture Creation) laboratory as an telemedicine experiment. Simultaneous video conference system, the control of image retrieval and pointing function made the teleconference successful in terms of high quality of medical images, quick response time and interactive data exchange.

  8. Tumour response evaluation with fluorodeoxyglucose positron emission tomography: research technique or clinical tool?

    PubMed

    Anderson, H; Singh, N; Miles, K

    2010-10-04

    The evaluation of treatment response is an established role for imaging in oncologic research and clinical practice. In early phase trials, imaging response criteria are used to determine the presence and magnitude of the drug effect on tumour to aid decisions concerning progress to late phase trials, and to inform dose selection and scheduling. In late phase trials and clinical practice, the imaging response is used as a surrogate for clinical outcome. Due to the limitations of current anatomic response criteria, there is growing interest in the use of [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess treatment response. The technique is beginning to be adopted within mainstream approaches for evaluation of response in solid tumours and lymphoma. Difficulties with standardisation across PET centres and tumour types combined with uncertainty concerning the timing of assessment relative to treatment, have limited the use of quantitative measurements of FDG uptake to research applications. However, with a growing body of evidence that qualitative criteria such as the development of new PET lesions or complete metabolic response following treatment can provide surrogates marker for clinical outcome, [(18)F]FDG-PET is becoming established as a clinical technique for assessing tumour response, especially for FDG-avid lymphoma subtypes. Multimodality imaging using perfusion computed tomography/PET is an exciting novel technique with the potential to define treatment response in a new way.

  9. Objective measurements to evaluate glottal space segmentation from laryngeal images.

    PubMed

    Gutiérrez-Arriola, J M; Osma-Ruiz, V; Sáenz-Lechón, N; Godino-Llorente, J I; Fraile, R; Arias-Londoño, J D

    2012-01-01

    Objective evaluation of the results of medical image segmentation is a known problem. Applied to the task of automatically detecting the glottal area from laryngeal images, this paper proposes a new objective measurement to evaluate the quality of a segmentation algorithm by comparing with the results given by a human expert. The new figure of merit is called Area Index, and its effectiveness is compared with one of the most used figures of merit found in the literature: the Pratt Index. Results over 110 laryngeal images presented high correlations between both indexes, demonstrating that the proposed measure is comparable to the Pratt Index and it is a good indicator of the segmentation quality.

  10. [Imaging in the evaluation of headaches].

    PubMed

    Chacowry Pala, K; Platon, A; Delémont, C

    2013-09-25

    Headache is a common complaint in primary care medicine. Most of the time, they are primary and benign headaches, with no need for further investigations; nevertheless, in the presence of red flags, a brain imaging is warranted. The diagnostic approach depends upon the most likely suspected cause and the degree of emergency. In those situations, a head CT scan without and with contrast is the exam of choice in most patients, because it is helpful for identifying intracranial lesions or bleeding. The MRI, more sensible, is preferred in the ambulatory setting for investigation and follow-up of intracranial tumoral or infectious diseases.

  11. DATA SYNTHESIS AND METHOD EVALUATION FOR BRAIN IMAGING GENETICS.

    PubMed

    Sheng, Jinhua; Kim, Sungeun; Yan, Jingwen; Moore, Jason; Saykin, Andrew; Shen, Li

    2014-05-01

    Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. We present initial efforts on evaluating a few SCCA methods for brain imaging genetics. This includes a data synthesis method to create realistic imaging genetics data with known SNP-QT associations, application of three SCCA algorithms to the synthetic data, and comparative study of their performances. Our empirical results suggest, approximating covariance structure using an identity or diagonal matrix, an approach used in these SCCA algorithms, could limit the SCCA capability in identifying the underlying imaging genetics associations. An interesting future direction is to develop enhanced SCCA methods that effectively take into account the covariance structures in the imaging genetics data.

  12. Neural attention and evaluative responses to gay and lesbian couples.

    PubMed

    Dickter, Cheryl L; Forestell, Catherine A; Mulder, Blakely E

    2015-01-01

    The goal of the current study was to examine whether differential neural attentional capture and evaluative responses for out-group homosexual relative to in-group heterosexual targets occur during social categorization. To this end, 36 heterosexual participants were presented with pictures of heterosexual and homosexual couples in a picture-viewing task that was designed to assess implicit levels of discomfort toward homosexuality and explicit evaluations of pleasantness toward the images. Neural activity in the form of electroencephalogram was recorded during the presentation of the pictures, and event-related potentials resulting from these stimuli were examined. Participants also completed questionnaires that assessed the degree to which they socialized with gays and lesbians. Results demonstrated that relative to straight couples, larger P2 amplitude was observed in response to gay but not to lesbian couples. However, both gay and lesbian couples yielded a larger late positive potential than straight couples. Moreover, the degree to which participants differentially directed early neural attention to out-group lesbian versus in-group straight couples was related to their familiarity with homosexual individuals. This work, which provides an initial understanding of the neural underpinnings of attention toward homosexual couples, suggests that differences in the processing of sexual orientation can occur as early as 200 ms and may be moderated by familiarity.

  13. Free segmentation in rendered 3D images through synthetic impulse response in integral imaging

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.

    2016-06-01

    Integral Imaging is a technique that has the capability of providing not only the spatial, but also the angular information of three-dimensional (3D) scenes. Some important applications are the 3D display and digital post-processing as for example, depth-reconstruction from integral images. In this contribution we propose a new reconstruction method that takes into account the integral image and a simplified version of the impulse response function (IRF) of the integral imaging (InI) system to perform a two-dimensional (2D) deconvolution. The IRF of an InI system has a periodic structure that depends directly on the axial position of the object. Considering different periods of the IRFs we recover by deconvolution the depth information of the 3D scene. An advantage of our method is that it is possible to obtain nonconventional reconstructions by considering alternative synthetic impulse responses. Our experiments show the feasibility of the proposed method.

  14. Molecular Magnetic Resonance Imaging of Tumor Response to Therapy

    PubMed Central

    Shuhendler, Adam J.; Ye, Deju; Brewer, Kimberly D.; Bazalova-Carter, Magdalena; Lee, Kyung-Hyun; Kempen, Paul; Dane Wittrup, K.; Graves, Edward E.; Rutt, Brian; Rao, Jianghong

    2015-01-01

    Personalized cancer medicine requires measurement of therapeutic efficacy as early as possible, which is optimally achieved by three-dimensional imaging given the heterogeneity of cancer. Magnetic resonance imaging (MRI) can obtain images of both anatomy and cellular responses, if acquired with a molecular imaging contrast agent. The poor sensitivity of MRI has limited the development of activatable molecular MR contrast agents. To overcome this limitation of molecular MRI, a novel implementation of our caspase-3-sensitive nanoaggregation MRI (C-SNAM) contrast agent is reported. C-SNAM is triggered to self-assemble into nanoparticles in apoptotic tumor cells, and effectively amplifies molecular level changes through nanoaggregation, enhancing tissue retention and spin-lattice relaxivity. At one-tenth the current clinical dose of contrast agent, and following a single imaging session, C-SNAM MRI accurately measured the response of tumors to either metronomic chemotherapy or radiation therapy, where the degree of signal enhancement is prognostic of long-term therapeutic efficacy. Importantly, C-SNAM is inert to immune activation, permitting radiation therapy monitoring. PMID:26440059

  15. Image evaluation using a color visual difference predictor (CVDP)

    NASA Astrophysics Data System (ADS)

    Lian, Ming-Shih

    2001-06-01

    In order to automate the image evaluation task, an engineering model for predicting the visual differences of color images is developed. The present CVDP consists of a color appearance model, a set of contrast sensitivity functions, the modified cortex transform, and a multichannel interaction model for masking effects. Based ona pixel-by- pixel difference metric similar to the CIELAB color difference, the predictions of the simplified CVDP are found to correlate fairly with the psychophysical test results over 51 pairs of natural images with some detection failures. These failures can be eliminated by including additional image quality metrics: the clarity in the shadow and highlight areas and the graininess in the mid-tone areas. The modified model is found to be able to identify 55 percent of those visually indistinguishable image pairs. The preliminary results using the complete CVDP for selected image pairs indicate that the effects of masking introduce only little changes to the results of the simplified CVDP.

  16. Magnetic resonance imaging of the chest in the evaluation of cancer patients: state of the art

    PubMed Central

    Guimaraes, Marcos Duarte; Hochhegger, Bruno; Santos, Marcel Koenigkam; Santana, Pablo Rydz Pinheiro; Sousa, Arthur Soares; Souza, Luciana Soares; Marchiori, Edson

    2015-01-01

    Magnetic resonance imaging (MRI) has several advantages in the evaluation of cancer patients with thoracic lesions, including involvement of the chest wall, pleura, lungs, mediastinum, esophagus and heart. It is a quite useful tool in the diagnosis, staging, surgical planning, treatment response evaluation and follow-up of these patients. In the present review, the authors contextualize the relevance of MRI in the evaluation of thoracic lesions in cancer patients. Considering that MRI is a widely available method with high contrast and spatial resolution and without the risks associated with the use of ionizing radiation, its use combined with new techniques such as cine-MRI and functional methods such as perfusion- and diffusion-weighted imaging may be useful as an alternative tool with performance comparable or complementary to conventional radiological methods such as radiography, computed tomography and PET/CT imaging in the evaluation of patients with thoracic neoplasias. PMID:25798006

  17. Magnetic resonance imaging of the chest in the evaluation of cancer patients: state of the art.

    PubMed

    Guimaraes, Marcos Duarte; Hochhegger, Bruno; Santos, Marcel Koenigkam; Santana, Pablo Rydz Pinheiro; Sousa, Arthur Soares; Souza, Luciana Soares; Marchiori, Edson

    2015-01-01

    Magnetic resonance imaging (MRI) has several advantages in the evaluation of cancer patients with thoracic lesions, including involvement of the chest wall, pleura, lungs, mediastinum, esophagus and heart. It is a quite useful tool in the diagnosis, staging, surgical planning, treatment response evaluation and follow-up of these patients. In the present review, the authors contextualize the relevance of MRI in the evaluation of thoracic lesions in cancer patients. Considering that MRI is a widely available method with high contrast and spatial resolution and without the risks associated with the use of ionizing radiation, its use combined with new techniques such as cine-MRI and functional methods such as perfusion- and diffusion-weighted imaging may be useful as an alternative tool with performance comparable or complementary to conventional radiological methods such as radiography, computed tomography and PET/CT imaging in the evaluation of patients with thoracic neoplasias.

  18. Evaluating Satiated Copepod Behavioral Responses to Thin Layer Flow Structure

    NASA Astrophysics Data System (ADS)

    True, Aaron C.; Webster, Donald R.; Weissburg, Marc J.; Yen, Jeannette

    2011-11-01

    Zooplankton exploit a variety of chemical and fluid mechanical cues in foraging, mate-seeking, and habitat partitioning contexts. To examine the influence of environmental cues on zooplankton aggregations in coastal marine thin layers, a laboratory thin layer mimic was built. The apparatus uses a laminar, planar jet (the Bickley jet) to produce ecologically-relevant layers of chemical (beneficial and harmful phytoplankton) and fluid mechanical (shear strain rate) cues for zooplankton behavioral assays. Particle image velocimetry (PIV) and laser-induced fluorescence (LIF) were employed to fully quantify the spatial structure of the chemical and fluid mechanical cues, ensuring a close match to in situ conditions and allowing for investigations into threshold cue levels responsible for inducing behavioral responses. Evaluating the effect of hunger level on behavioral responses is particularly important for producing accurate individual-based simulations of zooplankton population dynamics. Behavioral assays with the calanoid copepod Temora longicornis have produced digitized trajectories and, subsequently, path kinematics. Observed behaviors include increased turn frequency and decreased relative swimming speed, which result in increased residence time in the free jet shear layer. Cue-induced individual behaviors have the potential to produce population-scale aggregations.

  19. Molecular Imaging and Precision Medicine: PET/Computed Tomography and Therapy Response Assessment in Oncology.

    PubMed

    Sheikhbahaei, Sara; Mena, Esther; Pattanayak, Puskar; Taghipour, Mehdi; Solnes, Lilja B; Subramaniam, Rathan M

    2017-01-01

    A variety of methods have been developed to assess tumor response to therapy. Standardized qualitative criteria based on 18F-fluoro-deoxyglucose PET/computed tomography have been proposed to evaluate the treatment effectiveness in specific cancers and these allow more accurate therapy response assessment and survival prognostication. Multiple studies have addressed the utility of the volumetric PET biomarkers as prognostic indicators but there is no consensus about the preferred segmentation methodology for these metrics. Heterogeneous intratumoral uptake was proposed as a novel PET metric for therapy response assessment. PET imaging techniques will be used to study the biological behavior of cancers during therapy.

  20. A quantitative approach to evaluate image quality of whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Kneepkens, R.; Vrijnsen, J.; Vossen, D.; Abels, E.; Hulsken, B.

    2016-01-01

    Context: The quality of images produced by whole slide imaging (WSI) scanners has a direct influence on the readers’ performance and reliability of the clinical diagnosis. Therefore, WSI scanners should produce not only high quality but also consistent quality images. Aim: We aim to evaluate reproducibility of WSI scanners based on the quality of images produced over time and among multiple scanners. The evaluation is independent of content or context of test specimen. Methods: The ultimate judge of image quality is a pathologist, however, subjective evaluations are heavily influenced by the complexity of a case and subtle variations introduced by a scanner can be easily overlooked. Therefore, we employed a quantitative image quality assessment method based on clinically relevant parameters, such as sharpness and brightness, acquired in a survey of pathologists. The acceptable level of quality per parameter was determined in a subjective study. The evaluation of scanner reproducibility was conducted with Philips Ultra-Fast Scanners. A set of 36 HercepTest™ slides were used in three sub-studies addressing variations due to systems and time, producing 8640 test images for evaluation. Results: The results showed that the majority of images in all the sub-studies are within the acceptable quality level; however, some scanners produce higher quality images more often than others. The results are independent of case types, and they match our perception of quality. Conclusion: The quantitative image quality assessment method was successfully applied in the HercepTest™ slides to evaluate WSI scanner reproducibility. The proposed method is generic and applicable to any other types of slide stains and scanners. PMID:28197359

  1. Evaluation of copyright protection schemes for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Minguillon, Julia; Herrera-Joancomarti, Jordi; Megias, David; Serra-Sagrista, Joan

    2004-02-01

    In this paper we evaluate the performance of several image watermarking schemes applied to hyperspectral imaging. An image watermarking scheme based on JPEG2000 which can be also used to store and manipulate hyperspectral images is also described. Different watermarking schemes are tested in order to determine the suitability of each one for a specific hyperspectral image environment. The impact of classical GIS operations (namely zooming, cropping and compression) on the performance of each watermarking scheme is measured in terms of capacity and robustness. In order to do so, we study several possibilities for watermarking hyperspectral images, as all hyperspectral image bands should be taken into account. We also study the impact of watermarking in image quality, measured as usual by PSNR, but also by the degradation of classification performance. Compression, classification and watermarking are closely related to each other as decisions taken in one subject have a large impact on the others. Our results show that the newcomer JPEG2000 standard is a useful tool for both hyperspectral imaging and copyright protection purposes. The proposed watermarking scheme, which takes advantage of JPEG2000 standard capabilities, can be considered to be robust under the constraints defined by the integration of hyperspectral imaging with geographical information systems. JPEG2000 extensions defined by the standard related to this work are also considered.

  2. Evaluation of thermal imaging cameras used in fire fighting applications

    NASA Astrophysics Data System (ADS)

    Amon, Francine; Bryner, Nelson; Hamins, Anthony

    2004-08-01

    Thermal imaging cameras are rapidly becoming integral equipment for first responders for use in structure fires. Currently there are no standardized test methods or performance metrics available to the users or manufacturers of these instruments. The Building and Fire Research Laboratory (BFRL) at the National Institute of Standards and Technology (NIST) is developing a testing facility and methods to evaluate the performance of thermal imagers used by fire fighters to search for victims and hot spots in burning structures. The facility will test the performance of currently available imagers and advanced fire detection systems, as well as serve as a test bed for new technology. An evaluation of the performance of different thermal imaging detector technologies under field conditions is also underway. Results of this project will provide a quantifiable physical and scientific basis upon which industry standards for imaging performance, testing protocols and reporting practices related to the performance of thermal imaging cameras can be developed. The background and approach that shape the evaluation procedure for the thermal imagers are the primary focus of this paper.

  3. An entropy-based objective evaluation method for image segmentation

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Fritts, Jason E.; Goldman, Sally A.

    2003-12-01

    Accurate image segmentation is important for many image, video and computer vision applications. Over the last few decades, many image segmentation methods have been proposed. However, the results of these segmentation methods are usually evaluated only visually, qualitatively, or indirectly by the effectiveness of the segmentation on the subsequent processing steps. Such methods are either subjective or tied to particular applications. They do not judge the performance of a segmentation method objectively, and cannot be used as a means to compare the performance of different segmentation techniques. A few quantitative evaluation methods have been proposed, but these early methods have been based entirely on empirical analysis and have no theoretical grounding. In this paper, we propose a novel objective segmentation evaluation method based on information theory. The new method uses entropy as the basis for measuring the uniformity of pixel characteristics (luminance is used in this paper) within a segmentation region. The evaluation method provides a relative quality score that can be used to compare different segmentations of the same image. This method can be used to compare both various parameterizations of one particular segmentation method as well as fundamentally different segmentation techniques. The results from this preliminary study indicate that the proposed evaluation method is superior to the prior quantitative segmentation evaluation techniques, and identify areas for future research in objective segmentation evaluation.

  4. Metal artifact reduction and image quality evaluation of lumbar spine CT images using metal sinogram segmentation.

    PubMed

    Kaewlek, Titipong; Koolpiruck, Diew; Thongvigitmanee, Saowapak; Mongkolsuk, Manus; Thammakittiphan, Sastrawut; Tritrakarn, Siri-on; Chiewvit, Pipat

    2015-01-01

    Metal artifacts often appear in the images of computed tomography (CT) imaging. In the case of lumbar spine CT images, artifacts disturb the images of critical organs. These artifacts can affect the diagnosis, treatment, and follow up care of the patient. One approach to metal artifact reduction is the sinogram completion method. A mixed-variable thresholding (MixVT) technique to identify the suitable metal sinogram is proposed. This technique consists of four steps: 1) identify the metal objects in the image by using k-mean clustering with the soft cluster assignment, 2) transform the image by separating it into two sinograms, one of which is the sinogram of the metal object, with the surrounding tissue shown in the second sinogram. The boundary of the metal sinogram is then found by the MixVT technique, 3) estimate the new value of the missing data in the metal sinogram by linear interpolation from the surrounding tissue sinogram, 4) reconstruct a modified sinogram by using filtered back-projection and complete the image by adding back the image of the metal object into the reconstructed image to form the complete image. The quantitative and clinical image quality evaluation of our proposed technique demonstrated a significant improvement in image clarity and detail, which enhances the effectiveness of diagnosis and treatment.

  5. Web-based psychometric evaluation of image quality

    NASA Astrophysics Data System (ADS)

    Sprow, Iris; Baranczuk, Zofia; Stamm, Tobias; Zolliker, Peter

    2009-01-01

    The measurement of image quality requires the judgement by the human visual system. This paper describes a psycho-visual test technique that uses the internet as a test platform to identify image quality in a more time-effective manner, comparing the visual response data with the results from the same test in a lab-based environment and estimate the usefulness of the internet as a platform for scaling studies.

  6. Night vision imaging system lighting evaluation methodology

    NASA Astrophysics Data System (ADS)

    Task, H. Lee; Pinkus, Alan R.; Barbato, Maryann H.; Hausmann, Martha A.

    2005-05-01

    In order for night vision goggles (NVGs) to be effective in aircraft operations, it is necessary for the cockpit lighting and displays to be NVG compatible. It has been assumed that the cockpit lighting is compatible with NVGs if the radiance values are compliant with the limits listed in Mil-L-85762A and Mil-Std-3009. However, these documents also describe a NVG-lighting compatibility field test procedure that is based on visual acuity. The objective of the study described in this paper was to determine how reliable and precise the visual acuity-based (VAB) field evaluation method is and compare it to a VAB method that employs less expensive equipment. In addition, an alternative, objective method of evaluating compatibility of the cockpit lighting was investigated. An inexpensive cockpit lighting simulator was devised to investigate two different interference conditions and six different radiance levels per condition. This paper describes the results, which indicate the objective method, based on light output of the NVGs, is more precise and reliable than the visual acuity-based method. Precision and reliability were assessed based on a probability of rejection (of the lighting system) function approach that was developed specifically for this study.

  7. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  8. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  9. Quantitative evaluation of activation state in functional brain imaging.

    PubMed

    Hu, Zhenghui; Ni, Pengyu; Liu, Cong; Zhao, Xiaohu; Liu, Huafeng; Shi, Pengcheng

    2012-10-01

    Neuronal activity can evoke the hemodynamic change that gives rise to the observed functional magnetic resonance imaging (fMRI) signal. These increases are also regulated by the resting blood volume fraction (V (0)) associated with regional vasculature. The activation locus detected by means of the change in the blood-oxygen-level-dependent (BOLD) signal intensity thereby may deviate from the actual active site due to varied vascular density in the cortex. Furthermore, conventional detection techniques evaluate the statistical significance of the hemodynamic observations. In this sense, the significance level relies not only upon the intensity of the BOLD signal change, but also upon the spatially inhomogeneous fMRI noise distribution that complicates the expression of the results. In this paper, we propose a quantitative strategy for the calibration of activation states to address these challenging problems. The quantitative assessment is based on the estimated neuronal efficacy parameter [Formula: see text] of the hemodynamic model in a voxel-by-voxel way. It is partly immune to the inhomogeneous fMRI noise by virtue of the strength of the optimization strategy. Moreover, it is easy to incorporate regional vascular information into the activation detection procedure. By combining MR angiography images, this approach can remove large vessel contamination in fMRI signals, and provide more accurate functional localization than classical statistical techniques for clinical applications. It is also helpful to investigate the nonlinear nature of the coupling between synaptic activity and the evoked BOLD response. The proposed method might be considered as a potentially useful complement to existing statistical approaches.

  10. Color normalization for robust evaluation of microscopy images

    NASA Astrophysics Data System (ADS)

    Švihlík, Jan; Kybic, Jan; Habart, David

    2015-09-01

    This paper deals with color normalization of microscopy images of Langerhans islets in order to increase robustness of the islet segmentation to illumination changes. The main application is automatic quantitative evaluation of the islet parameters, useful for determining the feasibility of islet transplantation in diabetes. First, background illumination inhomogeneity is compensated and a preliminary foreground/background segmentation is performed. The color normalization itself is done in either lαβ or logarithmic RGB color spaces, by comparison with a reference image. The color-normalized images are segmented using color-based features and pixel-wise logistic regression, trained on manually labeled images. Finally, relevant statistics such as the total islet area are evaluated in order to determine the success likelihood of the transplantation.

  11. Evaluation Of Algorithms For A Squid Detector Neuromagnetic Imaging System

    NASA Astrophysics Data System (ADS)

    Leahy, Richard; Jeffe, Brian; Singh, Manbir; Brechner, Ricardo

    1987-01-01

    The SQUID based biomagnetometer has been widely used to measure the external magnetic field produced by neural activity. In this paper we consider the viability of using this data to reconstruct three dimensional neuromagnetic images (NMI) of an equivalent electrical current distribution within the brain which would produce the measured magnetic field. The fundamental limitations on this mode of imaging are evaluated and possible physical models and mathematical formulations of the problem are proposed. Several algorithms often used in medical image reconstruction are applied to the problem and their performance evaluated. We conclude that the reconstruction problem is highly ill-posed, and that conventional image reconstruction algorithms are inadequate for 3-D NMI. A class of solutions we call 'minimum dipole' is shown to provide more accurate reconstructions of simple current distributions.

  12. Comprehensive computerized medical imaging: interim hypothetical economic evaluation

    NASA Astrophysics Data System (ADS)

    Warburton, Rebecca N.; Fisher, Paul D.; Nosil, Josip

    1990-08-01

    The 422-bed Victoria General Hospital (VGH) and Siemens Electric Limited have since 1983 been piloting the implementation of comprehensive computerized medical imaging, including digital acquisition of diagnostic images, in British Columbia. Although full PACS is not yet in place at VGH, experience to date habeen used to project annual cost figures (including capital replacement) for a fully-computerized department. The resulting economic evaluation has been labelled hypothetical to emphasize that some key cost components were estimated rather than observed; this paper presents updated cost figures based on recent revisions to proposed departmental equipment configuration which raised the cost of conventional imaging equipment by 0.3 million* and lowered the cost of computerized imaging equipment by 0.8 million. Compared with conventional diagnostic imaging, computerized imaging appears to raise overall annual costs at VGH by nearly 0.7 million, or 11.6%; this is more favourable than the previous results, which indicated extra annual costs of 1 million (16.9%). Sensitivity analysis still indicates that all reasonable changes in the underlying assumptions result in higher costs for computerized imaging than for conventional imaging. Computerized imaging offers lower radiation exposure to patients, shorter waiting times, and other potential advantages, but as yet the price of obtaining these benefits remains substantial.

  13. A biological phantom for evaluation of CT image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.

    2014-03-01

    In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.

  14. Metabolic PET Imaging in Cancer Detection and Therapy Response

    PubMed Central

    Zhu, Aizhi; Lee, Daniel; Shim, Hyunsuk

    2010-01-01

    Positron emission tomography (PET) is a noninvasive imaging technique that provides a functional or metabolic assessment of normal tissue or disease conditions. 18F-fluorodeoxyglucose PET imaging (FDG-PET) is widely used clinically for tumor imaging due to increased glucose metabolism in most types of tumors, and has been shown to improve the diagnosis and subsequent treatment of cancers. In this chapter, we review its use in cancer diagnosis, staging, restaging, and assessment of response to treatment. In addition, other metabolic PET imaging agents in research or clinical trial stages are discussed, including amino acid analogs based on increased protein synthesis, and choline, which is based on increased membrane lipid synthesis. Amino acid analogs and choline are more specific to tumor cells than FDG, so they play an important role in differentiating cancers from benign conditions and in the diagnosis of cancers with low FDG uptake or high background FDG uptake. For decades, researchers have shown that tumors have altered metabolic profiles and display elevated uptake of glucose, amino acids, and lipids, which can be used for cancer diagnosis and monitoring of the therapeutic response with excellent signal-to-noise ratios. PMID:21362516

  15. Dynamic Chest Image Analysis: Evaluation of Model-Based Pulmonary Perfusion Analysis With Pyramid Images

    DTIC Science & Technology

    2007-11-02

    Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for

  16. Meat quality evaluation by hyperspectral imaging technique: an overview.

    PubMed

    Elmasry, Gamal; Barbin, Douglas F; Sun, Da-Wen; Allen, Paul

    2012-01-01

    During the last two decades, a number of methods have been developed to objectively measure meat quality attributes. Hyperspectral imaging technique as one of these methods has been regarded as a smart and promising analytical tool for analyses conducted in research and industries. Recently there has been a renewed interest in using hyperspectral imaging in quality evaluation of different food products. The main inducement for developing the hyperspectral imaging system is to integrate both spectroscopy and imaging techniques in one system to make direct identification of different components and their spatial distribution in the tested product. By combining spatial and spectral details together, hyperspectral imaging has proved to be a promising technology for objective meat quality evaluation. The literature presented in this paper clearly reveals that hyperspectral imaging approaches have a huge potential for gaining rapid information about the chemical structure and related physical properties of all types of meat. In addition to its ability for effectively quantifying and characterizing quality attributes of some important visual features of meat such as color, quality grade, marbling, maturity, and texture, it is able to measure multiple chemical constituents simultaneously without monotonous sample preparation. Although this technology has not yet been sufficiently exploited in meat process and quality assessment, its potential is promising. Developing a quality evaluation system based on hyperspectral imaging technology to assess the meat quality parameters and to ensure its authentication would bring economical benefits to the meat industry by increasing consumer confidence in the quality of the meat products. This paper provides a detailed overview of the recently developed approaches and latest research efforts exerted in hyperspectral imaging technology developed for evaluating the quality of different meat products and the possibility of its widespread

  17. Comparison and evaluation of retrospective intermodality image registration techniques

    NASA Astrophysics Data System (ADS)

    West, Jay B.; Fitzpatrick, J. Michael; Wang, Matthew Y.; Dawant, Benoit M.; Maurer, Calvin R., Jr.; Kessler, Robert M.; Maciunas, Robert J.; Barillot, Christian; Lemoine, Didier; Collignon, Andre M. F.; Maes, Frederik; Suetens, Paul; Vandermeulen, Dirk; van den Elsen, Petra A.; Hemler, Paul F.; Napel, Sandy; Sumanaweera, Thilaka S.; Harkness, Beth A.; Hill, Derek L.; Studholme, Colin; Malandain, Gregoire; Pennec, Xavier; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Pollack, Michael; Pelizzari, Charles A.; Robb, Richard A.; Hanson, Dennis P.; Woods, Roger P.

    1996-04-01

    All retrospective image registration methods have attached to them some intrinsic estimate of registration error. However, this estimate of accuracy may not always be a good indicator of the distance between actual and estimated positions of targets within the cranial cavity. This paper describes a project whose principal goal is to use a prospective method based on fiducial markers as a 'gold standard' to perform an objective, blinded evaluation of the accuracy of several retrospective image-to-image registration techniques. Image volumes of three modalities -- CT, MR, and PET -- were taken of patients undergoing neurosurgery at Vanderbilt University Medical Center. These volumes had all traces of the fiducial markers removed, and were provided to project collaborators outside Vanderbilt, who then performed retrospective registrations on the volumes, calculating transformations from CT to MR and/or from PET to MR, and communicated their transformations to Vanderbilt where the accuracy of each registration was evaluated. In this evaluation the accuracy is measured at multiple 'regions of interest,' i.e. areas in the brain which would commonly be areas of neurological interest. A region is defined in the MR image and its centroid C is determined. Then the prospective registration is used to obtain the corresponding point C' in CT or PET. To this point the retrospective registration is then applied, producing C' in MR. Statistics are gathered on the target registration error (TRE), which is the disparity between the original point C and its corresponding point C'. A second goal of the project is to evaluate the importance of correcting geometrical distortion in MR images, by comparing the retrospective TRE in the rectified images, i.e., those which have had the distortion correction applied, with that of the same images before rectification. This paper presents preliminary results of this study along with a brief description of each registration technique and an

  18. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    SciTech Connect

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin; Hollingsworth, Alan B.; Qian, Wei

    2015-11-15

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy.

  19. Predictive imaging of chemotherapeutic response in a transgenic mouse model of pancreatic cancer

    PubMed Central

    Wang, Ping; Yoo, Byunghee; Sherman, Sarah; Mukherjee, Pinku; Ross, Alana; Pantazopoulos, Pamela; Petkova, Victoria; Farrar, Christian; Medarova, Zdravka; Moore, Anna

    2016-01-01

    The underglycosylated mucin 1 tumor antigen (uMUC1) is a biomarker that forecasts the progression of adenocarcinomas. In this study, we evaluated the utility of a dual-modality molecular imaging approach based on targeting uMUC1 for monitoring chemotherapeutic response in a transgenic murine model of pancreatic cancer (KCM triple transgenic mice). An uMUC1-specific contrast agent (MN-EPPT) was synthesized for use with magnetic resonance imaging (MRI) and fluorescence optical imaging. It consisted of dextran-coated iron oxide nanoparticles conjugated to the near infrared fluorescent dye Cy5.5 and to a uMUC1-specific peptide (EPPT). KCM triple transgenic mice were given gemcitabine as chemotherapy while control animals received saline injections following the same schedule. Changes in uMUC1 levels following chemotherapy were monitored using T2-weighted MRI and optical imaging before and 24 hr after injection of the MN-EPPT. uMUC1 expression in tumors from both groups was evaluated by histology and qRT-PCR. We observed that the average delta-T2 in the gemcitabine-treated group was significantly reduced compared to the control group indicating lower accumulation of MN-EPPT, and correspondingly, a lower level of uMUC1 expression. In vivo optical imaging confirmed the MRI findings. Fluorescence microscopy of pancreatic tumor sections showed a lower level of uMUC1 expression in the gemcitabine-treated group compared to the control, which was confirmed by qRT-PCR. Our data proved that changes in uMUC1 expression after gemcitabine chemotherapy could be evaluated using MN-EPPT-enhanced in vivo MR and optical imaging. These results suggest that the uMUC1-targeted imaging approach could provide a useful tool for the predictive assessment of therapeutic response. PMID:26996122

  20. Politics in evaluation: Politically responsive evaluation in high stakes environments.

    PubMed

    Azzam, Tarek; Levine, Bret

    2015-12-01

    The role of politics has often been discussed in evaluation theory and practice. The political influence of the situation can have major effects on the evaluation design, approach and methods. Politics also has the potential to influence the decisions made from the evaluation findings. The current study focuses on the influence of the political context on stakeholder decision making. Utilizing a simulation scenario, this study compares stakeholder decision making in high and low stakes evaluation contexts. Findings suggest that high stakes political environments are more likely than low stakes environments to lead to reduced reliance on technically appropriate measures and increased dependence on measures better reflect the broader political environment.

  1. Evaluation of color error and noise on simulated images

    NASA Astrophysics Data System (ADS)

    Mornet, Clémence; Vaillant, Jérôme; Decroux, Thomas; Hérault, Didier; Schanen, Isabelle

    2010-01-01

    The evaluation of CMOS sensors performance in terms of color accuracy and noise is a big challenge for camera phone manufacturers. On this paper, we present a tool developed with Matlab at STMicroelectronics which allows quality parameters to be evaluated on simulated images. These images are computed based on measured or predicted Quantum Efficiency (QE) curves and noise model. By setting the parameters of integration time and illumination, the tool optimizes the color correction matrix (CCM) and calculates the color error, color saturation and signal-to-noise ratio (SNR). After this color correction optimization step, a Graphics User Interface (GUI) has been designed to display a simulated image at a chosen illumination level, with all the characteristics of a real image taken by the sensor with the previous color correction. Simulated images can be a synthetic Macbeth ColorChecker, for which reflectance of each patch is known, or a multi-spectral image, described by the reflectance spectrum of each pixel or an image taken at high-light level. A validation of the results has been performed with ST under development sensors. Finally we present two applications one based on the trade-offs between color saturation and noise by optimizing the CCM and the other based on demosaicking SNR trade-offs.

  2. Evaluation of clinical image processing algorithms used in digital mammography.

    PubMed

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  3. Complications of renal transplantation: evaluation with US and radionuclide imaging.

    PubMed

    Brown, E D; Chen, M Y; Wolfman, N T; Ott, D J; Watson, N E

    2000-01-01

    Following renal transplantation, patients are often evaluated with ultrasonography (US) or radionuclide imaging to assess renal function and the presence of possible complications. Both modalities are inexpensive, noninvasive, and nonnephrotoxic. A basic understanding of the surgical techniques commonly used for renal transplantation is useful when imaging these patients in order to recognize complications and to direct further imaging or intervention. The most frequent complications of renal transplantation include perinephric fluid collections; decreased renal function; and abnormalities of the vasculature, collecting system, and renal parenchyma. Perinephric fluid collections are common following transplantation, and their clinical significance depends on the type, location, size, and growth of the fluid collection, features that are well-evaluated with US. Causes of diminished renal function include acute tubular necrosis, rejection, and toxicity from medications. Radionuclide imaging is the most useful modality for assessing renal function. Vascular complications of transplantation include occlusion or stenosis of the arterial or venous supply, arteriovenous fistulas, and pseudoaneurysms. Although the standard for evaluating these vascular complications is angiography, US is an excellent noninvasive method for screening. Other transplant complications such as abnormalities of the collecting system and renal parenchyma are well-evaluated with both radionuclide imaging and US.

  4. Response Style Contamination of Student Evaluation Data

    ERIC Educational Resources Information Center

    Dolnicar, Sara; Grun, Bettina

    2009-01-01

    Student evaluation surveys provide instructors with feedback regarding development opportunities and they form the basis of promotion and tenure decisions. Student evaluations have been extensively studied, but one dimension hitherto neglected is the actual measurement aspect: which questions to ask, how to ask them, and what answer options to…

  5. Mode imaging and loss evaluation of semiconductor waveguides

    SciTech Connect

    Mochizuki, Toshimitsu; Kim, Changsu; Yoshita, Masahiro; Nakamura, Takahiro; Akiyama, Hidefumi; Pfeiffer, Loren N.; West, Ken W.

    2014-05-15

    An imaging and loss evaluation method for semiconductor waveguides coupled with non-doped quantum wells is presented. Using the internal emission of the wells as a probe light source, the numbers and widths of the modes of waveguides with various ridge sizes were evaluated by CCD imaging, and the obtained values were consistent with effective index method calculation. Waveguide internal losses were obtained from analyses of the Fabry-Pérot fringes of waveguide emission spectra. We quantified the quality of 29 single-mode waveguide samples as an internal loss and variation of 10.2 ± 0.6  cm{sup −1}.

  6. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    SciTech Connect

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  7. Machine Learning Approaches for Integrating Clinical and Imaging Features in LLD Classification and Response Prediction

    PubMed Central

    Patel, Meenal J.; Andreescu, Carmen; Price, Julie C.; Edelman, Kathryn L.; Reynolds, Charles F.; Aizenstein, Howard J.

    2015-01-01

    Objective Currently, depression diagnosis relies primarily on behavioral symptoms and signs, and treatment is guided by trial and error instead of evaluating associated underlying brain characteristics. Unlike past studies, we attempted to estimate accurate prediction models for late-life depression diagnosis and treatment response using multiple machine learning methods with inputs of multi-modal imaging and non-imaging whole brain and network-based features. Methods Late-life depression patients (medicated post-recruitment) [n=33] and elderly non-depressed individuals [n=35] were recruited. Their demographics and cognitive ability scores were recorded, and brain characteristics were acquired using multi-modal magnetic resonance imaging pre-treatment. Linear and nonlinear learning methods were tested for estimating accurate prediction models. Results A learning method called alternating decision trees estimated the most accurate prediction models for late-life depression diagnosis (87.27% accuracy) and treatment response (89.47% accuracy). The diagnosis model included measures of age, mini-mental state examination score, and structural imaging (e.g. whole brain atrophy and global white mater hyperintensity burden). The treatment response model included measures of structural and functional connectivity. Conclusions Combinations of multi-modal imaging and/or non-imaging measures may help better predict late-life depression diagnosis and treatment response. As a preliminary observation, we speculate the results may also suggest that different underlying brain characteristics defined by multi-modal imaging measures—rather than region-based differences—are associated with depression versus depression recovery since to our knowledge this is the first depression study to accurately predict both using the same approach. These findings may help better understand late-life depression and identify preliminary steps towards personalized late-life depression treatment

  8. Continuing Medical Education Speakers with High Evaluation Scores Use more Image-based Slides

    PubMed Central

    Ferguson, Ian; Phillips, Andrew W.; Lin, Michelle

    2017-01-01

    Introduction Although continuing medical education (CME) presentations are common across health professions, it is unknown whether slide design is independently associated with audience evaluations of the speaker. Based on the conceptual framework of Mayer’s theory of multimedia learning, this study aimed to determine whether image use and text density in presentation slides are associated with overall speaker evaluations. Methods This retrospective analysis of six sequential CME conferences (two annual emergency medicine conferences over a three-year period) used a mixed linear regression model to assess whether post-conference speaker evaluations were associated with image fraction (percentage of image-based slides per presentation) and text density (number of words per slide). Results A total of 105 unique lectures were given by 49 faculty members, and 1,222 evaluations (70.1% response rate) were available for analysis. On average, 47.4% (SD=25.36) of slides had at least one educationally-relevant image (image fraction). Image fraction significantly predicted overall higher evaluation scores [F(1, 100.676)=6.158, p=0.015] in the mixed linear regression model. The mean (SD) text density was 25.61 (8.14) words/slide but was not a significant predictor [F(1, 86.293)=0.55, p=0.815]. Of note, the individual speaker [χ2(1)=2.952, p=0.003] and speaker seniority [F(3, 59.713)=4.083, p=0.011] significantly predicted higher scores. Conclusion This is the first published study to date assessing the linkage between slide design and CME speaker evaluations by an audience of practicing clinicians. The incorporation of images was associated with higher evaluation scores, in alignment with Mayer’s theory of multimedia learning. Contrary to this theory, however, text density showed no significant association, suggesting that these scores may be multifactorial. Professional development efforts should focus on teaching best practices in both slide design and presentation

  9. Learning evaluation of ultrasound image segmentation using combined measures

    NASA Astrophysics Data System (ADS)

    Fang, Mengjie; Luo, Yongkang; Ding, Mingyue

    2016-03-01

    Objective evaluation of medical image segmentation is one of the important steps for proving its validity and clinical applicability. Although there are many researches presenting segmentation methods on medical image, while with few studying the evaluation methods on their results, this paper presents a learning evaluation method with combined measures to make it as close as possible to the clinicians' judgment. This evaluation method is more quantitative and precise for the clinical diagnose. In our experiment, the same data sets include 120 segmentation results of lumen-intima boundary (LIB) and media-adventitia boundary (MAB) of carotid ultrasound images respectively. And the 15 measures of goodness method and discrepancy method are used to evaluate the different segmentation results alone. Furthermore, the experimental results showed that compared with the discrepancy method, the accuracy with the measures of goodness method is poor. Then, by combining with the measures of two methods, the average accuracy and the area under the receiver operating characteristic (ROC) curve of 2 segmentation groups are higher than 93% and 0.9 respectively. And the results of MAB are better than LIB, which proved that this novel method can effectively evaluate the segmentation results. Moreover, it lays the foundation for the non-supervised segmentation evaluation system.

  10. Evaluation of image quality of a new CCD-based system for chest imaging

    NASA Astrophysics Data System (ADS)

    Sund, Patrik; Kheddache, Susanne; Mansson, Lars G.; Bath, Magnus; Tylen, Ulf

    2000-04-01

    The Imix radiography system (Qy Imix Ab, Finland)consists of an intensifying screen, optics, and a CCD camera. An upgrade of this system (Imix 2000) with a red-emitting screen and new optics has recently been released. The image quality of Imix (original version), Imix 200, and two storage-phosphor systems, Fuji FCR 9501 and Agfa ADC70 was evaluated in physical terms (DQE) and with visual grading of the visibility of anatomical structures in clinical images (141 kV). PA chest images of 50 healthy volunteers were evaluated by experienced radiologists. All images were evaluated on Siemens Simomed monitors, using the European Quality Criteria. The maximum DQE values for Imix, Imix 2000, Agfa and Fuji were 11%, 14%, 17% and 19%, respectively (141kV, 5μGy). Using the visual grading, the observers rated the systems in the following descending order. Fuji, Imix 2000, Agfa, and Imix. Thus, the upgrade to Imix 2000 resulted in higher DQE values and a significant improvement in clinical image quality. The visual grading agrees reasonably well with the DQE results; however, Imix 2000 received a better score than what could be expected from the DQE measurements. Keywords: CCD Technique, Chest Imaging, Digital Radiography, DQE, Image Quality, Visual Grading Analysis

  11. Evaluation of image deblurring methods via a classification metric

    NASA Astrophysics Data System (ADS)

    Perrone, Daniele; Humphreys, David; Lamb, Robert A.; Favaro, Paolo

    2012-09-01

    The performance of single image deblurring algorithms is typically evaluated via a certain discrepancy measure between the reconstructed image and the ideal sharp image. The choice of metric, however, has been a source of debate and has also led to alternative metrics based on human visual perception. While fixed metrics may fail to capture some small but visible artifacts, perception-based metrics may favor reconstructions with artifacts that are visually pleasant. To overcome these limitations, we propose to assess the quality of reconstructed images via a task-driven metric. In this paper we consider object classification as the task and therefore use the rate of classification as the metric to measure deblurring performance. In our evaluation we use data with different types of blur in two cases: Optical Character Recognition (OCR), where the goal is to recognise characters in a black and white image, and object classification with no restrictions on pose, illumination and orientation. Finally, we show how off-the-shelf classification algorithms benefit from working with deblurred images.

  12. Computerized quantitative evaluation of mammographic accreditation phantom images

    SciTech Connect

    Lee, Yongbum; Tsai, Du-Yih; Shinohara, Norimitsu

    2010-12-15

    Purpose: The objective was to develop and investigate an automated scoring scheme of the American College of Radiology (ACR) mammographic accreditation phantom (RMI 156, Middleton, WI) images. Methods: The developed method consisted of background subtraction, determination of region of interest, classification of fiber and mass objects by Mahalanobis distance, detection of specks by template matching, and rule-based scoring. Fifty-one phantom images were collected from 51 facilities for this study (one facility provided one image). A medical physicist and two radiologic technologists also scored the images. The human and computerized scores were compared. Results: In terms of meeting the ACR's criteria, the accuracies of the developed method for computerized evaluation of fiber, mass, and speck were 90%, 80%, and 98%, respectively. Contingency table analysis revealed significant association between observer and computer scores for microcalcifications (p<5%) but not for masses and fibers. Conclusions: The developed method may achieve a stable assessment of visibility for test objects in mammographic accreditation phantom image in whether the phantom image meets the ACR's criteria in the evaluation test, although there is room left for improvement in the approach for fiber and mass objects.

  13. An Automated Image Processing System for Concrete Evaluation

    SciTech Connect

    Baumgart, C.W.; Cave, S.P.; Linder, K.E.

    1998-11-23

    AlliedSignal Federal Manufacturing & Technologies (FM&T) was asked to perform a proof-of-concept study for the Missouri Highway and Transportation Department (MHTD), Research Division, in June 1997. The goal of this proof-of-concept study was to ascertain if automated scanning and imaging techniques might be applied effectively to the problem of concrete evaluation. In the current evaluation process, a concrete sample core is manually scanned under a microscope. Voids (or air spaces) within the concrete are then detected visually by a human operator by incrementing the sample under the cross-hairs of a microscope and by counting the number of "pixels" which fall within a void. Automation of the scanning and image analysis processes is desired to improve the speed of the scanning process, to improve evaluation consistency, and to reduce operator fatigue. An initial, proof-of-concept image analysis approach was successfully developed and demonstrated using acquired black and white imagery of concrete samples. In this paper, the automated scanning and image capture system currently under development will be described and the image processing approach developed for the proof-of-concept study will be demonstrated. A development update and plans for future enhancements are also presented.

  14. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  15. Evaluation of chirp reversal power modulation sequence for contrast agent imaging.

    PubMed

    Novell, A; Sennoga, C A; Escoffre, J M; Chaline, J; Bouakaz, A

    2014-09-07

    Over the last decade, significant research effort has been focused on the use of chirp for contrast agent imaging because chirps are known to significantly increase imaging contrast-to-noise ratio (CNR). New imaging schemes, such as chirp reversal (CR), have been developed to improve contrast detection by increasing non-linear microbubble responses. In this study we evaluated the contrast enhancement efficiency of various chirped imaging sequences in combination with well-established imaging schemes such as power modulation (PM) and pulse inversion (PI). The imaging schemes tested were implemented on a fully programmable open scanner and evaluated by ultrasonically scanning (excitation frequency of 2.5 MHz; amplitude of 350 kPa) a tissue-mimicking flow phantom comprising a 4 mm diameter tube through which aqueous dispersions (dilution fraction of 1/2000) of the commercial ultrasound contrast agent, SonoVue(®) were continuously circulated. The recovery of non-linear microbubble responses after chirp compression requires the development and the optimization of a specific filter. A compression filter was therefore designed and used to compress and extract several non-linear components from the received microbubble responses. The results showed that using chirps increased the image CNR by approximately 10 dB, as compared to conventional Gaussian apodized sine burst excitation but degraded the axial resolution by a factor of 1.4, at -3 dB. We demonstrated that the highest CNR and contrast-to-noise ratio (CTR) were achievable when CR was combined with PM as compared to other imaging schemes such as PI.

  16. Radionuclide imaging in the evaluation of osteomyelitis and septic arthritis

    SciTech Connect

    Kim, E.E.; Haynie, T.P.; Podoloff, D.A.; Lowry, P.A.; Harle, T.S. )

    1989-01-01

    Despite controversy over its exact role, radionuclide imaging plays an important role in the evaluation of patients suspected of having osteomyelitis. The differentiation between osteomyelitis and cellulitis is best accomplished by using a three-phase technique using Tc-99m methylene diphosphonate (MDP). Frequently, it is necessary to obtain multiple projections and magnification views to adequately assess suspected areas. It is recommended that a Ga-67 or In-111 leukocyte scan be performed in those cases where osteomyelitis is strongly suspected clinically and the routine bone scan is equivocal or normal. Repeated bone scan after 48 to 72 h may demonstrate increased radioactivity in the case of early osteomyelitis with the initial photon-deficient lesion. In-111 leukocyte imaging is useful for the evaluation of suspected osteomyelitis complicating recent fracture or operation, but must be used in conjunction with clinical and radiographic correlation. The recognition of certain imaging patterns appears helpful to separate osteomyelitis from septic arthritis or cellulitis. 83 references.

  17. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  18. Evaluation of Infrared Images by Using a Human Thermal Model

    DTIC Science & Technology

    2001-10-25

    thermal environmental history have been recorded. In this case, the thermal environmental history could be estimated from the behavior of a subject... environmental history and physiological condition history. An advantage of the evaluation of IR images using the thermal model is to provide

  19. Evaluation of Skybox Video and Still Image products

    NASA Astrophysics Data System (ADS)

    d'Angelo, P.; Kuschk, G.; Reinartz, P.

    2014-11-01

    The SkySat-1 satellite lauched by Skybox Imaging on November 21 in 2013 opens a new chapter in civilian earth observation as it is the first civilian satellite to image a target in high definition panchromatic video for up to 90 seconds. The small satellite with a mass of 100 kg carries a telescope with 3 frame sensors. Two products are available: Panchromatic video with a resolution of around 1 meter and a frame size of 2560 × 1080 pixels at 30 frames per second. Additionally, the satellite can collect still imagery with a swath of 8 km in the panchromatic band, and multispectral images with 4 bands. Using super-resolution techniques, sub-meter accuracy is reached for the still imagery. The paper provides an overview of the satellite design and imaging products. The still imagery product consists of 3 stripes of frame images with a footprint of approximately 2.6 × 1.1 km. Using bundle block adjustment, the frames are registered, and their accuracy is evaluated. Image quality of the panchromatic, multispectral and pansharpened products are evaluated. The video product used in this evaluation consists of a 60 second gazing acquisition of Las Vegas. A DSM is generated by dense stereo matching. Multiple techniques such as pairwise matching or multi image matching are used and compared. As no ground truth height reference model is availble to the authors, comparisons on flat surface and compare differently matched DSMs are performed. Additionally, visual inspection of DSM and DSM profiles show a detailed reconstruction of small features and large skyscrapers.

  20. Evaluation of stereoscopic 3D displays for image analysis tasks

    NASA Astrophysics Data System (ADS)

    Peinsipp-Byma, E.; Rehfeld, N.; Eck, R.

    2009-02-01

    In many application domains the analysis of aerial or satellite images plays an important role. The use of stereoscopic display technologies can enhance the image analyst's ability to detect or to identify certain objects of interest, which results in a higher performance. Changing image acquisition from analog to digital techniques entailed the change of stereoscopic visualisation techniques. Recently different kinds of digital stereoscopic display techniques with affordable prices have appeared on the market. At Fraunhofer IITB usability tests were carried out to find out (1) with which kind of these commercially available stereoscopic display techniques image analysts achieve the best performance and (2) which of these techniques achieve a high acceptance. First, image analysts were interviewed to define typical image analysis tasks which were expected to be solved with a higher performance using stereoscopic display techniques. Next, observer experiments were carried out whereby image analysts had to solve defined tasks with different visualization techniques. Based on the experimental results (performance parameters and qualitative subjective evaluations of the used display techniques) two of the examined stereoscopic display technologies were found to be very good and appropriate.

  1. Evaluation of image-enhanced paediatric computed tomography brain examinations.

    PubMed

    Ledenius, K; Stålhammar, F; Wiklund, L M; Fredriksson, C; Forsberg, A; Thilander-Klang, A

    2010-01-01

    The aim of this study was to evaluate the possibility of reducing the radiation dose to paediatric patients undergoing computed tomography (CT) brain examination by using image-enhancing software. Artificial noise was added to the raw data collected from 20 patients aged between 1 and 10 y to simulate tube current reductions of 20, 40 and 60 mA. All images were created in duplicate; one set of images remained unprocessed whereas the other was processed with image-enhancing software. Three paediatric radiologists assessed the image quality based on their ability to visualise the high- and low-contrast structures and their overall impression of the diagnostic value of the image. For patients aged 6-10 y, it was found that dose reductions from 27 mGy (CTDI(vol)) to 23 mGy (15 %) in the upper brain and from 32 to 28 mGy (13 %) in the lower brain were possible for standard diagnostic CT examinations when using the image-enhancing filter. For patients 1-5 y, the results for standard diagnostics in the upper brain were inconclusive, for the lower brain no dose reductions were found possible.

  2. A Dynamic Image Quality Evaluation of Videofluoroscopy Images: Considerations for Telepractice Applications.

    PubMed

    Burns, Clare L; Keir, Benjamin; Ward, Elizabeth C; Hill, Anne J; Farrell, Anna; Phillips, Nick; Porter, Linda

    2015-08-01

    High-quality fluoroscopy images are required for accurate interpretation of videofluoroscopic swallow studies (VFSS) by speech pathologists and radiologists. Consequently, integral to developing any system to conduct VFSS remotely via telepractice is ensuring that the quality of the VFSS images transferred via the telepractice system is optimized. This study evaluates the extent of change observed in image quality when videofluoroscopic images are transmitted from a digital fluoroscopy system to (a) current clinical equipment (KayPentax Digital Swallowing Workstation, and b) four different telepractice system configurations. The telepractice system configurations consisted of either a local C20 or C60 Cisco TelePresence System (codec unit) connected to the digital fluoroscopy system and linked to a second remote C20 or C60 Cisco TelePresence System via a network running at speeds of either 2, 4 or 6 megabits per second (Mbit/s). Image quality was tested using the NEMA XR 21 Phantom, and results demonstrated some loss in spatial resolution, low contrast detectability and temporal resolution for all transferred images when compared to the fluoroscopy source. When using higher capacity codec units and/or the highest bandwidths to support data transmission, image quality transmitted through the telepractice system was found to be comparable if not better than the current clinical system. This study confirms that telepractice systems can be designed to support fluoroscopy image transfer and highlights important considerations when developing telepractice systems for VFSS analysis to ensure high-quality radiological image reproduction.

  3. An automated deformable image registration evaluation of confidence tool

    NASA Astrophysics Data System (ADS)

    Kirby, Neil; Chen, Josephine; Kim, Hojin; Morin, Olivier; Nie, Ke; Pouliot, Jean

    2016-04-01

    Deformable image registration (DIR) is a powerful tool for radiation oncology, but it can produce errors. Beyond this, DIR accuracy is not a fixed quantity and varies on a case-by-case basis. The purpose of this study is to explore the possibility of an automated program to create a patient- and voxel-specific evaluation of DIR accuracy. AUTODIRECT is a software tool that was developed to perform this evaluation for the application of a clinical DIR algorithm to a set of patient images. In brief, AUTODIRECT uses algorithms to generate deformations and applies them to these images (along with processing) to generate sets of test images, with known deformations that are similar to the actual ones and with realistic noise properties. The clinical DIR algorithm is applied to these test image sets (currently 4). From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. In this study, four commercially available DIR algorithms were used to deform a dose distribution associated with a virtual pelvic phantom image set, and AUTODIRECT was used to generate dose uncertainty estimates for each deformation. The virtual phantom image set has a known ground-truth deformation, so the true dose-warping errors of the DIR algorithms were also known. AUTODIRECT predicted error patterns that closely matched the actual error spatial distribution. On average AUTODIRECT overestimated the magnitude of the dose errors, but tuning the AUTODIRECT algorithms should improve agreement. This proof-of-principle test demonstrates the potential for the AUTODIRECT algorithm as an empirical method to predict DIR errors.

  4. Evaluation of Kinect 3D Sensor for Healthcare Imaging.

    PubMed

    Pöhlmann, Stefanie T L; Harkness, Elaine F; Taylor, Christopher J; Astley, Susan M

    2016-01-01

    Microsoft Kinect is a three-dimensional (3D) sensor originally designed for gaming that has received growing interest as a cost-effective and safe device for healthcare imaging. Recent applications of Kinect in health monitoring, screening, rehabilitation, assistance systems, and intervention support are reviewed here. The suitability of available technologies for healthcare imaging applications is assessed. The performance of Kinect I, based on structured light technology, is compared with that of the more recent Kinect II, which uses time-of-flight measurement, under conditions relevant to healthcare applications. The accuracy, precision, and resolution of 3D images generated with Kinect I and Kinect II are evaluated using flat cardboard models representing different skin colors (pale, medium, and dark) at distances ranging from 0.5 to 1.2 m and measurement angles of up to 75°. Both sensors demonstrated high accuracy (majority of measurements <2 mm) and precision (mean point to plane error <2 mm) at an average resolution of at least 390 points per cm(2). Kinect I is capable of imaging at shorter measurement distances, but Kinect II enables structures angled at over 60° to be evaluated. Kinect II showed significantly higher precision and Kinect I showed significantly higher resolution (both p < 0.001). The choice of object color can influence measurement range and precision. Although Kinect is not a medical imaging device, both sensor generations show performance adequate for a range of healthcare imaging applications. Kinect I is more appropriate for short-range imaging and Kinect II is more appropriate for imaging highly curved surfaces such as the face or breast.

  5. Physical exercise and brain responses to images of high-calorie food.

    PubMed

    Killgore, William D S; Kipman, Maia; Schwab, Zachary J; Tkachenko, Olga; Preer, Lily; Gogel, Hannah; Bark, John S; Mundy, Elizabeth A; Olson, Elizabeth A; Weber, Mareen

    2013-12-04

    Physical exercise has many health benefits, including improved cardiovascular fitness, lean muscle development, increased metabolism, and weight loss, as well as positive effects on brain functioning and cognition. Recent evidence suggests that regular physical exercise may also affect the responsiveness of reward regions of the brain to food stimuli. We examined whether the total number of minutes of self-reported weekly physical exercise was related to the responsiveness of appetite and food reward-related brain regions to visual presentations of high-calorie and low-calorie food images during functional MRI. Second, we examined whether such responses would correlate with self-reported food preferences. While undergoing scanning, 37 healthy adults (22 men) viewed images of high-calorie and low-calorie foods and provided desirability ratings for each food image. The correlation between exercise minutes per week and brain responses to the primary condition contrast (high-calorie>low-calorie) was evaluated within the amygdala, insula, and medial orbitofrontal cortex, brain regions previously implicated in responses to food images. Higher levels of exercise were significantly correlated with lower responsiveness within the medial orbitofrontal cortex and left insula to high-calorie foods. Furthermore, activation of these regions was positively correlated with preference ratings for high-calorie foods, particularly those with a savory flavor. These findings suggest that physical exercise may be associated with reduced activation in food-responsive reward regions, which are in turn associated with reduced preferences for unhealthy high-calorie foods. Physical exercise may confer secondary health benefits beyond its primary effects on cardiovascular fitness and energy expenditure.

  6. Children's Responses to the Medical Evaluation for Child Sexual Abuse.

    ERIC Educational Resources Information Center

    Dubowitz, Howard

    1998-01-01

    Addresses three issues: (1) how children respond to the medical evaluation for sexual abuse; (2) how the trauma of the evaluation experienced by some children can be minimized and the benefits maximized; and (3) how children's responses to the medical evaluation for sexual abuse can be interpreted. (DB)

  7. Development and validation of experimental models for hyperemic thermal response using IR imaging

    NASA Astrophysics Data System (ADS)

    Moreno, Eulalia; Hsieh, Sheng-Jen; Palomares, Benjamin Giron

    2012-06-01

    A common method for diagnosing heart health condition is to analyze blood flow rate and temperature behaviors after arterial occlusion. However, multiple factors besides heart condition could affect these behaviors. The objective of this research was to identify other factors that affect blood flow and thermal response after arterial occlusion, evaluate a mathematical model to determine thermal response after arterial occlusion, and develop an experimental model for thermal response after arterial occlusion. Twenty-eight experiments were conducted with 14 subjects to determine blood and thermal responses by using plethysmography and infrared imaging after applying arterial occlusion. Possible factors affecting blood flow and thermal responses that were investigated were: Initial finger temperature, blood pressure, body temperature, gender, and age. After determining the correlation coefficient among the mentioned factors and blood flow and thermal responses after occlusion, it was determined that only initial finger temperature and blood pressure show a strong effect. A mathematical model accounting only for the convective thermal effects, but not thermal conduction effects, was developed and tested, but was found to be insufficiently accurate in describing the thermal response by means of blood flow parameters for all of the subjects tested (error>90%). A linear regression model was then developed to relate blood flow to thermal response using two thirds of the experimental data, and was tested using one third of the data. The linear regression model was found to predict thermal response by means of blood flow response with an error rate of less than 50%.

  8. Application of remote sensing image interpretation in seismic safety evaluation

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wei, Wen-xia; Wang, Gang

    2005-10-01

    As one of essential design gist in important engineering projects, the seismic safety evaluation on choosing engineering site has been applied widely. Using remote sensing images, the analysis to regional seismotectonic environment can bring macroscopic, integrative, dynamic and high efficiency information, so the application of remote sensing technology in seismic safety evaluation of engineering site has fine prospect and will bring great benefit. In this paper, based on remote sensing interpretation to Landsat7 ETM images, also using GIS and field geological investigations, as a case study in Qingdao City, we analyze the physiognomy environment, new tectonic movement, faults activities, and the distributing of deleterious geological objects around the site. Then we find this method can provide good basic geological information for seismic safety evaluation.

  9. Toward objective and quantitative evaluation of imaging systems using images of phantoms.

    PubMed

    Gagne, Robert M; Gallas, Brandon D; Myers, Kyle J

    2006-01-01

    The use of imaging phantoms is a common method of evaluating image quality in the clinical setting. These evaluations rely on a subjective decision by a human observer with respect to the faintest detectable signal(s) in the image. Because of the variable and subjective nature of the human-observer scores, the evaluations manifest a lack of precision and a potential for bias. The advent of digital imaging systems with their inherent digital data provides the opportunity to use techniques that do not rely on human-observer decisions and thresholds. Using the digital data, signal-detection theory (SDT) provides the basis for more objective and quantitative evaluations which are independent of a human-observer decision threshold. In a SDT framework, the evaluation of imaging phantoms represents a "signal-known-exactly/background-known-exactly" ("SKE/ BKE") detection task. In this study, we compute the performance of prewhitening and nonprewhitening model observers in terms of the observer signal-to-noise ratio (SNR) for these "SK E/BKE" tasks. We apply the evaluation methods to a number of imaging systems. For example, we use data from a laboratory implementation of digital radiography and from a full-field digital mammography system in a clinical setting. In addition, we make a comparison of our methods to human-observer scoring of a set of digital images of the CDMAM phantom available from the internet (EUREF-European Reference Organization). In the latter case, we show a significant increase in the precision of the quantitative methods versus the variability in the scores from human observers on the same set of images. As regards bias, the performance of a model observer estimated from a finite data set is known to be biased. In this study, we minimize the bias and estimate the variance of the observer SNR using statistical resampling techniques, namely, "bootstrapping" and "shuffling" of the data sets. Our methods provide objective and quantitative evaluation of

  10. Metabolic Imaging to Assess Treatment Response to Cytotoxic and Cytostatic Agents

    PubMed Central

    Serkova, Natalie J.; Eckhardt, S. Gail

    2016-01-01

    For several decades, cytotoxic chemotherapeutic agents were considered the basis of anticancer treatment for patients with metastatic tumors. A decrease in tumor burden, assessed by volumetric computed tomography and magnetic resonance imaging, according to the response evaluation criteria in solid tumors (RECIST), was considered as a radiological response to cytotoxic chemotherapies. In addition to RECIST-based dimensional measurements, a metabolic response to cytotoxic drugs can be assessed by positron emission tomography (PET) using 18F-fluoro-thymidine (FLT) as a radioactive tracer for drug-disrupted DNA synthesis. The decreased 18FLT-PET uptake is often seen concurrently with increased apparent diffusion coefficients by diffusion-weighted imaging due to chemotherapy-induced changes in tumor cellularity. Recently, the discovery of molecular origins of tumorogenesis led to the introduction of novel signal transduction inhibitors (STIs). STIs are targeted cytostatic agents; their effect is based on a specific biological inhibition with no immediate cell death. As such, tumor size is not anymore a sensitive end point for a treatment response to STIs; novel physiological imaging end points are desirable. For receptor tyrosine kinase inhibitors as well as modulators of the downstream signaling pathways, an almost immediate inhibition in glycolytic activity (the Warburg effect) and phospholipid turnover (the Kennedy pathway) has been seen by metabolic imaging in the first 24 h of treatment. The quantitative imaging end points by magnetic resonance spectroscopy and metabolic PET (including 18F-fluoro-deoxy-glucose, FDG, and total choline) provide an early treatment response to targeted STIs, before a reduction in tumor burden can be seen. PMID:27471678

  11. Performance evaluation of image processing algorithms in digital mammography

    NASA Astrophysics Data System (ADS)

    Zanca, Federica; Van Ongeval, Chantal; Jacobs, Jurgen; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2008-03-01

    The purpose of the study is to evaluate the performance of different image processing algorithms in terms of representation of microcalcification clusters in digital mammograms. Clusters were simulated in clinical raw ("for processing") images. The entire dataset of images consisted of 200 normal mammograms, selected out of our clinical routine cases and acquired with a Siemens Novation DR system. In 100 of the normal images a total of 142 clusters were simulated; the remaining 100 normal mammograms served as true negative input cases. Both abnormal and normal images were processed with 5 commercially available processing algorithms: Siemens OpView1 and Siemens OpView2, Agfa Musica1, Sectra Mamea AB Sigmoid and IMS Raffaello Mammo 1.2. Five observers were asked to locate and score the cluster(s) in each image, by means of dedicated software tool. Observer performance was assessed using the JAFROC Figure of Merit. FROC curves, fitted using the IDCA method, have also been calculated. JAFROC analysis revealed significant differences among the image processing algorithms in the detection of microcalcifications clusters (p=0.0000369). Calculated average Figures of Merit are: 0.758 for Siemens OpView2, 0.747 for IMS Processing 1.2, 0.736 for Agfa Musica1 processing, 0.706 for Sectra Mamea AB Sigmoid processing and 0.703 for Siemens OpView1. This study is a first step towards a quantitative assessment of image processing in terms of cluster detection in clinical mammograms. Although we showed a significant difference among the image processing algorithms, this method does not on its own allow for a global performance ranking of the investigated algorithms.

  12. Evaluation of segmentation using lung nodule phantom CT images

    NASA Astrophysics Data System (ADS)

    Judy, Philip F.; Jacobson, Francine L.

    2001-07-01

    Segmentation of chest CT images has several purposes. In lung-cancer screening programs, for nodules below 5mm, growth measured from sequential CT scans is the primary indication of malignancy. Automatic segmentation procedures have been used as a means to insure a reliable measurement of lung nodule size. A lung nodule phantom was developed to evaluate the validity and reliability of size measurements using CT images. Thirty acrylic spheres and cubes (2-8 mm) were placed in a 15cm diameter disk of uniform-material that simulated the lung. To demonstrate the use of the phantom, it was scanned using out hospital's lung-cancer screening protocol. A simple, yet objective threshold technique was used to segment all of the images in which the objects were visible. All the pixels above a common threshold (the mean of the lung material and the acrylic CT numbers) were considered within the nodule. The relative bias did not depend on the shape of the objects and ranged from -18% for the 2 mm objects to -2.5% for 8-mm objects. DICOM image files of the phantom are available for investigators with an interest in using the images to evaluate and compare segmentation procedures.

  13. Neural response imaging (NRI) cochlear mapping: prospects for clinical application.

    PubMed

    Arnold, L; Lindsey, P; Hacking, C; Boyle, P

    2007-12-01

    The objective of the study was to investigate the potential for clinical application of neural response imaging (NRI) cochlear mapping. Cochlear mapping was performed at each fitting session up to at least six months following initial fitting. Stimulation was delivered to one electrode site. NRI was recorded from each of the remaining sites. The procedure was repeated for apical, medial and basal stimulation sites, stimulating at subjective threshold and most comfortable levels. Responses were obtained in five out of six subjects and are discussed in terms of: reproducibility, quality, changes over time. Cochlear mapping provided repeatable data that gave interesting insights into the implanted cochlea. Further work is required to determine whether this approach could contribute to programme optimisation.

  14. SU-E-J-148: Evaluating Tumor Response with a Commercially Available Deformable Registration System

    SciTech Connect

    Bowling, J; Ramsey, C

    2014-06-01

    Purpose: The purpose of this study is to present a method for evaluating the response to treatment using a commercially available deformable image registration software package (Velocity Medical Systems) and repeat PET/CT imaging. This technique can be used to identify volumes that are risk for tumor recurrence. Methods: Response to treatment was evaluated using PET/CT images acquired prior-to and post-treatment for radiation therapy patients treated with concurrent chemotherapy. Velocity (Version 3.0.1) was used to deform the initial PET/CT to the post treatment PET/CT. The post-treatment PET images were then subtracted from the pre-treatment PET images. The resulting re-sampled image is a three-dimensional SUV difference map that shows pixels with increasing SUV values. SUV values increases greater than 2.5 in the post treatment images were identified for additional follow-up. Results: A total of 5 Lung patients were analyzed as part of this study. One lung patient in the cohort had an SUV increase of +3.28 that was identified using the SUV difference map. This volume of increased uptake was located outside the treatment field and adjacent to the 35 Gy isodose line. The remaining four patients all had SUV decreases inside the planning target volume, and no unexpected areas of increase outside the irradiated volumes. All five patients were analyzed using standard tools inside the Velocity application. Conclusion: The response to treatment can easily be measured using serial PET/CT images and a commercially available deformable image registration. This provides both the radiation oncologists and medical oncologists with a quantitative assessment of their treatment to use in patient follow-up.

  15. Imaging Bone Metastases in Breast Cancer: Staging and Response Assessment.

    PubMed

    Cook, Gary J R; Azad, Gurdip K; Goh, Vicky

    2016-02-01

    Bone metastases are common in patients with advanced breast cancer. Given the significant associated morbidity, the introduction of new, effective systemic therapies, and the improvement in survival time, early detection and response assessment of skeletal metastases have become even more important. Although planar bone scanning has recognized limitations, in particular, poor specificity in staging and response assessment, it continues to be the main method in current clinical practice for staging of the skeleton in patients at risk of bone metastases. However, the accuracy of bone scanning can be improved with the addition of SPECT/CT. There have been reported improvements in sensitivity and specificity for staging of the skeleton with either bone-specific PET/CT tracers, such as (18)F-NaF, or tumor-specific tracers, such as (18)F-FDG, although these methods are less widely available and more costly. There is a paucity of data on the use of (18)F-NaF PET/CT for response assessment in breast cancer, but there is increasing evidence that (18)F-FDG PET/CT may improve on current methods in this regard. At the same time, interest and experience in using whole-body morphologic MRI augmented with diffusion-weighted imaging for both staging and response assessment in the skeleton have been increasing. However, data on comparisons of these methods with PET methods to determine the best technique for current clinical practice or for clinical trials are insufficient. There are early data supporting the use (18)F-FDG PET/MRI to assess malignant disease in the skeleton, with the possibility of taking advantage of the synergies offered by combining morphologic, physiologic, and metabolic imaging.

  16. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    SciTech Connect

    Deng, Z.; Richmond, M. C.; Mueller, R. P.; Gruensch, G. R.

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  17. Computed tomography and magnetic resonance imaging evaluation of pericardial disease

    PubMed Central

    Shahid, Muhammad; Watkin, Richard W.

    2016-01-01

    Pericardial diseases are commonly encountered in clinical practice and may present as an isolated process or in association with various systemic conditions. Traditionally transthoracic echocardiography (TTE) has been the method of choice for the evaluation of suspected pericardial disease but increasingly computed tomography (CT) and magnetic resonance imaging (MRI) are also being used as part of a rational multi-modality imaging approach tailored to the specific clinical scenario. This paper reviews the role of CT and MRI across the spectrum of pericardial diseases. PMID:27429911

  18. Quantitative evaluation of phase processing approaches in susceptibility weighted imaging

    NASA Astrophysics Data System (ADS)

    Li, Ningzhi; Wang, Wen-Tung; Sati, Pascal; Pham, Dzung L.; Butman, John A.

    2012-03-01

    Susceptibility weighted imaging (SWI) takes advantage of the local variation in susceptibility between different tissues to enable highly detailed visualization of the cerebral venous system and sensitive detection of intracranial hemorrhages. Thus, it has been increasingly used in magnetic resonance imaging studies of traumatic brain injury as well as other intracranial pathologies. In SWI, magnitude information is combined with phase information to enhance the susceptibility induced image contrast. Because of global susceptibility variations across the image, the rate of phase accumulation varies widely across the image resulting in phase wrapping artifacts that interfere with the local assessment of phase variation. Homodyne filtering is a common approach to eliminate this global phase variation. However, filter size requires careful selection in order to preserve image contrast and avoid errors resulting from residual phase wraps. An alternative approach is to apply phase unwrapping prior to high pass filtering. A suitable phase unwrapping algorithm guarantees no residual phase wraps but additional computational steps are required. In this work, we quantitatively evaluate these two phase processing approaches on both simulated and real data using different filters and cutoff frequencies. Our analysis leads to an improved understanding of the relationship between phase wraps, susceptibility effects, and acquisition parameters. Although homodyne filtering approaches are faster and more straightforward, phase unwrapping approaches perform more accurately in a wider variety of acquisition scenarios.

  19. Update on Magnetic Resonance Imaging and Ultrasound Evaluation of Crohn’s Disease

    PubMed Central

    Deepak, Parakkal; Kolbe, Amy B.; Fidler, Jeff L.; Fletcher, Joel G.; Knudsen, John M.

    2016-01-01

    Magnetic resonance enterography (MRE) and abdominal ultrasound are integral parts of multimodality assessments for patients with inflammatory bowel disease. Applications include assessing Crohn’s disease (CD) extent and severity, differentiating CD from ulcerative colitis, detecting CD complications, evaluating response to therapy, and demonstrating postoperative recurrence. Magnetic resonance imaging protocols are being developed that may reduce or eliminate the need for intravenous contrast agents and better differentiate inflammatory from fibrotic strictures. MRE scoring systems have been created to objectively quantify disease activity and response to therapy. By utilizing advanced sonographic imaging techniques, including ultrasound contrast and Doppler assessments, the role of abdominal ultrasonography in the evaluation and management of CD continues to expand. Abdominal ultrasound may function as a low-cost, point-of care assessment tool, especially in CD restricted to the terminal ileum and ileocolic anastomosis. PMID:27231453

  20. Sharing stories: narrative and dialogue in responsive nursing evaluation.

    PubMed

    Abma, T A; Widdershoven, G A M

    2005-03-01

    Responsive evaluation is an emerging vision and rationale for nursing evaluation. In this vision, evaluation is redefined as an engagement with all stakeholders about the value and meaning of their practice as a vehicle for learning, understanding, and improvement. In this article, the authors aim to illustrate the utility of a particular version of responsive evaluation, one that is connected with recent ideas about narrative and dialogue. They concentrate on methodological issues and use a case example to illustrate these issues. The case concerns a responsive evaluation of the quality of palliative care for cancer patients in a Dutch region. Methodological issues include the collection of stories through the use of conversational interviews. Stories can reveal the meaning and ambiguity of everyday situations. If evaluators listen to different stories and facilitate a dialogue about stories, this will enhance mutual understandings and promote respect, inclusiveness, and social equity.

  1. Validation of functional imaging as a biomarker for radiation treatment response.

    PubMed

    Jentsch, C; Beuthien-Baumann, B; Troost, E G C; Shakirin, G

    2015-07-01

    Major advances in radiotherapy techniques, increasing knowledge of tumour biology and the ability to translate these advances into new therapeutic approaches are important goals towards more individualized cancer treatment. With the development of non-invasive functional and molecular imaging techniques such as positron emission tomography (PET)-CT scanning and MRI, there is now a need to evaluate potential new biomarkers for tumour response prediction, for treatment individualization is not only based on morphological criteria but also on biological tumour characteristics. The goal of individualization of radiotherapy is to improve treatment outcome and potentially reduce chronic treatment toxicity. This review gives an overview of the molecular and functional imaging modalities of tumour hypoxia and tumour cell metabolism, proliferation and perfusion as predictive biomarkers for radiation treatment response in head and neck tumours and in lung tumours. The current status of knowledge on integration of PET/CT/MRI into treatment management and bioimage-guided adaptive radiotherapy are discussed.

  2. OH* imager response to turbulence-induced temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Gardner, Chester S.; Vargas, Fabio A.

    2016-12-01

    The layer of the excited state hydroxyl radical (OH*) is formed in the mesopause region by the reaction of ozone (O3) and atomic hydrogen (H). We derive the theoretical expressions for the OH* brightness and rotational temperature (T*) responses to high-frequency atmospheric temperature perturbations. The theory is used to calculate the 1-D and 2-D horizontal wave number spectra of the OH* and T* image fluctuations induced by atmospheric turbulence. By applying the theory to images of a breaking gravity wave packet, acquired by the Utah State University Advanced Mesospheric Temperature Mapper, we show that existing infrared OH* imager technology can observe the evolution of gravity wave breakdown and characterize the resulting turbulent eddies in the source region and in the inertial subrange of the turbulence spectrum. For the example presented here, the RMS OH* brightness fluctuations induced by the gravity wave packet was 2.90% and by the associated turbulence was 1.07%. Unfortunately, the T* fluctuations induced by turbulence are usually too small to be observed in the OH* rotational temperature maps.

  3. Physiological Imaging-Defined, Response-Driven Subvolumes of a Tumor

    SciTech Connect

    Farjam, Reza; Tsien, Christina I.; Feng, Felix Y.; Gomez-Hassan, Diana; Hayman, James A.; Lawrence, Theodore S.; Cao, Yue

    2013-04-01

    Purpose: To develop an image analysis framework to delineate the physiological imaging-defined subvolumes of a tumor in relating to treatment response and outcome. Methods and Materials: Our proposed approach delineates the subvolumes of a tumor based on its heterogeneous distributions of physiological imaging parameters. The method assigns each voxel a probabilistic membership function belonging to the physiological parameter classes defined in a sample of tumors, and then calculates the related subvolumes in each tumor. We applied our approach to regional cerebral blood volume (rCBV) and Gd-DTPA transfer constant (K{sup trans}) images of patients who had brain metastases and were treated by whole-brain radiation therapy (WBRT). A total of 45 lesions were included in the analysis. Changes in the rCBV (or K{sup trans})–defined subvolumes of the tumors from pre-RT to 2 weeks after the start of WBRT (2W) were evaluated for differentiation of responsive, stable, and progressive tumors using the Mann-Whitney U test. Performance of the newly developed metrics for predicting tumor response to WBRT was evaluated by receiver operating characteristic (ROC) curve analysis. Results: The percentage decrease in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was significantly greater in the group of responsive tumors than in the group of stable and progressive tumors (P<.007). The change in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was a predictor for post-RT response significantly better than change in the gross tumor volume observed during the same time interval (P=.012), suggesting that the physiological change occurs before the volumetric change. Also, K{sup trans} did not add significant discriminatory information for assessing response with respect to rCBV. Conclusion: The physiological imaging-defined subvolumes of the tumors delineated by our method could be candidates for boost target, for which further development and evaluation

  4. Multimodal image coregistration and inducible selective cell ablation to evaluate imaging ligands.

    PubMed

    Virostko, John; Henske, Joseph; Vinet, Laurent; Lamprianou, Smaragda; Dai, Chunhua; Radhika, Aramandla; Baldwin, Ronald M; Ansari, Mohammad S; Hefti, Franz; Skovronsky, Daniel; Kung, Hank F; Herrera, Pedro L; Peterson, Todd E; Meda, Paolo; Powers, Alvin C

    2011-12-20

    We combined multimodal imaging (bioluminescence, X-ray computed tomography, and PET), tomographic reconstruction of bioluminescent sources, and two unique, complementary models to evaluate three previously synthesized PET radiotracers thought to target pancreatic beta cells. The three radiotracers {[(18)F]fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]FP-DTBZ), [(18)F](+)-2-oxiranyl-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinoline ((18)F-AV-266), and (2S,3R,11bR)-9-(3-fluoropropoxy)-2-(hydroxymethyl)-3-isobutyl-10-methoxy-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinolin-2-ol ((18)F-AV-300)} bind vesicular monoamine transporter 2. Tomographic reconstruction of the bioluminescent signal in mice expressing luciferase only in pancreatic beta cells was used to delineate the pancreas and was coregistered with PET and X-ray computed tomography images. This strategy enabled unambiguous identification of the pancreas on PET images, permitting accurate quantification of the pancreatic PET signal. We show here that, after conditional, specific, and rapid mouse beta-cell ablation, beta-cell loss was detected by bioluminescence imaging but not by PET imaging, given that the pancreatic signal provided by three PET radiotracers was not altered. To determine whether these ligands bound human beta cells in vivo, we imaged mice transplanted with luciferase-expressing human islets. The human islets were imaged by bioluminescence but not with the PET ligands, indicating that these vesicular monoamine transporter 2-directed ligands did not specifically bind beta cells. These data demonstrate the utility of coregistered multimodal imaging as a platform for evaluation and validation of candidate ligands for imaging islets.

  5. Quantitative performance evaluation of the EM algorithm applied to radiographic images

    NASA Astrophysics Data System (ADS)

    Brailean, James C.; Giger, Maryellen L.; Chen, Chin-Tu; Sullivan, Barry J.

    1991-07-01

    In this study, the authors evaluate quantitatively the performance of the Expectation Maximization (EM) algorithm as a restoration technique for radiographic images. The 'perceived' signal-to-nose ratio (SNR), of simple radiographic patterns processed by the EM algorithm are calculated on the basis of a statistical decision theory model that includes both the observer's visual response function and a noise component internal to the eye-brain system. The relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to quantitatively compare the effects of the EM algorithm to two popular image enhancement techniques: contrast enhancement (windowing) and unsharp mask filtering.

  6. Detection of early plant stress responses in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Behmann, Jan; Steinrücken, Jörg; Plümer, Lutz

    2014-07-01

    Early stress detection in crop plants is highly relevant, but hard to achieve. We hypothesize that close range hyperspectral imaging is able to uncover stress related processes non-destructively in the early stages which are invisible to the human eye. We propose an approach which combines unsupervised and supervised methods in order to identify several stages of progressive stress development from series of hyperspectral images. Stress of an entire plant is detected by stress response levels at pixel scale. The focus is on drought stress in barley (Hordeum vulgare). Unsupervised learning is used to separate hyperspectral signatures into clusters related to different stages of stress response and progressive senescence. Whereas all such signatures may be found in both, well watered and drought stressed plants, their respective distributions differ. Ordinal classification with Support Vector Machines (SVM) is used to quantify and visualize the distribution of progressive stages of senescence and to separate well watered from drought stressed plants. For each senescence stage a distinctive set of most relevant Vegetation Indices (VIs) is identified. The method has been applied on two experiments involving potted barley plants under well watered and drought stress conditions in a greenhouse. Drought stress is detected up to ten days earlier than using NDVI. Furthermore, it is shown that some VIs have overall relevance, while others are specific to particular senescence stages. The transferability of the method to the field is illustrated by an experiment on maize (Zea mays).

  7. Gastric carcinoma: imaging diagnosis, staging and assessment of treatment response

    PubMed Central

    Hallinan, James Thomas Patrick Decourcy

    2013-01-01

    Abstract Gastric carcinoma (GC) is one of the most common causes of cancer-related death worldwide. Surgical resection is the only cure available and is dependent on the GC stage at presentation, which incorporates depth of tumor invasion, extent of lymph node and distant metastases. Accurate preoperative staging is therefore essential for optimal surgical management with consideration of preoperative and/or postoperative chemotherapy. Multidetector computed tomography (MDCT) with its ability to assess tumor depth, nodal disease and metastases is the preferred technique for staging GC. Endoscopic ultrasonography is more accurate for assessing the depth of wall invasion in early cancer, but is limited in the assessment of advanced local or stenotic cancer and detection of distant metastases. Magnetic resonance imaging (MRI), although useful for staging, is not proven to be effective. Positron emission tomography (PET) is most useful for detecting and characterizing distant metastases. Both MDCT and PET are useful for assessment of treatment response following preoperative chemotherapy and for detection of recurrence after surgical resection. This review article discusses the usefulness of imaging modalities for detecting, staging and assessing treatment response for GC and the potential role of newer applications including CT volumetry, virtual gastroscopy and perfusion CT in the management of GC. PMID:23722535

  8. Functional Imaging of the Hemodynamic Sensory Gating Response in Schizophrenia

    PubMed Central

    Mayer, Andrew R.; Ruhl, David; Merideth, Flannery; Ling, Josef; Hanlon, Faith; Bustillo, Juan; Cañive, Jose

    2013-01-01

    The cortical (auditory and prefrontal) and/or subcortical (thalamic and hippocampal) generators of abnormal electrophysiological responses during sensory gating remain actively debated in the schizophrenia literature. Functional magnetic resonance imaging (fMRI) has the spatial resolution for disambiguating deep or simultaneous sources but has been relatively under-utilized to investigate generators of the gating response. Thirty patients with chronic schizophrenia (SP) and 30 matched controls participated in the current experiment. Hemodynamic response functions (HRF) for single (S1) and pairs (S1 + S2) of identical (IT; “gating-out” redundant information) or non-identical (NT; “gating-in” novel information) tones were generated through deconvolution. Increased or prolonged activation for patients in conjunction with deactivation for controls was observed within auditory cortex, prefrontal cortex and thalamus in response to single tones during the late hemodynamic response, and these group differences were not associated with clinical or cognitive symptomatology. Although patient hyper-activation to paired-tones conditions was present in several ROI, the effects were not statistically significant for either the gating-out or gating-in conditions. Finally, abnormalities in the post-undershoot of the auditory HRF were also observed for both single and paired tones conditions in patients. In conclusion, the amalgamation of the entire electrophysiological response to both S1 and S2 stimuli may limit hemodynamic sensitivity to paired tones during sensory gating, which may be more readily overcome by paradigms that utilize multiple stimuli rather than pairs. Patient hyperactivation following single tones is suggestive of deficits in basic inhibition, neurovascular abnormalities or a combination of both factors. PMID:22461278

  9. Evaluation of protection measures against laser dazzling for imaging sensors

    NASA Astrophysics Data System (ADS)

    Ritt, Gunnar; Eberle, Bernd

    2016-10-01

    We present the latest results of our work regarding the evaluation of protection measures against laser dazzling for imaging devices. Three different approaches for the evaluation of dazzled sensor images are investigated and compared to estimate the loss of information due to the dazzle spot by a) counting the number of overexposed pixels, b) based on triangle orientation discrimination (TOD) and c) using the structural similarity (SSIM) index. The performance evaluation approaches are applied on experimental data obtained with two different imaging sensors hardened against laser dazzling. The hardening concept of the first sensor is based on the combination of a spatial light modulator and wavelength multiplexing. This active protection concept allows spatially and spectrally resolved suppression of laser radiation within the sensor's field of view. The hardening concept of the second sensor utilizes the principle of "complementary bands". The optical setup resembles a common 3-chip camera, with the difference that dedicated filters with steep edges replace the regular spectral band filters. Although this concept does not really represent a "protection measure", it allows the sensor to provide information even in laser dazzling situations. The data for the performance evaluation was acquired both in a dedicated laboratory setup using test charts comprising triangles of different size and orientation as well as in field trials.

  10. Evaluation of Two Fractal Methods for Magnetogram Image Analysis

    NASA Technical Reports Server (NTRS)

    Stark, B.; Adams, M.; Hathaway, D. H.; Hagyard, M. J.

    1997-01-01

    Fractal and multifractal techniques have been applied to various types of solar data to study the fractal properties of sunspots as well as the distribution of photospheric magnetic fields and the role of random motions on the solar surface in this distribution. Other research includes the investigation of changes in the fractal dimension as an indicator for solar flares. Here we evaluate the efficacy of two methods for determining the fractal dimension of an image data set: the Differential Box Counting scheme and a new method, the Jaenisch scheme. To determine the sensitivity of the techniques to changes in image complexity, various types of constructed images are analyzed. In addition, we apply this method to solar magnetogram data from Marshall Space Flight Centers vector magnetograph.

  11. Numerical evaluation of linearized image reconstruction based on finite element method for biomedical photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2013-09-01

    An image reconstruction algorithm for biomedical photoacoustic imaging is discussed. The algorithm solves the inverse problem of the photoacoustic phenomenon in biological media and images the distribution of large optical absorption coefficients, which can indicate diseased tissues such as cancers with angiogenesis and the tissues labeled by exogenous photon absorbers. The linearized forward problem, which relates the absorption coefficients to the detected photoacoustic signals, is formulated by using photon diffusion and photoacoustic wave equations. Both partial differential equations are solved by a finite element method. The inverse problem is solved by truncated singular value decomposition, which reduces the effects of the measurement noise and the errors between forward modeling and actual measurement systems. The spatial resolution and the robustness to various factors affecting the image reconstruction are evaluated by numerical experiments with 2D geometry.

  12. Evaluation of the pituitary gland using magnetic resonance imaging: T1-weighted vs. VIBE imaging.

    PubMed

    Davis, M A; Castillo, M

    2013-06-01

    Volumetric interpolated breath-hold examination (VIBE) is used for abdominal imaging as a fast and efficient modality. Evaluation of brain lesions using VIBE is not common and its use for the pituitary gland has not yet been addressed. Our goal was to compare coronal T1-weighted (T1W) and VIBE images in patients undergoing studies of the pituitary gland. We hypothesized that, for this purpose, VIBE is superior to T1W images. T1W and VIBE images of the pituitary gland in 32 patients were evaluated. The two sequences were compared with specific attention to: contrast enhancement (gland and cavernous sinuses) and ability to view the anatomy of the cavernous sinuses. In patients with macroadenomas, visualization of the optic chiasm was also assessed. Images were rated as: VIBE being better, equal, or worse in comparison to T1W images. We also compared VIBE and T1W images specifically looking at micro/macro-adenomas and post-surgical patients. Statistical analysis was performed using chi-square statistics. Of the 32 patients, the VIBE sequence showed superior contrast enhancement in 18 patients, six were found as being equal to T1W, and in eight instances VIBE was found to be worse than T1W. These results were statistically significant (p=.02). When looking at micro/macro-adenomas and post-surgical patients specifically, there was a trend to VIBE being superior to T1W but these data were not statistically significant. Visualization of chiasm in macroadenomas was similar for both techniques. VIBE was significantly superior to T1W with respect to pituitary and cavernous sinus contrast enhancement and cavernous sinus anatomy. A trend towards VIBE being superior in the evaluation of adenomas (pre- and post-operative) was seen, but it was not statistically significant. This is likely due to the small population size.

  13. The Evaluation Of Infrared Imaging Systems Used For Building Inspections

    NASA Astrophysics Data System (ADS)

    Grot, Richard A.; Chang, Yui-May

    1984-03-01

    The results of the laboratory evaluation of three high resolution infrared imaging systems are presented. The systems were evaluated for their minimum resolvable temperature difference (MRTD) at spatial frequencies from 0.02 to 0.16 cycles per milliradian and at ambient temperatures in the range of -7° C to 20° C. The results of these tests are compared with the predicted dependence of the MRTD given in the ASHRAE Standard 101-83. It is shown that the dependence on temperature of the MRTD of two of the systems is predicted well by the theory given in the ASHRAE standard. The calibration curves of the infrared imaging systems are given. These are in good agreement with those given by the manufacturers of the equipment.

  14. Functional Imaging in OA: Role of Imaging in the Evaluation of Tissue Biomechanics

    PubMed Central

    Neu, Corey P.

    2014-01-01

    Functional imaging refers broadly to the visualization of organ or tissue physiology using medical image modalities. In load-bearing tissues of the body, including articular cartilage lining the bony ends of joints, changes in strain, stress, and material properties occur in osteoarthritis (OA), providing an opportunity to probe tissue function through the progression of the disease. Here, biomechanical measures in cartilage and related joint tissues are discussed as key imaging biomarkers in the evaluation of OA. Emphasis will be placed on the a) potential of radiography, ultrasound, and magnetic resonance imaging to assess early tissue pathomechanics in OA, b) relative utility of kinematic, structural, morphological, and biomechanical measures as functional imaging biomarkers, and c) improved diagnostic specificity through the combination of multiple imaging biomarkers with unique contrasts, including elastography and quantitative assessments of tissue biochemistry. In comparison to other modalities, magnetic resonance imaging provides an extensive range of functional measures at the tissue level, with conventional and emerging techniques available to potentially to assess the spectrum of preclinical to advance OA. PMID:25278049

  15. Evaluating Photogrammetric Approach of Image-Based Positioning

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, J.

    2012-07-01

    In recent years, researches in the domain of location-based services have increasingly focused on developing and utilizing alternative positioning techniques for in GPS-denied environment. Image based positioning technique holds good promise for such applications. In this paper, a previously proposed image-based positioning system using photogrammetric methods has been put into rigorous evaluation. The precision and accuracy of such photogrammetric approach of image-based positioning is depending on the precision and accuracy of final space resection process, which is a function of PGCP distribution and measurement accuracy, and any factor that has certain impact on either of these two major components will to certain degree influence final positioning accuracy. Therefore in this article, the way that different factors influencing the positioning accuracy are analysed through both mathematical model and experiments, which includes simulations and tests based on real data. Through evaluation of such system, we aims at better understanding image-based positioning system alike so as to find its strength, weaknesses and ways to improve the overall performance for it to realize its full potential.

  16. Genetic programming approach to evaluate complexity of texture images

    NASA Astrophysics Data System (ADS)

    Ciocca, Gianluigi; Corchs, Silvia; Gasparini, Francesca

    2016-11-01

    We adopt genetic programming (GP) to define a measure that can predict complexity perception of texture images. We perform psychophysical experiments on three different datasets to collect data on the perceived complexity. The subjective data are used for training, validation, and test of the proposed measure. These data are also used to evaluate several possible candidate measures of texture complexity related to both low level and high level image features. We select four of them (namely roughness, number of regions, chroma variance, and memorability) to be combined in a GP framework. This approach allows a nonlinear combination of the measures and could give hints on how the related image features interact in complexity perception. The proposed complexity measure M exhibits Pearson correlation coefficients of 0.890 on the training set, 0.728 on the validation set, and 0.724 on the test set. M outperforms each of all the single measures considered. From the statistical analysis of different GP candidate solutions, we found that the roughness measure evaluated on the gray level image is the most dominant one, followed by the memorability, the number of regions, and finally the chroma variance.

  17. NIR hyperspectral imaging to evaluate degradation in captopril commercial tablets.

    PubMed

    França, Leandro de Moura; Pimentel, Maria Fernanda; Simões, Simone da Silva; Grangeiro, Severino; Prats-Montalbán, José M; Ferrer, Alberto

    2016-07-01

    Pharmaceutical quality control is important for improving the effectiveness, purity and safety of drugs, as well as for the prevention or control of drug degradation. In the present work, near infrared hyperspectral images (HSI-NIR) of tablets with different expiration dates were employed to evaluate the degradation of captopril into captopril disulfide in different layers, on the top and on the bottom surfaces of the tablets. Multivariate curve resolution (MCR) models were used to extract the concentration distribution maps from the hyperspectral images. Afterward, multivariate image techniques were applied to the concentration distribution maps (CDMs), to extract features and build models relating the main characteristics of the images to their corresponding manufacturing dates. Resolution methods followed by extracting features were able to estimate the tablet manufacture date with a prediction error of 120days. The model developed could be useful to evaluate whether a sample shows a degradation pattern consistent with the date of manufacturing or to detect abnormal behaviors in the natural degradation process of the sample. The information provided by the HIS-NIR is important for the development of the process (QbD), looking inside the formulation, revealing the behavior of the active pharmaceutical ingredient (API) during the product's shelf life.

  18. Evaluation of color-embedded wavelet image compression techniques

    NASA Astrophysics Data System (ADS)

    Saenz, Martha; Salama, Paul; Shen, Ke; Delp, Edward J., III

    1998-12-01

    Color embedded image compression is investigated by means of a set of core experiments that seek to evaluate the advantages of various color transformations, spatial orientation trees and the use of monochrome embedded coding schemes such as EZW and SPIHT. In order to take advantage of the interdependencies of the color components for a given color space, two new spatial orientation trees that relate frequency bands and color components are investigated.

  19. [Imaging evaluation of renal function: principles and limitations].

    PubMed

    Vivier, P-H; Dolores, M; Le Cloirec, J; Beurdeley, M; Liard, A; Elbaz, F; Roset, J-B; Dacher, J-N

    2011-04-01

    The kidney performs multiple functions. Glomerular filtration is the most studied of these functions. In clinical practice, the surgical indication for patients with unilateral uropathy is frequently based on the split renal function as demonstrated by scintigraphy. MRI is not yet validated as a technique but nonetheless offers an interesting non-radiating alternative to achieve both morphological and functional renal evaluation. Recent pulse sequences such as diffusion, arterial spin labeling, and blood oxygenation dependent imaging may also provide additional information. CT and US remain of limited value for the evaluation of renal function.

  20. Evaluation of collimation and imaging configuration in scintimammography

    SciTech Connect

    Tsui, B.M.W.; Frey, E.C.; Wessell, D.E.

    1996-12-31

    Conventional scintimammography (SM) with {sup 99m}Tc sestamibi has been limited to taking a single lateral view of the breast using a parallel-hole high resolution (LEHR) collimator. The collimator is placed close to the breast for best possible spatial resolution. However, the collimator geometry precludes imaging the breast from other views. We evaluated using a pinhole collimator instead of a LEHR collimator in SM for improved spatial resolution and detection efficiency, and to allow additional imaging views. Results from theoretical calculations indicated that pinhole collimators could be designed with higher spatial resolution and detection efficiency than LEHR when imaging small to medium size breasts. The geometrical shape of the pinhole collimator allows imaging of the breasts from both the lateral and craniocaudal views. The dual-view images allow better determination of the location of the tumors within the breast and improved detection of tumors located in the medial region of the breast. A breast model that simulates the shape and composition of the breast and breast tumors with different sizes and locations was added to an existing 3D mathematical cardiac-torso (MCAT) phantom. A cylindrically shaped phantom with 10 cm diameter and spherical inserts with different sizes and {sup 99m}Tc sestamibi uptakes with respect to the background provide physical models of breast with tumors. Simulation studies using the breast and MCAT phantoms and experimental studies using the cylindrical phantom confirmed the utility of the pinhole collimator in SM for improved breast tumor detection.

  1. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities

    PubMed Central

    van Bergen, Christiaan JA; Gerards, Rogier M; Opdam, Kim TM; Terra, Maaike P; Kerkhoffs, Gino MMJ

    2015-01-01

    This current concepts review outlines the role of different imaging modalities in the diagnosis, preoperative planning, and follow-up of osteochondral ankle defects. An osteochondral ankle defect involves the articular cartilage and subchondral bone (usually of the talus) and is mostly caused by an ankle supination trauma. Conventional radiographs are useful as an initial imaging tool in the diagnostic process, but have only moderate sensitivity for the detection of osteochondral defects. Computed tomography (CT) and magnetic resonance imaging (MRI) are more accurate imaging modalities. Recently, ultrasonography and single photon emission CT have been described for the evaluation of osteochondral talar defects. CT is the most valuable modality for assessing the exact location and size of bony lesions. Cartilage and subchondral bone damage can be visualized using MRI, but the defect size tends to be overestimated due to bone edema. CT with the ankle in full plantar flexion has been shown a reliable tool for preoperative planning of the surgical approach. Postoperative imaging is useful for objective assessment of repair tissue or degenerative changes of the ankle joint. Plain radiography, CT and MRI have been used in outcome studies, and different scoring systems are available. PMID:26716090

  2. Early-phase myocardial infarction: Evaluation by MR imaging

    SciTech Connect

    Tscholakoff, D.; Higgins, C.B.; McNamara, M.T.; Derugin, N.

    1986-06-01

    In vivo gated magnetic resonance (MR) imaging was performed in 12 dogs immediately after occlusion of the left anterior descending coronary artery and serially up to 5 hours and again between 4 and 14 days. This was done to evaluate the appearance of acute myocardial infarcts and to determine how soon after coronary artery occlusion MR imaging can demonstrate the site of acute myocardial ischemia. In nine dogs with postmortem evidence of myocardial infarction, regional increase of signal intensity of the myocardium was present by 3 hours after coronary occlusion and conformed to the site of myocardial infarct found at autopsy. The signal intensity on T2-weighted images of the infarcted on T2-weighted images of the infarcted myocardium was significantly greater than that of normal myocardium at 3, 4, and 5 hours after occlusion. The T2 (spin-spin) relaxation time was significantly prolonged in the region of myocardial infarct at 3, 4, and 5 hours post-occlusion compared with normal myocardium. Myocardial wall thinning and increased intracavitary flow signal were found in six dogs with comparable pre- and postocclusion images in late systole.

  3. Retinal oxygen saturation evaluation by multi-spectral fundus imaging

    NASA Astrophysics Data System (ADS)

    Khoobehi, Bahram; Ning, Jinfeng; Puissegur, Elise; Bordeaux, Kimberly; Balasubramanian, Madhusudhanan; Beach, James

    2007-03-01

    Purpose: To develop a multi-spectral method to measure oxygen saturation of the retina in the human eye. Methods: Five Cynomolgus monkeys with normal eyes were anesthetized with intramuscular ketamine/xylazine and intravenous pentobarbital. Multi-spectral fundus imaging was performed in five monkeys with a commercial fundus camera equipped with a liquid crystal tuned filter in the illumination light path and a 16-bit digital camera. Recording parameters were controlled with software written specifically for the application. Seven images at successively longer oxygen-sensing wavelengths were recorded within 4 seconds. Individual images for each wavelength were captured in less than 100 msec of flash illumination. Slightly misaligned images of separate wavelengths due to slight eye motion were registered and corrected by translational and rotational image registration prior to analysis. Numerical values of relative oxygen saturation of retinal arteries and veins and the underlying tissue in between the artery/vein pairs were evaluated by an algorithm previously described, but which is now corrected for blood volume from averaged pixels (n > 1000). Color saturation maps were constructed by applying the algorithm at each image pixel using a Matlab script. Results: Both the numerical values of relative oxygen saturation and the saturation maps correspond to the physiological condition, that is, in a normal retina, the artery is more saturated than the tissue and the tissue is more saturated than the vein. With the multi-spectral fundus camera and proper registration of the multi-wavelength images, we were able to determine oxygen saturation in the primate retinal structures on a tolerable time scale which is applicable to human subjects. Conclusions: Seven wavelength multi-spectral imagery can be used to measure oxygen saturation in retinal artery, vein, and tissue (microcirculation). This technique is safe and can be used to monitor oxygen uptake in humans. This work

  4. Automation of contact lens fitting evaluation by digital image processing

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.; Barros, Rui; Franco, Sandra B.

    1997-08-01

    Contact lens' fitting evaluation is of critical importance in the contact lens' prescription process. For the correction of eye's refraction problems the use of contact lens' is very appealing to the user. However its prescription is far more demanding than the one of eye glasses. The fitting of a contact lens to a particular cornea must be carefully assessed in order to reduce possible user's physical miscomfort or even medical situations.The traditional way of easily checking the fitting of a contact lens is to perform a fluorescein test. The simple visual evaluation of the 'smoothness' of the color/brightness distribution of the fluorescence at the contact lens' location gives the optometrist an idea of the fitting's quality. We suggested the automation of the process simply by the substitution of the optometrist's eye by a CCD camera, and the use of appropriated simple image processing techniques. The setup and the digitalization and processing routines will be described in this communication. The processed images may then be directly analyzed by the optometrist in a faster, easier and more efficient way. However, it is also possible to perform an automated fitting evaluation by working out the information given by the image's intensity histograms for the green and blue RGB' channels.

  5. Automation of contact lens' fitting evaluation by digital image processing

    NASA Astrophysics Data System (ADS)

    da Cunha Martins Costa, M.; Barros, Rui; Franco, Sandra B.

    1997-10-01

    Contact lens' fitting evaluation is of critical importance in the contact lens' prescription process. For the correction of eye's refraction problems the use of contact lens' is very appealing to the user. However its prescription is far more demanding than the one of eye glasses. The fitting of a contact lens to a particular cornea must be carefully assessed in order to reduce possible user's physical miscomfort or even medical situations.The traditional way of easily checking the fitting of a contact lens is to perform a fluorescein test. The simple visual evaluation of the 'smoothness' of the color/brightness distribution of the fluorescence at the contact lens' location gives the optometrist an idea of the fitting's quality. We suggested the automation of the process simply by the substitution of the optometrist's eye by a CCD camera, and the use of appropriated simple image processing techniques. The setup and the digitalization and processing routines will be described in this communication. The processed images may then be directly analyzed by the optometrist in a faster, easier and more efficient way. However, it is also possible to perform an automated fitting evaluation by working out the information given by the image's intensity histograms for the green and blue RGB' channels.

  6. Noise evaluation of Compton camera imaging for proton therapy

    NASA Astrophysics Data System (ADS)

    Ortega, P. G.; Torres-Espallardo, I.; Cerutti, F.; Ferrari, A.; Gillam, J. E.; Lacasta, C.; Llosá, G.; Oliver, J. F.; Sala, P. R.; Solevi, P.; Rafecas, M.

    2015-02-01

    Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming γ energy is considered as a variable in the reconstruction inverse problem. Jointly with prompt gamma, secondary neutrons and scattered photons, not strongly correlated with the dose map, can also reach the imaging detector and produce false events. These events deteriorate the image quality. Also, high intensity beams can produce particle accumulation in the camera, which lead to an increase of random coincidences, meaning events which gather measurements from different incoming particles. The noise scenario is expected to be different if double or triple events are used, and consequently, the reconstructed images can be affected differently by spurious data. The aim of the present work is to study the effect of false events in the reconstructed image, evaluating their impact in the determination of the beam particle ranges. A simulation study that includes misidentified events (neutrons and random coincidences) in the final image of a Compton Telescope for PT monitoring is presented. The complete chain of

  7. 40 CFR 265.93 - Preparation, evaluation, and response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Preparation, evaluation, and response. 265.93 Section 265.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID..., STORAGE, AND DISPOSAL FACILITIES Ground-Water Monitoring § 265.93 Preparation, evaluation, and...

  8. 40 CFR 265.93 - Preparation, evaluation, and response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Preparation, evaluation, and response. 265.93 Section 265.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID..., STORAGE, AND DISPOSAL FACILITIES Ground-Water Monitoring § 265.93 Preparation, evaluation, and...

  9. 40 CFR 265.93 - Preparation, evaluation, and response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Preparation, evaluation, and response. 265.93 Section 265.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID..., STORAGE, AND DISPOSAL FACILITIES Ground-Water Monitoring § 265.93 Preparation, evaluation, and...

  10. Evaluation Responsibility and Leadership in the Face of Failing Democracies

    ERIC Educational Resources Information Center

    McKegg, Kate

    2013-01-01

    In a world faced with unprecedented rising levels of inequality and injustice, is there a responsibility for our evaluation organizations to take on a leadership role in promoting inclusive, evaluative dialog and deliberation about the state of our democracies in relation to key democratic principles and ideals? In this forum, I question whether…

  11. Preclinical evaluation of a novel cyanine dye for tumor imaging with in vivo photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Temma, Takashi; Onoe, Satoru; Kanazaki, Kengo; Ono, Masahiro; Saji, Hideo

    2014-09-01

    Photoacoustic imaging (PA imaging or PAI) has shown great promise in the detection and monitoring of cancer. Although nanocarrier-based contrast agents have been studied for use in PAI, small molecule contrast agents are required due to their ease of preparation, cost-effectiveness, and low toxicity. Here, we evaluated the usefulness of a novel cyanine dye IC7-1-Bu as a PAI contrast agent without conjugated targeting moieties for in vivo tumor imaging in a mice model. Basic PA characteristics of IC7-1-Bu were compared with indocyanine green (ICG), a Food and Drug Administration approved dye, in an aqueous solution. We evaluated the tumor accumulation profile of IC7-1-Bu and ICG by in vivo fluorescence imaging. In vivo PAI was then performed with a photoacoustic tomography system 24 and 48 h after intravenous injection of IC7-1-Bu into tumor bearing mice. IC7-1-Bu showed about a 2.3-fold higher PA signal in aqueous solution compared with that of ICG. Unlike ICG, IC7-1-Bu showed high tumor fluorescence after intravenous injection. In vivo PAI provided a tumor to background PA signal ratio of approximately 2.5 after intravenous injection of IC7-1-Bu. These results indicate that IC7-1-Bu is a promising PAI contrast agent for cancer imaging without conjugation of targeting moieties.

  12. Utility of magnetic resonance imaging in the evaluation of left ventricular thickening.

    PubMed

    Fulton, Nicholas; Rajiah, Prabhakar

    2017-04-01

    Left ventricular (LV) thickening can be due to hypertrophy (concentric, asymmetric, eccentric) or remodelling (concentric or asymmetric). Pathological thickening may be caused by pressure overload, volume overload, infiltrative disorders, hypertrophic cardiomyopathy, athlete's heart or neoplastic infiltration. Magnetic resonance imaging (MRI) plays an important role in the comprehensive evaluation of LV thickening, including: establishing diagnosis, determining LV geometry, establishing aetiology, quantification, identifying prognostic factors, serial follow-up and treatment response. In this article, we review the aetiologies and pathophysiology of LV thickening, and demonstrate the comprehensive role of MRI in the evaluation of LV thickening.

  13. New performance evaluation models for character detection in images

    NASA Astrophysics Data System (ADS)

    Wang, YanWei; Ding, XiaoQing; Liu, ChangSong; Wang, Kongqiao

    2010-02-01

    Detection of characters regions is a meaningful research work for both highlighting region of interest and recognition for further information processing. A lot of researches have been performed on character localization and extraction and this leads to the great needs of performance evaluation scheme to inspect detection algorithms. In this paper, two probability models are established to accomplish evaluation tasks for different applications respectively. For highlighting region of interest, a Gaussian probability model, which simulates the property of a low-pass Gaussian filter of human vision system (HVS), was constructed to allocate different weights to different character parts. It reveals the greatest potential to describe the performance of detectors, especially, when the result detected is an incomplete character, where other methods cannot effectively work. For the recognition destination, we also introduced a weighted probability model to give an appropriate description for the contribution of detection results to final recognition results. The validity of performance evaluation models proposed in this paper are proved by experiments on web images and natural scene images. These models proposed in this paper may also be able to be applied in evaluating algorithms of locating other objects, like face detection and more wide experiments need to be done to examine the assumption.

  14. A Realistic Approach To Evaluating Digital Imaging Systems

    NASA Astrophysics Data System (ADS)

    Greinacher, C. F.; Bach, E.,; Muller, K.,; Patzelt, K.

    1984-06-01

    Current systems for the production of medical images and current development trends give a basis of experience for the design of a digital PACS including images and demographic data. Such a PACS must contain software and hardware concepts which permit the medical requirements, as presently understood, to be realized. As part of its research Siemens is designing and evaluating a hybrid network configuration which allows extensive flexibility and growth potential despite current limitations in available network bandwidth and storage capacity. As demand for digital data expands, additional installations can be added to the system. The modular concept permits incorporation of technological advances with minimal difficulty. The system allows different digital imaging modalities to communicate with a central data storage and processing system. Data display facilities both with and without manipulation capability are realized using high speed multi image storage devices. The human interface is designed to be ergono-metric, interactive, and user-friendly. Standardized, commercially available hardware has been included wherever possible to provide economical worldwide acceptance. Estimates of digital data per unit time under different conditions are presented and compared to the specifications of software and hardware elements both currently available and envisaged in the near future. Potential limitations of the design, as well as possible solutions incorporating expected technological developments, are discussed.

  15. Changing trends of imaging in angle closure evaluation.

    PubMed

    Dorairaj, Syril; Tsai, James C; Grippo, Tomas M

    2012-01-01

    Primary angle closure glaucoma (PACG) is a significant cause of visual disability worldwide. It predominantly affects the Eastern and South Asian population of the world. Early detection of anatomically narrow angles is important, and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). Gonioscopy has given way to modern day imaging technologies such as ultrasound biomicroscopy (UBM) and more recently, anterior segment optical coherence tomography (AS-OCT). Ultrasound biomicroscopy provides objective, high-resolution images of anterior segment anatomy, including the cornea, iris, anterior chamber, anterior chamber angle, and ciliary body. Optical coherence tomography (OCT) is a noncontact optical signal acquisition and processing device that provides magnified, high-resolution cross-sectional images of ocular tissues. Recent technological advances towards three-dimensional visualization broadened the scope of AS-OCT in ophthalmologic evaluation. Optical coherence tomography systems use low-coherence, near-infrared light to provide detailed images of anterior segment structures at resolutions exceeding that of UBM. This paper summarizes the clinical application of UBM and OCT for assessment of anterior segment in glaucoma.

  16. Evaluation of muscle injury using magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    LeBlanc, A. D.; Jaweed, M.; Evans, H.

    1993-01-01

    The objective of this study was to investigate spin echo T2 relaxation time changes in thigh muscles after intense eccentric exercise in healthy men. Spin echo and calculated T2 relaxation time images of the thighs were obtained on several occasions after exercise of one limb; the contralateral limb served as control. Muscle damage was verified by elevated levels of serum creatine kinase (CK). Thirty percent of the time no exercise effect was discernible on the magnetic resonance (MR) images. In all positive MR images (70%) the semitendinosus muscle was positive, while the biceps femoris, short head, and gracilis muscles were also positive in 50% and 25% of the total cases, respectively. The peak T2 relaxation time and serum CK were correlated (r = 0.94, p<0.01); temporal changes in muscle T2 relaxation time and serum CK were similar, although T2 relaxation time remained positive after serum CK returned to background levels. We conclude that magnetic resonance imaging can serve as a useful tool in the evaluation of eccentric exercise muscle damage by providing a quantitative indicator of damage and its resolution as well as the specific areas and muscles.

  17. Evaluation of effector cell fate and function by in vivo bioluminescence imaging.

    PubMed

    Edinger, Matthias; Hoffmann, Petra; Contag, Christopher H; Negrin, Robert S

    2003-10-01

    The effector functions of immune cells have typically been examined using assays that require sampling of tissues or cells to reveal specific aspects of an immune response (e.g., antigen-specificity, cytokine expression or killing of target cells). The outcome of an immune response in vivo, however, is not solely determined by a single effector function of a specific cell population, but is the result of numerous cellular and molecular interactions that occur in the complex environment of intact organ systems. These interactions influence survival, migration, and activation, as well as final effector function of a given population of cells. Efforts to reveal the cellular and molecular basis of biological processes have resulted in a number of technologies that combine molecular biology and imaging sciences that are collectively termed as Molecular Imaging. This emerging field has developed to reveal functional aspects of cells, genes, and proteins in real time in living animals and humans and embraces multiple modalities, including established clinical imaging methods such as magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography, as well as novel methodologies specifically designed for research animals. Here, we highlight one of the newer modalities, in vivo bioluminescence imaging, as a method for evaluating effector T cell proliferation, migration, and function in model systems of malignant and non-malignant diseases.

  18. Evaluation schemes for video and image anomaly detection algorithms

    NASA Astrophysics Data System (ADS)

    Parameswaran, Shibin; Harguess, Josh; Barngrover, Christopher; Shafer, Scott; Reese, Michael

    2016-05-01

    Video anomaly detection is a critical research area in computer vision. It is a natural first step before applying object recognition algorithms. There are many algorithms that detect anomalies (outliers) in videos and images that have been introduced in recent years. However, these algorithms behave and perform differently based on differences in domains and tasks to which they are subjected. In order to better understand the strengths and weaknesses of outlier algorithms and their applicability in a particular domain/task of interest, it is important to measure and quantify their performance using appropriate evaluation metrics. There are many evaluation metrics that have been used in the literature such as precision curves, precision-recall curves, and receiver operating characteristic (ROC) curves. In order to construct these different metrics, it is also important to choose an appropriate evaluation scheme that decides when a proposed detection is considered a true or a false detection. Choosing the right evaluation metric and the right scheme is very critical since the choice can introduce positive or negative bias in the measuring criterion and may favor (or work against) a particular algorithm or task. In this paper, we review evaluation metrics and popular evaluation schemes that are used to measure the performance of anomaly detection algorithms on videos and imagery with one or more anomalies. We analyze the biases introduced by these by measuring the performance of an existing anomaly detection algorithm.

  19. Evaluation of diffuse technologies: the case of digital imaging networks.

    PubMed

    Keen, J; Bryan, S; Muris, N; Weatherburn, G; Buxton, M

    1995-12-01

    There have been significant developments in recent years in the methodologies and methods for the evaluation of a wide range of health technologies. There remain, though, many technologies which are difficult to evaluate. Often the difficulty stems from the complexity of the technologies themselves, which are in effect hybrids, comprising combinations of several distinct elements. In this paper these are termed 'diffuse' technologies, because the different elements exert different costs and effects, often across several different services. Computer networks are one, increasingly important, example of such technologies in health care. While it is possible to evaluate individual elements of such technologies, it is not clear how to evaluate the technology as a whole, where the whole may be greater (or less) than the sum of the parts. The paper outlines a seven-stage framework for the evaluation of diffuse technologies. The general principles of evaluation are illustrated using the example of picture archiving and communication systems (PACS), which are computer systems designed to capture, store and distribute electronic radiological images within a hospital.

  20. Evaluating the capability of time-of-flight cameras for accurately imaging a cyclically loaded beam

    NASA Astrophysics Data System (ADS)

    Lahamy, Hervé; Lichti, Derek; El-Badry, Mamdouh; Qi, Xiaojuan; Detchev, Ivan; Steward, Jeremy; Moravvej, Mohammad

    2015-05-01

    Time-of-flight cameras are used for diverse applications ranging from human-machine interfaces and gaming to robotics and earth topography. This paper aims at evaluating the capability of the Mesa Imaging SR4000 and the Microsoft Kinect 2.0 time-of-flight cameras for accurately imaging the top surface of a concrete beam subjected to fatigue loading in laboratory conditions. Whereas previous work has demonstrated the success of such sensors for measuring the response at point locations, the aim here is to measure the entire beam surface in support of the overall objective of evaluating the effectiveness of concrete beam reinforcement with steel fibre reinforced polymer sheets. After applying corrections for lens distortions to the data and differencing images over time to remove systematic errors due to internal scattering, the periodic deflections experienced by the beam have been estimated for the entire top surface of the beam and at witness plates attached. The results have been assessed by comparison with measurements from highly-accurate laser displacement transducers. This study concludes that both the Microsoft Kinect 2.0 and the Mesa Imaging SR4000s are capable of sensing a moving surface with sub-millimeter accuracy once the image distortions have been modeled and removed.

  1. Quantitative Evaluation of Strain Near Tooth Fillet by Image Processing

    NASA Astrophysics Data System (ADS)

    Masuyama, Tomoya; Yoshiizumi, Satoshi; Inoue, Katsumi

    The accurate measurement of strain and stress in a tooth is important for the reliable evaluation of the strength or life of gears. In this research, a strain measurement method which is based on image processing is applied to the analysis of strain near the tooth fillet. The loaded tooth is photographed using a CCD camera and stored as a digital image. The displacement of the point in the tooth flank is tracked by the cross-correlation method, and then, the strain is calculated. The interrogation window size of the correlation method and the overlap amount affect the accuracy and resolution. In the case of measurements at structures with complicated profiles such as fillets, the interrogation window maintains a large size and the overlap amount should be large. The surface condition also affects the accuracy. The white painted surface with a small black particle is suitable for measurement.

  2. Quantification of UV-induced erythema and pigmentation using computer-assisted digital image evaluation.

    PubMed

    Coelho, Sergio G; Miller, Sharon A; Zmudzka, Barbara Z; Beer, Janusz Z

    2006-01-01

    Photography has been used in human skin research for some time. With the advent of digital photography in recent years, its use has increased. However, the focus has now turned from documentation to actual analysis and quantification of skin color changes. The advantages of digital photography outweigh any shortcomings as long as consistent, standardized procedures are followed and quality control is implemented. We present a simple procedure to standardize images and discuss a computer-assisted digital image evaluation (CADIE) technique to quantify skin color changes following UV exposure. The CADIE approach is illustrated with examples from two different studies on UV responses in human skin. Using the Commission Internationale de l'Eclairage L*a*b* color coordinate system in combination with a personal computer and image-editing software, we analyzed digital images obtained in these two studies. We demonstrate the feasibility of using digital photography for objective evaluation of UV erythema in different racial/ethnic groups and for measuring pigmentation changes caused by repeated exposures over a period of several weeks. Our results indicate how objective assessment using CADIE can be an adjunct to visual and optical observation in clinical and scientific evaluations.

  3. Horizontal Long Axis Imaging Plane for Evaluation of Right Ventricular Function on Cardiac Magnetic Resonance Imaging

    PubMed Central

    Chaturvedi, Abhishek; Whitnah, Joseph; Maki, Jeffrey H; Baran, Timothy; Mitsumori, Lee M

    2016-01-01

    Purpose: The purpose of this study was to evaluate a horizontal long axis (HLA) magnetic resonance imaging (MRI) plane aligned to the long axis of the right ventricular (RV) cavity for functional analysis by comparing the measurement variability and time required for the analysis with that using a short-axis (SAX) image orientation. Materials and Methods: Thirty-four cardiac MRI exams with cine balanced steady-state free precession image stacks in both the SAX and the HLA of the RV (RHLA) were evaluated. Two reviewers independently traced RV endocardial borders on each image of the cine stacks. The time required to complete each set of traces was recorded, and the RV end-diastolic volume, end-systolic volume, and ejection fraction were calculated. Analysis times and RV measurements were compared between the two orientations. Results: Analysis time for each reviewer was significantly shorter for the RHLA stack (reviewer 1 = 6.4 ± 1.8 min, reviewer 2 = 6.0 ± 3.3 min) than for the SAX stack (7.5 ± 2.1 and 6.9 ± 3.6 min, respectively; P < 0.002). Bland–Altman analysis revealed lower mean differences, limits of agreement, and coefficients of variation for RV measurements obtained with the RHLA stack. Conclusions: RV functional analysis using a RHLA stack resulted in shorter analysis times and lower measurement variability than for a SAX stack orientation. PMID:28123842

  4. Quantitative imaging to evaluate malignant potential of IPMNs

    PubMed Central

    Hanania, Alexander N.; Bantis, Leonidas E.; Feng, Ziding; Wang, Huamin; Tamm, Eric P.; Katz, Matthew H.; Maitra, Anirban; Koay, Eugene J.

    2016-01-01

    Objective To investigate using quantitative imaging to assess the malignant potential of intraductal papillary mucinous neoplasms (IPMNs) in the pancreas. Background Pancreatic cysts are identified in over 2% of the population and a subset of these, including intraductal papillary mucinous neoplasms (IPMNs), represent pre-malignant lesions. Unfortunately, clinicians cannot accurately predict which of these lesions are likely to progress to pancreatic ductal adenocarcinoma (PDAC). Methods We investigated 360 imaging features within the domains of intensity, texture and shape using pancreatic protocol CT images in 53 patients diagnosed with IPMN (34 “high-grade” [HG] and 19 “low-grade” [LG]) who subsequently underwent surgical resection. We evaluated the performance of these features as well as the Fukuoka criteria for pancreatic cyst resection. Results In our cohort, the Fukuoka criteria had a false positive rate of 36%. We identified 14 imaging biomarkers within Gray-Level Co-Occurrence Matrix (GLCM) that predicted histopathological grade within cyst contours. The most predictive marker differentiated LG and HG lesions with an area under the curve (AUC) of .82 at a sensitivity of 85% and specificity of 68%. Using a cross-validated design, the best logistic regression yielded an AUC of 0.96 (σ = .05) at a sensitivity of 97% and specificity of 88%. Based on the principal component analysis, HG IPMNs demonstrated a pattern of separation from LG IPMNs. Conclusions HG IPMNs appear to have distinct imaging properties. Further validation of these findings may address a major clinical need in this population by identifying those most likely to benefit from surgical resection. PMID:27588410

  5. Imaging Modalities for Assessment of Treatment Response to Nonsurgical Hepatocellular Carcinoma Therapy: Contrast-Enhanced US, CT, and MRI.

    PubMed

    Minami, Yasunori; Kudo, Masatoshi

    2015-03-01

    Tumor response and time to progression have been considered pivotal for surrogate assessment of treatment efficacy for patients with hepatocellular carcinoma (HCC). Recent advancements in imaging modalities such as contrast-enhanced ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) are playing an important role in assessing the therapeutic effects of HCC treatments. According to some HCC clinical guidelines, post-therapeutic evaluation of HCC patients is based exclusively on contrast-enhanced dynamic imaging criteria. The recommended techniques are contrast-enhanced CT or contrast-enhanced MRI. Contrast-enhanced US is employed more in the positive diagnosis of HCC than in post-therapeutic monitoring. Although contrast enhancement is an important finding on imaging, enhancement does not necessarily depict the same phenomenon across modalities. We need to become well acquainted with the characteristics of each modality, including not only contrast-enhanced CT and MRI but also contrast-enhanced US. Many nonsurgical treatment options are now available for unresectable HCC, and accurate assessment of tumor response is essential to achieve favorable outcomes. For the assessment of successful radiofrequency ablation (RFA), the achievement of a sufficient ablation margin as well the absence of tumor vascular enhancement is essential. To evaluate the response to transcatheter arterial chemoembolization (TACE), enhanced tumor shrinkage is relied on as a measure of antitumor activity. Here, we give an overview of the current status of imaging assessment of HCC response to nonsurgical treatments including RFA and TACE.

  6. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    PubMed

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS.

  7. Evaluation of Fiber Reinforced Cement Using Digital Image Correlation

    PubMed Central

    Melenka, Garrett W.; Carey, Jason P.

    2015-01-01

    The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile – digital image correlation (DIC) measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure. PMID:26039590

  8. Thoracic magnetic resonance imaging for the evaluation of pulmonary emphysema.

    PubMed

    Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Eun Young; Oh, Sang Young; Kim, Ji-Eun

    2013-05-01

    Pulmonary emphysema is a pathologic condition characterized by permanently enlarged airspaces distal to the terminal bronchiole with destruction of the alveolar walls. Functional information of the lungs is important to understand the pathophysiology of emphysema and that of chronic obstructive pulmonary disease. With the recent developments in magnetic resonance imaging (MRI) techniques, functional MRI with variable MR sequences can be used for the evaluation of different physiological and anatomic changes seen in cases of pulmonary emphysema. In this review article, we will focus on a brief description of each method, results of some of the most recent work, and the clinical application of such knowledge.

  9. Experimental evaluation of a hyperspectral imager for near-infrared fluorescent contrast agent studies

    NASA Astrophysics Data System (ADS)

    Luthman, A. S.; Bohndiek, Sarah E.

    2015-03-01

    Hyperspectral imaging (HSI) systems have the potential to combine morphological and spectral information to provide detailed and high sensitivity readouts in biological and medical applications. As HSI enables simultaneous detection in several spectral bands, the technology has significant potential for use in real-time multiplexed contrast agent studies. Examples include tumor detection in intraoperative and endoscopic imaging as well as histopathology. A multiplexed readout from multiple disease targets, such as cell surface receptors overexpressed in cancer cells, could improve both sensitivity and specificity of tumor identification. Here, we evaluate a commercial, compact, near-infrared HSI sensor that has the potential to enable low cost, video rate HSI for multiplexed fluorescent contrast agent studies in biomedical applications. The hyperspectral imager, based on a monolithically integrated Fabry-Perot etalon, has 70 spectral bands between 600-900 nm, making it ideal for this application. Initial calibration of the imager was performed to determine wavelength band response, quantum efficiency and the effect of F-number on the spectral response. A platform for wide-field fluorescence imaging in reflectance using fluorophore specific LED excitation was then developed. The applicability of the imaging platform for simultaneous readout of multiple fluorophore signals was demonstrated using a dilution series of Alexa Fluor 594 and Alexa Fluor 647, showing that nanomolar fluorophore concentrations can be detected. Our results show that the HSI system can clearly resolve the emission spectra of the two fluorophores in mixtures of concentrations across several orders of magnitude, indicating a high dynamic range performance. We therefore conclude that the HSI sensor tested here is suitable for detecting fluorescence in biomedical imaging applications.

  10. Evaluation of the Emergency Response Dose Assessment System(ERDAS)

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Lambert, Winifred C.; Manobianco, John T.; Taylor, Gregory E.; Wheeler, Mark M.; Yersavich, Ann M.

    1996-01-01

    The emergency response dose assessment system (ERDAS) is a protype software and hardware system configured to produce routine mesoscale meteorological forecasts and enhanced dispersion estimates on an operational basis for the Kennedy Space Center (KSC)/Cape Canaveral Air Station (CCAS) region. ERDAS provides emergency response guidance to operations at KSC/CCAS in the case of an accidental hazardous material release or an aborted vehicle launch. This report describes the evaluation of ERDAS including: evaluation of sea breeze predictions, comparison of launch plume location and concentration predictions, case study of a toxic release, evaluation of model sensitivity to varying input parameters, evaluation of the user interface, assessment of ERDA's operational capabilities, and a comparison of ERDAS models to the ocean breeze dry gultch diffusion model.

  11. Evaluation of ZY-3 for Dsm and Ortho Image Generation

    NASA Astrophysics Data System (ADS)

    d'Angelo, P.

    2013-04-01

    DSM generation using stereo satellites is an important topic for many applications. China has launched the three line ZY-3 stereo mapping satellite last year. This paper evaluates the ZY-3 performance for DSM and orthophoto generation on two scenes east of Munich. The direct georeferencing performance is tested using survey points, and the 3D RMSE is 4.5 m for the scene evaluated in this paper. After image orientation with GCPs and tie points, a DSM is generated using the Semi-Global Matching algorithm. For two 5 × 5 km2 test areas, a LIDAR reference DTM was available. After masking out forest areas, the overall RMSE between ZY-3 DSM and LIDAR reference is 2.0 m (RMSE). Additionally, qualitative comparison between ZY-3 and Cartosat-1 DSMs is performed.

  12. Interpreting response time effects in functional imaging studies

    PubMed Central

    Taylor, J.S.H.; Rastle, Kathleen; Davis, Matthew H.

    2014-01-01

    It has been suggested that differential neural activity in imaging studies is most informative if it is independent of response time (RT) differences. However, others view RT as a behavioural index of key cognitive processes, which is likely linked to underlying neural activity. Here, we reconcile these views using the effort and engagement framework developed by Taylor, Rastle, and Davis (2013) and data from the domain of reading aloud. We propose that differences in neural engagement should be independent of RT, whereas, differences in neural effort should co-vary with RT. We illustrate these different mechanisms using data from an fMRI study of neural activity during reading aloud of regular words, irregular words, and pseudowords. In line with our proposals, activation revealed by contrasts designed to tap differences in neural engagement (e.g., words are meaningful and therefore engage semantic representations more than pseudowords) survived correction for RT, whereas activation for contrasts designed to tap differences in neural effort (e.g., it is more difficult to generate the pronunciation of pseudowords than words) correlated with RT. However, even for contrasts designed to tap neural effort, activity remained after factoring out the RT–BOLD response correlation. This may reveal unpredicted differences in neural engagement (e.g., learning phonological forms for pseudowords > words) that could further the development of cognitive models of reading aloud. Our framework provides a theoretically well-grounded and easily implemented method for analysing and interpreting RT effects in neuroimaging studies of cognitive processes. PMID:24904992

  13. Ultrasonography and magnetic resonance imaging evaluation of pediatric spinal anomalies

    PubMed Central

    Dhingani, Dhaval Durlabhbhai; Boruah, Deb Kumar; Dutta, Hemonta Kumar; Gogoi, Rudra Kanta

    2016-01-01

    Context: Spinal dysraphisms are congenital abnormalities of the spine due to imperfect fusion of midline mesenchymal, bony and neural structures. Imaging plays a vital role in their evaluation as significant portion of patients may present with concurrent anomalies that need to be corrected simultaneously to avoid repeat surgeries. Aims: The aims of the study were to evaluate Spinal dysraphisms using USG and MRI and to correlate imaging findings with operative findings in patients undergoing surgery. Settings and Design: Hospital based observational study conducted over a period of year. Materials and Methods: 38 cases of both sexes and below 12 years of age with spinal dysraphism were studied. USG was performed in 29 cases where acoustic window was available for proper evaluation. MRI was performed in all cases. USG findings were compared with MRI findings and operative follow up was taken in 23 cases who underwent operative management. Statistical Analysis Used: Results were analysed using percentage and arithmetic mean. Results: 39.47 % cases were male and 60.53 % cases were female. Neonatal period was the most common presenting age group. Closed spinal dysraphism (63.16%) was more common than open (36.84%). 79.31% cases showed full agreement between spinal USG and MRI examinations and 6 out of 20.69% showed partial agreement. On operative correlation, USG findings were confirmatory in 91.30% cases and MRI findings were confirmatory in 100% cases. Conclusions: USG can be used as the initial modality for evaluation of spinal dysraphism as well as for screening of suspected cases. MRI is indicated to confirm abnormal USG findings, which shows all concurrent abnormalities and also provides additional anatomical details relevant to surgical planning. PMID:27857788

  14. Evaluation of the Compressive Response of Notched Composite Panels using a Full-Field Displacement Measurement System

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.; Hanna, T. Glen; McNeill, Stephen R.

    1999-01-01

    An experimental and analytical evaluation of the compressive response of two composite, notched stiffened panels representative of primary composite wing structure is presented. A three-dimensional full-field image correlation technique is used to measure all three displacement components over global and local areas of the test panels. Point-wise and full-field results obtained using the image correlation technique are presented and compared to experimental results and analytical results obtained using nonlinear finite element analysis. Both global and global-local image correlation results are presented and discussed. Results of a simple calibration test of this image correlation technique are also presented.

  15. Radiological Evaluation of Ambiguous Genitalia with Various Imaging Modalities

    NASA Astrophysics Data System (ADS)

    Ravi, N.; Bindushree, Kadakola

    2012-07-01

    Disorders of sex development (DSDs) are congenital conditions in which the development of chromosomal, gonadal, or anatomic sex is atypical. These can be classified broadly into four categories on the basis of gonadal histologic features: female pseudohermaphroditism (46,XX with two ovaries); male pseudohermaphroditism (46,XY with two testes); true hermaphroditism (ovotesticular DSD) (both ovarian and testicular tissues); and gonadal dysgenesis, either mixed (a testis and a streak gonad) or pure (bilateral streak gonads). Imaging plays an important role in demonstrating the anatomy and associated anomalies. Ultrasonography is the primary modality for demonstrating internal organs and magnetic resonance imaging is used as an adjunct modality to assess for internal gonads and genitalia. Early and appropriate gender assignment is necessary for healthy physical and psychologic development of children with ambiguous genitalia. Gender assignment can be facilitated with a team approach that involves a pediatric endocrinologist, geneticist, urologist, psychiatrist, social worker, neonatologist, nurse, and radiologist, allowing timely diagnosis and proper management. We describe case series on ambiguous genitalia presented to our department who were evaluated with multiple imaging modalities.

  16. Filter Design and Performance Evaluation for Fingerprint Image Segmentation

    PubMed Central

    Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten

    2016-01-01

    Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: ‘true’ foreground can be labeled as background and features like minutiae can be lost, or conversely ‘true’ background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available. PMID:27171150

  17. Image reconstruction and image quality evaluation for a dual source CT scanner

    PubMed Central

    Flohr, T. G.; Bruder, H.; Stierstorfer, K.; Petersilka, M.; Schmidt, B.; McCollough, C. H.

    2008-01-01

    The authors present and evaluate concepts for image reconstruction in dual source CT (DSCT). They describe both standard spiral (helical) DSCT image reconstruction and electrocardiogram (ECG)-synchronized image reconstruction. For a compact mechanical design of the DSCT, one detector (A) can cover the full scan field of view, while the other detector (B) has to be restricted to a smaller, central field of view. The authors develop an algorithm for scan data completion, extrapolating truncated data of detector (B) by using data of detector (A). They propose a unified framework for convolution and simultaneous 3D backprojection of both (A) and (B) data, with similar treatment of standard spiral, ECG-gated spiral, and sequential (axial) scan data. In ECG-synchronized image reconstruction, a flexible scan data range per measurement system can be used to trade off temporal resolution for reduced image noise. Both data extrapolation and image reconstruction are evaluated by means of computer simulated data of anthropomorphic phantoms, by phantom measurements and patient studies. The authors show that a consistent filter direction along the spiral tangent on both detectors is essential to reduce cone-beam artifacts, requiring truncation of the extrapolated (B) data after convolution in standard spiral scans. Reconstructions of an anthropomorphic thorax phantom demonstrate good image quality and dose accumulation as theoretically expected for simultaneous 3D backprojection of the filtered (A) data and the truncated filtered (B) data into the same 3D image volume. In ECG-gated spiral modes, spiral slice sensitivity profiles (SSPs) show only minor dependence on the patient’s heart rate if the spiral pitch is properly adapted. Measurements with a thin gold plate phantom result in effective slice widths (full width at half maximum of the SSP) of 0.63–0.69mm for the nominal 0.6mm slice and 0.82–0.87mm for the nominal 0.75mm slice. The visually determined through-plane (z

  18. Dynamic contrast-enhanced magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer

    NASA Astrophysics Data System (ADS)

    Fu, Juzhong; Fan, Ming; Zheng, Bin; Shao, Guoliang; Zhang, Juan; Li, Lihua

    2016-03-01

    Breast cancer is the second leading cause of women death in the United States. Currently, Neoadjuvant Chemotherapy (NAC) has become standard treatment paradigms for breast cancer patients. Therefore, it is important to find a reliable non-invasive assessment and prediction method which can evaluate and predict the response of NAC on breast cancer. The Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) approach can reflect dynamic distribution of contrast agent in tumor vessels, providing important basis for clinical diagnosis. In this study, the efficacy of DCE-MRI on evaluation and prediction of response to NAC in breast cancer was investigated. To this end, fifty-seven cases of malignant breast cancers with MRI examination both before and after two cycle of NAC were analyzed. After pre-processing approach for segmenting breast lesions and background regions, 126-dimensional imaging features were extracted from DCE-MRI. Statistical analyses were then performed to evaluate the associations between the extracted DCE-MRI features and the response to NAC. Specifically, pairwise t test was used to calculate differences of imaging features between MRI examinations before-and-after NAC. Moreover, the associations of these image features with response to NAC were assessed using logistic regression. Significant association are found between response to NAC and the features of lesion morphology and background parenchymal enhancement, especially the feature of background enhancement in normal side of breast (P=0.011). Our study indicate that DCE-MRI features can provide candidate imaging markers to predict response of NAC in breast cancer.

  19. Evaluation of laser prostatectomy devices by thermal imaging

    NASA Astrophysics Data System (ADS)

    Molenaar, David G.; van Vliet, Remco J.; van Swol, Christiaan F. P.; Boon, Tom A.; Verdaasdonck, Rudolf M.

    1994-12-01

    The treatment of benign prostatic hyperplasia (BPH) using Nd:YAG laser light has become an accepted alternative to TURP. However, there is no consensus to the dosimetry using the various laser devices. In our study, we evaluate the optical and thermal characteristics of 7 commercially available side firing laser probes. For the thermal analysis, an optical method was used based on `Schlieren' techniques producing color images of the temperature distribution around the laser probe in water. Absolute temperatures were obtained after calibration measurements with thermocouples. Laser probes using metal mirrors for beam deflection heated up entirely. The local temperature rose up to 100 degrees centigrade, thus inducing vapor bubble formation that interfered with the emitted beam. Laser devices, using total internal reflection for deflection, showed far less heating primarily at the exit window, though Fresnel reflections and secondary beams indirectly heated up the (metal) housing of the tip. After clinical application, the absorption at the probe surface and hence temperature increased due to probe deterioration. Color Schlieren imaging is a powerful method for the thermal evaluation of laser devices. The thermal behavior of laser probes can be used as a guidance for the method of application and as an indication of the lifetime of the probes.

  20. Refinery evaluation of optical imaging to locate fugitive emissions.

    PubMed

    Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike

    2007-07-01

    Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.

  1. Objective breast symmetry evaluation using 3-D surface imaging.

    PubMed

    Eder, Maximilian; Waldenfels, Fee V; Swobodnik, Alexandra; Klöppel, Markus; Pape, Ann-Kathrin; Schuster, Tibor; Raith, Stefan; Kitzler, Elena; Papadopulos, Nikolaos A; Machens, Hans-Günther; Kovacs, Laszlo

    2012-04-01

    This study develops an objective breast symmetry evaluation using 3-D surface imaging (Konica-Minolta V910(®) scanner) by superimposing the mirrored left breast over the right and objectively determining the mean 3-D contour difference between the 2 breast surfaces. 3 observers analyzed the evaluation protocol precision using 2 dummy models (n = 60), 10 test subjects (n = 300), clinically tested it on 30 patients (n = 900) and compared it to established 2-D measurements on 23 breast reconstructive patients using the BCCT.core software (n = 690). Mean 3-D evaluation precision, expressed as the coefficient of variation (VC), was 3.54 ± 0.18 for all human subjects without significant intra- and inter-observer differences (p > 0.05). The 3-D breast symmetry evaluation is observer independent, significantly more precise (p < 0.001) than the BCCT.core software (VC = 6.92 ± 0.88) and may play a part in an objective surgical outcome analysis after incorporation into clinical practice.

  2. Impulse Response Estimation for Spatial Resolution Enhancement in Ultrasonic NDE Imaging

    SciTech Connect

    Clark, G A

    2004-06-25

    This report describes a signal processing algorithm and MATLAB software for improving spatial resolution in ultrasonic nondestructive evaluation (NDE) imaging of materials. Given a measured reflection signal and an associated reference signal, the algorithm produces an optimal least-squares estimate of the impulse response of the material under test. This estimated impulse response, when used in place of the raw reflection signal, enhances the spatial resolution of the ultrasonic measurements by removing distortion caused by the limited-bandwidth transducers and the materials under test. The theory behind the processing algorithms is briefly presented, while the reader is referred to the bibliography for details. The main focus of the report is to describe how to use the MATLAB software. Two processing examples using actual ultrasonic measurements are provided for tutorial purposes.

  3. Image processing and machine learning for fully automated probabilistic evaluation of medical images.

    PubMed

    Sajn, Luka; Kukar, Matjaž

    2011-12-01

    The paper presents results of our long-term study on using image processing and data mining methods in a medical imaging. Since evaluation of modern medical images is becoming increasingly complex, advanced analytical and decision support tools are involved in integration of partial diagnostic results. Such partial results, frequently obtained from tests with substantial imperfections, are integrated into ultimate diagnostic conclusion about the probability of disease for a given patient. We study various topics such as improving the predictive power of clinical tests by utilizing pre-test and post-test probabilities, texture representation, multi-resolution feature extraction, feature construction and data mining algorithms that significantly outperform medical practice. Our long-term study reveals three significant milestones. The first improvement was achieved by significantly increasing post-test diagnostic probabilities with respect to expert physicians. The second, even more significant improvement utilizes multi-resolution image parametrization. Machine learning methods in conjunction with the feature subset selection on these parameters significantly improve diagnostic performance. However, further feature construction with the principle component analysis on these features elevates results to an even higher accuracy level that represents the third milestone. With the proposed approach clinical results are significantly improved throughout the study. The most significant result of our study is improvement in the diagnostic power of the whole diagnostic process. Our compound approach aids, but does not replace, the physician's judgment and may assist in decisions on cost effectiveness of tests.

  4. Classification and quality evaluation of tobacco leaves based on image processing and fuzzy comprehensive evaluation.

    PubMed

    Zhang, Fan; Zhang, Xinhong

    2011-01-01

    Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves.

  5. Dual-mode 5-element transducer for image-guided interstitial ultrasound therapy: In vitro evaluation

    NASA Astrophysics Data System (ADS)

    Owen, N. R.; Bouchoux, G.; Murillo-Rincon, A.; Merouche, S.; Birer, A.; Chapelon, J. Y.; Berriet, R.; Fleury, G.; Lafon, C.

    2009-04-01

    Interstitial probes with dual-mode transducers are effective devices to guide and monitor with ultrasound imaging the application of ultrasound therapy. Here, a dual-mode 5-element transducer, with oscillatory motion for sector imaging and directive therapy, was characterized and evaluated in vitro with porcine liver. The transducer had 3.8×3.0-mm2 elements, a 20×3.0-mm2 aperture, and was cylindrically focused to 14-mm. In therapy mode, elements were maximally efficient, 72±4% (ave±std), at 5.6-MHz. In imaging mode, the pulse-echo impulse response for each electrically-matched element was 160±16 ns long at -6 dB, and insertion loss was minimally 9.8±0.5 dB at 5.2-MHz. Electrical crosstalk was less than -57 dB at 5.6-MHz. Lateral resolution, measured by scanning a wire of 0.1-mm diameter wire though the focal plane, was 1.0-mm at -6 dB. During experiment, an initial B-mode image was formed over a 140° sector. Then, therapy was applied for 90 s, with 18-W/cm2 transducer surface intensity, at each of 5 angles (Δθ = 20°) to form volumes of composite protein denaturization. Pulse-echo data were collected periodically to monitor therapy with real-time M-mode imaging. After therapy, another B-mode image was formed, and the depth of protein denaturization was measured by gross histology. B-mode images adequately represented the liver structure. Analysis of M-mode images was consistent with gross histology.

  6. Student Evaluation of Audience Response Technology in Large Lecture Classes

    ERIC Educational Resources Information Center

    MacGeorge, Erina L.; Homan, Scott R.; Dunning, John B., Jr.; Elmore, David; Bodie, Graham D.; Evans, Ed; Khichadia, Sangeetha; Lichti, Steven M.; Feng, Bo; Geddes, Brian

    2008-01-01

    In the past few years, audience response technology (ART) has been widely adopted on college campuses, and is especially popular among instructors of large lecture classes. Claims regarding ART's benefits to students have received only limited empirical evaluation, and prior studies exhibit methodological limitations. The current study provides a…

  7. Notification: OIG Evaluation of EPA's Response to Erroneous Laboratory Data

    EPA Pesticide Factsheets

    Project #OPE-FY12-0023, August 14, 2012. The purpose of this memorandum is to notify you that the Office of Inspector General (OIG) plans to begin preliminary.research on an evaluation of EPA's response to erroneous laboratory data.

  8. An Evaluation of Response Prompts for Teaching Behavior Chains

    ERIC Educational Resources Information Center

    Seaver, Jessica L.; Bourret, Jason C.

    2014-01-01

    Individuals who have been diagnosed with autism spectrum disorders can have difficulty acquiring new skills, and teaching procedures found to be efficient with 1 individual may not be efficient with others. However, relatively little research has evaluated methods to identify efficient, individualized response-prompt and prompt-fading procedures.…

  9. Evaluating Item Fit for Multidimensional Item Response Models

    ERIC Educational Resources Information Center

    Zhang, Bo; Stone, Clement A.

    2008-01-01

    This research examines the utility of the s-x[superscript 2] statistic proposed by Orlando and Thissen (2000) in evaluating item fit for multidimensional item response models. Monte Carlo simulation was conducted to investigate both the Type I error and statistical power of this fit statistic in analyzing two kinds of multidimensional test…

  10. High dynamic range hyperspectral imaging for camouflage performance test and evaluation

    NASA Astrophysics Data System (ADS)

    Pearce, D.; Feenan, J.

    2016-10-01

    This paper demonstrates the use of high dynamic range processing applied to the specific technique of hyper-spectral imaging with linescan spectrometers. The technique provides an improvement in signal to noise for reflectance estimation. This is demonstrated for field measurements of rural imagery collected from a ground-based linescan spectrometer of rural scenes. Once fully developed, the specific application is expected to improve the colour estimation approaches and consequently the test and evaluation accuracy of camouflage performance tests. Data are presented on both field and laboratory experiments that have been used to evaluate the improvements granted by the adoption of high dynamic range data acquisition in the field of hyperspectral imaging. High dynamic ranging imaging is well suited to the hyperspectral domain due to the large variation in solar irradiance across the visible and short wave infra-red (SWIR) spectrum coupled with the wavelength dependence of the nominal silicon detector response. Under field measurement conditions it is generally impractical to provide artificial illumination; consequently, an adaptation of the hyperspectral imaging and re ectance estimation process has been developed to accommodate the solar spectrum. This is shown to improve the signal to noise ratio for the re ectance estimation process of scene materials in the 400-500 nm and 700-900 nm regions.

  11. In vivo macrophage imaging using MR targeted contrast agent for longitudinal evaluation of septic arthritis.

    PubMed

    Bierry, Guillaume; Lefevre, Sophie; Dietemann, Jean-Louis; Jehl, François

    2013-10-20

    Macrophages are key-cells in the initiation, the development and the regulation of the inflammatory response to bacterial infection. Macrophages are intensively and increasingly recruited in septic joints from the early phases of infection and the infiltration is supposed to regress once efficient removal of the pathogens is obtained. The ability to identify in vivo macrophage activity in an infected joint can therefore provide two main applications: early detection of acute synovitis and monitoring of therapy. In vivo noninvasive detection of macrophages can be performed with magnetic resonance imaging using iron nanoparticles such as ultrasmall superparamagnetic iron oxide (USPIO). After intravascular or intraarticular administration, USPIO are specifically phagocytized by activated macrophages, and, due to their magnetic properties, induce signal changes in tissues presenting macrophage infiltration. A quantitative evaluation of the infiltrate is feasible, as the area with signal loss (number of dark pixels) observed on gradient echo MR images after particles injection is correlated with the amount of iron within the tissue and therefore reflects the number of USPIO-loaded cells. We present here a protocol to perform macrophage imaging using USPIO-enhanced MR imaging in an animal model of septic arthritis, allowing an initial and longitudinal in vivo noninvasive evaluation of macrophages infiltration and an assessment of therapy action.

  12. Evaluating the Response of the Terrestrial Biosphere to Significant Drought

    NASA Astrophysics Data System (ADS)

    Shiach, I.; Baker, I. T.; Denning, A.

    2011-12-01

    The response of terrestrial fluxes of energy, water, and carbon to drought is evaluated. Major droughts should be clearly evident in reanalyzed precipitation data, although this is not always the case. With reduced precipitation we can expect a suppression in Gross Primary Photosynthesis (GPP) if physiological stress is sufficient, with atttendant changes in energy partitioning due to stomatal closure. There may also be a response in respiratory release of CO2 with temperature increase. This study aimed to investigate the behavior of the terrestrial biosphere using the Simple Biosphere Model (SiB3) during and following times of drought and to identify any model responses inconsistent with observational relationships. The Standardized Precipitation Index (SPI) was evaluated from 1983 to 2006 in order to evaluate historical drought maps, and to facilitate a qualitative analysis of modeled drought behavior. Standardized and raw anomaly maps were produced for modeled physiological variables (GPP, transpiration, respiration, heat fluxes, carbon flux, and stress factors) in order to determine general response patterns for comparison with observations. The SiB model was determined to be generally accurate in its representation of significant drought, with regard to perturbations in Bowen ratio, GPP, and CO2 respiration. However, model response was heterogeneous, and did not always respond in a manner consistent with published descriptions of drought.

  13. Image reconstruction and image quality evaluation for a 16-slice CT scanner.

    PubMed

    Flohr, Th; Stierstorfer, K; Bruder, H; Simon, J; Polacin, A; Schaller, S

    2003-05-01

    We present a theoretical overview and a performance evaluation of a novel approximate reconstruction algorithm for cone-beam spiral CT, the adaptive multiple plane reconstruction (AMPR), which has been introduced by Schaller, Flohr et al. [Proc. SPIE Int. Symp. Med. Imag. 4322, 113-127 (2001)] AMPR has been implemented in a recently introduced 16-slice CT scanner. We present a detailed algorithmic description of AMPR which allows for a free selection of the spiral pitch. We show that dose utilization is better than 90% independent of the pitch. We give an overview on the z-reformation functions chosen to allow for a variable selection of the spiral slice width at arbitrary pitch values. To investigate AMPR image quality we present images of anthropomorphic phantoms and initial patient results. We present measurements of spiral slice sensitivity profiles (SSPs) and measurements of the maximum achievable transverse resolution, both in the isocenter and off-center. We discuss the pitch dependence of image noise measured in a centered 20 cm water phantom. Using the AMPR approach, cone-beam artifacts are considerably reduced for the 16-slice scanner investigated. Image quality in MPRs is independent of the pitch and equivalent to a single-slice CT system at pitch p approximately 1.5. The full width at half-maximum (FWHM) of the spiral SSPs shows only minor variations as a function of the pitch, nominal, and measured values differ by less than 0.2 mm. With 16 x 0.75 mm collimation, the measured FWHM of the smallest reconstructed slice is about 0.9 mm. Using this slice width and overlapping image reconstruction, cylindrical holes with 0.6 mm diameter can be resolved in a z-resolution phantom. Image noise for constant effective mAs is nearly independent of the pitch. Measured and theoretically expected dose utilization are in good agreement. Meanwhile, clinical practice has demonstrated the excellent image quality and the increased diagnostic capability that is obtained

  14. Naturalness and interestingness of test images for visual quality evaluation

    NASA Astrophysics Data System (ADS)

    Halonen, Raisa; Westman, Stina; Oittinen, Pirkko

    2011-01-01

    Balanced and representative test images are needed to study perceived visual quality in various application domains. This study investigates naturalness and interestingness as image quality attributes in the context of test images. Taking a top-down approach we aim to find the dimensions which constitute naturalness and interestingness in test images and the relationship between these high-level quality attributes. We compare existing collections of test images (e.g. Sony sRGB images, ISO 12640 images, Kodak images, Nokia images and test images developed within our group) in an experiment combining quality sorting and structured interviews. Based on the data gathered we analyze the viewer-supplied criteria for naturalness and interestingness across image types, quality levels and judges. This study advances our understanding of subjective image quality criteria and enables the validation of current test images, furthering their development.

  15. Comparison of magnetic resonance imaging and radionuclide imaging in the evaluation of renal transplant failure

    SciTech Connect

    Goldsmith, M.S.; Tanasescu, D.E.; Waxman, A.D.; Crues, J.V. III

    1988-04-01

    Magnetic resonance imaging (MRI) was compared with radionuclide scintigraphy (RNS) in 16 patients with renal transplants undergoing renal failure to determine which modality could best discriminate between rejection, acute tubular necrosis (ATN), and cyclosporin nephrotoxicity (CN). Although all rejecting transplants had reduced corticomedullary differentiation (CMD) on T1-weighted MR images, four of five cases of ATN had appearances that could not be distinguished from rejection. A normal CMD suggests nonrejection, but diminished CMD is nonspecific. Tc-99m DTPA/I-131 hippuran RNS was superior to MRI in differentiating rejection from ATN. Although ATN and CN have similar RNS patterns, this distinction can usually be made based on the clinical time course. Other potential uses of MRI in the evaluation of the renal transplants are discussed.

  16. Application of Advanced Magnetic Resonance Imaging Techniques in Evaluation of the Lower Extremity

    PubMed Central

    Braun, Hillary J.; Dragoo, Jason L.; Hargreaves, Brian A.; Levenston, Marc E.; Gold, Garry E.

    2012-01-01

    Synopsis This article reviews current magnetic resonance imaging techniques for imaging the lower extremity, focusing on imaging of the knee, ankle, and hip joints. Recent advancements in MRI include imaging at 7 Tesla, using multiple receiver channels, T2* imaging, and metal suppression techniques, allowing more detailed visualization of complex anatomy, evaluation of morphological changes within articular cartilage, and imaging around orthopedic hardware. PMID:23622097

  17. Moral Knowledge and Responsibilities in Evaluation Implementation: When Critical Theory and Responsive Evaluation Collide

    ERIC Educational Resources Information Center

    Freeman, Melissa; Preissle, Judith; Havick, Steven

    2010-01-01

    An external evaluation documented what occurred in an inaugural summer camp to teach high school students how to preserve religious freedom by learning about and acting on the history and current state of church-state separation and other first amendment issues. Camp designers hoped to promote religious diversity values and civic engagement in…

  18. Evaluation of breast cancer chemotherapy efficacy with multifractal spectrum analysis of magnetic resonance image.

    PubMed

    Li, Li; Hu, Wen-yong; Liu, Li-zhi; Pang, Ya-chun; Shao, Yuan-zhi

    2014-01-01

    Multifractal spectrum analysis of dynamic contrast enhanced (DCE) breast MR images was used to establish a new quantitative analysis method for solid tumor blood perfusion and to explore its applicability in evaluating efficacy of breast cancer chemotherapy. Five randomly selected patients suffering from newly diagnosed malignant breast nodule lesions were enrolled in this study, and four of them were treated with neoadjuvant chemotherapy. Their DCE breast MR images were collected before and after treatment. Chemotherapeutic efficacy was analyzed using international response evaluation criteria for solid tumors (RECIST). Sandbox method for statistical number density was employed to measure and calculate multifractal spectra of DCE breast MR images with spatiotemporal characteristics. Multifractal spectral data of malignant lesions before and after chemotherapy were compared. Multifractal spectra of malignant lesions show an asymmetric bell-shape. Chemotherapy efficacy was assessed to be partial remission (PR) for three patients and their multifractal spectral width significantly increased after chemotherapy while to be stable disease (SD) for other patient and of her changed slightly. Multifractal spectral width correlates with blood-supply condition of tumor lesion before and after chemotherapy, providing a potential suitable characteristic parameter for evaluating chemotherapeutic efficacy quantitatively.

  19. The development and evaluation of head probes for optical imaging of the infant head

    NASA Astrophysics Data System (ADS)

    Branco, Gilberto

    The objective of this thesis was to develop and evaluate optical imaging probes for mapping oxygenation and haemodynamic changes in the newborn infant brain. Two imaging approaches are being developed at University College London (UCL): optical topography (surface mapping of the cortex) and optical tomography (volume imaging). Both have the potential to provide information about the function of the normal brain and about a variety of neurophysiologies! abnormalities. Both techniques require an array of optical fibres/fibre bundles to be held in contact with the head, for periods of time from tens of seconds to an hour or more. The design of suitable probes must ensure the comfort and safety of the subject, and provide measurements minimally sensitive to external sources of light and patient motion. A series of prototype adaptable helmets were developed for optical tomography of the premature infant brain using the UCL 32-channel time-resolved system. They were required to attach 32 optical fibre bundles over the infant scalp, and were designed to accommodate infants with a variety of head shapes and sizes, aged between 24-weeks gestational age and term. Continual improvements to the helmet design were introduced following the evaluation of each prototype on infants in the hospital. Data were acquired to generate images revealing the concentration and oxygenation of blood in the brain, and the response of the brain to sensory stimulation. This part of the project also involved designing and testing new methods of acquiring calibration data using reference phantoms. The second focus of the project was the development of probes for use with the UCL frequency-multiplexed near-infrared topography system. This is being used to image functional activation in the infant cortex. A series of probes were developed and experiments were conducted to evaluate their sensitivity to patient motion and to compression of the probe. The probes have been used for a variety of

  20. Association between dynamic features of breast DCE-MR imaging and clinical response of neoadjuvant chemotherapy: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Huang, Lijuan; Fan, Ming; Li, Lihua; Zhang, Juan; Shao, Guoliang; Zheng, Bin

    2016-03-01

    Neoadjuvant chemotherapy (NACT) is being used increasingly in the management of patients with breast cancer for systemically reducing the size of primary tumor before surgery in order to improve survival. The clinical response of patients to NACT is correlated with reduced or abolished of their primary tumor, which is important for treatment in the next stage. Recently, the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used for evaluation of the response of patients to NACT. To measure this correlation, we extracted the dynamic features from the DCE- MRI and performed association analysis between these features and the clinical response to NACT. In this study, 59 patients are screened before NATC, of which 47 are complete or partial response, and 12 are no response. We segmented the breast areas depicted on each MR image by a computer-aided diagnosis (CAD) scheme, registered images acquired from the sequential MR image scan series, and calculated eighteen features extracted from DCE-MRI. We performed SVM with the 18 features for classification between patients of response and no response. Furthermore, 6 of the 18 features are selected to refine the classification by using Genetic Algorithm. The accuracy, sensitivity and specificity are 87%, 95.74% and 50%, respectively. The calculated area under a receiver operating characteristic (ROC) curve is 0.79+/-0.04. This study indicates that the features of DCE-MRI of breast cancer are associated with the response of NACT. Therefore, our method could be helpful for evaluation of NACT in treatment of breast cancer.

  1. Image-guided Treatment in the Hepatobiliary System: Role of Imaging in Treatment Planning and Posttreatment Evaluation.

    PubMed

    Bajpai, Surabhi; Kambadakone, Avinash; Guimaraes, Alexander R; Arellano, Ronald S; Gervais, Debra A; Sahani, Dushyant

    2015-01-01

    In the past decade, image-guided targeted treatments such as percutaneous ablation, intra-arterial embolic therapies, and targeted radiation therapy have shown substantial promise in management of hepatobiliary malignancies. Imaging is integral to patient selection, treatment delivery, and assessment of treatment effectiveness. Preprocedural imaging is crucial and allows local tumor staging, evaluation of surrounding structures, and selection of suitable therapeutic options and strategies for treatment delivery. Postprocedural imaging is required to monitor therapeutic success, detect residual or recurrent disease, and identify procedure-related complications to guide appropriate future therapy. Technical innovations in cross-sectional imaging techniques such as computed tomography (CT) and magnetic resonance (MR) imaging, combined with advances in image postprocessing and new types of contrast agents, allow precise morphologic assessment and functional evaluation of hepatobiliary tumors. Advanced postprocessing techniques such as image fusion and volumetric assessment not only facilitate procedural planning and treatment delivery but also enhance posttreatment imaging surveillance. In addition, molecular imaging techniques such as fluorodeoxyglucose positron emission tomography (PET), PET/CT, and PET/MR imaging offer opportunities to evaluate various physiologic properties of tumors.

  2. Dose-Response Evaluation of Braslet-M Occlusion Cuffs

    NASA Technical Reports Server (NTRS)

    Ebert, Douglas; Garcia, Kathleen; Sargsyan, Ashot E.; Ham, David; Hamilton, Douglas; Dulchavsky, Scott A.

    2010-01-01

    Introduction: Braslet-M is a set of special elasticized thigh cuffs used by the Russian space agency to reduce the effects of the head-ward fluid shift during early adaptation to microgravity by sequestering fluid in the lower extremities. Currently, no imaging modalities are used in the calibration of the device, and the pressure required to produce a predictable physiological response is unknown. This investigation intends to relate the pressure exerted by the cuffs to the extent of fluid redistribution and commensurate physiological effects. Materials and Methods: Ten healthy subjects with standardized fluid intake participated in the study. Data collection included femoral and internal jugular vein imaging in two orthogonal planes, pulsed Doppler of cervical and femoral vessels and middle cerebral artery, optic nerve imaging, and echocardiography. Braslet-M cuff pressure was monitored at the skin interface using pre-calibrated pressure sensors. Using 6 and 30 head-down tilt in two separate sessions, the effect of Braslet-M was assessed while incrementally tightening the cuffs. Cuffs were then simultaneously released to document the resulting hemodynamic change. Results: Preliminary analysis shows correlation between physical pressure exerted by the Braslet-M device and several parameters such as jugular and femoral vein cross-sections, resistivity of the lower extremity vascular bed, and others. A number of parameters reflect blood redistribution and will be used to determine the therapeutic range of the device and to prevent unsafe application. Conclusion: Braslet-M exerts a physical effect that can be measured and correlated with many changes in central and peripheral hemodynamics. Analysis of the full data set will be required to make definitive recommendations regarding the range of safe therapeutic application. Objective data and subjective responses suggest that a safer and equally effective use of Braslet can be achieved when compared with the current

  3. Cavernosal nerve functionality evaluation after magnetic resonance imaging-guided transurethral ultrasound treatment of the prostate

    PubMed Central

    Sammet, Steffen; Partanen, Ari; Yousuf, Ambereen; Sammet, Christina L; Ward, Emily V; Wardrip, Craig; Niekrasz, Marek; Antic, Tatjana; Razmaria, Aria; Farahani, Keyvan; Sokka, Shunmugavelu; Karczmar, Gregory; Oto, Aytekin

    2015-01-01

    AIM: To evaluate the feasibility of using therapeutic ultrasound as an alternative treatment option for organ-confined prostate cancer. METHODS: In this study, a trans-urethral therapeutic ultrasound applicator in combination with 3T magnetic resonance imaging (MRI) guidance was used for real-time multi-planar MRI-based temperature monitoring and temperature feedback control of prostatic tissue thermal ablation in vivo. We evaluated the feasibility and safety of MRI-guided trans-urethral ultrasound to effectively and accurately ablate prostate tissue while minimizing the damage to surrounding tissues in eight canine prostates. MRI was used to plan sonications, monitor temperature changes during therapy, and to evaluate treatment outcome. Real-time temperature and thermal dose maps were calculated using the proton resonance frequency shift technique and were displayed as two-dimensional color-coded overlays on top of the anatomical images. After ultrasound treatment, an evaluation of the integrity of cavernosal nerves was performed during prostatectomy with a nerve stimulator that measured tumescence response quantitatively and indicated intact cavernous nerve functionality. Planned sonication volumes were visually correlated to MRI ablation volumes and corresponding histo-pathological sections after prostatectomy. RESULTS: A total of 16 sonications were performed in 8 canines. MR images acquired before ultrasound treatment were used to localize the prostate and to prescribe sonication targets in all canines. Temperature elevations corresponded within 1 degree of the targeted sonication angle, as well as with the width and length of the active transducer elements. The ultrasound treatment procedures were automatically interrupted when the temperature in the target zone reached 56 °C. In all canines erectile responses were evaluated with a cavernous nerve stimulator post-treatment and showed a tumescence response after stimulation with an electric current. These

  4. Quantitative surface evaluation by matching experimental and simulated ronchigram images

    NASA Astrophysics Data System (ADS)

    Kantún Montiel, Juana Rosaura; Cordero Dávila, Alberto; González García, Jorge

    2011-09-01

    To estimate qualitatively the surface errors with Ronchi test, the experimental and simulated ronchigrams are compared. Recently surface errors have been obtained quantitatively matching the intersection point coordinates of ronchigrama fringes with x-axis . In this case, gaussian fit must be done for each fringe, and interference orders are used in Malacara algorithm for the simulations. In order to evaluate surface errors, we added an error function in simulations, described with cubic splines, to the sagitta function of the ideal surface. We used the vectorial transversal aberration formula and a ruling with cosinusoidal transmittance, because these rulings reproduce better experimental ronchigram fringe profiles. Several error functions are tried until the whole experimental ronchigrama image is reproduced. The optimization process was done using genetic algorithms.

  5. [Fetal magnetic resonance imaging evaluation of congenital diaphragmatic hernia].

    PubMed

    Sebastià, C; Garcia, R; Gomez, O; Paño, B; Nicolau, C

    2014-01-01

    A diaphragmatic hernia is defined as the protrusion of abdominal viscera into the thoracic cavity through a normal or pathological orifice. The herniated viscera compress the lungs, resulting in pulmonary hypoplasia and secondary pulmonary hypertension, which are the leading causes of neonatal death in patients with congenital diaphragmatic hernia. Congenital diaphragmatic hernia is diagnosed by sonography in routine prenatal screening. Although magnetic resonance imaging is fundamentally used to determine whether the liver is located within the abdomen or has herniated into the thorax, it also can provide useful information about other herniated structures and the degree of pulmonary hypoplasia. The aim of this article is to review the fetal magnetic resonance findings for congenital diaphragmatic hernia and the signs that enable us to establish the neonatal prognosis when evaluating pulmonary hypoplasia.

  6. An evaluation of imaging spectrometry for estimating forest canopy chemistry

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Aber, John D.; Peterson, David L.

    1989-01-01

    High spectral resolution Airborne Imaging Spectrometer (AIS) data were acquired over 20 well-studied Wisconsin forest sites to evaluate the potential of remote sensing for estimating forest canopy chemistry. Intensive nutrient cycling research in these forests demonstrates that canopy lignin content is strongly related to measured annual nitrogen mineralization at the undisturbed sites and may serve as an accurate index for nitrogen cycling rates. Ground measurements were made of foliar biomass and canopy nitrogen and lignin content, the latter within two weeks of the AIS overflight. The spectral data were transformed using derivative techniques modified from laboratroy spectroscopy. Stepwise regression assisted in determining combinations of wavelengths most highly correlated with canopy chemistry and biomass. Strong correlations between AIS data and total canopy lignin content in deciduous forests and canopy lignin concentration (total lignin/biomass) in both deciduous and coniferous stands indicate that imaging spectrometry can be used to estimate canopy lignin content and, from that, the spatial distribution of annual nitrogen mineralization rates.

  7. Evaluating Terminologies to Enable Imaging-Related Decision Rule Sharing

    PubMed Central

    Yan, Zihao; Lacson, Ronilda; Ip, Ivan; Valtchinov, Vladimir; Raja, Ali; Osterbur, David; Khorasani, Ramin

    2016-01-01

    Purpose: Clinical decision support tools provide recommendations based on decision rules. A fundamental challenge regarding decision rule-sharing involves inadequate expression using standard terminology. We aimed to evaluate the coverage of three standard terminologies for mapping imaging-related decision rules. Methods: 50 decision rules, randomly selected from an existing library, were mapped to Systemized Nomenclature of Medicine (SNOMED CT), Radiology Lexicon (RadLex) and International Classification of Disease (ICD-10-CM). Decision rule attributes and values were mapped to unique concepts, obtaining the best possible coverage with the fewest concepts. Manual and automated mapping using Clinical Text Analysis and Knowledge Extraction System (cTAKES) were performed. Results: Using manual mapping, SNOMED CT provided the greatest concept coverage (83%), compared to RadLex (36%) and ICD-10-CM (8%) (p<0.0001). Combined mapping had 86% concept coverage. Automated mapping achieved 85% mapping coverage vs. 94% with manual mapping (p<0.001). Conclusion: Although some gaps remain, standard terminologies provide ample coverage for mapping imaging- related evidence. PMID:28269968

  8. Psudeo-seismic Imaging on CSAMT Psudeo-pulse Response of Coal Bed Methane Exploration

    NASA Astrophysics Data System (ADS)

    zhao, Y.; wu, J.

    2012-12-01

    As a unique natural gas extracted from coal beds, coal bed methane (CBM) resources has become an important source of energy in China. For CBM exploration, it is still a challenge to improve the accuracy for locating and evaluating CBM deposits due to its complicated absorption characteristics. Considering the distinct change of electromagnetic parameters caused by CBM, it is possible to detect the electromagnetic anomalies using the controlled source audio-frequency magnetotellurics (CSAMT). Psudeo-pulse response of EM was re-constructed using the impendence measured on the ground surface by CSAMT, and psudeo-seismic images can be produced using linear programming inversion with stratum model restriction. An anticline structure model was built to verify the proposal of psudeo-seismic imaging using CSAMT data. Inversion results clearly revealed the electrical structure interfaces of the model. Meanwhile, a set of CSAMT data was collected from the test area located in Heshun coal field in China. The V8 CSAMT system was used for data acquisition and the frequency ranges from 0.2 to 7680 Hz. Inversed psudeo-seismic images exactly exhibited the stratum structure and the electrical property distribution. A comparison of inversion results with exploration borehole data revealed the approximate relationship between electrical property and the CBM content. The higher the value of resistivity, the more likely the coal bed is to contain CBM. Model and field test analysis demonstrated that the psudeo-seismic image improved the CSAMT interpretation results, and it can reveal the electrical property distribution, and be applied to approximately evaluate the CBM content.

  9. Overcoming the concentration-dependence of responsive probes for magnetic resonance imaging

    PubMed Central

    Ekanger, Levi A.

    2015-01-01

    In magnetic resonance imaging, contrast agents are molecules that increase the contrast-to-noise ratio of non-invasively acquired images. The information gained from magnetic resonance imaging can be increased using responsive contrast agents that undergo chemical changes, and consequently changes to contrast enhancement, for example in response to specific biomarkers that are indicative of diseases. A major limitation with modern responsive contrast agents is concentration-dependence that requires the concentration of contrast agent to be known: an extremely challenging task in vivo. Here, we review advances in several strategies aimed at overcoming the concentration-dependent nature of responsive contrast agents. PMID:25579206

  10. Color image reproduction based on multispectral and multiprimary imaging: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Teraji, Taishi; Ohsawa, Kenro; Uchiyama, Toshio; Motomura, Hideto; Murakami, Yuri; Ohyama, Nagaaki

    2001-12-01

    Multispectral imaging is significant technology for the acquisition and display of accurate color information. Natural color reproduction under arbitrary illumination becomes possible using spectral information of both image and illumination light. In addition, multiprimary color display, i.e., using more than three primary colors, has been also developed for the reproduction of expanded color gamut, and for discounting observer metamerism. In this paper, we present the concept for the multispectral data interchange for natural color reproduction, and the experimental results using 16-band multispectral camera and 6-primary color display. In the experiment, the accuracy of color reproduction is evaluated in CIE (Delta) Ea*b* for both image capture and display systems. The average and maximum (Delta) Ea*b* = 1.0 and 2.1 in 16-band mutispectral camera system, using Macbeth 24 color patches. In the six-primary color projection display, average and maximum (Delta) Ea*b* = 1.3 and 2.7 with 30 test colors inside the display gamut. Moreover, the color reproduction results with different spectral distributions but same CIE tristimulus value are visually compared, and it is confirmed that the 6-primary display gives improved agreement between the original and reproduced colors.

  11. Evaluation of Piloted Inputs for Onboard Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Martos, Borja

    2013-01-01

    Frequency response estimation results are presented using piloted inputs and a real-time estimation method recently developed for multisine inputs. A nonlinear simulation of the F-16 and a Piper Saratoga research aircraft were subjected to different piloted test inputs while the short period stabilator/elevator to pitch rate frequency response was estimated. Results show that the method can produce accurate results using wide-band piloted inputs instead of multisines. A new metric is introduced for evaluating which data points to include in the analysis and recommendations are provided for applying this method with piloted inputs.

  12. ATP-Responsive and Near-Infrared-Emissive Nanocarriers for Anticancer Drug Delivery and Real-Time Imaging

    PubMed Central

    Qian, Chenggen; Chen, Yulei; Zhu, Sha; Yu, Jicheng; Zhang, Lei; Feng, Peijian; Tang, Xin; Hu, Quanyin; Sun, Wujin; Lu, Yue; Xiao, Xuanzhong; Shen, Qun-Dong; Gu, Zhen

    2016-01-01

    Stimuli-responsive and imaging-guided drug delivery systems hold vast promise for enhancement of therapeutic efficacy. Here we report an adenosine-5'-triphosphate (ATP)-responsive and near-infrared (NIR)-emissive conjugated polymer-based nanocarrier for the controlled release of anticancer drugs and real-time imaging. We demonstrate that the conjugated polymeric nanocarriers functionalized with phenylboronic acid tags on surface as binding sites for ATP could be converted to the water-soluble conjugated polyelectrolytes in an ATP-rich environment, which promotes the disassembly of the drug carrier and subsequent release of the cargo. In vivo studies validate that this formulation exhibits promising capability for inhibition of tumor growth. We also evaluate the metabolism process by monitoring the fluorescence signal of the conjugated polymer through the in vivo NIR imaging. PMID:27217838

  13. Choline molecular imaging with small-animal PET for monitoring tumor cellular response to photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Wang, Hesheng; Wu, Chunying; Meyers, Joseph; Xue, Liang-Yan; MacLennan, Gregory; Schluchter, Mark

    2009-02-01

    We are developing and evaluating choline molecular imaging with positron emission tomography (PET) for monitoring tumor response to photodynamic therapy (PDT) in animal models. Human prostate cancer (PC-3) was studied in athymic nude mice. A second-generation photosensitizer Pc 4 was used for PDT in tumor-bearing mice. MicroPET images with 11C-choline were acquired before PDT and 48 h after PDT. Time-activity curves of 11C-choline uptake were analyzed before and after PDT. For treated tumors, normalized choline uptake decreased significantly 48 h after PDT, compared to the same tumors pre-PDT (p <~ 0.001). However, for the control tumors, normalized choline uptake increased significantly (p <~ 0.001). PET imaging with 11C-choline is sensitive to detect early tumor response to PDT in the animal model of human prostate cancer.

  14. A database system to support image algorithm evaluation

    NASA Technical Reports Server (NTRS)

    Lien, Y. E.

    1977-01-01

    The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.

  15. Automatic landmark generation for deformable image registration evaluation for 4D CT images of lung

    NASA Astrophysics Data System (ADS)

    Vickress, J.; Battista, J.; Barnett, R.; Morgan, J.; Yartsev, S.

    2016-10-01

    Deformable image registration (DIR) has become a common tool in medical imaging across both diagnostic and treatment specialties, but the methods used offer varying levels of accuracy. Evaluation of DIR is commonly performed using manually selected landmarks, which is subjective, tedious and time consuming. We propose a semi-automated method that saves time and provides accuracy comparable to manual selection. Three landmarking methods including manual (with two independent observers), scale invariant feature transform (SIFT), and SIFT with manual editing (SIFT-M) were tested on 10 thoracic 4DCT image studies corresponding to the 0% and 50% phases of respiration. Results of each method were evaluated against a gold standard (GS) landmark set comparing both mean and proximal landmark displacements. The proximal method compares the local deformation magnitude between a test landmark pair and the closest GS pair. Statistical analysis was done using an intra class correlation (ICC) between test and GS displacement values. The creation time per landmark pair was 22, 34, 2.3, and 4.3 s for observers 1 and 2, SIFT, and SIFT-M methods respectively. Across 20 lungs from the 10 CT studies, the ICC values between the GS and observer 1 and 2, SIFT, and SIFT-M methods were 0.85, 0.85, 0.84, and 0.82 for mean lung deformation, and 0.97, 0.98, 0.91, and 0.96 for proximal landmark deformation, respectively. SIFT and SIFT-M methods have an accuracy that is comparable to manual methods when tested against a GS landmark set while saving 90% of the time. The number and distribution of landmarks significantly affected the analysis as manifested by the different results for mean deformation and proximal landmark deformation methods. Automatic landmark methods offer a promising alternative to manual landmarking, if the quantity, quality and distribution of landmarks can be optimized for the intended application.

  16. Translation of infrared chemical imaging for cardiovascular evaluation

    NASA Astrophysics Data System (ADS)

    Tiwari, Saumya; Raman, Jai; Reddy, Vijaya; Dawson, Miranda; Bhargava, Rohit

    2016-03-01

    Infrared (IR) spectroscopic imaging has been applied to study histology of cardiovascular tissue, primarily using Fourier transform IR (FTIR) Imaging. Here we describe results for histologic imaging of cardiac biopsies using a fast, discrete frequency IR (DFIR) imaging system. Histologic classification of tissue is understood in terms of the constituent frequencies and speeded up by careful optimization of the data acquired. Results are compared to FTIR imaging in terms of the signal to noise ratio and information content.

  17. Evaluation of composite adhesive bonds using digital image correlation

    NASA Astrophysics Data System (ADS)

    Shrestha, Shashi Shekhar

    Advanced composite materials are widely used for many structural applications in the aerospace/aircraft industries today. Joining of composite structures using adhesive bonding offers several advantages over traditional fastening methods. However, this technique is not yet employed for fastening the primary structures of aircrafts or space vehicles. There are several reasons for this: There are not any reliable non-destructive evaluation (NDE) methods that can quantify the strength of the bonds, and there are no certifications of quality assurance for inspecting the bond quality. Therefore, there is a significant need for an effective, reliable, easy to use NDE method for the analysis of composite adhesive joints. This research aimed to investigate an adhesively bonded composite-aluminum joints of variable bond strength using digital image correlation (DIC). There are many future possibilities in continuing this research work. As the application of composite materials and adhesive bond are increasing rapidly, the reliability of the composite structures using adhesive bond should quantified. Hence a lot of similar research using various adhesive bonds and materials can be conducted for characterizing the behavior of adhesive bond. The results obtained from this research will set the foundation for the development of ultrasonic DIC as a nondestructive approach for the evaluation of adhesive bond line.

  18. Using Magnetic Resonance Imaging to Evaluate Dendritic Cell-Based Vaccination

    PubMed Central

    Ferguson, Peter M.; Slocombe, Angela; Tilley, Richard D.; Hermans, Ian F.

    2013-01-01

    Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI) as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy. PMID:23734246

  19. Diffusion-Weighted Magnetic Resonance Imaging in Monitoring Rectal Cancer Response to Neoadjuvant Chemoradiotherapy

    SciTech Connect

    Barbaro, Brunella; Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia; Vecchio, Fabio M.; Rizzo, Gianluca; Gambacorta, Maria Antonietta; Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi; Bonomo, Lorenzo

    2012-06-01

    Purpose: To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. Methods and Materials: The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28-83) provided informed consent. T{sub 2}- and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm{sup 2}/s) were acquired before, during (mean 12 days), and 6-8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Results: Low pretreatment ADCs (<1.0 Multiplication-Sign 10{sup -3}mm{sup 2}/s) were correlated with TRG 4 scores (p = .0011) and associated to extramural vascular invasion with ypN+ (85.7% positive predictive value for ypN+). During treatment, the mean percentage of increase in tumor ADC was significantly greater in the responders than in the nonresponders (p < .0001) and a >23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC {>=}1.4 Multiplication-Sign 10{sup -3}mm{sup 2}/s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2-4 groups were not significantly different. Conclusion: Diffusion-weighted magnetic resonance imaging seems to be a promising

  20. Evaluation of musculoskeletal sepsis with indium-111 white blood cell imaging

    SciTech Connect

    Ouzounian, T.J.; Thompson, L.; Grogan, T.J.; Webber, M.M.; Amstutz, H.C.

    1987-08-01

    The detection of musculoskeletal sepsis, especially following joint replacement, continues to be a challenging problem. Often, even with invasive diagnostic evaluation, the diagnosis of infection remains uncertain. This is a report on the first 55 Indium-111 white blood cell (WBC) images performed in 39 patients for the evaluation of musculoskeletal sepsis. There were 40 negative and 15 positive Indium-111 WBC images. These were correlated with operative culture and tissue pathology, aspiration culture, and clinical findings. Thirty-eight images were performed for the evaluation of possible total joint sepsis (8 positive and 30 negative images); 17 for the evaluation of nonarthroplasty-related musculoskeletal sepsis (7 positive and 10 negative images). Overall, there were 13 true-positive, 39 true-negative, two false-positive, and one false-negative images. Indium-111 WBC imaging is a sensitive and specific means of evaluating musculoskeletal sepsis, especially following total joint replacement.

  1. Development of Metrics to Evaluate Effectiveness of Emergency Response Operations

    DTIC Science & Technology

    2005-06-01

    00-00-2005 4. TITLE AND SUBTITLE Development of Metrics to Evaluate Efectiveness of Emergency Response Operations 5a. CONTRACT NUMBER 5b. GRANT...population and/or property. Furthermore, the disaster will be characterized as being large enough that the resources the community has to mitigate the...disaster are stretched beyond the limits of their capacity. Such events that a community can readily cope with, such as small fires, individual

  2. Image-driven cardiac left ventricle segmentation for the evaluation of multiview fused real-time 3-dimensional echocardiography images.

    PubMed

    Rajpoot, Kashif; Noble, J Alison; Grau, Vicente; Szmigielski, Cezary; Becher, Harald

    2009-01-01

    Real-time 3-dimensional echocardiography (RT3DE) permits the acquisition and visualization of the beating heart in 3D. Despite a number of efforts to automate the left ventricle (LV) delineation from RT3DE images, this remains a challenging problem due to the poor nature of the acquired images usually containing missing anatomical information and high speckle noise. Recently, there have been efforts to improve image quality and anatomical definition by acquiring multiple single-view RT3DE images with small probe movements and fusing them together after alignment. In this work, we evaluate the quality of the multiview fused images using an image-driven semiautomatic LV segmentation method. The segmentation method is based on an edge-driven level set framework, where the edges are extracted using a local-phase inspired feature detector for low-contrast echocardiography boundaries. This totally image-driven segmentation method is applied for the evaluation of end-diastolic (ED) and end-systolic (ES) single-view and multiview fused images. Experiments were conducted on 17 cases and the results show that multiview fused images have better image segmentation quality, but large failures were observed on ED (88.2%) and ES (58.8%) single-view images.

  3. Pre-clinical and Clinical Evaluation of High Resolution, Mobile Gamma Camera and Positron Imaging Devices

    DTIC Science & Technology

    2010-10-01

    04-1-0594 TITLE: Pre-clinical and Clinical Evaluation of High Resolution, Mobile Gamma Camera and Positron Imaging Devices PRINCIPAL...2004 - 20 SEP 2010 4. TITLE AND SUBTITLE Pre-clinical and clinical evaluation of high resolution, mobile gamma camera and positron imaging devices...a compact and mobile gamma and positron imaging camera . This imaging device has several advantages over conventional systems: (1) greater

  4. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017).

    PubMed

    Younes, A; Hilden, P; Coiffier, B; Hagenbeek, A; Salles, G; Wilson, W; Seymour, J F; Kelly, K; Gribben, J; Pfreunschuh, M; Morschhauser, F; Schoder, H; Zelenetz, A D; Rademaker, J; Advani, R; Valente, N; Fortpied, C; Witzig, T E; Sehn, L H; Engert, A; Fisher, R I; Zinzani, P-L; Federico, M; Hutchings, M; Bollard, C; Trneny, M; Elsayed, Y A; Tobinai, K; Abramson, J S; Fowler, N; Goy, A; Smith, M; Ansell, S; Kuruvilla, J; Dreyling, M; Thieblemont, C; Little, R F; Aurer, I; Van Oers, M H J; Takeshita, K; Gopal, A; Rule, S; de Vos, S; Kloos, I; Kaminski, M S; Meignan, M; Schwartz, L H; Leonard, J P; Schuster, S J; Seshan, V E

    2017-04-03

    In recent years, the number of approved and investigational agents that can be safely administered for the treatment of lymphoma patients for a prolonged period of time has substantially increased. Many of these novel agents are evaluated in early-phase clinical trials in patients with a wide range of malignancies, including solid tumors and lymphoma. Furthermore, with the advances in genome sequencing, new "basket" clinical trial designs have emerged that select patients based on the presence of specific genetic alterations across different types of solid tumors and lymphoma. The standard response criteria currently in use for lymphoma are the Lugano Criteria which are based on 18-Fluoro-deoxyglucose positron emission tomography (FDG-PET) or bidimensional tumor measurements on computerized tomography (CT) scans. These differ from the RECIST criteria used in solid tumors, which use unidimensional measurements. The RECIL group hypothesized that single dimension measurement could be used to assess response to therapy in lymphoma patients, producing results similar to the standard criteria. We tested this hypothesis by analyzing 47,828 imaging measurements from 2983 individual adult and pediatric lymphoma patients enrolled on 10 multicenter clinical trials, and developed new lymphoma response criteria (RECIL 2017). We demonstrate that assessment of tumor burden in lymphoma clinical trials can use the sum of longest diameters of a maximum of three target lesions. Furthermore, we introduced a new provisional category of a minor response. We also clarified response assessment in patients receiving novel immune therapy and targeted agents that generate unique imaging situations.

  5. Characteristics of Mindless Teaching Evaluations and the Moderating Effects of Image Compatibility.

    ERIC Educational Resources Information Center

    Dunegan, Kenneth J.; Hrivnak, Mary W.

    2003-01-01

    At 3 times, 164 management students completed student evaluations of teaching (SET), 150 completed an image compatibility questionnaire, and 155 evaluated instructors' overall performance. SET scores and overall evaluations were significantly correlated only when actual and ideal images of instructors were incompatible. When teaching was…

  6. Building an Evaluation Scale using Item Response Theory

    PubMed Central

    Lalor, John P.; Wu, Hao; Yu, Hong

    2016-01-01

    Evaluation of NLP methods requires testing against a previously vetted gold-standard test set and reporting standard metrics (accuracy/precision/recall/F1). The current assumption is that all items in a given test set are equal with regards to difficulty and discriminating power. We propose Item Response Theory (IRT) from psychometrics as an alternative means for gold-standard test-set generation and NLP system evaluation. IRT is able to describe characteristics of individual items - their difficulty and discriminating power - and can account for these characteristics in its estimation of human intelligence or ability for an NLP task. In this paper, we demonstrate IRT by generating a gold-standard test set for Recognizing Textual Entailment. By collecting a large number of human responses and fitting our IRT model, we show that our IRT model compares NLP systems with the performance in a human population and is able to provide more insight into system performance than standard evaluation metrics. We show that a high accuracy score does not always imply a high IRT score, which depends on the item characteristics and the response pattern.1 PMID:28004039

  7. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated.

  8. [New Approach of Fundus Image Segmentation Evaluation Based on Topology Structure].

    PubMed

    Sheng, Hanwei; Dai, Peishan; Liu, Zhihang; Zhang-Wen, Miaoyun; Zhao, Yali; Fan, Min

    2015-10-01

    In view of the evaluation of fundus image segmentation, a new evaluation method was proposed to make up insufficiency of the traditional evaluation method which only considers the overlap of pixels and neglects topology structure of the retinal vessel. Mathematical morphology and thinning algorithm were used to obtain the retinal vascular topology structure. Then three features of retinal vessel, including mutual information, correlation coefficient and ratio of nodes, were calculated. The features of the thinned images taken as topology structure of blood vessel were used to evaluate retinal image segmentation. The manually-labeled images and their eroded ones of STARE database were used in the experiment. The result showed that these features, including mutual information, correlation coefficient and ratio of nodes, could be used to evaluate the segmentation quality of retinal vessel on fundus image through topology structure, and the algorithm was simple. The method is of significance to the supplement of traditional segmentation evaluation of retinal vessel on fundus image.

  9. Using optical coherence tomography (OCT) imaging in the evaluation of airway dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szabari, Margit V.; Kelly, Vanessa J.; Applegate, Matthew B.; Chee, Chunmin; Tan, Khay M.; Hariri, Lida P.; Harris, R. Scott; Winkler, Tilo; Suter, Melissa J.

    2016-03-01

    Asthma is a chronic disease resulting in periodic attacks of coughing and wheezing due to temporarily constricted and clogged airways. The pathophysiology of asthma and the process of airway narrowing are not completely understood. Appropriate in vivo imaging modality with sufficient spatial and temporal resolution to dynamically assess the behavior of airways is missing. Optical coherence tomography (OCT) enables real-time evaluation of the airways during dynamic and static breathing maneuvers. Our aim was to visualize the structure and function of airways in healthy and Methacholine (MCh) challenged lung. Sheep (n=3) were anesthetized, mechanically ventilated and imaged with OCT in 4 dependent and 4 independent airways both pre- and post-MCh administration. The OCT system employed a 2.4 Fr (0.8 mm diameter) catheter and acquired circumferential cross-sectional images in excess of 100 frames per second during dynamic tidal breathing, 20 second static breath-holds at end-inspiration and expiration pressure, and in a response to a single deep inhalation. Markedly different airway behavior was found in dependent versus non-dependent airway segments before and after MCh injection. OCT is a non-ionizing light-based imaging modality, which may provide valuable insight into the complex dynamic behavior of airway structure and function in the normal and asthmatic lung.

  10. Unidimensional Measurement May Evaluate Target Lymph Nodal Response After Induction Chemotherapy for Nasopharyngeal Carcinoma

    PubMed Central

    Chen, Chuanben; Zhang, Mingwei; Xu, Yuanji; Yue, Qiuyuan; Bai, Penggang; Zhou, Lin; Xiao, Youping; Zheng, Dechun; Lin, Kongqi; Qiu, Sufang; Chen, Yunbin; Pan, Jianji

    2016-01-01

    Abstract The aim of the study was to evaluate whether short axis and long axis on axial and coronal magnetic resonance imaging planes would reflect the tumor burden or alteration in size after induction chemotherapy in nasopharyngeal carcinoma. Patients with pathologically confirmed nasopharyngeal carcinoma (n = 37) with at least 1 positive cervical lymph node (axial short axis ≥15 mm) were consecutively enrolled in this prospective study. Lymph nodal measurements were performed along its short axis and long axis in both axial and coronal magnetic resonance imaging planes at diagnosis and after 2 cycles of induction chemotherapy. In addition, lymph nodal volumes were automatically calculated in 3D treatment-planning system, which were used as reference standard. Student's t test or nonparametric Mann–Whitney U test was used to compare the continuous quantitative variables. Meanwhile, the κ statistic and McNemar's test were used to evaluate the degree of agreement and discordance in response categorization among different measurements. Axial short axis was significantly associated with volumes at diagnosis (P < 0.001). A good agreement (κ=0.583) was found between axial short axis and volumetric criteria. However, the inconsistent lymph nodal shrinkage in 4 directions was observed. Axial short-axis shrinking was more rapid than the other 3 parameters. Interestingly, when utilizing the alternative planes for unidimensional measurements to assess tumor response, coronal short-axis showed the best concordance (κ=0.792) to the volumes. Axial short axis may effectively reflect tumor burden or change in tumor size in the assessment of target lymph nodal response after induction chemotherapy for nasopharyngeal carcinoma. However, it should be noted that axial short axis may amplify the therapeutic response. In addition, the role of coronal short axis in the assessment of tumor response needs further evaluation. PMID:26945354

  11. Aquifer imaging with pressure waves—Evaluation of low-impact characterization through sandbox experiments

    NASA Astrophysics Data System (ADS)

    Zhou, YaoQuan; Lim, David; Cupola, Fausto; Cardiff, Michael

    2016-03-01

    Understanding the detailed spatial variation of hydraulic properties in the subsurface has been the subject of intensive research over the past three decades. A recently developed approach to characterize subsurface properties is hydraulic tomography, in which a series of pumping tests are jointly inverted using a heterogeneous numerical model. Recently, Cardiff et al. (2013) proposed a modified tomography approach named Oscillatory Hydraulic Tomography (OHT), in which periodic pumping signals of different frequencies serve as the aquifer stimulation, and pressure responses are recorded at observation locations for tomographic analysis. Its key advantages over traditional hydraulic tomography are that: (1) there is no net injection or extraction of water, and (2) the impulse (an oscillatory signal of known frequency) is easily extracted from noisy data. However, OHT has only been evaluated through numerical experiments to date. In this work, we evaluate OHT performance by attempting to image known heterogeneities in a synthetic aquifer. An instrumented laboratory sandbox is filled with material of known hydraulic properties, and we measure aquifer responses due to oscillatory pumping stimulations at periods of 2, 5, 10, and 20 s. Pressure oscillation time series are processed through Fourier Transforms and inverted tomographically to obtain estimates of aquifer heterogeneity, using a fast, steady-periodic groundwater flow model. We show that OHT is able to provide robust estimates of aquifer hydraulic conductivity even in cases where relatively few pumping tests and observation locations are available. The use of multiple stimulation frequencies is also shown to improve imaging results.

  12. Body-Image Evaluation and Body-Image Investment among Adolescents: A Test of Sociocultural and Social Comparison Theories

    ERIC Educational Resources Information Center

    Morrison, Todd G.; Kalin, Rudolf; Morrison, Melanie A.

    2004-01-01

    Sociocultural theory and social comparison theory were used to account for variations in body-image evaluation and body-image investment among male and female adolescents (N = 1,543). Exposure to magazines and television programs containing idealistic body imagery as well as frequency of self-comparison to universalistic targets (e.g., fashion…

  13. Negative Stimulus-Response Compatibility Observed with a Briefly Displayed Image of a Hand

    ERIC Educational Resources Information Center

    Vainio, Lari

    2011-01-01

    Manual responses can be primed by viewing an image of a hand. The left-right identity of the viewed hand reflexively facilitates responses of the hand that corresponds to the identity. Previous research also suggests that when the response activation is triggered by an arrow, which is backward-masked and presented briefly, the activation manifests…

  14. Optical Imaging of Drug-Induced Metabolism Changes in Murine and Human Pancreatic Cancer Organoids Reveals Heterogeneous Drug Response

    PubMed Central

    Walsh, Alex J.; Castellanos, Jason A.; Nagathihalli, Nagaraj S.; Merchant, Nipun B.; Skala, Melissa C.

    2016-01-01

    Objectives Three-dimensional organoids derived from primary pancreatic ductal adenocarcinomas are an attractive platform for testing potential anticancer drugs on patient-specific tissue. Optical metabolic imaging (OMI) is a novel tool used to assess drug-induced changes in cellular metabolism, and its quantitative end point, the OMI index, is evaluated as a biomarker of drug response in pancreatic cancer organoids. Methods Optical metabolic imaging is used to assess both malignant cell and fibroblast drug response within primary murine and human pancreatic cancer organoids. Results Anticancer drugs induce significant reductions in the OMI index of murine and human pancreatic cancer organoids. Subpopulation analysis of OMI data revealed heterogeneous drug response and elucidated responding and nonresponding cell populations for a 7-day time course. Optical metabolic imaging index significantly correlates with immunofluorescence detection of cell proliferation and cell death. Conclusions Optical metabolic imaging of primary pancreatic ductal adenocarcinoma organoids is highly sensitive to drug-induced metabolic changes, provides a nondestructive method for monitoring dynamic drug response, and presents a novel platform for patient-specific drug testing and drug development. PMID:26495796

  15. Dopamine Inactivation Efficacy Related to Functional DAT1 and COMT Variants Influences Motor Response Evaluation

    PubMed Central

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Background Dopamine plays an important role in orienting, response anticipation and movement evaluation. Thus, we examined the influence of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of motor processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as motor postimperative negative variation were assessed. Adolescents were genotyped for the COMT Val158Met and two DAT1 polymorphisms (variable number tandem repeats in the 3′-untranslated region and in intron 8). Results The results revealed a significant interaction between COMT and DAT1, indicating that COMT exerted stronger effects on lateralized motor post-processing (centro-parietal motor postimperative negative variation) in homozygous carriers of a DAT1 haplotype increasing DAT1 expression. Source analysis showed that the time interval 500–1000 ms after the motor response was specifically affected in contrast to preceding movement anticipation and programming stages, which were not altered. Conclusions Motor slow negative waves allow the genomic imaging of dopamine inactivation effects on cortical motor post-processing during response evaluation. This is the first report to point towards epistatic effects in the motor system during response evaluation, i.e. during the post-processing of an already executed movement rather than during movement programming. PMID:22649558

  16. Genetic algorithm based image binarization approach and its quantitative evaluation via pooling

    NASA Astrophysics Data System (ADS)

    Hu, Huijun; Liu, Ya; Liu, Maofu

    2015-12-01

    The binarized image is very critical to image visual feature extraction, especially shape feature, and the image binarization approaches have been attracted more attentions in the past decades. In this paper, the genetic algorithm is applied to optimizing the binarization threshold of the strip steel defect image. In order to evaluate our genetic algorithm based image binarization approach in terms of quantity, we propose the novel pooling based evaluation metric, motivated by information retrieval community, to avoid the lack of ground-truth binary image. Experimental results show that our genetic algorithm based binarization approach is effective and efficiency in the strip steel defect images and our quantitative evaluation metric on image binarization via pooling is also feasible and practical.

  17. A clinical evaluation of the image quality computer program, CoCIQ.

    PubMed

    Norrman, E; Gårdestig, M; Persliden, J; Geijer, H

    2005-06-01

    To provide an objective way of measuring image quality, a computer program was designed that automatically analyzes the test images of a contrast-detail (CD) phantom. The program gives a quantified measurement of image quality by calculating an Image Quality Figure (IQF). The aim of this work was to evaluate the program and adjust it to clinical situations in order to find the detectable level where the program gives a reliable figure of the contrast resolution. The program was applied on a large variety of images with lumbar spine and urographic parameters, from very low to very high image qualities. It was shown that the computer program produces IQFs with small variations and there were a strong linear statistical relation between the computerized evaluation and the evaluation performed by human observers (R2= 0.98). This method offers a fast and easy way of conducting image quality evaluations.

  18. Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo.

    PubMed

    Guse, K; Dias, J D; Bauerschmitz, G J; Hakkarainen, T; Aavik, E; Ranki, T; Pisto, T; Särkioja, M; Desmond, R A; Kanerva, A; Hemminki, A

    2007-06-01

    Oncolytic viruses kill cancer cells by tumor-selective replication. Clinical data have established the safety of the approach but also the need of improvements in potency. Efficacy of oncolysis is linked to effective infection of target cells and subsequent productive replication. Other variables include intratumoral barriers, access to target cells, uptake by non-target organs and immune response. Each of these aspects relates to the location and degree of virus replication. Unfortunately, detection of in vivo replication has been difficult, labor intensive and costly and therefore not much studied. We hypothesized that by coinfection of a luciferase expressing E1-deleted virus with an oncolytic virus, both viruses would replicate when present in the same cell. Photon emission due to conversion of D-Luciferin is sensitive and penetrates tissues well. Importantly, killing of animals is not required and each animal can be imaged repeatedly. Two different murine xenograft models were used and intratumoral coinjections of luciferase encoding virus were performed with eight different oncolytic adenoviruses. In both models, we found significant correlation between photon emission and infectious virus production. This suggests that the system can be used for non-invasive quantitation of the amplitude, persistence and dynamics of oncolytic virus replication in vivo, which could be helpful for the development of more effective and safe agents.

  19. Susceptibility weighted imaging of stroke brain in response to normobaric oxygen (NBO) therapy

    NASA Astrophysics Data System (ADS)

    Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.

    2015-03-01

    The neuroprotective effect of oxygen leads to recent interest in normobaric oxygen (NBO) therapy after acute ischemic stroke. However, the mechanism remains unclear and inconsistent outcomes were reported in human studies. Because NBO aims to improve brain tissue oxygenation by enhancing oxygen delivery to ischemic tissue, monitoring the oxygenation level changes in response to NBO becomes necessary to elucidate the mechanism and to assess the efficacy. Susceptibility weighted imaging (SWI) which provides a new MRI contrast by combining the magnitude and phase images is fit for purpose. SWI is sensitive to deoxyhemoglobin level changes and thus can be used to evaluate the cerebral metabolic rate of oxygen. In this study, SWI was used for in vivo monitoring of oxygenation changes in a rat model of permanent middle cerebral artery occlusion (MCAO) before, during and after 30 min of NBO treatment. Regions of interest in ischemic core, penumbra and contralateral normal area were generated based on diffusionweighted imaging and perfusion imaging. Significant differences in SWI indicating different oxygenation levels were generally found: contralateral normal > penumbra > ischemic core. Ischemic core showed insignificant increase in oxygenation during NBO and returned to pre-treatment level after termination of NBO. Meanwhile, the oxygenation levels slightly increased in contralateral normal and penumbra regions during NBO and significantly decreased to a level lower than pre-treatment after termination of NBO, indicating secondary metabolic disruption upon the termination of transient metabolic support from oxygen. Further investigation of NBO effect combined with reperfusion is necessary while SWI can be used to detect hemorrhagic transformation after reperfusion.

  20. Calibration and Evaluation of Ultrasound Thermography using Infrared Imaging

    PubMed Central

    Hsiao, Yi-Sing; Deng, Cheri X.

    2015-01-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared (IR) thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound (HIFU) heating, we simultaneously acquired ultrasound and IR imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with IR-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (− 0.59 ± 0.08) and cardiac tissue (− 0.69 ± 0.18 °C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the IR measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45 – 50 °C in cardiac tissues. Unlike previous studies where thermocouples or water-bath techniques were used to evaluate the performance of ultrasound thermography, our results show that high resolution IR thermography provides a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634

  1. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalised cross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  2. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalisedcross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  3. Prospective Evaluation of Dual-Energy Imaging in Patients Undergoing Image Guided Radiation Therapy for Lung Cancer: Initial Clinical Results

    SciTech Connect

    Sherertz, Tracy; Hoggarth, Mark; Luce, Jason; Block, Alec M.; Nagda, Suneel; Harkenrider, Matthew M.; Emami, Bahman; Roeske, John C.

    2014-07-01

    Purpose: A prospective feasibility study was conducted to investigate the utility of dual-energy (DE) imaging compared to conventional x-ray imaging for patients undergoing kV-based image guided radiation therapy (IGRT) for lung cancer. Methods and Materials: An institutional review board-approved feasibility study enrolled patients with lung cancer undergoing IGRT and was initiated in September 2011. During daily setup, 2 sequential respiration-gated x-ray images were obtained using an on-board imager. Imaging was composed of 1 standard x-ray image at 120 kVp (1 mAs) and a second image obtained at 60 kVp (4 mAs). Weighted logarithmic subtraction of the 2 images was performed offline to create a soft tissue-selective DE image. Conventional and DE images were evaluated by measuring relative contrast and contrast-to-noise ratios (CNR) and also by comparing spatial localization, using both approaches. Imaging dose was assessed using a calibrated ion chamber. Results: To date, 10 patients with stage IA to IIIA lung cancer were enrolled and 57 DE images were analyzed. DE subtraction resulted in complete suppression of overlying bone in all 57 DE images, with an average improvement in relative contrast of 4.7 ± 3.3 over that of 120 kVp x-ray images (P<.0002). The improvement in relative contrast with DE imaging was seen for both smaller (gross tumor volume [GTV] ≤5 cc) and larger tumors (GTV >5 cc), with average relative contrast improvement ratios of 3.4 ± 4.1 and 5.4 ± 3.6, respectively. Moreover, the GTV was reliably localized in 95% of the DE images versus 74% of the single energy (SE images, (P=.004). Mean skin dose per DE image set was 0.44 ± 0.03 mGy versus 0.43 ± 0.03 mGy, using conventional kV imaging parameters. Conclusions: Initial results of this feasibility study suggest that DE thoracic imaging may enhance tumor localization in lung cancer patients receiving kV-based IGRT without increasing imaging dose.

  4. Performance evaluation of image processing algorithms on the GPU.

    PubMed

    Castaño-Díez, Daniel; Moser, Dominik; Schoenegger, Andreas; Pruggnaller, Sabine; Frangakis, Achilleas S

    2008-10-01

    The graphics processing unit (GPU), which originally was used exclusively for visualization purposes, has evolved into an extremely powerful co-processor. In the meanwhile, through the development of elaborate interfaces, the GPU can be used to process data and deal with computationally intensive applications. The speed-up factors attained compared to the central processing unit (CPU) are dependent on the particular application, as the GPU architecture gives the best performance for algorithms that exhibit high data parallelism and high arithmetic intensity. Here, we evaluate the performance of the GPU on a number of common algorithms used for three-dimensional image processing. The algorithms were developed on a new software platform called "CUDA", which allows a direct translation from C code to the GPU. The implemented algorithms include spatial transformations, real-space and Fourier operations, as well as pattern recognition procedures, reconstruction algorithms and classification procedures. In our implementation, the direct porting of C code in the GPU achieves typical acceleration values in the order of 10-20 times compared to a state-of-the-art conventional processor, but they vary depending on the type of the algorithm. The gained speed-up comes with no additional costs, since the software runs on the GPU of the graphics card of common workstations.

  5. Preliminary Evaluation of Thematic Mapper Image Data Quality

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Hall, F. G.; Pitts, D. E.; Bizzell, R. M.; Yao, S.; Sorensen, C.; Reyna, E.; Carnes, J. G.

    1984-01-01

    Thematic Mapper (TM) data from Mississippi County, Arkansas, and Webster County, Iowa, were examined for the purpose of evaluating the image data quality of the TM which was launched on board the LANDSAT-4 spacecraft. Preliminary clustering and principal component analysis indicates that the middle infrared and thermal infrared data of TM appear to add significant information over that of the near IR and visible bands of the multispectral scanner data. Moreover, the higher spatial resolution of TM appears to provide better definition of the edges and the within variability of agricultural fields. The geometric performance of TM data, without ground control correction, was found to exceed expectations. The modulation transfer function for the 1.65 m band was found to agree with prelaunch specifications when the effects of the GSFC cubic convolution and the atmosphere were removed. The band to band registration for the bands within the noncooled focal plane was found to be better than specified. However, the middle infrared and thermal infrared, which are on a separate cooled focal plane were found to be misregistered and were significantly worse than prelaunch specifications.

  6. Radiopacity Evaluation of Contemporary Luting Cements by Digitization of Images

    PubMed Central

    Reis, José Maurício dos Santos Nunes; Jorge, Érica Gouveia; Ribeiro, João Gustavo Rabelo; Pinelli, Ligia Antunes Pereira; Abi-Rached, Filipe de Oliveira; Tanomaru-Filho, Mário

    2012-01-01

    Objective. The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10 × 1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (α = 0.05). Results. The Zinc Cement was the most radiopaque material tested (P < 0.05). The resin cements presented higher radiopacity (P < 0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (P < 0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard. PMID:23008777

  7. Requirement for measurement of accommodation response based image blur due to the integral photography

    NASA Astrophysics Data System (ADS)

    Yano, Sumio; Imai, Hiromichi; Park, Min-Chul

    2016-06-01

    In the first part of this paper, the principle and the development of IP display using computer software were described. Next, the measurement results of accommodation response for the developed IP display were described. As a result, the accommodation response was linearly changed as the depth position of the visual target moved in and out of the range of the depth of focus. On the other hand, the influences generated by the image blur for the accommodation response were investigated experimentally using stereoscopic images. The results showed that the accommodation response was coincident to the convergence point of stereoscopic images with less than 3 cpd spatial resolution. Based on these results, the considerations of the measurement results of the accommodation response for the development IP were examined. The requirements of the measurement condition of accommodation response for IP were also discussed.

  8. Generating color terrain images in an emergency response system

    SciTech Connect

    Belles, R.D.

    1985-08-01

    The Atmospheric Release Advisory Capability (ARAC) provides real-time assessments of the consequences resulting from an atmospheric release of radioactive material. In support of this operation, a system has been created which integrates numerical models, data acquisition systems, data analysis techniques, and professional staff. Of particular importance is the rapid generation of graphical images of the terrain surface in the vicinity of the accident site. A terrain data base and an associated acquisition system have been developed that provide the required terrain data. This data is then used as input to a collection of graphics programs which create and display realistic color images of the terrain. The graphics system currently has the capability of generating color shaded relief images from both overhead and perspective viewpoints within minutes. These images serve to quickly familiarize ARAC assessors with the terrain near the release location, and thus permit them to make better informed decisions in modeling the behavior of the released material. 7 refs., 8 figs.

  9. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  10. [Functional imaging of pain: from the somatic response to emotions].

    PubMed

    Laurent, Bernard

    2013-01-01

    Functional brain imaging in subjects experiencing pain (real, observed or imagined) has led to considerable progress in our understanding of the role of the brain andpsyche in pain integration and control, as well as some forms of somatoform pain with no anatomical basis. This research is challenging not only the dichotomy between the soma and psyche, but also the concept of psychosomatic pain.

  11. A quantitative evaluation of the public response to climate engineering

    NASA Astrophysics Data System (ADS)

    Wright, Malcolm J.; Teagle, Damon A. H.; Feetham, Pamela M.

    2014-02-01

    Atmospheric greenhouse gas concentrations continue to increase, with CO2 passing 400 parts per million in May 2013. To avoid severe climate change and the attendant economic and social dislocation, existing energy efficiency and emissions control initiatives may need support from some form of climate engineering. As climate engineering will be controversial, there is a pressing need to inform the public and understand their concerns before policy decisions are taken. So far, engagement has been exploratory, small-scale or technique-specific. We depart from past research to draw on the associative methods used by corporations to evaluate brands. A systematic, quantitative and comparative approach for evaluating public reaction to climate engineering is developed. Its application reveals that the overall public evaluation of climate engineering is negative. Where there are positive associations they favour carbon dioxide removal (CDR) over solar radiation management (SRM) techniques. Therefore, as SRM techniques become more widely known they are more likely to elicit negative reactions. Two climate engineering techniques, enhanced weathering and cloud brightening, have indistinct concept images and so are less likely to draw public attention than other CDR or SRM techniques.

  12. Cancer Education Program Evaluation: A Responsive Approach to Planning an Evaluation and Initial Results.

    ERIC Educational Resources Information Center

    Pearsol, James A.

    This paper describes evaluation planning for the Cancer Education Program (CEP) at Ohio State University (OSU). The three-year OSU CEP project was designed as a multidisciplinary cancer education program. A responsive method, which trades off some measurement precision in order to increase the usefulness of the findings, was employed in the…

  13. Predictive values of diffusion-weighted imaging and perfusion-weighted imaging in evaluating the efficacy of transcatheter arterial chemoembolization for hepatocellular carcinoma

    PubMed Central

    Lin, Min; Tian, Man-Man; Zhang, Wei-Ping; Xu, Li; Jin, Ping

    2016-01-01

    This study explored the predictive values of diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) in evaluating the efficacy of transcatheter arterial chemoembolization (TACE) for patients with hepatocellular carcinoma (HCC). A total of 118 HCC patients treated with TACE were selected from April 2013 to November 2015. T1-weighted imaging (T1WI)/T2-weighted imaging (T2WI), DWI, and PWI were performed on all patients before and after TACE. Efficacy was evaluated according to modified Response Evaluation Criteria in Solid Tumors 1.1. Receiver operating characteristic curve was used to evaluate the diagnostic power of quantitative DWI and PWI parameters in evaluating the efficacy of TACE for HCC patients. Among the 118 HCC patients, there were 17 cases (14.4%) with complete response, 50 cases (42.4%) with partial response, 28 cases (23.7%) with stable disease, and 23 cases (19.5%) with progressive disease. There were 67 patients in the effective group (complete response + partial response) and 51 patients in the ineffective group (stable disease + progressive disease). Before TACE, there were significant differences in maximum tumor diameter (MTD), apparent diffusion coefficient (ADC), slow ADC (Dslow), fast ADC (Dfast), transfer constant of vessel at the maximum level (Ktrans), and rate constant of backflux (Kep) between the effective and ineffective groups (all P<0.05). After TACE, the effective group exhibited lower MTD, Dfast, and Kep and higher ADC and Dslow than the ineffective group (all P<0.05). Tumor regression rate negatively correlated with MTD, Ktrans, Kep, and Dfast but positively correlated with ADC and Dslow. Receiver operating characteristic curve analysis suggested that the area under the curve of ADC, Dslow, Dfast, Ktrans, and Kep were 0.869, 0.833, 0.812, 0.802, and 0.809, respectively. In conclusion, these results suggest that quantitative DWI and PWI parameters might be useful in evaluating the efficacy of TACE in the treatment of

  14. Probability effects on stimulus evaluation and response processes

    NASA Technical Reports Server (NTRS)

    Gehring, W. J.; Gratton, G.; Coles, M. G.; Donchin, E.

    1992-01-01

    This study investigated the effects of probability information on response preparation and stimulus evaluation. Eight subjects responded with one hand to the target letter H and with the other to the target letter S. The target letter was surrounded by noise letters that were either the same as or different from the target letter. In 2 conditions, the targets were preceded by a warning stimulus unrelated to the target letter. In 2 other conditions, a warning letter predicted that the same letter or the opposite letter would appear as the imperative stimulus with .80 probability. Correct reaction times were faster and error rates were lower when imperative stimuli confirmed the predictions of the warning stimulus. Probability information affected (a) the preparation of motor responses during the foreperiod, (b) the development of expectancies for a particular target letter, and (c) a process sensitive to the identities of letter stimuli but not to their locations.

  15. Prognostication and response assessment in liver and pancreatic tumors: The new imaging

    PubMed Central

    De Robertis, Riccardo; Tinazzi Martini, Paolo; Demozzi, Emanuele; Puntel, Gino; Ortolani, Silvia; Cingarlini, Sara; Ruzzenente, Andrea; Guglielmi, Alfredo; Tortora, Giampaolo; Bassi, Claudio; Pederzoli, Paolo; D’Onofrio, Mirko

    2015-01-01

    Diffusion-weighted imaging (DWI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) are technical improvements of morphologic imaging that can evaluate functional properties of hepato-bilio-pancreatic tumors during conventional MRI or CT examinations. Nevertheless, the term “functional imaging” is commonly used to describe molecular imaging techniques, as positron emission tomography (PET) CT/MRI, which still represent the most widely used methods for the evaluation of functional properties of solid neoplasms; unlike PET or single photon emission computed tomography, functional imaging techniques applied to conventional MRI/CT examinations do not require the administration of radiolabeled drugs or specific equipments. Moreover, DWI and DCE-MRI can be performed during the same session, thus providing a comprehensive “one-step” morphological and functional evaluation of hepato-bilio-pancreatic tumors. Literature data reveal that functional imaging techniques could be proposed for the evaluation of these tumors before treatment, given that they may improve staging and predict prognosis or clinical outcome. Microscopic changes within neoplastic tissues induced by treatments can be detected and quantified with functional imaging, therefore these techniques could be used also for post-treatment assessment, even at an early stage. The aim of this editorial is to describe possible applications of new functional imaging techniques apart from molecular imaging to hepatic and pancreatic tumors through a review of up-to-date literature data, with a particular emphasis on pathological correlations, prognostic stratification and post-treatment monitoring. PMID:26078555

  16. Contextual Analysis of Immunological Response through Whole-Organ Fluorescent Imaging

    PubMed Central

    Woodruff, Matthew C.; Herndon, Caroline N.; Heesters, B.A.

    2013-01-01

    Abstract Background As fluorescent microscopy has developed, significant insights have been gained into the establishment of immune response within secondary lymphoid organs, particularly in draining lymph nodes. While established techniques such as confocal imaging and intravital multi-photon microscopy have proven invaluable, they provide limited insight into the architectural and structural context in which these responses occur. To interrogate the role of the lymph node environment in immune response effectively, a new set of imaging tools taking into account broader architectural context must be implemented into emerging immunological questions. Methods and Results Using two different methods of whole-organ imaging, optical clearing and three-dimensional reconstruction of serially sectioned lymph nodes, fluorescent representations of whole lymph nodes can be acquired at cellular resolution. Using freely available post-processing tools, images of unlimited size and depth can be assembled into cohesive, contextual snapshots of immunological response. Through the implementation of robust iterative analysis techniques, these highly complex three-dimensional images can be objectified into sortable object data sets. These data can then be used to interrogate complex questions at the cellular level within the broader context of lymph node biology. Conclusions By combining existing imaging technology with complex methods of sample preparation and capture, we have developed efficient systems for contextualizing immunological phenomena within lymphatic architecture. In combination with robust approaches to image analysis, these advances provide a path to integrating scientific understanding of basic lymphatic biology into the complex nature of immunological response. PMID:24044754

  17. Evaluating performance of biomedical image retrieval systems--an overview of the medical image retrieval task at ImageCLEF 2004-2013.

    PubMed

    Kalpathy-Cramer, Jayashree; de Herrera, Alba García Seco; Demner-Fushman, Dina; Antani, Sameer; Bedrick, Steven; Müller, Henning

    2015-01-01

    Medical image retrieval and classification have been extremely active research topics over the past 15 years. Within the ImageCLEF benchmark in medical image retrieval and classification, a standard test bed was created that allows researchers to compare their approaches and ideas on increasingly large and varied data sets including generated ground truth. This article describes the lessons learned in ten evaluation campaigns. A detailed analysis of the data also highlights the value of the resources created.

  18. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  19. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    NASA Astrophysics Data System (ADS)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  20. Database Development for Ocean Impacts: Imaging, Outreach and Rapid Response

    DTIC Science & Technology

    2012-04-18

    the anatomy and physiology of marine mammals, their prey species, and other endangered marine species for which there are concerns for underwater...and representations of marine mammal anatomy and standardization of measures taken during strandings which will as improve our broader understanding...imaging procedures, related research, and determination of normal vs abnormal findings for in vivo and post mortem exams of marine mammals and sea turtles

  1. Evaluation of image quality and factor for international telepathology through the Internet

    NASA Astrophysics Data System (ADS)

    Yagi, Yukako; Azumi, Norio; Elsayed, Alaa M.; Mun, Seong K.

    1997-05-01

    In the telepathology, rendering devices significantly influence the perceived image quality. If the resolution and color depth are reduced beyond a certain point, however, it is not possible to obtain images which can be used in telepathology even in an ideal situation. With this in mind, we evaluated image quality, compression, size and rates of data exchange with several histological cases on several kinds of systems for our International Consortium for Internet Telepathology (ICIT) project. The ICIT network uses widely available nonpropriety hardware and software with the Internet as a means of communication.In this study, we discuss the effective image acquisition methods for telepathology. To evaluate microscopic images, various resolution size were used. The images were also evaluated at different JPEG compression ratio, including zero compression, and different format. To evaluate an entire glass slide image, a scanner in transparency mode and an NTSC camera were used. Every case showed similar results. For he microscopic image, although the high resolution images, such as 2k X 1.5k or higher, contain more diagnostic information than lower resolution images; sufficient data was retained in the latter that it does not appear to negatively effect diagnosis. The circumstance and condition for image acquisition, such as specimen thickness or dast of glass slide, are most influenced on the highest image resolution. Usually, we use 5-10 images/case for a telepathology conference. To see all images of a case at a glance before detailed observation, or to switch to the other images immediately, a lower resolution,such as 1k X 0.7k is useful. For the entire glass slide, the reviewer could select the desired area by scanner; however, selecting it by the NTSC camera, was not easy to do. On the monitor, the scanned image has almost the same information as the microscopic image captured by the NTSC camera with 2x objective lens. To ge ta high enough quality image, the

  2. Mission-driven evaluation of imaging system quality

    NASA Astrophysics Data System (ADS)

    Kattnig, Alain Philippe; Ferhani, Ouamar; Primot, Jéro‸Me

    2001-12-01

    Image-quality criteria are usually intended to achieve the best possible image at a given sampling rate, which is ill-suited to applications where the detection of well-defined geometric and radiometric properties of scenes or objects are paramount. The quality criterion developed here for designing observation systems is based on properties of the objects to be viewed. It is thus an object-oriented imaging quality criterion rather than an image-oriented one. We also propose to go beyond optimization and calibrate a numerical scale that can be used to rate the quality of the service delivered by any observation system.

  3. Freezing effect on bread appearance evaluated by digital imaging

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.

    1999-01-01

    In marketing channels, bread is sometimes delivered in a frozen sate for distribution. Changes occur in physical dimensions, crumb grain and appearance of slices. Ten loaves, twelve bread slices per loaf were scanned for digital image analysis and then frozen in a commercial refrigerator. The bread slices were stored for four weeks scanned again, permitted to thaw and scanned a third time. Image features were extracted, to determine shape, size and image texture of the slices. Different thresholds of grey levels were set to detect changes that occurred in crumb, images were binarized at these settings. The number of pixels falling into these gray level settings were determined for each slice. Image texture features of subimages of each slice were calculated to quantify slice crumb grain. The image features of the slice size showed shrinking of bread slices, as a results of freezing and storage, although shape of slices did not change markedly. Visible crumb texture changes occurred and these changes were depicted by changes in image texture features. Image texture features showed that slice crumb changed differently at the center of a slice compared to a peripheral area close to the crust. Image texture and slice features were sufficient for discrimination of slices before and after freezing and after thawing.

  4. Imaging of Hydrogel Microsphere Structure and Foreign Body Response Based on Endogenous X-Ray Phase Contrast

    DOE PAGES

    Appel, Alyssa A.; Ibarra, Veronica; Somo, Sami I.; ...

    2016-10-31

    Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to understand their stability in vivo. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. In this study, we demonstrate for the first time that X-ray phase contrast (XPC) imaging techniques enable 3D imaging and evaluation of islet volume, alginate hydrogel structure and local soft tissue response. Islets were encapsulated in alginate systems prepared in methods used in clinical trials and implanted in a rodent omentum pouch modelmore » as a treatment for type I diabetes. Microbeads were imaged with XPC prior to implantation and following implantation into an omentum pouch. Islets could be identified within alginate beads and the islet volume quantified. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads. Individual beads and the local encapsulation response were visualized and quantifiable. Measurements were in agreement with histology. The 3D structure of the microbeads could be characterized with XPC and failed beads could also be identified. These results point to the substantial potential of XPC as a tool for imaging biomaterials in small animal models.« less

  5. Imaging of Hydrogel Microsphere Structure and Foreign Body Response Based on Endogenous X-Ray Phase Contrast

    SciTech Connect

    Appel, Alyssa A.; Ibarra, Veronica; Somo, Sami I.; Larson, Jeffery C.; Garson, Alfred B.; Guan, Huifeng; McQuilling, John Patrick; Zhong, Zhong; Anastasio, Mark A.; Opara, Emmanuel C.; Brey, Eric M.

    2016-10-31

    Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to understand their stability in vivo. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. In this study, we demonstrate for the first time that X-ray phase contrast (XPC) imaging techniques enable 3D imaging and evaluation of islet volume, alginate hydrogel structure and local soft tissue response. Islets were encapsulated in alginate systems prepared in methods used in clinical trials and implanted in a rodent omentum pouch model as a treatment for type I diabetes. Microbeads were imaged with XPC prior to implantation and following implantation into an omentum pouch. Islets could be identified within alginate beads and the islet volume quantified. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads. Individual beads and the local encapsulation response were visualized and quantifiable. Measurements were in agreement with histology. The 3D structure of the microbeads could be characterized with XPC and failed beads could also be identified. These results point to the substantial potential of XPC as a tool for imaging biomaterials in small animal models.

  6. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled 'Instrumentation and Quantitative Methods of Evaluation.' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  7. FocusALL: Focal Stacking of Microscopic Images Using Modified Harris Corner Response Measure.

    PubMed

    Sigdel, Madhu S; Sigdel, Madhav; Dinç, Semih; Dinç, Imren; Pusey, Marc L; Aygün, Ramazan S

    2016-01-01

    Automated image analysis of microscopic images such as protein crystallization images and cellular images is one of the important research areas. If objects in a scene appear at different depths with respect to the camera's focal point, objects outside the depth of field usually appear blurred. Therefore, scientists capture a collection of images with different depths of field. Focal stacking is a technique of creating a single focused image from a stack of images collected with different depths of field. In this paper, we introduce a novel focal stacking technique, FocusALL, which is based on our modified Harris Corner Response Measure. We also propose enhanced FocusALL for application on images collected under high resolution and varying illumination. FocusALL resolves problems related to the assumption that focus regions have high contrast and high intensity. Especially, FocusALL generates sharper boundaries around protein crystal regions and good in focus images for high resolution images in reasonable time. FocusALL outperforms other methods on protein crystallization images and performs comparably well on other datasets such as retinal epithelial images and simulated datasets.

  8. FocusALL: Focal Stacking of Microscopic Images Using Modified Harris Corner Response Measure

    PubMed Central

    Sigdel, Madhu S.; Sigdel, Madhav; Dinç, Semih; Dinç, Imren; Pusey, Marc L.; Aygün, Ramazan S.

    2016-01-01

    Automated image analysis of microscopic images such as protein crystallization images and cellular images is one of the important research areas. If objects in a scene appear at different depths with respect to the camera's focal point, objects outside the depth of field usually appear blurred. Therefore, scientists capture a collection of images with different depths of field. Focal stacking is a technique of creating a single focused image from a stack of images collected with different depths of field. In this paper, we introduce a novel focal stacking technique, FocusALL, which is based on our modified Harris Corner Response Measure. We also propose enhanced FocusALL for application on images collected under high resolution and varying illumination. FocusALL resolves problems related to the assumption that in focus regions have high contrast and high intensity. Especially, FocusALL generates sharper boundaries around protein crystal regions and good in focus images for high resolution images in reasonable time. FocusALL outperforms other methods on protein crystallization images and performs comparably well on other datasets such as retinal epithelial images and simulated datasets. PMID:27045831

  9. Imaging studies for evaluating impact of position sampling techniques in PET scanners

    PubMed Central

    Surti, Suleman; Werner, Matthew E.; Karp, Joel S.

    2011-01-01

    Previously we have evaluated two crystal calibration techniques that can be applied to pixelated detector designs to improve system spatial resolution without detector motion. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. Here we performed imaging studies with a Mini Deluxe hot rod phantom and a hot sphere phantom (sphere diameters of 4.95 and 7.86-mm with 6:1 uptake relative to background) using the standard crystal calibration technique, as well as the inter-crystal and Compton rejection calibration techniques. Our results show improved separation of 1.6-mm diameter hot rods with the two new crystal calibration techniques that is consistent with improved spatial resolution. For the hot sphere phantom the contrast recovery is improved with both the inter-crystal and Compton rejection calibration techniques over the standard calibration technique. The only drawback of the inter-crystal calibration technique is the increase in the number of possible lines-of-response (LORs) (factor of 16) that may slow image reconstruction. With the Compton rejection calibration technique, loss of counts leads to increased noise in the images. PMID:21547006

  10. An evaluation of the Aerie Real campaign: Potential for promoting positive body image?

    PubMed

    Convertino, Alexandra D; Rodgers, Rachel F; Franko, Debra L; Jodoin, Adriana

    2016-11-25

    This study evaluated the impact on young women's body satisfaction of an advertising campaign: Aerie Real, which included images of models who were not digitally modified. In total, 200 female students were randomly allocated to view either Aerie Real images or digitally modified images from previous campaigns. In the total sample, no condition differences appeared. However, participants with high appearance comparison reported a smaller decrease in body satisfaction after viewing the Aerie Real images as compared to those viewing previous images (p = .003). Findings provide preliminary support for the Aerie Real campaign as less deleterious form of media for body image.

  11. Evaluation of Mobile Phone Performance for Near-Infrared Fluorescence Imaging.

    PubMed

    Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T Joshua

    2016-08-19

    We have investigated the potential for contrast-enhanced near-infrared fluorescence imaging of tissue on a mobile phone platform. CCD- and phone-based cameras were used to image molded and 3Dprinted tissue phantoms, and an ex vivo animal model. Quantitative and qualitative evaluations of image quality demonstrate the viability of this approach and elucidate variations in performance due to wavelength, pixel color and image processing.

  12. Raman chemical imaging technology for food safety and quality evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raman chemical imaging combines Raman spectroscopy and digital imaging to visualize composition and morphology of a target. This technique offers great potential for food safety and quality research. Most commercial Raman instruments perform measurement at microscopic level, and the spatial range ca...

  13. Evaluation of Night Vision Devices for Image Fusion Studies

    DTIC Science & Technology

    2004-12-01

    of the different NVDs. A new method using MATLAB programming to objectively analyze digitized images for characterization of II based NVDs is... MATLAB programming to objectively analyze digitized images for characterization of II based NVDs is proposed. This test method can also be extended to...75 APPENDIX A: ASTROSCOPE 9350 ANALYSIS RESULTS.......................... 77 APPENDIX B: MATLAB CODES

  14. Evaluation of image metrics for target discrimination using psychophysical experiments

    NASA Astrophysics Data System (ADS)

    Copeland, Anthony C.; Trivedi, Mohan M.; McManamey, James R.

    1996-06-01

    Image clutter affects the perceptual ability of any system for object detection. A procedure for conducting psychophysical experiments has been developed to test computational models for the perceptual similarity or difference of texture patterns, which contributes to image clutter. This experimental procedure is based on Thurstone's law of comparative judgment, which is used along with the method of paired comparisons to assign relative psychological scale values to image stimuli. To facilitate consistency in the presentation of stimuli and collection of data, an X-windows testing environment has been developed called the X-based perceptual experiment testbed. Using this experimental procedure, a pilot study was conducted in which the image stimuli consisted of targets and backgrounds with texture patterns of uncorrelated Gaussian noise. With such patterns, only first-order image statistics are of significance. The psychological scale values relating the level of `target distinctness' in each of the image stimuli were compared to several first-order image metrics. Correlation coefficients as high as 0.9881 were found between the scale values and the image metrics.

  15. Critical Evaluation of Ayurvedic Plants for Stimulating Intrinsic Antioxidant Response

    PubMed Central

    Shukla, Sunil Dutt; Bhatnagar, Maheep; Khurana, Sukant

    2012-01-01

    Oxidative damage caused by free radicals plays an important role in the causation and progression of many diseases, including aging. Free-radical damage is countered by many mechanisms, including both active antioxidant enzymatic activity in our body and passive antioxidants. Antioxidant response of our body can accommodate increased oxidative damage in diseased states to a level but beyond that level, additional antioxidants are required to combat the increased stress. Apart from the regular dietary sources of antioxidants, many traditional herbal medicines demonstrate a potential to boost antioxidant activity. Rasayana chikitsa that deals with rejuvenation and revitalization is a branch of the Indian traditional medical system of ayurveda. We review some select herbs described in rasayana chikitsa that have been assessed by modern means for stimulating intrinsic antioxidant responses in humans. A critical evaluation of rasayana chikitsa will likely provide urgently needed, actual stimulants of our physiological antioxidant responses and not just more passive antioxidants to add to an already large catalog. PMID:22855669

  16. Performance evaluation of ultrasonic Nakagami image in tissue characterization.

    PubMed

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng; Chen, Wen-Shiang

    2008-04-01

    Conventional ultrasonic B-mode images qualitatively describe tissue structures but are unsuitable for quantitative analyses of scatterer properties. We have recently developed an ultrasonic parametric imaging technique based on the Nakagami statistical distribution that is able to quantify scatterer concentrations. The aim of the present study is to further explore both the behavior of a Nakagami image in characterizing different scatterer structures at different signal-to-noise ratios (SNRs) and the feasibility of Nakagami imaging using a general commercial ultrasound scanner for tissue examinations. Simulations, experiments on a tissue-mimicking phantom and in vitro measurements on a muscle tissue before and after microwave treatment were carried out. The SNR and contrast-to-noise ratio (CNR) were estimated to quantify image performance. The results demonstrate that a Nakagami image can differentiate different scatterer concentrations for single, hypoechoic and hyperechoic targets. Also, a Nakagami image, when combined with an ultrasound scanner, can complement the B-scan to characterize tissue and to identify the region of interest with a larger CNR. However, the noise effect can degrade the performance of a Nakagami image. When the signal SNR decreased to 15 dB in simulations and to 8 dB in experiments, the CNR of the hyperechoic Nakagami image decreased by 4% and 27%, respectively, and that of the hypoechoic one decreased by 42% and 80%, respectively. These results indicate that a Nakagami image behaves well in identifying regions with high scatterer concentrations but does not perform well when both the scatterer concentration and SNR are low.

  17. Forensic use of photo response non-uniformity of imaging sensors and a counter method.

    PubMed

    Dirik, Ahmet Emir; Karaküçük, Ahmet

    2014-01-13

    Analogous to use of bullet scratches in forensic science, the authenticity of a digital image can be verified through the noise characteristics of an imaging sensor. In particular, photo-response non-uniformity noise (PRNU) has been used in source camera identification (SCI). However, this technique can be used maliciously to track or inculpate innocent people. To impede such tracking, PRNU noise should be suppressed significantly. Based on this motivation, we propose a counter forensic method to deceive SCI. Experimental results show that it is possible to impede PRNU-based camera identification for various imaging sensors while preserving the image quality.

  18. Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy.

    PubMed

    Campa, Víctor M; Capilla, Almudena; Varela, María J; de la Rocha, Arlet M Acanda; Fernandez-Troyano, Juan C; Barreiro, R Belén; Lopez-Gimenez, Juan F

    2015-01-01

    The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method -the Q-Endosomes algorithm- that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP) receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP) and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution.

  19. Impact of imaging measurements on response assessment in glioblastoma clinical trials

    PubMed Central

    Reardon, David A.; Ballman, Karla V.; Buckner, Jan C.; Chang, Susan M.; Ellingson, Benjamin M.

    2014-01-01

    We provide historical and scientific guidance on imaging response assessment for incorporation into clinical trials to stimulate effective and expedited drug development for recurrent glioblastoma by addressing 3 fundamental questions: (i) What is the current validation status of imaging response assessment, and when are we confident assessing response using today's technology? (ii) What imaging technology and/or response assessment paradigms can be validated and implemented soon, and how will these technologies provide benefit? (iii) Which imaging technologies need extensive testing, and how can they be prospectively validated? Assessment of T1 +/− contrast, T2/FLAIR, diffusion, and perfusion-imaging sequences are routine and provide important insight into underlying tumor activity. Nonetheless, utility of these data within and across patients, as well as across institutions, are limited by challenges in quantifying measurements accurately and lack of consistent and standardized image acquisition parameters. Currently, there exists a critical need to generate guidelines optimizing and standardizing MRI sequences for neuro-oncology patients. Additionally, more accurate differentiation of confounding factors (pseudoprogression or pseudoresponse) may be valuable. Although promising, diffusion MRI, perfusion MRI, MR spectroscopy, and amino acid PET require extensive standardization and validation. Finally, additional techniques to enhance response assessment, such as digital T1 subtraction maps, warrant further investigation. PMID:25313236

  20. Thoughts on standardization of parameters for image evaluation

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1976-01-01

    Images received for image processing and analysis are obtained from a wide variety of sources and with a wide variety of sensors. Because it is desirable to have image processing algorithms be as universally applicable as possible, they should be designed, where possible, to be insensitive to the parametric variations of the source material. Where this is not possible, these variations must be taken into account. Therefore, it is necessary to consider what parameters may be defined in common across a suite of image types. Objective parameters or measurements of images which, in the proper combinations, may serve as surrogates for real images may be pixel-specific, location dependent, or combinations thereof. Parameters which have proven useful in defining the characteristics of images include the gray scale linearity, granularity of the quantization, spectral content, geometrical fidelity, resolution of the system expressed as either the point spread function or the modulation transfer function, and the spatial frequency content and characteristics of the data itself.

  1. X-ray tube-based diffraction enhanced imaging prototype images of full-thickness breast specimens: reader study evaluation

    NASA Astrophysics Data System (ADS)

    Faulconer, L. S.; Parham, C.; Connor, D. J.; Koomen, M.; Kuzmiak, C.; Pavic, D.; Livasy, C. A.; Kim, E.; Zeng, D.; Cole, E. B.; Zhong, Z.; Pisano, E. D.

    2009-02-01

    Conventional mammographic image contrast is derived from x-ray absorption, resulting in breast structure visualization due to density gradients that attenuate radiation without distinction between transmitted and scattered or refracted x-rays. This leads to image blurring and contrast reduction, hindering the early detection of small or otherwise occult cancers. Diffraction enhanced imaging (DEI) allows for dramatically increased contrast with decreased radiation dose compared to conventional mammographic imaging due to monochromatic x-rays, its unique refraction-based contrast mechanism and excellent scatter rejection. However, a lingering drawback to the clinical translation of DEI has been the requirement for synchrotron radiation. Our laboratory developed a DEI prototype (DEI-PR) utilizing a readily available Tungsten xray tube source and traditional DEI crystal optics, providing soft tissue images at 60keV. To demonstrate the clinical utility of our DEI-PR, we acquired images of full-thickness human breast tissue specimens on synchrotron-based DEI, DEI-PR and digital mammography systems. A reader study was designed to allow unbiased assessment of system performance when analyzing three systems with dissimilar imaging parameters and requiring analysis of images unfamiliar to radiologists. A panel of expert radiologists evaluated lesion feature visibility and histopathology correlation after receiving training on the interpretation of refraction contrast mammographic images. Preliminary data analysis suggests that our DEI system performed roughly equivalently with the traditional DEI system, demonstrating a significant step toward clinical translation of this modality for breast cancer applications.

  2. Image guidance, treatment planning and evaluation of cancer interstitial focal therapy using liposomal radionuclides

    NASA Astrophysics Data System (ADS)

    Ware, Steve William

    microenvironment through correlation with in-plane compartmental sizes obtained from histopathology analysis of step-sectioned prostatectomy specimens; 2) Gauge the ability of a reader to plan an interstitial focal treatment using MRI. This was accomplished by objective measures of contrast and volume measurement with subjective reader analysis of tumor conspicuities; 3) Evaluation of the early biologic response to 186Re interstitial focal therapy. This was achieved by correlation of histochemistry (HC) markers: hetrochromatin protein alpha (HP1α), cluster of differentiation 34 (CD34), terminal deoxynucleotidal transferase nick end labeling (TUNEL), caspase 3, Ki-67 and hematoxylin & eosin (H&E) to the radiation distribution as seen on AR and radiation absorbed dose as computed from planar imaging. The conclusions of this study are that prostate MRI allows targeting of appropriate lesions for therapy by its ability to inform on the tumor microenvironment. MRI distinguishes prostatic tumors on the basis of tissue composition. Readers are better able reproduce volumes and thus plan interstitial therapy for tumors which have a denser, more homogeneous composition. The combination of SPECT and autoradiography showed a dose and position dependent expression of HC markers. These results demonstrate that multimodality imaging is capable of targeting, planning and evaluating interstitial focal therapy.

  3. Evaluation of Image-Guided Positioning for Frameless Intracranial Radiosurgery

    SciTech Connect

    Lamba, Michael Breneman, John C.; Warnick, Ronald E.

    2009-07-01

    Purpose: The standard for target alignment and immobilization in intracranial radiosurgery is frame-based alignment and rigid immobilization using a stereotactic head ring. Recent improvements in image-guidance systems have introduced the possibility of image-guided radiosurgery with nonrigid immobilization. We present data on the alignment accuracy and patient stability of a frameless image-guided system. Methods and Materials: Isocenter alignment errors were measured for in vitro studies in an anthropomorphic phantom for both frame-based stereotactic and frameless image-guided alignment. Subsequently, in vivo studies assessed differences between frame-based and image-guided alignment in patients who underwent frame-based intracranial radiosurgery. Finally, intratreatment target stability was determined by image-guided alignment performed before and after image-guided mask immobilized radiosurgery. Results: In vitro hidden target localization errors were comparable for the framed (0.7 {+-} 0.5 mm) and image-guided (0.6 {+-} 0.2 mm) techniques. The in vivo differences in alignment were 0.9 {+-} 0.5 mm (anteroposterior), -0.2 {+-} 0.4 mm (superoinferior), and 0.3 {+-} 0.5 mm (lateral). For in vivo stability tests, the mean distance differed between the pre- and post-treatment positions with mask-immobilized radiosurgery by 0.5 {+-} 0.3 mm. Conclusion: Frame-based and image-guided alignment accuracy in vitro was comparable for the system tested. In vivo tests showed a consistent trend in the difference of alignment in the anteroposterior direction, possibly due to torque to the ring and mounting system with frame-based localization. The mask system as used appeared adequate for patient immobilization.

  4. Database Development for Ocean Impacts: Imaging, Outreach and Rapid Response

    DTIC Science & Technology

    2011-09-30

    evaluate otolith structure and relationships to the swimbladder. • Oil samples from the Deepwater Horizon spill (C Reddy , Marine Chemistry...scanner has also been used in the last year to assist with “cold cases” for several law enforcement agencies. In these instances, ultra high

  5. 3D lidar imaging for detecting and understanding plant responses and canopy structure.

    PubMed

    Omasa, Kenji; Hosoi, Fumiki; Konishi, Atsumi

    2007-01-01

    Understanding and diagnosing plant responses to stress will benefit greatly from three-dimensional (3D) measurement and analysis of plant properties because plant responses are strongly related to their 3D structures. Light detection and ranging (lidar) has recently emerged as a powerful tool for direct 3D measurement of plant structure. Here the use of 3D lidar imaging to estimate plant properties such as canopy height, canopy structure, carbon stock, and species is demonstrated, and plant growth and shape responses are assessed by reviewing the development of lidar systems and their applications from the leaf level to canopy remote sensing. In addition, the recent creation of accurate 3D lidar images combined with natural colour, chlorophyll fluorescence, photochemical reflectance index, and leaf temperature images is demonstrated, thereby providing information on responses of pigments, photosynthesis, transpiration, stomatal opening, and shape to environmental stresses; these data can be integrated with 3D images of the plants using computer graphics techniques. Future lidar applications that provide more accurate dynamic estimation of various plant properties should improve our understanding of plant responses to stress and of interactions between plants and their environment. Moreover, combining 3D lidar with other passive and active imaging techniques will potentially improve the accuracy of airborne and satellite remote sensing, and make it possible to analyse 3D information on ecophysiological responses and levels of various substances in agricultural and ecological applications and in observations of the global biosphere.

  6. Controlled image design: The measurement of time-frequency responses

    NASA Astrophysics Data System (ADS)

    Walker, R.; Eng, C.

    1995-03-01

    This report describes the measurement of acoustic events in a three-dimensional measurement domain. An outline of the general theoretical background is followed by a description of the special requirements for the measurement of short-term acoustic responses in rooms. The results of measurements on an experimental synthesis of a single room reflection are also presented. It is shown that the measurement and presentation of the result in terms of amplitude/time, amplitude/frequency, and three-dimensional time/frequency/amplitude responses accurately portray the true situation, within the theoretical limitations of the Fourier transform. It is shown that the achievable time and frequency resolutions are probably just adequate for the measurement of those effects thought to be important for the perception of the stereophonic illusion.

  7. Multi-modality imaging to assess metabolic response to dichloroacetate treatment in tumor models

    PubMed Central

    Neveu, Marie-Aline; Preter, Géraldine De; Joudiou, Nicolas; Bol, Anne; Brender, Jeffery R.; Saito, Keita; Kishimoto, Shun; Grégoire, Vincent; Jordan, Bénédicte F.; Krishna, Murali C.; Feron, Olivier; Gallez, Bernard

    2016-01-01

    Reverting glycolytic metabolism is an attractive strategy for cancer therapy as upregulated glycolysis is a hallmark in various cancers. Dichloroacetate (DCA), long used to treat lactic acidosis in various pathologies, has emerged as a promising anti-cancer drug. By inhibiting the pyruvate dehydrogenase kinase, DCA reactivates the mitochondrial function and decreases the glycolytic flux in tumor cells resulting in cell cycle arrest and apoptosis. We recently documented that DCA was able to induce a metabolic switch preferentially in glycolytic cancer cells, leading to a more oxidative phenotype and decreasing proliferation, while oxidative cells remained less sensitive to DCA treatment. To evaluate the relevance of this observation in vivo, the aim of the present study was to characterize the effect of DCA in glycolytic MDA-MB-231 tumors and in oxidative SiHa tumors using advanced pharmacodynamic metabolic biomarkers. Oxygen consumption, studied by 17O magnetic resonance spectroscopy, glucose uptake, evaluated by 18F-FDG PET and pyruvate transformation into lactate, measured using hyperpolarized 13C-magnetic resonance spectroscopy, were monitored before and 24 hours after DCA treatment in tumor bearing mice. In both tumor models, no clear metabolic shift was observed. Surprisingly, all these imaging parameters concur to the conclusion that both glycolytic tumors and oxidative tumors presented a similar response to DCA. These results highlight a major discordance in metabolic cancer cell bioenergetics between in vitro and in vivo setups, indicating critical role of the local microenvironment in tumor metabolic behaviors. PMID:28082726

  8. Quantifiable Imaging Biomarkers for Evaluation of the Posterior Cruciate Ligament Using 3-T Magnetic Resonance Imaging

    PubMed Central

    Wilson, Katharine J.; Surowiec, Rachel K.; Ho, Charles P.; Devitt, Brian M.; Fripp, Jurgen; Smith, W. Sean; Spiegl, Ulrich J.; Dornan, Grant J.; LaPrade, Robert F.

    2016-01-01

    Background: Quantitative magnetic resonance imaging (MRI) techniques, such as T2 and T2 star (T2*) mapping, have been used to evaluate ligamentous tissue in vitro and to identify significant changes in structural integrity of a healing ligament. These studies lay the foundation for a clinical study that uses quantitative mapping to evaluate ligaments in vivo, particularly the posterior cruciate ligament (PCL). To establish quantitative mapping as a clinical tool for identifying and evaluating chronic or acute PCL injuries, T2 and T2* values first must be determined for an asymptomatic population. Purpose: To quantify T2 and T2* mapping properties, including texture variables (entropy, variance, contrast, homogeneity), of the PCL in an asymptomatic population. It was hypothesized that biomarker values would be consistent throughout the ligament, as measured across 3 clinically relevant subregions (proximal, middle, and distal thirds) in the asymptomatic cohort. Study Design: Cross-sectional study; Level of evidence, 4. Methods: Unilateral knee MRI scans were acquired for 25 asymptomatic subjects with a 3.0-T MRI system using T2 and T2* mapping sequences in the sagittal plane. The PCL was manually segmented and divided into thirds (proximal, middle, and distal). Summary statistics for T2 and T2* values were calculated. Intra- and interrater reliability was assessed across 3 raters to 2 time points. Results: The asymptomatic PCL cohort had mean T2 values of 36.7, 29.2, and 29.6 ms in the distal, middle, and proximal regions, respectively. The distal PCL exhibited significantly higher mean, variance, and contrast and lower homogeneity of T2 values than the middle and proximal subregions (P < .05). T2* results exhibited substantial positive skew and were therefore presented as median and quartile (Q) values. Median T2* values were 7.3 ms (Q1-Q3, 6.8-8.9 ms), 7.3 ms (Q1-Q3, 7.0-8.5 ms), and 7.3 ms (Q1-Q3, 6.4-8.2 ms) in the distal, middle, and proximal subregions

  9. Cervical auscultation synchronized with images from endoscopy swallow evaluations.

    PubMed

    Leslie, Paula; Drinnan, Michael J; Zammit-Maempel, Ivan; Coyle, James L; Ford, Gary A; Wilson, Janet A

    2007-10-01

    management protocols. More evaluation using imaging methods such as videofluoroscopy is required before this subjective technique is validated for clinical use by those assessing swallowing outside of a research context.

  10. Usefulness of contrast-enhanced magnetic resonance imaging for evaluating solitary pulmonary nodules

    PubMed Central

    2008-01-01

    Abstract Evaluation of solitary pulmonary nodules (SPNs) poses a challenge to radiologists. Chest computed tomography (CT) is considered the standard technique for assessing morphologic findings and intrathoracic spread of an SPN. Although the clinical role of magnetic resonance imaging (MRI) for SPNs remains limited, considerable experience has been gained with MRI of thoracic diseases. Dynamic MRI and dynamic CT are useful for differentiating between malignant and benign SPNs (especially tuberculomas and hamartomas). Furthermore, dynamic MRI is useful for assessing tumor vascularity, interstitium, and vascular endothelial growth factor expression, and for predicting survival outcome among patients with peripheral pulmonary carcinoma. These advantages make dynamic MRI a promising method and a potential biomarker for characterizing tumor response to anti-angiogenic treatment as well as for predicting survival outcomes after treatment. PMID:18331971

  11. The Quantitative Science of Evaluating Imaging Evidence.

    PubMed

    Genders, Tessa S S; Ferket, Bart S; Hunink, M G Myriam

    2017-03-01

    Cardiovascular diagnostic imaging tests are increasingly used in everyday clinical practice, but are often imperfect, just like any other diagnostic test. The performance of a cardiovascular diagnostic imaging test is usually expressed in terms of sensitivity and specificity compared with the reference standard (gold standard) for diagnosing the disease. However, evidence-based application of a diagnostic test also requires knowledge about the pre-test probability of disease, the benefit of making a correct diagnosis, the harm caused by false-positive imaging test results, and potential adverse effects of performing the test itself. To assist in clinical decision making regarding appropriate use of cardiovascular diagnostic imaging tests, we reviewed quantitative concepts related to diagnostic performance (e.g., sensitivity, specificity, predictive values, likelihood ratios), as well as possible biases and solutions in diagnostic performance studies, Bayesian principles, and the threshold approach to decision making.

  12. Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.

    PubMed

    Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo

    2017-03-03

    Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

  13. Breast imaging with SoftVue: initial clinical evaluation

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steven; Cheng, Xiaoyang; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2014-03-01

    We describe the clinical performance of SoftVue, a breast imaging device based on the principles of ultrasound tomography. Participants were enrolled in an IRB-approved study at Wayne State University, Detroit, MI. The main research findings indicate that SoftVue is able to image the whole uncompressed breast up to cup size H. Masses can be imaged in even the densest breasts with the ability to discern margins and mass shapes. Additionally, it is demonstrated that multi-focal disease can also be imaged. The system was also tested in its research mode for additional imaging capabilities. These tests demonstrated the potential for generating tissue stiffness information for the entire breast using through-transmission data. This research capability differentiates SoftVue from the other whole breast systems on the market. It is also shown that MRI-like images can be generated using alternative processing of the echo data. Ongoing research is focused on validating and quantifying these findings in a larger sample of study participants and quantifying SoftVue's ability to differentiate benign masses from cancer.

  14. Retinal image analysis for automated glaucoma risk evaluation

    NASA Astrophysics Data System (ADS)

    Nyúl, László G.

    2009-10-01

    Images of the eye ground not only provide an insight to important parts of the visual system but also reflect the general state of health of the entire human body. Automatic retina image analysis is becoming an important screening tool for early detection of certain risks and diseases. Glaucoma is one of the most common causes of blindness and is becoming even more important considering the ageing society. Robust mass-screening may help to extend the symptom-free life of affected patients. Our research is focused on a novel automated classification system for glaucoma, based on image features from fundus photographs. Our new data-driven approach requires no manual assistance and does not depend on explicit structure segmentation and measurements. First, disease independent variations, such as nonuniform illumination, size differences, and blood vessels are eliminated from the images. Then, the extracted high-dimensional feature vectors are compressed via PCA and combined before classification with SVMs takes place. The technique achieves an accuracy of detecting glaucomatous retina fundus images comparable to that of human experts. The "vessel-free" images and intermediate output of the methods are novel representations of the data for the physicians that may provide new insight into and help to better understand glaucoma.

  15. Fear of negative evaluation modulates electrocortical and behavioral responses when anticipating social evaluative feedback

    PubMed Central

    Van der Molen, Melle J. W.; Poppelaars, Eefje S.; Van Hartingsveldt, Caroline T. A.; Harrewijn, Anita; Gunther Moor, Bregtje; Westenberg, P. Michiel

    2014-01-01

    Cognitive models posit that the fear of negative evaluation (FNE) is a hallmark feature of social anxiety. As such, individuals with high FNE may show biased information processing when faced with social evaluation. The aim of the current study was to examine the neural underpinnings of anticipating and processing social-evaluative feedback, and its correlates with FNE. We used a social judgment paradigm in which female participants (N = 31) were asked to indicate whether they believed to be socially accepted or rejected by their peers. Anticipatory attention was indexed by the stimulus preceding negativity (SPN), while the feedback-related negativity and P3 were used to index the processing of social-evaluative feedback. Results provided evidence of an optimism bias in social peer evaluation, as participants more often predicted to be socially accepted than rejected. Participants with high levels of FNE needed more time to provide their judgments about the social-evaluative outcome. While anticipating social-evaluative feedback, SPN amplitudes were larger for anticipated social acceptance than for social rejection feedback. Interestingly, the SPN during anticipated social acceptance was larger in participants with high levels of FNE. None of the feedback-related brain potentials correlated with the FNE. Together, the results provided evidence of biased information processing in individuals with high levels of FNE when anticipating (rather than processing) social-evaluative feedback. The delayed response times in high FNE individuals were interpreted to reflect augmented vigilance imposed by the upcoming social-evaluative threat. Possibly, the SPN constitutes a neural marker of this vigilance in females with higher FNE levels, particularly when anticipating social acceptance feedback. PMID:24478667

  16. Mechanical Model Analysis for Quantitative Evaluation of Liver Fibrosis Based on Ultrasound Tissue Elasticity Imaging

    NASA Astrophysics Data System (ADS)

    Shiina, Tsuyoshi; Maki, Tomonori; Yamakawa, Makoto; Mitake, Tsuyoshi; Kudo, Masatoshi; Fujimoto, Kenji

    2012-07-01

    Precise evaluation of the stage of chronic hepatitis C with respect to fibrosis has become an important issue to prevent the occurrence of cirrhosis and to initiate appropriate therapeutic intervention such as viral eradication using interferon. Ultrasound tissue elasticity imaging, i.e., elastography can visualize tissue hardness/softness, and its clinical usefulness has been studied to detect and evaluate tumors. We have recently reported that the texture of elasticity image changes as fibrosis progresses. To evaluate fibrosis progression quantitatively on the basis of ultrasound tissue elasticity imaging, we introduced a mechanical model of fibrosis progression and simulated the process by which hepatic fibrosis affects elasticity images and compared the results with those clinical data analysis. As a result, it was confirmed that even in diffuse diseases like chronic hepatitis, the patterns of elasticity images are related to fibrous structural changes caused by hepatic disease and can be used to derive features for quantitative evaluation of fibrosis stage.

  17. Evaluation of normalized metal artifact reduction (NMAR) in kVCT using MVCT prior images for radiotherapy treatment planning

    SciTech Connect

    Paudel, M. R.; Mackenzie, M.; Rathee, S.; Fallone, B. G.

    2013-08-15

    Purpose: To evaluate the metal artifacts in kilovoltage computed tomography (kVCT) images that are corrected using a normalized metal artifact reduction (NMAR) method with megavoltage CT (MVCT) prior images.Methods: Tissue characterization phantoms containing bilateral steel inserts are used in all experiments. Two MVCT images, one without any metal artifact corrections and the other corrected using a modified iterative maximum likelihood polychromatic algorithm for CT (IMPACT) are translated to pseudo-kVCT images. These are then used as prior images without tissue classification in an NMAR technique for correcting the experimental kVCT image. The IMPACT method in MVCT included an additional model for the pair/triplet production process and the energy dependent response of the MVCT detectors. An experimental kVCT image, without the metal inserts and reconstructed using the filtered back projection (FBP) method, is artificially patched with the known steel inserts to get a reference image. The regular NMAR image containing the steel inserts that uses tissue classified kVCT prior and the NMAR images reconstructed using MVCT priors are compared with the reference image for metal artifact reduction. The Eclipse treatment planning system is used to calculate radiotherapy dose distributions on the corrected images and on the reference image using the Anisotropic Analytical Algorithm with 6 MV parallel opposed 5 × 10 cm{sup 2} fields passing through the bilateral steel inserts, and the results are compared. Gafchromic film is used to measure the actual dose delivered in a plane perpendicular to the beams at the isocenter.Results: The streaking and shading in the NMAR image using tissue classifications are significantly reduced. However, the structures, including metal, are deformed. Some uniform regions appear to have eroded from one side. There is a large variation of attenuation values inside the metal inserts. Similar results are seen in commercially corrected image

  18. Blue gum gaming machine: an evaluation of responsible gambling features.

    PubMed

    Blaszczynski, Alexander; Gainsbury, Sally; Karlov, Lisa

    2014-09-01

    Structural characteristics of gaming machines contribute to persistence in play and excessive losses. The purpose of this study was to evaluate the effectiveness of five proposed responsible gaming features: responsible gaming messages; a bank meter quarantining winnings until termination of play; alarm clock facilitating setting time-reminders; demo mode allowing play without money; and a charity donation feature where residual amounts can be donated rather than played to zero credits. A series of ten modified gaming machines were located in five Australian gambling venues. The sample comprised 300 patrons attending the venue and who played the gaming machines. Participants completed a structured interview eliciting gambling and socio-demographic data and information on their perceptions and experience of play on the index machines. Results showed that one-quarter of participants considered that these features would contribute to preventing recreational gamblers from developing problems. Just under half of the participants rated these effects to be at least moderate or significant. The promising results suggest that further refinements to several of these features could represent a modest but effective approach to minimising excessive gambling on gaming machines.

  19. Quantitative evaluation method of the bubble structure of sponge cake by using morphology image processing

    NASA Astrophysics Data System (ADS)

    Tatebe, Hironobu; Kato, Kunihito; Yamamoto, Kazuhiko; Katsuta, Yukio; Nonaka, Masahiko

    2005-12-01

    Now a day, many evaluation methods for the food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that are using for the quality evaluation. An advantage of the image processing is to be able to evaluate objectively. The goal of our research is structure evaluation of sponge cake by using image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner. Because the depth of field of this type scanner is very shallow, the bubble region of the surface has low gray scale values, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. First, input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.

  20. Multi-modality imaging of tumor phenotype and response to therapy

    NASA Astrophysics Data System (ADS)

    Nyflot, Matthew J.

    2011-12-01

    Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.

  1. Evaluating Melanoma Drug Response and Therapeutic Escape with Quantitative Proteomics*

    PubMed Central

    Rebecca, Vito W.; Wood, Elizabeth; Fedorenko, Inna V.; Paraiso, Kim H. T.; Haarberg, H. Eirik; Chen, Yi; Xiang, Yun; Sarnaik, Amod; Gibney, Geoffrey T.; Sondak, Vernon K.; Koomen, John M.; Smalley, Keiran S. M.

    2014-01-01

    The evolution of cancer therapy into complex regimens with multiple drugs requires novel approaches for the development and evaluation of companion biomarkers. Liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) is a versatile platform for biomarker measurement. In this study, we describe the development and use of the LC-MRM platform to study the adaptive signaling responses of melanoma cells to inhibitors of HSP90 (XL888) and MEK (AZD6244). XL888 had good anti-tumor activity against NRAS mutant melanoma cell lines as well as BRAF mutant cells with acquired resistance to BRAF inhibitors both in vitro and in vivo. LC-MRM analysis showed HSP90 inhibition to be associated with decreased expression of multiple receptor tyrosine kinases, modules in the PI3K/AKT/mammalian target of rapamycin pathway, and the MAPK/CDK4 signaling axis in NRAS mutant melanoma cell lines and the inhibition of PI3K/AKT signaling in BRAF mutant melanoma xenografts with acquired vemurafenib resistance. The LC-MRM approach targeting more than 80 cancer signaling proteins was highly sensitive and could be applied to fine needle aspirates from xenografts and clinical melanoma specimens (using 50 μg of total protein). We further showed MEK inhibition to be associated with signaling through the NFκB and WNT signaling pathways, as well as increased receptor tyrosine kinase expression and activation. Validation studies identified PDGF receptor β signaling as a potential escape mechanism from MEK inhibition, which could be overcome through combined use of AZD6244 and the PDGF receptor inhibitor, crenolanib. Together, our studies show LC-MRM to have unique value as a platform for the systems level understanding of the molecular mechanisms of drug response and therapeutic escape. This work provides the proof-of-principle for the future development of LC-MRM assays for monitoring drug responses in the clinic. PMID:24760959

  2. Evaluation of image quality of digital photo documentation of female genital injuries following sexual assault.

    PubMed

    Ernst, E J; Speck, Patricia M; Fitzpatrick, Joyce J

    2011-12-01

    With the patient's consent, physical injuries sustained in a sexual assault are evaluated and treated by the sexual assault nurse examiner (SANE) and documented on preprinted traumagrams and with photographs. Digital imaging is now available to the SANE for documentation of sexual assault injuries, but studies of the image quality of forensic digital imaging of female genital injuries after sexual assault were not found in the literature. The Photo Documentation Image Quality Scoring System (PDIQSS) was developed to rate the image quality of digital photo documentation of female genital injuries after sexual assault. Three expert observers performed evaluations on 30 separate images at two points in time. An image quality score, the sum of eight integral technical and anatomical attributes on the PDIQSS, was obtained for each image. Individual image quality ratings, defined by rating image quality for each of the data, were also determined. The results demonstrated a high level of image quality and agreement when measured in all dimensions. For the SANE in clinical practice, the results of this study indicate that a high degree of agreement exists between expert observers when using the PDIQSS to rate image quality of individual digital photographs of female genital injuries after sexual assault.

  3. Quality metric in matched Laplacian of Gaussian response domain for blind adaptive optics image deconvolution

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Yang, Yikang; Xu, Rong; Liu, Changhai; Li, Jisheng

    2016-04-01

    Adaptive optics (AO) in conjunction with subsequent postprocessing techniques have obviously improved the resolution of turbulence-degraded images in ground-based astronomical observations or artificial space objects detection and identification. However, important tasks involved in AO image postprocessing, such as frame selection, stopping iterative deconvolution, and algorithm comparison, commonly need manual intervention and cannot be performed automatically due to a lack of widely agreed on image quality metrics. In this work, based on the Laplacian of Gaussian (LoG) local contrast feature detection operator, we propose a LoG domain matching operation to perceive effective and universal image quality statistics. Further, we extract two no-reference quality assessment indices in the matched LoG domain that can be used for a variety of postprocessing tasks. Three typical space object images with distinct structural features are tested to verify the consistency of the proposed metric with perceptual image quality through subjective evaluation.

  4. [In vivo imaging for biodistribution and metabolism evaluations of new chemical entities].

    PubMed

    Corot, C; Idée, J-M; Raynaud, J-S; Salazar, J-F; Catoen, S

    2012-01-01

    Due to numerous technical developments, in vivo imaging is suitable for pharmacokinetic and metabolism studies of new chemical entities as well as for evaluating their pharmacological or biological effects. MRI, nuclear medicine, X-Ray, ultrasound and optical imaging are available for both clinical and experimental imaging with even higher performance. For all these imaging modalities, diagnostic agents are useful to improve contrast and specificity. Specific targeting of biological events is addressed by molecular imaging. From a pharmacodynamic perspective, radiolabeling of a new chemical entity allows in vivo visualization quantitative measure of its biodistribution, its elimination and its specific molecular binding. Non-invasive imaging methods are useful for longitudinal investigations of biological changes. Based on nanotechnologies, specificity of drug delivery can be monitored by imaging. New developments in hybrid imaging technologies as well as multimodal contrast agents reinforce in vivo experimental and clinical proof of mechanism of new chemical entities.

  5. Performance evaluation of image-intensifier-TV fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    van der Putten, Wilhelm J.; Bouley, Shawn

    1995-05-01

    Through use of a computer model and an aluminum low contrast phantom developed in-house, a method has been developed which is able to grade the imaging performance of fluoroscopy systems through use of a variable, K. This parameter was derived from Rose's model of image perception and is here used as a figure of merit to grade fluoroscopy systems. From Rose's model for an ideal system, a typical value of K for the perception of low contrast details should be between 3 and 7, assuming threshold vision by human observers. Thus, various fluoroscopy systems are graded with different values of K, with a lower value of K indicating better imaging performance of the system. A series of fluoroscopy systems have been graded where the best system produces a value in the low teens, while the poorest systems produce a value in the low twenties. Correlation with conventional image quality measurements is good and the method has the potential for automated assessment of image quality.

  6. Psychophysical experiments for evaluating target distinctness in images

    NASA Astrophysics Data System (ADS)

    Copeland, Anthony C.; Trivedi, Mohan M.; McManamey, James R.

    1995-06-01

    An experimental design has been developed to facilitate collection of data for developing and testing computational models for assessment of the perceptual similarity or difference of texture patterns. This experimental design is based on Thurstone's Law of Comparative Judgement. To facilitate consistency in presentation of stimuli, collection of data, and computation of psychological scale values, an X-windows testing environment has been developed called the X-based Perceptual Experiment Testbed (XPET). A pilot study was conducted utilizing this experimental design. The study utilized images in which targets and their associated background had uncorrelated Gaussian noise texture patterns. Thus, only first- order image statistics were of significance. Psychological scale values for `target distinctness' obtained using this experimental design were compared to several first-order image metrics. Correlation coefficients as high as 0.9881 were found between the psychological scale values and first-order image metrics. It has been concluded that this experimental design should be adequate for data collection to support development of new second-order image metrics.

  7. MCT-based SWIR hyperspectral imaging system for evaluation of biological samples

    NASA Astrophysics Data System (ADS)

    Hong, Seok Min; Lee, Hoonsoo; Baek, Insuck; Kim, Moon S.

    2016-05-01

    Hyperspectral imaging has been shown to be a powerful tool for nondestructive evaluation of biological samples. We recently developed a new line-scan-based shortwave infrared (SWIR) hyperspectral imaging system. Critical sensing components of the system include a SWIR spectrograph, an MCT (HgCdTe) array detector, and a custom-designed illumination source. The system has an effective imaging range from 900 nm to 2500 nm. In this paper, we present SWIR hyperspectral images of plant leaves and fruits, and preliminary SWIR image analysis results.

  8. Perceptual difference model (Case-PDM) for evaluation of MR images: validation and calibration

    NASA Astrophysics Data System (ADS)

    Miao, Jun; Huo, Donglai; Wilson, David

    2007-03-01

    There is an extraordinary number of fast MR imaging techniques, especially for parallel imaging. When one considers multiple reconstruction algorithms, reconstruction parameters, coil configurations, acceleration factors, noise levels, and multiple test images, one can easily create 1000's of test images for image quality evaluation. We have found the perceptual difference model (Case-PDM) to be quite useful as a means of rapid quantitative image quality evaluation in such experiments, and have applied it to keyhole, spiral, SENSE, and GRAPPA applications. In this study, we have compared human evaluation of MR images from multiple organs and from multiple image reconstruction algorithms to Case-PDM. We compared human DSCQS (Double Stimulus Continuous Quality Scale) scoring against Case-PDM measurements for 3 different image types and 3 different image reconstruction algorithms. We found that Case-PDM linearly correlated (r > 0.9) with human subject ratings over a very large range of image quality. We also compared Case-PDM to other image quality evaluation methods. Case-PDM generally performed better than NASA's DCTune, MITRE's IQM, Zhou Wang's NR models and mean square error (MSE) method, by showing a higher Pearson correlation coefficient, higher Spearman rank-order correlation and lower root-mean-squared error. All three models (Case-PDM, Sarnoff's IDM, and Zhou Wang's SSIM) performed very similarly in this experiment. To focus on high quality reconstructions, we performed a 2-AFC (Alternate Forced Choice) experiment to determine the "just perceptible difference" between two images. We found that threshold Case-PDM scores changed little (0.6-1.8) with 2 different image types and 3 degradation patterns, and results with Case-PDM were much tighter than the other methods (IDM and MSE) by showing a lower ratio of mean to standard deviation value. We conclude that Case-PDM can correctly predict the ordering of image quality over a large range of image quality. Case

  9. Development and evaluation of a new radiographic and fluoroscopic imager based on electron-multiplying CCDs: The solid state x-ray image intensifier

    NASA Astrophysics Data System (ADS)

    Kuhls-Gilcrist, Andrew Thomas

    assessment of spatial resolution, noise performance, and overall performance was then determined using MTF, INEE, and DQE measurements. In addition to the overall performance of the SSXII, the performances of individual components were determined using measurements of their resolution and transmission efficiency. The unique ability of the SSXII to operate in both tradition energy integrating (EI) mode and single photon counting (SPC) mode was also demonstrated. To better assess detector performance, a new method for determination of the two-dimensional presampled MTF, the "noise-response method", was developed and evaluated. Compared to current measurement methods, the noise-response method simplifies the MTF determination by eliminating the need for manufacture and alignment of precisely machined test objects, thereby eliminating inaccuracies that result from the use of such objects and subsequent analysis of the resulting images. The accuracy of this method was demonstrated using both simulated and experimental data sets. For the simulated image set which used a simple detector model for which the "true" MTF was known exactly, excellent agreement was obtained with the MTF determined using the noise-response method, with a maximum deviation of 1.1%. Comparison measurements were also made on this simulated data set with the established edge-response method and these showed deviations greater than 35% from the "true" MTF. Experimental measurements on a range of detector technologies (including an XII, FPD and SSXII) demonstrated agreement between the noise-response and edge-response methods within experimental uncertainty, with discrepancies likely resulting from errors inherent in the edge-response MTF procedure. The two-dimensional MTF for the FPD was non-isotropic, with an increase observed on the diagonals, whereas the SSXII MTF was shown to be largely symmetric. Initial results indicate that the new noise-response method is a promising candidate to replace existing

  10. Theoretical Evaluation of Compositional Contrast of Scanning Electron Microscope Images

    NASA Astrophysics Data System (ADS)

    Kotera, Masatoshi; Yamaguchi, Satoru; Fujiwara, Takafumi; Suga, Hiroshi

    1992-12-01

    The compositional contrast in the scanning electron microscope image is calculated for Al-Cu, Si-Cu and Al-Si contacts. An electron scattering phenomenon in the specimen is simulated in a direct manner. Electron refraction at the boundary, because of the agreement of each Fermi energy at the boundary, is precisely taken into account. The backscattered electron image shows better resolution than the secondary electron image in terms of the boundary contrast when the primary electron energy is 1 keV. The signal intensity varies depending on materials adjacent to the location observed. The ultimate resolution of the compositional contrast of the scanning electron microscope can be below 1 nm.

  11. What Do We Do Now That the Evaluation Is Over? Methods for Transitioning the Responsibility of Evaluation to Program Staff.

    ERIC Educational Resources Information Center

    Cassata, Jennifer Coyne; Siddens, Stephanie K.

    This paper describes the methods engaged in by an internal evaluation unit within a large school district to transition program staff from participating in a formal program evaluation to continuing the responsibility of program monitoring once an evaluation ends. Formal multiyear program evaluations can provide program managers and staff with…

  12. Evaluation of response to immune checkpoint inhibitors: Is there a role for positron emission tomography?

    PubMed Central

    Bauckneht, Matteo; Piva, Roberta; Sambuceti, Gianmario; Grossi, Francesco; Morbelli, Silvia

    2017-01-01

    Strategies targeting intracellular negative regulators such as immune checkpoint inhibitors (ICPIs) have demonstrated significant antitumor activity across a wide range of solid tumors. In the clinical practice, the radiological effect of immunotherapeutic agents has raised several more relevant and complex challenges for the determination of their imaging-based response at single patient level. Accordingly, it has been suggested that the conventional Response Evaluation Criteria in Solid Tumors assessment alone, based on dimensional evaluation provided by computed tomography (CT), tends to underestimate the benefit of ICPIs at least in a subset of patients, supporting the need of immune-related response criteria. Different from CT, very few data are available for the evaluation of immunotherapy by means of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). Moreover, since the antineoplastic activity of ICPIs is highly related to the activation of T cells against cancer cells, FDG accumulation might cause false-positive findings. Yet, discrimination between benign and malignant processes represents a huge challenge for FDG-PET in this clinical setting. Consequently, it might be of high interest to test the complex and variegated response to ICPIs by means of PET and thus it is worthwhile to ask if a similar introduction of immune-related PET-based criteria could be proposed in the future. Finally, PET might offer a new insight into the biology and pathophysiology of ICPIs thanks to a growing number of non-invasive immune-diagnostic approaches based on non-FDG tracers. PMID:28298962

  13. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  14. Nondestructive evaluation technique using infrared thermography and terahertz imaging

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Tamaki, Yoshitaka; Iwama, Tatsuya

    2016-05-01

    Nondestructive testing (NDT) techniques using pulse heating infrared thermography and terahertz (THz) imaging were developed for detecting deterioration of oil tank floor, such as blister and delamination of corrosion protection coating, or corrosion of the bottom steel plate under coating. Experimental studies were conducted to demonstrate the practicability of developed techniques. It was found that the pulse heating infrared thermography was utilized for effective screening inspection and THz-TDS imaging technique performed well for the detailed inspection of coating deterioration and steel corrosion.

  15. Enlarging the linear response range of velocity with optimum imaging parameters and modified data processing in laser speckle imaging

    NASA Astrophysics Data System (ADS)

    Qiu, Jianjun; Li, Pengcheng; Ul'yanov, Sergey S.; Zeng, Shaoqun; Luo, Qingming

    2008-02-01

    Laser speckle imaging (LSI) technique is considered as a promising method of accessing cerebral blood flow (CBF) of animals for its high spatiotemporal resolution and simplicity. It is important in LSI that optimum imaging parameters and limited noises should be confirmed to promote the imaging precision. We investigated in this paper different factors which may affect the imaging results with a moving white plate model, and then proposed a method of enlarging the linear response range of velocity. Through experiment, we proposed in our LSI system the optimum imaging parameters, including the numerical aperture and magnification of microscopy, the integration time, the gain mode of CCD camera. The average intensity was found optimum at about 800 counts out of 4096 grey level, which permits the highest contrast in our experiment. To eliminate the influence of uneven illumination, a direct current weight of 27 counts was subtracted during data processing. The result indicated that the relationship between measured velocity and the real one remained linear with R2 equaling to 0.99 throughout the scale of 80 mm/s.

  16. Three-dimensional integral imaging displays using a quick-response encoded elemental image array: an overview

    NASA Astrophysics Data System (ADS)

    Markman, A.; Javidi, B.

    2016-06-01

    Quick-response (QR) codes are barcodes that can store information such as numeric data and hyperlinks. The QR code can be scanned using a QR code reader, such as those built into smartphone devices, revealing the information stored in the code. Moreover, the QR code is robust to noise, rotation, and illumination when scanning due to error correction built in the QR code design. Integral imaging is an imaging technique used to generate a three-dimensional (3D) scene by combining the information from two-dimensional (2D) elemental images (EIs) each with a different perspective of a scene. Transferring these 2D images in a secure manner can be difficult. In this work, we overview two methods to store and encrypt EIs in multiple QR codes. The first method uses run-length encoding with Huffman coding and the double-random-phase encryption (DRPE) to compress and encrypt an EI. This information is then stored in a QR code. An alternative compression scheme is to perform photon-counting on the EI prior to compression. Photon-counting is a non-linear transformation of data that creates redundant information thus improving image compression. The compressed data is encrypted using the DRPE. Once information is stored in the QR codes, it is scanned using a smartphone device. The information scanned is decompressed and decrypted and an EI is recovered. Once all EIs have been recovered, a 3D optical reconstruction is generated.

  17. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    SciTech Connect

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-06-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose.

  18. Optimization of MR Imaging for Pretreatment Evaluation of Endometrial and Cervical Cancer

    PubMed Central

    Rauch, Gaiane M.; Kaur, Harmeet; Choi, Haesun; Ernst, Randy D.; Klopp, Ann H.; Boonsirikamchai, Piyaporn; Westin, Shannon N.; Marcal, Leonardo P.

    2014-01-01

    Endometrial and cervical cancer are the most common gynecologic malignancies in the world. Accurate staging of cervical and endometrial cancer is essential for determining the correct treatment approach. The current FIGO (International Federation of Gynecology and Obstetrics) staging system does not include modern imaging modalities. However, magnetic resonance imaging (MRI) has proven to be the most accurate noninvasive imaging modality for staging of endometrial and cervical carcinomas and often assists in patients risk stratification and treatment decisions. Multiparametric MR imaging is increasingly being used in the evaluation of the female pelvis. This approach combines anatomic T2-weighted imaging with functional imaging, i.e. dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted imaging (DWI). In endometrial and cervical cancer MR imaging is used to guide treatment decisions through an assessment of the depth of myometrial invasion and cervical stromal involvement in endometrial cancer, and of tumor size and parametrial invasion in cervical cancer. However, the efficacy of MRI in achieving accurate local staging is dependent on technique and image quality. In this article we discuss optimization of the MR imaging protocol for endometrial and cervical cancer. The use of thin section high resolution (HR) multi-planar T2 weighted images with simple modifications such as double oblique T2 weighted images supplemented by diffusion weighted imaging and contrast enhanced MRI are reviewed. PMID:25019443

  19. Quantification of the rat spinal microglial response to peripheral nerve injury as revealed by immunohistochemical image analysis and flow cytometry

    PubMed Central

    Blackbeard, J.; O’Dea, K.P.; Wallace, V.C.J.; Segerdahl, A.; Pheby, T.; Takata, M.; Field, M.J.; Rice, A.S.C.

    2007-01-01

    Microgliosis is implicated in the pathophysiology of several neurological disorders, including neuropathic pain. Consequently, perturbation of microgliosis is a mechanistic and drug development target in neuropathic pain, which highlights the requirement for specific, sensitive and reproducible methods of microgliosis measurement. In this study, we used the spinal microgliosis associated with L5 spinal nerve transection and minocycline-induced attenuation thereof to: (1) evaluate novel software based semi-quantitative image analysis paradigms for the assessment of immunohistochemical images. Microgliosis was revealed by immunoreactivity to OX42. Several image analysis paradigms were assessed and compared to a previously validated subjective categorical rating scale. This comparison revealed that grey scale measurement of the proportion of a defined area of spinal cord occupied by OX42 immunoreactive cells is a robust image analysis paradigm. (2) Develop and validate a flow cytometric approach for quantification of spinal microgliosis. The flow cytometric technique reliably quantified microgliosis in spinal cord cell suspensions, using OX42 and ED9 immunoreactivity to identify microglia. The results suggest that image analysis of immunohistochemical revelation of microgliosis reliably detects the spinal microgliosis in response to peripheral nerve injury and pharmacological attenuation thereof. In addition, flow cytometry provides an alternative approach for quantitative analysis of spinal microgliosis elicited by nerve injury. PMID:17553569

  20. Quantification of the rat spinal microglial response to peripheral nerve injury as revealed by immunohistochemical image analysis and flow cytometry.

    PubMed

    Blackbeard, J; O'Dea, K P; Wallace, V C J; Segerdahl, A; Pheby, T; Takata, M; Field, M J; Rice, A S C

    2007-08-30

    Microgliosis is implicated in the pathophysiology of several neurological disorders, including neuropathic pain. Consequently, perturbation of microgliosis is a mechanistic and drug development target in neuropathic pain, which highlights the requirement for specific, sensitive and reproducible methods of microgliosis measurement. In this study, we used the spinal microgliosis associated with L5 spinal nerve transection and minocycline-induced attenuation thereof to: (1) evaluate novel software based semi-quantitative image analysis paradigms for the assessment of immunohistochemical images. Microgliosis was revealed by immunoreactivity to OX42. Several image analysis paradigms were assessed and compared to a previously validated subjective categorical rating scale. This comparison revealed that grey scale measurement of the proportion of a defined area of spinal cord occupied by OX42 immunoreactive cells is a robust image analysis paradigm. (2) Develop and validate a flow cytometric approach for quantification of spinal microgliosis. The flow cytometric technique reliably quantified microgliosis in spinal cord cell suspensions, using OX42 and ED9 immunoreactivity to identify microglia. The results suggest that image analysis of immunohistochemical revelation of microgliosis reliably detects the spinal microgliosis in response to peripheral nerve injury and pharmacological attenuation thereof. In addition, flow cytometry provides an alternative approach for quantitative analysis of spinal microgliosis elicited by nerve injury.

  1. An augmented parametric response map with consideration of image registration error: towards guidance of locally adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Lausch, Anthony; Chen, Jeff; Ward, Aaron D.; Gaede, Stewart; Lee, Ting-Yim; Wong, Eugene

    2014-11-01

    Parametric response map (PRM) analysis is a voxel-wise technique for predicting overall treatment outcome, which shows promise as a tool for guiding personalized locally adaptive radiotherapy (RT). However, image registration error (IRE) introduces uncertainty into this analysis which may limit its use for guiding RT. Here we extend the PRM method to include an IRE-related PRM analysis confidence interval and also incorporate multiple graded classification thresholds to facilitate visualization. A Gaussian IRE model was used to compute an expected value and confidence interval for PRM analysis. The augmented PRM (A-PRM) was evaluated using CT-perfusion functional image data from patients treated with RT for glioma and hepatocellular carcinoma. Known rigid IREs were simulated by applying one thousand different rigid transformations to each image set. PRM and A-PRM analyses of the transformed images were then compared to analyses of the original images (ground truth) in order to investigate the two methods in the presence of controlled IRE. The A-PRM was shown to help visualize and quantify IRE-related analysis uncertainty. The use of multiple graded classification thresholds also provided additional contextual information which could be useful for visually identifying adaptive RT targets (e.g. sub-volume boosts). The A-PRM should facilitate reliable PRM guided adaptive RT by allowing the user to identify if a patient’s unique IRE-related PRM analysis uncertainty has the potential to influence target delineation.

  2. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas

    PubMed Central

    Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-01

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas. PMID:27992380

  3. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas.

    PubMed

    Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-24

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.

  4. Evaluation of optical reflectance techniques for imaging of alveolar structure

    NASA Astrophysics Data System (ADS)

    Unglert, Carolin I.; Namati, Eman; Warger, William C.; Liu, Linbo; Yoo, Hongki; Kang, DongKyun; Bouma, Brett E.; Tearney, Guillermo J.

    2012-07-01

    Three-dimensional (3-D) visualization of the fine structures within the lung parenchyma could advance our understanding of alveolar physiology and pathophysiology. Current knowledge has been primarily based on histology, but it is a destructive two-dimensional (2-D) technique that is limited by tissue processing artifacts. Micro-CT provides high-resolution three-dimensional (3-D) imaging within a limited sample size, but is not applicable to intact lungs from larger animals or humans. Optical reflectance techniques offer the promise to visualize alveolar regions of the large animal or human lung with sub-cellular resolution in three dimensions. Here, we present the capabilities of three optical reflectance techniques, namely optical frequency domain imaging, spectrally encoded confocal microscopy, and full field optical coherence microscopy, to visualize both gross architecture as well as cellular detail in fixed, phosphate buffered saline-immersed rat lung tissue. Images from all techniques were correlated to each other and then to corresponding histology. Spatial and temporal resolution, imaging depth, and suitability for in vivo probe development were compared to highlight the merits and limitations of each technology for studying respiratory physiology at the alveolar level.

  5. Evaluation of x-ray diffraction enhanced imaging in the diagnosis of breast cancer.

    PubMed

    Liu, Chenglin; Yan, Xiaohui; Zhang, Xinyi; Yang, Wentao; Peng, Weijun; Shi, Daren; Zhu, Peiping; Huang, Wanxia; Yuan, Qingxi

    2007-01-21

    The significance of the x-ray diffraction enhanced imaging (DEI) technique in the diagnosis of breast cancer and its feasibility in clinical medical imaging are evaluated. Different massive specimens including normal breast tissues, benign breast tumour tissues and malignant breast tumour tissues are imaged with the DEI method. The images are recorded respectively by CCD or x-ray film at different positions of the rocking curve and processed with a pixel-by-pixel algorithm. The characteristics of the DEI images about the normal and diseased tissues are compared. The rocking curves of a double-crystal diffractometer with various tissues are also studied. The differences in DEI images and their rocking curves are evaluated for early diagnosis of breast cancers.

  6. Evaluation of Imaging Dose From Different Image Guided Systems During Head and Neck Radiotherapy: A Phantom Study.

    PubMed

    Cheng, Chun Shing; Jong, Wei Loong; Ung, Ngie Min; Wong, Jeannie Hsiu Ding

    2016-12-09

    This work evaluated and compared the absorbed doses to selected organs in the head and neck region from the three image guided radiotherapy systems: cone-beam computed tomography (CBCT) and kilovoltage (kV) planar imaging using the On-board Imager(®) (OBI) as well as the ExacTrac(®) X-ray system, all available on the Varian Novalis TX linear accelerator. The head and neck region of an anthropomorphic phantom was used to simulate patients' head within the imaging field. Nanodots optically stimulated luminescent dosemeters were positioned at selected sites to measure the absorbed doses. CBCT was found to be delivering the highest dose to internal organs while OBI-2D gave the highest doses to the eye lenses. The setting of half-rotation in CBCT effectively reduces the dose to the eye lenses. Daily high-quality CBCT verification was found to increase the secondary cancer risk by 0.79%.

  7. A clinical evaluation of total variation-Stokes image reconstruction strategy for low-dose CT imaging of the chest

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhang, Hao; Moore, William; Bhattacharji, Priya; Liang, Zhengrong

    2015-03-01

    One hundred "normal-dose" computed tomography (CT) studies of the chest (i.e., 1,160 projection views, 120kVp, 100mAs) data sets were acquired from the patients who were scheduled for lung biopsy at Stony Brook University Hospital under informed consent approved by our Institutional Review Board. To mimic low-dose CT imaging scenario (i.e., sparse-view scan), sparse projection views were evenly extracted from the total 1,160 projections of each patient and the total radiation dose was reduced according to how many sparse views were selected. A standard filtered backprojection (FBP) algorithm was applied to the 1160 projections to produce reference images for comparison purpose. In the low-dose scenario, both the FBP and total variation-stokes (TVS) algorithms were applied to reconstruct the corresponding low-dose images. The reconstructed images were evaluated by an experienced thoracic radiologist against the reference images. Both the low-dose reconstructions and the reference images were displayed on a 4- megapixel monitor in soft tissue and lung windows. The images were graded by a five-point scale from 0 to 4 (0, nondiagnostic; 1, severe artifact with low confidence; 2, moderate artifact or moderate diagnostic confidences; 3, mild artifact or high confidence; 4, well depicted without artifacts). Quantitative evaluation measurements such as standard deviations for different tissue types and universal quality index were also studied and reported for the results. The evaluation concluded that the TVS can reduce the view number from 1,160 to 580 with slightly lower scores as the reference, resulting in a dose reduction to close 50%.

  8. New Family of Generalized Metrics for Comparative Imaging System Evaluation

    PubMed Central

    Russ, M.; Singh, V.; Loughran, B.; Bednarek, D.R.; Rudin, S.

    2015-01-01

    A family of imaging task-specific metrics designated Relative Object Detectability (ROD) metrics was developed to enable objective, quantitative comparisons of different x-ray systems. Previously, ROD was defined as the integral over spatial frequencies of the Fourier Transform of the object function, weighted by the detector DQE for one detector, divided by the comparable integral for another detector. When effects of scatter and focal spot unsharpness are included, the generalized metric, GDQE, is substituted for the DQE, resulting in the G-ROD metric. The G-ROD was calculated for two different detectors with two focal spot sizes using various-sized simulated objects to quantify the improved performance of new high-resolution CMOS detector systems. When a measured image is used as the object, a Generalized Measured Relative Object Detectability (GM-ROD) value can be generated. A neuro-vascular stent (Wingspan) was imaged with the high-resolution Micro-Angiographic Fluoroscope (MAF) and a standard flat panel detector (FPD) for comparison using the GM-ROD calculation. As the lower integration bound increased from 0 toward the detector Nyquist frequency, increasingly superior performance of the MAF was evidenced. Another new metric, the R-ROD, enables comparing detectors to a reference detector of given imaging ability. R-RODs for the MAF, a new CMOS detector and an FPD will be presented. The ROD family of metrics can provide quantitative more understandable comparisons for different systems where the detector, focal spot, scatter, object, techniques or dose are varied and can be used to optimize system selection for given imaging tasks. PMID:26912942

  9. New family of generalized metrics for comparative imaging system evaluation

    NASA Astrophysics Data System (ADS)

    Russ, M.; Singh, V.; Loughran, B.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    A family of imaging task-specific metrics designated Relative Object Detectability (ROD) metrics was developed to enable objective, quantitative comparisons of different x-ray systems. Previously, ROD was defined as the integral over spatial frequencies of the Fourier Transform of the object function, weighted by the detector DQE for one detector, divided by the comparable integral for another detector. When effects of scatter and focal spot unsharpness are included, the generalized metric, GDQE, is substituted for the DQE, resulting in the G-ROD metric. The G-ROD was calculated for two different detectors with two focal spot sizes using various-sized simulated objects to quantify the improved performance of new high-resolution CMOS detector systems. When a measured image is used as the object, a Generalized Measured Relative Object Detectability (GM-ROD) value can be generated. A neuro-vascular stent (Wingspan) was imaged with the high-resolution Micro-Angiographic Fluoroscope (MAF) and a standard flat panel detector (FPD) for comparison using the GM-ROD calculation. As the lower integration bound increased from 0 toward the detector Nyquist frequency, increasingly superior performance of the MAF was evidenced. Another new metric, the R-ROD, enables comparing detectors to a reference detector of given imaging ability. R-RODs for the MAF, a new CMOS detector and an FPD will be presented. The ROD family of metrics can provide quantitative more understandable comparisons for different systems where the detector, focal spot, scatter, object, techniques or dose are varied and can be used to optimize system selection for given imaging tasks.

  10. An evaluation of data analysis methods for optical intrinsic signal imaging

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Luo, Weihua; Luo, Qingming; Cheng, Shangbin

    2003-12-01

    The optical intrinsic signal imaging is an indirect mapping of neuronal activity. The change in light intensity due to neuronal activity are often very small, no more than 0.1-6% of the total intensity of the reflected light in optimal cases, and the noise, which arise from either the biological noise associated with the respiration, circulation and irrelevant physiological activity or the instrumentation noise such as digitization noise, illumination noise, movement artifacts, etc. are usually large. In previous studies, a couple of analysis methods such as Standard Difference, Principal Component Analysis (PCA), Independent Component Analysis (ICA), Truncated Differences were used to suppress these large background noises and extract the small signal of interest from the noisy raw data. The performance of these methods for improving the determination of spatial pattern and time course of the response signal were examined and compared in this paper. The evaluations were employed to both simulated data and experimental optical intrinsic signal imaging data from rat somatosensory cortex during the electrical stimulation at contralateral sciatic nerve.

  11. In vivo optical imaging to visualize photodynamic therapy-induced immune responses

    NASA Astrophysics Data System (ADS)

    Mitra, Soumya; Foster, Thomas H.

    2009-02-01

    Motivated by recent successes in growing intradermal tumors in the ears of mice and establishing the feasibility of in vivo confocal imaging of anatomic vessels in these tumors using fluorophore-conjugated antibodies to CD31, we are exploring a number of applications of optical fluorescence imaging in superficial murine tumor models in vivo. Immune responses induced by photodynamic therapy (PDT) are dynamic processes that occur in a spatially and temporally specific manner. To visualize these processes noninvasively, we have made progress in developing optical molecular imaging strategies that take advantage of intradermal injection of fluorophore-conjugated-antibodies against surface antigens on immune cells. This enables confocal imaging of the fluorescently labeled host cells to depths of at least 100 microns, and using this technique we have achieved in vivo imaging of granulocyte (GR-1)- and major histocompatibility complex class II (MHC-II)-positive cell trafficking in tumors in response to PDT. The latter include macrophages and dendritic cells. Data from tumors that were subjected to PDT with the photosensitizer, HPPH, reveals a significantly enhanced level of GR-1+ cell infiltration compared to untreated control tumor. The temporal kinetics of GR-1+ and MHC-II+ cells at different time intervals post-PDT are being examined. The ability to image host responses in vivo without excising or perturbing the tissue has opened up opportunities to explore means of optimizing them to therapeutic advantage.

  12. Application of wavelets to the evaluation of phantom images for mammography quality control

    NASA Astrophysics Data System (ADS)

    Alvarez, M.; Pina, D. R.; Miranda, J. R. A.; Duarte, S. B.

    2012-11-01

    The main goal of this work was to develop a methodology for the computed analysis of American College of Radiology (ACR) mammographic phantom images, to be used in a quality control (QC) program of mammographic services. Discrete wavelet transform processing was applied to enhance the quality of images from the ACR mammographic phantom and to allow a lower dose for automatic evaluations of equipment performance in a QC program. Regions of interest (ROIs) containing phantom test objects (e.g., masses, fibers and specks) were focalized for appropriate wavelet processing, which highlighted the characteristics of structures present in each ROI. To minimize false-positive detection, each ROI in the image was submitted to pattern recognition tests, which identified structural details of the focalized test objects. Geometric and morphologic parameters of the processed test object images were used to quantify the final level of image quality. The final purpose of this work was to establish the main computational procedures for algorithms of quality evaluation of ACR phantom images. These procedures were implemented, and satisfactory agreement was obtained when the algorithm scores for image quality were compared with the results of assessments by three experienced radiologists. An exploratory study of a potential dose reduction was performed based on the radiologist scores and on the algorithm evaluation of images treated by wavelet processing. The results were comparable with both methods, although the algorithm had a tendency to provide a lower dose reduction than the evaluation by observers. Nevertheless, the objective and more precise criteria used by the algorithm to score image quality gave the computational result a higher degree of confidence. The developed algorithm demonstrates the potential use of the wavelet image processing approach for objectively evaluating the mammographic image quality level in routine QC tests. The implemented computational procedures

  13. Application of wavelets to the evaluation of phantom images for mammography quality control.

    PubMed

    Alvarez, M; Pina, D R; Miranda, J R A; Duarte, S B

    2012-11-07

    The main goal of this work was to develop a methodology for the computed analysis of American College of Radiology (ACR) mammographic phantom images, to be used in a quality control (QC) program of mammographic services. Discrete wavelet transform processing was applied to enhance the quality of images from the ACR mammographic phantom and to allow a lower dose for automatic evaluations of equipment performance in a QC program. Regions of interest (ROIs) containing phantom test objects (e.g., masses, fibers and specks) were focalized for appropriate wavelet processing, which highlighted the characteristics of structures present in each ROI. To minimize false-positive detection, each ROI in the image was submitted to pattern recognition tests, which identified structural details of the focalized test objects. Geometric and morphologic parameters of the processed test object images were used to quantify the final level of image quality. The final purpose of this work was to establish the main computational procedures for algorithms of quality evaluation of ACR phantom images. These procedures were implemented, and satisfactory agreement was obtained when the algorithm scores for image quality were compared with the results of assessments by three experienced radiologists. An exploratory study of a potential dose reduction was performed based on the radiologist scores and on the algorithm evaluation of images treated by wavelet processing. The results were comparable with both methods, although the algorithm had a tendency to provide a lower dose reduction than the evaluation by observers. Nevertheless, the objective and more precise criteria used by the algorithm to score image quality gave the computational result a higher degree of confidence. The developed algorithm demonstrates the potential use of the wavelet image processing approach for objectively evaluating the mammographic image quality level in routine QC tests. The implemented computational procedures

  14. Reliable clarity automatic-evaluation method for optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  15. Image quality evaluation of direct-conversion digital mammography system with new dual a-Se layer detector

    NASA Astrophysics Data System (ADS)

    Kuwabara, Takao; Iwasaki, Nobuyuki; Sendai, Tomonari; Furue, Ryosuke; Agano, Toshitaka

    2009-02-01

    To increase the detection performance of breast cancers in mammograms, we need to improve shape delineation of micro calcifications and tumors. We accomplished this by developing a direct-conversion mammography system with an optical reading method and a new dual a-Se layer detector. The system achieved both small pixel size (50 micrometer) and a high Detective Quantum Efficiency (DQE) realized by 100 % of fill factor and noise reduction. We evaluated image quality performance and determined the best exposure conditions. We measured DQE and Modulation Transfer Function(MTF) according to the IEC62220-1-2. High DQE was maintained at a low radiation dosage, indicating that the optical reading method accompanies low noises. Response of MTF was maintained at up to the Nyquist frequency of 10 cyc/mm, which corresponds to 50 micrometer pixel size. To determine the best exposure conditions, we measured Contrast to Noise Ratio (CNR) and visually evaluated images of a resected breast under conditions of MoMo, MoRh, and WRh. There were occasional disagreements between the exposure conditions for achieving the maximum CNR and those for the best image graded by the visual evaluation. This was probably because CNR measurement does not measure effects of scattered X-ray. The images verified the improvement in detection and delineation performance of micro calcifications and tumors.

  16. Clinical evaluation of using semantic searching engine for radiological imaging services in RIS-integrated PACS

    NASA Astrophysics Data System (ADS)

    Ling, Tonghui; Zhang, Kai; Yang, Yuanyuan; Hua, Yanqing; Zhang, Jianguo

    2015-03-01

    We had designed a semantic searching engine (SSE) for radiological imaging to search both reports and images in RIS-integrated PACS environment. In this presentation, we present evaluation results of this SSE about how it impacting the radiologists' behaviors in reporting for different kinds of examinations, and how it improving the performance of retrieval and usage of historical images in RIS-integrated PACS.

  17. Comparative imaging in the evaluation of hepatic abscesses in immunocompromised children

    SciTech Connect

    Sty, J.R.; Starshak, R.J.

    1983-01-01

    Three children, two with aplastic anemia and one with chronic granulomatous disease of childhood, were evaluated for hepatic abscess with hepatic scintigraphy (HS), gray-scale sonography (GSS), 67Ga imaging (GA), and computed tomography (CT). Each of the children was found to harbor two abscesses. All were detected with GSS and CT. In the two children imaged with GA, all four abscesses were seen. In two patients imaged twice with HS, 50% of the lesions were missed.

  18. Evaluation of Patient Doses from Verification Techniques in Image-Guided Radiotherapy (IGRT)

    SciTech Connect

    Dufek, Vladimir; Horakova, Ivana; Novak, Leos; Koncek, Ondrej; Richter, Vit; Janeckova, Lenka

    2010-01-05

    The purpose of this work was an evaluation of organ doses and effective doses from kilovoltage (kV) cone-beam CT (CBCT) scans and from pairs of orthogonal kV image projections for two different treatment sites (a head and a pelvis). Measurements of organ doses were performed in an anthropomorphic rando phantom by means of thermoluminescent dosimeters (TLDs). Irradiations were performed using on-board imager (OBI) and X-ray volume imaging (XVI) systems.

  19. Negative hemodynamic response without neuronal inhibition investigated by combining optical imaging and electrophysiological recording.

    PubMed

    Ma, Zengguang; Cao, Pengjia; Sun, Pengcheng; Lu, Zhuofan; Li, Liming; Chen, Yao; Chai, Xinyu

    2017-01-10

    Understanding the mechanisms underlying negative hemodynamic responses is critical for the interpretation of functional brain imaging signals. Negative imaging signals have been found in the visual, somatosensory and motor cortices in functional magnetic resonance imaging (fMRI) and intrinsic signal optical imaging (ISOI) studies. However, the origin of negative imaging signals is still controversial. The present study investigated the visual cortical responses to peripheral grating stimuli using multi-wavelength ISOI and electrophysiological recording. We found an increased cerebral blood volume (CBV) in the stimulus-induced regions and a decreased CBV in the adjacent regions in the visual cortex. Nevertheless, there was no significant change in blood oxygenation in the negative CBV regions. Furthermore, by combining the planar and laminar electrophysiological recordings, we did not observe significantly decreased neuronal activity in the negative CBV regions. Our results suggest that the negative hemodynamic response does not necessarily originate in decreased neuronal activity. Therefore, caution should be taken when interpreting a negative hemodynamic response as neuronal inhibition.

  20. Estimation of Response Functions Based on Variational Bayes Algorithm in Dynamic Images Sequences

    PubMed Central

    2016-01-01

    We proposed a nonparametric Bayesian model based on variational Bayes algorithm to estimate the response functions in dynamic medical imaging. In dynamic renal scintigraphy, the impulse response or retention functions are rather complicated and finding a suitable parametric form is problematic. In this paper, we estimated the response functions using nonparametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions were used within hierarchical priors of the variational Bayes algorithm. We performed our algorithm on the real online dataset of dynamic renal scintigraphy. The results demonstrated that this algorithm improved the estimation of response functions with nonparametric priors. PMID:27631007

  1. Altered brain activation during response inhibition and error processing in subjects with Internet gaming disorder: a functional magnetic imaging study.

    PubMed

    Ko, Chih-Hung; Hsieh, Tsyh-Jyi; Chen, Chiao-Yun; Yen, Cheng-Fang; Chen, Cheng-Sheng; Yen, Ju-Yu; Wang, Peng-Wei; Liu, Gin-Chung

    2014-12-01

    The aim of the present study was to evaluate the impulsivity and brain correlates of response inhibition and error processing among subjects with Internet gaming disorder (IGD). We evaluated the response inhibition and error processing by functional magnetic resonance imaging (fMRI) in subjects with IGD and controls. Twenty-six men with IGD for at least 2 years and 23 controls with no history of IGD were recruited as the IGD and control groups, respectively. All subjects performed the event-related designed Go/No-go task under fMRI and completed questionnaires related to Internet addiction and impulsivity. The IGD group exhibited a higher score for impulsivity than the control group. The IGD group also exhibited higher brain activation when processing response inhibition over the left orbital frontal lobe and bilateral caudate nucleus than controls. Both the IGD and control groups exhibited activation of the insula and anterior cingulate cortex during error processing. The activation over the right insula was lower in the subjects with IGD than the control group. Our results support the fact that the fronto-striatal network involved in response inhibition, and the salience network, anchored by the anterior cingulate and insula, contributes to error processing. Further, adults with IGD have impaired insular function in error processing and greater activation of the fronto-striatal network in order to maintain their response inhibition performance.

  2. Characterizing response to elemental unit of acoustic imaging noise: an FMRI study.

    PubMed

    Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2009-07-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation.

  3. Goal-oriented evaluation of binarization algorithms for historical document images

    NASA Astrophysics Data System (ADS)

    Obafemi-Ajayi, Tayo; Agam, Gady

    2013-01-01

    Binarization is of significant importance in document analysis systems. It is an essential first step, prior to further stages such as Optical Character Recognition (OCR), document segmentation, or enhancement of readability of the document after some restoration stages. Hence, proper evaluation of binarization methods to verify their effectiveness is of great value to the document analysis community. In this work, we perform a detailed goal-oriented evaluation of image quality assessment of the 18 binarization methods that participated in the DIBCO 2011 competition using the 16 historical document test images used in the contest. We are interested in the image quality assessment of the outputs generated by the different binarization algorithms as well as the OCR performance, where possible. We compare our evaluation of the algorithms based on human perception of quality to the DIBCO evaluation metrics. The results obtained provide an insight into the effectiveness of these methods with respect to human perception of image quality as well as OCR performance.

  4. Evaluation of Hyperspectral Imaging and Predictive Modeling to Determine Fertility and Development of Broiler Hatching Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging system and a predictive modeling technique was evaluated for determining fertility and early embryo development of broiler chicken hatching eggs. Twenty-four broiler-strain eggs were collected (12 fertile, 12 infertile) for each of 8 replicate trials (n=192) and imaged on Da...

  5. Biological sample evaluation using a line-scan based SWIR hyperspectral imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new line-scan hyperspectral imaging system was developed to enable short wavelength infrared (SWIR) imagery for biological sample evaluation. Critical sensing components include a SWIR imaging spectrograph and an HgCdTe (MCT) focal plane array detector. To date, agricultural applications of infra...

  6. Evaluation of Pre-Service Teachers' Images of Science Teaching in Turkey

    ERIC Educational Resources Information Center

    Yilmaz, Hulya; Turkmen, Hakan; Pedersen, Jon E.; Huyuguzel Cavas, Pinar

    2007-01-01

    The purpose of this study is to investigate elementary pre-service teachers' image of science teaching, analyze the gender differences in image of science teaching, and evaluate restructured 2004 education reform by using a Draw-A-Science-Teacher-Test Checklist (DASTT-C). Two hundred thirteen (213) pre-service elementary teachers from three…

  7. MCT-based SWIR hyperspectral imaging system for evaluation of biological samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral imaging has been shown to be a powerful tool for nondestructive evaluation of biological samples. We recently developed a new line-scan-based shortwave infrared (SWIR) hyperspectral imaging system. Critical sensing components of the system include a SWIR spectrograph, an MCT (HgCdTe) a...

  8. Laser interference effect evaluation method based on character of laser-spot and image feature

    NASA Astrophysics Data System (ADS)

    Tang, Jianfeng; Luo, Xiaolin; Wu, Lingxia

    2016-10-01

    Evaluating the laser interference effect to CCD objectively and accurately has great research value. Starting from the change of the image's feature before and after interference, meanwhile, considering the influence of the laser-spot distribution character on the masking degree of the image feature information, a laser interference effect evaluation method based on character of laser-spot and image feature was proposed. It reflected the laser-spot distribution character using the distance between the center of the laser-spot and center of the target. It reflected the change of the global image feature using the changes of image's sparse coefficient matrix, which was obtained by the SSIM-inspired orthogonal matching pursuit (OMP) sparse coding algorithm. What's more, the assessment method reflected the change of the local image feature using the changes of the image's edge sharpness, which could be obtained by the change of the image's gradient magnitude. Taken together, the laser interference effect can be evaluated accurately. In terms of the laser interference experiment results, the proposed method shows good rationality and feasibility under the disturbing condition of different laser powers, and it can also overcome the inaccuracy caused by the change of the laser-spot position, realizing the evaluation of the laser interference effect objectively and accurately.

  9. A Program To Promote Positive Body Image: A 1-Year Follow-Up Evaluation.

    ERIC Educational Resources Information Center

    McVey, Gail L.; Davis, Ron

    2002-01-01

    Evaluated the effectiveness of a program designed to promote body image satisfaction and prevent eating problems in young adolescent girls over a 1-year period. Found no program effect. Found instead, significant increases in body image satisfaction and decreases in eating problem scores over time for participants in both the prevention and…

  10. Defining hormesis: evaluation of a complex concentration response phenomenon.

    PubMed

    Kendig, Eric L; Le, Hoa H; Belcher, Scott M

    2010-01-01

    Hormesis describes dose-response relationships characterized by a reversal of response between low and high doses of chemicals, biological molecules, physical stressors, or other initiators of a response. Acceptance of hormesis as a viable dose-response theory has been limited until recently, in part, because of poor conceptual understanding, ad hoc and inappropriate use, and lack of a defined mechanism. By examining the history of this dose-response theory, it is clear that both pharmacological and toxicological studies provide evidence for hormetic dose responses, but retrospective examination of studies can be problematic at best. Limited scientific evidence and lack of a common lexicon with which to describe these responses have left hormesis open to inappropriate application to unrelated dose-response relationships. Future studies should examine low-dose effects using unbiased, descriptive criteria to further the scientific understanding of this dose response. A clear, concise definition is required to further the limited scientific evidence for hormetic dose responses.

  11. Development and Application of Stable Phantoms for the Evaluation of Photoacoustic Imaging Instruments

    PubMed Central

    Bohndiek, Sarah E.; Bodapati, Sandhya; Van De Sompel, Dominique; Kothapalli, Sri-Rajasekhar; Gambhir, Sanjiv S.

    2013-01-01

    Photoacoustic imaging combines the high contrast of optical imaging with the spatial resolution and penetration depth of ultrasound. This technique holds tremendous potential for imaging in small animals and importantly, is clinically translatable. At present, there is no accepted standard physical phantom that can be used to provide routine quality control and performance evaluation of photoacoustic imaging instruments. With the growing popularity of the technique and the advent of several commercial small animal imaging systems, it is important to develop a strategy for assessment of such instruments. Here, we developed a protocol for fabrication of physical phantoms for photoacoustic imaging from polyvinyl chloride plastisol (PVCP). Using this material, we designed and constructed a range of phantoms by tuning the optical properties of the background matrix and embedding spherical absorbing targets of the same material at different depths. We created specific designs to enable: routine quality control; the testing of robustness of photoacoustic signals as a function of background; and the evaluation of the maximum imaging depth available. Furthermore, we demonstrated that we could, for the first time, evaluate two small animal photoacoustic imaging systems with distinctly different light delivery, ultrasound imaging geometries and center frequencies, using stable physical phantoms and directly compare the results from both systems. PMID:24086557

  12. Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments.

    PubMed

    Bohndiek, Sarah E; Bodapati, Sandhya; Van De Sompel, Dominique; Kothapalli, Sri-Rajasekhar; Gambhir, Sanjiv S

    2013-01-01

    Photoacoustic imaging combines the high contrast of optical imaging with the spatial resolution and penetration depth of ultrasound. This technique holds tremendous potential for imaging in small animals and importantly, is clinically translatable. At present, there is no accepted standard physical phantom that can be used to provide routine quality control and performance evaluation of photoacoustic imaging instruments. With the growing popularity of the technique and the advent of several commercial small animal imaging systems, it is important to develop a strategy for assessment of such instruments. Here, we developed a protocol for fabrication of physical phantoms for photoacoustic imaging from polyvinyl chloride plastisol (PVCP). Using this material, we designed and constructed a range of phantoms by tuning the optical properties of the background matrix and embedding spherical absorbing targets of the same material at different depths. We created specific designs to enable: routine quality control; the testing of robustness of photoacoustic signals as a function of background; and the evaluation of the maximum imaging depth available. Furthermore, we demonstrated that we could, for the first time, evaluate two small animal photoacoustic imaging systems with distinctly different light delivery, ultrasound imaging geometries and center frequencies, using stable physical phantoms and directly compare the results from both systems.

  13. Flat-panel detector-based cone beam volume CT breast imaging: detector evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Conover, David L.; Ning, Ruola

    2003-06-01

    Preliminary evaluation of large-area flat panel detectors (FPDs) indicates that FPDs have some potential advantages over film-screen and CCD-based imagers: compactness, high resolution, high frame rate, large dynamic range, small image lag (<1%), and excellent linearity (~1%). A real time large-area flat panel detector (FPD) Varian PaxScan 2520 was evaluated for cone-beam volume breast imaging (CBVCTBI) in terms of dynamic range, linearity, image lag, and spatial as well as low contrast resolution. In addition, specially made breast phantoms were imaged with our prototyped CBVCTBI system to provide real outcomes to evaluate the detector under full imaging system conditions including the x-ray source, gantry geometry, x-ray technique selection, data acquisition system and reconstruction algorithms. We have concentrated on the low kVp range (30 to 80 kVp) in the context of the breast-imaging task. For ~288 images/scan the exposure required was ~2.5mR/projection. This is equivalent to that of a conventional mammography screening exam. The results indicate that the FPD-based CBVCTBI system can achieve sufficient high- and low-contrast resolution for diagnostic CBVCT breast imaging with a clinically acceptable exposure level. The advantages of the new FPD make it a promising candidate for CBVCTBI.

  14. Fractal evaluation of drug amorphicity from optical and scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Bogdan-Mihai G.; Vizireanu, Radu C.; Neamtu, Catalin I.; Gavriloaia, Gheorghe V.

    2013-09-01

    Amorphous materials are metastable, more reactive than the crystalline ones, and have to be evaluated before pharmaceutical compound formulation. Amorphicity is interpreted as a spatial chaos, and patterns of molecular aggregates of dexamethasone, D, were investigated in this paper by using fractal dimension, FD. Images having three magnifications of D were taken from an optical microscope, OM, and with eight magnifications, from a scanning electron microscope, SEM, were analyzed. The average FD for pattern irregularities of OM images was 1.538, and about 1.692 for SEM images. The FDs of the two kinds of images are less sensitive of threshold level. 3D images were shown to illustrate dependence of FD of threshold and magnification level. As a result, optical image of single scale is enough to characterize the drug amorphicity. As a result, the OM image at a single scale is enough to characterize the amorphicity of D.

  15. Evaluation of a ''CMOS'' Imager for Shadow Mask Hard X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Desai, Upendra D.; Orwig, Larry E.; Oergerle, William R. (Technical Monitor)

    2002-01-01

    We have developed a hard x-ray coder that provides high angular resolution imaging capability using a coarse position sensitive image plane detector. The coder consists of two Fresnel zone plates. (FZP) Two such 'FZP's generate Moire fringe patterns whose frequency and orientation define the arrival direction of a beam with respect to telescope axis. The image plane detector needs to resolve the Moire fringe pattern. Pixilated detectors can be used as an image plane detector. The recently available 'CMOS' imager could provide a very low power large area image plane detector for hard x-rays. We have looked into a unit made by Rad-Icon Imaging Corp. The Shadow-Box 1024 x-ray camera is a high resolution 1024xl024 pixel detector of 50x50 mm area. It is a very low power, stand alone camera. We present some preliminary results of our investigation of evaluation of such camera.

  16. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer

    PubMed Central

    Walsh, Alex J.; Cook, Rebecca S.; Sanders, Melinda E.; Aurisicchio, Luigi; Ciliberto, Gennaro; Arteaga, Carlos L.; Skala, Melissa C.

    2014-01-01

    There is a need for technologies to predict the efficacy of cancer treatment in individual patients. Here we show that optical metabolic imaging of organoids derived from primary tumors can predict therapeutic response of xenografts and measure anti-tumor drug responses in human-tumor derived organoids. Optical metabolic imaging quantifies the fluorescence intensity and lifetime of NADH and FAD, co-enzymes of metabolism. As early as 24 hours after treatment with clinically relevant anti-cancer drugs, the optical metabolic imaging index of responsive organoids decreased (p<0.001) and was further reduced when effective therapies were combined (p<5×10–6), with no change in drug-resistant organoids. Drug response in xenograft-derived organoids was validated with tumor growth measurements in vivo and stains for proliferation and apoptosis. Heterogeneous cellular responses to drug treatment were also resolved in organoids. Optical metabolic imaging shows potential as a high-throughput screen to test the efficacy of a panel of drugs to select optimal drug combinations. PMID:25100563

  17. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer.

    PubMed

    Walsh, Alex J; Cook, Rebecca S; Sanders, Melinda E; Aurisicchio, Luigi; Ciliberto, Gennaro; Arteaga, Carlos L; Skala, Melissa C

    2014-09-15

    There is a need for technologies to predict the efficacy of cancer treatment in individual patients. Here, we show that optical metabolic imaging of organoids derived from primary tumors can predict the therapeutic response of xenografts and measure antitumor drug responses in human tumor-derived organoids. Optical metabolic imaging quantifies the fluorescence intensity and lifetime of NADH and FAD, coenzymes of metabolism. As early as 24 hours after treatment with clinically relevant anticancer drugs, the optical metabolic imaging index of responsive organoids decreased (P < 0.001) and was further reduced when effective therapies were combined (P < 5 × 10(-6)), with no change in drug-resistant organoids. Drug response in xenograft-derived organoids was validated with tumor growth measurements in vivo and staining for proliferation and apoptosis. Heterogeneous cellular responses to drug treatment were also resolved in organoids. Optical metabolic imaging shows potential as a high-throughput screen to test the efficacy of a panel of drugs to select optimal drug combinations. Cancer Res; 74(18); 5184-94. ©2014 AACR.

  18. Magnetic Resonance Imaging Predictors of Treatment Response in First-Episode Schizophrenia

    PubMed Central

    Szeszko, Philip R.; Narr, Katherine L.; Phillips, Owen R.; McCormack, Joanne; Sevy, Serge; Gunduz-Bruce, Handan; Kane, John M.; Bilder, Robert M.; Robinson, Delbert G.

    2012-01-01

    Identifying neurobiological predictors of response to antipsychotics in patients with schizophrenia is a critical goal of translational psychiatry. Few studies, however, have investigated the relationship between indices of brain structure and treatment response in the context of a controlled clinical trial. In this study, we sought to identify magnetic resonance (MR) imaging measures of the brain that predict treatment response in patients experiencing a first-episode of schizophrenia. Structural MR imaging scans were acquired in 39 patients experiencing a first-episode of schizophrenia with minimal or no prior exposure to antipsychotics participating in a double-blind 16-week clinical trial comparing the efficacy of risperidone vs olanzapine. Twenty-five patients were classified as responders by meeting operationally defined treatment response criteria on 2 consecutive study visits. Fourteen patients never responded to antipsychotic medication at any point during the clinical trial. MR imaging scans were also acquired in 45 age- and sex-matched healthy volunteers. Cortical pattern matching methods were used to compare cortical thickness and asymmetry measures among groups. Statistical mapping results, confirmed by permutation testing, indicated that responders had greater cortical thickness in occipital regions and greater frontal cortical asymmetry compared with nonresponders. Moreover, among responders, greater thickness in temporal regions was associated with less time to respond. Our findings are consistent with the hypothesis that plasticity and cortical thickness may be more preserved in responders and that MR imaging may assist in the prediction of antipsychotic drug response in patients experiencing a first-episode of schizophrenia. PMID:21084552

  19. Magnetic resonance imaging predictors of treatment response in first-episode schizophrenia.

    PubMed

    Szeszko, Philip R; Narr, Katherine L; Phillips, Owen R; McCormack, Joanne; Sevy, Serge; Gunduz-Bruce, Handan; Kane, John M; Bilder, Robert M; Robinson, Delbert G

    2012-05-01

    Identifying neurobiological predictors of response to antipsychotics in patients with schizophrenia is a critical goal of translational psychiatry. Few studies, however, have investigated the relationship between indices of brain structure and treatment response in the context of a controlled clinical trial. In this study, we sought to identify magnetic resonance (MR) imaging measures of the brain that predict treatment response in patients experiencing a first-episode of schizophrenia. Structural MR imaging scans were acquired in 39 patients experiencing a first-episode of schizophrenia with minimal or no prior exposure to antipsychotics participating in a double-blind 16-week clinical trial comparing the efficacy of risperidone vs olanzapine. Twenty-five patients were classified as responders by meeting operationally defined treatment response criteria on 2 consecutive study visits. Fourteen patients never responded to antipsychotic medication at any point during the clinical trial. MR imaging scans were also acquired in 45 age- and sex-matched healthy volunteers. Cortical pattern matching methods were used to compare cortical thickness and asymmetry measures among groups. Statistical mapping results, confirmed by permutation testing, indicated that responders had greater cortical thickness in occipital regions and greater frontal cortical asymmetry compared with nonresponders. Moreover, among responders, greater thickness in temporal regions was associated with less time to respond. Our findings are consistent with the hypothesis that plasticity and cortical thickness may be more preserved in responders and that MR imaging may assist in the prediction of antipsychotic drug response in patients experiencing a first-episode of schizophrenia.

  20. An Evaluation of Grazing-Incidence Optics for Neutron Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Ramsey, B. D.; Engelhaupt, D. E.; Burgess, J.; Mildner, D. F. R.

    2007-01-01

    The focusing capabilities of neutron imaging optic based on the Wolter-1 geometry have been successfully demonstrated with a beam of long wavelength neutrons with low angular divergence.. A test mirror was fabricated using an electroformed nickel replication process at Marshall Space Flight Center. The neutron current density gain at the focal spot of the mirror is found to be at least 8 for neutron wavelengths in the range from 6 to 20 A. Possible applications of the optics are briefly discussed.

  1. Lymphedema of the lower extremities: Evaluation by microcolloidal imaging

    SciTech Connect

    Intenzo, C.M.; Desai, A.G.; Kim, S.S.; Park, C.H.; Merli, G.J. )

    1989-02-01

    Contrast lymphangiography has been the traditional radiographic method for imaging the lymphatic system of the lower extremities. Because of the difficulty in performing the procedure and its potential side effects, radionuclide lymphangiography is a safe and reliable alternative. Technetium-99m labeled to antimony trisulfide colloid was used in nine patients presenting with lymphedema of the lower extremities. The procedure was relatively simple to perform, and no adverse effects were noted.

  2. A definition and ethical evaluation of overdiagnosis: response to commentaries.

    PubMed

    Carter, Stacy M; Doust, Jenny; Degeling, Chris; Barratt, Alexandra

    2016-08-29

    It is a privilege to have respected colleagues engage with our definition and ethical evaluation of overdiagnosis. In our response to the commentaries, we first deal with paradigmatic issues: the place of realism, the relationship between diagnostic standards and correctness and the distinction between overdiagnosis and both false-positives and medicalisation. We then discuss issues arising across the commentaries in turn. Our definition captures the range of different types of overdiagnosis, unlike a definition limited to diagnosis of harmless disease. Certain implications do flow from our definition, as noted by commentators, but we do not view them as problematic: overdiagnoses can become beneficial diagnoses as medical knowledge and practice changes over time; inadequate systems of healthcare can produce tragic overdiagnosis, and the effectiveness of treatment partly determines whether overdiagnosis occurs. Complexity and uncertainty in balancing benefits and harms is unfortunate, but not a reason to avoid making a judgement (ideally one that reflects multiple perspectives). We reaffirm that overdiagnosis, for the foreseeable future, must be estimated at a population level and defend the importance of good-quality risk communication for individuals. We acknowledge that a lot turns on the relevance of professional communities in our definition and expand our reasoning in this regard then conclude with a note on the difference between intentions and goals. We expect that it will be some time before these matters are settled and we look forward to continue debating these matters with our colleagues.

  3. Evaluations of indoor noise criteria systems based on human response

    NASA Astrophysics Data System (ADS)

    Bowden, Erica E.; Wang, Lily M.

    2005-09-01

    The goal of this research is to examine human response to background noise, and relate results to indoor noise criteria. In previous work by the authors, subjects completed perception surveys, typing tasks, and proofreading tasks under typical heating, ventilating, and air-conditioning (HVAC) noise conditions. Results were correlated with commonly used indoor noise criteria systems including noise criteria (NC), room criteria (RC) and others. The findings suggested that the types of tasks used and the length of exposure can impact the results. To examine these two issues, the authors conducted a new study in which each test subject completed 38 total hours of testing over multiple days. Subjects were exposed to several background noise exposures over 20, 40, 80, and 240 minute trials. During the trials, subjects completed a variety of performance tasks and answered questions about their perception of the noise, the thermal environment, and various other factors. Findings from this study were used to determine optimum testing conditions for on-going research examining the effects of tonal or fluctuating background noise on performance, annoyance, and spectral perception. Results are being used to evaluate the effectiveness of commonly used indoor noise criteria systems. [Work supported by INCE and ASHRAE.

  4. Current Update on Interstitial Lung Disease of Infancy: New Classification System, Diagnostic Evaluation, Imaging Algorithms, Imaging Findings, and Prognosis.

    PubMed

    Thacker, Paul G; Vargas, Sara O; Fishman, Martha P; Casey, Alicia M; Lee, Edward Y

    2016-11-01

    Childhood interstitial lung disease represents a rare and heterogeneous group of diseases that can result in significant morbidity and mortality, some leading to death during infancy. CT is the imaging test of choice. Although many CT findings are nonspecific and a definitive diagnosis usually cannot be reached by CT alone, the interpreting radiologist is instrumental in defining disease extent and refining the diagnosis. Chest CTs are of key importance in guiding site selection for lung biopsy and for following disease progression and response to treatment. Thus, from the radiologist's perspective, ensuring maximal quality of CT imaging and interpretation is paramount.

  5. Proton Computed Tomography: iterative image reconstruction and dose evaluation

    NASA Astrophysics Data System (ADS)

    Civinini, C.; Bonanno, D.; Brianzi, M.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Lo Presti, D.; Maccioni, G.; Pallotta, S.; Randazzo, N.; Scaringella, M.; Romano, F.; Sipala, V.; Talamonti, C.; Vanzi, E.; Bruzzi, M.

    2017-01-01

    Proton Computed Tomography (pCT) is a medical imaging method with a potential for increasing accuracy of treatment planning and patient positioning in hadron therapy. A pCT system based on a Silicon microstrip tracker and a YAG:Ce crystal calorimeter has been developed within the INFN Prima-RDH collaboration. The prototype has been tested with a 175 MeV proton beam at The Svedberg Laboratory (Uppsala, Sweden) with the aim to reconstruct and characterize a tomographic image. Algebraic iterative reconstruction methods (ART), together with the most likely path formalism, have been used to obtain tomographies of an inhomogeneous phantom to eventually extract density and spatial resolutions. These results will be presented and discussed together with an estimation of the average dose delivered to the phantom and the dependence of the image quality on the dose. Due to the heavy computation load required by the algebraic algorithms the reconstruction programs have been implemented to fully exploit the high calculation parallelism of Graphics Processing Units. An extended field of view pCT system is in an advanced construction stage. This apparatus will be able to reconstruct objects of the size of a human head making possible to characterize this pCT approach in a pre-clinical environment.

  6. AN IMAGE ANALYSIS SYSTEM FOR DIETARY ASSESSMENT AND EVALUATION

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Boushey, Carol J.; Delp, Edward J.

    2011-01-01

    There is a growing concern about chronic diseases and other health problems related to diet including obesity and cancer. Dietary intake provides valuable insights for mounting intervention programs for prevention of chronic diseases. Measuring accurate dietary intake is considered to be an open research problem in the nutrition and health fields. In this paper, we describe a novel mobile telephone food record that provides a measure of daily food and nutrient intake. Our approach includes the use of image analysis tools for identification and quantification of food that is consumed at a meal. Images obtained before and after foods are eaten are used to estimate the amount and type of food consumed. The mobile device provides a unique vehicle for collecting dietary information that reduces the burden on respondents that are obtained using more classical approaches for dietary assessment. We describe our approach to image analysis that includes the segmentation of food items, features used to identify foods, a method for automatic portion estimation, and our overall system architecture for collecting the food intake information. PMID:22025261

  7. CID2013: a database for evaluating no-reference image quality assessment algorithms.

    PubMed

    Virtanen, Toni; Nuutinen, Mikko; Vaahteranoksa, Mikko; Oittinen, Pirkko; Hakkinen, Jukka

    2015-01-01

    This paper presents a new database, CID2013, to address the issue of using no-reference (NR) image quality assessment algorithms on images with multiple distortions. Current NR algorithms struggle to handle images with many concurrent distortion types, such as real photographic images captured by different digital cameras. The database consists of six image sets; on average, 30 subjects have evaluated 12-14 devices depicting eight different scenes for a total of 79 different cameras, 480 images, and 188 subjects (67% female). The subjective evaluation method was a hybrid absolute category rating-pair comparison developed for the study and presented in this paper. This method utilizes a slideshow of all images within a scene to allow the test images to work as references to each other. In addition to mean opinion score value, the images are also rated using sharpness, graininess, lightness, and color saturation scales. The CID2013 database contains images used in the experiments with the full subjective data plus extensive background information from the subjects. The database is made freely available for the research community.

  8. Design and synthesis of calcium responsive magnetic resonance imaging agent: Its relaxation and luminescence studies.

    PubMed

    Tanwar, Jyoti; Datta, Anupama; Chauhan, Kanchan; Kumaran, S Senthil; Tiwari, Anjani K; Kadiyala, K Ganesh; Pal, Sunil; Thirumal, M; Mishra, Anil K

    2014-07-23

    Calcium concentration modulation both inside and outside cell is of considerable interest for nervous system function in normal and pathological conditions. MRI has potential for very high spatial resolution at molecular/cellular level. Design, synthesis and evaluation of Gd-DO3A-AME-NPHE, a calcium responsive MRI contrast agent is presented. The probe is comprised of a Gd(3+)-DO3A core coupled to iminoacetate coordinating groups for calcium induced relaxivity switching. In the absence of Ca(2+) ions, inner sphere water binding to the Gd-DO3A-AME-NPHE is restricted with longitudinal relaxivity, r1 = 4.37 mM(-1) s(-1) at 4.7 T. However, addition of Ca(2+) triggers a marked enhancement in r1 = 6.99 mM(-1) s(-1) at 4.7 T (60% increase). The construct is highly selective for Ca(2+) over competitive metal ions at extracellular concentration. The r1 is modulated by changes in the hydration number (0.2 to 1.05), which was confirmed by luminescence emission lifetimes of the analogous Eu(3+) complex. T1 phantom images establish the capability of complex of visualizing changes in [Ca(2+)] by MRI.

  9. Structural Imaging in Late Life Depression: Association with Mood and Cognitive Responses to Antidepressant Treatment

    PubMed Central

    Marano, Christopher M.; Workman, Clifford I.; Lyman, Christopher H.; Munro, Cynthia A.; Kraut, Michael A.; Smith, Gwenn S.

    2014-01-01

    Objectives Recent positron emission tomography studies of cerebral glucose metabolism have identified the functional neural circuitry associated with mood and cognitive responses to antidepressant treatment in late life depression (LLD). The structural alterations in these networks are not well understood. The present study used magnetic resonance (MR) imaging and voxel-based morphometry (VBM) to evaluate the association between grey matter volumes and changes in mood symptoms and cognitive function with treatment with the antidepressant citalopram. Design Open label trial with baseline brain MR scan. Mood and cognitive assessments performed at baseline and during citalopram treatment. Setting Outpatient clinics of an academic medical center. Participants 17 previously unmedicated patients age 55 or older with a major depressive episode and 17 non-depressed comparison subjects. Intervention 12 week trial of flexibly dosed citalopram. Measurements Grey matter volumes, Hamilton Depression Rating Scale, California Verbal Learning Test, Delis–Kaplan Executive Function System™. Results In LLD, higher grey matter volumes in the cingulate gyrus, superior and middle frontal gyri, middle temporal gyrus and precuneus was associated with greater mood improvement. Higher grey matter volumes in primarily frontal areas were associated with greater improvement in verbal memory and verbal fluency performance. Conclusions Associations with antidepressant induced improvements in mood and cognition were observed in several brain regions previously correlated with normalization of glucose metabolism after citalopram treatment in LLD. Future studies will investigate molecular mechanisms underlying these associations (e.g. beta-amyloid, inflammation, glutamate). PMID:24238925

  10. FDG-PET imaging for the assessment of physiologic volume response during radiotherapy in cervix cancer

    SciTech Connect

    Lin, Lilie L.; Yang Zhiyun; Mutic, Sasa; Miller, Tom R.; Grigsby, Perry W. . E-mail: pgrigsby@wustl.edu

    2006-05-01

    Purpose: To evaluate the physiologic tumor volume response during treatment in cervical cancer using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). Patients and Methods: This was a prospective study of 32 patients. Physiologic tumor volume in cubic centimeters was determined from the FDG-PET images using the 40% threshold method. Results: The mean pretreatment tumor volume was 102 cm{sup 3}. The mean volume by clinical Stages I, II, and III were 54, 79, and 176 cm{sup 3}, respectively. After 19.8 Gy external irradiation to the pelvis, the reduction in tumor volume was 29% (72 cm{sup 3}). An additional 13 Gy from high-dose-rate (HDR) brachytherapy reduced the mean volume to 15.4 cm{sup 3}, and this was subsequently reduced to 8.6 cm{sup 3} with 13 Gy additional HDR brachytherapy (26 Gy, HDR). Four patients had physiologic FDG uptake in the cervix at 3 months after the completion of therapy. The mean time to the 50% reduction in physiologic tumor volume was 19.9 days and after combined external irradiation and HDR to 24.9 Gy. Conclusion: These results indicate that physiologic tumor volume determination by FDG-PET is feasible and that a 50% physiologic tumor volume reduction occurs within 20 days of starting therapy.

  11. Bubble structure evaluation method of sponge cake by using image morphology

    NASA Astrophysics Data System (ADS)

    Kato, Kunihito; Yamamoto, Kazuhiko; Nonaka, Masahiko; Katsuta, Yukiyo; Kasamatsu, Chinatsu

    2007-01-01

    Nowadays, many evaluation methods for food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that have been used for the quality evaluation recently. The goal of our research is structure evaluation of sponge cake by using the image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner, because the depth of field of this type scanner is very shallow. Therefore the bubble region of the surface has low gray scale value, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. The input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.

  12. Evaluation of flow with dynamic x-ray imaging for aneurysms

    NASA Astrophysics Data System (ADS)

    Dohatcu, Andreea Cristina

    The main goal of this thesis is to evaluate blood flow inside cerebrovascular aneurysms using dynamic x-ray imaging. X-ray contrast substance (dye) was auto injected in elastomer aneurysm models placed in a flow loop (for in-vitro studies) to trace flow passing through aneurysms. More specifically, an improved Time-Density Curves (TDC) Roentgen-videodensitometric tracking technique, that included looking to designated regions (R) within an aneurysm rather than focusing on the entire aneurysm, was employed to get information about blood flow using cine-angiographic sequences. It is the first time R-TDC technique has been used. In complex real-time interventions on patients, 2D/3D angiographic analysis of contrast media flow is the only reliable and rapid source of information that we have in order to assess the seriousness of the disease, suggest the treatment, and verify the result of the treatment. The present study focused on finding a "correlation metric" to quantitatively describe the flow behavior within the aneurysms and examine the hemodynamic implications of several treatments using flow modulating devices applied to saccular and bifurcation geometries aneurysms. The main idea in treatment of an aneurysm is rapid reduction of the risk of rupture. This is usually done endovascularly now by totally occluding the aneurysm by packing it with mechanical or chemical agents. Our research, however, involves a new method of blocking the neck using various types of asymmetric vascular stents (AVS). We proposed and analyzed, using R-TDCs, the feasibility of a new modified endovascular method of treatment based on alteration of blood flow through the aneurysm by partial occlusion only. In-vitro studies using aneurysm phantoms with patient-specific aneurysm models were performed. Also, for the first time the new methods were used in in-vivo studies as well, on rabbit-model experimental data, in an attempt to correlate thrombogenic response of a living organism to flow

  13. Subjective and objective evaluation of image sharpness: behavior of the region-based image edge profile acutance measure

    NASA Astrophysics Data System (ADS)

    Delgado-Olabarriaga, Silvia; Rangayyan, Rangaraj M.

    1996-03-01

    We recently proposed a region-based measure of image edge profile acutance to characterize the sharpness of a region of interest. In this paper we study the capability of the acutance measure to analyze relative sharpness in the presence of blurring and noise by comparing acutance to other measures of distortion and to subjective evaluation. The purpose of the experiment was to organize an image set in increasing order of sharpness with results obtained by objective image quality measures (acutance, mean squared error, normalized error, and normalized mean squared error) and to compare the results with subjective evaluation. A psychometric experiment was developed to perform sorting according to the subjective notion of sharpness. The region-based image edge profile acutance measure provided results that agree more closely with subjective evaluation of relative sharpness than the other measures studied. The acutance measure also exhibited a good level of immunity to noise, whereas the other measures provided ordering according to noise rather than sharpness.

  14. Evaluating Educational Programmes: The Need and the Response.

    ERIC Educational Resources Information Center

    Stake, Robert E.

    This survey of recent developments in educational program evaluation is intended for persons who commission, implement, direct, or carry out evaluation studies. The attitudes of government officials, educators, and researchers toward assessment and their own evaluation needs are discussed. Various approaches to evaluation are briefly described;…

  15. Will They Like Me? Adolescents' Emotional Responses to Peer Evaluation

    ERIC Educational Resources Information Center

    Guyer, Amanda E.; Caouette, Justin D.; Lee, Clinton C.; Ruiz, Sarah K.

    2014-01-01

    Relative to children and adults, adolescents are highly focused on being evaluated by peers. This increased attention to peer evaluation has implications for emotion regulation in adolescence, but little is known about the characteristics of the evaluatee and evaluator that influence emotional reactions to evaluative outcomes. The present study…

  16. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI)

    PubMed Central

    2012-01-01

    Background Non-invasive imaging of inflammation to measure the progression of autoimmune diseases, such as rheumatoid arthritis (RA), and to monitor responses to therapy is critically needed. V-Sense, a perfluorocarbon (PFC) contrast agent that preferentially labels inflammatory cells, which are then recruited out of systemic circulation to sites of inflammation, enables detection by 19F MRI. With no 19F background in the host, detection is highly-specific and can act as a proxy biomarker of the degree of inflammation present. Methods Collagen-induced arthritis in rats, a model with many similarities to human RA, was used to study the ability of the PFC contrast agent to reveal the accumulation of inflammation over time using 19F MRI. Disease progression in the rat hind limbs was monitored by caliper measurements and 19F MRI on days 15, 22 and 29, including the height of clinically symptomatic disease. Naïve rats served as controls. The capacity of the PFC contrast agent and 19F MRI to assess the effectiveness of therapy was studied in a cohort of rats administered oral prednisolone on days 14 to 28. Results Quantification of 19F signal measured by MRI in affected limbs was linearly correlated with disease severity. In animals with progressive disease, increases in 19F signal reflected the ongoing recruitment of inflammatory cells to the site, while no increase in 19F signal was observed in animals receiving treatment which resulted in clinical resolution of disease. Conclusion These results indicate that 19F MRI may be used to quantitatively and qualitatively evaluate longitudinal responses to a therapeutic regimen, while additionally revealing the recruitment of monocytic cells involved in the inflammatory process to the anatomical site. This study may support the use of 19F MRI to clinically quantify and monitor the severity of inflammation, and to assess the effectiveness of treatments in RA and other diseases with an inflammatory component. PMID:22721447

  17. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Kyung, Eun Jung; Kim, Hyun Bum; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2016-06-01

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  18. Optical molecular imaging approach for rapid assessment of response of individual cancer cells to chemotherapy

    NASA Astrophysics Data System (ADS)

    Luo, Zhen; Tikekar, Rohan Vijay; Samadzadeh, Kiana Michelle; Nitin, Nitin

    2012-10-01

    Predicting the response of individual patients to cytotoxic chemotherapy drugs is critical for developing individualized therapies. With this motivation, an optical molecular imaging approach was developed to detect cisplatin induced changes in the uptake and intracellular retention of choline. Intracellular uptake of choline was characterized using a click chemistry reaction between propargyl choline and Alexa-488 azide. Cisplatin induced changes in the uptake of propargyl choline in cells and tumor spheroids were compared with similar measurements using a fluorescent analogue of deoxyglucose and conventional cell viability assays. Uptake and intracellular retention of propargyl choline decreased with an increase in concentration of cisplatin. In