Sample records for response surface optimization

  1. An adaptive response surface method for crashworthiness optimization

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Ren-Jye; Zhu, Ping

    2013-11-01

    Response surface-based design optimization has been commonly used for optimizing large-scale design problems in the automotive industry. However, most response surface models are built by a limited number of design points without considering data uncertainty. In addition, the selection of a response surface in the literature is often arbitrary. This article uses a Bayesian metric to systematically select the best available response surface among several candidates in a library while considering data uncertainty. An adaptive, efficient response surface strategy, which minimizes the number of computationally intensive simulations, was developed for design optimization of large-scale complex problems. This methodology was demonstrated by a crashworthiness optimization example.

  2. Application of response surface techniques to helicopter rotor blade optimization procedure

    NASA Technical Reports Server (NTRS)

    Henderson, Joseph Lynn; Walsh, Joanne L.; Young, Katherine C.

    1995-01-01

    In multidisciplinary optimization problems, response surface techniques can be used to replace the complex analyses that define the objective function and/or constraints with simple functions, typically polynomials. In this work a response surface is applied to the design optimization of a helicopter rotor blade. In previous work, this problem has been formulated with a multilevel approach. Here, the response surface takes advantage of this decomposition and is used to replace the lower level, a structural optimization of the blade. Problems that were encountered and important considerations in applying the response surface are discussed. Preliminary results are also presented that illustrate the benefits of using the response surface.

  3. Optimization of Thick, Large Area YBCO Film Growth Through Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Porzio, J.; Mahoney, C. H.; Sullivan, M. C.

    2014-03-01

    We present our work on the optimization of thick, large area YB2C3O7-δ (YBCO) film growth through response surface methods. Thick, large area films have commercial uses and have recently been used in dramatic demonstrations of levitation and suspension. Our films are grown via pulsed laser deposition and we have optimized growth parameters via response surface methods. Response surface methods is a statistical tool to optimize selected quantities with respect to a set of variables. We optimized our YBCO films' critical temperatures, thicknesses, and structures with respect to three PLD growth parameters: deposition temperature, laser energy, and deposition pressure. We will present an overview of YBCO growth via pulsed laser deposition, the statistical theory behind response surface methods, and the application of response surface methods to pulsed laser deposition growth of YBCO. Results from the experiment will be presented in a discussion of the optimized film quality. Supported by NFS grant DMR-1305637

  4. An optimal design of wind turbine and ship structure based on neuro-response surface method

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Chul; Shin, Sung-Chul; Kim, Soo-Young

    2015-07-01

    The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

  5. Robust Optimization Design for Turbine Blade-Tip Radial Running Clearance using Hierarchically Response Surface Method

    NASA Astrophysics Data System (ADS)

    Zhiying, Chen; Ping, Zhou

    2017-11-01

    Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.

  6. Response Ant Colony Optimization of End Milling Surface Roughness

    PubMed Central

    Kadirgama, K.; Noor, M. M.; Abd Alla, Ahmed N.

    2010-01-01

    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914

  7. Comparison of polynomial approximations and artificial neural nets for response surfaces in engineering optimization

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.

    1991-01-01

    Engineering optimization problems involve minimizing some function subject to constraints. In areas such as aircraft optimization, the constraint equations may be from numerous disciplines such as transfer of information between these disciplines and the optimization algorithm. They are also suited to problems which may require numerous re-optimizations such as in multi-objective function optimization or to problems where the design space contains numerous local minima, thus requiring repeated optimizations from different initial designs. Their use has been limited, however, by the fact that development of response surfaces randomly selected or preselected points in the design space. Thus, they have been thought to be inefficient compared to algorithms to the optimum solution. A development has taken place in the last several years which may effect the desirability of using response surfaces. It may be possible that artificial neural nets are more efficient in developing response surfaces than polynomial approximations which have been used in the past. This development is the concern of the work.

  8. An Improved Response Surface Methodology Algorithm with an Application to Traffic Signal Optimization for Urban Networks

    DOT National Transportation Integrated Search

    1995-01-01

    Prepared ca. 1995. This paper illustrates the use of the simulation-optimization technique of response surface methodology (RSM) in traffic signal optimization of urban networks. It also quantifies the gains of using the common random number (CRN) va...

  9. Variable Complexity Optimization of Composite Structures

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2002-01-01

    The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.

  10. Response Surface Methodology Using a Fullest Balanced Model: A Re-Analysis of a Dataset in the Korean Journal for Food Science of Animal Resources.

    PubMed

    Rheem, Sungsue; Rheem, Insoo; Oh, Sejong

    2017-01-01

    Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park et al. (2014) published in the Korean Journal for Food Science of Animal Resources .

  11. [Studies on optimizing preparation technics of wumeitougu oral liquid by response surface methodology].

    PubMed

    Yu, Xiao-cui; Liu, Gao-feng; Wang, Xin

    2011-02-01

    To optimize the preparation technics of wumeitougu oral liquid (WTOL) by response surface methodology. Based on the single-factor tests, the times of WTOL extraction, alcohol precipitation concentration and pH value were selected as three factors for box-behnken central composite design. The response surface methodology was used to optimize the parameters of the preparation. Under the condition of extraction time 1.5 h, extraction times 2.772, the relative density 1.12, alcohol precipitation concentration 68.704%, and pH value 5.0, he theory highest content of Asperosaponin VI was up to 549.908 mg/L. Considering the actual situation, the conditions were amended to three extract times, alcohol precipitation concentration 69%, pH value 5.0, and the content of Dipsacaceae VI saponin examined was 548.63 mg/L which was closed to the theoretical value. The optimized preparation technics of WTOL by response surface methodology is reasonable and feasible.

  12. [Optimization of process of icraiin be hydrolyzed to Baohuoside I by cellulase based on Plackett-Burman design combined with CCD response surface methodology].

    PubMed

    Song, Chuan-xia; Chen, Hong-mei; Dai, Yu; Kang, Min; Hu, Jia; Deng, Yun

    2014-11-01

    To optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase by Plackett-Burman design combined with Central Composite Design (CCD) response surface methodology. To select the main influencing factors by Plackett-Burman design, using CCD response surface methodology to optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase. Taking substrate concentration, the pH of buffer and reaction time as independent variables, with conversion rate of icariin as dependent variable,using regression fitting of completely quadratic response surface between independent variable and dependent variable,the optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase was intuitively analyzed by 3D surface chart, and taking verification tests and predictive analysis. The best enzymatic hydrolytic process was as following: substrate concentration 8. 23 mg/mL, pH 5. 12 of buffer,reaction time 35. 34 h. The optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase is determined by Plackett-Burman design combined with CCD response surface methodology. The optimized enzymatic hydrolytic process is simple, convenient, accurate, reproducible and predictable.

  13. Estimating multivariate response surface model with data outliers, case study in enhancing surface layer properties of an aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Widodo, Edy; Kariyam

    2017-03-01

    To determine the input variable settings that create the optimal compromise in response variable used Response Surface Methodology (RSM). There are three primary steps in the RSM problem, namely data collection, modelling, and optimization. In this study focused on the establishment of response surface models, using the assumption that the data produced is correct. Usually the response surface model parameters are estimated by OLS. However, this method is highly sensitive to outliers. Outliers can generate substantial residual and often affect the estimator models. Estimator models produced can be biased and could lead to errors in the determination of the optimal point of fact, that the main purpose of RSM is not reached. Meanwhile, in real life, the collected data often contain some response variable and a set of independent variables. Treat each response separately and apply a single response procedures can result in the wrong interpretation. So we need a development model for the multi-response case. Therefore, it takes a multivariate model of the response surface that is resistant to outliers. As an alternative, in this study discussed on M-estimation as a parameter estimator in multivariate response surface models containing outliers. As an illustration presented a case study on the experimental results to the enhancement of the surface layer of aluminium alloy air by shot peening.

  14. Solving bi-level optimization problems in engineering design using kriging models

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Liu, Xiaojie; Du, Gang

    2018-05-01

    Stackelberg game-theoretic approaches are applied extensively in engineering design to handle distributed collaboration decisions. Bi-level genetic algorithms (BLGAs) and response surfaces have been used to solve the corresponding bi-level programming models. However, the computational costs for BLGAs often increase rapidly with the complexity of lower-level programs, and optimal solution functions sometimes cannot be approximated by response surfaces. This article proposes a new method, namely the optimal solution function approximation by kriging model (OSFAKM), in which kriging models are used to approximate the optimal solution functions. A detailed example demonstrates that OSFAKM can obtain better solutions than BLGAs and response surface-based methods, and at the same time reduce the workload of computation remarkably. Five benchmark problems and a case study of the optimal design of a thin-walled pressure vessel are also presented to illustrate the feasibility and potential of the proposed method for bi-level optimization in engineering design.

  15. [Optimization of application parameters of soil seed bank in vegetation recovery via response surface methodology].

    PubMed

    He, Meng-Xuan; Li, Hong-Yuan; Mo, Xun-Qiang; Meng, Wei-Qing; Yang, Jia-Nan

    2014-08-01

    The thickness of surface soil, the covering thickness and the number of adding arbor seeds are all important factors to be considered in the application of soil seed bank (SSB) for vegetation recovery. To determine the optimal conditions, the Box-Behnken central composite design with three parameters and three levels was conducted and Design-Expert was used for response surface optimization. Finally, the optimal model and optimal level of each parameter were selected. The quadratic model was more suitable for response surface optimization (P < 0.0001), indicating the model had good statistical significance which could express ideal relations between all the independent variable and dependent variable. For the optimum condition, the thickness of surface soil was 4.3 cm, the covering thickness was 2 cm, and the number of adding arbor seeds was 224 ind x m(-2), under which the number of germinated seedlings could be reached up to 6222 plants x m(-2). During the process of seed germination, significant interactions between the thickness of surface soil and the covering thickness, as well as the thickness of surface soil and the number of adding arbor seeds were found, but the relationship between the covering thickness and the number of adding arbor seeds was relatively unremarkable. Among all the parameters, the thickness of surface soil was the most important one, which had the steepest curve and the largest standardized coefficient.

  16. Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study

    NASA Astrophysics Data System (ADS)

    Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT

    2018-02-01

    Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).

  17. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  18. Mixed oxidizer hybrid propulsion system optimization under uncertainty using applied response surface methodology and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Whitehead, James Joshua

    The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.

  19. Electrochemical oxidation of ampicillin antibiotic at boron-doped diamond electrodes and process optimization using response surface methodology.

    PubMed

    Körbahti, Bahadır K; Taşyürek, Selin

    2015-03-01

    Electrochemical oxidation and process optimization of ampicillin antibiotic at boron-doped diamond electrodes (BDD) were investigated in a batch electrochemical reactor. The influence of operating parameters, such as ampicillin concentration, electrolyte concentration, current density, and reaction temperature, on ampicillin removal, COD removal, and energy consumption was analyzed in order to optimize the electrochemical oxidation process under specified cost-driven constraints using response surface methodology. Quadratic models for the responses satisfied the assumptions of the analysis of variance well according to normal probability, studentized residuals, and outlier t residual plots. Residual plots followed a normal distribution, and outlier t values indicated that the approximations of the fitted models to the quadratic response surfaces were very good. Optimum operating conditions were determined at 618 mg/L ampicillin concentration, 3.6 g/L electrolyte concentration, 13.4 mA/cm(2) current density, and 36 °C reaction temperature. Under response surface optimized conditions, ampicillin removal, COD removal, and energy consumption were obtained as 97.1 %, 92.5 %, and 71.7 kWh/kg CODr, respectively.

  20. Extraction of gelatin from salmon (Salmo salar) fish skin using trypsin-aided process: optimization by Plackett-Burman and response surface methodological approaches.

    PubMed

    Fan, HuiYin; Dumont, Marie-Josée; Simpson, Benjamin K

    2017-11-01

    Gelatin from salmon ( Salmo salar ) skin with high molecular weight protein chains ( α -chains) was extracted using trypsin-aided process. Response surface methodology was used to optimise the extraction parameters. Yield, hydroxyproline content and protein electrophoretic profile via sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of gelatin were used as responses in the optimization study. The optimum conditions were determined as: trypsin concentration at 1.49 U/g; extraction temperature at 45 °C; and extraction time at 6 h 16 min. This response surface optimized model was significant and produced an experimental value (202.04 ± 8.64%) in good agreement with the predicted value (204.19%). Twofold higher yields of gelatin with high molecular weight protein chains were achieved in the optimized process with trypsin treatment when compared to the process without trypsin.

  1. [Optimization of Polysaccharide Extraction from Spirodela polyrrhiza by Plackett-Burman Design Combined with Box-Behnken Response Surface Methodology].

    PubMed

    Jiang, Zheng; Wang, Hong; Wu, Qi-nan

    2015-06-01

    To optimize the processing of polysaccharide extraction from Spirodela polyrrhiza. Five factors related to extraction rate of polysaccharide were optimized by the Plackett-Burman design. Based on this study, three factors, including alcohol volume fraction, extraction temperature and ratio of material to liquid, were regarded as investigation factors by Box-Behnken response surface methodology. The effect order of three factors on the extraction rate of polysaccharide from Spirodela polyrrhiza were as follows: extraction temperature, alcohol volume fraction,ratio of material to liquid. According to Box-Behnken response, the best extraction conditions were: alcohol volume fraction of 81%, ratio of material to liquid of 1:42, extraction temperature of 100 degrees C, extraction time of 60 min for four times. Plackett-Burman design and Box-Behnken response surface methodology used to optimize the extraction process for the polysaccharide in this study is effective and stable.

  2. Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology

    USDA-ARS?s Scientific Manuscript database

    Streptococcus thermophilus normally exhibits different survival rates in different bacteria medium during freeze-drying. In this study, response surface methodology (RSM) was applied on the design of experiments for optimizing the cryoprotective medium. Results showed that the most significant facto...

  3. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    EPA Science Inventory

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  4. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Korte, John J.; Mauery, Timothy M.; Mistree, Farrokh

    1998-01-01

    In this paper, we compare and contrast the use of second-order response surface models and kriging models for approximating non-random, deterministic computer analyses. After reviewing the response surface method for constructing polynomial approximations, kriging is presented as an alternative approximation method for the design and analysis of computer experiments. Both methods are applied to the multidisciplinary design of an aerospike nozzle which consists of a computational fluid dynamics model and a finite-element model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations, and four optimization problems m formulated and solved using both sets of approximation models. The second-order response surface models and kriging models-using a constant underlying global model and a Gaussian correlation function-yield comparable results.

  5. Optimal design of a piezoelectric transducer for exciting guided wave ultrasound in rails

    NASA Astrophysics Data System (ADS)

    Ramatlo, Dineo A.; Wilke, Daniel N.; Loveday, Philip W.

    2017-02-01

    An existing Ultrasonic Broken Rail Detection System installed in South Africa on a heavy duty railway line is currently being upgraded to include defect detection and location. To accomplish this, an ultrasonic piezoelectric transducer to strongly excite a guided wave mode with energy concentrated in the web (web mode) of a rail is required. A previous study demonstrated that the recently developed SAFE-3D (Semi-Analytical Finite Element - 3 Dimensional) method can effectively predict the guided waves excited by a resonant piezoelectric transducer. In this study, the SAFE-3D model is used in the design optimization of a rail web transducer. A bound-constrained optimization problem was formulated to maximize the energy transmitted by the transducer in the web mode when driven by a pre-defined excitation signal. Dimensions of the transducer components were selected as the three design variables. A Latin hypercube sampled design of experiments that required a total of 500 SAFE-3D analyses in the design space was employed in a response surface-based optimization approach. The Nelder-Mead optimization algorithm was then used to find an optimal transducer design on the constructed response surface. The radial basis function response surface was first verified by comparing a number of predicted responses against the computed SAFE-3D responses. The performance of the optimal transducer predicted by the optimization algorithm on the response surface was also verified to be sufficiently accurate using SAFE-3D. The computational advantages of SAFE-3D in optimal transducer design are noteworthy as more than 500 analyses were performed. The optimal design was then manufactured and experimental measurements were used to validate the predicted performance. The adopted design method has demonstrated the capability to automate the design of transducers for a particular rail cross-section and frequency range.

  6. Optimization of additive compositions for anode in Ni-MH secondary battery using the response surface method

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Cheol; Jang, In-Su; Jang, Min-Ho; Park, Choong-Nyeon; Park, Chan-Jin; Choi, Jeon

    2009-06-01

    We optimized the composition of additives for the anode in a Ni-MH battery using the response surface method (RSM) to improve the electrode discharge capacities. When the amount of additives was small, the discharge characteristics of the electrode were degraded by charge-discharge cycling due to the low binding strength among the alloy powders and the resultant separation of the powder from the electrode surface. In contrast, the addition of a large amount of the additives increased the electrical impedance of the electrode. Through a response optimization process, we found an optimum composition range of additives to exhibit the greatest discharge capacity of the electrode.

  7. Real-World Application of Robust Design Optimization Assisted by Response Surface Approximation and Visual Data-Mining

    NASA Astrophysics Data System (ADS)

    Shimoyama, Koji; Jeong, Shinkyu; Obayashi, Shigeru

    A new approach for multi-objective robust design optimization was proposed and applied to a real-world design problem with a large number of objective functions. The present approach is assisted by response surface approximation and visual data-mining, and resulted in two major gains regarding computational time and data interpretation. The Kriging model for response surface approximation can markedly reduce the computational time for predictions of robustness. In addition, the use of self-organizing maps as a data-mining technique allows visualization of complicated design information between optimality and robustness in a comprehensible two-dimensional form. Therefore, the extraction and interpretation of trade-off relations between optimality and robustness of design, and also the location of sweet spots in the design space, can be performed in a comprehensive manner.

  8. Design Optimization of Composite Structures under Uncertainty

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2003-01-01

    Design optimization under uncertainty is computationally expensive and is also challenging in terms of alternative formulation. The work under the grant focused on developing methods for design against uncertainty that are applicable to composite structural design with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and simultaneous design of structure and inspection periods for fail-safe structures.

  9. Multi-Objective Optimization of Moving-magnet Linear Oscillatory Motor Using Response Surface Methodology with Quantum-Behaved PSO Operator

    NASA Astrophysics Data System (ADS)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.

  10. Multiobjective Aerodynamic Shape Optimization Using Pareto Differential Evolution and Generalized Response Surface Metamodels

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.

  11. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    PubMed

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  12. A trust region-based approach to optimize triple response systems

    NASA Astrophysics Data System (ADS)

    Fan, Shu-Kai S.; Fan, Chihhao; Huang, Chia-Fen

    2014-05-01

    This article presents a new computing procedure for the global optimization of the triple response system (TRS) where the response functions are non-convex quadratics and the input factors satisfy a radial constrained region of interest. The TRS arising from response surface modelling can be approximated using a nonlinear mathematical program that considers one primary objective function and two secondary constraint functions. An optimization algorithm named the triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the non-degenerate TRS. In TRSALG, the Lagrange multipliers of the secondary functions are determined using the Hooke-Jeeves search method and the Lagrange multiplier of the radial constraint is located using the trust region method within the global optimality space. The proposed algorithm is illustrated in terms of three examples appearing in the quality-control literature. The results of TRSALG compared to a gradient-based method are also presented.

  13. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    PubMed

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  14. [Optimization of ultrasonic-assisted extraction of total flavonoids from leaves of the Artocarpus heterophyllus by response surface methodology].

    PubMed

    Wang, Hong-wu; Liu, Yan-qing; Wang, Yuan-hong

    2011-07-01

    To investigate the ultrasonic-assisted extract on of total flavonoids from leaves of the Artocarpus heterophyllus. Investigated the effects of ethanol concentration, extraction time, and liquid-solid ratio on flavonoids yield. A 17-run response surface design involving three factors at three levels was generated by the Design-Expert software and experimental data obtained were subjected to quadratic regression analysis to create a mathematical model describing flavonoids extraction. The optimum ultrasonic assisted extraction conditions were: ethanol volume fraction 69.4% and liquid-solid ratio of 22.6:1 for 32 min. Under these optimized conditions, the yield of flavonoids was 7.55 mg/g. The Box-Behnken design and response surface analysis can well optimize the ultrasonic-assisted extraction of total flavonoids from Artocarpus heterophyllus.

  15. Multi-objective optimization on laser solder jet bonding process in head gimbal assembly using the response surface methodology

    NASA Astrophysics Data System (ADS)

    Deeying, J.; Asawarungsaengkul, K.; Chutima, P.

    2018-01-01

    This paper aims to investigate the effect of laser solder jet bonding parameters to the solder joints in Head Gimbal Assembly. Laser solder jet bonding utilizes the fiber laser to melt solder ball in capillary. The molten solder is transferred to two bonding pads by nitrogen gas. The response surface methodology have been used to investigate the effects of laser energy, wait time, nitrogen gas pressure, and focal position on the shear strength of solder joints and the change of pitch static attitude (PSA). The response surface methodology is employed to establish the reliable mathematical relationships between the laser soldering parameters and desired responses. Then, multi-objective optimization is conducted to determine the optimal process parameters that can enhance the joint shear strength and minimize the change of PSA. The validation test confirms that the predicted value has good agreement with the actual value.

  16. A dynamic multi-level optimal design method with embedded finite-element modeling for power transformers

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong

    2018-05-01

    This paper proposes a dynamic multi-level optimal design method for power transformer design optimization (TDO) problems. A response surface generated by second-order polynomial regression analysis is updated dynamically by adding more design points, which are selected by Shifted Hammersley Method (SHM) and calculated by finite-element method (FEM). The updating stops when the accuracy requirement is satisfied, and optimized solutions of the preliminary design are derived simultaneously. The optimal design level is modulated through changing the level of error tolerance. Based on the response surface of the preliminary design, a refined optimal design is added using multi-objective genetic algorithm (MOGA). The effectiveness of the proposed optimal design method is validated through a classic three-phase power TDO problem.

  17. Optimization of Nanocomposite Modified Asphalt Mixtures Fatigue Life using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Bala, N.; Napiah, M.; Kamaruddin, I.; Danlami, N.

    2018-04-01

    In this study, modelling and optimization of materials polyethylene, polypropylene and nanosilica for nanocomposite modified asphalt mixtures has been examined to obtain optimum quantities for higher fatique life. Response Surface Methodology (RSM) was applied for the optimization based on Box Behnken design (BBD). Interaction effects of independent variables polymers and nanosilica on fatique life were evaluated. The result indicates that the individual effects of polymers and nanosilica content are both important. However, the content of nanosilica used has more significant effect on fatique life resistance. Also, the mean error obtained from optimization results is less than 5% for all the responses, this indicates that predicted values are in agreement with experimental results. Furthermore, it was concluded that asphalt mixture design with high performance properties, optimization using RSM is a very effective approach.

  18. Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.

    2014-07-01

    The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.

  19. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics

    PubMed Central

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2012-01-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:23960836

  20. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    PubMed

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  1. Optimising reversed-phase liquid chromatographic separation of an acidic mixture on a monolithic stationary phase with the aid of response surface methodology and experimental design.

    PubMed

    Wang, Y; Harrison, M; Clark, B J

    2006-02-10

    An optimization strategy for the separation of an acidic mixture by employing a monolithic stationary phase is presented, with the aid of experimental design and response surface methodology (RSM). An orthogonal array design (OAD) OA(16) (2(15)) was used to choose the significant parameters for the optimization. The significant factors were optimized by using a central composite design (CCD) and the quadratic models between the dependent and the independent parameters were built. The mathematical models were tested on a number of simulated data set and had a coefficient of R(2) > 0.97 (n = 16). On applying the optimization strategy, the factor effects were visualized as three-dimensional (3D) response surfaces and contour plots. The optimal condition was achieved in less than 40 min by using the monolithic packing with the mobile phase of methanol/20 mM phosphate buffer pH 2.7 (25.5/74.5, v/v). The method showed good agreement between the experimental data and predictive value throughout the studied parameter space and were suitable for optimization studies on the monolithic stationary phase for acidic compounds.

  2. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Jianzheng; Li, Xiangkun; Zhang, Jie

    2016-06-01

    Microbial 5-aminolevulinic acid (ALA) produced from wastewater is considered as potential renewable energy. However, many hurdles are needed to be overcome such as the regulation of key influencing factors on ALA yield. Biomass and ALA production by Rhodobacter sphaeroides was optimized using response surface methodology. The culturing medium was artificial volatile fatty acids wastewater. Three additives were optimized, namely succinate and glycine that are precursors of ALA biosynthesis, and D-glucose that is an inhibitor of ALA dehydratase. The optimal conditions were achieved by analyzing the response surface plots. Statistical analysis showed that succinate at 8.56 mmol/L, glycine at 5.06 mmol/L, and D-glucose at 7.82 mmol/L were the best conditions. Under these optimal conditions, the highest biomass production and ALA yield of 3.55 g/L and 5.49 mg/g-biomass were achieved. Subsequent verification experiments at optimal values had the maximum biomass production of 3.41 ± 0.002 g/L and ALA yield of 5.78 ± 0.08 mg/g-biomass.

  3. [Optimal extraction of effective constituents from Aralia elata by central composite design and response surface methodology].

    PubMed

    Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue

    2010-03-01

    To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.

  4. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  5. Strategies of experiment standardization and response optimization in a rat model of hemorrhagic shock and chronic hypertension.

    PubMed

    Reynolds, Penny S; Tamariz, Francisco J; Barbee, Robert Wayne

    2010-04-01

    Exploratory pilot studies are crucial to best practice in research but are frequently conducted without a systematic method for maximizing the amount and quality of information obtained. We describe the use of response surface regression models and simultaneous optimization methods to develop a rat model of hemorrhagic shock in the context of chronic hypertension, a clinically relevant comorbidity. Response surface regression model was applied to determine optimal levels of two inputs--dietary NaCl concentration (0.49%, 4%, and 8%) and time on the diet (4, 6, 8 weeks)--to achieve clinically realistic and stable target measures of systolic blood pressure while simultaneously maximizing critical oxygen delivery (a measure of vulnerability to hemorrhagic shock) and body mass M. Simultaneous optimization of the three response variables was performed though a dimensionality reduction strategy involving calculation of a single aggregate measure, the "desirability" function. Optimal conditions for inducing systolic blood pressure of 208 mmHg, critical oxygen delivery of 4.03 mL/min, and M of 290 g were determined to be 4% [NaCl] for 5 weeks. Rats on the 8% diet did not survive past 7 weeks. Response surface regression model and simultaneous optimization method techniques are commonly used in process engineering but have found little application to date in animal pilot studies. These methods will ensure both the scientific and ethical integrity of experimental trials involving animals and provide powerful tools for the development of novel models of clinically interacting comorbidities with shock.

  6. Effect of design selection on response surface performance

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.

    1993-01-01

    The mathematical formulation of the engineering optimization problem is given. Evaluation of the objective function and constraint equations can be very expensive in a computational sense. Thus, it is desirable to use as few evaluations as possible in obtaining its solution. In solving the equation, one approach is to develop approximations to the objective function and/or restraint equations and then to solve the equation using the approximations in place of the original functions. These approximations are referred to as response surfaces. The desirability of using response surfaces depends upon the number of functional evaluations required to build the response surfaces compared to the number required in the direct solution of the equation without approximations. The present study is concerned with evaluating the performance of response surfaces so that a decision can be made as to their effectiveness in optimization applications. In particular, this study focuses on how the quality of approximations is effected by design selection. Polynomial approximations and neural net approximations are considered.

  7. Optimizing pulsed Nd:YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Torabi, Amir; Kolahan, Farhad

    2018-07-01

    Pulsed laser welding is a powerful technique especially suitable for joining thin sheet metals. In this study, based on experimental data, pulsed laser welding of thin AISI316L austenitic stainless steel sheet has been modeled and optimized. The experimental data required for modeling are gathered as per Central Composite Design matrix in Response Surface Methodology (RSM) with full replication of 31 runs. Ultimate Tensile Strength (UTS) is considered as the main quality measure in laser welding. Furthermore, the important process parameters including peak power, pulse duration, pulse frequency and welding speed are selected as input process parameters. The relation between input parameters and the output response is established via full quadratic response surface regression with confidence level of 95%. The adequacy of the regression model was verified using Analysis of Variance technique results. The main effects of each factor and the interactions effects with other factors were analyzed graphically in contour and surface plot. Next, to maximum joint UTS, the best combinations of parameters levels were specified using RSM. Moreover, the mathematical model is implanted into a Simulated Annealing (SA) optimization algorithm to determine the optimal values of process parameters. The results obtained by both SA and RSM optimization techniques are in good agreement. The optimal parameters settings for peak power of 1800 W, pulse duration of 4.5 ms, frequency of 4.2 Hz and welding speed of 0.5 mm/s would result in a welded joint with 96% of the base metal UTS. Computational results clearly demonstrate that the proposed modeling and optimization procedures perform quite well for pulsed laser welding process.

  8. Fuel Injector Design Optimization for an Annular Scramjet Geometry

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    2003-01-01

    A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.

  9. Development, optimization, and in vitro characterization of dasatinib-loaded PEG functionalized chitosan capped gold nanoparticles using Box-Behnken experimental design.

    PubMed

    Adena, Sandeep Kumar Reddy; Upadhyay, Mansi; Vardhan, Harsh; Mishra, Brahmeshwar

    2018-03-01

    The purpose of this research study was to develop, optimize, and characterize dasatinib loaded polyethylene glycol (PEG) stabilized chitosan capped gold nanoparticles (DSB-PEG-Ch-GNPs). Gold (III) chloride hydrate was reduced with chitosan and the resulting nanoparticles were coated with thiol-terminated PEG and loaded with dasatinib (DSB). Plackett-Burman design (PBD) followed by Box-Behnken experimental design (BBD) were employed to optimize the process parameters. Polynomial equations, contour, and 3D response surface plots were generated to relate the factors and responses. The optimized DSB-PEG-Ch-GNPs were characterized by FTIR, XRD, HR-SEM, EDX, TEM, SAED, AFM, DLS, and ZP. The results of the optimized DSB-PEG-Ch-GNPs showed particle size (PS) of 24.39 ± 1.82 nm, apparent drug content (ADC) of 72.06 ± 0.86%, and zeta potential (ZP) of -13.91 ± 1.21 mV. The responses observed and the predicted values of the optimized process were found to be close. The shape and surface morphology studies showed that the resulting DSB-PEG-Ch-GNPs were spherical and smooth. The stability and in vitro drug release studies confirmed that the optimized formulation was stable at different conditions of storage and exhibited a sustained drug release of the drug of up to 76% in 48 h and followed Korsmeyer-Peppas release kinetic model. A process for preparing gold nanoparticles using chitosan, anchoring PEG to the particle surface, and entrapping dasatinib in the chitosan-PEG surface corona was optimized.

  10. Effective use of integrated hydrological models in basin-scale water resources management: surrogate modeling approaches

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Wu, X.

    2015-12-01

    Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real-world situations, since they can dramatically reduce the computational cost of using IHMs in an iterative model evaluation process. In addition, our studies generated insights into the human-nature water conflicts in the specific study area and suggested potential solutions to address them.

  11. Optimization of Extraction Conditions for Phenolic Acids from the Leaves of Melissa officinalis L. Using Response Surface Methodology

    PubMed Central

    Yoo, Guijae; Lee, Il Kyun; Park, Seonju; Kim, Nanyoung; Park, Jun Hyung; Kim, Seung Hyun

    2018-01-01

    Background: Melissa officinalis L. is a well-known medicinal plant from the family Lamiaceae, which is distributed throughout Eastern Mediterranean region and Western Asia. Objective: In this study, response surface methodology (RSM) was utilized to optimize the extraction conditions for bioactive compounds from the leaves of M. officinalis L. Materials and Methods: A Box–Behnken design (BBD) was utilized to evaluate the effects of three independent variables, namely extraction temperature (°C), methanol concentration (%), and solvent-to-material ratio (mL/g) on the responses of the contents of caffeic acid and rosmarinic acid. Results: Regression analysis showed a good fit of the experimental data. The optimal condition was obtained at extraction temperature 80.53°C, methanol concentration 29.89%, and solvent-to-material ratio 30 mL/g. Conclusion: These results indicate the suitability of the model employed and the successful application of RSM in optimizing the extraction conditions. This study may be useful for standardizing production quality, including improving the efficiency of large-scale extraction systems. SUMMARY The optimum conditions for the extraction of major phenolic acids from the leaves of Melissa officinalis L. were determined using response surface methodologyBox–Behnken design was utilized to evaluate the effects of three independent variablesQuadratic polynomial model provided a satisfactory description of the experimental dataThe optimized condition for simultaneous maximum contents of caffeic acid and rosmarinic acid was determined. Abbreviations used: RSM: Response surface methodology, BBD: Box–Behnken design, CA: Caffeic acid, RA: Rosmarinic acid, HPLC: High-performance liquid chromatography. PMID:29720824

  12. Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology.

    PubMed

    Seo, Hyun-Woo; Jung, Eun-Young; Go, Gwang-Woong; Kim, Gap-Don; Joo, Seon-Tea; Yang, Han-Sul

    2015-10-15

    The purpose of this study was to establish optimal conditions for the hydrolysis of bovine plasma protein. Response surface methodology was used to model and optimize responses [degree of hydrolysis (DH), 2,2-diphenyl-1-picrydrazyl (DPPH) radical-scavenging activity and Fe(2+)-chelating activity]. Hydrolysis conditions, such as hydrolysis temperature (46.6-63.4 °C), hydrolysis time (98-502 min), and hydrolysis pH (6.32-9.68) were selected as the main processing conditions in the hydrolysis of bovine plasma protein. Optimal conditions for maximum DH (%), DPPH radical-scavenging activity (%) and Fe(2+)-chelating activity (%) of the hydrolyzed bovine plasma protein, were respectively established. We discovered the following three conditions for optimal hydrolysis of bovine plasma: pH of 7.82-8.32, temperature of 54.1 °C, and time of 338.4-398.4 min. We consequently succeeded in hydrolyzing bovine plasma protein under these conditions and confirmed the various desirable properties of optimal hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Application of response surface methodology for optimization of polygalacturonase production by Aspergillus niger.

    PubMed

    Yadav, Kaushlesh K; Garg, Neelima; Kumar, Devendra; Kumar, Sanjay; Singh, Achal; Muthukumar, M

    2015-01-01

    Polygalacturonase (PG) degrades pectin into D-galacturonic acid monomers and is used widely in food industry especially for juice clarification. In the present study,. fermentation conditions for polygalacturonase production by Asgergillus niger NAIMCCF-02958, using mango peel as substrate, were optimized using the 2(3) factorial design with central composite rotatable experimental design (CCRD) of response surface methodology (RSM). The maximum PG activity 723.66 U g(-1) was achieved under pH 4.0, temperature 30 degrees C and 2% inoculum by response surface curve. The experimental value of PG activity wkas higher 607.65 U g(-1) than the predicted value 511.75 U g(-1). Under the proposed optimized conditions, the determination coefficient (R2) was equal to 0.66 indicating that the model could explain 66% of the total variation as well as establish the relationship between the variables and the responses. ANOVA analysis and the three dimensional plots also confirmed interactions among the parameters.

  14. [Optimization of one-step pelletization technology of Biqiu granules by Plackett-Burman design and Box-Behnken response surface methodology].

    PubMed

    Zhang, Yan-jun; Liu, Li-li; Hu, Jun-hua; Wu, Yun; Chao, En-xiang; Xiao, Wei

    2015-11-01

    First with the qualified rate of granules as the evaluation index, significant influencing factors were firstly screened by Plackett-Burman design. Then, with the qualified rate and moisture content as the evaluation indexes, significant factors that affect one-step pelletization technology were further optimized by Box-Behnken design; experimental data were imitated by multiple regression and second-order polynomial equation; and response surface method was used for predictive analysis of optimal technology. The best conditions were as follows: inlet air temperature of 85 degrees C, sample introduction speed of 33 r x min(-1), density of concrete 1. 10. One-step pelletization technology of Biqiu granules by Plackett-Burman design and Box-Behnken response surface methodology was stable and feasible with good predictability, which provided reliable basis for the industrialized production of Biqiu granules.

  15. Optimization of process parameters in CNC turning of aluminium alloy using hybrid RSM cum TLBO approach

    NASA Astrophysics Data System (ADS)

    Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.

    2016-09-01

    The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.

  16. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates

    PubMed Central

    Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971

  17. Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2015-07-30

    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods. Response surface methodology was applied for optimizing reflux extraction conditions for achieving high 6-gingerol and 6-shogaol contents, and high antioxidant activity in Zingiber officinale var. rubrum Theilade . The two-factor central composite design was employed to determine the effects of two independent variables, namely extraction temperature (X1: 50-80 °C) and time (X2: 2-4 h), on the properties of the extracts. The 6-gingerol and 6-shogaol contents were measured using ultra-performance liquid chromatography. The antioxidant activity of the rhizome extracts was determined by means of the 1,1-diphenyl-2-picrylhydrazyl assay. Anticancer activity of optimized extracts against HeLa cancer cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Increasing the extraction temperature and time induced significant response of the variables. The optimum extraction condition for all responses was at 76.9 °C for 3.4 h. Under the optimum condition, the corresponding predicted response values for 6-gingerol, 6-shogaol, and the antioxidant activity were 2.89 mg/g DW, 1.85 mg/g DW, and 84.3%, respectively. 6-gingerol and 6-shogaol were extracted under optimized condition to check the viability of the models. The values were 2.92 and 1.88 mg/g DW, and 84.0% for 6-gingerol, 6-shogaol, and the antioxidant activity respectively. The experimental values agreed with those predicted, thus indicating suitability of the models employed and the success of RSM in optimizing the extraction condition. With optimizing of reflux extraction anticancer activity of extracts against HeLa cancer cells enhanced about 16.8%. The half inhibition concentration (IC50) value of optimized and unoptimized extract was found at concentration of 20.9 and 38.4 μg/mL respectively. Optimized extract showed more distinct anticancer activities against HeLa cancer cells in a concentration of 40 μg/mL (P < 0.01) without toxicity to normal cells. The results indicated that the pharmaceutical quality of ginger could be improved significantly by optimizing of extraction process using response surface methodology.

  18. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    PubMed

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.

  19. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].

    PubMed

    Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.

  20. Method for Constructing Composite Response Surfaces by Combining Neural Networks with other Interpolation or Estimation Techniques

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)

    2003-01-01

    A method and system for design optimization that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The present invention employs a unique strategy called parameter-based partitioning of the given design space. In the design procedure, a sequence of composite response surfaces based on both neural networks and polynomial fits is used to traverse the design space to identify an optimal solution. The composite response surface has both the power of neural networks and the economy of low-order polynomials (in terms of the number of simulations needed and the network training requirements). The present invention handles design problems with many more parameters than would be possible using neural networks alone and permits a designer to rapidly perform a variety of trade-off studies before arriving at the final design.

  1. Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods

    NASA Technical Reports Server (NTRS)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa W.; Dorney, Daniel J.

    2001-01-01

    Turbine performance directly affects engine specific impulse, thrust-to-weight ratio, and cost in a rocket propulsion system. A global optimization framework combining the radial basis neural network (RBNN) and the polynomial-based response surface method (RSM) is constructed for shape optimization of a supersonic turbine. Based on the optimized preliminary design, shape optimization is performed for the first vane and blade of a 2-stage supersonic turbine, involving O(10) design variables. The design of experiment approach is adopted to reduce the data size needed by the optimization task. It is demonstrated that a major merit of the global optimization approach is that it enables one to adaptively revise the design space to perform multiple optimization cycles. This benefit is realized when an optimal design approaches the boundary of a pre-defined design space. Furthermore, by inspecting the influence of each design variable, one can also gain insight into the existence of multiple design choices and select the optimum design based on other factors such as stress and materials considerations.

  2. Optimization of palm fruit sterilization by microwave irradiation using response surface methodology

    NASA Astrophysics Data System (ADS)

    Sarah, M.; Madinah, I.; Salamah, S.

    2018-02-01

    This study reported optimization of palm fruit sterilization process by microwave irradiation. The results of fractional factorial experiments showed no significant external factors affecting temperature of microwave sterilization (MS). Response surface methodology (RSM) was employed and model equation of MS of palm fruit was built. Response surface plots and their corresponding contour plots were analyzed as well as solving model equation. The optimum process parameters for lipase reduction were obtained from MS of 1 kg palm fruit at microwave power of 486 Watt and heating time of 14 minutes. The experimental results showed reduction of lipase activity in the present work under MS treatment. The adequacy of the model equation for predicting the optimum response value was verified by validation data (P>0.15).

  3. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  4. The combination of simulation and response methodology and its application in an aggregate production plan

    NASA Astrophysics Data System (ADS)

    Chen, Zhiming; Feng, Yuncheng

    1988-08-01

    This paper describes an algorithmic structure for combining simulation and optimization techniques both in theory and practice. Response surface methodology is used to optimize the decision variables in the simulation environment. A simulation-optimization software has been developed and successfully implemented, and its application to an aggregate production planning simulation-optimization model is reported. The model's objective is to minimize the production cost and to generate an optimal production plan and inventory control strategy for an aircraft factory.

  5. Physical stability assessment and sensory optimization of a dairy-free emulsion using response surface methodology.

    PubMed

    Granato, Daniel; de Castro, I Alves; Ellendersen, L Souza Neves; Masson, M Lucia

    2010-04-01

    Desserts made with soy cream, which are oil-in-water emulsions, are widely consumed by lactose-intolerant individuals in Brazil. In this regard, this study aimed at using response surface methodology (RSM) to optimize the sensory attributes of a soy-based emulsion over a range of pink guava juice (GJ: 22% to 32%) and soy protein (SP: 1% to 3%). WHC and backscattering were analyzed after 72 h of storage at 7 degrees C. Furthermore, a rating test was performed to determine the degree of liking of color, taste, creaminess, appearance, and overall acceptability. The data showed that the samples were stable against gravity and storage. The models developed by RSM adequately described the creaminess, taste, and appearance of the emulsions. The response surface of the desirability function was used successfully in the optimization of the sensory properties of dairy-free emulsions, suggesting that a product with 30.35% GJ and 3% SP was the best combination of these components. The optimized sample presented suitable sensory properties, in addition to being a source of dietary fiber, iron, copper, and ascorbic acid.

  6. The role of under-determined approximations in engineering and science application

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.

    1992-01-01

    There is currently a great deal of interest in using response surfaces in the optimization of aircraft performance. The objective function and/or constraint equations involved in these optimization problems may come from numerous disciplines such as structures, aerodynamics, environmental engineering, etc. In each of these disciplines, the mathematical complexity of the governing equations usually dictates that numerical results be obtained from large computer programs such as a finite element method program. Thus, when performing optimization studies, response surfaces are a convenient way of transferring information from the various disciplines to the optimization algorithm as opposed to bringing all the sundry computer programs together in a massive computer code. Response surfaces offer another advantage in the optimization of aircraft structures. A characteristic of these types of optimization problems is that evaluation of the objective function and response equations (referred to as a functional evaluation) can be very expensive in a computational sense. Because of the computational expense in obtaining functional evaluations, the present study was undertaken to investigate under-determinined approximations. An under-determined approximation is one in which there are fewer training pairs (pieces of information about a function) than there are undetermined parameters (coefficients or weights) associated with the approximation. Both polynomial approximations and neural net approximations were examined. Three main example problems were investigated: (1) a function of one design variable was considered; (2) a function of two design variables was considered; and (3) a 35 bar truss with 4 design variables was considered.

  7. Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method

    PubMed Central

    Parida, Arun Kumar; Routara, Bharat Chandra

    2014-01-01

    Taguchi's design of experiment is utilized to optimize the process parameters in turning operation with dry environment. Three parameters, cutting speed (v), feed (f), and depth of cut (d), with three different levels are taken for the responses like material removal rate (MRR) and surface roughness (R a). The machining is conducted with Taguchi L9 orthogonal array, and based on the S/N analysis, the optimal process parameters for surface roughness and MRR are calculated separately. Considering the larger-the-better approach, optimal process parameters for material removal rate are cutting speed at level 3, feed at level 2, and depth of cut at level 3, that is, v 3-f 2-d 3. Similarly for surface roughness, considering smaller-the-better approach, the optimal process parameters are cutting speed at level 1, feed at level 1, and depth of cut at level 3, that is, v 1-f 1-d 3. Results of the main effects plot indicate that depth of cut is the most influencing parameter for MRR but cutting speed is the most influencing parameter for surface roughness and feed is found to be the least influencing parameter for both the responses. The confirmation test is conducted for both MRR and surface roughness separately. Finally, an attempt has been made to optimize the multiresponses using technique for order preference by similarity to ideal solution (TOPSIS) with Taguchi approach. PMID:27437503

  8. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).

    PubMed

    Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir

    2016-07-15

    Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Extraction Optimization of Rhizome of Curcuma longa by Response Surface Methodology and Support Vector Regression].

    PubMed

    Zhou, Pei-pei; Shan, Jin-feng; Jiang, Jian-lan

    2015-12-01

    To optimize the optimal microwave-assisted extraction method of curcuminoids from Curcuma longa. On the base of single factor experiment, the ethanol concentration, the ratio of liquid to solid and the microwave time were selected for further optimization. Support Vector Regression (SVR) and Central Composite Design-Response Surface Methodology (CCD) algorithm were utilized to design and establish models respectively, while Particle Swarm Optimization (PSO) was introduced to optimize the parameters of SVR models and to search optimal points of models. The evaluation indicator, the sum of curcumin, demethoxycurcumin and bisdemethoxycurcumin by HPLC, were used. The optimal parameters of microwave-assisted extraction were as follows: ethanol concentration of 69%, ratio of liquid to solid of 21 : 1, microwave time of 55 s. On those conditions, the sum of three curcuminoids was 28.97 mg/g (per gram of rhizomes powder). Both the CCD model and the SVR model were credible, for they have predicted the similar process condition and the deviation of yield were less than 1.2%.

  10. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  11. Response surface methodology for the optimization of sludge solubilization by ultrasonic pre-treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Mingyue; Zhang, Xiaohui; Lu, Peng; Cao, Qiguang; Yuan, Yuan; Yue, Mingxing; Fu, Yiwei; Wu, Libin

    2018-02-01

    The present study examines the optimization of the ultrasonic pre-treatment conditions with response surface experimental design in terms of sludge disintegration efficiency (solubilisation of organic components). Ultrasonic pre-treatment for the maximum solubilization with residual sludge enhanced the SCOD release. Optimization of the ultrasonic pre-treatment was conducted through a Box-Behnken design (three variables, a total of 17 experiments) to determine the effects of three independent variables (power, residence time and TS) on COD solubilization of sludge. The optimal COD was obtained at 17349.4mg/L, when the power was 534.67W, the time was 10.77, and TS was 2%, while the SE of this condition was 28792J/kg TS.

  12. Optimization of Car Body under Constraints of Noise, Vibration, and Harshness (NVH), and Crash

    NASA Technical Reports Server (NTRS)

    Kodiyalam, Srinivas; Yang, Ren-Jye; Sobieszczanski-Sobieski, Jaroslaw (Editor)

    2000-01-01

    To be competitive on the today's market, cars have to be as light as possible while meeting the Noise, Vibration, and Harshness (NVH) requirements and conforming to Government-man dated crash survival regulations. The latter are difficult to meet because they involve very compute-intensive, nonlinear analysis, e.g., the code RADIOSS capable of simulation of the dynamics, and the geometrical and material nonlinearities of a thin-walled car structure in crash, would require over 12 days of elapsed time for a single design of a 390K elastic degrees of freedom model, if executed on a single processor of the state-of-the-art SGI Origin2000 computer. Of course, in optimization that crash analysis would have to be invoked many times. Needless to say, that has rendered such optimization intractable until now. The car finite element model is shown. The advent of computers that comprise large numbers of concurrently operating processors has created a new environment wherein the above optimization, and other engineering problems heretofore regarded as intractable may be solved. The procedure, shown, is a piecewise approximation based method and involves using a sensitivity based Taylor series approximation model for NVH and a polynomial response surface model for Crash. In that method the NVH constraints are evaluated using a finite element code (MSC/NASTRAN) that yields the constraint values and their derivatives with respect to design variables. The crash constraints are evaluated using the explicit code RADIOSS on the Origin 2000 operating on 256 processors simultaneously to generate data for a polynomial response surface in the design variable domain. The NVH constraints and their derivatives combined with the response surface for the crash constraints form an approximation to the system analysis (surrogate analysis) that enables a cycle of multidisciplinary optimization within move limits. In the inner loop, the NVH sensitivities are recomputed to update the NVH approximation model while keeping the Crash response surface constant. In every outer loop, the Crash response surface approximation is updated, including a gradual increase in the order of the response surface and the response surface extension in the direction of the search. In this optimization task, the NVH discipline has 30 design variables while the crash discipline has 20 design variables. A subset of these design variables (10) are common to both the NVH and crash disciplines. In order to construct a linear response surface for the Crash discipline constraints, a minimum of 21 design points would have to be analyzed using the RADIOSS code. On a single processor in Origin 2000 that amount of computing would require over 9 months! In this work, these runs were carried out concurrently on the Origin 2000 using multiple processors, ranging from 8 to 16, for each crash (RADIOSS) analysis. Another figure shows the wall time required for a single RADIOSS analysis using varying number of processors, as well as provides a comparison of 2 different common data placement procedures within the allotted memories for each analysis. The initial design is an infeasible design with NVH discipline Static Torsion constraint violations of over 10%. The final optimized design is a feasible design with a weight reduction of 15 kg compared to the initial design. This work demonstrates how advanced methodology for optimization combined with the technology of concurrent processing enables applications that until now were out of reach because of very long time-to-solution.

  13. Optimization of pre-sowing magnetic field doses through RSM in pea

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Ahmad, I.; Hussain, S. M.; Khera, R. A.; Bokhari, T. H.; Shehzad, M. A.

    2013-09-01

    Seed pre-sowing magnetic field treatment was reported to induce biochemical and physiological changes. In the present study, response surface methodology was used for deduction of optimal magnetic field doses. Improved growth and yield responses in the pea cultivar were achieved using a rotatable central composite design and multivariate data analysis. The growth parameters such as root and shoot fresh masses and lengths as well as yield were enhanced at a certain magnetic field level. The chlorophyll contents were also enhanced significantly vs. the control. The low magnetic field strength for longer duration of exposure/ high strength for shorter exposure were found to be optimal points for maximum responses in root fresh mass, chlorophyll `a' contents, and green pod yield/plant, respectively and a similar trend was observed for other measured parameters. The results indicate that the magnetic field pre-sowing seed treatment can be used practically to enhance the growth and yield in pea cultivar and response surface methodology was found an efficient experimental tool for optimization of the treatment level to obtain maximum response of interest.

  14. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology.

    PubMed

    Nazir, Sadaf; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad

    2017-05-01

    Aqueous extraction of basil seed mucilage was optimized using response surface methodology. A Central Composite Rotatable Design (CCRD) for modeling of three independent variables: temperature (40-91 °C); extraction time (1.6-3.3 h) and water/seed ratio (18:1-77:1) was used to study the response for yield. Experimental values for extraction yield ranged from 7.86 to 20.5 g/100 g. Extraction yield was significantly ( P  < 0.05) affected by all the variables. Temperature and water/seed ratio were found to have pronounced effect while the extraction time was found to have minor possible effects. Graphical optimization determined the optimal conditions for the extraction of mucilage. The optimal condition predicted an extraction yield of 20.49 g/100 g at 56.7 °C, 1.6 h, and a water/seed ratio of 66.84:1. Optimal conditions were determined to obtain highest extraction yield. Results indicated that water/seed ratio was the most significant parameter, followed by temperature and time.

  15. Warpage minimization on wheel caster by optimizing process parameters using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    In injection moulding process, it is important to keep the productivity increase constantly with least of waste produced such as warpage defect. Thus, this study is concerning on minimizing warpage defect on wheel caster part. Apart from eliminating product wastes, this project also giving out best optimization techniques using response surface methodology. This research studied on five parameters A-packing pressure, B-packing time, C-mold temperature, D-melting temperature and E-cooling time. The optimization showed that packing pressure is the most significant parameter. Warpage have been improved 42.64% from 0.6524 mm to 0.3742mm.

  16. Comparative one-factor-at-a-time, response surface (statistical) and bench-scale bioreactor level optimization of thermoalkaline protease production from a psychrotrophic Pseudomonas putida SKG-1 isolate.

    PubMed

    Singh, Santosh K; Singh, Sanjay K; Tripathi, Vinayak R; Khare, Sunil K; Garg, Satyendra K

    2011-12-28

    Production of alkaline protease from various bacterial strains using statistical methods is customary now-a-days. The present work is first attempt for the production optimization of a solvent stable thermoalkaline protease by a psychrotrophic Pseudomonas putida isolate using conventional, response surface methods, and fermentor level optimization. The pre-screening medium amended with optimized (w/v) 1.0% glucose, 2.0% gelatin and 0.5% yeast extract, produced 278 U protease ml(-1) at 72 h incubation. Enzyme production increased to 431 Uml(-1) when Mg2+ (0.01%, w/v) was supplemented. Optimization of physical factors further enhanced protease to 514 Uml(-1) at pH 9.0, 25°C and 200 rpm within 60 h. The combined effect of conventionally optimized variables (glucose, yeast extract, MgSO4 and pH), thereafter predicted by response surface methodology yielded 617 U protease ml(-1) at glucose 1.25% (w/v), yeast extract 0.5% (w/v), MgSO4 0.01% (w/v) and pH 8.8. Bench-scale bioreactor level optimization resulted in enhanced production of 882 U protease ml(-1) at 0.8 vvm aeration and 150 rpm agitation during only 48 h incubation. The optimization of fermentation variables using conventional, statistical approaches and aeration/agitation at fermentor level resulted in ~13.5 folds increase (882 Uml(-1)) in protease production compared to un-optimized conditions (65 Uml(-1)). This is the highest level of thermoalkaline protease reported so far by any psychrotrophic bacterium.

  17. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  18. Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology.

    PubMed

    Parmar, Indu; Sharma, Sowmya; Rupasinghe, H P Vasantha

    2015-04-01

    The present study investigated five cyclodextrins (CDs) for the extraction of flavonols from apple pomace powder and optimized β-CD based extraction of total flavonols using response surface methodology. A 2(3) central composite design with β-CD concentration (0-5 g 100 mL(-1)), extraction temperature (20-72 °C), extraction time (6-48 h) and second-order quadratic model for the total flavonol yield (mg 100 g(-1) DM) was selected to generate the response surface curves. The optimal conditions obtained were: β-CD concentration, 2.8 g 100 mL(-1); extraction temperature, 45 °C and extraction time, 25.6 h that predicted the extraction of 166.6 mg total flavonols 100 g(-1) DM. The predicted amount was comparable to the experimental amount of 151.5 mg total flavonols 100 g(-1) DM obtained from optimal β-CD based parameters, thereby giving a low absolute error and adequacy of fitted model. In addition, the results from optimized extraction conditions showed values similar to those obtained through previously established solvent based sonication assisted flavonol extraction procedure. To the best of our knowledge, this is the first study to optimize aqueous β-CD based flavonol extraction which presents an environmentally safe method for value-addition to under-utilized bio resources.

  19. Media optimization for laccase production by Trichoderma harzianum ZF-2 using response surface methodology.

    PubMed

    Gao, Huiju; Chu, Xiang; Wang, Yanwen; Zhou, Fei; Zhao, Kai; Mu, Zhimei; Liu, Qingxin

    2013-12-01

    Trichoderma harzianum ZF-2 producing laccase was isolated from decaying samples from Shandong, China, and showed dye decolorization activities. The objective of this study was to optimize its culture conditions using a statistical analysis of its laccase production. The interactions between different fermentation parameters for laccase production were characterized using a Plackett-Burman design and the response surface methodology. The different media components were initially optimized using the conventional one-factor-at-a-time method and an orthogonal test design, and a Plackett-Burman experiment was then performed to evaluate the effects on laccase production. Wheat straw powder, soybean meal, and CuSO4 were all found to have a significant influence on laccase production, and the optimal concentrations of these three factors were then sequentially investigated using the response surface methodology with a central composite design. The resulting optimal medium components for laccase production were determined as follows: wheat straw powder 7.63 g/l, soybean meal 23.07 g/l, (NH4)2SO4 1 g/l, CuSO4 0.51 g/l, Tween-20 1 g/l, MgSO4 1 g/l, and KH2PO4 0.6 g/l. Using this optimized fermentation method, the yield of laccase was increased 59.68 times to 67.258 U/ml compared with the laccase production with an unoptimized medium. This is the first report on the statistical optimization of laccase production by Trichoderma harzianum ZF-2.

  20. Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material

    NASA Astrophysics Data System (ADS)

    Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena

    2011-05-01

    This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.

  1. Response Surface Model Building Using Orthogonal Arrays for Computer Experiments

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Braun, Robert D.; Moore, Arlene A.; Lepsch, Roger A.

    1997-01-01

    This study investigates response surface methods for computer experiments and discusses some of the approaches available. Orthogonal arrays constructed for computer experiments are studied and an example application to a technology selection and optimization study for a reusable launch vehicle is presented.

  2. Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology.

    PubMed

    Silveira, Jefferson E; Barreto-Rodrigues, Marcio; Cardoso, Tais O; Pliego, Gema; Munoz, Macarena; Zazo, Juan A; Casas, José A

    2017-05-01

    This work studied the bimetallic nanoparticles Fe-Ag (nZVI-Ag) activated persulfate (PS) in aqueous solution using response surface methodology. The Box-Behnken design (BBD) was employed to optimize three parameters (nZVI-Ag dose, reaction temperature, and PS concentration) using 4-chlorophenol (4-CP) as the target pollutant. The synthesis of nZVI-Ag particles was carried out through a reduction of FeCl 2 with NaBH 4 followed by reductive deposition of Ag. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area. The BBD was considered a satisfactory model to optimize the process. Confirmatory tests were carried out using predicted and experimental values under the optimal conditions (50 mg L -1 nZVI-Ag, 21 mM PS at 57 °C) and the complete removal of 4-CP achieved experimentally was successfully predicted by the model, whereas the mineralization degree predicted (90%) was slightly overestimated against the measured data (83%).

  3. Optimization of process parameters for a quasi-continuous tablet coating system using design of experiments.

    PubMed

    Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah

    2011-03-01

    The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists

  4. Aerial Refueling Simulator Validation Using Operational Experimentation and Response Surface Methods with Time Series Responses

    DTIC Science & Technology

    2013-03-21

    10 2.3 Time Series Response Data ................................................................................. 12 2.4 Comparison of Response...to 12 evaluating the efficiency of the parameter estimates. In the past, the most popular form of response surface design used the D-optimality...as well. A model can refer to almost anything in math , statistics, or computer science. It can be any “physical, mathematical, or logical

  5. Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Samsuri, S.; Amran, N. A.; Jusoh, M.

    2018-05-01

    In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.

  6. Optimization of L-asparaginase production from novel Enterobacter sp., by submerged fermentation using response surface methodology.

    PubMed

    Erva, Rajeswara Reddy; Goswami, Ajgebi Nath; Suman, Priyanka; Vedanabhatla, Ravali; Rajulapati, Satish Babu

    2017-03-16

    The culture conditions and nutritional rations influencing the production of extra cellular antileukemic enzyme by novel Enterobacter aerogenes KCTC2190/MTCC111 were optimized in shake-flask culture. Process variables like pH, temperature, incubation time, carbon and nitrogen sources, inducer concentration, and inoculum size were taken into account. In the present study, finest enzyme activity achieved by traditional one variable at a time method was 7.6 IU/mL which was a 2.6-fold increase compared to the initial value. Further, the L-asparaginase production was optimized using response surface methodology, and validated experimental result at optimized process variables gave 18.35 IU/mL of L-asparaginase activity, which is 2.4-times higher than the traditional optimization approach. The study explored the E. aerogenes MTCC111 as a potent and potential bacterial source for high yield of antileukemic drug.

  7. Optimization of tribological performance of SiC embedded composite coating via Taguchi analysis approach

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Akma, N.

    2017-03-01

    Tungsten inert gas (TIG) torch is one of the most recently used heat source for surface modification of engineering parts, giving similar results to the more expensive high power laser technique. In this study, ceramic-based embedded composite coating has been produced by precoated silicon carbide (SiC) powders on the AISI 4340 low alloy steel substrate using TIG welding torch process. A design of experiment based on Taguchi approach has been adopted to optimize the TIG cladding process parameters. The L9 orthogonal array and the signal-to-noise was used to study the effect of TIG welding parameters such as arc current, travelling speed, welding voltage and argon flow rate on tribological response behaviour (wear rate, surface roughness and wear track width). The objective of the study was to identify optimal design parameter that significantly minimizes each of the surface quality characteristics. The analysis of the experimental results revealed that the argon flow rate was found to be the most influential factor contributing to the minimum wear and surface roughness of the modified coating surface. On the other hand, the key factor in reducing wear scar is the welding voltage. Finally, a convenient and economical Taguchi approach used in this study was efficient to find out optimal factor settings for obtaining minimum wear rate, wear scar and surface roughness responses in TIG-coated surfaces.

  8. Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process

    PubMed Central

    2014-01-01

    Background In this research, the removal of natural organic matter from aqueous solutions using advanced oxidation processes (UV/H2O2) was evaluated. Therefore, the response surface methodology and Box-Behnken design matrix were employed to design the experiments and to determine the optimal conditions. The effects of various parameters such as initial concentration of H2O2 (100–180 mg/L), pH (3–11), time (10–30 min) and initial total organic carbon (TOC) concentration (4–10 mg/L) were studied. Results Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model (R2 = 0.98). Experimental results showed that with increasing H2O2 concentration, time and decreasing in initial TOC concentration, TOC removal efficiency was increased. Neutral and nearly acidic pH values also improved the TOC removal. Accordingly, the TOC removal efficiency of 78.02% in terms of the independent variables including H2O2 concentration (100 mg/L), pH (6.12), time (22.42 min) and initial TOC concentration (4 mg/L) were optimized. Further confirmation tests under optimal conditions showed a 76.50% of TOC removal and confirmed that the model is accordance with the experiments. In addition TOC removal for natural water based on response surface methodology optimum condition was 62.15%. Conclusions This study showed that response surface methodology based on Box-Behnken method is a useful tool for optimizing the operating parameters for TOC removal using UV/H2O2 process. PMID:24735555

  9. Optimization of preparation of antioxidative peptides from pumpkin seeds using response surface method.

    PubMed

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%.

  10. Optimization of Reflux Conditions for Total Flavonoid and Total Phenolic Extraction and Enhanced Antioxidant Capacity in Pandan (Pandanus amaryllifolius Roxb.) Using Response Surface Methodology

    PubMed Central

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.

    2014-01-01

    Response surface methodology was applied to optimization of the conditions for reflux extraction of Pandan (Pandanus amaryllifolius Roxb.) in order to achieve a high content of total flavonoids (TF), total phenolics (TP), and high antioxidant capacity (AC) in the extracts. Central composite experimental design with three factors and three levels was employed to consider the effects of the operation parameters, including the methanol concentration (MC, 40%–80%), extraction temperature (ET, 40–70°C), and liquid-to-solid ratio (LS ratio, 20–40 mL/g) on the properties of the extracts. Response surface plots showed that increasing these operation parameters induced the responses significantly. The TF content and AC could be maximized when the extraction conditions (MC, ET, and LS ratio) were 78.8%, 69.5°C, and 32.4 mL/g, respectively, whereas the TP content was optimal when these variables were 75.1%, 70°C, and 31.8 mL/g, respectively. Under these optimum conditions, the experimental TF and TP content and AC were 1.78, 6.601 mg/g DW, and 87.38%, respectively. The optimized model was validated by a comparison of the predicted and experimental values. The experimental values were found to be in agreement with the predicted values, indicating the suitability of the model for optimizing the conditions for the reflux extraction of Pandan. PMID:25147852

  11. Optimization of intermittent microwave–convective drying using response surface methodology

    PubMed Central

    Aghilinategh, Nahid; Rafiee, Shahin; Hosseinpur, Soleiman; Omid, Mahmoud; Mohtasebi, Seyed Saeid

    2015-01-01

    In this study, response surface methodology was used for optimization of intermittent microwave–convective air drying (IMWC) parameters with employing desirability function. Optimization factors were air temperature (40–80°C), air velocity (1–2 m/sec), pulse ratio) PR ((2–6), and microwave power (200–600 W) while responses were rehydration ratio, bulk density, total phenol content (TPC), color change, and energy consumption. Minimum color change, bulk density, energy consumption, maximum rehydration ratio, and TPC were assumed as criteria for optimizing drying conditions of apple slices in IMWC. The optimum values of process variables were 1.78 m/sec air velocity, 40°C air temperature, PR 4.48, and 600 W microwave power that characterized by maximum desirability function (0.792) using Design expert 8.0. The air temperature and microwave power had significant effect on total responses, but the role of air velocity can be ignored. Generally, the results indicated that it was possible to obtain a higher desirability value if the microwave power and temperature, respectively, increase and decrease. PMID:26286706

  12. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.

    PubMed

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2012-01-01

    The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.

  13. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.

    2016-01-01

    Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.

  14. [Optimization of dissolution process for superfine grinding technology on total saponins of Panax ginseng fibrous root by response surface methodology].

    PubMed

    Zhao, Ya; Lai, Xiao-Pin; Yao, Hai-Yan; Zhao, Ran; Wu, Yi-Na; Li, Geng

    2014-03-01

    To investigate the effects of superfine comminution extraction technology of ginseng total saponins from Panax ginseng fibrous root, and to make sure the optimal extraction condition. Optimal condition of ginseng total saponins from Panax ginseng fibrous root was based on single factor experiment to study the effects of crushing degree, extraction time, alcohol concentration and extraction temperature on extraction rate. Response surface method was used to investigate three main factors such as superfine comminution time, extraction time and alcohol concentration. The relationship between content of ginseng total saponins in Panax ginseng fibrous root and three factors fitted second degree polynomial models. The optimal extraction condition was 9 min of superfine comminution time, 70% of alcohol, 50 degrees C of extraction temperature and 70 min of extraction time. Under the optimal condition, ginseng total saponins from Panax ginseng fibrous root was average 94. 81%, which was consistent with the predicted value. The optimization of technology is rapid, efficient, simple and stable.

  15. An Integrated Optimization Design Method Based on Surrogate Modeling Applied to Diverging Duct Design

    NASA Astrophysics Data System (ADS)

    Hanan, Lu; Qiushi, Li; Shaobin, Li

    2016-12-01

    This paper presents an integrated optimization design method in which uniform design, response surface methodology and genetic algorithm are used in combination. In detail, uniform design is used to select the experimental sampling points in the experimental domain and the system performance is evaluated by means of computational fluid dynamics to construct a database. After that, response surface methodology is employed to generate a surrogate mathematical model relating the optimization objective and the design variables. Subsequently, genetic algorithm is adopted and applied to the surrogate model to acquire the optimal solution in the case of satisfying some constraints. The method has been applied to the optimization design of an axisymmetric diverging duct, dealing with three design variables including one qualitative variable and two quantitative variables. The method of modeling and optimization design performs well in improving the duct aerodynamic performance and can be also applied to wider fields of mechanical design and seen as a useful tool for engineering designers, by reducing the design time and computation consumption.

  16. Optimization of a GO2/GH2 Swirl Coaxial Injector Element

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar

    1999-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) swirl coaxial injector element. The element is optimized in terms of design variables such as fuel pressure drop, DELTA P(sub f), oxidizer pressure drop, DELTA P(sub 0) combustor length, L(sub comb), and full cone swirl angle, theta, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w) injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 180 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Two examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface that includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio.

  17. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].

    PubMed

    Chen, Fei-Fei; Wu, Yan; Ge, Fa-Huan

    2012-03-01

    To optimize the extraction conditions of Prunus armeniaca oil by Supercritical CO2 extraction and identify its components by GC-MS. Optimized of SFE-CO extraction by response surface methodology and used GC-MS to analysis Prunus armeniaca oil compounds. Established the model of an equation for the extraction rate of Prunus armeniaca oil by supercritical CO2 extraction, and the optimal parameters for the supercritical CO2 extraction determined by the equation were: the extraction pressure was 27 MPa, temperature was 39 degrees C, the extraction rate of Prunus armeniaca oil was 44.5%. 16 main compounds of Prunus armeniaca oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 92.6%. This process is simple, and can be used for the extraction of Prunus armeniaca oil.

  18. Optimization of Geothermal Well Placement under Geological Uncertainty

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel O.; Arnold, Dan; Demyanov, Vasily; Sass, Ingo; Geiger, Sebastian

    2017-04-01

    Well placement optimization is critical to commercial success of geothermal projects. However, uncertainties of geological parameters prohibit optimization based on a single scenario of the subsurface, particularly when few expensive wells are to be drilled. The optimization of borehole locations is usually based on numerical reservoir models to predict reservoir performance and entails the choice of objectives to optimize (total enthalpy, minimum enthalpy rate, production temperature) and the development options to adjust (well location, pump rate, difference in production and injection temperature). Optimization traditionally requires trying different development options on a single geological realization yet there are many possible different interpretations possible. Therefore, we aim to optimize across a range of representative geological models to account for geological uncertainty in geothermal optimization. We present an approach that uses a response surface methodology based on a large number of geological realizations selected by experimental design to optimize the placement of geothermal wells in a realistic field example. A large number of geological scenarios and design options were simulated and the response surfaces were constructed using polynomial proxy models, which consider both geological uncertainties and design parameters. The polynomial proxies were validated against additional simulation runs and shown to provide an adequate representation of the model response for the cases tested. The resulting proxy models allow for the identification of the optimal borehole locations given the mean response of the geological scenarios from the proxy (i.e. maximizing or minimizing the mean response). The approach is demonstrated on the realistic Watt field example by optimizing the borehole locations to maximize the mean heat extraction from the reservoir under geological uncertainty. The training simulations are based on a comprehensive semi-synthetic data set of a hierarchical benchmark case study for a hydrocarbon reservoir, which specifically considers the interpretational uncertainty in the modeling work flow. The optimal choice of boreholes prolongs the time to cold water breakthrough and allows for higher pump rates and increased water production temperatures.

  19. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis

    PubMed Central

    Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio

    2015-01-01

    Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163

  20. Parametric design and analysis on the landing gear of a planet lander using the response surface method

    NASA Astrophysics Data System (ADS)

    Zheng, Guang; Nie, Hong; Luo, Min; Chen, Jinbao; Man, Jianfeng; Chen, Chuanzhi; Lee, Heow Pueh

    2018-07-01

    The purpose of this paper is to obtain the design parameter-landing response relation for designing the configuration of the landing gear in a planet lander quickly. To achieve this, parametric studies on the landing gear are carried out using the response surface method (RSM), based on a single landing gear landing model validated by experimental results. According to the design of experiment (DOE) results of the landing model, the RS (response surface)-functions of the three crucial landing responses are obtained, and the sensitivity analysis (SA) of the corresponding parameters is performed. Also, two multi-objective optimizations designs on the landing gear are carried out. The analysis results show that the RS (response surface)-model performs well for the landing response design process, with a minimum fitting accuracy of 98.99%. The most sensitive parameters for the three landing response are the design size of the buffers, struts friction and the diameter of the bending beam. Moreover, the good agreement between the simulated model and RS-model results are obtained in two optimized designs, which show that the RS-model coupled with the FE (finite element)-method is an efficient method to obtain the design configuration of the landing gear.

  1. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization.

    PubMed

    Hashad, Rania A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2016-10-01

    The aim of this study was to assess the feasibility of employing a novel but critical formulation pH (6.2) to encapsulate an anionic model drug (methotrexate, MTX) into chitosan(Cs)-tripolyphosphate nanoparticles(NPs). A response surface methodology using a three-level full factorial design was applied studying the effects of two independent variables namely; Cs concentration and MTX concentration. The responses investigated were the entrapment efficiency (EE%), mean hydrodynamic particle size (PS), polydispersity index (PDI) and zeta potential (ZP). In order to simultaneously optimize the series of models obtained, the desirability function approach was applied with a goal to produce high percent of MTX encapsulated into highly charged Cs-TPP NPs of homogenous optimum PS. MTX-loaded CsNPs were successfully prepared at the novel pH applied. The suggested significant models were found quadratic for EE, PS and ZP responses, while 2-factor interaction model for PDI. The optimization overlay graph showed that the maximum global desirability, D=0.856, was reached when the conditions were set at high Cs and MTX concentration. Thus, the use of such optimized conditions, at this novel pH, achieved a maximum drug EE% (73.38%) into NPs characterized by optimum PS (232.6nm), small PDI value (0.195) and highly surface charged (+18.4mV). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Optimization of microwave-assisted extraction of protopine and allocryptopine from stems of Macleaya cordata (Willd) R. Br. using response surface methodology.

    PubMed

    Zhong, Ming; Huang, Ke-Long; Zeng, Jian-Guo; Li, Shuang; She, Jin-Ming; Li, Guiyin; Zhang, Li

    2010-07-01

    The purpose of the research was to investigate the multiple response optimizations for the extraction of protopine and allocryptopine from the stems of Macleaya cordata (Willd) R. Br. by using microwave-assisted extraction (MAE). A three-level, three-factor Box-Behnken design of response surface methodology was used to develop response model, and desirability function was employed to optimize the effects of main extraction parameters. Three variables, ethanol concentration (20-80%, v/v), extraction temperature (30-70 degrees C) and solvent/solid ratio (10:1 to 30:1, mL/g), were investigated in this study. The results showed that the optimum parameters of MAE were ethanol concentration of 45.2 % (v/v), extraction temperature of 54.7 degrees C and solvent/solid ratio of 20.4:1 (mL/g). Under these conditions, the extraction yields of protopine and allocryptopine were 89.4 and 102.0%, respectively, and the extracta sicca yield was 12.5%. The combination use of response surface methodology, Box-Behnken design and the appropriate desirability function could provide an insight into a lab-scale MAE process, and help to develop procedures for commercial production of active ingredients from medical plants.

  3. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method

    PubMed Central

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%. PMID:24637721

  4. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology.

    PubMed

    Deepak, V; Kalishwaralal, K; Ramkumarpandian, S; Babu, S Venkatesh; Senthilkumar, S R; Sangiliyandi, G

    2008-11-01

    Response surface methodology and central composite rotary design (CCRD) was employed to optimize a fermentation medium for the production of Nattokinase by Bacillus subtilis at pH 7.5. The four variables involved in this study were Glucose, Peptone, CaCl2, and MgSO4. The statistical analysis of the results showed that, in the range studied; only peptone had a significant effect on Nattokinase production. The optimized medium containing (%) Glucose: 1, Peptone: 5.5, MgSO4: 0.2 and CaCl2: 0.5 resulted in 2-fold increased level of Nattokinase (3194.25U/ml) production compared to initial level (1599.09U/ml) after 10h of fermentation. Nattokinase production was checked with fibrinolytic activity.

  5. Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi.

    PubMed

    Ahmad, Ajaz; Alkharfy, Khalid M; Wani, Tanveer A; Raish, Mohammad

    2015-01-01

    The objective of the present work was to study the ultrasonic assisted extraction and optimization of polysaccharides from Paeonia emodi and evaluation of its anti-inflammatory response. Specifically, the optimization of polysaccharides was carried out using Box-Behnken statistical experimental design. Response surface methodology (RSM) of three factors (extraction temperature, extraction time and liquid solid ratio) was employed to optimize the percentage yield of the polysaccharides. The experimental data were fitted to quadratic response surface models using multiple regression analysis with high coefficient of determination value (R) of 0.9906. The highest polysaccharide yield (8.69%) as per the Derringer's desirability prediction tool was obtained under the optimal extraction condition (extraction temperature 47.03 °C, extraction time 15.68 min, and liquid solid ratio 1.29 ml/g) with a desirability value of 0.98. These optimized values of tested parameters were validated under similar conditions (n = 6), an average of 8.13 ± 2.08% of polysaccharide yield was obtained in an optimized extraction conditions with 93.55% validity. The anti-inflammatory effect of polysaccharides of P. emodi were studied on carrageenan induced paw edema. In vivo results showed that the P. emodi 200mg/kg of polysaccharide extract exhibited strong potential against inflammatory response induced by 1% suspension of carrageenean in normal saline. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08.

    PubMed

    Zhang, Xiao-yan; Peng, Yong; Su, Zhong-rui; Chen, Qi-he; Ruan, Hui; He, Guo-qing

    2013-02-01

    Biotransformation of phytosterol (PS) by a newly isolated mutant Mycobacterium neoaurum ZJUVN-08 to produce androstenedione has been investigated in this paper. The parameters of the biotransformation process were optimized using fractional factorial design and response surface methodology. Androstenedione was the sole product in the fermentation broth catalyzed by the mutant M. neoaurum ZJUVN-08 strain. Results showed that molar ratio of hydroxypropyl-β-cyclodextrin (HP-β-CD) to PS and substrate concentrations were the two most significant factors affecting androstenedione production. By analyzing the statistical model of three-dimensional surface plot, the optimal process conditions were observed at 0.1 g/L inducer, pH 7.0, molar ratio of HP-β-CD to PS 1.92:1, 8.98 g/L PS, and at 120 h of incubation time. Under these conditions, the maximum androstenedione yield was 5.96 g/L and nearly the same with the non-optimized (5.99 g/L), while the maximum PS conversion rate was 94.69% which increased by 10.66% compared with the non-optimized (84.03%). The predicted optimum conditions from the mathematical model were in agreement with the verification experimental results. It is considered that response surface methodology was a powerful and efficient method to optimize the parameters of PS biotransformation process.

  7. Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08*

    PubMed Central

    Zhang, Xiao-yan; Peng, Yong; Su, Zhong-rui; Chen, Qi-he; Ruan, Hui; He, Guo-qing

    2013-01-01

    Biotransformation of phytosterol (PS) by a newly isolated mutant Mycobacterium neoaurum ZJUVN-08 to produce androstenedione has been investigated in this paper. The parameters of the biotransformation process were optimized using fractional factorial design and response surface methodology. Androstenedione was the sole product in the fermentation broth catalyzed by the mutant M. neoaurum ZJUVN-08 strain. Results showed that molar ratio of hydroxypropyl-β-cyclodextrin (HP-β-CD) to PS and substrate concentrations were the two most significant factors affecting androstenedione production. By analyzing the statistical model of three-dimensional surface plot, the optimal process conditions were observed at 0.1 g/L inducer, pH 7.0, molar ratio of HP-β-CD to PS 1.92:1, 8.98 g/L PS, and at 120 h of incubation time. Under these conditions, the maximum androstenedione yield was 5.96 g/L and nearly the same with the non-optimized (5.99 g/L), while the maximum PS conversion rate was 94.69% which increased by 10.66% compared with the non-optimized (84.03%). The predicted optimum conditions from the mathematical model were in agreement with the verification experimental results. It is considered that response surface methodology was a powerful and efficient method to optimize the parameters of PS biotransformation process. PMID:23365012

  8. Optimizing adsorption of blue pigment from wastewater by nano-porous modified Na-bentonite using spectrophotometry based on response surface method

    NASA Astrophysics Data System (ADS)

    Moradi, Neshat; Salem, Shiva; Salem, Amin

    2018-03-01

    This work highlighted the effective activation of bentonite paste to produce nano-porous powder for removal of cationic dye from wastewater. The effects of activation parameters such as soda and moisture contents, ageing time and temperature were analyzed using response surface methodology (RSM). The significance of independent variables and their interactions were tested by blending the obtained powders with wastewater and then the adsorption was evaluated, spectrophotometrically. The experiments were carried out by preparation of pastes according to response surface methodology and central composite design, which is the standard method, was used to evaluate the effects and interactions of four factors on the treatment efficiency. RSM was demonstrated as an appropriate approach for optimization of alkali activation. The optimal conditions obtained from the desirable responses were 5.0 wt% soda and 45.0 wt% moisture, respectively in which the powder activation was carried out at 150 °C. In order to well understand the role of nano-structured material on dye removal, the adsorbents were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller surface area measurement. Finally, the analysis clearly demonstrates that the dye removal onto prepared adsorbent is well fitted with Langmuir isotherm compared to the other isotherm models. The low cost of material and facile process support the further development for commercial application purpose.

  9. Modelling and Optimization Studies on a Novel Lipase Production by Staphylococcus arlettae through Submerged Fermentation

    PubMed Central

    Chauhan, Mamta; Chauhan, Rajinder Singh; Garlapati, Vijay Kumar

    2013-01-01

    Microbial enzymes from extremophilic regions such as hot spring serve as an important source of various stable and valuable industrial enzymes. The present paper encompasses the modeling and optimization approach for production of halophilic, solvent, tolerant, and alkaline lipase from Staphylococcus arlettae through response surface methodology integrated nature inspired genetic algorithm. Response surface model based on central composite design has been developed by considering the individual and interaction effects of fermentation conditions on lipase production through submerged fermentation. The validated input space of response surface model (with R 2 value of 96.6%) has been utilized for optimization through genetic algorithm. An optimum lipase yield of 6.5 U/mL has been obtained using binary coded genetic algorithm predicted conditions of 9.39% inoculum with the oil concentration of 10.285% in 2.99 hrs using pH of 7.32 at 38.8°C. This outcome could contribute to introducing this extremophilic lipase (halophilic, solvent, and tolerant) to industrial biotechnology sector and will be a probable choice for different food, detergent, chemical, and pharmaceutical industries. The present work also demonstrated the feasibility of statistical design tools integration with computational tools for optimization of fermentation conditions for maximum lipase production. PMID:24455210

  10. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants - response surface methodology approach.

    PubMed

    Zeković, Zoran; Vladić, Jelena; Vidović, Senka; Adamović, Dušan; Pavlić, Branimir

    2016-10-01

    Microwave-assisted extraction (MAE) of polyphenols from coriander seeds was optimized by simultaneous maximization of total phenolic (TP) and total flavonoid (TF) yields, as well as maximized antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl and reducing power assays. Box-Behnken experimental design with response surface methodology (RSM) was used for optimization of MAE. Extraction time (X1 , 15-35 min), ethanol concentration (X2 , 50-90% w/w) and irradiation power (X3 , 400-800 W) were investigated as independent variables. Experimentally obtained values of investigated responses were fitted to a second-order polynomial model, and multiple regression analysis and analysis of variance were used to determine fitness of the model and optimal conditions. The optimal MAE conditions for simultaneous maximization of polyphenol yield and increased antioxidant activity were an extraction time of 19 min, an ethanol concentration of 63% and an irradiation power of 570 W, while predicted values of TP, TF, IC50 and EC50 at optimal MAE conditions were 311.23 mg gallic acid equivalent per 100 g dry weight (DW), 213.66 mg catechin equivalent per 100 g DW, 0.0315 mg mL(-1) and 0.1311 mg mL(-1) respectively. RSM was successfully used for multi-response optimization of coriander seed polyphenols. Comparison of optimized MAE with conventional extraction techniques confirmed that MAE provides significantly higher polyphenol yields and extracts with increased antioxidant activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Optimization of Lipase production from a novel strain Thalassospira permensis M35-15 using Response Surface Methodology

    PubMed Central

    Kai, Wang; Peisheng, Yan

    2016-01-01

    ABSTRACT Lipases can catalyze the hydrolysis of glycerol, esters and long chain fatty acids. A lipase producing isolate M35-15 was screened and identified as Thalassospira permensis using 16S rRNA gene sequence analysis. To our knowledge this is the first report on Thalassospira permensis producing lipases. In this paper the optimization of medium composition for the increase in bacterial lipase was achieved using statistical methods. Firstly the key ingredients were selected by Plackett-Burman experimental design, then the levels of the ingredients were optimized using central composite design of Response Surface Methodology. The predicted optimal lipase activity was 11.49 U under the conditions that medium composition were 5.15 g/l glucose, 11.74 g/l peptone, 6.74 g/l yeast powder and 22.90 g/l olive oil emulsifier. PMID:27285376

  12. Optimization of Lipase production from a novel strain Thalassospira permensis M35-15 using Response Surface Methodology.

    PubMed

    Kai, Wang; Peisheng, Yan

    2016-09-02

    Lipases can catalyze the hydrolysis of glycerol, esters and long chain fatty acids. A lipase producing isolate M35-15 was screened and identified as Thalassospira permensis using 16S rRNA gene sequence analysis. To our knowledge this is the first report on Thalassospira permensis producing lipases. In this paper the optimization of medium composition for the increase in bacterial lipase was achieved using statistical methods. Firstly the key ingredients were selected by Plackett-Burman experimental design, then the levels of the ingredients were optimized using central composite design of Response Surface Methodology. The predicted optimal lipase activity was 11.49 U under the conditions that medium composition were 5.15 g/l glucose, 11.74 g/l peptone, 6.74 g/l yeast powder and 22.90 g/l olive oil emulsifier.

  13. [Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology].

    PubMed

    Shen, Naikun; Qin, Yan; Wang, Qingyan; Xie, Nengzhong; Mi, Huizhi; Zhu, Qixia; Liao, Siming; Huang, Ribo

    2013-10-01

    Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design. Subsequently, the highest production of succinic acid was approached by the path of steepest ascent. Then, the optimum values of the parameters were obtained by Box-Behnken design. The results show that the important parameters were glucose, yeast extract and MgCO3 concentrations. The optimum condition was as follows (g/L): glucose 70.00, yeast extract 9.20 and MgCO3 58.10. Succinic acid yield reached 47.64 g/L at the optimal condition. Succinic acid increased by 29.14% than that before the optimization (36.89 g/L). Response surface methodology was proven to be a powerful tool to optimize succinic acid production.

  14. Optimal Micro-Vane Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-vane secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-vane secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low unit strength" micro-effector arrays. "Low unit strength" micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. Therefore, this report examines optimal micro-vane secondary flow control array designs for compact inlets through a Response Surface Methodology.

  15. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    Objective: To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. Materials and Methods: The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20–60°C), time (20–40 min) and power (200–350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. Results: The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. Conclusion: The results of quantification showed that the guava leaves are the potential source of antioxidant compounds. PMID:26246720

  16. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology.

    PubMed

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20-60°C), time (20-40 min) and power (200-350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. The results of quantification showed that the guava leaves are the potential source of antioxidant compounds.

  17. Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology.

    PubMed

    Venkateswarulu, T C; Prabhakar, K Vidya; Kumar, R Bharath; Krupanidhi, S

    2017-07-01

    Modeling and optimization were performed to enhance production of lactase through submerged fermentation by Bacillus subtilis VUVD001 using artificial neural networks (ANN) and response surface methodology (RSM). The effect of process parameters namely temperature (°C), pH, and incubation time (h) and their combinational interactions on production was studied in shake flask culture by Box-Behnken design. The model was validated by conducting an experiment at optimized process variables which gave the maximum lactase activity of 91.32 U/ml. Compared to traditional activity, 3.48-folds improved production was obtained after RSM optimization. This study clearly shows that both RSM and ANN models provided desired predictions. However, compared with RSM (R 2  = 0.9496), the ANN model (R 2  = 0.99456) gave a better prediction for the production of lactase.

  18. Statistical optimization of beta-carotene production by Arthrobacter agilis A17 using response surface methodology and Box-Behnken design

    NASA Astrophysics Data System (ADS)

    Özdal, Murat; Özdal, Özlem Gür; Gürkök, Sümeyra

    2017-04-01

    β-carotene is a commercially important natural pigment and has been widely applied in the medicine, pharmaceutical, food, feed and cosmetic industries. The current study aimed to investigate the usability of molasses for β-carotene production by Arthrobacter agilis A17 (KP318146) and to optimize the production process. Box-Behnken Design of Response Surface Methodology was used to determine the optimum levels and the interactions of three independent variables namely molasses, yeast extract and KH2PO4 at three different levels. β-carotene yield in optimized medium containing 70 g/l molasses, 25 g/l yeast extract and 0.96 g/l KH2PO4, reached up to 100 mg/l, which is approximately 2.5-fold higher than the yield, obtained from control cultivation. A remarkable β-carotene production on inexpensive carbon source was achieved with the use of statistical optimization.

  19. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.

    2015-09-01

    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  20. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    PubMed

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  1. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    PubMed

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2018-06-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  2. Experimental design and multiple response optimization. Using the desirability function in analytical methods development.

    PubMed

    Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C

    2014-06-01

    A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui

    2018-04-01

    Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.

  4. Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology

    PubMed Central

    Ruys, Andrew J.

    2018-01-01

    Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614

  5. Optimization of edible coating formulations for improving postharvest quality and shelf life of pear fruit using response surface methodology.

    PubMed

    Nandane, A S; Dave, Rudri K; Rao, T V Ramana

    2017-01-01

    The effect of composite edible films containing soy protein isolate (SPI) in combination with additives like hydroxypropyl methylcellulose (HPMC) and olive oil on 'Babughosha' pear ( Pyrus communis L.) stored at ambient temperature (28 ± 5 °C and 60 ± 10% RH) was evaluated using Response surface methodology (RSM). A total of 30 edible coating formulations comprising of SPI (2-6%, w/v), olive oil (0.7-1.1%, v/v), HPMC (0.1-0.5%, w/v) and potassium sorbate (0-0.4% w/v) were evaluated for optimizing the most suitable combination. Quality parameters like weight loss%, TSS, pH and titrable acidity of the stored pears were selected as response variables for optimization. The optimization procedure was carried out using RSM. It was observed that the response variables were mainly effected by concentration of SPI and olive oil in the formulation. Edible coating comprising of SPI 5%, HPMC 0.40%, olive oil 1% and potassium sorbate 0.22% was found to be most suitable combination for pear fruit with predicted values of response variables indicated as weight loss% 3.50, pH 3.41, TSS 11.13 and TA% 0.513.

  6. Multi-Response Optimization of Granaticinic Acid Production by Endophytic Streptomyces thermoviolaceus NT1, Using Response Surface Methodology

    PubMed Central

    Roy, Sudipta; Halder, Suman Kumar; Banerjee, Debdulal

    2016-01-01

    Streptomyces thermoviolaceus NT1, an endophytic isolate, was studied for optimization of granaticinic acid production. It is an antimicrobial metabolite active against even drug resistant bacteria. Different media, optimum glucose concentration, initial media pH, incubation temperature, incubation period, and inoculum size were among the selected parameters optimized in the one-variable-at-a-time (OVAT) approach, where glucose concentration, pH, and temperature were found to play a critical role in antibiotic production by this strain. Finally, the Box–Behnken experimental design (BBD) was employed with three key factors (selected after OVAT studies) for response surface methodological (RSM) analysis of this optimization study.RSM analysis revealed a multifactorial combination; glucose 0.38%, pH 7.02, and temperature 36.53 °C as the optimum conditions for maximum antimicrobial yield. Experimental verification of model analysis led to 3.30-fold (61.35 mg/L as compared to 18.64 mg/L produced in un-optimized condition) enhanced granaticinic acid production in ISP2 medium with 5% inoculum and a suitable incubation period of 10 days. So, the conjugated optimization study for maximum antibiotic production from Streptomyces thermoviolaceus NT1 was found to result in significantly higher yield, which might be exploited in industrial applications. PMID:28952581

  7. Application of Adaptive DP-optimality to Design a Pilot Study for a Clotting Time Test for Enoxaparin.

    PubMed

    Gulati, Abhishek; Faed, James M; Isbister, Geoffrey K; Duffull, Stephen B

    2015-10-01

    Dosing of enoxaparin, like other anticoagulants, may result in bleeding following excessive doses and clot formation if the dose is too low. We recently showed that a factor Xa based clotting time test could potentially assess the effect of enoxaparin on the clotting system. However, the test did not perform well in subsequent individuals and effectiveness of an exogenous phospholipid, Actin FS, in reducing the variability in the clotting time was assessed. The aim of this work was to conduct an adaptive pilot study to determine the range of concentrations of Xa and Actin FS to take forward into a proof-of-concept study. A nonlinear parametric function was developed to describe the response surface over the factors of interest. An adaptive method was used to estimate the parameters using a D-optimal design criterion. In order to provide a reasonable probability of observing a success of the clotting time test, a P-optimal design criterion was incorporated using a loss function to describe the hybrid DP-optimality. The use of adaptive DP-optimality method resulted in an efficient estimation of model parameters using data from only 6 healthy volunteers. The use of response surface modelling identified a range of sets of Xa and Actin FS concentrations, any of which could be used for the proof-of-concept study. This study shows that parsimonious adaptive DP-optimal designs may provide both precise parameter estimates for response surface modelling as well as clinical confidence in the potential benefits of the study.

  8. Optimum extrusion-cooking conditions for improving physical properties of fish-cereal based snacks by response surface methodology.

    PubMed

    Singh, R K Ratankumar; Majumdar, Ranendra K; Venkateshwarlu, G

    2014-09-01

    To establish the effect of barrel temperature, screw speed, total moisture and fish flour content on the expansion ratio and bulk density of the fish based extrudates, response surface methodology was adopted in this study. The experiments were optimized using five-levels, four factors central composite design. Analysis of Variance was carried to study the effects of main factors and interaction effects of various factors and regression analysis was carried out to explain the variability. The fitting was done to a second order model with the coded variables for each response. The response surface plots were developed as a function of two independent variables while keeping the other two independent variables at optimal values. Based on the ANOVA, the fitted model confirmed the model fitness for both the dependent variables. Organoleptically highest score was obtained with the combination of temperature-110(0) C, screw speed-480 rpm, moisture-18 % and fish flour-20 %.

  9. Application of response surface methodology to optimize pressurized liquid extraction of antioxidant compounds from sage (Salvia officinalis L.), basil (Ocimum basilicum L.) and thyme (Thymus vulgaris L.).

    PubMed

    Hossain, M B; Brunton, N P; Martin-Diana, A B; Barry-Ryan, C

    2010-12-01

    The present study optimized pressurized liquid extraction (PLE) conditions using Dionex ASE® 200, USA to maximize the antioxidant activity [Ferric ion Reducing Antioxidant Power (FRAP)] and total polyphenol content (TP) of the extracts from three spices of Lamiaceae family (sage, basil and thyme). Optimal conditions with regard to extraction temperature (66-129 °C) and solvent concentration (32-88% methanol) were identified using response surface methodology (RSM). For all three spices, results showed that 129 °C was the optimum temperature with regard to antioxidant activity. Optimal methanol concentrations with respect to the antioxidant activity of sage and basil extracts were 58% and 60% respectively. Thyme showed a different trend with regard to methanol concentration and was optimally extracted at 33%. Antioxidant activity yields of the optimal PLE were significantly (p < 0.05) higher than solid/liquid extracts. Predicted models were highly significant (p < 0.05) for both total phenol (TP) and FRAP values in all the spices with high regression coefficients (R(2)) ranging from 0.651 to 0.999.

  10. Multi Response Optimization of Process Parameters Using Grey Relational Analysis for Turning of Al-6061

    NASA Astrophysics Data System (ADS)

    Deepak, Doreswamy; Beedu, Rajendra

    2017-08-01

    Al-6061 is one among the most useful material used in manufacturing of products. The major qualities of Aluminium are reasonably good strength, corrosion resistance and thermal conductivity. These qualities have made it a suitable material for various applications. While manufacturing these products, companies strive for reducing the production cost by increasing Material Removal Rate (MRR). Meanwhile, the quality of surface need to be ensured at an acceptable value. This paper aims at bringing a compromise between high MRR and low surface roughness requirement by applying Grey Relational Analysis (GRA). This article presents the selection of controllable parameters like longitudinal feed, cutting speed and depth of cut to arrive at optimum values of MRR and surface roughness (Ra). The process parameters for experiments were selected based on Taguchi’s L9 array with two replications. Grey relation analysis being most suited method for multi response optimization, the same is adopted for the optimization. The result shows that feed rate is the most significant factor that influences MRR and Surface finish.

  11. Modeling of organic solar cell using response surface methodology

    NASA Astrophysics Data System (ADS)

    Suliman, Rajab; Mitul, Abu Farzan; Mohammad, Lal; Djira, Gemechis; Pan, Yunpeng; Qiao, Qiquan

    Polymer solar cells have drawn much attention during the past few decades due to their low manufacturing cost and incompatibility for flexible substrates. In solution-processed organic solar cells, the optimal thickness, annealing temperature, and morphology are key components to achieving high efficiency. In this work, response surface methodology (RSM) is used to find optimal fabrication conditions for polymer solar cells. In order to optimize cell efficiency, the central composite design (CCD) with three independent variables polymer concentration, polymer-fullerene ratio, and active layer spinning speed was used. Optimal device performance was achieved using 10.25 mg/ml polymer concentration, 0.42 polymer-fullerene ratio, and 1624 rpm of active layer spinning speed. The predicted response (the efficiency) at the optimum stationary point was found to be 5.23% for the Poly(diketopyrrolopyrrole-terthiophene) (PDPP3T)/PC60BM solar cells. Moreover, 97% of the variation in the device performance was explained by the best model. Finally, the experimental results are consistent with the CCD prediction, which proves that this is a promising and appropriate model for optimum device performance and fabrication conditions.

  12. Optimization of Enzymatic Saccharification of Alkali Pretreated Parthenium sp. Using Response Surface Methodology

    PubMed Central

    Pandiyan, K.; Tiwari, Rameshwar; Singh, Surender; Nain, Pawan K. S.; Rana, Sarika; Arora, Anju; Singh, Shashi B.; Nain, Lata

    2014-01-01

    Parthenium sp. is a noxious weed which threatens the environment and biodiversity due to its rapid invasion. This lignocellulosic weed was investigated for its potential in biofuel production by subjecting it to mild alkali pretreatment followed by enzymatic saccharification which resulted in significant amount of fermentable sugar yield (76.6%). Optimization of enzymatic hydrolysis variables such as temperature, pH, enzyme, and substrate loading was carried out using central composite design (CCD) in response to surface methodology (RSM) to achieve the maximum saccharification yield. Data obtained from RSM was validated using ANOVA. After the optimization process, a model was proposed with predicted value of 80.08% saccharification yield under optimum conditions which was confirmed by the experimental value of 85.80%. This illustrated a good agreement between predicted and experimental response (saccharification yield). The saccharification yield was enhanced by enzyme loading and reduced by temperature and substrate loading. This study reveals that under optimized condition, sugar yield was significantly increased which was higher than earlier reports and promises the use of Parthenium sp. biomass as a feedstock for bioethanol production. PMID:24900917

  13. Utilization of tannery fleshings: Optimization of conditions for fermenting delimed tannery fleshings using Enterococcus faecium HAB01 by response surface methodology.

    PubMed

    Kumar Rai, Amit; General, Thiyam; Bhaskar, N; Suresh, P V; Sakhare, P Z; Halami, P M; Gowda, Lalitha R; Mahendrakar, N S

    2010-03-01

    Conditions for fermentation of delimed tannery fleshings--to obtain higher degree of protein hydrolysis and reasonably better antioxidant activity--using Enterococcus faecium HAB01 (GenBank #FJ418568) were optimized. Three independent variables--viz., inoculum level (X1), glucose level (X2) and fermentation time (X3)--were optimized using response surface method considering degree of hydrolysis (DH; %) and total titrable acidity (TTA) as response variables. The optimized conditions were found to be 12.5% (v/w) inoculum, 17.5% (w/w) glucose and 96h of fermentation at 37+/-1 degrees C to obtain a maximum DH%. The usefulness of the predicted model was further validated by considering random combinations of the independent factors. The chemical score of the hydrolysate revealed an excess amount of essential amino acids, viz., arginine and leucine compared to reference protein. The liquor portion had relatively high antioxidant activities, indicating its potential for use as a high value feed ingredient. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology

    PubMed Central

    Boaretti, Carlo; Roso, Martina; Lorenzetti, Alessandra; Modesti, Michele

    2015-01-01

    In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers. PMID:28793427

  15. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology.

    PubMed

    Boaretti, Carlo; Roso, Martina; Lorenzetti, Alessandra; Modesti, Michele

    2015-07-07

    In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.

  16. Optimizing the well pumping rate and its distance from a stream

    NASA Astrophysics Data System (ADS)

    Abdel-Hafez, M. H.; Ogden, F. L.

    2008-12-01

    Both ground water and surface water are very important component of the water resources. Since they are coupled systems in riparian areas, management strategies that neglect interactions between them penalize senior surface water rights to the benefit of junior ground water rights holders in the prior appropriation rights system. Water rights managers face a problem in deciding which wells need to be shut down and when, in the case of depleted stream flow. A simulation model representing a combined hypothetical aquifer and stream has been developed using MODFLOW 2000 to capture parameter sensitivity, test management strategies and guide field data collection campaigns to support modeling. An optimization approach has been applied to optimize both the well distance from the stream and the maximum pumping rate that does not affect the stream discharge downstream the pumping wells. Conjunctive management can be modeled by coupling the numerical simulation model with the optimization techniques using the response matrix technique. The response matrix can be obtained by calculating the response coefficient for each well and stream. The main assumption of the response matrix technique is that the amount of water out of the stream to the aquifer is linearly proportional to the well pumping rate (Barlow et al. 2003). The results are presented in dimensionless form, which can be used by the water managers to solve conflicts between surface water and ground water holders by making the appropriate decision to choose which well need to be shut down first.

  17. In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

    PubMed

    Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

  18. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology

    Treesearch

    Jae-Won Lee; Rita C.L.B. Rodrigues; Thomas W. Jeffries

    2009-01-01

    Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 23 full factorial design with six axial points. Temperatures ranged from 132 to 180º...

  19. Response surface optimization of electro-oxidation process for the treatment of C.I. Reactive Yellow 186 dye: reaction pathways

    NASA Astrophysics Data System (ADS)

    Rajkumar, K.; Muthukumar, M.

    2017-05-01

    In this study, central composite design at five levels (- β, -1, 0, +1, + β) combined with response surface methodology has been applied to optimize C.I. Reactive Yellow 186 using electro-oxidation process with graphite electrodes in a batch reactor. The variables considered were the pH ( X 1), NaCl concentration (M) ( X 2), and electrolysis time (min) ( X 3) on C.I. Reactive Yellow 186 were studied. A second-order empirical relationship between the response and independent variables was derived. Analysis of variance showed a high coefficient of determination value ( R 2 = 0.9556 and 0.9416 for color and COD, respectively). The optimized condition of the electro-oxidation of Reactive Yellow 186 is as follows: pH 3.9; NaCl concentration 0.11 M; and electrolysis time 18 min. Under this condition, the maximal decolorization efficiency of 99 % and COD removal 73 % was achieved. Detailed physico-chemical analysis of electrode and residues of the electro-oxidation process has also been carried out UV-Visible and Fourier transform infrared spectroscopy. The intermediate compounds formed during the oxidation were identified using a gas chromatography coupled with mass spectrometry. According to these results, response surface methodology could be useful for reducing the time to treat effluent wastewater.

  20. Optimization of Sugar Replacement with Date Syrup in Prebiotic Chocolate Milk Using Response Surface Methodology.

    PubMed

    Kazemalilou, Sahar; Alizadeh, Ainaz

    2017-01-01

    Chocolate milk is one of the most commonly used non-fermentative dairy products, which, due to high level of sucrose, could lead to diabetes and tooth decay among children. Therefore, it is important to replace sucrose with other types of sweeteners, especially, natural ones. In this research, response surface methodology (RSM) was used to optimize the ingredients formulation of prebiotic chocolate milk, date syrup as sweetener (4-10%w/w), inulin as prebiotic texturizer (0-0.5%w/w) and carrageenan as thickening agent (0-0.04%w/w) in the formulation of chocolate milk. The fitted models to predict the variables of selected responses such as pH, viscosity, total solid, sedimentation and overall acceptability of chocolate milk showed a high coefficient of determination. The independent effect of carrageenan was the most effective parameter which led to pH and sedimentation decrease but increased viscosity. Moreover, in most treatments, date syrup and inulin variables had significant effects which had a mutual impact. Optimization of the variables, based on the responses surface 3D plots showed that the sample containing 0.48% (w/w) of inulin, 0.04% (w/w) of carrageenan, and 10% of date syrup was selected as the optimum condition.

  1. Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti) by response surface methodology

    PubMed Central

    Zhou, Shaoqi; Feng, Xinbin

    2017-01-01

    In this paper, a statistically-based experimental design with response surface methodology (RSM) was employed to examine the effects of functional conditions on the photoelectrocatalytic oxidation of landfill leachate using a Cu/N co-doped TiO2 (Ti) electrode. The experimental design method was applied to response surface modeling and the optimization of the operational parameters of the photoelectro-catalytic degradation of landfill leachate using TiO2 as a photo-anode. The variables considered were the initial chemical oxygen demand (COD) concentration, pH and the potential bias. Two dependent parameters were either directly measured or calculated as responses: chemical oxygen demand (COD) removal and total organic carbon (TOC) removal. The results of this investigation reveal that the optimum conditions are an initial pH of 10.0, 4377.98mgL-1 initial COD concentration and 25.0 V of potential bias. The model predictions and the test data were in satisfactory agreement. COD and TOC removals of 67% and 82.5%, respectively, were demonstrated. Under the optimal conditions, GC/MS showed 73 organic micro-pollutants in the raw landfill leachate which included hydrocarbons, aromatic compounds and esters. After the landfill leachate treatment processes, 38 organic micro-pollutants disappeared completely in the photoelectrocatalytic process. PMID:28671943

  2. Optimization of response surface and neural network models in conjugation with desirability function for estimation of nutritional needs of methionine, lysine, and threonine in broiler chickens.

    PubMed

    Mehri, Mehran

    2014-07-01

    The optimization algorithm of a model may have significant effects on the final optimal values of nutrient requirements in poultry enterprises. In poultry nutrition, the optimal values of dietary essential nutrients are very important for feed formulation to optimize profit through minimizing feed cost and maximizing bird performance. This study was conducted to introduce a novel multi-objective algorithm, desirability function, for optimization the bird response models based on response surface methodology (RSM) and artificial neural network (ANN). The growth databases on the central composite design (CCD) were used to construct the RSM and ANN models and optimal values for 3 essential amino acids including lysine, methionine, and threonine in broiler chicks have been reevaluated using the desirable function in both analytical approaches from 3 to 16 d of age. Multi-objective optimization results showed that the most desirable function was obtained for ANN-based model (D = 0.99) where the optimal levels of digestible lysine (dLys), digestible methionine (dMet), and digestible threonine (dThr) for maximum desirability were 13.2, 5.0, and 8.3 g/kg of diet, respectively. However, the optimal levels of dLys, dMet, and dThr in the RSM-based model were estimated at 11.2, 5.4, and 7.6 g/kg of diet, respectively. This research documented that the application of ANN in the broiler chicken model along with a multi-objective optimization algorithm such as desirability function could be a useful tool for optimization of dietary amino acids in fractional factorial experiments, in which the use of the global desirability function may be able to overcome the underestimations of dietary amino acids resulting from the RSM model. © 2014 Poultry Science Association Inc.

  3. Multi Response Optimization of Laser Micro Marking Process:A Grey- Fuzzy Approach

    NASA Astrophysics Data System (ADS)

    Shivakoti, I.; Das, P. P.; Kibria, G.; Pradhan, B. B.; Mustafa, Z.; Ghadai, R. K.

    2017-07-01

    The selection of optimal parametric combination for efficient machining has always become a challenging issue for the manufacturing researcher. The optimal parametric combination always provides a better machining which improves the productivity, product quality and subsequently reduces the production cost and time. The paper presents the hybrid approach of Grey relational analysis and Fuzzy logic to obtain the optimal parametric combination for better laser beam micro marking on the Gallium Nitride (GaN) work material. The response surface methodology has been implemented for design of experiment considering three parameters with their five levels. The parameter such as current, frequency and scanning speed has been considered and the mark width, mark depth and mark intensity has been considered as the process response.

  4. Responsive Surface Methodology Optimizes Extraction Conditions of Industrial by-products, Camellia japonica Seed Cake

    PubMed Central

    Kim, Jae Kyeom; Lim, Ho-Jeong; Kim, Mi-So; Choi, Soo Jung; Kim, Mi-Jeong; Kim, Cho Rong; Shin, Dong-Hoon; Shin, Eui-Cheol

    2016-01-01

    Background: The central nervous system is easily damaged by oxidative stress due to high oxygen consumption and poor defensive capacity. Hence, multiple studies have demonstrated that inhibiting oxidative stress-induced damage, through an antioxidant-rich diet, might be a reasonable approach to prevent neurodegenerative disease. Objective: In the present study, response surface methodology was utilized to optimize the extraction for neuro-protective constituents of Camellia japonica byproducts. Materials and Methods: Rat pheochromocytoma cells were used to evaluate protective potential of Camellia japonica byproducts. Results: Optimum conditions were 33.84 min, 75.24%, and 75.82°C for time, ethanol concentration and temperature. Further, we demonstrated that major organic acid contents were significantly impacted by the extraction conditions, which may explain varying magnitude of protective potential between fractions. Conclusions: Given the paucity of information in regards to defatted C. japonica seed cake and their health promoting potential, our results herein provide interesting preliminary data for utilization of this byproduct from oil processing in both academic and industrial applications. SUMMARY Neuro-protective potential of C. japonica seed cake on cell viability was affected by extraction conditionsExtraction conditions effectively influenced on active constituents of C. japonica seed cakeBiological activity of C. japonica seed cake was optimized by the responsive surface methodology. Abbreviations used: GC-MS: Gas chromatography-mass spectrometer, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, PC12 cells: Pheochromocytoma, RSM: Response surface methodology. PMID:27601847

  5. Optimization of Polysulfone / Graphene Oxide / Polyethylene Glycol / Triaminopyrimidine by Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Riduan Jamalludin, Mohd; Harun, Zawati; Khadijah Hubadillah, Siti; Hafiz Dzarfan Othman, Mohd; Hasliza Kamarudin, Noor; Zaini Yunos, Muhamad; Izzati Ismail, Ras; Lailina, N. M.

    2018-03-01

    The addition of polyethylene glycol (PEG), graphene oxide (GO) and triaminopyrimidine (TAP) into polysulfone membranes was used to modify the membrane morphology and increase membrane performance. The central composite design of the response surface methodology was used to predict the maximum permeability and rejection of the PSf membrane. The parameter chosen for this study were PEG (7-14 wt%), GO (0-2.5wt%) and TAP (0-0.5 wt%) concentration. The flat sheet membrane was prepared via phase inversion technique where polysulfone (PSf) was used as base polymer. Various concentration of GO, PEG and TAP were added into the casting solution to produce different membrane composition. PEG was added as pore forming agent for the PSf membrane while inorganic additive such as GO was used to increase the hydrophilicity of the membrane. Besides that, the addition of TAP as a compatibilizer to enhance the physical interaction between GO and PEG. The characterization and surface morphology of produced membrane were analysed via scanning electron microscope, SEM and X-ray diffraction, XRD. The optimization of membrane performance was carried out by using response surface methodology (RSM). The performance of the membrane was analysed by using distilled water for pure water flux test and humic acid for rejection test. The optimized responses, membrane permeability and rejection obtained experimentally were 301.562 Lm-2h-1 and 91.562% respectively, with deviation from the predicted value of 7.884 and 0.4381 %, respectively.

  6. Effects of annealing temperature on the H2-sensing properties of Pd-decorated WO3 nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Sangmin; Lee, Woo Seok; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu; Choi, Seungbok

    2018-03-01

    The temperature of the post-annealing treatment carried out after noble metal deposition onto semiconducting metal oxides (SMOs) must be carefully optimized to maximize the sensing performance of the metal-decorated SMO sensors. WO3 nanorods were synthesized by thermal evaporation of WO3 powders and decorated with Pd nanoparticles using a sol-gel method, followed by an annealing process. The effects of the annealing temperature on the hydrogen gas-sensing properties of the Pd-decorated WO3 nanorods were then examined; the optimal annealing temperature, leading to the highest response of the WO3 nanorod sensor to H2, was determined to be 600 °C. Post-annealing at 600 °C resulted in nanorods with the highest surface area-to-volume ratio, as well as in the optimal size and the largest number of deposited Pd nanoparticles, leading to the highest response and the shortest response/recovery times toward H2. The improved H2-sensing performance of the Pd-decorated WO3 nanorod sensor, compared to a sensor based on pristine WO3 nanorods, is attributed to the enhanced catalytic activity, increased surface area-to-volume ratio, and higher amounts of surface defects.

  7. Optimization of photocatalytic degradation of palm oil mill effluent in UV/ZnO system based on response surface methodology.

    PubMed

    Ng, Kim Hoong; Cheng, Yoke Wang; Khan, Maksudur R; Cheng, Chin Kui

    2016-12-15

    This paper reports on the optimization of palm oil mill effluent (POME) degradation in a UV-activated-ZnO system based on central composite design (CCD) in response surface methodology (RSM). Three potential factors, viz. O 2 flowrate (A), ZnO loading (B) and initial concentration of POME (C) were evaluated for the significance analysis using a 2 3 full factorial design before the optimization process. It is found that all the three main factors were significant, with contributions of 58.27% (A), 15.96% (B) and 13.85% (C), respectively, to the POME degradation. In addition, the interactions between the factors AB, AC and BC also have contributed 4.02%, 3.12% and 1.01% to the POME degradation. Subsequently, all the three factors were subjected to statistical central composite design (CCD) analysis. Quadratic models were developed and rigorously checked. A 3D-response surface was subsequently generated. Two successive validation experiments were carried out and the degradation achieved were 55.25 and 55.33%, contrasted with 52.45% for predicted degradation value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Probabilistic Design of a Plate-Like Wing to Meet Flutter and Strength Requirements

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Krishnamurthy, T.; Mason, Brian H.; Smith, Steven A.; Naser, Ahmad S.

    2002-01-01

    An approach is presented for carrying out reliability-based design of a metallic, plate-like wing to meet strength and flutter requirements that are given in terms of risk/reliability. The design problem is to determine the thickness distribution such that wing weight is a minimum and the probability of failure is less than a specified value. Failure is assumed to occur if either the flutter speed is less than a specified allowable or the stress caused by a pressure loading is greater than a specified allowable. Four uncertain quantities are considered: wing thickness, calculated flutter speed, allowable stress, and magnitude of a uniform pressure load. The reliability-based design optimization approach described herein starts with a design obtained using conventional deterministic design optimization with margins on the allowables. Reliability is calculated using Monte Carlo simulation with response surfaces that provide values of stresses and flutter speed. During the reliability-based design optimization, the response surfaces and move limits are coordinated to ensure accuracy of the response surfaces. Studies carried out in the paper show the relationship between reliability and weight and indicate that, for the design problem considered, increases in reliability can be obtained with modest increases in weight.

  9. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production

    USDA-ARS?s Scientific Manuscript database

    Dilute H3PO4 (0.0 - 2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using a central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzym...

  10. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  11. Optimization of Process Parameters of Pulsed Electro Deposition Technique for Nanocrystalline Nickel Coating Using Gray Relational Analysis (GRA)

    NASA Astrophysics Data System (ADS)

    Venkatesh, C.; Sundara Moorthy, N.; Venkatesan, R.; Aswinprasad, V.

    The moving parts of any mechanism and machine parts are always subjected to a significant wear due to the development of friction. It is an utmost important aspect to address the wear problems in present environment. But the complexity goes on increasing to replace the worn out parts if they are very precise. Technology advancement in surface engineering ensures the minimum surface wear with the introduction of polycrystalline nano nickel coating. The enhanced tribological property of the nano nickel coating was achieved by the development of grain size and hardness of the surface. In this study, it has been decided to focus on the optimized parameters of the pulsed electro deposition to develop such a coating. Taguchi’s method coupled gray relational analysis was employed by considering the pulse frequency, average current density and duty cycle as the chief process parameters. The grain size and hardness were considered as responses. Totally, nine experiments were conducted as per L9 design of experiment. Additionally, response graph method has been applied to determine the most significant parameter to influence both the responses. In order to improve the degree of validation, confirmation test and predicted gray grade were carried out with the optimized parameters. It has been observed that there was significant improvement in gray grade for the optimal parameters.

  12. Optimization of a GO2/GH2 Impinging Injector Element

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar

    2001-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) impinging injector element. The unlike impinging element, a fuel-oxidizer- fuel (F-O-F) triplet, is optimized in terms of design variables such as fuel pressure drop, (Delta)P(sub f), oxidizer pressure drop, (Delta)P(sub o), combustor length, L(sub comb), and impingement half-angle, alpha, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 163 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface which includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, specific variable weights are further increased to illustrate the high marginal cost of realizing the last increment of injector performance and thruster weight.

  13. A freeze-dried injectable form of ibuprofen: development and optimisation using response surface methodology.

    PubMed

    Kagkadis, K A; Rekkas, D M; Dallas, P P; Choulis, N H

    1996-01-01

    In this study a complex of Ibuprofen and b-Hydroxypropylcyclodextrin was prepared employing a freeze drying method. The production parameters and the final specifications of this product were optimized by using response surface methodology. The results show that the freeze dried complex meets the requirements for solubility to be considered as a possible injectable form.

  14. Process optimization of microencapsulation of curcumin in γ-polyglutamic acid using response surface methodology.

    PubMed

    Ko, Wen-Ching; Chang, Chao-Kai; Wang, Hsiu-Ju; Wang, Shian-Jen; Hsieh, Chang-Wei

    2015-04-01

    The aim of this study was to develop an optimal microencapsulation method for an oil-soluble component (curcumin) using γ-PGA. The results show that Span80 significantly enhances the encapsulation efficiency (EE) of γ-Na(+)-PGA microcapsules. Therefore, the effects of γ-Na(+)-PGA, curcumin and Span80 concentration on EE of γ-Na(+)-PGA microcapsules were studied by means of response surface methodology (RSM). It was found that the optimal microencapsulation process is achieved by using γ-Na(+)-PGA 6.05%, curcumin 15.97% and Span80 0.61% with a high EE% (74.47 ± 0.20%). Furthermore, the models explain 98% of the variability in the responses. γ-Na(+)-PGA seems to be a good carrier for the encapsulation of curcumin. In conclusion, this simple and versatile approach can potentially be applied to the microencapsulation of various oil-soluble components for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Multiple optimization of chemical components and texture of purple maize expanded by IVDV treatment using the response surface methodology.

    PubMed

    Mrad, Rachelle; Debs, Espérance; Maroun, Richard G; Louka, Nicolas

    2014-12-15

    A new process, Intensification of Vaporization by Decompression to the Vacuum (IVDV), is proposed for texturizing purple maize. It consists in exposing humid kernels to high steam pressure followed by a decompression to the vacuum. Response surface methodology with three operating parameters (initial water content (W), steam pressure (P) and processing time (T)) was used to study the response parameters: Total Anthocyanins Content, Total Polyphenols Content, Free Radical Scavenging Activity, Expansion Ratio, Hardness and Work Done. P was the most important variable, followed by T. Pressure drop helped the release of bound phenolics arriving to their expulsion outside the cell. Combined with convenient T and W, it caused kernels expansion. Multiple optimization of expansion and chemical content showed that IVDV resulted in good texturization of maize while preserving the antioxidant compounds and activity. Optimal conditions were: W=29%, P=5 bar and T=37s. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optimizing Discharge Capacity of Li-O 2 Batteries by Design of Air-Electrode Porous Structure: Multifidelity Modeling and Optimization

    DOE PAGES

    Pan, Wenxiao; Yang, Xiu; Bao, Jie; ...

    2017-01-01

    We develop a new mathematical framework to study the optimal design of air electrode microstructures for lithium-oxygen (Li-O2) batteries. It can eectively reduce the number of expensive experiments for testing dierent air-electrodes, thereby minimizing the cost in the design of Li-O2 batteries. The design parameters to characterize an air-electrode microstructure include the porosity, surface-to-volume ratio, and parameters associated with the pore-size distribution. A surrogate model (also known as response surface) for discharge capacity is rst constructed as a function of these design parameters. The surrogate model is accurate and easy to evaluate such that an optimization can be performed basedmore » on it. In particular, a Gaussian process regression method, co-kriging, is employed due to its accuracy and eciency in predicting high-dimensional responses from a combination of multidelity data. Specically, a small amount of data from high-delity simulations are combined with a large number of data obtained from computationally ecient low-delity simulations. The high-delity simulation is based on a multiscale modeling approach that couples the microscale (pore-scale) and macroscale (device-scale) models. Whereas, the low-delity simulation is based on an empirical macroscale model. The constructed response surface provides quantitative understanding and prediction about how air electrode microstructures aect the discharge performance of Li-O2 batteries. The succeeding sensitivity analysis via Sobol indices and optimization via genetic algorithm ultimately oer a reliable guidance on the optimal design of air electrode microstructures. The proposed mathematical framework can be generalized to investigate other new energy storage techniques and materials.« less

  17. Optimizing Discharge Capacity of Li-O 2 Batteries by Design of Air-Electrode Porous Structure: Multifidelity Modeling and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Yang, Xiu; Bao, Jie

    We develop a new mathematical framework to study the optimal design of air electrode microstructures for lithium-oxygen (Li-O2) batteries. It can eectively reduce the number of expensive experiments for testing dierent air-electrodes, thereby minimizing the cost in the design of Li-O2 batteries. The design parameters to characterize an air-electrode microstructure include the porosity, surface-to-volume ratio, and parameters associated with the pore-size distribution. A surrogate model (also known as response surface) for discharge capacity is rst constructed as a function of these design parameters. The surrogate model is accurate and easy to evaluate such that an optimization can be performed basedmore » on it. In particular, a Gaussian process regression method, co-kriging, is employed due to its accuracy and eciency in predicting high-dimensional responses from a combination of multidelity data. Specically, a small amount of data from high-delity simulations are combined with a large number of data obtained from computationally ecient low-delity simulations. The high-delity simulation is based on a multiscale modeling approach that couples the microscale (pore-scale) and macroscale (device-scale) models. Whereas, the low-delity simulation is based on an empirical macroscale model. The constructed response surface provides quantitative understanding and prediction about how air electrode microstructures aect the discharge performance of Li-O2 batteries. The succeeding sensitivity analysis via Sobol indices and optimization via genetic algorithm ultimately oer a reliable guidance on the optimal design of air electrode microstructures. The proposed mathematical framework can be generalized to investigate other new energy storage techniques and materials.« less

  18. Optimization of extraction of polysaccharides from fruiting body of Cordyceps militaris (L.) link using response surface methodology

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang Chinh; Thi, Dinh Huynh Mong; Pham, Dinh Chuong

    2018-04-01

    Polysaccharides from fruiting body of Cordyceps militaris (L.) Link possess various pharmaceutical activities. In this study, polysaccharides from the fruiting body of C. militaris were extracted with different solvents. Of those solvents tested, distilled water was identified as the most efficient solvent for the extraction, resulting in a significant increase in polysaccharides yield. Response surface methodology was then used to optimize the extraction conditions and establish a reliable mathematical model for prediction. A maximum polysaccharides yield of 11.07% was reached at a ratio of water to raw material of 23.2:1 mL/g, an extraction time of 76 min, and a temperature of 93.6°C. This study indicates that the obtained optimal extraction conditions are an efficient method for extraction of polysaccharides from the fruiting body of C. militaris.

  19. Optimization of process condition for the preparation of amine-impregnated activated carbon developed for CO2 capture and applied to methylene blue adsorption by response surface methodology.

    PubMed

    Das, Dipa; Meikap, Bhim C

    2017-10-15

    The present research describes the optimal adsorption condition for methylene blue (MB). The adsorbent used here was monoethanol amine-impregnated activated carbon (MEA-AC) prepared from green coconut shell. Response surface methodology (RSM) is the multivariate statistical technique used for the optimization of the process variables. The central composite design is used to determine the effect of activation temperature, activation time and impregnation ratio on the MB removal. The percentage (%) MB adsorption by MEA-AC is evaluated as a response of the system. A quadratic model was developed for response. From the analysis of variance, the factor which was the most influential on the experimental design response has been identified. The optimum condition for the preparation of MEA-AC from green coconut shells is the temperature of activation 545.6°C, activation time of 41.64 min and impregnation ratio of 0.33 to achieve the maximum removal efficiency of 98.21%. At the same optimum parameter, the % MB removal from the textile-effluent industry was examined and found to be 96.44%.

  20. Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology.

    PubMed

    Guo, F; Zheng, H; Cheng, Y; Song, S; Zheng, Z; Jia, S

    2018-02-01

    Poly-ε-L-lysine is a natural homo-polyamide of L-lysine with excellent antimicrobial properties, which can be used as a novel preservative and has a wide range of applications. In this paper, the fermentation medium for ε-PL production by Streptomyces diastatochromogenes 6#-7 was optimized by Response Surface Methodology. The results of Plackett-Burman design showed that glucose, yeast extract and (NH 4 ) 2 SO 4 were the major influencing factors in ε-PL production of S. diastatochromogenes 6#-7. The optimal concentrations of glucose, yeast extract and (NH 4 ) 2 SO 4 were determined to be 60, 7·5 and 7·5 g l -1 according to Box-Behnken experiment and regression analysis, respectively. Under the optimized conditions, the ε-PL yield in shake-flask fermentation was 0·948 ± 0·030 g l -1 , which was in good agreement with the predicted value of 0·970 g l -1 . The yield was improved by 43·1% from that with the initial medium. In 5 l jar-fermenter the ε-PL yield reached 25·5 g l -1 , which was increased by 56·4% from the original medium. In addition, the fermentation time was reduced from 174 to 120 h. Medium optimization is a very practical and valuable tool for fermentation industry to improve product yield and minimize by-products as well as reduce overall manufacturing costs. The response surface methodology is not new, but it is still a very effective method in medium optimization research. This study used ε-polylysine fermentation as an example to demonstrate how the product yield can be significantly increased by medium optimization through surface response methodology. Similar approach can be used in other microbial fermentations such as in pharmaceutical, food, agricultural and energy industries. As an example, ε-polylysine is one of a few newly approved natural food-grade antimicrobials for food and beverages preservations. Yield improvement is economically beneficial to not only ε-polylysine manufacturers but also to their users and consumers due to lower costs and price. © 2017 The Society for Applied Microbiology.

  1. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    PubMed Central

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B.

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R 2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  2. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.

    PubMed

    Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu

    2015-08-01

    This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Optimization of Culture Conditions for Enhanced Growth, Lipid and Docosahexaenoic Acid (DHA) Production of Aurantiochytrium SW1 by Response Surface Methodology.

    PubMed

    Nazir, Yusuf; Shuib, Shuwahida; Kalil, Mohd Sahaid; Song, Yuanda; Hamid, Aidil Abdul

    2018-06-11

    In this study, optimization of growth, lipid and DHA production of Aurantiochytrium SW1 was carried out using response surface methodology (RSM) in optimizing initial fructose concentration, agitation speed and monosodium glutamate (MSG) concentration. Central composite design was applied as the experimental design and analysis of variance (ANOVA) was used to analyze the data. ANOVA analysis revealed that the process which adequately represented by quadratic model was significant (p < 0.0001) for all the response. All the three factors were significant (p < 0.005) in influencing the biomass and lipid data while only two factors (agitation speed and MSG) gave significant effect on DHA production (p < 0.005). The estimated optimal conditions for enhanced growth, lipid and DHA production were 70 g/L fructose, 250 rpm agitation speed and 10 g/L MSG. Consequently, the quadratic model was validated by applying the estimated optimum conditions, which confirmed the model validity where 19.0 g/L biomass, 9.13 g/L lipid and 4.75 g/L of DHA were produced. The growth, lipid and DHA were 28, 36 and 35% respectively higher than that produced in the original medium prior to optimization.

  4. Enhanced α-amylase production by a marine protist, Ulkenia sp. using response surface methodology and genetic algorithm.

    PubMed

    Shirodkar, Priyanka V; Muraleedharan, Usha Devi

    2017-11-26

    Amylases are a group of enzymes with a wide variety of industrial applications. Enhancement of α-amylase production from the marine protists, thraustochytrids has been attempted for the first time by applying statistical-based experimental designs using response surface methodology (RSM) and genetic algorithm (GA) for optimization of the most influencing process variables. A full factorial central composite experimental design was used to study the cumulative interactive effect of nutritional components viz., glucose, corn starch, and yeast extract. RSM was performed on two objectives, that is, growth of Ulkenia sp. AH-2 (ATCC® PRA-296) and α-amylase activity. When GA was conducted for maximization of the enzyme activity, the optimal α-amylase activity was found to be 71.20 U/mL which was close to that obtained by RSM (71.93 U/mL), both of which were in agreement with the predicted value of 72.37 U/mL. Optimal growth at the optimized process variables was found to be 1.89A 660nm . The optimized medium increased α-amylase production by 1.2-fold.

  5. Response surface optimization of medium components for naringinase production from Staphylococcus xylosus MAK2.

    PubMed

    Puri, Munish; Kaur, Aneet; Singh, Ram Sarup; Singh, Anubhav

    2010-09-01

    Response surface methodology was used to optimize the fermentation medium for enhancing naringinase production by Staphylococcus xylosus. The first step of this process involved the individual adjustment and optimization of various medium components at shake flask level. Sources of carbon (sucrose) and nitrogen (sodium nitrate), as well as an inducer (naringin) and pH levels were all found to be the important factors significantly affecting naringinase production. In the second step, a 22 full factorial central composite design was applied to determine the optimal levels of each of the significant variables. A second-order polynomial was derived by multiple regression analysis on the experimental data. Using this methodology, the optimum values for the critical components were obtained as follows: sucrose, 10.0%; sodium nitrate, 10.0%; pH 5.6; biomass concentration, 1.58%; and naringin, 0.50% (w/v), respectively. Under optimal conditions, the experimental naringinase production was 8.45 U/mL. The determination coefficients (R(2)) were 0.9908 and 0.9950 for naringinase activity and biomass production, respectively, indicating an adequate degree of reliability in the model.

  6. Response surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1.

    PubMed

    Singh, Ram Sarup; Singh, Harpreet; Saini, Gaganpreet Kaur

    2009-01-01

    Culture conditions for pullulan production by Aureobasidium pullulans were optimized using response surface methodology at shake flask level without pH control. In the present investigation, a five-level with five-factor central composite rotatable design of experiments was employed to optimize the levels of five factors significantly affecting the pullulan production, biomass production, and sugar utilization in submerged cultivation. The selected factors included concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride. Using this methodology, the optimal values for concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride were 5.31%, 0.11%, 0.07%, 0.05%, and 0.15% (w/v), respectively. This optimized medium has projected a theoretically production of pullulan of 4.44%, biomass yield of 1.03%, and sugar utilization of 97.12%. The multiple correlation coefficient 'R' was 0.9976, 0.9761 and 0.9919 for pullulan production, biomass production, and sugar utilization, respectively. The value of R being very close to one justifies an excellent correlation between the predicted and the experimental data.

  7. Box-Behnken design for investigation of microwave-assisted extraction of patchouli oil

    NASA Astrophysics Data System (ADS)

    Kusuma, Heri Septya; Mahfud, Mahfud

    2015-12-01

    Microwave-assisted extraction (MAE) technique was employed to extract the essential oil from patchouli (Pogostemon cablin). The optimal conditions for microwave-assisted extraction of patchouli oil were determined by response surface methodology. A Box-Behnken design (BBD) was applied to evaluate the effects of three independent variables (microwave power (A: 400-800 W), plant material to solvent ratio (B: 0.10-0.20 g mL-1) and extraction time (C: 20-60 min)) on the extraction yield of patchouli oil. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of patchouli oil. The optimal extraction conditions of patchouli oil was microwave power 634.024 W, plant material to solvent ratio 0.147648 g ml-1 and extraction time 51.6174 min. The maximum patchouli oil yield was 2.80516% under these optimal conditions. Under the extraction condition, the experimental values agreed with the predicted results by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing and reflect the expected extraction condition.

  8. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    PubMed

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  9. Isolation of fish skin and bone gelatin from tilapia (Oreochromis niloticus): Response surface approach

    NASA Astrophysics Data System (ADS)

    Arpi, N.; Fahrizal; Novita, M.

    2018-03-01

    In this study, gelatin from fish collagen, as one of halal sources, was extracted from tilapia (Oreochromis niloticus) skin and bone, by using Response Surface Methodology to optimize gelatin extraction conditions. Concentrations of alkaline NaOH and acid HCl, in the pretreatment process, and temperatures in extraction process were chosen as independent variables, while dependent variables were yield, gel strength, and emulsion activity index (EAI). The result of investigation showed that lower NaOH pretreatment concentrations provided proper pH extraction conditions which combine with higher extraction temperatures resulted in high gelatin yield. However, gelatin emulsion activity index increased proportionally to the decreased in NaOH concentrations and extraction temperatures. No significant effect of the three independent variables on the gelatin gel strength. RSM optimization process resulted in optimum gelatin extraction process conditions using alkaline NaOH concentration of 0.77 N, acid HCl of 0.59 N, and extraction temperature of 66.80 °C. The optimal solution formula had optimization targets of 94.38%.

  10. Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM)*

    PubMed Central

    Zhang, Yun-jian; Li, Qiang; Zhang, Yu-xiu; Wang, Dan; Xing, Jian-min

    2012-01-01

    Succinic acid is considered as an important platform chemical. Succinic acid fermentation with Actinobacillus succinogenes strain BE-1 was optimized by central composite design (CCD) using a response surface methodology (RSM). The optimized production of succinic acid was predicted and the interactive effects between glucose, yeast extract, and magnesium carbonate were investigated. As a result, a model for predicting the concentration of succinic acid production was developed. The accuracy of the model was confirmed by the analysis of variance (ANOVA), and the validity was further proved by verification experiments showing that percentage errors between actual and predicted values varied from 3.02% to 6.38%. In addition, it was observed that the interactive effect between yeast extract and magnesium carbonate was statistically significant. In conclusion, RSM is an effective and useful method for optimizing the medium components and investigating the interactive effects, and can provide valuable information for succinic acid scale-up fermentation using A. succinogenes strain BE-1. PMID:22302423

  11. [Purification Technology Optimization for Saponins from Ziziphi Spinosae Semen with Macroporous Adsorption Resin by Box-Behnken Design-Response Surface Methodology].

    PubMed

    Zhao, Hui-ru; Ren, Zao; Liu, Chun-ye

    2015-04-01

    To compare the purification effect of saponins from Ziziphi Spinosae Semen with different types of macroporous adsorption resin, and to optimize its purification technology. The type of macroporous resins was optimized by static adsorption method. The optimum technological conditions of saponins from Ziziphi Spinosae Semen was screened by single factor test and Box-Behnken Design-Response Surface Methodology. AB-8 macroporous resin had better purification effect of total saponins than other resins, optimum technological parameters were as follows: column height-diameter ratio was 5: 1, the concentration of sample solution was 2. 52 mg/mL, resin adsorption quantity was 8. 915 mg/g, eluted by 3 BV water, flow rate of adsorption and elution was 2 BV/h, elution solvent was 75% ethanol, elution solvent volume was 5 BV. AB-8 macroporous resin has a good purification effect on jujuboside A. The optimized technology is stable and feasible.

  12. Tannase production by Paecilomyces variotii.

    PubMed

    Battestin, Vania; Macedo, Gabriela Alves

    2007-07-01

    Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature ( degrees C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 degrees C); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold.

  13. Optimal Color Design of Psychological Counseling Room by Design of Experiments and Response Surface Methodology

    PubMed Central

    Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients’ perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients’ impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the ‘central point’, and three color attributes were optimized to maximize the patients’ satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room. PMID:24594683

  14. Optimization of thermophilic trans-isoprenyl diphosphate synthase expression in Escherichia coli by response surface methodology.

    PubMed

    Piccolomini, Angelica A; Fiabon, Alex; Borrotti, Matteo; De Lucrezia, Davide

    2017-01-01

    We optimized the heterologous expression of trans-isoprenyl diphosphate synthase (IDS), the key enzyme involved in the biosynthesis of trans-polyisoprene. trans-Polyisoprene is a particularly valuable compound due to its superior stiffness, excellent insulation, and low thermal expansion coefficient. Currently, trans-polyisoprene is mainly produced through chemical synthesis and no biotechnological processes have been established so far for its large-scale production. In this work, we employed D-optimal design and response surface methodology to optimize the expression of thermophilic enzymes IDS from Thermococcus kodakaraensis. The design of experiment took into account of six factors (preinduction cell density, inducer concentration, postinduction temperature, salt concentration, alternative carbon source, and protein inhibitor) and seven culture media (LB, NZCYM, TB, M9, Ec, Ac, and EDAVIS) at five different pH points. By screening only 109 experimental points, we were able to improve IDS production by 48% in close-batch fermentation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  15. Antioxidant Compound Extraction from Maqui (Aristotelia chilensis [Mol] Stuntz) Berries: Optimization by Response Surface Methodology

    PubMed Central

    Quispe-Fuentes, Issis; Vega-Gálvez, Antonio; Campos-Requena, Víctor H.

    2017-01-01

    The optimum conditions for the antioxidant extraction from maqui berry were determined using a response surface methodology. A three level D-optimal design was used to investigate the effects of three independent variables namely, solvent type (methanol, acetone and ethanol), solvent concentration and extraction time over total antioxidant capacity by using the oxygen radical absorbance capacity (ORAC) method. The D-optimal design considered 42 experiments including 10 central point replicates. A second-order polynomial model showed that more than 89% of the variation is explained with a satisfactory prediction (78%). ORAC values are higher when acetone was used as a solvent at lower concentrations, and the extraction time range studied showed no significant influence on ORAC values. The optimal conditions for antioxidant extraction obtained were 29% of acetone for 159 min under agitation. From the results obtained it can be concluded that the given predictive model describes an antioxidant extraction process from maqui berry.

  16. Ti/IrO2/SnO2 anode for electrochemical degradation of chlorpyrifos in water: optimization and degradation performances

    NASA Astrophysics Data System (ADS)

    Pathiraja, G. C.; Wijesingha, M. S.; Nanayakkara, N.

    2017-05-01

    Chlorpyrifos, a widely used organophosphate pesticide which can be found in surface water bodies, is harmful for human body. Thus, treating water contaminated with chlorpyrifos is important. In our previous studies, novel Ti/IrO2-SnO2 anode was successfully developed for electrochemical degradation of chlorpyrifos in chloride free water. In this study, optimization of previously developed Ti/IrO2-SnO2 anode for mineralization of chlorpyrifos was successfully performed through response surface methodology. During the optimization study, two-level factorial design was used to determine the optimal coating solutions concentration for developing the Ti/IrO2-SnO2 anode. Cyclic voltammetry and open circuit potential were performed to investigate the electrochemically active surface area and stability of these anodes. The response surface and contour plots show that 0.3 M of [Ir] and 7.5 mM of [Sn] coated electrode has both highest anodic charge and stability. Scanning Electron Microscopic (SEM) images show the evidence of having both compact and porous regions in the surface of the thin film, resulting larger surface area. Within 6 h, the best result for mineralization (55.56%) of chlorpyrifos was obtained with 0.3 M of [Ir] and 7.5 mM of [Sn] coated anode using Total organic Carbon (TOC) analyzer. Therefore, the optimum coating concentration was found as 0.3 M of [Ir] and 7.5 mM of [Sn]. It would require an energy consumption of 6 kWhm-3.

  17. Application of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4.

    PubMed

    Ashengroph, Morahem; Nahvi, Iraj; Amini, Jahanshir

    2013-01-01

    For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi design was employed for screening the significant variables in the bioconversion medium. Sequentially, Box-Behnken design experiments under Response Surface Methodology (RSM) was used for further optimization. Four factors (isoeugenol, NaCl, biomass and tween 80 initial concentrations), which have significant effects on vanillin yield, were selected from ten variables by Taguchi experimental design. With the regression coefficient analysis in the Box-Behnken design, a relationship between vanillin production and four significant variables was obtained, and the optimum levels of the four variables were as follows: initial isoeugenol concentration 6.5 g/L, initial tween 80 concentration 0.89 g/L, initial NaCl concentration 113.2 g/L and initial biomass concentration 6.27 g/L. Under these optimized conditions, the maximum predicted concentration of vanillin was 2.25 g/L. These optimized values of the factors were validated in a triplicate shaking flask study and an average of 2.19 g/L for vanillin, which corresponded to a molar yield 36.3%, after a 24 h bioconversion was obtained. The present work is the first one reporting the application of Taguchi design and Response surface methodology for optimizing bioconversion of isoeugenol into vanillin under resting cell conditions.

  18. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology.

    PubMed

    Kasankala, Ladislaus M; Xue, Yan; Weilong, Yao; Hong, Sun D; He, Qian

    2007-12-01

    To establish the optimum gelatine extraction conditions from grass carp fish skin, response surface methodology (RSM) was adopted in this study. The effects of concentration of HCl (%, A), pre-treatment time (h, B), extraction temperature ( degrees C, C) and extraction time (h, D) were studied. The responses were yield (%) and gel strength (g). A=1.19%, B=24 h, C=52.61 degrees C and D=5.12h were determined as the optimum conditions while the predicted responses were 19.83% yield and 267 g gel strength. Gelling and melting points were 19.5 degrees C and 26.8 degrees C, respectively. Moreover, grass carp gelatine showed high contents of imino acids (proline and hydroxyproline) 19.47%. RSM provided a powerful tool to optimize the extraction parameters and the results may be adapted for industrial extraction of gelatine from grass carp fish skins.

  19. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  20. Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion.

    PubMed

    Xu, Enbo; Pan, Xiaowei; Wu, Zhengzong; Long, Jie; Li, Jingpeng; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2016-12-01

    For the purpose of investigating the effect of enzyme concentration (EC), barrel temperature (BT), moisture content (MC), and screw speed (SS) on processing parameters (product temperature, die pressure and special mechanical energy (SME)) and product responses (extent of gelatinization (GE), retention rate of total phenolic content (TPC-RR)), rice flour extruded with thermostable α-amylase was analyzed by response surface methodology. Stepwise regression models were computed to generate response surface and contour plots, revealing that both TPC-RR and GE increased as increasing MC while expressed different sensitivities to BT during enzymatic extrusion. Phenolics preservation was benefited from low SME. According to multiple-factor optimization, the conditions required to obtain the target SME (10kJ/kg), GE (100%) and TPC-RR (85%) were: EC=1.37‰, BT=93.01°C, MC=44.30%, and SS=171.66rpm, with the actual values (9.49kJ/kg, 99.96% and 87.10%, respectively) showing a good fit to the predicted values. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Optimization of formulation of soy-cakes baked in infrared-microwave combination oven by response surface methodology.

    PubMed

    Şakıyan, Özge

    2015-05-01

    The aim of present work is to optimize the formulation of a functional cake (soy-cake) to be baked in infrared-microwave combination oven. For this optimization process response surface methodology was utilized. It was also aimed to optimize the processing conditions of the combination baking. The independent variables were the baking time (8, 9, 10 min), the soy flour concentration (30, 40, 50 %) and the DATEM (diacetyltartaric acid esters of monoglycerides) concentration (0.4, 0.6 and 0.8 %). The quality parameters that were examined in the study were specific volume, weight loss, total color change and firmness of the cake samples. The results were analyzed by multiple regression; and the significant linear, quadratic, and interaction terms were used in the second order mathematical model. The optimum baking time, soy-flour concentration and DATEM concentration were found as 9.5 min, 30 and 0.72 %, respectively. The corresponding responses of the optimum points were almost comparable with those of conventionally baked soy-cakes. So it may be declared that it is possible to produce high quality soy cakes in a very short time by using infrared-microwave combination oven.

  2. Multi-response optimization of T300/epoxy prepreg tape-wound cylinder by grey relational analysis coupled with the response surface method

    NASA Astrophysics Data System (ADS)

    Kang, Chao; Shi, Yaoyao; He, Xiaodong; Yu, Tao; Deng, Bo; Zhang, Hongji; Sun, Pengcheng; Zhang, Wenbin

    2017-09-01

    This study investigates the multi-objective optimization of quality characteristics for a T300/epoxy prepreg tape-wound cylinder. The method integrates the Taguchi method, grey relational analysis (GRA) and response surface methodology, and is adopted to improve tensile strength and reduce residual stress. In the winding process, the main process parameters involving winding tension, pressure, temperature and speed are selected to evaluate the parametric influences on tensile strength and residual stress. Experiments are conducted using the Box-Behnken design. Based on principal component analysis, the grey relational grades are properly established to convert multi-responses into an individual objective problem. Then the response surface method is used to build a second-order model of grey relational grade and predict the optimum parameters. The predictive accuracy of the developed model is proved by two test experiments with a low prediction error of less than 7%. The following process parameters, namely winding tension 124.29 N, pressure 2000 N, temperature 40 °C and speed 10.65 rpm, have the highest grey relational grade and give better quality characteristics in terms of tensile strength and residual stress. The confirmation experiment shows that better results are obtained with GRA improved by the proposed method than with ordinary GRA. The proposed method is proved to be feasible and can be applied to optimize the multi-objective problem in the filament winding process.

  3. Uncertainty analysis of trade-offs between multiple responses using hypervolume

    DOE PAGES

    Cao, Yongtao; Lu, Lu; Anderson-Cook, Christine M.

    2017-08-04

    When multiple responses are considered in process optimization, the degree to which they can be simultaneously optimized depends on the optimization objectives and the amount of trade-offs between the responses. The normalized hypervolume of the Pareto front is a useful summary to quantify the amount of trade-offs required to balance performance across the multiple responses. In order to quantify the impact of uncertainty of the estimated response surfaces and add realism to what future data to expect, 2 versions of the scaled normalized hypervolume of the Pareto front are presented. To demonstrate the variation of the hypervolume distributions, we exploremore » a case study for a chemical process involving 3 responses, each with a different type of optimization goal. Our results show that the global normalized hypervolume characterizes the proximity to the ideal results possible, while the instance-specific summary considers the richness of the front and the severity of trade-offs between alternatives. Furthermore, the 2 scaling schemes complement each other and highlight different features of the Pareto front and hence are useful to quantify what solutions are possible for simultaneous optimization of multiple responses.« less

  4. Uncertainty analysis of trade-offs between multiple responses using hypervolume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yongtao; Lu, Lu; Anderson-Cook, Christine M.

    When multiple responses are considered in process optimization, the degree to which they can be simultaneously optimized depends on the optimization objectives and the amount of trade-offs between the responses. The normalized hypervolume of the Pareto front is a useful summary to quantify the amount of trade-offs required to balance performance across the multiple responses. In order to quantify the impact of uncertainty of the estimated response surfaces and add realism to what future data to expect, 2 versions of the scaled normalized hypervolume of the Pareto front are presented. To demonstrate the variation of the hypervolume distributions, we exploremore » a case study for a chemical process involving 3 responses, each with a different type of optimization goal. Our results show that the global normalized hypervolume characterizes the proximity to the ideal results possible, while the instance-specific summary considers the richness of the front and the severity of trade-offs between alternatives. Furthermore, the 2 scaling schemes complement each other and highlight different features of the Pareto front and hence are useful to quantify what solutions are possible for simultaneous optimization of multiple responses.« less

  5. Integrating uniform design and response surface methodology to optimize thiacloprid suspension

    PubMed Central

    Li, Bei-xing; Wang, Wei-chang; Zhang, Xian-peng; Zhang, Da-xia; Mu, Wei; Liu, Feng

    2017-01-01

    A model 25% suspension concentrate (SC) of thiacloprid was adopted to evaluate an integrative approach of uniform design and response surface methodology. Tersperse2700, PE1601, xanthan gum and veegum were the four experimental factors, and the aqueous separation ratio and viscosity were the two dependent variables. Linear and quadratic polynomial models of stepwise regression and partial least squares were adopted to test the fit of the experimental data. Verification tests revealed satisfactory agreement between the experimental and predicted data. The measured values for the aqueous separation ratio and viscosity were 3.45% and 278.8 mPa·s, respectively, and the relative errors of the predicted values were 9.57% and 2.65%, respectively (prepared under the proposed conditions). Comprehensive benefits could also be obtained by appropriately adjusting the amount of certain adjuvants based on practical requirements. Integrating uniform design and response surface methodology is an effective strategy for optimizing SC formulas. PMID:28383036

  6. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  7. Comparison of Response Surface and Kriging Models in the Multidisciplinary Design of an Aerospike Nozzle

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.

    1998-01-01

    The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.

  8. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  9. Quantification of phototrophic biomass on rocks: optimization of chlorophyll-a extraction by response surface methodology.

    PubMed

    Fernández-Silva, I; Sanmartín, P; Silva, B; Moldes, A; Prieto, B

    2011-01-01

    Biological colonization of rock surfaces constitutes an important problem for maintenance of buildings and monuments. In this work, we aim to establish an efficient extraction protocol for chlorophyll-a specific for rock materials, as this is one of the most commonly used biomarkers for quantifying phototrophic biomass. For this purpose, rock samples were cut into blocks, and three different mechanical treatments were tested, prior to extraction in dimethyl sulfoxide (DMSO). To evaluate the influence of the experimental factors (1) extractant-to-sample ratio, (2) temperature, and (3) time of incubation, on chlorophyll-a recovery (response variable), incomplete factorial designs of experiments were followed. Temperature of incubation was the most relevant variable for chlorophyll-a extraction. The experimental data obtained were analyzed following a response surface methodology, which allowed the development of empirical models describing the interrelationship between the considered response and experimental variables. The optimal extraction conditions for chlorophyll-a were estimated, and the expected yields were calculated. Based on these results, we propose a method involving application of ultrasound directly to intact sample, followed by incubation in 0.43 ml DMSO/cm(2) sample at 63°C for 40 min. Confirmation experiments were performed at the predicted optimal conditions, allowing chlorophyll-a recovery of 84.4 ± 11.6% (90% was expected), which implies a substantial improvement with respect to the expected recovery using previous methods (68%). This method will enable detection of small amounts of photosynthetic microorganisms and quantification of the extent of biocolonization of stone surfaces.

  10. Combined mixture-process variable approach: a suitable statistical tool for nanovesicular systems optimization.

    PubMed

    Habib, Basant A; AbouGhaly, Mohamed H H

    2016-06-01

    This study aims to illustrate the applicability of combined mixture-process variable (MPV) design and modeling for optimization of nanovesicular systems. The D-optimal experimental plan studied the influence of three mixture components (MCs) and two process variables (PVs) on lercanidipine transfersomes. The MCs were phosphatidylcholine (A), sodium glycocholate (B) and lercanidipine hydrochloride (C), while the PVs were glycerol amount in the hydration mixture (D) and sonication time (E). The studied responses were Y1: particle size, Y2: zeta potential and Y3: entrapment efficiency percent (EE%). Polynomial equations were used to study the influence of MCs and PVs on each response. Response surface methodology and multiple response optimization were applied to optimize the formulation with the goals of minimizing Y1 and maximizing Y2 and Y3. The obtained polynomial models had prediction R(2) values of 0.645, 0.947 and 0.795 for Y1, Y2 and Y3, respectively. Contour, Piepel's response trace, perturbation, and interaction plots were drawn for responses representation. The optimized formulation, A: 265 mg, B: 10 mg, C: 40 mg, D: zero g and E: 120 s, had desirability of 0.9526. The actual response values for the optimized formulation were within the two-sided 95% prediction intervals and were close to the predicted values with maximum percent deviation of 6.2%. This indicates the validity of combined MPV design and modeling for optimization of transfersomal formulations as an example of nanovesicular systems.

  11. Ultrasound-assisted extraction of Mangiferin from Mango (Mangifera indica L.) leaves using response surface methodology.

    PubMed

    Zou, Tang-Bin; Xia, En-Qin; He, Tai-Ping; Huang, Ming-Yuan; Jia, Qing; Li, Hua-Wen

    2014-01-27

    Mangiferin is a xanthone widely distributed in higher plants showing antioxidative, antiviral, anticancer, antidiabetic, immunomodulatory, hepatoprotective and analgesic effects. In the present study, an ultrasonic-assisted extraction method was developed for the effective extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid-to-solid ratio, extraction temperature, and extraction time were optimized by single-factor experiment and response surface methodology. The optimal extraction conditions were 44% ethanol, the liquid-to-solid ratio was 38:1, and extraction for 19.2 min at 60 °C under ultrasound irradiation of 200 W. Under optimal conditions, the yield of mangiferin was 58.46 ± 1.27 mg/g. The results obtained are helpful for the full utilization of mango leaves, and also indicated that ultrasonic-assisted extraction is a very useful method for the extraction of mangiferin from plant materials.

  12. Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium.

    PubMed

    Mohana, Sarayu; Shrivastava, Shalini; Divecha, Jyoti; Madamwar, Datta

    2008-02-01

    Decolorization and degradation of polyazo dye Direct Black 22 was carried out by distillery spent wash degrading mixed bacterial consortium, DMC. Response surface methodology (RSM) involving a central composite design (CCD) in four factors was successfully employed for the study and optimization of decolorization process. The hyper activities and interactions between glucose concentration, yeast extract concentration, dye concentration and inoculum size on dye decolorization were investigated and modeled. Under optimized conditions the bacterial consortium was able to decolorize the dye almost completely (>91%) within 12h. Bacterial consortium was able to decolorize 10 different azo dyes. The optimum combination of the four variables predicted through RSM was confirmed through confirmatory experiments and hence this bacterial consortium holds potential for the treatment of industrial waste water. Dye degradation products obtained during the course of decolorization were analyzed by HPTLC.

  13. Optimization of thermoacoustic engine driven thermoacoustic refrigerator using response surface methodology

    NASA Astrophysics Data System (ADS)

    Desai, A. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    2017-02-01

    Thermoacoustic engines (TAEs) are devices which convert heat energy into useful acoustic work whereas thermoacoustic refrigerators (TARs) convert acoustic work into temperature gradient. These devices work without any moving component. Study presented here comprises of a combination system i.e. thermoacoustic engine driven thermoacoustic refrigerator (TADTAR). This system has no moving component and hence it is easy to fabricate but at the same time it is very challenging to design and construct optimized system with comparable performance. The work presented here aims to apply optimization technique to TADTAR in the form of response surface methodology (RSM). Significance of stack position and stack length for engine stack, stack position and stack length for refrigerator stack are investigated in current work. Results from RSM are compared with results from simulations using Design Environment for Low-amplitude Thermoacoustic Energy conversion (DeltaEC) for compliance.

  14. Durable warmth retention finishing of down using titanium dioxide optimized by RSM

    NASA Astrophysics Data System (ADS)

    Li, Huihao; Qi, Lu; Li, Jun

    2017-03-01

    A new product, referred to herein as modified down, was prepared by grafting down fiber with titanium dioxide. Grafting modification brings new functionalities to down Using response surface methodology (RSM); the effect of titanium dioxide concentration, KH550 concentration, and baking temperature on the warmth retention is studied using the response surface method (RSM) to obtain the optimal experimental formula and models. The optimal preparation conditions for modified down were 19.35% titanium dioxide, 15.81% KH550, 10min baking time, and 115 °C temperature. The warmth retention of the modified down was 79.98%, The structure and property of modified down were characterized and analyzed by using Flat Plate Warmth Retaining Tester, FT-IR, and TG. The CLO value increased by 27.28%, the thermal resistance increased by 27.34%. The ultimate residual quantities of the modified down fibers were 30.05%.

  15. Maximization of fructose esters synthesis by response surface methodology.

    PubMed

    Neta, Nair Sampaio; Peres, António M; Teixeira, José A; Rodrigues, Ligia R

    2011-07-01

    Enzymatic synthesis of fructose fatty acid ester was performed in organic solvent media, using a purified lipase from Candida antartica B immobilized in acrylic resin. Response surface methodology with a central composite rotatable design based on five levels was implemented to optimize three experimental operating conditions (temperature, agitation and reaction time). A statistical significant cubic model was established. Temperature and reaction time were found to be the most significant parameters. The optimum operational conditions for maximizing the synthesis of fructose esters were 57.1°C, 100 rpm and 37.8 h. The model was validated in the identified optimal conditions to check its adequacy and accuracy, and an experimental esterification percentage of 88.4% (±0.3%) was obtained. These results showed that an improvement of the enzymatic synthesis of fructose esters was obtained under the optimized conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Aerodynamic configuration design using response surface methodology analysis

    NASA Technical Reports Server (NTRS)

    Engelund, Walter C.; Stanley, Douglas O.; Lepsch, Roger A.; Mcmillin, Mark M.; Unal, Resit

    1993-01-01

    An investigation has been conducted to determine a set of optimal design parameters for a single-stage-to-orbit reentry vehicle. Several configuration geometry parameters which had a large impact on the entry vehicle flying characteristics were selected as design variables: the fuselage fineness ratio, the nose to body length ratio, the nose camber value, the wing planform area scale factor, and the wing location. The optimal geometry parameter values were chosen using a response surface methodology (RSM) technique which allowed for a minimum dry weight configuration design that met a set of aerodynamic performance constraints on the landing speed, and on the subsonic, supersonic, and hypersonic trim and stability levels. The RSM technique utilized, specifically the central composite design method, is presented, along with the general vehicle conceptual design process. Results are presented for an optimized configuration along with several design trade cases.

  17. Process Parameters Optimization in Single Point Incremental Forming

    NASA Astrophysics Data System (ADS)

    Gulati, Vishal; Aryal, Ashmin; Katyal, Puneet; Goswami, Amitesh

    2016-04-01

    This work aims to optimize the formability and surface roughness of parts formed by the single-point incremental forming process for an Aluminium-6063 alloy. The tests are based on Taguchi's L18 orthogonal array selected on the basis of DOF. The tests have been carried out on vertical machining center (DMC70V); using CAD/CAM software (SolidWorks V5/MasterCAM). Two levels of tool radius, three levels of sheet thickness, step size, tool rotational speed, feed rate and lubrication have been considered as the input process parameters. Wall angle and surface roughness have been considered process responses. The influential process parameters for the formability and surface roughness have been identified with the help of statistical tool (response table, main effect plot and ANOVA). The parameter that has the utmost influence on formability and surface roughness is lubrication. In the case of formability, lubrication followed by the tool rotational speed, feed rate, sheet thickness, step size and tool radius have the influence in descending order. Whereas in surface roughness, lubrication followed by feed rate, step size, tool radius, sheet thickness and tool rotational speed have the influence in descending order. The predicted optimal values for the wall angle and surface roughness are found to be 88.29° and 1.03225 µm. The confirmation experiments were conducted thrice and the value of wall angle and surface roughness were found to be 85.76° and 1.15 µm respectively.

  18. Determination of injection molding process windows for optical lenses using response surface methodology.

    PubMed

    Tsai, Kuo-Ming; Wang, He-Yi

    2014-08-20

    This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.

  19. Optimization of laser welding thin-gage galvanized steel via response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhao, Yangyang; Zhang, Yansong; Hu, Wei; Lai, Xinmin

    2012-09-01

    The increasing demand of light weight and durability makes thin-gage galvanized steels (<0.6 mm) attractive for future automotive applications. Laser welding, well known for its deep penetration, high speed and small heat affected zone, provides a potential solution for welding thin-gage galvanized steels in automotive industry. In this study, the effect of the laser welding parameters (i.e. laser power, welding speed, gap and focal position) on the weld bead geometry (i.e. weld depth, weld width and surface concave) of 0.4 mm-thick galvanized SAE1004 steel in a lap joint configuration has been investigated by experiments. The process windows of the concerned process parameters were therefore determined. Then, response surface methodology (RSM) was used to develop models to predict the relationship between the processing parameters and the laser weld bead profile and identify the correct and optimal combination of the laser welding input variables to obtain superior weld joint. Under the optimal welding parameters, defect-free weld were produced, and the average aspect ratio increased about 30%, from 0.62 to 0.83.

  20. Antiproliferative activity of Curcuma phaeocaulis Valeton extract using ultrasonic assistance and response surface methodology.

    PubMed

    Wang, Xiaoqin; Jiang, Ying; Hu, Daode

    2017-01-02

    The objective of the study was to optimize the ultrasonic-assisted extraction of curdione, furanodienone, curcumol, and germacrone from Curcuma phaeocaulis Valeton (Val.) and investigate the antiproliferative activity of the extract. Under the suitable high-performance liquid chromatography condition, the calibration curves for these four tested compounds showed high levels of linearity and the recoveries of these four compounds were between 97.9 and 104.3%. Response surface methodology (RSM) combining central composite design and desirability function (DF) was used to define optimal extraction parameters. The results of RSM and DF revealed that the optimum conditions were obtained as 8 mL g -1 for liquid-solid ratio, 70% ethanol concentration, and 20 min of ultrasonic time. It was found that the surface structures of the sonicated herbal materials were fluffy and irregular. The C. phaeocaulis Val. extract significantly inhibited the proliferation of RKO and HT-29 cells in vitro. The results reveal that the RSM can be effectively used for optimizing the ultrasonic-assisted extraction of bioactive components from C. phaeocaulis Val. for antiproliferative activity.

  1. Optimization of Culture Conditions for Production of the Anti-Leukemic Glutaminase Free L-Asparaginase by Newly Isolated Streptomyces olivaceus NEAE-119 Using Response Surface Methodology.

    PubMed

    El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M; El-Ewasy, Sara M

    2015-01-01

    Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology.

  2. Optimization of Culture Conditions for Production of the Anti-Leukemic Glutaminase Free L-Asparaginase by Newly Isolated Streptomyces olivaceus NEAE-119 Using Response Surface Methodology

    PubMed Central

    El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M.; El-Ewasy, Sara M.

    2015-01-01

    Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology. PMID:26180806

  3. Two-level optimization of composite wing structures based on panel genetic optimization

    NASA Astrophysics Data System (ADS)

    Liu, Boyang

    The design of complex composite structures used in aerospace or automotive vehicles presents a major challenge in terms of computational cost. Discrete choices for ply thicknesses and ply angles leads to a combinatorial optimization problem that is too expensive to solve with presently available computational resources. We developed the following methodology for handling this problem for wing structural design: we used a two-level optimization approach with response-surface approximations to optimize panel failure loads for the upper-level wing optimization. We tailored efficient permutation genetic algorithms to the panel stacking sequence design on the lower level. We also developed approach for improving continuity of ply stacking sequences among adjacent panels. The decomposition approach led to a lower-level optimization of stacking sequence with a given number of plies in each orientation. An efficient permutation genetic algorithm (GA) was developed for handling this problem. We demonstrated through examples that the permutation GAs are more efficient for stacking sequence optimization than a standard GA. Repair strategies for standard GA and the permutation GAs for dealing with constraints were also developed. The repair strategies can significantly reduce computation costs for both standard GA and permutation GA. A two-level optimization procedure for composite wing design subject to strength and buckling constraints is presented. At wing-level design, continuous optimization of ply thicknesses with orientations of 0°, 90°, and +/-45° is performed to minimize weight. At the panel level, the number of plies of each orientation (rounded to integers) and inplane loads are specified, and a permutation genetic algorithm is used to optimize the stacking sequence. The process begins with many panel genetic optimizations for a range of loads and numbers of plies of each orientation. Next, a cubic polynomial response surface is fitted to the optimum buckling load. The resulting response surface is used for wing-level optimization. In general, complex composite structures consist of several laminates. A common problem in the design of such structures is that some plies in the adjacent laminates terminate in the boundary between the laminates. These discontinuities may cause stress concentrations and may increase manufacturing difficulty and cost. We developed measures of continuity of two adjacent laminates. We studied tradeoffs between weight and continuity through a simple composite wing design. Finally, we compared the two-level optimization to a single-level optimization based on flexural lamination parameters. The single-level optimization is efficient and feasible for a wing consisting of unstiffened panels.

  4. Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM).

    PubMed

    Dinarvand, Mojdeh; Rezaee, Malahat; Foroughi, Majid

    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R 2 ) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Development and optimization of locust bean gum and sodium alginate interpenetrating polymeric network of capecitabine.

    PubMed

    Upadhyay, Mansi; Adena, Sandeep Kumar Reddy; Vardhan, Harsh; Pandey, Sureshwar; Mishra, Brahmeshwar

    2018-03-01

    The objective of the study was to develop interpenetrating polymeric network (IPN) of capecitabine (CAP) using natural polymers locust bean gum (LBG) and sodium alginate (NaAlg). The IPN microbeads were optimized by Box-Behnken Design (BBD) to provide anticipated particle size with good drug entrapment efficiency. The comparative dissolution profile of IPN microbeads of CAP with the marketed preparation proved an excellent sustained drug delivery vehicle. Ionotropic gelation method utilizing metal ion calcium (Ca 2+ ) as a cross-linker was used to prepare IPN microbeads. The optimization study was done by response surface methodology based Box-Behnken Design. The effect of the factors on the responses of optimized batch was exhibited through response surface and contour plots. The optimized batch was analyzed for particle size, % drug entrapment, pharmacokinetic study, in vitro drug release study and further characterized by FTIR, XRD, and SEM. To study the water uptake capacity and hydrodynamic activity of the polymers, swelling studies and viscosity measurement were performed, respectively. The particle size and % drug entrapment of the optimized batch was 494.37 ± 1.4 µm and 81.39 ± 2.9%, respectively, closer to the value predicted by Minitab 17 software. The in vitro drug release study showed sustained release of 92% for 12 h and followed anomalous drug release pattern. The derived pharmacokinetic parameters of optimized batch showed improved results than pure CAP. Thus, the formed IPN microbeads of CAP proved to be an effective extended drug delivery vehicle for the water soluble antineoplastic drug.

  6. Optimization of Coolant Technique Conditions for Machining A319 Aluminium Alloy Using Response Surface Method (RSM)

    NASA Astrophysics Data System (ADS)

    Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.

    2018-03-01

    Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.

  7. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-07-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  8. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-02-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  9. Study on the optimization of the deposition rate of planetary GaN-MOCVD films based on CFD simulation and the corresponding surface model

    PubMed Central

    Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang

    2018-01-01

    Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality. PMID:29515883

  10. Study on the optimization of the deposition rate of planetary GaN-MOCVD films based on CFD simulation and the corresponding surface model.

    PubMed

    Li, Jian; Fei, Ze-Yuan; Xu, Yi-Feng; Wang, Jie; Fan, Bing-Feng; Ma, Xue-Jin; Wang, Gang

    2018-02-01

    Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.

  11. Study on the optimization of the deposition rate of planetary GaN-MOCVD films based on CFD simulation and the corresponding surface model

    NASA Astrophysics Data System (ADS)

    Li, Jian; Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang

    2018-02-01

    Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.

  12. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b.

    PubMed

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-06-01

    Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  13. Development of artificial neural network models based on experimental data of response surface methodology to establish the nutritional requirements of digestible lysine, methionine, and threonine in broiler chicks.

    PubMed

    Mehri, M

    2012-12-01

    An artificial neural network (ANN) approach was used to develop feed-forward multilayer perceptron models to estimate the nutritional requirements of digestible lysine (dLys), methionine (dMet), and threonine (dThr) in broiler chicks. Sixty data lines representing response of the broiler chicks during 3 to 16 d of age to dietary levels of dLys (0.88-1.32%), dMet (0.42-0.58%), and dThr (0.53-0.87%) were obtained from literature and used to train the networks. The prediction values of ANN were compared with those of response surface methodology to evaluate the fitness of these 2 methods. The models were tested using R(2), mean absolute deviation, mean absolute percentage error, and absolute average deviation. The random search algorithm was used to optimize the developed ANN models to estimate the optimal values of dietary dLys, dMet, and dThr. The ANN models were used to assess the relative importance of each dietary input on the bird performance using sensitivity analysis. The statistical evaluations revealed the higher accuracy of ANN to predict the bird performance compared with response surface methodology models. The optimization results showed that the maximum BW gain may be obtained with dietary levels of 1.11, 0.51, and 0.78% of dLys, dMet, and dThr, respectively. Minimum feed conversion ratio may be achieved with dietary levels of 1.13, 0.54, 0.78% of dLys, dMet, and dThr, respectively. The sensitivity analysis on the models indicated that dietary Lys is the most important variable in the growth performance of the broiler chicks, followed by dietary Thr and Met. The results of this research revealed that the experimental data of a response-surface-methodology design could be successfully used to develop the well-designed ANN for pattern recognition of bird growth and optimization of nutritional requirements. The comparison between the 2 methods also showed that the statistical methods may have little effect on the ideal ratios of dMet and dThr to dLys in broiler chicks using multivariate optimization.

  14. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology.

    PubMed

    Oludemi, Taofiq; Barros, Lillian; Prieto, M A; Heleno, Sandrina A; Barreiro, Maria F; Ferreira, Isabel C F R

    2018-01-24

    The extraction of triterpenoids and phenolic compounds from Ganoderma lucidum was optimized by using the response surface methodology (RSM), using heat and ultrasound assisted extraction techniques (HAE and UAE). The obtained results were compared with that of the standard Soxhlet procedure. RSM was applied using a circumscribed central composite design with three variables (time, ethanol content, and temperature or ultrasonic power) and five levels. The conditions that maximize the responses (extraction yield, triterpenoids and total phenolics) were: 78.9 min, 90.0 °C and 62.5% ethanol and 40 min, 100.0 W and 89.5% ethanol for HAE and UAE, respectively. The latter was the most effective, resulting in an extraction yield of 4.9 ± 0.6% comprising a content of 435.6 ± 21.1 mg g -1 of triterpenes and 106.6 ± 16.2 mg g -1 of total phenolics. The optimized extracts were fully characterized in terms of individual phenolic compounds and triterpenoids by HPLC-DAD-ESI/MS. The recovery of the above-mentioned bioactive compounds was markedly enhanced using the UAE technique.

  15. Comparison of response surface methodology and artificial neural network to enhance the release of reducing sugars from non-edible seed cake by autoclave assisted HCl hydrolysis.

    PubMed

    Shet, Vinayaka B; Palan, Anusha M; Rao, Shama U; Varun, C; Aishwarya, Uday; Raja, Selvaraj; Goveas, Louella Concepta; Vaman Rao, C; Ujwal, P

    2018-02-01

    In the current investigation, statistical approaches were adopted to hydrolyse non-edible seed cake (NESC) of Pongamia and optimize the hydrolysis process by response surface methodology (RSM). Through the RSM approach, the optimized conditions were found to be 1.17%v/v of HCl concentration at 54.12 min for hydrolysis. Under optimized conditions, the release of reducing sugars was found to be 53.03 g/L. The RSM data were used to train the artificial neural network (ANN) and the predictive ability of both models was compared by calculating various statistical parameters. A three-layered ANN model consisting of 2:12:1 topology was developed; the response of the ANN model indicates that it is precise when compared with the RSM model. The fit of the models was expressed with the regression coefficient R 2 , which was found to be 0.975 and 0.888, respectively, for the ANN and RSM models. This further demonstrated that the performance of ANN was better than that of RSM.

  16. Development of high protein, high fiber smoothie as a grab-and-go breakfast option using response surface methodology.

    PubMed

    Mehta, Dipakkumar; Kumar, M H Sathish; Sabikhi, Latha

    2017-11-01

    The current work aimed to formulate smoothie by optimizing varying levels of soy protein isolate (1.5-2.5% w/w), sucralose (150-190 ppm) and pectin (0.3-0.5% w/w) along with milk, legume (chickpea), vegetable (carrot), fruit (mango), honey and trisodium citrate by response surface methodology on the basis of sensory (color and appearance, flavor, consistency, sweetness and overall acceptability) and physical (expressible serum and viscosity) responses. Soy protein isolate and pectin levels influenced color and appearance, flavor, consistency and overall acceptability significantly. Soy protein isolate and pectin showed a positive correlation with viscosity of smoothie with reduced expressible serum. Smoothie was optimized with 1.8% (w/w) soy protein isolate, 166.8 ppm sucralose, and 0.5% (w/w) pectin with acceptable quality. One serving (325 ml) of optimized smoothie provides approximately 23% protein, 27% dietary fiber of the recommended daily values and provides approximately 74 kcal per 100 ml of smoothie, which renders smoothie as a high protein, high fiber, grab-and-go breakfast option.

  17. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  18. Prediction and Optimization of Phase Transformation Region After Spot Continual Induction Hardening Process Using Response Surface Method

    NASA Astrophysics Data System (ADS)

    Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Chen, Xuliang; Wang, Zhou

    2017-09-01

    The spot continual induction hardening (SCIH) process, which is a modified induction hardening, can be assembled to a five-axis cooperating computer numerical control machine tool to strengthen more than one small area or relatively large area on complicated component surface. In this study, a response surface method was presented to optimize phase transformation region after the SCIH process. The effects of five process parameters including feed velocity, input power, gap, curvature and flow rate on temperature, microstructure, microhardness and phase transformation geometry were investigated. Central composition design, a second-order response surface design, was employed to systematically estimate the empirical models of temperature and phase transformation geometry. The analysis results indicated that feed velocity has a dominant effect on the uniformity of microstructure and microhardness, domain size, oxidized track width, phase transformation width and height in the SCIH process while curvature has the largest effect on center temperature in the design space. The optimum operating conditions with 0.817, 0.845 and 0.773 of desirability values are expected to be able to minimize ratio (tempering region) and maximize phase transformation width for concave, flat and convex surface workpieces, respectively. The verification result indicated that the process parameters obtained by the model were reliable.

  19. Screening of Actinomycetes from mangrove ecosystem for L-asparaginase activity and optimization by response surface methodology.

    PubMed

    Usha, Rajamanickam; Mala, Krishnaswami Kanjana; Venil, Chidambaram Kulandaisamy; Palaniswamy, Muthusamy

    2011-01-01

    Marine actinomycetes were isolated from sediment samples collected from Pitchavaram mangrove ecosystem situated along the southeast coast of India. Maximum actinomycete population was noted in rhizosphere region. About 38% of the isolates produced L-asparaginase. One potential strain KUA106 produced higher level of enzyme using tryptone glucose yeast extract medium. Based on the studied phenotypic characteristics, strain KUA106 was identified as Streptomyces parvulus KUA106. The optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Streptomycetes parvulus. Four medium factors were screened from eleven medium factors by Plackett-Burman design experiments and subsequent optimization process to find out the optimum values of the selected parameters using central composite design was performed. Asparagine, tryptone, d) extrose and NaCl components were found to be the best medium for the L-asparaginase production. The combined optimization method described here is the effective method for screening medium factors as well as determining their optimum level for the production of L-asparaginase by Streptomycetes parvulus KUAP106.

  20. Preparation and characterization of sustained-release rotigotine film-forming gel.

    PubMed

    Li, Xiang; Zhang, Renyu; Liang, Rongcai; Liu, Wei; Wang, Chenhui; Su, Zhengxing; Sun, Fengying; Li, Youxin

    2014-01-02

    The aim of this study was to develop a film-forming gel formulation of rotigotine with hydroxypropyl cellulose (HPC) and Carbomer 934. To optimize this formulation, we applied the Response Surface Analysis technique and evaluated the gel's pharmacokinetic properties. The factors chosen for factorial design were the concentration of rotigotine, the proportion of HPC and Carbomer 934, and the concentration of ST-Elastomer 10. Each factor was varied over three levels: low, medium and high. The gel formulation was evaluated and optimized according to its accumulated permeation rate (Flux) through Franz-type diffusion. A pharmacokinetic study of rotigotine gel was performed with rabbits. The Flux of the optimized formulation reached the maximum (199.17 μg/cm(2)), which was 3% rotigotine and 7% ST-Elastomer 10 with optimal composition of HPC: Carbomer 934 (5:1). The bioavailability of the optimized formulation compared with intravenous administration was approximately 20%. A film-forming gel of rotigotine was successfully developed using the response surface analysis technique. The results of this study may be helpful in finding an optimum formulation for transdermal delivery of a drug. The product may improve patients' compliance and provide better efficacy. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption.

    PubMed

    Wang, Chongqing; Wang, Hui; Gu, Guohua

    2018-02-15

    Alkali treatment of lignocellulosic biomass is conducted to remove hemi-cellulose and lignin, further increasing the reactivity and accessibility of cellulose. Ultrasound-assisted xanthation of alkali cellulose is optimized by response surface methodology (RSM) with a Box-Behnken design. A predicting mathematical model is obtained by fitting experimental data, and it is verified by analysis of variance. Response surface plots and the contour plots obtained from the model are applied to determine the interactions of experimental variables. The optimum conditions are NaOH concentration 1.3mol/L, ultrasonic time 71.6min and CS 2 dosage 1.5mL. FTIR, SEM and XPS characterizations confirm the synthesis and sorption mechanism of cellulose xanthate (CX). Biosorption of Pb (II) onto CX obeys pseudo-second order model and Langmuir model. The sorption mechanism is attributed to surface complexation or ion exchange. CX shows good reusability for Pb (II) sorption. The maximum sorption capacity of Pb(II) is 134.41mg/g, higher than that of other biosorbents. CX has great potential as an efficient and low-cost biosorbent for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Aero-thermal optimization of film cooling flow parameters on the suction surface of a high pressure turbine blade

    NASA Astrophysics Data System (ADS)

    El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid

    2012-11-01

    This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.

  3. Effect of pH and pulsed electric field process parameters on the aflatoxin reduction in model system using response surface methodology: Effect of pH and PEF on Aflatoxin Reduction.

    PubMed

    Vijayalakshmi, Subramanian; Nadanasabhapathi, Shanmugam; Kumar, Ranganathan; Sunny Kumar, S

    2018-03-01

    The presence of aflatoxin, a carcinogenic and toxigenic secondary metabolite produced by Aspergillus species, in food matrix has been a major worldwide problem for years now. Food processing methods such as roasting, extrusion, etc. have been employed for effective destruction of aflatoxins, which are known for their thermo-stable nature. The high temperature treatment, adversely affects the nutritive and other quality attributes of the food, leading to the necessity of application of non-thermal processing techniques such as ultrasonication, gamma irradiation, high pressure processing, pulsed electric field (PEF), etc. The present study was focused on analysing the efficacy of the PEF process in the reduction of the toxin content, which was subsequently quantified using HPLC. The process parameters of different pH model system (potato dextrose agar) artificially spiked with aflatoxin mix standard was optimized using the response surface methodology. The optimization of PEF process effects on the responses aflatoxin B1 and total aflatoxin reduction (%) by pH (4-10), pulse width (10-26 µs) and output voltage (20-65%), fitted 2FI model and quadratic model respectively. The response surface plots obtained for the processes were of saddle point type, with the absence of minimum or maximum response at the centre point. The implemented numerical optimization showed that the predicted and actual values were similar, proving the adequacy of the fitted models and also proved the possible application of PEF in toxin reduction.

  4. Modelling based on Spatial Impulse Response Model for Optimization of Inter Digital Transducers (SAW Sensors) for Non Destructive Testing

    NASA Astrophysics Data System (ADS)

    Fall, D.; Duquennoy, M.; Ouaftouh, M.; Piwakowski, B.; Jenot, F.

    This study deals with modelling SAW-IDT transducers for their optimization. These sensors are specifically developed to characterize properties of thin layers, coatings and functional surfaces. Among the methods of characterization, the ultrasonic methods using Rayleigh surface waves are particularly interesting because the propagation of these waves is close to the surface of material and the energy is concentrated within a layer under the surface of about one wavelength thick. In order to characterize these coatings and structures, it is necessary to work in high frequencies, this is why in this study, SAW-IDT sensors are realized for surface acoustic wave generation. For optimization of these SAW-IDT sensors, particularly their band-width, it is necessary to study various IDT configurations by varying the number of electrodes, dimensions of the electrodes, their shapes and spacings. Thus it is necessary to implement effective and rapid technique for modelling. The originality of this study is to develop simulation tools based on Spatial Impulse Response model. Therefore it will be possible to reduce considerably computing time and results are obtained in a few seconds, instead of several hours (or days) by using finite element method. In order to validate this method, theoretical and experimental results are compared with finite element method and Interferometric measurements. The results obtained show a good overall concordance and confirm effectiveness of suggested method.

  5. Low-fat meat sausages with fish oil: optimization of milk proteins and carrageenan contents using response surface methodology.

    PubMed

    Marchetti, L; Andrés, S C; Califano, A N

    2014-03-01

    Response surface methodology was used to analyze the effect of milk proteins and 2:1 κ:ι-carrageenans on cooking loss (CL), weight lost by centrifugation (WLC) and texture attributes of low-fat meat sausages with pre-emulsified fish oil. A central-composite design was used to develop models for the objective responses. Changes in carrageenans affected more the responses than milk proteins levels. Convenience functions were calculated for CL, WLC, hardness, and springiness of the product. Responses were optimized simultaneously minimizing CL and WLC; ranges for hardness and springiness corresponded to commercial products (20 g of pork fat/100 g). The optimum corresponded to 0.593 g of carrageenans/100 g and 0.320 g of milk proteins and its total lipid content was 6.3 g/100 g. This formulation was prepared and evaluated showing a good agreement between predicted and experimental responses. These additives could produce low-fat meat sausages with pre-emulsified fish oil with good nutritional quality and similar characteristics than traditional ones. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-11-04

    Microwave assisted extraction (MAE) technique was employed for the extraction of pectin from dragon fruit peel. The extracting parameters were optimized by using four-variable-three-level Box-Behnken design (BBD) coupled with response surface methodology (RSM). RSM analysis indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the interactive effects of process variables on extraction of pectin. The optimum extraction conditions for the maximum yield of pectin were power of 400 W, temperature of 45 °C, extracting time of 20 min and solid-liquid ratio of 24 g/mL. Under these conditions, 7.5% of pectin was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Topology optimization of two-dimensional elastic wave barriers

    NASA Astrophysics Data System (ADS)

    Van hoorickx, C.; Sigmund, O.; Schevenels, M.; Lazarov, B. S.; Lombaert, G.

    2016-08-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is inserted into a design domain situated between the source and the receiver to minimize wave transmission. At low frequencies, the stiffened material reflects and guides waves away from the surface. At high frequencies, destructive interference is obtained that leads to high values of the insertion loss. To handle harmonic sources at a frequency in a given range, a uniform reduction of the response over a frequency range is pursued. The minimal insertion loss over the frequency range of interest is maximized. The resulting design contains features at depth leading to a reduction of the insertion loss at the lowest frequencies and features close to the surface leading to a reduction at the highest frequencies. For broadband sources, the average insertion loss in a frequency range is optimized. This leads to designs that especially reduce the response at high frequencies. The designs optimized for the frequency averaged insertion loss are found to be sensitive to geometric imperfections. In order to obtain a robust design, a worst case approach is followed.

  8. Experimental Optimization of a Free-to-Rotate Wing for Small UAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; DeLoach, Richard; Copeland, Tiwana; Vo, Steven

    2014-01-01

    This paper discusses an experimental investigation conducted to optimize a free-to-rotate wing for use on a small unmanned aircraft system (UAS). Although free-to-rotate wings have been used for decades on various small UAS and small manned aircraft, little is known about how to optimize these unusual wings for a specific application. The paper discusses some of the design rationale of the basic wing. In addition, three main parameters were selected for "optimization", wing camber, wing pivot location, and wing center of gravity (c.g.) location. A small apparatus was constructed to enable some simple experimental analysis of these parameters. A design-of-experiment series of tests were first conducted to discern which of the main optimization parameters were most likely to have the greatest impact on the outputs of interest, namely, some measure of "stability", some measure of the lift being generated at the neutral position, and how quickly the wing "recovers" from an upset. A second set of tests were conducted to develop a response-surface numerical representation of these outputs as functions of the three primary inputs. The response surface numerical representations are then used to develop an "optimum" within the trade space investigated. The results of the optimization are then tested experimentally to validate the predictions.

  9. An Optimization-Based Approach to Injector Element Design

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar; Turner, Jim (Technical Monitor)

    2000-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for gaseous oxygen/gaseous hydrogen (GO2/GH2) injector elements. A swirl coaxial element and an unlike impinging element (a fuel-oxidizer-fuel triplet) are used to facilitate the study. The elements are optimized in terms of design variables such as fuel pressure drop, APf, oxidizer pressure drop, deltaP(sub f), combustor length, L(sub comb), and full cone swirl angle, theta, (for the swirl element) or impingement half-angle, alpha, (for the impinging element) at a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for both element types. Method i is then used to generate response surfaces for each dependent variable for both types of elements. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail for each element type. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the element design is illustrated. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface that includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, combining results from both elements to simulate a trade study, thrust-to-weight trends are illustrated and examined in detail.

  10. Optimization of the Electrochemical Extraction and Recovery of Metals from Electronic Waste Using Response Surface Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.

    The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less

  11. Spectrophotometric determination of triclosan based on diazotization reaction: response surface optimization using Box-Behnken design.

    PubMed

    Kaur, Inderpreet; Gaba, Sonal; Kaur, Sukhraj; Kumar, Rajeev; Chawla, Jyoti

    2018-05-01

    A spectrophotometric method based on diazotization of aniline with triclosan has been developed for the determination of triclosan in water samples. The diazotization process involves two steps: (1) reaction of aniline with sodium nitrite in an acidic medium to form diazonium ion and (2) reaction of diazonium ion with triclosan to form a yellowish-orange azo compound in an alkaline medium. The resulting yellowish-orange product has a maximum absorption at 352 nm which allows the determination of triclosan in aqueous solution in the linear concentration range of 0.1-3.0 μM with R 2 = 0.998. The concentration of hydrochloric acid, sodium nitrite, and aniline was optimized for diazotization reaction to achieve good spectrophotometric determination of triclosan. The optimization of experimental conditions for spectrophotometric determination of triclosan in terms of concentration of sodium nitrite, hydrogen chloride and aniline was also carried out by using Box-Behnken design of response surface methodology and results obtained were in agreement with the experimentally optimized values. The proposed method was then successfully applied for analyses of triclosan content in water samples.

  12. Optimization of the Electrochemical Extraction and Recovery of Metals from Electronic Waste Using Response Surface Methodology

    DOE PAGES

    Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.

    2017-06-08

    The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less

  13. Development of mathematical models and optimization of the process parameters of laser surface hardened EN25 steel using elitist non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.

    2018-02-01

    The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.

  14. Optimization of Submerged Fermentation Medium for Matrine Production by Aspergillus terreus, an Endophytic Fungus Harboring Seeds of Sophora flavescens, Using Response Surface Methodology

    PubMed Central

    Zhang, Qiang; Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi

    2017-01-01

    Different endophytes isolated from the seeds of Sophora flavescens were tested for their ability to produce matrine production. Response surface methodology (RSM) was applied to optimize the medium components for the endophytic fungus. Results indicated that endophyte Aspergillus terreus had the ability to produce matrine. The single factor tests demonstrated that potato starch was the best carbon source and the combination of peptone and NH4NO3 was the optimal nitrogen source for A. terreus. The model of RSM predicted to gain the maximal matrine production at 20.67 µg/L, when the potato starch was 160.68 g/L, peptone was 24.96 g/L and NH4NO3 was 2.11 g/L. When cultured in the optimal medium, the matrine yield was an average of 20.63 ± 0.11 µg/L, which was consistent with the model prediction. This study offered an alternative source for the matrine production by endophytic fungus fermentation and may have far-reaching prospect and value. PMID:28781541

  15. Optimization of Submerged Fermentation Medium for Matrine Production by Aspergillus terreus, an Endophytic Fungus Harboring Seeds of Sophora flavescens, Using Response Surface Methodology.

    PubMed

    Zhang, Qiang; Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Zhang, Xuelan; Han, Chunchao

    2017-06-01

    Different endophytes isolated from the seeds of Sophora flavescens were tested for their ability to produce matrine production. Response surface methodology (RSM) was applied to optimize the medium components for the endophytic fungus. Results indicated that endophyte Aspergillus terreus had the ability to produce matrine. The single factor tests demonstrated that potato starch was the best carbon source and the combination of peptone and NH 4 NO 3 was the optimal nitrogen source for A. terreus . The model of RSM predicted to gain the maximal matrine production at 20.67 µg/L, when the potato starch was 160.68 g/L, peptone was 24.96 g/L and NH 4 NO 3 was 2.11 g/L. When cultured in the optimal medium, the matrine yield was an average of 20.63 ± 0.11 µg/L, which was consistent with the model prediction. This study offered an alternative source for the matrine production by endophytic fungus fermentation and may have far-reaching prospect and value.

  16. Enzymatically catalyzed synthesis of low-calorie structured lipid in a solvent-free system: optimization by response surface methodology.

    PubMed

    Han, Lu; Xu, Zijian; Huang, Jianhua; Meng, Zong; Liu, Yuanfa; Wang, Xingguo

    2011-12-14

    A kind of low-calorie structured lipid (LCSL) was obtained by interesterification of tributyrin (TB) and methyl stearate (St-ME), catalyzed by a commercially immobilized 1,3-specific lipase, Lipozyme RM IM from Rhizomucor miehei . The condition optimization of the process was conducted by using response surface methodology (RSM). The optimal conditions for highest conversion of St-ME and lowest content LLL-TAG (SSS and SSP; S, stearic acid; P, palmitic acid) were determined to be a reaction time 6.52 h, a substrate molar ratio (St-ME:TB) of 1.77:1, and an enzyme amount of 10.34% at a reaction temperature of 65 °C; under these conditions, the actually measured conversion of St-ME and content of LLL-TAG were 78.47 and 4.89% respectively, in good agreement with predicted values. The target product under optimal conditions after short-range molecular distillation showed solid fat content (SFC) values similar to those of cocoa butter substitutes (CBS), cocoa butter equivalent (CBE), and cocoa butters (CB), indicating its application for inclusion with other fats as cocoa butter substitutes.

  17. Investigation and optimization of the novel UASB-MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM).

    PubMed

    Zhang, Baogang; Zhang, Jing; Yang, Qi; Feng, Chuanping; Zhu, Yuling; Ye, Zhengfang; Ni, Jinren

    2012-11-01

    COD/sulfate ratio and hydraulic residence time (HRT), both of which influence sulfate loadings jointly, are recognized as the most two important affecting factors for sulfate removal and bioelectricity generation in the novel up-flow anaerobic sludge blanket reactor-microbial fuel cell (UASB-MFC) integrated system. The response surface methodology (RSM) was employed for the optimization of this system and the optimum condition with COD/sulfate ratio of 2.3 and HRT of 54.3h was obtained with the target of maximizing the power output. In terms of maximizing the total sulfate removal efficiency, the obtained optimum condition was COD/sulfate ratio of 3.7 and HRT of 55.6h. Experimental results indicated the undistorted simulation and reliable optimized results. These demonstrated that RSM was effective to evaluate and optimize the UASB-MFC system for sulfate removal and energy recovery, providing a promising guide to further improvement of the system for potential applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Improved delivery of the OVA-CD4 peptide to T helper cells by polymeric surface display on Salmonella

    PubMed Central

    2014-01-01

    Background Autotransporter proteins represent a treasure trove for molecular engineers who modify Gram-negative bacteria for the export or secretion of foreign proteins across two membrane barriers. A particularly promising direction is the development of autotransporters as antigen display or secretion systems. Immunologists have been using ovalbumin as a reporter antigen for years and have developed sophisticated tools to detect specific T cells that respond to ovalbumin. Although ovalbumin-expressing bacteria are being used to trace T cell responses to colonizing or invading pathogens, current constructs for ovalbumin presentation have not been optimized. Results The activation of T helper cells in response to ovalbumin was improved by displaying the OVA-CD4 reporter epitope as a multimer on the surface of Salmonella and fused to the autotransporter MisL. Expression was optimized by including tandem in vivo promoters and two post-segregational killing systems for plasmid stabilization. Conclusions The use of an autotransporter protein to present relevant epitope repeats on the surface of bacteria, combined with additional techniques favoring stable and efficient in vivo transcription, optimizes antigen presentation to T cells. The technique of multimeric epitope surface display should also benefit the development of new Salmonella or other enterobacterial vaccines. PMID:24898796

  19. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design

    PubMed Central

    Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R 2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165

  20. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    PubMed

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  1. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  2. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    NASA Technical Reports Server (NTRS)

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  3. Application and optimization of the tenderization of pig Longissimus dorsi muscle by adenosine 5'-monophosphate (AMP) using the response surface methodology.

    PubMed

    Deng, Shaoying; Wang, Daoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong

    2016-03-01

    Based on single factor experiments, NaCl concentration, adenosine 5'-monophosphate (AMP) concentration and temperature were selected as independent variables for a three-level Box-Behnken experimental design, and the shear force and cooking loss were response values for regression analysis. According to the statistical models, it showed that all independent variables had significant effects on shear force and cooking loss, and optimal values were at the NaCl concentration of 4.15%, AMP concentration of 22.27 mmol/L and temperature of 16.70°C, which was determined with three-dimensional response surface diagrams and contour plots. Under this condition, the observed shear force and cooking loss were 0.625 kg and 8.07%, respectively, exhibiting a good agreement with their predicted values, showing the good applicability and feasibility of response surface methodology (RSM) for improving pork tenderness. Compared with control pig muscles, AMP combined with NaCl treatment demonstrated significant effects on improvement of meat tenderness and reduction of cooking loss. Therefore, AMP could be regarded as an effective tenderization agent for pork. © 2015 Japanese Society of Animal Science.

  4. Amoxicillin degradation from contaminated water by solar photocatalysis using response surface methodology (RSM).

    PubMed

    Moosavi, Fatemeh Sadat; Tavakoli, Touraj

    2016-11-01

    In this study, the solar photocatalytic process in a pilot plant with compound parabolic collectors (CPCs) was performed for amoxicillin (AMX) degradation, an antibiotic widely used in the world. The response surface methodology (RSM) based on Box-Behnken statistical experiment design was used to optimize independent variables, namely TiO 2 dosage, antibiotic initial concentration, and initial pH. The results showed that AMX degradation efficiency affected by positive or negative effect of variables and their interactions. The TiO 2 dosage, pH, and interaction between AMX initial concentration and TiO 2 dosage exhibited a synergistic effect, while the linear and quadratic term of AMX initial concentration and pH showed antagonistic effect in the process response. Response surface and contour plots were used to perform process optimization. The optimum conditions found in this regard were TiO 2 dosage = 1.5 g/L, AMX initial concentration = 17 mg/L, and pH = 9.5 for AMX degradation under 240 min solar irradiation. The photocatalytic degradation of AMX after 34.95 kJ UV /L accumulated UV energy per liter of solution was 84.12 % at the solar plant.

  5. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.

    PubMed

    de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan

    2016-01-01

    In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.

  6. Classical Optimal Control for Energy Minimization Based On Diffeomorphic Modulation under Observable-Response-Preserving Homotopy.

    PubMed

    Soley, Micheline B; Markmann, Andreas; Batista, Victor S

    2018-06-12

    We introduce the so-called "Classical Optimal Control Optimization" (COCO) method for global energy minimization based on the implementation of the diffeomorphic modulation under observable-response-preserving homotopy (DMORPH) gradient algorithm. A probe particle with time-dependent mass m( t;β) and dipole μ( r, t;β) is evolved classically on the potential energy surface V( r) coupled to an electric field E( t;β), as described by the time-dependent density of states represented on a grid, or otherwise as a linear combination of Gaussians generated by the k-means clustering algorithm. Control parameters β defining m( t;β), μ( r, t;β), and E( t;β) are optimized by following the gradients of the energy with respect to β, adapting them to steer the particle toward the global minimum energy configuration. We find that the resulting COCO algorithm is capable of resolving near-degenerate states separated by large energy barriers and successfully locates the global minima of golf potentials on flat and rugged surfaces, previously explored for testing quantum annealing methodologies and the quantum optimal control optimization (QuOCO) method. Preliminary results show successful energy minimization of multidimensional Lennard-Jones clusters. Beyond the analysis of energy minimization in the specific model systems investigated, we anticipate COCO should be valuable for solving minimization problems in general, including optimization of parameters in applications to machine learning and molecular structure determination.

  7. Robust optimization of the billet for isothermal local loading transitional region of a Ti-alloy rib-web component based on dual-response surface method

    NASA Astrophysics Data System (ADS)

    Wei, Ke; Fan, Xiaoguang; Zhan, Mei; Meng, Miao

    2018-03-01

    Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transitional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.

  8. Application of Response Surface Methodology (RSM) for wastewater of hospital by using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Murdani; Jakfar; Ekawati, D.; Nadira, R.; Darmadi

    2018-04-01

    Hospital wastewater is a source of potential environmental contamination. Therefore, the waste water needs to be treated before it is discharged into the landfill. Various research methods have been used to treat hospital wastewater. However, some methods that have been implemented have not achieved the effluent standards for hospitals that have been set by the government. The experiment was conducted by an electrochemical method is electrolysis using aluminum electrodes with independent variable is the voltage, contact time and concentration of electrolytes. The response optimization using response surface with optimum conditions obtained by the contact time of 34.26 min, voltage 12 V, concentration electrolyte 0.38 M can decrease of COD 65.039%. The model recommended by the response surface for the three variables, namely quadratic response.

  9. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida.

    PubMed

    Annadurai, Gurusamy; Ling, Lai Yi; Lee, Jiunn-Fwu

    2008-02-28

    In this work, a four-level Box-Behnken factorial design was employed combining with response surface methodology (RSM) to optimize the medium composition for the degradation of phenol by pseudomonas putida (ATCC 31800). A mathematical model was then developed to show the effect of each medium composition and their interactions on the biodegradation of phenol. Response surface method was using four levels like glucose, yeast extract, ammonium sulfate and sodium chloride, which also enabled the identification of significant effects of interactions for the batch studies. The biodegradation of phenol on Pseudomonas putida (ATCC 31800) was determined to be pH-dependent and the maximum degradation capacity of microorganism at 30 degrees C when the phenol concentration was 0.2 g/L and the pH of the solution was 7.0. Second order polynomial regression model was used for analysis of the experiment. Cubic and quadratic terms were incorporated into the regression model through variable selection procedures. The experimental values are in good agreement with predicted values and the correlation coefficient was found to be 0.9980.

  10. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology.

    PubMed

    Muhammad Auwal, Shehu; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-03-31

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.

  11. Simultaneous recovery of vanadium and nickel from power plant fly-ash: Optimization of parameters using response surface methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, E.; Rashchi, F., E-mail: rashchi@ut.ac.ir; Saba, M.

    2014-12-15

    Highlights: • Leaching of vanadium and nickel from fly ash (14.43% V and 5.19% Ni) in sulfuric acid was performed. • Optimization of leaching parameters was carried out using a response surface methodology. • Using optimum conditions, 94.28% V and 81.01% Ni “actual recovery” was obtained. - Abstract: Simultaneous recovery of vanadium (V) and nickel (Ni), which are classified as two of the most hazardous metal species from power plant heavy fuel fly-ash, was studied using a hydrometallurgical process consisting of acid leaching using sulfuric acid. Leaching parameters were investigated and optimized in order to maximize the recovery of bothmore » vanadium and nickel. The independent leaching parameters investigated were liquid to solid ratio (S/L) (5–12.5 wt.%), temperature (45–80 °C), sulfuric acid concentration (5–25 v/v%) and leaching time (1–5 h). Response surface methodology (RSM) was used to optimize the process parameters. The most effective parameter on the recovery of both elements was found to be temperature and the least effective was time for V and acid concentration for Ni. Based on the results, optimum condition for metals recovery (actual recovery of ca.94% for V and 81% for Ni) was determined to be solid to liquid ratio of 9.15 wt.%, temperature of 80 °C, sulfuric acid concentration of 19.47 v/v% and leaching time of 2 h. The maximum V and Ni predicted recovery of 91.34% and 80.26% was achieved.« less

  12. Deploying response surface methodology (RSM) and glowworm swarm optimization (GSO) in optimizing warpage on a mobile phone cover

    NASA Astrophysics Data System (ADS)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM) and Glowworm Swarm Optimization (GSO). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM and GSO. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0 whereas the GSO was utilized by using MATLAB. The warpage in y direction recommended by RSM were reduced by 70 %. The warpages recommended by GSO were decreased by 61 % in y direction. The resulting warpages under optimal parameter setting by RSM and GSO were validated by simulation in AMI 2012. RSM performed better than GSO in solving warpage issue.

  13. Optimization of antifungal production by an alkaliphilic and halotolerant actinomycete, Streptomyces sp. SY-BS5, using response surface methodology.

    PubMed

    Souagui, Y; Tritsch, D; Grosdemange-Billiard, C; Kecha, M

    2015-06-01

    Optimization of medium components and physicochemical parameters for antifungal production by an alkaliphilic and salt-tolerant actinomycete designated Streptomyces sp. SY-BS5; isolated from an arid region in south of Algeria. The strain showed broad-spectrum activity against pathogenic and toxinogenic fungi. Identification of the actinomycete strain was realized on the basis of 16S rRNA gene sequencing. Antifungal production was optimized following one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The most suitable medium for growth and antifungal production was found using one-factor-at-a-time methodology. The individual and interaction effects of three nutritional variables, carbon source (glucose), nitrogen source (yeast extract) and sodium chloride (NaCl) were optimized by Box-Behnken design. Finally, culture conditions for the antifungal production, pH and temperature were studied and determined. Analysis of the 16S rRNA gene sequence (1454 nucleotides) assigned this strain to Streptomyces genus with 99% similarity with Streptomyces cyaneofuscatus JCM4364(T), the most closely related. The results of the optimization study show that concentrations 3.476g/L of glucose, 3.876g/L of yeast extract and 41.140g/L of NaCl are responsible for the enhancement of antifungal production by Streptomyces sp. SY-BS5. The preferable culture conditions for antifungal production were pH 10, temperature 30°C for 09 days. This study proved that RSM is usual and powerful tool for the optimization of antifungal production from actinomycetes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Modelling and multi objective optimization of WEDM of commercially Monel super alloy using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Varun, Sajja; Reddy, Kalakada Bhargav Bal; Vardhan Reddy, R. R. Vishnu

    2016-09-01

    In this research work, development of a multi response optimization technique has been undertaken, using traditional desirability analysis and non-traditional particle swarm optimization techniques (for different customer's priorities) in wire electrical discharge machining (WEDM). Monel 400 has been selected as work material for experimentation. The effect of key process parameters such as pulse on time (TON), pulse off time (TOFF), peak current (IP), wire feed (WF) were on material removal rate (MRR) and surface roughness(SR) in WEDM operation were investigated. Further, the responses such as MRR and SR were modelled empirically through regression analysis. The developed models can be used by the machinists to predict the MRR and SR over a wide range of input parameters. The optimization of multiple responses has been done for satisfying the priorities of multiple users by using Taguchi-desirability function method and particle swarm optimization technique. The analysis of variance (ANOVA) is also applied to investigate the effect of influential parameters. Finally, the confirmation experiments were conducted for the optimal set of machining parameters, and the betterment has been proved.

  15. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation

    Treesearch

    Jae-Won Lee; Rita C.L.B. Rodrigues; Hyun Joo Kim; In-Gyu Choi; Thomas W. Jeffries

    2010-01-01

    High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 23 full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment...

  16. Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves-Optimization by Response Surface Method and Application in Oil-in-Water Emulsions.

    PubMed

    Segovia, Francisco; Lupo, Bryshila; Peiró, Sara; Gordon, Michael H; Almajano, María Pilar

    2014-05-06

    Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC), antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50-90 °C, 0%-30%-60% ethanol (v/v), and 10-15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior.

  17. Optimization of HNO3 leaching of copper from old AMD Athlon processors using response surface methodology.

    PubMed

    Javed, Umair; Farooq, Robina; Shehzad, Farrukh; Khan, Zakir

    2018-04-01

    The present study investigates the optimization of HNO 3 leaching of Cu from old AMD Athlon processors under the effect of nitric acid concentration (%), temperature (°C) and ultrasonic power (W). The optimization study is carried out using response surface methodology with central composite rotatable design (CCRD). The ANOVA study concludes that the second degree polynomial model is fitted well to the fifteen experimental runs based on p-value (0.003), R 2 (0.97) and Adj-R 2 (0.914). The study shows that the temperature is the most significant process variable to the leaching concentration of Cu followed by nitric acid concentration. However, ultrasound power shows no significant impact on the leaching concentration. The optimum conditions were found to be 20% nitric acid concentration, 48.89 °C temperature and 5.52 W ultrasound power for attaining maximum concentration of 97.916 mg/l for Cu leaching in solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Response surface modeling and optimization of ultrasound-assisted extraction of three flavonoids from tartary buckwheat (Fagopyrum tataricum)

    PubMed Central

    Peng, Lian-Xin; Zou, Liang; Zhao, Jiang-Lin; Xiang, Da-Bing; Zhu, Peng; Zhao, Gang

    2013-01-01

    Background: Buckwheat (Fagopyrum spp., Polygonaceae) is a widely planted food crop. Flavonoids, including quercetin, rutin, and kaempferol, are the main bioactive components in tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). From the nutriological and pharmacological perspectives, flavonoids have great value in controlling blood glucose and blood pressure levels, and they also have antioxidant properties. Objective: To optimize the conditions for extraction of quercetin, rutin, and kaempferol from F. tataricum. Materials and Methods: A combination of ultrasound-assisted extraction (UAE) and response surface methodology (RSM) was used for flavonoid extraction and yield assessment. The RSM was based on a three-level, three-variable Box-Behnken design. Results: Flavonoids were optimally extracted from F. tataricum by using 72% methanol, at 60°C, for 21 minutes. Under these conditions, the obtained extraction yield of the total flavonoids was 3.94%. Conclusion: The results indicated that the UAE method was effective for extraction of flavonoids from tartary buckwheat. PMID:23930003

  19. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-06-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  20. Response surface optimized peroxyoxalate chemiluminescence of octahydro-Schiff base derivative as new luminophor and study of the quenching effect of some cations, amino acids and cholesterol.

    PubMed

    Yeganeh Faal, Ali; Jamalyan, Bahare; Bordbar, Maryam; Shayeste, Tavakol Heidary; Salavati-Niasari, Masoud

    2014-12-01

    We report the first detailed study of the characteristics of an octahydro-Schiff base derivative as a new luminophor in the peroxyoxalate chemiluminescence (POCL) system. The effect of reagents on this new POCL system was investigated. In addition, the response surface methodology was used for evaluating the relative significance of variables in this POCL system, establishing models and determining optimal conditions. The quenching effect of some cations and compounds such as Cu(2+), Fe(3+), Hg(2+), imidazole, histidine and cholesterol on an optimized POCL reaction were studied. The dynamic ranges were up to approximaterly 100 and 175 × 10(-6) M for Cu(2+) and cholesterol respectively. The detection limits were 3.3 × 10(-6) m and 2.58 × 10(-6) m for Cu(2+) and histidine, respectively. In all cases the relative standard deviations were 4-5% (n = 4). Copyright © 2014 John Wiley & Sons, Ltd.

  1. An effective vacuum assisted extraction method for the optimization of labdane diterpenoids from Andrographis paniculata by response surface methodology.

    PubMed

    Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming

    2014-12-31

    An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  2. Response Surface Methodology for Ultrasound-Assisted Extraction of Astaxanthin from Haematococcus pluvialis

    PubMed Central

    Zou, Tang-Bin; Jia, Qing; Li, Hua-Wen; Wang, Chang-Xiu; Wu, Hong-Fu

    2013-01-01

    Astaxanthin is a novel carotenoid nutraceutical occurring in many crustaceans and red yeasts. It has exhibited various biological activities including prevention or amelioration of cardiovascular disease, gastric ulcer, hypertension, and diabetic nephropathy. In this study, ultrasound-assisted extraction was developed for the effective extraction of astaxanthin from Haematococcus pluvialis. Some parameters such as extraction solvent, liquid-to-solid ratio, extraction temperature, and extraction time were optimized by single-factor experiment and response surface methodology. The optimal extraction conditions were 48.0% ethanol in ethyl acetate, the liquid-to-solid ratio was 20:1 (mL/g), and extraction for 16.0 min at 41.1 °C under ultrasound irradiation of 200 W. Under optimal conditions, the yield of astaxanthin was 27.58 ± 0.40 mg/g. The results obtained are beneficial for the full utilization of Haematococcus pluvialis, which also indicated that ultrasound-assisted extraction is a very useful method for extracting astaxanthin from marine life. PMID:23697948

  3. Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein.

    PubMed

    Zhang, Yin; Wei, Xiong; Lu, Zhou; Pan, Zhongli; Gou, Xinhua; Venkitasamy, Chandrasekar; Guo, Siya; Zhao, Liming

    2017-07-15

    Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD 600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD 600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Optimization for supercritical CO2 extraction with response surface methodology and component analysis of Sapindus mukorossi oil].

    PubMed

    Wu, Yan; Xiao, Xin-yu; Ge, Fa-huan

    2012-02-01

    To study the extraction conditions of Sapindus mukorossi oil by Supercritical CO2 Extraction and identify its components. Optimized SFE-CO2 Extraction by response surface methodology and used GC-MS to analysie Sapindus mukorossi oil compounds. Established the model of an equation for the extraction rate of Sapindus mukorossi oil by Supercritical CO2 Extraction, and the optimal parameters for the Supercritical CO2 Extraction determined by the equation were: the extraction pressure was 30 MPa, temperature was 40 degrees C; The separation I pressure was 14 MPa, temperature was 45 degrees C; The separation II pressure was 6 MPa, temperature was 40 degrees C; The extraction time was 60 min and the extraction rate of Sapindus mukorossi oil of 17.58%. 22 main compounds of Sapindus mukorossi oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 86.59%. This process is reliable, safe and with simple operation, and can be used for the extraction of Sapindus mukorossi oil.

  5. A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology.

    PubMed

    Zhang, Dong-Hao; Zhang, Jiang-Yan; Che, Wen-Cai; Wang, Yun

    2016-09-01

    In this work, the new approach to synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid with benzyl alcohol is optimized by response surface methodology. The effects of various reaction conditions, including temperature, enzyme loading, substrate molar ratio of benzyl alcohol to cinnamic acid, and reaction time, are investigated. A 5-level-4-factor central composite design is employed to search for the optimal yield of benzyl cinnamate. A quadratic polynomial regression model is used to analyze the experimental data at a 95% confidence level (P<0.05). The coefficient of determination of this model is found to be 0.9851. Three sets of optimum reaction conditions are established, and the verified experimental trials are performed for validating the optimum points. Under the optimum conditions (40°C, 31mg/mL enzyme loading, 2.6:1 molar ratio, 27h), the yield reaches 97.7%, which provides an efficient processes for industrial production of benzyl cinnamate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-03-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  7. Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology.

    PubMed

    Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Pérez-Correa, José R; López, Francisco

    2018-04-15

    Developing new distillation strategies can help the spirits industry to improve quality, safety and process efficiency. Batch stills equipped with a packed column and an internal partial condenser are an innovative experimental system, allowing a fast and flexible management of the rectification. In this study, the impact of four factors (heart-cut volume, head-cut volume, pH and cooling flow rate of the internal partial condenser during the head-cut fraction) on 18 major volatile compounds of Muscat spirits was optimized using response surface methodology and desirability function approaches. Results have shown that high rectification at the beginning of the heart-cut enhances the overall positive aroma compounds of the product, reducing off-flavor compounds. In contrast, optimum levels of heart-cut volume, head-cut volume and pH factors varied depending on the process goal. Finally, three optimal operational conditions (head off-flavors reduction, flowery terpenic enhancement and fruity ester enhancement) were evaluated by chemical and sensory analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Multi-criteria optimization for ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae using response surface methodology, an activity-based approach.

    PubMed

    Zeng, Shanshan; Wang, Lu; Zhang, Lei; Qu, Haibin; Gong, Xingchu

    2013-06-01

    An activity-based approach to optimize the ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae (Chenpi in Chinese) was developed. Response surface optimization based on a quantitative composition-activity relationship model showed the relationships among product chemical composition, antioxidant activity of extract, and parameters of extraction process. Three parameters of ultrasonic-assisted extraction, including the ethanol/water ratio, Chenpi amount, and alkaline amount, were investigated to give optimum extraction conditions for antioxidants of Chenpi: ethanol/water 70:30 v/v, Chenpi amount of 10 g, and alkaline amount of 28 mg. The experimental antioxidant yield under the optimum conditions was found to be 196.5 mg/g Chenpi, and the antioxidant activity was 2023.8 μmol Trolox equivalents/g of the Chenpi powder. The results agreed well with the second-order polynomial regression model. This presented approach promised great application potentials in both food and pharmaceutical industries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology.

    PubMed

    Ma, Tingting; Sun, Xiangyu; Tian, Chengrui; Luo, Jiyang; Zheng, Cuiping; Zhan, Jicheng

    2016-07-01

    The extraction process of Sphallerocarpus gracilis root polysaccharides (SGRP) was optimized using response surface methodology with two methods [hot-water extraction (HWE) and ultrasonic-assisted extraction (UAE)]. The antioxidant activities of SGRP were determined, and the structural features of the untreated materials (HWE residue and UAE residue) and the extracted polysaccharides were compared by scanning electron microscopy. Results showed that the optimal UAE conditions were extraction temperature of 81°C, extraction time of 1.7h, liquid-solid ratio of 17ml/g, ultrasonic power of 300W and three extraction cycles. The optimal HWE conditions were 93°C extraction temperature, 3.6h extraction time, 21ml/g liquid-solid ratio and three extraction cycles. UAE offered a higher extraction yield with a shorter time, lower temperature and a lower solvent consumption compared with HWE, and the extracted polysaccharides possessed a higher antioxidant capacity. Therefore, UAE could be used as an alternative to conventional HWE for SGRP extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Optimization of conditions for probiotic curd formulation by Enterococcus faecium MTCC 5695 with probiotic properties using response surface methodology.

    PubMed

    Ramakrishnan, Vrinda; Goveas, Louella Concepta; Prakash, Maya; Halami, Prakash M; Narayan, Bhaskar

    2014-11-01

    Enterococcus faecium MTCC 5695 possessing potential probiotic properties as well as enterocin producing ability was used as starter culture. Effect of time (12-24 h) and inoculum level (3-7 % v/v) on cell growth, bacteriocin production, antioxidant property, titrable acidity and pH of curd was studied by response surface methodology (RSM). The optimized conditions were 26.48 h and 2.17%v/v inoculum and the second order model validated. Co cultivation studies revealed that the formulated product had the ability to prevent growth of foodborne pathogens that affect keeping quality of the product during storage. The results indicated that application of E. faecium MTCC 5695 along with usage of optimized conditions attributed to the formation of highly consistent well set curd with bioactive and bioprotective properties. Formulated curd with potential probiotic attributes can be used as therapeutic agent for the treatment of foodborne diseases like Traveler's diarrhea and gastroenteritis which thereby help in improvement of bowel health.

  11. Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity.

    PubMed

    Mkadmini Hammi, Khaoula; Hammami, Majdi; Rihouey, Christophe; Le Cerf, Didier; Ksouri, Riadh; Majdoub, Hatem

    2016-12-01

    Response surface methodology using a Box-Behnken design was employed to optimize extraction temperature, extraction time and ratio of water to material to obtain a maximum polysaccharide yield with high uronic acid content and antioxidant property from edible Zizyphus lotus fruit. The optimal conditions were: extraction time of 3h 15min, extraction temperature of 91.2°C and water to solid ratio of 39mL/g. Under these conditions, the experimental extraction yield, uronic acid content and 2,2-diphenyl-1-picrylhydrazyl scavenging ability (IC50) were 18.88%, 41.89 and 0.518mg/mL, respectively. Chemical analysis revealed that the extract was composed of 97.92% carbohydrate of which 41.89% is uronic acid. The extracted polysaccharides, with an average molecular weight of 2720kDa, are composed of arabinose, rhamnose, glucose, fructose, galactose and xylose. Moreover, the polysaccharides exhibited a significant reducing power and anti-lipid peroxidation activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Optimization of Manganese Reduction in Biotreated POME onto 3A Molecular Sieve and Clinoptilolite Zeolites.

    PubMed

    Jami, Mohammed S; Rosli, Nurul-Shafiqah; Amosa, Mutiu K

    2016-06-01

    Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging.

  13. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction.

    PubMed

    Kang, Jae-Hyun; Kim, Suna; Moon, BoKyung

    2016-08-15

    In this study, we used response surface methodology (RSM) to optimize the extraction conditions for recovering lutein from paprika leaves using accelerated solvent extraction (ASE). The lutein content was quantitatively analyzed using a UPLC equipped with a BEH C18 column. A central composite design (CCD) was employed for experimental design to obtain the optimized combination of extraction temperature (°C), static time (min), and solvent (EtOH, %). The experimental data obtained from a twenty sample set were fitted to a second-order polynomial equation using multiple regression analysis. The adjusted coefficient of determination (R(2)) for the lutein extraction model was 0.9518, and the probability value (p=0.0000) demonstrated a high significance for the regression model. The optimum extraction conditions for lutein were temperature: 93.26°C, static time: 5 min, and solvent: 79.63% EtOH. Under these conditions, the predicted extraction yield of lutein was 232.60 μg/g. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Optimization of diesel oil biodegradation in seawater using statistical experimental methodology.

    PubMed

    Xia, Wenxiang; Li, Jincheng; Xia, Yan; Song, Zhiwen; Zhou, Jihong

    2012-01-01

    Petroleum hydrocarbons released into the environment can be harmful to higher organisms, but they can be utilized by microorganisms as the sole source of energy for metabolism. To investigate the optimal conditions of diesel oil biodegradation, the Plackett-Burman (PB) design was used for the optimization in the first step, and N source (NaNO₃), P source (KH₂PO₄) and pH were found to be significant factors affecting oil degradation. Then the response surface methodology (RSM) using a central composite design (CCD) was adopted for the augmentation of diesel oil biodegradation and a fitted quadratic model was obtained. The model F-value of 27.25 and the low probability value (<0.0001) indicate that the model is significant and that the concentration of NaNO₃N, KH₂PO₄ and pH had significant effects on oil removal during the study. Three-dimensional response surface plots were constructed by plotting the response (oil degradation efficiency) on the z-axis against any two independent variables, and the optimal biodegradation conditions of diesel oil (original total petroleum hydrocarbons 125 mg/L) were determined as follows: NaNO₃ 0.143 g, KH₂PO₄ 0.022 g and pH 7.4. These results fit quite well with the C, N and P ratio in biological cells. Results from the present study might provide a new method to estimate the optimal nitrogen and phosphorus concentration in advance for oil biodegradation according to the composition of petroleum.

  15. Modulation of a methane Bunsen flame by upstream perturbations

    NASA Astrophysics Data System (ADS)

    de Souza, T. Cardoso; Bastiaans, R. J. M.; De Goey, L. P. H.; Geurts, B. J.

    2017-04-01

    In this paper the effects of an upstream spatially periodic modulation acting on a turbulent Bunsen flame are investigated using direct numerical simulations of the Navier-Stokes equations coupled with the flamelet generated manifold (FGM) method to parameterise the chemistry. The premixed Bunsen flame is spatially agitated with a set of coherent large-scale structures of specific wave-number, K. The response of the premixed flame to the external modulation is characterised in terms of time-averaged properties, e.g. the average flame height ⟨H⟩ and the flame surface wrinkling ⟨W⟩. Results show that the flame response is notably selective to the size of the length scales used for agitation. For example, both flame quantities ⟨H⟩ and ⟨W⟩ present an optimal response, in comparison with an unmodulated flame, when the modulation scale is set to relatively low wave-numbers, 4π/L ≲ K ≲ 6π/L, where L is a characteristic scale. At the agitation scales where the optimal response is observed, the average flame height, ⟨H⟩, takes a clearly defined minimal value while the surface wrinkling, ⟨W⟩, presents an increase by more than a factor of 2 in comparison with the unmodulated reference case. Combined, these two response quantities indicate that there is an optimal scale for flame agitation and intensification of combustion rates in turbulent Bunsen flames.

  16. Optimal placement of trailing-edge flaps for helicopter vibration reduction using response surface methods

    NASA Astrophysics Data System (ADS)

    Viswamurthy, S. R.; Ganguli, Ranjan

    2007-03-01

    This study aims to determine optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels in a helicopter, while incurring low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. The reduced hub vibration levels and required flap control power (due to flap motion) are the two objectives considered in this study and the flap locations along the blade are the design variables. It is found that second order polynomial response surfaces based on the central composite design of the theory of design of experiments describe both objectives adequately. Numerical studies for a four-bladed hingeless rotor show that both objectives are more sensitive to outboard flap location compared to the inboard flap location by an order of magnitude. Optimization results show a disjoint Pareto surface between the two objectives. Two interesting design points are obtained. The first design gives 77 percent vibration reduction from baseline conditions (no flap motion) with a 7 percent increase in flap power compared to the initial design. The second design yields 70 percent reduction in hub vibration with a 27 percent reduction in flap power from the initial design.

  17. Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network.

    PubMed

    Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu

    2017-05-01

    The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hybrid NN/SVM Computational System for Optimizing Designs

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2009-01-01

    A computational method and system based on a hybrid of an artificial neural network (NN) and a support vector machine (SVM) (see figure) has been conceived as a means of maximizing or minimizing an objective function, optionally subject to one or more constraints. Such maximization or minimization could be performed, for example, to optimize solve a data-regression or data-classification problem or to optimize a design associated with a response function. A response function can be considered as a subset of a response surface, which is a surface in a vector space of design and performance parameters. A typical example of a design problem that the method and system can be used to solve is that of an airfoil, for which a response function could be the spatial distribution of pressure over the airfoil. In this example, the response surface would describe the pressure distribution as a function of the operating conditions and the geometric parameters of the airfoil. The use of NNs to analyze physical objects in order to optimize their responses under specified physical conditions is well known. NN analysis is suitable for multidimensional interpolation of data that lack structure and enables the representation and optimization of a succession of numerical solutions of increasing complexity or increasing fidelity to the real world. NN analysis is especially useful in helping to satisfy multiple design objectives. Feedforward NNs can be used to make estimates based on nonlinear mathematical models. One difficulty associated with use of a feedforward NN arises from the need for nonlinear optimization to determine connection weights among input, intermediate, and output variables. It can be very expensive to train an NN in cases in which it is necessary to model large amounts of information. Less widely known (in comparison with NNs) are support vector machines (SVMs), which were originally applied in statistical learning theory. In terms that are necessarily oversimplified to fit the scope of this article, an SVM can be characterized as an algorithm that (1) effects a nonlinear mapping of input vectors into a higher-dimensional feature space and (2) involves a dual formulation of governing equations and constraints. One advantageous feature of the SVM approach is that an objective function (which one seeks to minimize to obtain coefficients that define an SVM mathematical model) is convex, so that unlike in the cases of many NN models, any local minimum of an SVM model is also a global minimum.

  19. Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and Response Surface Methodology.

    PubMed

    Domínguez-Perles, R; Teixeira, A I; Rosa, E; Barros, A I

    2014-12-01

    A Box-Behnken design of Response Surface Methodology (RSM) was conducted to analyse the effect of time (10-30 min), temperature (25-95°C), and solvents concentration (5-90%) on the extraction of total phenolics, flavonoids, ortho-diphenols, and anthocyanins as well as to assess the ABTS(+) scavenging capacity, which were considered as response variables. Values coefficients of determination (R(2)), ranging from 0.903 to 0.996, fitted for describing efficient extraction of bioactive (poly)phenols and antioxidant activity. The recorded data allowed to establish the optimal extraction conditions at 23.0 min, 95.0°C, and 57.9% of food-quality ethanol/water for Vitis vinifera L. var. 'Viosinho' (white variety), and 23.4 min, 84.2°C, and 63.8% for var. 'Touriga Nacional' (red variety). The achievement of optimal extraction conditions of phenolics from grape stems using solvents compatible with further uses in food/pharma industries demonstrated that RSM constitutes a powerful tool for deriving optimal conditions for extraction of antioxidant phenolic compounds from grape stems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Optimization of tetanus toxoid ammonium sulfate precipitation process using response surface methodology.

    PubMed

    Brgles, Marija; Prebeg, Pero; Kurtović, Tihana; Ranić, Jelena; Marchetti-Deschmann, Martina; Allmaier, Günter; Halassy, Beata

    2016-10-02

    Tetanus toxoid (TTd) is a highly immunogenic, detoxified form of tetanus toxin, a causative agent of tetanus disease, produced by Clostridium tetani. Since tetanus disease cannot be eradicated but is easily prevented by vaccination, the need for the tetanus vaccine is permanent. The aim of this work was to investigate the possibility of optimizing TTd purification, i.e., ammonium sulfate precipitation process. The influence of the percentage of ammonium sulfate, starting amount of TTd, buffer type, pH, temperature, and starting purity of TTd on the purification process were investigated using optimal design for response surface models. Responses measured for evaluation of the ammonium sulfate precipitation process were TTd amount (Lf/mL) and total protein content. These two parameters were used to calculate purity (Lf/mgPN) and the yield of the process. Results indicate that citrate buffer, lower temperature, and lower starting amount of TTd result in higher purities of precipitates. Gel electrophoresis combined with matrix-assisted laser desorption ionization-mass spectrometric analysis of precipitates revealed that there are no inter-protein cross-links and that all contaminating proteins have pIs similar to TTd, so this is most probably the reason for the limited success of purification by precipitation.

  1. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei.

    PubMed

    Liu, Gao-Qiang; Wang, Xiao-Ling

    2007-02-01

    Response surface methodology (RSM) was applied to optimize the critical medium ingredients of Agaricus blazei. A three-level Box-Behnken factorial design was employed to determine the maximum biomass and extracellular polysaccharide (EPS) yields at optimum levels for glucose, yeast extract (YE), and peptone. A mathematical model was then developed to show the effect of each medium composition and its interactions on the production of mycelial biomass and EPS. The model predicted the maximum biomass yield of 10.86 g/l that appeared at glucose, YE, peptone of 26.3, 6.84, and 6.62 g/l, respectively, while a maximum EPS yield of 348.4 mg/l appeared at glucose, YE, peptone of 28.4, 4.96, 5.60 g/l, respectively. These predicted values were also verified by validation experiments. The excellent correlation between predicted and measured values of each model justifies the validity of both the response models. The results of bioreactor fermentation also show that the optimized culture medium enhanced both biomass (13.91 +/- 0.71 g/l) and EPS (363 +/- 4.1 mg/l) production by Agaricus blazei in a large-scale fermentation process.

  2. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(ʟ-Lysine): Experimental Study and Modeling Approach.

    PubMed

    Vasiliu, Tudor; Cojocaru, Corneliu; Rotaru, Alexandru; Pricope, Gabriela; Pinteala, Mariana; Clima, Lilia

    2017-06-17

    The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(ʟ-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4.

  3. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(l-Lysine): Experimental Study and Modeling Approach

    PubMed Central

    Vasiliu, Tudor; Cojocaru, Corneliu; Rotaru, Alexandru; Pricope, Gabriela; Pinteala, Mariana; Clima, Lilia

    2017-01-01

    The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(l-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4. PMID:28629130

  4. Development of gluten-free fish (Pseudoplatystoma corruscans) patties by response surface methodology.

    PubMed

    Romero, Mara C; Fogar, Ricardo A; Rolhaiser, Fabiana; Clavero, Verónica V; Romero, Ana M; Judis, María A

    2018-05-01

    The goal of this study was to develop a fish-based product suitable for people with celiac disease. Water and gluten-free flours (rice, corn, amaranth or quinoa) were added to improve cooking yield, texture parameters and as an aid in improving quality attributes such as taste and juiciness. Cooking yields of patties containing gluten-free flours were higher than control and maximum values ranged between 91 and 93%. Hardness was higher in patties made with amaranth or quinoa flour, whereas cohesiveness and springiness were higher in patties made with corn and rice flour, respectively. Response surface methodology was used to optimize patties formulations. Optimized formulations were prepared and evaluated showing a good agreement between predicted and experimental responses. Also, nutritional value and consumer acceptance of optimized formulations were analysed. Flours addition affected proximate composition increasing carbohydrates, total fat and mineral content compared to control. Sensory evaluation showed that no differences were found in the aroma of products. Addition of rice flour increased juiciness and tenderness whereas taste, overall acceptance and buying intention were higher in control patty, followed by patties made with corn flour. The present investigation shows good possibilities for further product development, including the scale up at an industrial level.

  5. Optimized Extraction, Preliminary Characterization, and In Vitro Antioxidant Activity of Polysaccharides from Glycyrrhiza Uralensis Fisch

    PubMed Central

    Chen, Jie; Li, Wan-chen; Gu, Xin-li

    2017-01-01

    Background This study performed optimized extraction, preliminary characterization, and in vitro antioxidant activities of polysaccharides from Glycyrrhiza uralensis Fisch. Material/Methods Three parameters (extraction temperature, ratio of water to raw material, and extraction time) were optimized for yields of G. uralensis polysaccharides (GUP) using response surface methodology with Box-Behnken design (BBD). The GUP was purified using DEAE cellulose 32-column chromatography. The main fraction obtained from G. uralensis Fisch was GUP-II, which was composed of rhamnose, arabinose, galactose, and glucose monosaccharide, was screened for antioxidant properties using DP Hand hydroxyl radical scavenging assays. In addition, immunological activity of GUP-II was determined by nitric oxide and lymphocyte proliferation assays. Results Optimization revealed maximum GUP yields with an extraction temperature of 99°C, water: raw material ratio of 15: 1, and extraction duration of 2 h. GUP-II purified from G. uralensis Fisch had good in vitro DPPH and hydroxyl radical scavenging abilities. Immunologically, GUP-II significantly stimulated NO production in RAW 264.7 macrophages, and significantly enhanced LPS-induced lymphocyte proliferation. Conclusions Extraction of GUP from G. uralensis Fisch can be optimized with respect to temperature, extraction period, and ratio of water to material, using response surface methodology. The purified product (GUP-II) possesses excellent antioxidant and immunological activities. PMID:28404983

  6. Central composite rotatable design for investigation of microwave-assisted extraction of okra pod hydrocolloid.

    PubMed

    Samavati, Vahid

    2013-10-01

    Microwave-assisted extraction (MAE) technique was employed to extract the hydrocolloid from okra pods (OPH). The optimal conditions for microwave-assisted extraction of OPH were determined by response surface methodology. A central composite rotatable design (CCRD) was applied to evaluate the effects of three independent variables (microwave power (X1: 100-500 W), extraction time (X2: 30-90 min), and extraction temperature (X3: 40-90 °C)) on the extraction yield of OPH. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of OPH. The optimal conditions to obtain the highest recovery of OPH (14.911±0.27%) were as follows: microwave power, 395.56 W; extraction time, 67.11 min and extraction temperature, 73.33 °C. Under these optimal conditions, the experimental values agreed with the predicted ones by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing OPH extraction. After method development, the DPPH radical scavenging activity of the OPH was evaluated. MAE showed obvious advantages in terms of high extraction efficiency and radical scavenging activity of extract within the shorter extraction time. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Application of the Response Surface Methodology to Optimize the Fermentation Parameters for Enhanced Docosahexaenoic Acid (DHA) Production by Thraustochytrium sp. ATCC 26185.

    PubMed

    Wu, Kang; Ding, Lijian; Zhu, Peng; Li, Shuang; He, Shan

    2018-04-22

    The aim of this study was to determine the cumulative effect of fermentation parameters and enhance the production of docosahexaenoic acid (DHA) by Thraustochytrium sp. ATCC 26185 using response surface methodology (RSM). Among the eight variables screened for effects of fermentation parameters on DHA production by Plackett-Burman design (PBD), the initial pH, inoculum volume, and fermentation volume were found to be most significant. The Box-Behnken design was applied to derive a statistical model for optimizing these three fermentation parameters for DHA production. The optimal parameters for maximum DHA production were initial pH: 6.89, inoculum volume: 4.16%, and fermentation volume: 140.47 mL, respectively. The maximum yield of DHA production was 1.68 g/L, which was in agreement with predicted values. An increase in DHA production was achieved by optimizing the initial pH, fermentation, and inoculum volume parameters. This optimization strategy led to a significant increase in the amount of DHA produced, from 1.16 g/L to 1.68 g/L. Thraustochytrium sp. ATCC 26185 is a promising resource for microbial DHA production due to the high-level yield of DHA that it produces, and the capacity for large-scale fermentation of this organism.

  8. Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites.

    PubMed

    Latha, Selvanathan; Sivaranjani, Govindhan; Dhanasekaran, Dharumadurai

    2017-09-01

    Among diverse actinobacteria, Streptomyces is a renowned ongoing source for the production of a large number of secondary metabolites, furnishing immeasurable pharmacological and biological activities. Hence, to meet the demand of new lead compounds for human and animal use, research is constantly targeting the bioprospecting of Streptomyces. Optimization of media components and physicochemical parameters is a plausible approach for the exploration of intensified production of novel as well as existing bioactive metabolites from various microbes, which is usually achieved by a range of classical techniques including one factor at a time (OFAT). However, the major drawbacks of conventional optimization methods have directed the use of statistical optimization approaches in fermentation process development. Response surface methodology (RSM) is one of the empirical techniques extensively used for modeling, optimization and analysis of fermentation processes. To date, several researchers have implemented RSM in different bioprocess optimization accountable for the production of assorted natural substances from Streptomyces in which the results are very promising. This review summarizes some of the recent RSM adopted studies for the enhanced production of antibiotics, enzymes and probiotics using Streptomyces with the intention to highlight the significance of Streptomyces as well as RSM to the research community and industries.

  9. Optimization of fermentation conditions for 1,3-propanediol production by marine Klebsiella pneumonia HSL4 using response surface methodology

    NASA Astrophysics Data System (ADS)

    Li, Lili; Zhou, Sheng; Ji, Huasong; Gao, Ren; Qin, Qiwei

    2014-09-01

    The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2 HPO4, 7.6 g/L (NH4)2 SO4, 3.0 g/L KH2 PO4, pH 7.1, cultivation at 35°C for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L·h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing lowcost, large-scale methods for industrial production of 1,3-PDO in the future.

  10. Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software.

    PubMed

    Hooda, Aashima; Nanda, Arun; Jain, Manish; Kumar, Vikash; Rathee, Permender

    2012-12-01

    The current study involves the development and optimization of their drug entrapment and ex vivo bioadhesion of multiunit chitosan based floating system containing Ranitidine HCl by ionotropic gelation method for gastroretentive delivery. Chitosan being cationic, non-toxic, biocompatible, biodegradable and bioadhesive is frequently used as a material for drug delivery systems and used to transport a drug to an acidic environment where it enhances the transport of polar drugs across epithelial surfaces. The effect of various process variables like drug polymer ratio, concentration of sodium tripolyphosphate and stirring speed on various physiochemical properties like drug entrapment efficiency, particle size and bioadhesion was optimized using central composite design and analyzed using response surface methodology. The observed responses were coincided well with the predicted values given by the optimization technique. The optimized microspheres showed drug entrapment efficiency of 74.73%, particle size 707.26 μm and bioadhesion 71.68% in simulated gastric fluid (pH 1.2) after 8 h with floating lag time 40s. The average size of all the dried microspheres ranged from 608.24 to 720.80 μm. The drug entrapment efficiency of microspheres ranged from 41.67% to 87.58% and bioadhesion ranged from 62% to 86%. Accelerated stability study was performed on optimized formulation as per ICH guidelines and no significant change was found in drug content on storage. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Response surface optimization of substrates for thermophilic anaerobic codigestion of sewage sludge and food waste.

    PubMed

    Kim, Hyun-Woo; Shin, Hang-Sik; Han, Sun-Kee; Oh, Sae-Eun

    2007-03-01

    This study investigated the effects of food waste constituents on thermophilic (55 degrees C) anaerobic codigestion of sewage sludge and food waste by using statistical techniques based on biochemical methane potential tests. Various combinations of grain, vegetable, and meat as cosubstrate were tested, and then the data of methane potential (MP), methane production rate (MPR), and first-order kinetic constant of hydrolysis (kH) were collected for further analyses. Response surface methodology by the Box-Behnken design can verify the effects and their interactions of three variables on responses efficiently. MP was mainly affected by grain, whereas MPR and kH were affected by both vegetable and meat. Estimated polynomial regression models can properly explain the variability of experimental data with a high-adjusted R2 of 0.727, 0.836, and 0.915, respectively. By applying a series of optimization techniques, it was possible to find the proper criteria of cosubstrate. The optimal cosubstrate region was suggested based on overlay contours of overall mean responses. With the desirability contour plots, it was found that optimal conditions of cosubstrate for the maximum MPR (56.6 mL of CH4/g of chemical oxygen demand [COD]/day) were 0.71 g of COD/L of grain, 0.18 g of COD/L of vegetable, and 0.38 g of COD/L of meat by the simultaneous consideration of MP, MPR, and kH. Within the range of each factor examined, the corresponding optimal ratio of sewage sludge to cosubstrate was 71:29 as the COD basis. Elaborate discussions could yield practical operational strategies for the enhanced thermophilic anaerobic codigestion of sewage sludge and food waste.

  12. Application of response surface methodology in optimization of lactic acid fermentation of radish: effect of addition of salt, additives and growth stimulators.

    PubMed

    Joshi, V K; Chauhan, Arjun; Devi, Sarita; Kumar, Vikas

    2015-08-01

    Lactic acid fermentation of radish was conducted using various additive and growth stimulators such as salt (2 %-3 %), lactose, MgSO4 + MnSO4 and Mustard (1 %, 1.5 % and 2 %) to optimize the process. Response surface methodology (Design expert, Trial version 8.0.5.2) was applied to the experimental data for the optimization of process variables in lactic acid fermentation of radish. Out of various treatments studied, only the treatments having ground mustard had an appreciable effect on lactic acid fermentation. Both linear and quadratic terms of the variables studied had a significant effect on the responses studied. The interactions between the variables were found to contribute to the response at a significant level. The best results were obtained in the treatment with 2.5 % salt, 1.5 % lactose, 1.5 % (MgSO4 + MnSO4) and 1.5 % mustard. These optimized concentrations increased titrable acidity and LAB count, but lowered pH. The second-order polynomial regression model determined that the highest titrable acidity (1.69), lowest pH (2.49) and maximum LAB count (10 × 10(8) cfu/ml) would be obtained at these concentrations of additives. Among 30 runs conducted, run 2 has got the optimum concentration of salt- 2.5 %, lactose- 1.5 %, MgSO4 + MnSO4- 1.5 % and mustard- 1.5 % for lactic acid fermentation of radish. The values for different additives and growth stimulators optimized in this study could successfully be employed for the lactic acid fermentation of radish as a postharvest reduction tool and for product development.

  13. A concept for adaptive performance optimization on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R.; Enns, Dale F.

    1995-01-01

    An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters.

  14. A comparative study of electrochemical machining process parameters by using GA and Taguchi method

    NASA Astrophysics Data System (ADS)

    Soni, S. K.; Thomas, B.

    2017-11-01

    In electrochemical machining quality of machined surface strongly depend on the selection of optimal parameter settings. This work deals with the application of Taguchi method and genetic algorithm using MATLAB to maximize the metal removal rate and minimize the surface roughness and overcut. In this paper a comparative study is presented for drilling of LM6 AL/B4C composites by comparing the significant impact of numerous machining process parameters such as, electrolyte concentration (g/l),machining voltage (v),frequency (hz) on the response parameters (surface roughness, material removal rate and over cut). Taguchi L27 orthogonal array was chosen in Minitab 17 software, for the investigation of experimental results and also multiobjective optimization done by genetic algorithm is employed by using MATLAB. After obtaining optimized results from Taguchi method and genetic algorithm, a comparative results are presented.

  15. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: optimization by response surface methodology.

    PubMed

    Zhou, D; Xu, X; Mu, H; Høy, C E; Adler-Nissen, J

    2001-12-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S(r)), enzyme load (E(l), based on substrate), water content (W(c), based on enzyme), and reaction temperature (T(e)), the five most important parameters for the reaction, were chosen for the optimization. The range of each parameter was selected as follows: t(r) = 5-17 h; E(l) = 6-14 wt %; T(e) = 45-65 degrees C; S(r) = 2-6 mol/mol; and W(c) = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; S(r) = 5; E(l) = 14 wt %; W(c) = 10 wt %; T(e) = 65 degrees C. At these conditions, products with 55 mol % incorporation of caproic acid and 55 mol % di-incorporated structured triacylglycerols were obtained.

  16. Optimization of the Use of Selected Non-Phosphate Water Retention Additives in Minced Beef Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Shang, Xiaolan; Qiao, Jie; Liu, Yujie

    2017-12-01

    This study looked to determine what the optimum cooking loss for minced beef was when three different non-phosphate water retention additives (L-Arginine, sodium carbonate, and sodium citrate) were combined; the optimum value was determined using a Box-Behnken response surface design method. The optimum value was found to be 8.26%, and it was obtained when 0.29% L-Arginine, 0.45% sodium carbonate, and 0.24% sodium citrate were added to the beef.

  17. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm.

    PubMed

    Wei, Peilian; Si, Zhenjun; Lu, Yao; Yu, Qingfei; Huang, Lei; Xu, Zhinan

    2017-08-09

    Methylobacillus sp. zju323 was adopted to improve the biosynthesis of pyrroloquinoline quinone (PQQ) by systematic optimization of the fermentation medium. The Plackett-Burman design was implemented to screen for the key medium components for the PQQ production. CoCl 2  · 6H 2 O, ρ-amino benzoic acid, and MgSO 4  · 7H 2 O were found capable of enhancing the PQQ production most significantly. A five-level three-factor central composite design was used to investigate the direct and interactive effects of these variables. Both response surface methodology (RSM) and artificial neural network-genetic algorithm (ANN-GA) were used to predict the PQQ production and to optimize the medium composition. The results showed that the medium optimized by ANN-GA was better than that by RSM in maximizing PQQ production and the experimental PQQ concentration in the ANN-GA-optimized medium was improved by 44.3% compared with that in the unoptimized medium. Further study showed that this ANN-GA-optimized medium was also effective in improving PQQ production by fed-batch mode, reaching the highest PQQ accumulation of 232.0 mg/L, which was about 47.6% increase relative to that in the original medium. The present work provided an optimized medium and developed a fed-batch strategy which might be potentially applicable in industrial PQQ production.

  18. Understanding the biological responses of nanostructured metals and surfaces

    NASA Astrophysics Data System (ADS)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  19. 20 Meter Solar Sail Analysis and Correlation

    NASA Technical Reports Server (NTRS)

    Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.

    2005-01-01

    This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.

  20. Optimization of the preparation conditions of ceramic products using drinking water treatment sludges.

    PubMed

    Zamora, R M Ramirez; Ayala, F Espesel; Garcia, L Chavez; Moreno, A Duran; Schouwenaars, R

    2008-11-01

    The aim of this work is to optimize, via Response Surface Methodology, the values of the main process parameters for the production of ceramic products using sludges obtained from drinking water treatment in order to valorise them. In the first experimental stage, sludges were collected from a drinking water treatment plant for characterization. In the second stage, trials were carried out to elaborate thin cross-section specimens and fired bricks following an orthogonal central composite design of experiments with three factors (sludge composition, grain size and firing temperature) and five levels. The optimization parameters (Y(1)=shrinking by firing (%), Y(2)=water absorption (%), Y(3)=density (g/cm(3)) and Y(4)=compressive strength (kg/cm(2))) were determined according to standardized analytical methods. Two distinct physicochemical processes were active during firing at different conditions in the experimental design, preventing the determination of a full response surface, which would allow direct optimization of production parameters. Nevertheless, the temperature range for the production of classical red brick was closely delimitated by the results; above this temperature, a lightweight ceramic with surprisingly high strength was produced, opening possibilities for the valorisation of a product with considerably higher added value than what was originally envisioned.

  1. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

    1998-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  2. Response Surface Optimization of Process Parameters and Fuzzy Analysis of Sensory Data of High Pressure-Temperature Treated Pineapple Puree.

    PubMed

    Chakraborty, Snehasis; Rao, Pavuluri Srinivasa; Mishra, Hari Niwas

    2015-08-01

    The high-pressure processing conditions were optimized for pineapple puree within the domain of 400-600 MPa, 40-60 °C, and 10-20 min using the response surface methodology (RSM). The target was to maximize the inactivation of polyphenoloxidase (PPO) along with a minimal loss in beneficial bromelain (BRM) activity, ascorbic acid (AA) content, antioxidant capacity, and color in the sample. The optimum condition was 600 MPa, 50 °C, and 13 min, having the highest desirability of 0.604, which resulted in 44% PPO and 47% BRM activities. However, 93% antioxidant activity and 85% AA were retained in optimized sample with a total color change (∆E*) value less than 2.5. A 10-fold reduction in PPO activity was obtained at 600 MPa/70 °C/20 min; however, the thermal degradation of nutrients was severe at this condition. Fuzzy mathematical approach confirmed that sensory acceptance of the optimized sample was close to the fresh sample; whereas, the thermally pasteurized sample (treated at 0.1 MPa, 95 °C for 12 min) had the least sensory score as compared to others. © 2015 Institute of Food Technologists®

  3. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology.

    PubMed

    Ahamad, Javed; Amin, Saima; Mir, Showkat R

    2015-01-01

    Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  4. A Response Surface Methodology for Bi-Level Integrated System Synthesis (BLISS)

    NASA Technical Reports Server (NTRS)

    Altus, Troy David; Sobieski, Jaroslaw (Technical Monitor)

    2002-01-01

    The report describes a new method for optimization of engineering systems such as aerospace vehicles whose design must harmonize a number of subsystems and various physical phenomena, each represented by a separate computer code, e.g., aerodynamics, structures, propulsion, performance, etc. To represent the system internal couplings, the codes receive output from other codes as part of their inputs. The system analysis and optimization task is decomposed into subtasks that can be executed concurrently, each subtask conducted using local state and design variables and holding constant a set of the system-level design variables. The subtasks results are stored in form of the Response Surfaces (RS) fitted in the space of the system-level variables to be used as the subtask surrogates in a system-level optimization whose purpose is to optimize the system objective(s) and to reconcile the system internal couplings. By virtue of decomposition and execution concurrency, the method enables a broad workfront in organization of an engineering project involving a number of specialty groups that might be geographically dispersed, and it exploits the contemporary computing technology of massively concurrent and distributed processing. The report includes a demonstration test case of supersonic business jet design.

  5. Surface processing: existing and potential applications of ultraviolet light.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface.

  6. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM).

    PubMed

    Hwang, Seung Hwan; Kwon, Shin Hwa; Wang, Zhiqiang; Kim, Tae Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2016-08-26

    Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. In this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM. Isolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6"malonylglucoside) and 3'-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC. These results indicated that PCK and 3'-methoxyhirsutrin and cyanidin-3-(6"malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.

  7. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation

    PubMed Central

    Boyan, B.D.; Cheng, A.; Olivares-Navarrete, R.; Schwartz, Z.

    2016-01-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. PMID:26927483

  8. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  9. The response surface methodology speeds up the search for optimal parameters in the photoinactivation of E. coli by photodynamic therapy.

    PubMed

    Amaral, Larissa S; Azevedo, Eduardo B; Perussi, Janice R

    2018-06-01

    Antimicrobial Photodynamic Inactivation (a-PDI) is based on the oxidative destruction of biological molecules by reactive oxygen species generated by the photo-excitation of a photosensitive molecule. When a-PDT is performed with the use of mathematical models, the optimal conditions for maximum inactivation are found. Experimental designs allow a multivariate analysis of the experimental parameters. This is usually made using a univariate approach, which demands a large number of experiments, being time and money consuming. This paper presents the use of the response surface methodology for improving the search for the best conditions to reduce E. coli survival levels by a-PDT using methylene blue (MB) and toluidine blue (TB) as photosensitizers and white light. The goal was achieved by analyzing the effects and interactions of the three main parameters involved in the process: incubation time (IT), photosensitizer concentration (C PS ), and light dose (LD). The optimization procedure began with a full 2 3 factorial design, followed by a central composite one, in which the optimal conditions were estimated. For MB, C PS was the most important parameter followed by LD and IT whereas, for TB, the main parameter was LD followed by C PS and IT. Using the estimated optimal conditions for inactivation, MB was able to inactivate 99.999999% CFU mL -1 of E. coli with IT of 28 min, LD of 31 J cm -2 , and C PS of 32 μmol L -1 , while TB required 18 min, 39 J cm -2 , and 37 μmol L -1 . The feasibility of using the response surface methodology with a-PDT was demonstrated, enabling enhanced photoinactivation efficiency and fast results with a minimal number of experiments. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Soota, Tarun; Kumar, Jitendra

    2018-03-01

    Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.

  11. Gear optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Chen, Xiang; Zhang, Ning-Tian

    1988-01-01

    The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.

  12. Analysis of the tenderisation of jumbo squid (Dosidicus gigas) meat by ultrasonic treatment using response surface methodology.

    PubMed

    Hu, Yaqin; Yu, Hiaxia; Dong, Kaicheng; Yang, Shuibing; Ye, Xingqian; Chen, Shiguo

    2014-10-01

    Due to its unique structure, jumbo squid (Dosidicus gigas) meat is sensitive to heat treatment, which makes the traditional squid products taste tough and hard. This study aimed to tenderise jumbo squid meat through ultrasonic treatment. Response surface methodology (RSM) was used to predict the tenderising effect of various treatment conditions. According to the results of RSM, the optimal conditions appeared to be a power of 186.9 W, a frequency of 25.6 kHz, and a time of 30.8 min, and the predicted values of flexibility and firmness under these optimal conditions were 2.40 mm and 435.1 g, respectively. Protein degradation and a broken muscle fibre structure were observed through histological assay and SDS-PAGE, which suggests a satisfactory tenderisation effect. Copyright © 2014. Published by Elsevier Ltd.

  13. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology.

    PubMed

    Hong, Chen; Haiyun, Wu

    2010-07-01

    Central-composite design (CCD) and response surface methodology (RSM) were used to optimize the parameters of volatile fatty acid (VFA) production from food wastes and dewatered excess sludge in a semi-continuous process. The effects of four variables (food wastes composition in the co-substrate of food wastes and excess sludge, hydraulic retention time (HRT), organic loading rate (OLR), and pH) on acidogenesis were evaluated individually and interactively. The optimum condition derived via RSM was food wastes composition, 88.03%; HRT, 8.92 days; OLR, 8.31 g VSS/ld; and pH 6.99. The experimental VFA concentration was 29,099 mg/l under this optimum condition, which was well in agreement with the predicted value of 28,000 mg/l. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    PubMed

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  15. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models formore » GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.« less

  16. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology

    PubMed Central

    Auwal, Shehu Muhammad; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-01-01

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4–7), temperature (40–70 °C), enzyme/substrate (E/S) ratio (0.5%–2%) and time (30–360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries. PMID:28362352

  17. Optimization of ultrasonic-assisted preparation of dietary fiber from corn pericarp using response surface methodology.

    PubMed

    Wang, Anna; Wu, Ligen; Li, Xiulin

    2013-09-01

    Corn pericarp, which is an industrial waste of corn starch production, is an important source of dietary fiber in cereals, with claimed health benefits. However, they used to be discarded or utilized as animal feed. The application of pre-ultrasound treatment is critical for achieving rapid preparation of desired components from plant materials and for preserving structural and molecular properties of these compounds. Ultrasonic-assisted preparation was used to produce dietary fiber from corn pericarp using response surface methodology. The optimal particle size of corn pericarp (mesh size 40), the ratio of liquid to solid (25 mL g⁻¹), ultrasonic power (180 W) and ultrasonic time (80 min) were determined based on response surface methodology analysis. The interaction effects of particle size of corn pericarp and ultrasonic time had a highlysignificant effect on the yield of dietary fiber, and a significant effect was shown by ultrasonic power and ultrasonic time. The maximum yield of dietary fiber was 86.84%, which agreed closely with the predicted value. Using ultrasonic-assisted preparation, it may be possible to enhance the yield of dietary fiber from corn pericarp. © 2013 Society of Chemical Industry.

  18. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad

    2011-11-01

    Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting ( G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 °C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting.

  19. Application of Response Surface Methodology on Leaching of Iron from Partially Laterised Khondalite Rocks: A Bauxite Mining Waste

    NASA Astrophysics Data System (ADS)

    Swain, Ranjita; Bhima Rao, R.

    2018-04-01

    In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.

  20. Multi-objective optimization of hole characteristics during pulsed Nd:YAG laser microdrilling of gamma-titanium aluminide alloy sheet

    NASA Astrophysics Data System (ADS)

    Biswas, R.; Kuar, A. S.; Mitra, S.

    2014-09-01

    Nd:YAG laser microdrilled holes on gamma-titanium aluminide, a newly developed alloy having wide applications in turbine blades, engine valves, cases, metal cutting tools, missile components, nuclear fuel and biomedical engineering, are important from the dimensional accuracy and quality of hole point of view. Keeping this in mind, a central composite design (CCD) based on response surface methodology (RSM) is employed for multi-objective optimization of pulsed Nd:YAG laser microdrilling operation on gamma-titanium aluminide alloy sheet to achieve optimum hole characteristics within existing resources. The three characteristics such as hole diameter at entry, hole diameter at exit and hole taper have been considered for simultaneous optimization. The individual optimization of all three responses has also been carried out. The input parameters considered are lamp current, pulse frequency, assist air pressure and thickness of the job. The responses at predicted optimum parameter level are in good agreement with the results of confirmation experiments conducted for verification tests.

  1. Box-Behnken statistical design to optimize thermal performance of energy storage systems

    NASA Astrophysics Data System (ADS)

    Jalalian, Iman Joz; Mohammadiun, Mohammad; Moqadam, Hamid Hashemi; Mohammadiun, Hamid

    2018-05-01

    Latent heat thermal storage (LHTS) is a technology that can help to reduce energy consumption for cooling applications, where the cold is stored in phase change materials (PCMs). In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing RT25 as phase change material (PCM). Process optimization of the experimental conditions (inlet air temperature and velocity and number of slabs) was carried out by means of Box-Behnken design (BBD) of Response surface methodology (RSM). Two parameters (cooling time and COP value) were chosen to be the responses. Both of the responses were significantly influenced by combined effect of inlet air temperature with velocity and number of slabs. Simultaneous optimization was performed on the basis of the desirability function to determine the optimal conditions for the cooling time and COP value. Maximum cooling time (186 min) and COP value (6.04) were found at optimum process conditions i.e. inlet temperature of (32.5), air velocity of (1.98) and slab number of (7).

  2. Optimized water vapor permeability of sodium alginate films using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Xu, Jiachao; Gao, Xin; Fu, Xiaoting

    2013-11-01

    The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaCl2 solution immersion time. The coefficient of determination ( R 2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g·mm/(m2·h·kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.

  3. Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods.

    PubMed

    Fišer, Žiga; Novak, Luka; Luštrik, Roman; Fišer, Cene

    2016-02-01

    Boundaries of species distributions are the result of colonization-extinction processes. Survival on the boundary depends on how well individuals discriminate optimal from suboptimal habitat patches. Such behaviour is called habitat choice and was only rarely applied to macroecology, although it links species ecological niche and species distribution. Surface and subterranean aquatic species are spatially strongly segregated, even in the absence of physical barriers. We explored whether a behavioural response to light functions as a habitat choice mechanism that could explain species turnover between surface and subterranean aquatic ecosystems. In a controlled laboratory experiment, we studied the behavioural response to light of ten pairs of surface and subterranean amphipods that permanently co-occur in springs. Surface species showed a weak photophobic, photoneutral, and in one case, photophilic response, whereas all subterranean species showed a strong photophobic response. Eyeless subterranean but not eyed surface amphipods appear to orient themselves with light cues. On a local scale, this difference possibly diminishes harmful interactions between the co-occurring amphipods, whereas on a regional scale, photophobia could explain limited dispersal and a high degree of endemism observed among subterranean species.

  4. Application of grey-fuzzy approach in parametric optimization of EDM process in machining of MDN 300 steel

    NASA Astrophysics Data System (ADS)

    Protim Das, Partha; Gupta, P.; Das, S.; Pradhan, B. B.; Chakraborty, S.

    2018-01-01

    Maraging steel (MDN 300) find its application in many industries as it exhibits high hardness which are very difficult to machine material. Electro discharge machining (EDM) is an extensively popular machining process which can be used in machining of such materials. Optimization of response parameters are essential for effective machining of these materials. Past researchers have already used Taguchi for obtaining the optimal responses of EDM process for this material with responses such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) considering discharge current, pulse on time, pulse off time, arc gap, and duty cycle as process parameters. In this paper, grey relation analysis (GRA) with fuzzy logic is applied to this multi objective optimization problem to check the responses by an implementation of the derived parametric setting. It was found that the parametric setting derived by the proposed method results in better a response than those reported by the past researchers. Obtained results are also verified using the technique for order of preference by similarity to ideal solution (TOPSIS). The predicted result also shows that there is a significant improvement in comparison to the results of past researchers.

  5. Modelling and optimization of semi-solid processing of 7075 Al alloy

    NASA Astrophysics Data System (ADS)

    Binesh, B.; Aghaie-Khafri, M.

    2017-09-01

    The new modified strain-induced melt activation (SIMA) process presented by Binesh and Aghaie-Khafri was optimized using a response surface methodology to improve the thixotropic characteristics of semi-solid 7075 alloy. The responses, namely the average grain size and the shape factor, were considered as functions of three independent input variables: effective strain, isothermal holding temperature and time. Mathematical models for the responses were developed using the regression analysis technique, and the adequacy of the models was validated by the analysis of variance method. The calculated results correlated fairly well with the experiments. It was found that all the first- and second-order terms of the independent parameters and the interactive terms of the effective strain and holding time were statistically significant for the responses. In order to simultaneously optimize the responses, the desirable values for the effective strain, holding temperature and time were predicted to be 5.1, 609 °C and 14 min, respectively, when employing the desirability function approach. Based on the optimization results, a significant improvement in the average grain size and shape factor of the semi-solid slurry prepared by the new modified SIMA process was observed.

  6. Experimental design and response surface modelling for optimization of vat dye from water by nano zero valent iron (NZVI).

    PubMed

    Arabi, Simin; Sohrabi, Mahmoud Reza

    2013-01-01

    In this study, NZVI particles was prepared and studied for the removal of vat green 1 dye from aqueous solution. A four-factor central composite design (CCD) combined with response surface modeling (RSM) to evaluate the combined effects of variables as well as optimization was employed for maximizing the dye removal by prepared NZVI based on 30 different experimental data obtained in a batch study. Four independent variables, viz. NZVI dose (0.1-0.9 g/L), pH (1.5-9.5), contact time (20-100 s), and initial dye concentration (10-50 mg/L) were transform to coded values and quadratic model was built to predict the responses. The significant of independent variables and their interactions were tested by the analysis of variance (ANOVA). Adequacy of the model was tested by the correlation between experimental and predicted values of the response and enumeration of prediction errors. The ANOVA results indicated that the proposed model can be used to navigate the design space. Optimization of the variables for maximum adsorption of dye by NZVI particles was performed using quadratic model. The predicted maximum adsorption efficiency (96.97%) under the optimum conditions of the process variables (NZVI dose 0.5 g/L, pH 4, contact time 60 s, and initial dye concentration 30 mg/L) was very close to the experimental value (96.16%) determined in batch experiment. In the optimization, R2 and R2adj correlation coefficients for the model were evaluated as 0.95 and 0.90, respectively.

  7. Recent developments of axial flow compressors under transonic flow conditions

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2017-05-01

    The objective of this paper is to give a holistic view of the most advanced technology and procedures that are practiced in the field of turbomachinery design. Compressor flow solver is the turbulence model used in the CFD to solve viscous problems. The popular techniques like Jameson’s rotated difference scheme was used to solve potential flow equation in transonic condition for two dimensional aero foils and later three dimensional wings. The gradient base method is also a popular method especially for compressor blade shape optimization. Various other types of optimization techniques available are Evolutionary algorithms (EAs) and Response surface methodology (RSM). It is observed that in order to improve compressor flow solver and to get agreeable results careful attention need to be paid towards viscous relations, grid resolution, turbulent modeling and artificial viscosity, in CFD. The advanced techniques like Jameson’s rotated difference had most substantial impact on wing design and aero foil. For compressor blade shape optimization, Evolutionary algorithm is quite simple than gradient based technique because it can solve the parameters simultaneously by searching from multiple points in the given design space. Response surface methodology (RSM) is a method basically used to design empirical models of the response that were observed and to study systematically the experimental data. This methodology analyses the correct relationship between expected responses (output) and design variables (input). RSM solves the function systematically in a series of mathematical and statistical processes. For turbomachinery blade optimization recently RSM has been implemented successfully. The well-designed high performance axial flow compressors finds its application in any air-breathing jet engines.

  8. The longest wheal diameter is the optimal measurement for the evaluation of skin prick tests.

    PubMed

    Konstantinou, George N; Bousquet, Philippe-Jean; Zuberbier, Torsten; Papadopoulos, Nikolaos G

    2010-01-01

    Mean diameter or longest diameter are the 2 most frequently used parameters for wheal response assessment after skin prick testing (SPT). We aimed to compare these 2 parameters taking as gold standard the surface of the wheal skin response. Patients suspected of having an allergic reaction against inhalant allergens have been skin prick tested using the Pan-European GA(2)LEN SPT panel. Fifteen minutes later, macroscopically evident wheal and flare reactions were marked with a pen and transferred to paper with a transparent scotch tape. Each paper-transferred wheal was scanned with an ordinary scanner, and its surface-corresponding maximum perpendicular diameters and longest diameters were measured using a computer software application for image recognition, developed for this purpose. Correlation coefficients (Spearman's rho) between surfaces and respective mean (rho(mean)) or longest (rho(longest)) diameters were calculated and subsequently compared. 1,554 SPTs were performed in 74 patients. In 264, a macroscopically evident wheal and flare response was observed. Both mean and longest diameters correlated significantly with the wheal surfaces. However, rho(longest) was statistically significantly larger than rho(mean) when the surface of the wheal was >17 mm(2) (rho(longest) > 0.860 vs. rho(mean) < 0.660; p < 0.05).Such a surface corresponds to a maximum diameter of approximately 7 mm and a mean diameter of approximately 6 mm. Thus, the larger the surface of the wheal, the more appropriate the usage of the longest diameter. The longest wheal diameter alone seems to be a better surrogate marker of the wheal surface in comparison with the mean diameter. In addition, it is easier and faster to measure. Therefore, we propose this as the optimal methodology to evaluate SPTs. 2009 S. Karger AG, Basel.

  9. Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite

    NASA Astrophysics Data System (ADS)

    Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin

    2017-09-01

    State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all-electric spacecraft system design.

  10. Parameter identification and optimization of slide guide joint of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Sun, B. B.

    2017-11-01

    The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.

  11. Biochemical responses of Gammarus pulex to malachite green solutions decolorized by Coriolus versicolor as a biosorbent under batch adsorption conditions optimized with response surface methodology.

    PubMed

    Yildirim, Nuran Cikcikoglu; Tanyol, Mehtap; Yildirim, Numan; Serdar, Osman; Tatar, Sule

    2018-07-30

    The current study was aimed to investigate the detoxifying and antioxidant enzyme response of Gammarus pulex exposed to malachite green (MG) after decolorization by Coriolus versicolor. Response surface methodology (RSM) was utilized to optimize the decolorization conditions of MG synthetic solutions by C. versicolor. Glutathione (GSH), malondialdehyde (MDA) levels and glutathione peroxidase (GP X ), catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), cytochrome P450 1A1 (CYP1A1) activities in G. pulex exposed to undecolorized (A1) and decolorized (A2) MG synthetic solution during 24 and 96 h were tested by using ELISA method. SOD and GP X enzyme activity was increased after decolorization (p > 0.05). CAT enzyme activity was increased in A2 group during 24 h (p > 0.05) but decreased during 96 h (p < 0.05). GSH levels were increased in A2 group during 24 and 96 h (p < 0.05). GST, CYP1A1 enzyme activity and MDA levels were decreased after decolorization during 96 h (p < 0.05). In this study, GSH levels, CAT, GST and CYP1A1 activities in G. pulex approved the capability of C. versicolor in MG decolorization, optimized with RSM. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Optimization of free radical scavenging capacity and pH of Hylocereus polyrhizus peel by Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Putranto, A. W.; Dewi, S. R.; Puspitasari, Y.; Nuriah, F. A.

    2018-03-01

    Red dragon fruit (Hylocereus polyrhizus) peel, a by-product of juice processing, contains a high antioxidant that can be used for nutraceuticals. Hence, it is important to extract and investigate its antioxidant stability. The aim of this study was to optimize the free radical scavenging capacity and pH of H. polyrhizus peel extract using Central Composite Design (CCD) under Response Surface Methodology (RSM). The extraction of H. polyrhizus peel was done by using green-Pulsed Electric Field (PEF)-assisted extraction method. Factors optimized were electric field strength (kV/cm) and extraction time (seconds). The result showed that the correlation between responses (free radical-scavenging capacity and pH) and two factors was quadratic model. The optimum conditions was obtained at the electric field strength of 3.96 kV/cm, and treatment time of 31.9 seconds. Under these conditions, the actual free radical-scavenging capacity and pH were 75.86 ± 0.2 % and 4.8, respectively. The verification model showed that the actual values are in accordance with the predicted values, and have error rate values of free radical-scavenging capacity and pH responses were 0.1% and 3.98%, respectively. We suggest to extract the H. polyrhizus peel using a green and non-thermal extraction technology, PEF-assisted extraction, for research, food applications and nutraceuticals industry.

  13. Surface laser marking optimization using an experimental design approach

    NASA Astrophysics Data System (ADS)

    Brihmat-Hamadi, F.; Amara, E. H.; Lavisse, L.; Jouvard, J. M.; Cicala, E.; Kellou, H.

    2017-04-01

    Laser surface marking is performed on a titanium substrate using a pulsed frequency doubled Nd:YAG laser ( λ= 532 nm, τ pulse=5 ns) to process the substrate surface under normal atmospheric conditions. The aim of the work is to investigate, following experimental and statistical approaches, the correlation between the process parameters and the response variables (output), using a Design of Experiment method (DOE): Taguchi methodology and a response surface methodology (RSM). A design is first created using MINTAB program, and then the laser marking process is performed according to the planned design. The response variables; surface roughness and surface reflectance were measured for each sample, and incorporated into the design matrix. The results are then analyzed and the RSM model is developed and verified for predicting the process output for the given set of process parameters values. The analysis shows that the laser beam scanning speed is the most influential operating factor followed by the laser pumping intensity during marking, while the other factors show complex influences on the objective functions.

  14. Optimization of ramp area aircraft push back time windows in the presence of uncertainty

    NASA Astrophysics Data System (ADS)

    Coupe, William Jeremy

    It is well known that airport surface traffic congestion at major airports is responsible for increased taxi-out times, fuel burn and excess emissions and there is potential to mitigate these negative consequences through optimizing airport surface traffic operations. Due to a highly congested voice communication channel between pilots and air traffic controllers and a data communication channel that is used only for limited functions, one of the most viable near-term strategies for improvement of the surface traffic is issuing a push back advisory to each departing aircraft. This dissertation focuses on the optimization of a push back time window for each departing aircraft. The optimization takes into account both spatial and temporal uncertainties of ramp area aircraft trajectories. The uncertainties are described by a stochastic kinematic model of aircraft trajectories, which is used to infer distributions of combinations of push back times that lead to conflict among trajectories from different gates. The model is validated and the distributions are included in the push back time window optimization. Under the assumption of a fixed taxiway spot schedule, the computed push back time windows can be integrated with a higher level taxiway scheduler to optimize the flow of traffic from the gate to the departure runway queue. To enable real-time decision making the computational time of the push back time window optimization is critical and is analyzed throughout.

  15. Optimization of sustained release aceclofenac microspheres using response surface methodology.

    PubMed

    Deshmukh, Rameshwar K; Naik, Jitendra B

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.

    PubMed

    Kobe, Richard K; Iyer, Meera; Walters, Michael B

    2010-01-01

    Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth demands are not synchronized with photosynthesis, flexibility in responding to uncertain and fluctuating abiotic and biotic conditions, and increased access to soil resources by providing an energy source for mycorrhizae, decomposers in the rhizosphere, or root uptake of nutrients.

  17. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling.

    PubMed

    Ameer, Kashif; Bae, Seong-Woo; Jo, Yunhee; Lee, Hyun-Gyu; Ameer, Asif; Kwon, Joong-Ho

    2017-08-15

    Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X 1 : 1-5min), ethanol concentration, (X 2 : 0-100%) and microwave power (X 3 : 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X 1 , 75% X 2 , and 160W X 3 . The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities. Copyright © 2017. Published by Elsevier Ltd.

  18. Design Expert Supported Mathematical Optimization and Predictability Study of Buccoadhesive Pharmaceutical Wafers of Loratadine

    PubMed Central

    Dey, Surajit; Parcha, Versha; Bhattacharya, Shiv Sankar; Ghosh, Amitava

    2013-01-01

    Objective. The objective of this work encompasses the application of the response surface approach in the development of buccoadhesive pharmaceutical wafers of Loratadine (LOR). Methods. Experiments were performed according to a 32 factorial design to evaluate the effects of buccoadhesive polymer, sodium alginate (A), and lactose monohydrate as ingredient, of hydrophilic matrix former (B) on the bioadhesive force, disintegration time, percent (%) swelling index, and time taken for 70% drug release (t 70%). The effect of the two independent variables on the response variables was studied by response surface plots and contour plots generated by the Design-Expert software. The desirability function was used to optimize the response variables. Results. The compatibility between LOR and the wafer excipients was confirmed by differential scanning calorimetry, FTIR spectroscopy, and X-ray diffraction (XRD) analysis. Bioadhesion force, measured with TAXT2i texture analyzer, showed that the wafers had a good bioadhesive property which could be advantageous for retaining the drug into the buccal cavity. Conclusion. The observed responses taken were in agreement with the experimental values, and Loratadine wafers were produced with less experimental trials, and a patient compliant product was achieved with the concept of formulation by design. PMID:23781498

  19. A Surrogate Approach to the Experimental Optimization of Multielement Airfoils

    NASA Technical Reports Server (NTRS)

    Otto, John C.; Landman, Drew; Patera, Anthony T.

    1996-01-01

    The incorporation of experimental test data into the optimization process is accomplished through the use of Bayesian-validated surrogates. In the surrogate approach, a surrogate for the experiment (e.g., a response surface) serves in the optimization process. The validation step of the framework provides a qualitative assessment of the surrogate quality, and bounds the surrogate-for-experiment error on designs "near" surrogate-predicted optimal designs. The utility of the framework is demonstrated through its application to the experimental selection of the trailing edge ap position to achieve a design lift coefficient for a three-element airfoil.

  20. Modeling and optimization aspects of radiation induced grafting of 4-vinylpyridene onto partially fluorinated films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad

    2014-01-01

    Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost.

  1. Concentrating phenolic acids from Lonicera japonica by nanofiltration technology

    NASA Astrophysics Data System (ADS)

    Li, Cunyu; Ma, Yun; Li, Hongyang; Peng, Guoping

    2017-03-01

    Response surface analysis methodology was used to optimize the concentrate process of phenolic acids from Lonicera japonica by nanofiltration technique. On the basis of the influences of pressure, temperature and circulating volume, the retention rate of neochlorogenic acid, chlorogenic acid and 4-dicaffeoylquinic acid were selected as index, molecular weight cut-off of nanofiltration membrane, concentration and pH were selected as influencing factors during concentrate process. The experiment mathematical model was arranged according to Box-Behnken central composite experiment design. The optimal concentrate conditions were as following: nanofiltration molecular weight cut-off, 150 Da; solutes concentration, 18.34 µg/mL; pH, 4.26. The predicted value of retention rate was 97.99% under the optimum conditions, and the experimental value was 98.03±0.24%, which was in accordance with the predicted value. These results demonstrate that the combination of Box-Behnken design and response surface analysis can well optimize the concentrate process of Lonicera japonica water-extraction by nanofiltration, and the results provide the basis for nanofiltration concentrate for heat-sensitive traditional Chinese medicine.

  2. Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design.

    PubMed

    Zhao, Wenzhu; Yu, Zhipeng; Liu, Jingbo; Yu, Yiding; Yin, Yongguang; Lin, Songyi; Chen, Feng

    2011-09-01

    Corn silk is a traditional Chinese herbal medicine, which has been widely used for treatment of some diseases. In this study the effects of pulsed electric field on the extraction of polysaccharides from corn silk were investigated. Polysaccharides in corn silk were extracted by pulsed electric field and optimized by response surface methodology (RSM), based on a Box-Behnken design (BBD). Three independent variables, including electric field intensity (kV cm(-1) ), ratio of liquid to raw material and pulse duration (µs), were investigated. The experimental data were fitted to a second-order polynomial equation and also profiled into the corresponding 3-D contour plots. Optimal extraction conditions were as follows: electric field intensity 30 kV cm(-1) , ratio of liquid to raw material 50, and pulse duration 6 µs. Under these condition, the experimental yield of extracted polysaccharides was 7.31% ± 0.15%, matching well with the predicted value. The results showed that a pulsed electric field could be applied to extract value-added products from foods and/or agricultural matrix. Copyright © 2011 Society of Chemical Industry.

  3. Optimization of dynamic-microwave assisted enzymatic hydrolysis extraction of total ginsenosides from stems and leaves of panax ginseng by response surface methodology.

    PubMed

    Wang, Xiao-Yan; Ren, Hui

    2018-03-21

    Ginseng stems and leaves (GSAL) are abundant in ginsenosides compounds. For efficient utilization of GSAL and the enhancement of total ginsenosides (TG) compound yields in GSAL, TG from GSAL were extracted, using dynamic-microwave assisted extraction coupled with enzymatic hydrolysis (DMAE-EH) method. The extraction process has been simulated and its main influencing factors such as ethanol concentration, microwave temperature, microwave time and pump flow rate have been optimized by response surface methodology coupled with a Box-Behnken design(BBD). The experimental results indicated that optimal extraction conditions of TG from GSAL were as follows: ethanol concentration of 75%, microwave temperature of 60°C, microwave time of 20 min and pump flow rate of 38 r/min. After experimental verification, the experimental yields of TG was 60.62 ± 0.85 mg g -1 , which were well agreement with the predicted by the model. In general, the present results demonstrated that DMAE-EH method was successfully used to extract total ginsenosides in GSAL.

  4. Application of response surface methodology (RSM) for the removal of methylene blue dye from water by nano zero-valent iron (NZVI).

    PubMed

    Khosravi, Morteza; Arabi, Simin

    In this study, iron zero-valent nanoparticles were synthesized, characterized and studied for removal of methylene blue dye in water solution. The reactions were mathematically described as the function of parameters such as nano zero-valent iron (NZVI) dose, pH, contact time and initial dye concentration, and were modeled by the use of response surface methodology. These experiments were carried out as a central composite design consisting of 30 experiments determined by the 2(4) full factorial designs with eight axial points and six center points. The results revealed that the optimal conditions for dye removal were NZVI dose 0.1-0.9 g/L, pH 3-11, contact time 20-100 s, and initial dye concentration 10-50 mg/L, respectively. Under these optimal values of process parameters, the dye removal efficiency of 92.87% was observed, which very close to the experimental value (92.21%) in batch experiment. In the optimization, R(2) and R(2)adj correlation coefficients for the model were evaluated as 0.96 and 0.93, respectively.

  5. Application of response surface methodology (RSM) for optimizing coagulation process of paper recycling wastewater using Ocimum basilicum.

    PubMed

    Mosaddeghi, Mohammad Reza; Pajoum Shariati, Farshid; Vaziri Yazdi, Seyed Ali; Nabi Bidhendi, Gholamreza

    2018-06-21

    The wastewater produced in a pulp and paper industry is one of the most polluted industrial wastewaters, and therefore its treatment requires complex processes. One of the simple and feasible processes in pulp and paper wastewater treatment is coagulation and flocculation. Overusing a chemical coagulant can produce a large volume of sludge and increase costs and health concerns. Therefore, the use of natural and plant-based coagulants has been recently attracted the attention of researchers. One of the advantages of using Ocimum basilicum as a coagulant is a reduction in the amount of chemical coagulant required. In this study, the effect of basil mucilage has been investigated as a plant-based coagulant together with alum for treatment of paper recycling wastewater. Response surface methodology (RSM) was used to optimize the process of chemical coagulation based on a central composite rotatable design (CCRD). Quadratic models for colour reduction and TSS removal with coefficients of determination of R 2 >96 were obtained using the analysis of variance. Under optimal conditions, removal efficiencies of colour and total suspended solids (TSS) were 85% and 82%, respectively.

  6. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure.

    PubMed

    Lymperatou, Anna; Gavala, Hariklia N; Skiadas, Ioannis V

    2017-11-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH 3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH 3 , 96h, and 0.16kg/L) in combination to a significant increase of the short term CH 4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology.

    PubMed

    Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal

    2013-06-01

    To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries.

  8. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology.

    PubMed

    Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M

    2016-01-01

    Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.

  9. Color removal from distillery spent wash through coagulation using Moringa oleifera seeds: use of optimum response surface methodology.

    PubMed

    Prasad, R Krishna

    2009-06-15

    The effects of dosage, pH and concentration of salts were investigated for an optimized condition of color removal from the distillery spent wash. The optimization process was analyzed using custom response surface methodology (RSM). The design was employed to derive a statistical model for the effect of parameters studied on removal of color using Moringa oleifera coagulant (MOC). The dosage (20 and 60 ml), pH (7 and 8.5) and concentration of 0.25 M had been found to be the optimum conditions for maximum 56% and 67% color removal using sodium chloride (NaCl) and potassium chloride (KCl) salts respectively. The actual color removal at optimal conditions was found to be 53% and 64% respectively for NaCl and KCl salts which confirms close to RSM results. The effects of storage duration and temperature on MOC studied reveal that coagulation efficiency of MOC kept at room temperature was effective for 3 days and at 4 degrees C it performed coagulation up to 5 days.

  10. Optimization of CMCase production from sorghum straw by Aspergillus terreus SUK-1 under solid substrate fermentation using response surface methodology

    NASA Astrophysics Data System (ADS)

    Tibin, El Mubarak Musa; Al-Shorgani, Najeeb Kaid Naseer; Abuelhassan, Nawal Noureldaim; Hamid, Aidil Abdul; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan

    2013-11-01

    The cellulase production using sorghum straw as substrate by fungal culture of Aspergillus terreus SUK-1 was investigated in solid substrate fermentation (SSF). The optimum CMCase was achieved by testing most effective fermentation parameters which were: incubation temperature, pH and moisture content using Response Surface Methodology (RSM) based on Central Composite Design (CCD). The carboxymethyl cellulase activity (CMCase) was measured as the defining factor. The results were analysed by analysis of variance (ANOVA) and the regression quadratic model was obtained. The model was found to be significant (p<0.05) and the effect of temperature (25-40°C) and pH (4-7) was found to be not significant on CMCase activity whereas the moisture content was significant in the SSF conditions employed. The high yield of predicted CMCase activity (0.2 U/ml) was obtained under the optimized conditions (temperature 40 □C, pH 5.4 and moisture content of 80%). The model was validated by applying the optimized conditions and it was found that the model was valid.

  11. Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm.

    PubMed

    Jacob, Samuel; Banerjee, Rintu

    2016-08-01

    A novel approach to overcome the acidification problem has been attempted in the present study by codigesting industrial potato waste (PW) with Pistia stratiotes (PS, an aquatic weed). The effectiveness of codigestion of the weed and PW was tested in an equal (1:1) proportion by weight with substrate concentration of 5g total solid (TS)/L (2.5gPW+2.5gPS) which resulted in enhancement of methane yield by 76.45% as compared to monodigestion of PW with a positive synergistic effect. Optimization of process parameters was conducted using central composite design (CCD) based response surface methodology (RSM) and artificial neural network (ANN) coupled genetic algorithm (GA) model. Upon comparison of these two optimization techniques, ANN-GA model obtained through feed forward back propagation methodology was found to be efficient and yielded 447.4±21.43LCH4/kgVSfed (0.279gCH4/kgCODvs) which is 6% higher as compared to the CCD-RSM based approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Solvent optimization for anthocyanin extraction from Syzygium cumini L. Skeels using response surface methodology.

    PubMed

    Chaudhary, Bratati; Mukhopadhyay, Kunal

    2013-05-01

    Anthocyanins are plant pigments that are potential candidates for use as natural food colourant. In this study, Syzygium cumini fruit skin has been used as anthocyanin source. All the six major types of anthocyanins were identified in the sample by ultra performance liquid chromatography studies, and the antioxidant activity was found to be 4.34 ± 0.26 Fe(2+)g(- 1) in the sample with highest anthocyanin content. Optimization of conditions for extracting high amounts of anthocyanin from the fruit peels was investigated by response surface methodology. The results suggested that highest anthocyanin yield (763.80 mg; 100 ml(- 1)), highest chroma and hue angle in the red colour range could be obtained when 20% ethanol was used in combination with 1% acetic acid. Methanol was replaced with ethanol for the extraction of pigments due to its less toxicity and being safe for human consumption. The optimized solvent can be used to extract anthocyanins from the S. cumini fruits and used as natural colourants in the food industries.

  13. Optimization of composite flour biscuits by mixture response surface methodology.

    PubMed

    Okpala, Laura C; Okoli, Eric C

    2013-08-01

    Biscuits were produced from blends of pigeon pea, sorghum and cocoyam flours. The study was carried out using mixture response surface methodology as the optimization technique. Using the simplex centroid design, 10 formulations were obtained. Protein and sensory quality of the biscuits were analyzed. The sensory attributes studied were appearance, taste, texture, crispness and general acceptability, while the protein quality indices were biological value and net protein utilization. The results showed that while the addition of pigeon pea improved the protein quality, its addition resulted in reduced sensory ratings for all the sensory attributes with the exception of appearance. Some of the biscuits had sensory ratings, which were not significantly different (p > 0.05) from biscuits made with wheat. Rat feeding experiments indicated that the biological value and net protein utilization values obtained for most of the biscuits were above minimum recommended values. Optimization suggested biscuits containing 75.30% sorghum, 0% pigeon pea and 24.70% cocoyam flours as the best proportion of these components. This sample received good scores for the sensory attributes.

  14. Pressurized liquid extraction of anthocyanins and biflavonoids from Schinus terebinthifolius Raddi: A multivariate optimization.

    PubMed

    Feuereisen, Michelle M; Gamero Barraza, Mariana; Zimmermann, Benno F; Schieber, Andreas; Schulze-Kaysers, Nadine

    2017-01-01

    Response surface methodology was employed to investigate the effects of pressurized liquid extraction (PLE) parameters on the recovery of phenolic compounds (anthocyanins, biflavonoids) from Brazilian pepper (Schinus terebinthifolius Raddi) fruits. The effects of temperature, static time, and ethanol as well as acid concentration on the polyphenol yield were described well by quadratic models (p<0.0001). A significant influence of the ethanol concentration (p<0.0001) and several interactions (p<0.05) were identified. Identification of the biflavonoid I3',II8-binaringenin in drupes of S. terebinthifolius was achieved by UHPLC-MS(2). Interestingly, at high extraction temperatures (>75°C), an artifact occurred and was tentatively identified as a diastereomer of I3',II8-binaringenin. Multivariate optimization led to high yields of phenolic compounds from the exocarp/drupes at 100/75°C, 10/10min, 54.5/54.2% ethanol, and 5/0.03% acetic acid. This study demonstrates that PLE is well suited for the extraction of phenolic compounds from S. terebinthifolius and can efficiently be optimized by response surface methodology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Protein hydrolysate from turkey meat and optimization of its antioxidant potential by response surface methodology.

    PubMed

    Wang, Daoying; Shahidi, Fereidoon

    2018-05-01

    The objective of this research was to optimize antioxidant potential of hydrolyzed protein using Flavourzyme assisted hydrolysis of turkey meat and compare the antioxidant activity of hydrolysates from turkey meat, chicken, and beef. Response surface methodology (RSM) was used to determine the optimal Flavourzyme hydrolysis conditions for preparation of hydrolysate from turkey meat, which were at a temperature of 50.09°C, pH of 5.42, and processing time of 1.08 hours. For comparison, antioxidant activities of the hydrolysate from turkey meat, chicken, and beef under the optimum conditions were determined using reducing power, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation, hydroxyl radical, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities. The antioxidant activity of turkey meat and chicken meat was significantly higher than that of beef (P < 0.05). Therefore Flavourzyme could be regarded as an effective hydrolytic enzyme for preparation of antioxidant hydrolysate from turkey meat, indicating the potential use of it as a functional food ingredient with shelf-life extension purposes.

  16. Optimization on condition of epigallocatechin-3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studies in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Luo, Xiaobo; Guan, Rongfa; Chen, Xiaoqiang; Tao, Miao; Ma, Jieqing; Zhao, Jin

    2014-06-01

    The major component in green tea polyphenols, epigallocatechin-3-gallate (EGCG), has been demonstrated to prevent carcinogenesis. To improve the effectiveness of EGCG, liposomes were used as a carrier in this study. Reverse-phase evaporation method besides response surface methodology is a simple, rapid, and beneficial approach for liposome preparation and optimization. The optimal preparation conditions were as follows: phosphatidylcholine-to-cholesterol ratio of 4.00, EGCG concentration of 4.88 mg/mL, Tween 80 concentration of 1.08 mg/mL, and rotary evaporation temperature of 34.51°C. Under these conditions, the experimental encapsulation efficiency and size of EGCG nanoliposomes were 85.79% ± 1.65% and 180 nm ± 4 nm, which were close with the predicted value. The malondialdehyde value and the release test in vitro indicated that the prepared EGCG nanoliposomes were stable and suitable for more widespread application. Furthermore, compared with free EGCG, encapsulation of EGCG enhanced its inhibitory effect on tumor cell viability at higher concentrations.

  17. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology.

    PubMed

    Kadam, Shekhar U; Tiwari, Brijesh K; Smyth, Thomas J; O'Donnell, Colm P

    2015-03-01

    The objective of this study was to investigate the effect of key extraction parameters of extraction time (5-25 min), acid concentration (0-0.06 M HCl) and ultrasound amplitude (22.8-114 μm) on yields of bioactive compounds (total phenolics, fucose and uronic acid) from Ascophyllumnodosum. Response surface methodology was employed to optimize the extraction variables for bioactive compounds' yield. A second order polynomial model was fitted well to the extraction experimental data with (R(2)>0.79). Extraction yields of 143.12 mgGAE/gdb, 87.06 mg/gdb and 128.54 mg/gdb were obtained for total phenolics, fucose and uronic acid respectively at optimized extraction conditions of extraction time (25 min), acid concentration (0.03 M HCl) and ultrasonic amplitude (114 μm). Mass spectroscopy analysis of extracts show that ultrasound enhances the extraction of high molecular weight phenolic compounds from A. nodosum. This study demonstrates that ultrasound assisted extraction (UAE) can be employed to enhance extraction of bioactive compounds from seaweed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4

    PubMed Central

    Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan

    2013-01-01

    Objective To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Methods Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Results Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. Conclusions The study revealed that the maximum amount of pigment could be produced to treat cancer. PMID:23905024

  19. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4.

    PubMed

    Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan

    2013-08-01

    To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7 cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. The study revealed that the maximum amount of pigment could be produced to treat cancer.

  20. Multiple response optimization for higher dimensions in factors and responses

    DOE PAGES

    Lu, Lu; Chapman, Jessica L.; Anderson-Cook, Christine M.

    2016-07-19

    When optimizing a product or process with multiple responses, a two-stage Pareto front approach is a useful strategy to evaluate and balance trade-offs between different estimated responses to seek optimum input locations for achieving the best outcomes. After objectively eliminating non-contenders in the first stage by looking for a Pareto front of superior solutions, graphical tools can be used to identify a final solution in the second subjective stage to compare options and match with user priorities. Until now, there have been limitations on the number of response variables and input factors that could effectively be visualized with existing graphicalmore » summaries. We present novel graphical tools that can be more easily scaled to higher dimensions, in both the input and response spaces, to facilitate informed decision making when simultaneously optimizing multiple responses. A key aspect of these graphics is that the potential solutions can be flexibly sorted to investigate specific queries, and that multiple aspects of the solutions can be simultaneously considered. As a result, recommendations are made about how to evaluate the impact of the uncertainty associated with the estimated response surfaces on decision making with higher dimensions.« less

  1. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid.

    PubMed

    Manikan, Vidyah; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-02-27

    Docosahexaenoic acid (DHA, C22:6n-3) plays a vital role in the enhancement of human health, particularly for cognitive, neurological, and visual functions. Marine microalgae, such as members of the genus Aurantiochytrium, are rich in DHA and represent a promising source of omega-3 fatty acids. In this study, levels of glucose, yeast extract, sodium glutamate and sea salt were optimized for enhanced lipid and DHA production by a Malaysian isolate of thraustochytrid, Aurantiochytrium sp. SW1, using response surface methodology (RSM). The optimized medium contained 60 g/L glucose, 2 g/L yeast extract, 24 g/L sodium glutamate and 6 g/L sea salt. This combination produced 17.8 g/L biomass containing 53.9% lipid (9.6 g/L) which contained 44.07% DHA (4.23 g/L). The optimized medium was used in a scale-up run, where a 5 L bench-top bioreactor was employed to verify the applicability of the medium at larger scale. This produced 24.46 g/L biomass containing 38.43% lipid (9.4 g/L), of which 47.87% was DHA (4.5 g/L). The total amount of DHA produced was 25% higher than that produced in the original medium prior to optimization. This result suggests that Aurantiochytrium sp. SW1 could be developed for industrial application as a commercial DHA-producing microorganism.

  2. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS.

    PubMed

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-11-04

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.

  3. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    PubMed Central

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-01-01

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019

  4. Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology.

    PubMed

    Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui

    2017-09-01

    In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.

  5. [Optimization of extraction technology from Paeoniae Radix Alba using response surface methodology].

    PubMed

    Jin, Lin; Zhao, Wan-shun; Guo, Qiao-sheng; Zhang, Wen-sheng; Ye, Zheng-liang

    2015-08-01

    To ensure the stability of chemistry components and the convenience of operation, ultrasound method was chosen to study in this investigation. As the total common peaks area in chromatograms was set to be evaluation index, the influence on the technology caused by extraction time, ethanol concentration and liquid-to-solid ratio was studied by using single factor methodology, and the extraction technology of Paeoniae Radix Alba was optimized by using response surface methodology. The results showed that the extracting results were most affected by ethanol concentration; liquid-to-solid ratio came the second and extraction time thirdly. The optimum ultrasonic-assisted extraction conditions were as follow: the ultrasonic extraction time was 20.06 min, the ethanol concentration in solvent was 72.04%, and the liquid-to-solid ratio was 53.38 mL · g(-1), the predicted value of total common peaks area was 2.1608 x 10(8). Under the extraction conditions after optimization, the total common peaks area was 2.1422 x 10(8), and the relative deviation between the measured and predicted value was 0.86%, so the optimized extraction technology for Paeoniae Radix Alba is suitable and feasible. Besides, for the purpose of extracting more sufficiently and completely, the optimized extraction technology had more advantages than the extraction method recorded in the monogragh of Paeoniae Radix Alba in Chinese Pharmacopoeia, which will come true the assessment and utilization comprehensively.

  6. Response Surface Modeling of Combined-Cycle Propulsion Components using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.

    2002-01-01

    Three examples of response surface modeling with CFD are presented for combined cycle propulsion components. The examples include a mixed-compression-inlet during hypersonic flight, a hydrogen-fueled scramjet combustor during hypersonic flight, and a ducted-rocket nozzle during all-rocket flight. Three different experimental strategies were examined, including full factorial, fractionated central-composite, and D-optimal with embedded Plackett-Burman designs. The response variables have been confined to integral data extracted from multidimensional CFD results. Careful attention to uncertainty assessment and modeling bias has been addressed. The importance of automating experimental setup and effectively communicating statistical results are emphasized.

  7. Enhanced Sensitivity of a Surface Acoustic Wave Gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhua; Wang, Wen

    2009-10-01

    In this paper, we present an optimal design and performance evaluation of a surface acoustic wave (SAW) gyroscope. It consists of a two-port SAW resonator (SAWR) and a SAW sensor (SAWS) structured using a delay line pattern. The SAW resonator provides a stable reference vibration and creates a standing wave, and the vibrating metallic dot array at antinodes of the standing wave induces the second SAW in the normal direction by the Coriolis force, and the SAW sensor is used to detect the secondary SAW. By using the coupling of modes (COM), the SAW resonator was simulated, and the effects of the design parameters on the frequency response of the device were investigated. Also, a theoretical analysis was performed to investigate the effect of metallic dots on the frequency response of the SAW device. The measured frequency response S21 of the fabricated 80 MHz two-port SAW resonator agrees well with the simulated result, that is, a low insertion loss (˜5 dB) and a single steep resonance peak were observed. In the gyroscopic experiments using a rate table, optimal metallic dot thickness was determined, and the sensitivity of the fabricated SAW gyroscope with an optimal metallic dot thickness of ˜350 nm was determined to be 3.2 µV deg-1 s-1.

  8. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology.

    PubMed

    Karichappan, Thirugnanasambandham; Venkatachalam, Sivakumar; Jeganathan, Prakash Maran

    2014-01-10

    Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4-8), current density (10-30 mA/cm2), electrode distance (4-6 cm) and electrolysis time (5-25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC.

  9. Optimization of Bleaching Parameters in Refining Process of Kenaf Seed Oil with a Central Composite Design Model.

    PubMed

    Chew, Sook Chin; Tan, Chin Ping; Nyam, Kar Lin

    2017-07-01

    Kenaf seed oil has been suggested to be used as nutritious edible oil due to its unique fatty acid composition and nutritional value. The objective of this study was to optimize the bleaching parameters of the chemical refining process for kenaf seed oil, namely concentration of bleaching earth (0.5 to 2.5% w/w), temperature (30 to 110 °C) and time (5 to 65 min) based on the responses of total oxidation value (TOTOX) and color reduction using response surface methodology. The results indicated that the corresponding response surface models were highly statistical significant (P < 0.0001) and sufficient to describe and predict TOTOX value and color reduction with R 2 of 0.9713 and 0.9388, respectively. The optimal parameters in the bleaching stage of kenaf seed oil were: 1.5% w/w of the concentration of bleaching earth, temperature of 70 °C, and time of 40 min. These optimum parameters produced bleached kenaf seed oil with TOTOX value of 8.09 and color reduction of 32.95%. There were no significant differences (P > 0.05) between experimental and predicted values, indicating the adequacy of the fitted models. © 2017 Institute of Food Technologists®.

  10. Warpage optimization on a mobile phone case using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0. The warpage in y direction recommended by RSM were reduced by 70 %. RSM performed well in solving warpage issue.

  11. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  12. Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: Response surface methodology

    NASA Astrophysics Data System (ADS)

    Ghoreishian, Seyed Majid; Badii, Khashayar; Norouzi, Mohammad; Malek, Kaveh

    2016-03-01

    In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO2 nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box-Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R2 = 0.9996, Adjusted R2 = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir-Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.

  13. Response surface methodology to optimize partition and purification of two recombinant oxidoreductase enzymes, glucose dehydrogenase and d-galactose dehydrogenase in aqueous two-phase systems.

    PubMed

    Shahbaz Mohammadi, Hamid; Mostafavi, Seyede Samaneh; Soleimani, Saeideh; Bozorgian, Sajad; Pooraskari, Maryam; Kianmehr, Anvarsadat

    2015-04-01

    Oxidoreductases are an important family of enzymes that are used in many biotechnological processes. An experimental design was applied to optimize partition and purification of two recombinant oxidoreductases, glucose dehydrogenase (GDH) from Bacillus subtilis and d-galactose dehydrogenase (GalDH) from Pseudomonas fluorescens AK92 in aqueous two-phase systems (ATPS). Response surface methodology (RSM) with a central composite rotatable design (CCRD) was performed to optimize critical factors like polyethylene glycol (PEG) concentration, concentration of salt and pH value. The best partitioning conditions was achieved in an ATPS composed of 12% PEG-6000, 15% K2HPO4 with pH 7.5 at 25°C, which ensured partition coefficient (KE) of 66.6 and 45.7 for GDH and GalDH, respectively. Under these experimental conditions, the activity of GDH and GalDH was 569.5U/ml and 673.7U/ml, respectively. It was found that these enzymes preferentially partitioned into the top PEG-rich phase and appeared as single bands on SDS-PAGE gel. Meanwhile the validity of the response model was confirmed by a good agreement between predicted and experimental results. Collectively, according to the obtained data it can be inferred that the ATPS optimization using RSM approach can be applied for recovery and purification of any enzyme from oxidoreductase family. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Multi-objective optimization in the development of oil and water repellent cellulose fabric based on response surface methodology and the desirability function

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseer; Kamal, Shahid; Raza, Zulfiqar Ali; Hussain, Tanveer

    2017-03-01

    The present study investigated multi-response optimization of certain input parameters viz. concentrations of oil and water repellent finish (Oleophobol CP-C®), dimethylol dihydroxy ethylene urea based cross linking agent (Knittex FEL) and curing temperature on some mechanical, (i.e. tear and tensile strengths), functional (i.e., water contact angle ‘WCA’, oil contact angle ‘OCA’) and comfort (i.e. crease recovery angle ‘CRA’, air permeability ‘AP’, and stiffness) properties of an oleo-hydrophobic finished fabric under response surface methodology and the desirability function. The results have been examined using analysis of variance (ANOVA) and desirability function for the identification of optimum levels of input variables. The ANOVA was employed also to identify the percentage contribution of process factors. Under the optimized conditions, which were obtained with a total desirability value of 0.7769, the experimental values of Oleophobol CP-C® (O-CPC), Knittex FEL (K-FEL) and curing temperature (C-Temp) agreed closely with the predicted values. The optimized process parameters for maximum WCA (135°), OCA (129°), AP (290 m s-1), CRA (214°), tear (1492 gf) and tensile (764 N) strengths and minimum stiffness (3.2928 cm) were found to be: concentration of OCP-C as 44.44 g l-1, concentration of cross linker K-FEL as 32.07 g l-1 and C-Temp as 161.81 °C.

  15. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology.

    PubMed

    Mehmood, Tahir

    2015-09-15

    The objective of the present study was to prepare canola oil based vitamin E nanoemulsions by using food grade mixed surfactants (Tween:80 and lecithin; 3:1) to replace some concentration of nonionic surfactants (Tween 80) with natural surfactant (soya lecithin) and to optimize their preparation conditions. RBD (Refined, Bleached and Deodorized) canola oil and vitamin E acetate were used in water/vitamin E/oil/surfactant system due to their nutritional benefits and oxidative stability, respectively. Response surface methodology (RSM) was used to optimize the preparation conditions. The effects of homogenization pressure (75-155MPa), oil concentrations (4-12% w/w), surfactant concentrations (3-11% w/w) and vitamin E acetate contents (0.4-1.2% w/w) on the particle size and emulsion stability were studied. RSM analysis has shown that the experimental data could be fitted well into second-order polynomial model with the coefficient of determinations of 0.9464 and 0.9278 for particle size and emulsion stability, respectively. The optimum values of independent variables were 135MPa homogenization pressure, 6.18% oil contents, 6.39% surfactant concentration and 1% vitamin E acetate concentration. The optimized response values for particle size and emulsion stability were 150.10nm and 0.338, respectively. Whereas, the experimental values for particle size and nanoemulsion stability were 156.13±2.3nm and 0.328±0.015, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Optimization of Machining Process Parameters for Surface Roughness of Al-Composites

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2013-10-01

    Metal matrix composites (MMCs) have become a leading material among the various types of composite materials for different applications due to their excellent engineering properties. Among the various types of composites materials, aluminum MMCs have received considerable attention in automobile and aerospace applications. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcement element-like silicon carbide particles. In the present investigation Al-SiC composite was produced by stir casting process. The Brinell hardness of the alloy after SiC addition had increased from 74 ± 2 to 95 ± 5 respectively. The composite was machined using CNC turning center under different machining parameters such as cutting speed (S), feed rate (F), depth of cut (D) and nose radius (R). The effect of machining parameters on surface roughness (Ra) was studied using response surface methodology. Face centered composite design with three levels of each factor was used for surface roughness study of the developed composite. A response surface model for surface roughness was developed in terms of main factors (S, F, D and R) and their significant interactions (SD, SR, FD and FR). The developed model was validated by conducting experiments under different conditions. Further the model was optimized for minimum surface roughness. An error of 3-7 % was observed in the modeled and experimental results. Further, it was fond that the surface roughness of Al-alloy at optimum conditions is lower than that of Al-SiC composite.

  17. Optimization of culture conditions and bench-scale production of L-asparaginase by submerged fermentation of Aspergillus terreus MTCC 1782.

    PubMed

    Gurunathan, Baskar; Sahadevan, Renganathan

    2012-07-01

    Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental L-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature 35 degrees C, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of L-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.

  18. Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology.

    PubMed

    Rodrigues, Sueli; Pinto, Gustavo A S; Fernandes, Fabiano A N

    2008-01-01

    Coconut is a tropical fruit largely consumed in many countries. In some areas of the Brazilian coast, coconut shell represents more than 60% of the domestic waste volume. The coconut shell is composed mainly of lignin and cellulose, having a chemical composition very similar to wood and suitable for phenolic extraction. In this work, the use of ultrasound to extract phenolic compounds from coconut shell was evaluated. The effect of temperature, solution to solid ratio, pH and extraction time were evaluated through a 2(4) experimental planning. The extraction process was also optimized using surface response methodology. At the optimum operating condition (30 degrees C, solution to solid ratio of 50, 15 min of extraction and pH 6.5) the process yielded 22.44 mg of phenolic compounds per gram of coconut shell.

  19. Response surface analysis and modeling of n-alkanes removal through bioremediation of weathered crude oil.

    PubMed

    Mohajeri, Leila; Abdul Aziz, Hamidi; Ali Zahed, Mohammad; Mohajeri, Soraya; Mohamed Kutty, Shamsul Rahman; Hasnain Isa, Mohamed

    2011-01-01

    Central composite design (CCD) and response surface methodology (RSM) were employed to optimize four important variables, i.e. amounts of oil, bacterial inoculum, nitrogen and phosphorus, for the removal of selected n-alkanes during bioremediation of weathered crude oil in coastal sediments using laboratory bioreactors over a 60 day experimentation period. The reactors contained 1 kg soil with different oil, microorganisms and nutrients concentrations. The F Value of 26.89 and the probability value (P < 0.0001) demonstrated significance of the regression model. For crude oil concentration of 2, 16 and 30 g per kg sediments and under optimized conditions, n-alkanes removal was 97.38, 93.14 and 90.21% respectively. Natural attenuation removed 30.07, 25.92 and 23.09% n-alkanes from 2, 16 and 30 g oil/kg sediments respectively. Excessive nutrients addition was found to inhibit bioremediation.

  20. Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia

    NASA Astrophysics Data System (ADS)

    Wang, H.; Guan, H.; Deng, R.; Simmons, C. T.

    2013-12-01

    Canopy conductance response to environmental conditions is a critical component in land surface hydrological modeling. This response is often formulated as a combination of response functions of each influencing factor (solar radiation, air temperature, vapor pressure deficit, and soil water availability). These functions are climate and vegetation specific. Thus, it is important to determine the most appropriate combination of response functions and their parameter values for a specific environment. We will present a method for this purpose based on field measurements and an optimization scheme. The study was performed on Drooping Sheoak (Allocasuarina verticillata) in Adelaide South Australia. Sap flow and stem water potential were measured in a year together with microclimate variables. Canopy conductance was calculated from the inversed Penman-Monteith (PM) equation, which was then used to examine the performance of 36 combinations of various response functions. Parameters in the models were optimized using a DiffeRential Evolution Adaptive Metropolis (DREAM) model based on a training dataset. The testing results show that the best combination gave a correlation coefficient of 0.97, and root mean square error of 0.0006 m/s in comparison to the PM-calculated values. The maximum stomatal conductance given by this combination is 0.0075 m/s, equivalent to a minimum stomatal resistance of 133 s/m. This is close to the number (150 s/m) used in Noah land surface model for evergreen needle-leaf trees. It is surprising that for all combinations, the optimized parameter of the temperature response function is against its physical meaning. This is likely related to the inter-dependence between air temperature and vapor pressure deficit. Supported by the results, we suggest that the effects of vapor pressure deficit and air temperature should be represented together, so as to be consistent with the physics.

  1. Optimizing Force Deployment and Force Structure for the Rapid Deployment Force

    DTIC Science & Technology

    1984-03-01

    Analysis . . . . .. .. ... ... 97 Experimental Design . . . . . .. .. .. ... 99 IX. Use of a Flexible Response Surface ........ 10.2 Selection of a...setS . ere designe . arun, programming methodology , where the require: s.stem re..r is input and the model optimizes the num=er. :::pe, cargo. an...to obtain new computer outputs" (Ref 38:23). The methodology can be used with any decision model, linear or nonlinear. Experimental Desion Since the

  2. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    PubMed

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology

    PubMed Central

    Ahamad, Javed; Amin, Saima; Mir, Showkat R.

    2015-01-01

    Background: Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. Objective: The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Materials and Methods: Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. Results: The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. Conclusions: A facile UAE protocol for a high extraction yield of charantin was developed and validated. PMID:26681889

  4. Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus sp.

    PubMed Central

    Yang, Fangfang; Long, Lijuan; Sun, Xiumei; Wu, Hualian; Li, Tao; Xiang, Wenzhou

    2014-01-01

    Lipid production is an important indicator for assessing microalgal species for biodiesel production. In this work, the effects of medium composition on lipid production by Scenedesmus sp. were investigated using the response surface methodology. The results of a Plackett–Burman design experiment revealed that NaHCO3, NaH2PO4·2H2O and NaNO3 were three factors significantly influencing lipid production, which were further optimized by a Box–Behnken design. The optimal medium was found to contain 3.07 g L−1 NaHCO3, 15.49 mg L−1 NaH2PO4·2H2O and 803.21 mg L−1 NaNO3. Using the optimal conditions previously determined, the lipid production (304.02 mg·L−1) increased 54.64% more than that using the initial medium, which agreed well with the predicted value 309.50 mg L−1. Additionally, lipid analysis found that palmitic acid (C16:0) and oleic acid (C18:1) dominantly constituted the algal fatty acids (about 60% of the total fatty acids) and a much higher content of neutral lipid accounted for 82.32% of total lipids, which strongly proved that Scenedesmus sp. is a very promising feedstock for biodiesel production. PMID:24663113

  5. Co-Optimization of Blunt Body Shapes for Moving Vehicles

    NASA Technical Reports Server (NTRS)

    Kinney, David J. (Inventor); Mansour, Nagi N (Inventor); Brown, James L. (Inventor); Garcia, Joseph A (Inventor); Bowles, Jeffrey V (Inventor)

    2014-01-01

    A method and associated system for multi-disciplinary optimization of various parameters associated with a space vehicle that experiences aerocapture and atmospheric entry in a specified atmosphere. In one embodiment, simultaneous maximization of a ratio of landed payload to vehicle atmospheric entry mass, maximization of fluid flow distance before flow separation from vehicle, and minimization of heat transfer to the vehicle are performed with respect to vehicle surface geometric parameters, and aerostructure and aerothermal vehicle response for the vehicle moving along a specified trajectory. A Pareto Optimal set of superior performance parameters is identified.

  6. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    PubMed

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  7. Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology.

    PubMed

    Jain, Monika; Garg, V K; Kadirvelu, K

    2011-01-01

    In the present study, chemically treated Helianthus annuus flowers (SHC) were used to optimize the removal efficiency for Cr(VI) by applying Response Surface Methodological approach. The surface structure of SHC was analyzed by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Analysis (EDX). Batch mode experiments were also carried out to assess the adsorption equilibrium in aqueous solution. The adsorption capacity (qe) was found to be 7.2 mg/g. The effect of three parameters, that is pH of the solution (2.0-7.0), initial concentration (10-70 mg/L) and adsorbent dose (0.05-0.5 g/100 mL) was studied for the removal of Cr(VI) by SHC. Box-Behnken model was used as an experimental design. The optimum pH, adsorbent dose and initial Cr(VI) concentration were found to be 2.0, 5.0 g/L and 40 mg/L, respectively. Under these conditions, removal efficiency of Cr(VI) was found to be 90.8%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Optimization of processing parameters of UAV integral structural components based on yield response

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng

    2018-05-01

    In order to improve the overall strength of unmanned aerial vehicle (UAV), it is necessary to optimize the processing parameters of UAV structural components, which is affected by initial residual stress in the process of UAV structural components processing. Because machining errors are easy to occur, an optimization model for machining parameters of UAV integral structural components based on yield response is proposed. The finite element method is used to simulate the machining parameters of UAV integral structural components. The prediction model of workpiece surface machining error is established, and the influence of the path of walking knife on residual stress of UAV integral structure is studied, according to the stress of UAV integral component. The yield response of the time-varying stiffness is analyzed, and the yield response and the stress evolution mechanism of the UAV integral structure are analyzed. The simulation results show that this method is used to optimize the machining parameters of UAV integral structural components and improve the precision of UAV milling processing. The machining error is reduced, and the deformation prediction and error compensation of UAV integral structural parts are realized, thus improving the quality of machining.

  9. Experimental Investigation and Optimization of Response Variables in WEDM of Inconel - 718

    NASA Astrophysics Data System (ADS)

    Karidkar, S. S.; Dabade, U. A.

    2016-02-01

    Effective utilisation of Wire Electrical Discharge Machining (WEDM) technology is challenge for modern manufacturing industries. Day by day new materials with high strengths and capabilities are being developed to fulfil the customers need. Inconel - 718 is similar kind of material which is extensively used in aerospace applications, such as gas turbine, rocket motors, and spacecraft as well as in nuclear reactors and pumps etc. This paper deals with the experimental investigation of optimal machining parameters in WEDM for Surface Roughness, Kerf Width and Dimensional Deviation using DoE such as Taguchi methodology, L9 orthogonal array. By keeping peak current constant at 70 A, the effect of other process parameters on above response variables were analysed. Obtained experimental results were statistically analysed using Minitab-16 software. Analysis of Variance (ANOVA) shows pulse on time as the most influential parameter followed by wire tension whereas spark gap set voltage is observed to be non-influencing parameter. Multi-objective optimization technique, Grey Relational Analysis (GRA), shows optimal machining parameters such as pulse on time 108 Machine unit, spark gap set voltage 50 V and wire tension 12 gm for optimal response variables considered for the experimental analysis.

  10. Stimulation of abdominal and upper thoracic muscles with surface electrodes for respiration and cough: Acute studies in adult canines.

    PubMed

    Walter, James S; Posluszny, Joseph; Dieter, Raymond; Dieter, Robert S; Sayers, Scott; Iamsakul, Kiratipath; Staunton, Christine; Thomas, Donald; Rabbat, Mark; Singh, Sanjay

    2018-05-01

    To optimize maximal respiratory responses with surface stimulation over abdominal and upper thorax muscles and using a 12-Channel Neuroprosthetic Platform. Following instrumentation, six anesthetized adult canines were hyperventilated sufficiently to produce respiratory apnea. Six abdominal tests optimized electrode arrangements and stimulation parameters using bipolar sets of 4.5 cm square electrodes. Tests in the upper thorax optimized electrode locations, and forelimb moment was limited to slight-to-moderate. During combined muscle stimulation tests, the upper thoracic was followed immediately by abdominal stimulation. Finally, a model of glottal closure for cough was conducted with the goal of increased peak expiratory flow. Optimized stimulation of abdominal muscles included three sets of bilateral surface electrodes located 4.5 cm dorsal to the lateral line and from the 8 th intercostal space to caudal to the 13 th rib, 80 or 100 mA current, and 50 Hz stimulation frequency. The maximal expired volume was 343 ± 23 ml (n=3). Optimized upper thorax stimulation included a single bilateral set of electrodes located over the 2 nd interspace, 60 to 80 mA, and 50 Hz. The maximal inspired volume was 304 ± 54 ml (n=4). Sequential stimulation of the two muscles increased the volume to 600 ± 152 ml (n=2), and the glottal closure maneuver increased the flow. Studies in an adult canine model identified optimal surface stimulation methods for upper thorax and abdominal muscles to induce sufficient volumes for ventilation and cough. Further study with this neuroprosthetic platform is warranted.

  11. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.

    PubMed

    Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro

    2016-09-01

    The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles.

  12. Optimization of medium components and physicochemical parameters to simultaneously enhance microbial growth and production of lypolitic enzymes by Stenotrophomonas sp.

    PubMed

    Mazzucotelli, Cintia Anabela; Agüero, María Victoria; Del Rosario Moreira, María; Ansorena, María Roberta

    2016-05-01

    The optimization of lipase and esterase production (LP and EP) and bacterial growth (BG) of a Stenotrophomonas sp. strain was developed. For this purpose, the effect of five different medium components and three physicochemical parameters were evaluated using a Plackett-Burman statistical design. Among eight variables, stirring speed, pH, and peptone concentration were found to be the most effective factors on the three responses under evaluation. An optimization study applying Box-Behnken response surface methodology was used to study the interactive effects of the three selected variables on LP/EP and microorganism growth. Predicted models were found to be significant with high regression coefficients (90%-99%). By using the desirability function approach, the optimum condition applying simultaneous optimization of the three responses under study resulted to be: stirring speed of 100 rpm, pH of 7.5, and a peptone concentration of 10 g/L, with a desirability value of 0.977. Under these optimal conditions, it is possible to achieve in the optimized medium a 15-fold increase in esterase productivity, a 117-fold increase in lipase production, and a 9-log CFU/mL increase in BG, compared with the basal medium without agitation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  13. Optimization of composite coagulant made from polyferric chloride and tapioca starch in landfill leachate treatment

    NASA Astrophysics Data System (ADS)

    Shaylinda, M. Z. N.; Hamidi, A. A.; Mohd, N. A.; Ariffin, A.; Irvan, D.; Hazreek, Z. A. M.; Nizam, Z. M.

    2018-04-01

    In this research, the performance of polyferric chloride and tapioca flour as composite coagulants for partially stabilized leachate was investigated. Response surface methodology (RSM) was used to optimize the coagulation and flocculation process of partially stabilized leachate. Central composite design a standard design tool in RSM was applied to evaluate the interactions and effects of dose and pH. Dose 0.2 g/L Fe and pH 4.71 were the optimum value suggested by RSM. Experimental test based on the optimum condition, resulted in 95.9%, 94.6% and 50.4% of SS, color and COD removals, respectively. The percentage difference recorded between experimental and model responses was <5%. Therefore, it can be concluded that RSM was an appropriate optimization tool for coagulation and flocculation process.

  14. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    NASA Astrophysics Data System (ADS)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    2011-01-01

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.

  15. Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodology.

    PubMed

    Maneeboon, Thanapoom; Vanichsriratana, Wirat; Pomchaitaward, Chaiyaporn; Kitpreechavanich, Vichien

    2010-05-01

    The influence of two key environmental factors, pH and oxygen transfer coefficient (k(L)a), was evaluated on the lactic acid production as the main answer and, on the size of cell pellets of the fungal strain Rhizopus oryzae KPS106, as second dependant answer by response surface methodology using a central composite design. The results of the analysis of variance and modeling demonstrated that pH and k(L)a had a significant effect on lactic acid production by this strain. However, no interaction was observed between these two experimental factors. pH and k(L)a had no significant influence on the pellet size. Optimal pH and k(L)a of the fermentation medium for lactic acid production from response surface analysis was 5.85 and of 3.6 h(-1), respectively. The predicted and experimental lactic acid maximal values were 75.4 and 72.0 g/l, respectively, with pellets of an average of 2.54 +/- 0.41 mm. Five repeated batches in series were conducted with a mean lactic acid production of 77.54 g/l. The productivity was increased from 0.75 in the first batch to 0.99 g/l h in the last fifth batch.

  16. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    NASA Astrophysics Data System (ADS)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  17. Degradation of ticarcillin by subcritial water oxidation method: Application of response surface methodology and artificial neural network modeling.

    PubMed

    Yabalak, Erdal

    2018-05-18

    This study was performed to investigate the mineralization of ticarcillin in the artificially prepared aqueous solution presenting ticarcillin contaminated waters, which constitute a serious problem for human health. 81.99% of total organic carbon removal, 79.65% of chemical oxygen demand removal, and 94.35% of ticarcillin removal were achieved by using eco-friendly, time-saving, powerful and easy-applying, subcritical water oxidation method in the presence of a safe-to-use oxidizing agent, hydrogen peroxide. Central composite design, which belongs to the response surface methodology, was applied to design the degradation experiments, to optimize the methods, to evaluate the effects of the system variables, namely, temperature, hydrogen peroxide concentration, and treatment time, on the responses. In addition, theoretical equations were proposed in each removal processes. ANOVA tests were utilized to evaluate the reliability of the performed models. F values of 245.79, 88.74, and 48.22 were found for total organic carbon removal, chemical oxygen demand removal, and ticarcillin removal, respectively. Moreover, artificial neural network modeling was applied to estimate the response in each case and its prediction and optimizing performance was statistically examined and compared to the performance of central composite design.

  18. SynGenics Optimization System (SynOptSys)

    NASA Technical Reports Server (NTRS)

    Ventresca, Carol; McMilan, Michelle L.; Globus, Stephanie

    2013-01-01

    The SynGenics Optimization System (SynOptSys) software application optimizes a product with respect to multiple, competing criteria using statistical Design of Experiments, Response-Surface Methodology, and the Desirability Optimization Methodology. The user is not required to be skilled in the underlying math; thus, SynOptSys can help designers and product developers overcome the barriers that prevent them from using powerful techniques to develop better pro ducts in a less costly manner. SynOpt-Sys is applicable to the design of any product or process with multiple criteria to meet, and at least two factors that influence achievement of those criteria. The user begins with a selected solution principle or system concept and a set of criteria that needs to be satisfied. The criteria may be expressed in terms of documented desirements or defined responses that the future system needs to achieve. Documented desirements can be imported into SynOptSys or created and documented directly within SynOptSys. Subsequent steps include identifying factors, specifying model order for each response, designing the experiment, running the experiment and gathering the data, analyzing the results, and determining the specifications for the optimized system. The user may also enter textual information as the project progresses. Data is easily edited within SynOptSys, and the software design enables full traceability within any step in the process, and facilitates reporting as needed. SynOptSys is unique in the way responses are defined and the nuances of the goodness associated with changes in response values for each of the responses of interest. The Desirability Optimization Methodology provides the basis of this novel feature. Moreover, this is a complete, guided design and optimization process tool with embedded math that can remain invisible to the user. It is not a standalone statistical program; it is a design and optimization system.

  19. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human Immunodeficiency Virus Gag-Pol polyprotein. PMID:22022238

  20. Biodegradation of bispyribac sodium by a novel bacterial consortium BDAM: Optimization of degradation conditions using response surface methodology.

    PubMed

    Ahmad, Fiaz; Anwar, Samina; Firdous, Sadiqa; Da-Chuan, Yin; Iqbal, Samina

    2018-05-05

    Bispyribac sodium (BS), is a selective, systemic and post emergent herbicide used to eradicate grasses and broad leaf weeds. Extensive use of this herbicide has engendered serious environmental concerns. Hence it is important to develop strategies for bioremediation of BS in a cost effective and environment friendly way. In this study a bacterial consortium named BDAM, comprising three novel isolates Achromobacter xylosoxidans (BD1), Achromobacter pulmonis (BA2), and Ochrobactrum intermedium (BM2), was developed by virtue of its potential for degradation of BS. Different culture conditions (temperature, pH and inoculum size) were optimized for degradation of BS by the consortium BDAM and the mutual interactions of these parameters were analysed using a 2 3 full factorial central composite design (CCD) based on Response Surface Methodology (RSM). The optimal values for temperature, pH and inoculum size were found to be 40 °C, 8 and 0.4 g/L respectively to achieve maximum degradation of BS (85.6%). Moreover, the interactive effects of these parameters were investigated using three dimensional surface plots in terms of maximum fitness function. Importantly, it was concluded that the newly developed consortium is a potential candidate for biodegradation of BS in a safe, cost-effective and environmentally friendly manner. Copyright © 2017. Published by Elsevier B.V.

  1. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology.

    PubMed

    Teng, Hui; Choi, Yong Hee

    2014-01-01

    The optimum extraction conditions for the maximum recovery of total alkaloid content (TAC), berberine content (BC), palmatine content (PC), and the highest antioxidant capacity (AC) from rhizoma coptidis subjected to ultrasonic-assisted extraction (UAE) were determined using response surface methodology (RSM). Central composite design (CCD) with three variables and five levels was employed, and response surface plots were constructed in accordance with a second order polynomial model. Analysis of variance (ANOVA) showed that the quadratic model was well fitted and significant for responses of TAC, BC, PC, and AA. The optimum conditions obtained through the overlapped contour plot were as follows: ethanol concentration of 59%, extraction time of 46.57min, and temperature of 66.22°C. Verification experiment was carried out, and no significant difference was found between observed and estimated values for each response, suggesting that the estimated models were reliable and valid for UAE of alkaloids. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Optimization of high pressure bioactive compounds extraction from pansies (Viola × wittrockiana) by response surface methodology

    NASA Astrophysics Data System (ADS)

    Fernandes, Luana; Casal, Susana I. P.; Pereira, José A.; Ramalhosa, Elsa; Saraiva, Jorge A.

    2017-07-01

    Response surface methodology (RSM) was employed for the first time to optimize high pressure extraction (HPE) conditions of bioactive compounds from pansies, namely: pressure (X1: 0-500 MPa), time (X2: 5-15 min) and ethanol concentration (X3: 0-100%). Consistent fittings using second-order polynomial models were obtained for flavonoids, tannins, anthocyanins, total reducing capacity (TRC) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity. The optimum extraction conditions based on combination responses for TRC, tannins and anthocyanins were: X1 = 384 MPa, X2 = 15 min and X3 = 35% (v/v) ethanol, shortening the extraction time when compared to the classic method of stirring (approx. 24 h). When the optimum extraction conditions were applied, 65.1 mg of TRC, 42.8 mg of tannins and 56.15 mg of anthocyanins/g dried flower were obtained. Thus, HPE has shown to be a promising technique to extract bioactive compounds from pansies, by reducing the extraction time and by using green solvents (ethanol and water), for application in diverse industrial fields.

  3. Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology.

    PubMed

    Chen, Junfan; Liu, Desheng; Shi, Bo; Wang, Hai; Cheng, Yongqiang; Zhang, Wenjing

    2013-03-01

    Glucomanno-oligosaccharides (GMO), usually produced from hydrolysis of konjac tubers with a high content of glucomannan, have a positive effect on Bifidobacterium as well as a variety of other physiological activities. Response surface methodology (RSM) was employed to optimize the hydrolysis time, hydrolysis temperature, pH and enzyme to substrate ratio (E/S) to obtain a high GMO yield from konjac tubers. From the signal-factor experiments, it was concluded that the change in the direct reducing sugar (DRS) is consistent with total reducing sugar (TRS) but contrary to the degree of polymerization (DP). DRS was used as an indicator of the content of GMO in the RSM study. The optimum RSM operating conditions were: reaction time of 3.4 h, reaction temperature of 41.0°C, pH of 7.1 and E/S of 0.49. The results suggested that the enzymatic hydrolysis was enhanced by temperature, pH and incubation time. Model validation showed good agreement between experimental results and the predicted responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization.

    PubMed

    Hema, G S; Joshy, C G; Shyni, K; Chatterjee, Niladri S; Ninan, George; Mathew, Suseela

    2017-02-01

    The study optimized the hydrolysis conditions for the production of fish collagen peptides from skin of Malabar grouper ( Epinephelus malabaricus ) using response surface methodology. The hydrolysis was done with enzymes pepsin, papain and protease from bovine pancreas. Effects of process parameters viz: pH, temperature, enzyme substrate ratio and hydrolysis time of the three different enzymes on degree of hydrolysis were investigated. The optimum response of degree of hydrolysis was estimated to be 10, 20 and 28% respectively for pepsin, papain and protease. The functional properties of the product developed were analysed which showed changes in the properties from proteins to peptides. SDS-PAGE combined with MALDI TOF method was successfully applied to determine the molecular weight distribution of the hydrolysate. The electrophoretic pattern indicated that the molecular weights of peptides formed due to hydrolysis were nearly 2 kDa. MALDI TOF spectral analysis showed the developed hydrolysate contains peptides having molecular weight in the range below 2 kDa.

  5. A Helical Flow, Circular Microreactor For Separating and Enriching “Smart” Polymer-Antibody Capture Reagents

    PubMed Central

    Hoffman, John M.; Ebara, Mitsuhiro; Lai, James J.; Hoffman, Allan S.; Folch, Albert

    2011-01-01

    We report a mechanistic study of how flow and recirculation in a microreactor can be used to optimize the capture and release of stimuli-responsive polymer-protein reagents on stimuli-responsive polymer-grafted channel surfaces. Poly(N-isopropylacrylamide) (PNIPAAm) was grafted to poly(dimethyl)siloxane (PDMS) channel walls, creating switchable surfaces where PNIPAAm-protein conjugates would adhere at temperatures above the lower critical solution temperature (LCST) and released below the LCST. A PNIPAAm-streptavidin conjugate that can capture biotinylated antibody-antigen targets was first characterized. The conjugate’s immobilization and release were limited by mass transport to and from the functionalized PNIPAAm surface. Transport and adsorption efficiencies were dependent on the aggregate size of the PNIPAAm-streptavidin conjugate above the LCST and also was dependent on whether the conjugates were heated in the presence of the stimuli-responsive surface or pre-aggregated and then flowed across the surface. As conjugate size increased, through the addition of non-conjugated PNIPAAm, recirculation and mixing were shown to markedly improve conjugate immobilization compared to diffusion alone. Under optimized conditions of flow and reagent concentrations, approximately 60% of a streptavidin conjugate bolus could be captured at the surface and subsequently successfully released. The kinetic release profile sharpness was also strongly improved with recirculation and helical mixing. Finally, the concentration of protein-polymer conjugates could be achieved by continuous conjugate flow into the heated recirculator, allowing nearly linear enrichment of the conjugate reagent from larger volumes. This capability was shown with anti-p24 HIV monoclonal antibody reagents that were enriched over 5-fold using this protocol. These studies provide insight into the mechanism of smart polymer-protein conjugate capture and release in grafted channels and show the potential of this purification and enrichment module for processing diagnostic samples. PMID:20882219

  6. Verification of immune response optimality through cybernetic modeling.

    PubMed

    Batt, B C; Kompala, D S

    1990-02-09

    An immune response cascade that is T cell independent begins with the stimulation of virgin lymphocytes by antigen to differentiate into large lymphocytes. These immune cells can either replicate themselves or differentiate into plasma cells or memory cells. Plasma cells produce antibody at a specific rate up to two orders of magnitude greater than large lymphocytes. However, plasma cells have short life-spans and cannot replicate. Memory cells produce only surface antibody, but in the event of a subsequent infection by the same antigen, memory cells revert rapidly to large lymphocytes. Immunologic memory is maintained throughout the organism's lifetime. Many immunologists believe that the optimal response strategy calls for large lymphocytes to replicate first, then differentiate into plasma cells and when the antigen has been nearly eliminated, they form memory cells. A mathematical model incorporating the concept of cybernetics has been developed to study the optimality of the immune response. Derived from the matching law of microeconomics, cybernetic variables control the allocation of large lymphocytes to maximize the instantaneous antibody production rate at any time during the response in order to most efficiently inactivate the antigen. A mouse is selected as the model organism and bacteria as the replicating antigen. In addition to verifying the optimal switching strategy, results showing how the immune response is affected by antigen growth rate, initial antigen concentration, and the number of antibodies required to eliminate an antigen are included.

  7. Optimization of formulation variables of benzocaine liposomes using experimental design.

    PubMed

    Mura, Paola; Capasso, Gaetano; Maestrelli, Francesca; Furlanetto, Sandra

    2008-01-01

    This study aimed to optimize, by means of an experimental design multivariate strategy, a liposomal formulation for topical delivery of the local anaesthetic agent benzocaine. The formulation variables for the vesicle lipid phase uses potassium glycyrrhizinate (KG) as an alternative to cholesterol and the addition of a cationic (stearylamine) or anionic (dicethylphosphate) surfactant (qualitative factors); the percents of ethanol and the total volume of the hydration phase (quantitative factors) were the variables for the hydrophilic phase. The combined influence of these factors on the considered responses (encapsulation efficiency (EE%) and percent drug permeated at 180 min (P%)) was evaluated by means of a D-optimal design strategy. Graphic analysis of the effects indicated that maximization of the selected responses requested opposite levels of the considered factors: For example, KG and stearylamine were better for increasing EE%, and cholesterol and dicethylphosphate for increasing P%. In the second step, the Doehlert design, applied for the response-surface study of the quantitative factors, pointed out a negative interaction between percent ethanol and volume of the hydration phase and allowed prediction of the best formulation for maximizing drug permeation rate. Experimental P% data of the optimized formulation were inside the confidence interval (P < 0.05) calculated around the predicted value of the response. This proved the suitability of the proposed approach for optimizing the composition of liposomal formulations and predicting the effects of formulation variables on the considered experimental response. Moreover, the optimized formulation enabled a significant improvement (P < 0.05) of the drug anaesthetic effect with respect to the starting reference liposomal formulation, thus demonstrating its actually better therapeutic effectiveness.

  8. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity.

    PubMed

    Yang, Lingguang; Yin, Peipei; Fan, Hang; Xue, Qiang; Li, Ke; Li, Xiang; Sun, Liwei; Liu, Yujun

    2017-02-04

    This study is the first to report the use of response surface methodology to improve phenolic yield and antioxidant activity of Acer truncatum leaves extracts (ATLs) obtained by ultrasonic-assisted extraction. The phenolic composition in ATLs extracted under the optimized conditions were characterized by UPLC-QTOF-MS/MS. Solvent and extraction time were selected based on preliminary experiments, and a four-factors-three-levels central composite design was conducted to optimize solvent concentration ( X ₁), material-to-liquid ratio ( X ₂), ultrasonic temperature ( X ₃) and power ( X ₄) for an optimal total phenol yield ( Y ₁) and DPPH• antioxidant activity ( Y ₂). The results showed that the optimal combination was ethanol:water ( v : v ) 66.21%, material-to-liquid ratio 1:15.31 g/mL, ultrasonic bath temperature 60 °C, power 267.30 W, and time 30 min with three extractions, giving a maximal total phenol yield of 7593.62 mg gallic acid equivalent/100 g d.w. and a maximal DPPH• antioxidant activity of 74,241.61 μmol Trolox equivalent/100 g d.w. Furthermore, 22 phenolics were first identified in ATL extract obtained under the optimized conditions, indicating that gallates, gallotannins, quercetin, myricetin and chlorogenic acid derivatives were the main phenolic components in ATL. What's more, a gallotannins pathway existing in ATL from gallic acid to penta- O -galloylglucoside was proposed. All these results provide practical information aiming at full utilization of phenolics in ATL, together with fundamental knowledge for further research.

  9. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    DOE PAGES

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; ...

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less

  10. A systematic approach to parameter selection for CAD-virtual reality data translation using response surface methodology and MOGA-II.

    PubMed

    Abidi, Mustufa Haider; Al-Ahmari, Abdulrahman; Ahmad, Ali

    2018-01-01

    Advanced graphics capabilities have enabled the use of virtual reality as an efficient design technique. The integration of virtual reality in the design phase still faces impediment because of issues linked to the integration of CAD and virtual reality software. A set of empirical tests using the selected conversion parameters was found to yield properly represented virtual reality models. The reduced model yields an R-sq (pred) value of 72.71% and an R-sq (adjusted) value of 86.64%, indicating that 86.64% of the response variability can be explained by the model. The R-sq (pred) is 67.45%, which is not very high, indicating that the model should be further reduced by eliminating insignificant terms. The reduced model yields an R-sq (pred) value of 73.32% and an R-sq (adjusted) value of 79.49%, indicating that 79.49% of the response variability can be explained by the model. Using the optimization software MODE Frontier (Optimization, MOGA-II, 2014), four types of response surfaces for the three considered response variables were tested for the data of DOE. The parameter values obtained using the proposed experimental design methodology result in better graphics quality, and other necessary design attributes.

  11. Global Design Optimization for Aerodynamics and Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)

    2000-01-01

    Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices and the need for future research are identified.

  12. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  13. Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis

    NASA Astrophysics Data System (ADS)

    Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.

    2017-03-01

    Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.

  14. Optimization of ultrasonic-assisted extraction of total saponins from Eclipta prostrasta L. using response surface methodology.

    PubMed

    Hu, Ting; Guo, Yan-Yun; Zhou, Qin-Fan; Zhong, Xian-Ke; Zhu, Liang; Piao, Jin-Hua; Chen, Jian; Jiang, Jian-Guo

    2012-09-01

    Eclipta prostrasta L. is a traditional Chinese medicine herb, which is rich in saponins and has strong antiviral and antitumor activities. An ultrasonic-assisted extraction (UAE) technique was developed for the fast extraction of saponins from E. prostrasta. The content of total saponins in E. prostrasta was determined using UV/vis spectrophotometric methods. Several influential parameters like ethanol concentration, extraction time, temperature, and liquid/solid ratio were investigated for the optimization of the extraction using single factor and Box-Behnken experimental designs. Extraction conditions were optimized for maximum yield of total saponins in E. prostrasta using response surface methodology (RSM) with 4 independent variables at 3 levels of each variable. Results showed that the optimization conditions for saponins extraction were: ethanol concentration 70%, extraction time 3 h, temperature 70 °C, and liquid/solid ratio 14:1. Corresponding saponins content was 2.096%. The mathematical model developed was found to fit well with the experimental data. Practical Application: Although there are wider applications of Eclipta prostrasta L. as a functional food or traditional medicine due to its various bioactivities, these properties are limited by its crude extracts. Total saponins are the main active ingredient of E. prostrasta. This research has optimized the extraction conditions of total saponins from E. prostrasta, which will provide useful reference information for further studies, and offer related industries with helpful guidance in practice. © 2012 Institute of Food Technologists®

  15. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid

    PubMed Central

    Manikan, Vidyah; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-01-01

    Docosahexaenoic acid (DHA, C22:6n-3) plays a vital role in the enhancement of human health, particularly for cognitive, neurological, and visual functions. Marine microalgae, such as members of the genus Aurantiochytrium, are rich in DHA and represent a promising source of omega-3 fatty acids. In this study, levels of glucose, yeast extract, sodium glutamate and sea salt were optimized for enhanced lipid and DHA production by a Malaysian isolate of thraustochytrid, Aurantiochytrium sp. SW1, using response surface methodology (RSM). The optimized medium contained 60 g/L glucose, 2 g/L yeast extract, 24 g/L sodium glutamate and 6 g/L sea salt. This combination produced 17.8 g/L biomass containing 53.9% lipid (9.6 g/L) which contained 44.07% DHA (4.23 g/L). The optimized medium was used in a scale-up run, where a 5 L bench-top bioreactor was employed to verify the applicability of the medium at larger scale. This produced 24.46 g/L biomass containing 38.43% lipid (9.4 g/L), of which 47.87% was DHA (4.5 g/L). The total amount of DHA produced was 25% higher than that produced in the original medium prior to optimization. This result suggests that Aurantiochytrium sp. SW1 could be developed for industrial application as a commercial DHA-producing microorganism. PMID:25721623

  16. Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.

  17. Expression and Secretion of Endostar Protein by Escherichia Coli: Optimization of Culture Conditions Using the Response Surface Methodology.

    PubMed

    Mohajeri, Abbas; Abdolalizadeh, Jalal; Pilehvar-Soltanahmadi, Younes; Kiafar, Farhad; Zarghami, Nosratollah

    2016-10-01

    Endostar as a specific drug in treatment of the nonsmall cell lung cancer is produced using Escherichia coli expression system. Plackett-Burman design (PBD) and response surface methodology (RSM) are statistical tools for experimental design and optimization of biotechnological processes. This investigation aimed to predict and develop the optimal culture condition and its components for expression and secretion of endostar into the culture medium of E. coli. The synthetic endostar coding sequence was fused with PhoA signal peptide. The nine factors involved in the production of recombinant protein-postinduction temperature, cell density, rotation speed, postinduction time, concentration of glycerol, IPTG, peptone, glycine, and triton X-100-were evaluated using PBD. Four significant factors were selected based on PBD results for optimizing culture condition using RSM. Endostar was purified using cation exchange chromatography and size exclusion chromatography. The maximum level of endostar was obtained under the following condition: 13.57-h postinduction time, 0.76 % glycine, 0.7 % triton X-100, and 4.87 % glycerol. The predicted levels of endostar was significantly correlated with experimental levels (R 2 = 0.982, P = 0.00). The obtained results indicated that PBD and RSM are effective tools for optimization of culture condition and its components for endostar production in E. coli. The most important factors in the enhancement of the protein production are glycerol, glycine, and postinduction time.

  18. [Optimization of ethylene production from ethanol dehydration using Zn-Mn-Co/HZSM-5 by response surface methodology].

    PubMed

    Wang, Wei; Cheng, Keke; Xue, Jianwei; Zhang, Jian'an

    2011-03-01

    The effects of reaction temperature, ethanol concentration and weight hourly space velocity (WHSV) on the ethylene production from ethanol dehydration using zinc, manganese and cobalt modified HZSM-5 catalyst were investigated by response surface methodology (RSM). The results showed that the most significant effect among factors was reaction temperature and the factors had interaction. The optimum conditions were found as 34.4% ethanol concentration, 261.3 0 degrees C of reaction temperature and 1.18 h(-1) of WHSV, under these conditions the yield of ethylene achieved 98.69%.

  19. Experimental design methodologies in the optimization of chiral CE or CEC separations: an overview.

    PubMed

    Dejaegher, Bieke; Mangelings, Debby; Vander Heyden, Yvan

    2013-01-01

    In this chapter, an overview of experimental designs to develop chiral capillary electrophoresis (CE) and capillary electrochromatographic (CEC) methods is presented. Method development is generally divided into technique selection, method optimization, and method validation. In the method optimization part, often two phases can be distinguished, i.e., a screening and an optimization phase. In method validation, the method is evaluated on its fit for purpose. A validation item, also applying experimental designs, is robustness testing. In the screening phase and in robustness testing, screening designs are applied. During the optimization phase, response surface designs are used. The different design types and their application steps are discussed in this chapter and illustrated by examples of chiral CE and CEC methods.

  20. Selective cell response on natural polymer bio-interfaces textured by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Trifonov, A.; Bliznakova, I.; Nathala, C.; Ajami, A.; Husinsky, W.; Declercq, H.; Buchvarov, I.

    2018-02-01

    This study reports on the evaluation of laser processed natural polymer-chitosan, which is under consideration as a biointerface used for temporary applications as skin and cartilage substitutes. It is employed for tissue engineering purposes, since it possesses a significant degree of biocompatibility and biodegradability. Chitosan-based thin films were processed by femtosecond laser radiation to enhance the surface properties of the material. Various geometry patterns were produced on polymer surfaces and employed to examine cellular adhesion and orientation. The topography of the modified zones was observed using scanning electron microscopy and confocal microscopy. Test of the material cytotoxicity was performed by evaluating the life/dead cell correlation. The obtained results showed that texturing with femtosecond laser pulses is appropriate method to initiate a predefined cellular response. Formation of surface modifications in the form of foams with an expansion of the material was created under laser irradiation with a number of applied laser pulses from N = 1-5. It is shown that irradiation with N > 5 results in disturbance of microfoam. Material characterization reveals a decrease in water contact angle values after laser irradiation of chitosan films. Consequently, changes in surface roughness of chitosan thin-film surface result in its functionalization. Cultivation of MC3T3 and ATMSC cells show cell orientational migration concerning different surface patterning. The influence of various pulse durations (varying from τ = 30-500 fs) over biofilms surface was examined regarding the evolution of surface morphology. The goal of this study was to define the optimal laser conditions (laser energy, number of applied pulses, and pulse duration) to alter surface wettability properties and porosity to improve material performance. The acquired set of results indicate the way to tune the surface properties to optimize cell-interface interaction.

  1. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    NASA Astrophysics Data System (ADS)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  2. Removal of Zinc from Aqueous Solution by Optimized Oil Palm Empty Fruit Bunches Biochar as Low Cost Adsorbent

    PubMed Central

    Salleh, M. A. Mohd; Asady, Bahareh

    2017-01-01

    This study aims to produce optimized biochar from oil palm empty fruit bunches (OPEFB), as a green, low cost adsorbent for uptake of zinc from aqueous solution. The impact of pyrolysis conditions, namely, highest treatment temperature (HTT), heating rate (HR), and residence time (RT) on biochar yield and adsorption capacity towards zinc, was investigated. Mathematical modeling and optimization of independent variables were performed employing response surface methodology (RSM). HTT was found to be the most influential variable, followed by residence time and heating rate. Based on the central composite design (CCD), two quadratic models were developed to correlate three independent variables to responses. The optimum production condition for OPEFB biochar was found as follows: HTT of 615°C, HR of 8°C/min, and RT of 128 minutes. The optimum biochar showed 15.18 mg/g adsorption capacity for zinc and 25.49% of yield which was in agreement with the predicted values, satisfactory. Results of the characterization of optimum product illustrated well-developed BET surface area and porous structure in optimum product which favored its sorptive ability. PMID:28420949

  3. Effects of the culture media optimization on pectinase production by Enterobacter sp. PSTB-1.

    PubMed

    Reddy, M Purna Chandra; Saritha, K V

    2016-12-01

    In the present study, media composition for high production of pectinase by Enterobacter sp. PSTB-1 in submerged fermentation was optimized using response surface methodology (RSM). Mango fruit processing industrial waste (MIW) was used as substrate (carbon source) as it contains high amount of pectin. Enterobacter sp. PSTB-1 used in present study has given pectin clear zone (PCZ) of 34 mm is higher than other isolates. The experimental results made by statistical design for high pectinase production revealed that the suitable media components: NaNO 3 2.0 g/l, KCl 0.50 g/l, KH 2 PO 4 1.0 g/l, MgSO 4 ·7H 2 O 0.50 g/l, Yeast extract 1.0 g/l, mango industrial waste powder 5.0 g/l. The actual pectinase activity was 75.23 % correlated with the predicted pectinase activity where the model (CCD) was significant. Response surface modelling applied effectively to optimize the production of pectinase in submerged fermentation to make the process low cost-effective by using powdered mango industrial waste as substrate.

  4. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology

    PubMed Central

    Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal

    2013-01-01

    Objective To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. Methods The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. Results It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. Conclusions It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries. PMID:23730555

  5. Development of pH sensitive microparticles of Karaya gum: By response surface methodology.

    PubMed

    Raizaday, Abhay; Yadav, Hemant K S; Kumar, S Hemanth; Kasina, Susmitha; Navya, M; Tashi, C

    2015-12-10

    The objective of the proposed work was to prepare pH sensitive microparticles (MP) of Karaya gum using distilled water as a solvent by spray drying technique. Different formulations were designed, prepared and evaluated by employing response surface methodology and optimal design of experiment technique using Design Expert(®) ver 8.0.1 software. SEM photographs showed that MP were roughly spherical in shape and free from cracks. The particle size and encapsulation efficiency for optimized MP was found to be between 3.89 and 6.5 μm and 81-94% respectively with good flow properties. At the end of the 12th hour the in vitro drug release was found to be 96.9% for the optimized formulation in pH 5.6 phosphate buffer. Low prediction errors were observed for Cmax and AUC0-∞ which demonstrated that the Frusemide IVIVC model was valid. Hence it can be concluded that pH sensitive MP of Karaya gum were effectively prepared by spray drying technique using aqueous solvents and can be used for treating various diseases like chronic hypertension, Ulcerative Colitis and Diverticulitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

    1999-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  7. Optimization of Culture Medium for the Growth of Candida sp. and Blastobotrys sp. as Starter Culture in Fermentation of Cocoa Beans (Theobroma cacao) Using Response Surface Methodology (RSM).

    PubMed

    Mahazar, N H; Zakuan, Z; Norhayati, H; MeorHussin, A S; Rukayadi, Y

    2017-01-01

    Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp. Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract. Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract. This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.

  8. Optimization of β-cyclodextrin-based extraction of antioxidant and anti-browning activities from thyme leaves by response surface methodology.

    PubMed

    Favre, Leonardo Cristian; Dos Santos, Cristina; López-Fernández, María Paula; Mazzobre, María Florencia; Buera, María Del Pilar

    2018-11-01

    Thyme (Thymus vulgaris) has been demonstrated to extend the shelf-life of food products, being also a potential source of bioactive compounds. The aim of this research was to optimize the ultrasound assisted extraction employing β-cyclodextrin aqueous solutions as no-contaminant technology and Response Surface Methodology to obtain thyme extracts with the maximum antioxidant capacity. The optimal extraction conditions were: a solution of β-ciclodextrin 15 mM, an ultrasonic treatment time of 5.9 min at a temperature of 36.6 °C. They resulted in an extract with a polyphenolic content of 189.3 mg GAE/mL, an antioxidant activity (DPPH) of 14.8 mg GAE/mL, and ferric reducing/antioxidant power (FRAP) of 3.3 mg GAE/mL. Interestingly, the extract demonstrated to inhibit the production of Maillard browning products and can be considered a potential antiglycant agent. The obtained data is important for developing eco-friendly technologies in order to obtain natural antioxidant extracts with a potential inhibitory capacity of Maillard glycation reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Optimization of Ultrasonic-Microwave Synergistic Extraction of Ricinine from Castor Cake by Response Surface Methodology.

    PubMed

    Xu, Wei; Yan, Xiuhua; Shao, Rong; Chen, Ligen; Ke, Zengguang

    Castor cake is the residue in castor oil production in which many active components exist and the major one among them is ricinine. In this study, optimization of extraction of ricinine from castor cake using ultrasonic-microwave synergistic extraction (UMSE) was investigated to obtain high yield and purity by Box-Behnken design (BBD) response surface design. The optimal conditions of extraction were: ultrasound power 342 W, extracting time 5 min, microwave power 395 W, and non-significant factor of liquid/solid ratio 1:10. The crude extraction was recrystallized from ethanol. As a result, the maximum yield of ricinine was approximately 67.52%. The purity of ricinine was 99.39% which was determined by high performance liquid chromatography (HPLC). Additionally, the structure of purified ricinine was identified by fourier transforms infrared (FTIR) and liquid chromatography-mass spectrometry (LC-MS). Scanning electron microscope (SEM) was used to characterize the prismatic crystals morphology of ricinine. Results demonstrated that the present method combined the advantages of ultrasonic extraction and microwave extraction, which is time-saving with high extraction yield. Our results offer a suitable method for large-scale isolation of ricinine.

  10. Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q.

    PubMed

    Yuan, Li-Li; Li, Ya-Qian; Wang, Yi; Zhang, Xue-Hong; Xu, Yu-Quan

    2008-03-01

    The optimal flask-shaking batch fermentation medium for phenazine-1-carboxylic acid (PCA) production by Pseudomonas sp. M-18Q, a qscR chromosomal inactivated mutant of the strain M18 was studied using statistical experimental design and analysis. The Plackett-Burman design (PBD) was used to evaluate the effects of eight medium components on the production of PCA, which showed that glucose and soytone were the most significant ingredients (P<0.05). The steepest ascent experiment was adopted to determine the optimal region of the medium composition. The optimum composition of the fermentation medium for maximum PCA yield, as determined on the basis of a five-level two-factor central composite design (CCD), was obtained by response surface methodology (RSM). The high correlation between the predicted and observed values indicated the validity of the model. A maximum PCA yield of 1240 mg/l was obtained at 17.81 g/l glucose and 11.47 g/l soytone, and the production was increased by 65.3% compared with that using the original medium, which was at 750 mg/l.

  11. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    PubMed

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  12. Modeling and optimization of phospholipase A₁-catalyzed hydrolysis of phosphatidylcholine using response surface methodology for lysophosphatidylcholine production.

    PubMed

    Lim, Chang Wan; Kim, Byung Hee; Kim, In-Hwan; Lee, Moon-Won

    2015-01-01

    Modeling the phospholipase A1 (PLA1 )-catalyzed partial hydrolysis of soy phosphatidylcholine (PC) in hexane for the production of lysophosphatidylcholine (LPC) and optimizing the reaction conditions using response surface methodology were described. The reaction was performed with 4 g of PC in a stirred batch reactor using a commercial PLA1 (Lecitase Ultra) as the biocatalyst. The effects of temperature, reaction time, water content, and enzyme loading on LPC and glycerylphosphorylcholine (GPC) content in the reaction products were elucidated using the models established. Optimal reaction conditions for maximizing the LPC content while suppressing acyl migration, which causes GPC formation, were as follows: temperature, 60°C; reaction time, 3 h; water content, 10% of PC; and enzyme loading, 1% of PC. When the reaction was conducted with 40 g of PC under these conditions, the reaction products contained 83.7 mol % LPC and were free of GPC. LPC had a higher total unsaturated fatty acid content than original PC had and was mainly composed of linoleic acid (78.0 mol % of the total fatty acids). © 2014 American Institute of Chemical Engineers.

  13. Improved cellulase production by Botryosphaeria rhodina from OPEFB at low level moisture condition through statistical optimization.

    PubMed

    Bahrin, E K; Ibrahim, M F; Abd Razak, M N; Abd-Aziz, S; Shah, U K Md; Alitheen, N; Salleh, M Md

    2012-01-01

    The response surface method was applied in this study to improve cellulase production from oil palm empty fruit bunch (OPEFB) by Botryosphaeria rhodina. An experimental design based on a two-level factorial was employed to screen the significant environmental factors for cellulase production. The locally isolated fungus Botryosphaeria rhodina was cultivated on OPEFB under solid-state fermentation (SSF). From the analysis of variance (ANOVA), the initial moisture content, amount of substrate, and initial pH of nutrient supplied in the SSF system significantly influenced cellulase production. Then the optimization of the variables was done using the response surface method according to central composite design (CCD). Botryosphaeria rhodina exhibited its best performance with a high predicted value of FPase enzyme production (17.95 U/g) when the initial moisture content was at 24.32%, initial pH of nutrient was 5.96, and 3.98 g of substrate was present. The statistical optimization from actual experiment resulted in a significant increment of FPase production from 3.26 to 17.91 U/g (5.49-fold). High cellulase production at low moisture content is a very rare condition for fungi cultured in solid-state fermentation.

  14. Medium optimization by orthogonal array and response surface methodology for cholesterol oxidase production by Streptomyces lavendulae NCIM 2499.

    PubMed

    Chauhan, Awadesh K; Survase, Shrikant A; Kishenkumar, Jyoti; Annapure, Uday S

    2009-06-01

    This paper deals with the optimization of culture conditions for the production of cholesterol oxidase (COD) by Streptomyces lavendulae NCIM 2499 using the one-factor-at-a-time method, orthogonal array method and response surface methodology (RSM) approaches. The one-factor-at-a-time method was adopted to investigate the effects of medium components (i.e. carbon and nitrogen) and environmental factors (i.e. initial pH) on biomass growth and COD production. Subsequently, an L12 orthogonal matrix was used to evaluate the significance of glycerol, soyabean meal, malt extract, K2HPO4, MgSO4 and NaCl. The effects of media components were ranked according to their effects on the production of COD as malt extract > soyabean meal > K2HPO4 > NaCl > MgSO4 > glycerol. The subsequent optimization of the four most significant factors viz. malt extract, soyabean meal, K2HPO4 and NaCl, was carried out by employing a central composite rotatable design (CCRD) of RSM. There was a 2.48-fold increase in productivity of COD as compared to the unoptimized media by using these statistical approaches.

  15. Ly49H signaling through DAP10 is essential for optimal natural killer cell responses to mouse cytomegalovirus infection

    PubMed Central

    Orr, Mark T.; Sun, Joseph C.; Hesslein, David G.T.; Arase, Hisashi; Phillips, Joseph H.; Takai, Toshiyuki

    2009-01-01

    The activating natural killer (NK) cell receptor Ly49H recognizes the mouse cytomegalovirus (MCMV) m157 glycoprotein expressed on the surface of infected cells and is required for protection against MCMV. Although Ly49H has previously been shown to signal via DAP12, we now show that Ly49H must also associate with and signal via DAP10 for optimal function. In the absence of DAP12, DAP10 enables Ly49H-mediated killing of m157-bearing target cells, proliferation in response to MCMV infection, and partial protection against MCMV. DAP10-deficient Ly49H+ NK cells, expressing only Ly49H–DAP12 receptor complexes, are partially impaired in their ability to proliferate during MCMV infection, display diminished ERK1/2 activation, produce less IFN-γ upon Ly49H engagement, and demonstrate reduced control of MCMV infection. Deletion of both DAP10 and DAP12 completely abrogates Ly49H surface expression and control of MCMV infection. Thus, optimal NK cell–mediated immunity to MCMV depends on Ly49H signaling through both DAP10 and DAP12. PMID:19332875

  16. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology

    PubMed Central

    Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171

  17. Production of antioxidant compounds of grape seed skin by fermentation and its optimization using response surface method

    NASA Astrophysics Data System (ADS)

    Andayani, D. G. S.; Risdian, C.; Saraswati, V.; Primadona, I.; Mawarda, P. C.

    2017-03-01

    Skins and seeds of grape are waste generated from food industry. These wastes contain nutrients of which able to be utilized as an important source for antioxidant metabolite production. Through an environmentally friendly process, natural antioxidant material was produced. This study aimed to generate antioxidant compounds by liquid fermentation. Optimization was carried out by using Schizosaccharomyces cerevisiae in Katu leaf substrate. Optimization variables through response surface methodology (RSM) were of sucrose concentration, skins and seeds of grape concentration, and pH. Results showed that the optimum conditions for antioxidant production were of 5 g/L sucrose, 5 g/L skins and seed at pH 5, respectively. The resulted antioxidant activity was of 1.62 mg/mL. Mathematical model of variance analysis using a second order polynomial corresponding to the resulted data for the antioxidant was of 20.70124 - 3.86997 A - 0.65996 B - 1.88367 C + 0.19634 A2 - 0.016638 B2 + 0.28848 C2 + 0.26980 AB - 0.068333 AC - 0.12367 BC. From the gained equation, the optimum yield from all variables was significant. Chemical analysis of the antioxidant was carried out using 2,2-Diphenyl-1-picrylhydrazyl (DPPH).

  18. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    PubMed

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf.

    PubMed

    Afshari, Kasra; Samavati, Vahid; Shahidi, Seyed-Ahmad

    2015-03-01

    The effects of ultrasonic power, extraction time, extraction temperature, and the water-to-raw material ratio on extraction yield of crude polysaccharide from the leaf of Hibiscus rosa-sinensis (HRLP) were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize HRLP extraction yield by implementing the Box-Behnken design (BBD). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and also analyzed by appropriate statistical methods (ANOVA). Analysis of the results showed that the linear and quadratic terms of these four variables had significant effects. The optimal conditions for the highest extraction yield of HRLP were: ultrasonic power, 93.59 W; extraction time, 25.71 min; extraction temperature, 93.18°C; and the water to raw material ratio, 24.3 mL/g. Under these conditions, the experimental yield was 9.66±0.18%, which is well in close agreement with the value predicted by the model 9.526%. The results demonstrated that HRLP had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Statistical approach to optimize the production of Polyhydroxyalkanoates from Wickerhamomyces anomalus VIT-NN01 using Response Surface Methodology.

    PubMed

    Ojha, Nupur; Das, Nilanjana

    2018-02-01

    Polyhydroxyalkanoates (PHAs) are three-level group of biodegradable polymers and attractive substitutes over conventional plastics to avoid the pollution problems. The yeast strain isolated from sugarcane juice, identified as Wickerhamomyces anomalus VIT-NN01, was used for the production of polyhydroxyalkanoates (PHA). Response surface methodology (RSM), three-level six variables Box-Behnken design (BBD), was employed to optimize the factors such as pH 8.0, temperature 37°C, sugarcane molasses (35g/L) supplemented with co-substrate palm oil (0.5%),corn steep liquor (2%) after a period of 96h of incubation for the maximum yield (19.50±0.3g/L) of PHA. It was well in close agreement with the predicted value obtained by RSM model yield (19.55±0.1g/L).Characterization of the extracted polymer was done using FTIR, GC-MS, XRD, TGA and AFM analysis. NMR spectroscopic analysis revealed that the biopolymer was poly (3-hydroxybutyrate-co-3-hydroxyvalerate), copolymer of PHA. This is the first report on optimization of PHA production using yeast strain isolated from natural sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Nutrient Optimization Using Response Surface Methodology for Simultaneous Biomass and Bioactive Compound Production by Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes).

    PubMed

    Ofosu, Fred K; Yu, Xiaobin; Wang, Qiang; Li, Hanguang

    2016-01-01

    Due to the unpleasant side effects of long-term use of commercially available drugs, the discovery and development of natural therapeutic agents to prevent life-debilitating diseases is urgently needed. In the present study, the optimization of medium composition for maximum mycelial biomass and bioactive compounds production by Hericium erinaceus was studied using response surface methodology based on a central composite design. Under the optimal conditions and at a pH of 5.41 ± 0.28, the maximum mycelial biomass and exopolysaccharide production reached 25.0 ± 1.38 g/L and 1.73 ± 0.06 g/L, respectively, compared with 22.65 ± 0.10 g/L and 1.56 ± 0.23 g/L in the basal medium, after 7 days of cultivation. Furthermore, we report for the first time the production of adenosine, both intra- and extracellularly in submerged cultures of H. erinaceus. Although most of the adenosine detected existed in the culture medium, the highest intracellular and extracellular adenosine concentrations of 150.84 ± 1.87 mg/L and 142.48 ± 3.78 mg/L were achieved after 7 and 6 days of cultivation, respectively.

  2. Statistical investigation of Kluyveromyces lactis cells permeabilization with ethanol by response surface methodology.

    PubMed

    de Faria, Janaína T; Rocha, Pollyana F; Converti, Attilio; Passos, Flávia M L; Minim, Luis A; Sampaio, Fábio C

    2013-12-01

    The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM). Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L(-1) oNP min(-1) g(-1) was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry.

  3. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology.

    PubMed

    Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  4. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology.

    PubMed

    Chen, Shasha; Zeng, Zhi; Hu, Na; Bai, Bo; Wang, Honglun; Suo, Yourui

    2018-03-01

    Lycium ruthenicum Murr. (LR) is a functional food that plays an important role in anti-oxidation due to its high level of phenolic compounds. This study aims to optimize ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activities of obtained extracts from LR using response surface methodology (RSM). A four-factor-three-level Box-Behnken design (BBD) was employed to discuss the following extracting parameters: extraction time (X 1 ), ultrasonic power (X 2 ), solvent to sample ratio (X 3 ) and solvent concentration (X 4 ). The analysis of variance (ANOVA) results revealed that the solvent to sample ratio had a significant influence on all responses, while the extraction time had no statistically significant effect on phenolic compounds. The optimum values of the combination of phenolic compounds and antioxidant activities were obtained for X 1 =30min, X 2 =100W, X 3 =40mL/g, and X 4 =33% (v/v). Five phenolic acids, including chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid and ferulic acid, were analyzed by HPLC. Our results indicated that optimization extraction is vital for the quantification of phenolic compounds and antioxidant activity in LR, which may be contributed to large-scale industrial applications and future pharmacological activities research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology

    PubMed Central

    2014-01-01

    Background Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. Methods In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4–8), current density (10–30 mA/cm2), electrode distance (4–6 cm) and electrolysis time (5–25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. Results The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. Conclusion These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC. PMID:24410752

  6. Isotretinoin Oil-Based Capsule Formulation Optimization

    PubMed Central

    Tsai, Pi-Ju; Huang, Chi-Te; Lee, Chen-Chou; Li, Chi-Lin; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2013-01-01

    The purpose of this study was to develop and optimize an isotretinoin oil-based capsule with specific dissolution pattern. A three-factor-constrained mixture design was used to prepare the systemic model formulations. The independent factors were the components of oil-based capsule including beeswax (X 1), hydrogenated coconut oil (X 2), and soybean oil (X 3). The drug release percentages at 10, 30, 60, and 90 min were selected as responses. The effect of formulation factors including that on responses was inspected by using response surface methodology (RSM). Multiple-response optimization was performed to search for the appropriate formulation with specific release pattern. It was found that the interaction effect of these formulation factors (X 1 X 2, X 1 X 3, and X 2 X 3) showed more potential influence than that of the main factors (X 1, X 2, and X 3). An optimal predicted formulation with Y 10 min, Y 30 min, Y 60 min, and Y 90 min release values of 12.3%, 36.7%, 73.6%, and 92.7% at X 1, X 2, and X 3 of 5.75, 15.37, and 78.88, respectively, was developed. The new formulation was prepared and performed by the dissolution test. The similarity factor f 2 was 54.8, indicating that the dissolution pattern of the new optimized formulation showed equivalence to the predicted profile. PMID:24068886

  7. Multivariate optimization of a synergistic blend of oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate to stabilize sunflower oil.

    PubMed

    Upadhyay, Rohit; Mishra, Hari Niwas

    2016-04-01

    The simultaneous optimization of a synergistic blend of oleoresin sage (SAG) and ascorbyl palmitate (AP) in sunflower oil (SO) was performed using central composite and rotatable design coupled with principal component analysis (PCA) and response surface methodology (RSM). The physicochemical parameters viz., peroxide value, anisidine value, free fatty acids, induction period, total polar matter, antioxidant capacity and conjugated diene value were considered as response variables. PCA reduced the original set of correlated responses to few uncorrelated principal components (PC). The PC1 (eigen value, 5.78; data variance explained, 82.53 %) was selected for optimization using RSM. The quadratic model adequately described the data (R (2) = 0. 91, p < 0.05) and lack of fit was insignificant (p > 0.05). The contour plot of PC 1 score indicated the optimal synergistic combination of 1289.19 and 218.06 ppm for SAG and AP, respectively. This combination of SAG and AP resulted in shelf life of 320 days at 25 °C estimated using linear shelf life prediction model. In conclusion, the versatility of PCA-RSM approach has resulted in an easy interpretation in multiple response optimizations. This approach can be considered as a useful guide to develop new oil blends stabilized with food additives from natural sources.

  8. “Investigations on the machinability of Waspaloy under dry environment”

    NASA Astrophysics Data System (ADS)

    Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.

    2016-09-01

    Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process

  9. Chitosan based grey wastewater treatment--a statistical design approach.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J; Kandasamy, S

    2014-01-01

    In this present study, grey wastewater was treated under different operating conditions such as agitation time (1-3 min), pH (2.5-5.5), chitosan dose (0.3-0.6g/l) and settling time (10-20 min) using response surface methodology (RSM). Four factors with three levels Box-Behnken response surface design (BBD) were employed to optimize and investigate the effect of process variables on the responses such as turbidity, BOD and COD removal. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to predict the responses. Under the optimum conditions, experimental values such as turbidity (96%), BOD (91%) and COD (73%) removals are closely agreed with predicted values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Multi-objective optimization of GENIE Earth system models.

    PubMed

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  11. Development of Phaleria macrocarpa (Scheff.) Boerl Fruits Using Response Surface Methodology Focused on Phenolics, Flavonoids and Antioxidant Properties.

    PubMed

    Mohamed Mahzir, Khurul Ain; Abd Gani, Siti Salwa; Hasanah Zaidan, Uswatun; Halmi, Mohd Izuan Effendi

    2018-03-22

    In this study, the optimal conditions for the extraction of antioxidants from the Buah Mahkota Dewa fruit ( Phaleria macrocarpa) was determined by using Response Surface Methodology (RSM). The optimisation was applied using a Central Composite Design (CCD) to investigate the effect of three independent variables, namely extraction temperature (°C), extraction time (minutes) and extraction solvent to-feed ratio (% v / v ) on four responses: free radical scavenging activity (DPPH), ferric ion reducing power assay (FRAP), total phenolic content (TPC) and total flavonoid content (TFC). The optimal conditions for the antioxidants extraction were found to be 64 °C extraction temperature, 66 min extraction time and 75% v / v solvent to-feed ratio giving the highest percentage yields of DPPH, FRAP, TPC and TFC of 86.85%, 7.47%, 292.86 mg/g and 3.22 mg/g, respectively. Moreover, the data were subjected to Response Surface Methodology (RSM) and the results showed that the polynomial equations for all models were significant, did not show lack of fit, and presented adjusted determination coefficients ( R ²) above 99%, proving that the yield of phenolic, flavonoid and antioxidants activities obtained experimentally were close to the predicted values and the suitability of the model employed in RSM to optimise the extraction conditions. Hence, in this study, the fruit from P. macrocarpa could be considered to have strong antioxidant ability and can be used in various cosmeceutical or medicinal applications.

  12. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  13. A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments.

    PubMed

    Mohajeri, Leila; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Zahed, Mohammad Ali

    2010-02-01

    This work studied the bioremediation of weathered crude oil (WCO) in coastal sediment samples using central composite face centered design (CCFD) under response surface methodology (RSM). Initial oil concentration, biomass, nitrogen and phosphorus concentrations were used as independent variables (factors) and oil removal as dependent variable (response) in a 60 days trial. A statistically significant model for WCO removal was obtained. The coefficient of determination (R(2)=0.9732) and probability value (P<0.0001) demonstrated significance for the regression model. Numerical optimization based on desirability function were carried out for initial oil concentration of 2, 16 and 30 g per kg sediment and 83.13, 78.06 and 69.92 per cent removal were observed respectively, compare to 77.13, 74.17 and 69.87 per cent removal for un-optimized results.

  14. Multiple response optimization of the coagulation process for upgrading the quality of effluent from municipal wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J.; Sheng, Guo-Ping

    2016-05-01

    To meet the high quality standard of receiving water, the coagulation process using polyferric chloride (PFC) was used to further improve the water quality of effluent from wastewater treatment plants. Uniform design (UD) coupled with response surface methodology (RSM) was adopted to assess the effects of the main influence factors: coagulant dosage, pH and basicity, on the removal of total organic carbon (TOC), NH4+-N and PO43--P. A desirability function approach was used to effectively optimize the coagulation process for the comprehensive removal of TOC, NH4+-N and PO43--P to upgrade the effluent quality in practical application. The optimized operating conditions were: dosage 28 mg/L, pH 8.5 and basicity 0.001. The corresponding removal efficiencies for TOC, NH4+-N and PO43--P were 77.2%, 94.6% and 20.8%, respectively. More importantly, the effluent quality could upgrade to surface water Class V of China through coagulation under optimal region. In addition, grey relational analysis (GRA) prioritized these three factors as: pH > basicity > dosage (for TOC), basicity > dosage > pH (for NH4+-N), pH > dosage > basicity (for PO43--P), which would help identify the most important factor to control the treatment efficiency of various effluent quality indexes by PFC coagulation.

  15. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology.

    PubMed

    Jeong, Ji Yeon; Liu, Qing; Kim, Seon Beom; Jo, Yang Hee; Mo, Eun Jin; Yang, Hyo Hee; Song, Dae Hye; Hwang, Bang Yeon; Lee, Mi Kyeong

    2015-05-14

    Melanin is a natural pigment that plays an important role in the protection of skin, however, hyperpigmentation cause by excessive levels of melatonin is associated with several problems. Therefore, melanogenesis inhibitory natural products have been developed by the cosmetic industry as skin medications. The leaves of Morus alba (Moraceae) have been reported to inhibit melanogenesis, therefore, characterization of the melanogenesis inhibitory constituents of M. alba leaves was attempted in this study. Twenty compounds including eight benzofurans, 10 flavonoids, one stilbenoid and one chalcone were isolated from M. alba leaves and these phenolic constituents were shown to significantly inhibit tyrosinase activity and melanin content in B6F10 melanoma cells. To maximize the melanogenesis inhibitory activity and active phenolic contents, optimized M. alba leave extraction conditions were predicted using response surface methodology as a methanol concentration of 85.2%; an extraction temperature of 53.2 °C and an extraction time of 2 h. The tyrosinase inhibition and total phenolic content under optimal conditions were found to be 74.8% inhibition and 24.8 μg GAE/mg extract, which were well-matched with the predicted values of 75.0% inhibition and 23.8 μg GAE/mg extract. These results shall provide useful information about melanogenesis inhibitory constituents and optimized extracts from M. alba leaves as cosmetic therapeutics to reduce skin hyperpigmentation.

  16. Optimization of Extraction Process for Antidiabetic and Antioxidant Activities of Kursi Wufarikun Ziyabit Using Response Surface Methodology and Quantitative Analysis of Main Components.

    PubMed

    Edirs, Salamet; Turak, Ablajan; Numonov, Sodik; Xin, Xuelei; Aisa, Haji Akber

    2017-01-01

    By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α -glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect ( p < 0.05) for Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 with R 2 value of 0.9120, 0.9793, 0.9076, 0.9125, and 0.9709, respectively. Optimal conditions for the highest extraction yield of 39.28%, PTP-1B inhibition rate of 86.21%, α -glycosidase enzymes inhibition rate of 96.56%, and ABTS inhibition rate of 77.38% were derived at ethanol concentration 50.11%, extraction temperature 72.06°C, solid-to-solvent ratio 1 : 22.73 g/mL, and extraction time 2.93 h. On the basis of total polyphenol content of 48.44% in this optimal condition, the quantitative analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%.

  17. Optimization of Process Parameters in Preparation of Nanoemulsions of CLnA Rich Oil by Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Sengupta, Avery; Gupta, Surashree Sen; Ghosh, Mahua

    2013-03-01

    The purpose of the present study was to obtain optimal processing for preparation of uniform-sized nanoemulsion of conjugated linolenic acid (CLnA) rich oil to increase the oxidative stability of CLnA by using a high-speed disperser (HSD) and ultrasonication. The emulsifiers used were egg phospholipid and soya protein isolate. The effects of oil concentration [0.05 to 1.25 % (w/w)], emulsifier ratio [0.1:0.9 to 0.9:0.1 (phospholipid:protein)], speed of the HSD (2,000 to 12,000 rpm) and times of HSD and sonication treatments (10 to 50 min) were observed. Optimization was performed with and without response surface methodology (RSM). The optimum compositional variables i.e. concentration of oil was 1 % and phospholipid:protein molar ratio was 0.5:0.5. Maximum size reduction occurred at 10,000 rpm speed of HSD. HSD should be administered for 40 min followed by 40 min ultrasonication. The range of the size of the droplets in the nanoemulsion was between 173 ± 1.20 and 183 ± 0.94 nm. Nanoemulsion is a size reduction technique where the oil present in the emulsion can be easily stabilized which increases the shelf-life of the oil. The present study derived the reaction parameters were optimized using RSM to produce nanoemulsion of CLnA rich oils of minimum size to obtain maximum stability.

  18. Optimization of an Advanced Hybrid Wing Body Concept Using HCDstruct Version 1.2

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Hybrid Wing Body (HWB) aircraft concepts continue to be promising candidates for achieving the simultaneous fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project. In order to evaluate the projected benefits, improvements in structural analysis at the conceptual design level were necessary; thus, NASA researchers developed the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) tool to perform aeroservoelastic structural optimizations of advanced HWB concepts. In this paper, the authors present substantial updates to the HCDstruct tool and related analysis, including: the addition of four inboard and eight outboard control surfaces and two all-movable tail/rudder assemblies, providing a full aeroservoelastic analysis capability; the implementation of asymmetric load cases for structural sizing applications; and a methodology for minimizing control surface actuation power using NASTRAN SOL 200 and HCDstruct's aeroservoelastic finite-element model (FEM).

  19. Uncertainty Analysis of Simulated Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.

    2012-12-01

    Artificial hydraulic fracturing is being used widely to stimulate production of oil, natural gas, and geothermal reservoirs with low natural permeability. Optimization of field design and operation is limited by the incomplete characterization of the reservoir, as well as the complexity of hydrological and geomechanical processes that control the fracturing. Thus, there are a variety of uncertainties associated with the pre-existing fracture distribution, rock mechanics, and hydraulic-fracture engineering that require evaluation of their impact on the optimized design. In this study, a multiple-stage scheme was employed to evaluate the uncertainty. We first define the ranges and distributions of 11 input parameters that characterize the natural fracture topology, in situ stress, geomechanical behavior of the rock matrix and joint interfaces, and pumping operation, to cover a wide spectrum of potential conditions expected for a natural reservoir. These parameters were then sampled 1,000 times in an 11-dimensional parameter space constrained by the specified ranges using the Latin-hypercube method. These 1,000 parameter sets were fed into the fracture simulators, and the outputs were used to construct three designed objective functions, i.e. fracture density, opened fracture length and area density. Using PSUADE, three response surfaces (11-dimensional) of the objective functions were developed and global sensitivity was analyzed to identify the most sensitive parameters for the objective functions representing fracture connectivity, which are critical for sweep efficiency of the recovery process. The second-stage high resolution response surfaces were constructed with dimension reduced to the number of the most sensitive parameters. An additional response surface with respect to the objective function of the fractal dimension for fracture distributions was constructed in this stage. Based on these response surfaces, comprehensive uncertainty analyses were conducted among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology.

    PubMed

    Sun, Wen-Jing; Zhao, Hong-Xia; Cui, Feng-Jie; Li, Yun-Hong; Yu, Si-Lian; Zhou, Qiang; Qian, Jing-Ya; Dong, Ying

    2013-07-08

    Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM). The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives.

  1. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology

    PubMed Central

    2013-01-01

    Background Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid’s oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One–factor-at-a-time experiments and response surface methodology (RSM). Results The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from “one–factor-at-a-time” experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. Conclusion The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives. PMID:23835418

  2. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actualmore » experimental observations.« less

  3. Determining animal drug combinations based on efficacy and safety.

    PubMed

    Kratzer, D D; Geng, S

    1986-08-01

    A procedure for deriving drug combinations for animal health is used to derive an optimal combination of 200 mg of novobiocin and 650,000 IU of penicillin for nonlactating cow mastitis treatment. The procedure starts with an estimated second order polynomial response surface equation. That surface is translated into a probability surface with contours called isoprobs. The isoprobs show drug amounts that have equal probability to produce maximal efficacy. Safety factors are incorporated into the probability surface via a noncentrality parameter that causes the isoprobs to expand as safety decreases, resulting in lower amounts of drug being used.

  4. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering

    PubMed Central

    Zheng, Peng; Cushing, Scott K.; Suri, Savan; Wu, Nianqiang

    2015-01-01

    The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized and propagating surface plasmons. In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the ‘gap’ defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors. PMID:25586930

  5. Response surface methodology as an approach to determine optimal activities of lipase entrapped in sol-gel matrix using different vegetable oils.

    PubMed

    Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M

    2008-03-01

    The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.

  6. Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides.

    PubMed

    Mizutani, Aya; Nagase, Kenichi; Kikuchi, Akihiko; Kanazawa, Hideko; Akiyama, Yoshikatsu; Kobayashi, Jun; Annaka, Masahiko; Okano, Teruo

    2010-09-17

    Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m(2)/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins. 2010 Elsevier B.V. All rights reserved.

  7. Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix.

    PubMed

    Chin-Pampillo, Juan Salvador; Ruiz-Hidalgo, Karla; Masís-Mora, Mario; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2015-12-01

    Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems.

  8. Optimization of Polygalacturonase Production from a Newly Isolated Thalassospira frigidphilosprofundus to Use in Pectin Hydrolysis: Statistical Approach

    PubMed Central

    Rekha, V. P. B.; Ghosh, Mrinmoy; Adapa, Vijayanand; Oh, Sung-Jong; Pulicherla, K. K.; Sambasiva Rao, K. R. S.

    2013-01-01

    The present study deals with the production of cold active polygalacturonase (PGase) by submerged fermentation using Thalassospira frigidphilosprofundus, a novel species isolated from deep waters of Bay of Bengal. Nonlinear models were applied to optimize the medium components for enhanced production of PGase. Taguchi orthogonal array design was adopted to evaluate the factors influencing the yield of PGase, followed by the central composite design (CCD) of response surface methodology (RSM) to identify the optimum concentrations of the key factors responsible for PGase production. Data obtained from the above mentioned statistical experimental design was used for final optimization study by linking the artificial neural network and genetic algorithm (ANN-GA). Using ANN-GA hybrid model, the maximum PGase activity (32.54 U/mL) was achieved at the optimized concentrations of medium components. In a comparison between the optimal output of RSM and ANN-GA hybrid, the latter favored the production of PGase. In addition, the study also focused on the determination of factors responsible for pectin hydrolysis by crude pectinase extracted from T. frigidphilosprofundus through the central composite design. Results indicated 80% degradation of pectin in banana fiber at 20°C in 120 min, suggesting the scope of cold active PGase usage in the treatment of raw banana fibers. PMID:24455722

  9. Optimization of polygalacturonase production from a newly isolated Thalassospira frigidphilosprofundus to use in pectin hydrolysis: statistical approach.

    PubMed

    Rekha, V P B; Ghosh, Mrinmoy; Adapa, Vijayanand; Oh, Sung-Jong; Pulicherla, K K; Sambasiva Rao, K R S

    2013-01-01

    The present study deals with the production of cold active polygalacturonase (PGase) by submerged fermentation using Thalassospira frigidphilosprofundus, a novel species isolated from deep waters of Bay of Bengal. Nonlinear models were applied to optimize the medium components for enhanced production of PGase. Taguchi orthogonal array design was adopted to evaluate the factors influencing the yield of PGase, followed by the central composite design (CCD) of response surface methodology (RSM) to identify the optimum concentrations of the key factors responsible for PGase production. Data obtained from the above mentioned statistical experimental design was used for final optimization study by linking the artificial neural network and genetic algorithm (ANN-GA). Using ANN-GA hybrid model, the maximum PGase activity (32.54 U/mL) was achieved at the optimized concentrations of medium components. In a comparison between the optimal output of RSM and ANN-GA hybrid, the latter favored the production of PGase. In addition, the study also focused on the determination of factors responsible for pectin hydrolysis by crude pectinase extracted from T. frigidphilosprofundus through the central composite design. Results indicated 80% degradation of pectin in banana fiber at 20 °C in 120 min, suggesting the scope of cold active PGase usage in the treatment of raw banana fibers.

  10. Optimization of MR fluid Yield stress using Taguchi Method and Response Surface Methodology Techniques

    NASA Astrophysics Data System (ADS)

    Mangal, S. K.; Sharma, Vivek

    2018-02-01

    Magneto rheological fluids belong to a class of smart materials whose rheological characteristics such as yield stress, viscosity etc. changes in the presence of applied magnetic field. In this paper, optimization of MR fluid constituents is obtained with on-state yield stress as response parameter. For this, 18 samples of MR fluids are prepared using L-18 Orthogonal Array. These samples are experimentally tested on a developed & fabricated electromagnet setup. It has been found that the yield stress of MR fluid mainly depends on the volume fraction of the iron particles and type of carrier fluid used in it. The optimal combination of the input parameters for the fluid are found to be as Mineral oil with a volume percentage of 67%, iron powder of 300 mesh size with a volume percentage of 32%, oleic acid with a volume percentage of 0.5% and tetra-methyl-ammonium-hydroxide with a volume percentage of 0.7%. This optimal combination of input parameters has given the on-state yield stress as 48.197 kPa numerically. An experimental confirmation test on the optimized MR fluid sample has been then carried out and the response parameter thus obtained has found matching quite well (less than 1% error) with the numerically obtained values.

  11. Extensions of D-optimal Minimal Designs for Symmetric Mixture Models

    PubMed Central

    Raghavarao, Damaraju; Chervoneva, Inna

    2017-01-01

    The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé's linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. In This Paper, Extensions Of The D-Optimal Minimal Designs Are Developed For A General Mixture Model To Allow Additional Interior Points In The Design Space To Enable Prediction Of The Entire Response Surface Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations. PMID:29081574

  12. Preparation and optimization of matrix metalloproteinase-1-loaded poly(lactide- co-glycolide- co-caprolactone) nanoparticles with rotatable central composite design and response surface methodology

    NASA Astrophysics Data System (ADS)

    Sun, Ping; Song, Hua; Cui, Daxiang; Qi, Jun; Xu, Mousheng; Geng, Hongquan

    2012-07-01

    Matrix metalloproteases are key regulatory molecules in the breakdown of extracellular matrix and in inflammatory processes. Matrix metalloproteinase-1 (MMP-1) can significantly enhance muscle regeneration by promoting the formation of myofibers and degenerating the fibrous tissue. Herein, we prepared novel MMP-1-loaded poly(lactide-co-glycolide-co-caprolactone) (PLGA-PCL) nanoparticles (NPs) capable of sustained release of MMP-1. We established quadratic equations as mathematical models and employed rotatable central composite design and response surface methodology to optimize the preparation procedure of the NPs. Then, characterization of the optimized NPs with respect to particle size distribution, particle morphology, drug encapsulation efficiency, MMP-1 activity assay and in vitro release of MMP-1 from NPs was carried out. The results of mathematical modeling show that the optimal conditions for the preparation of MMP-1-loaded NPs were as follows: 7 min for the duration time of homogenization, 4.5 krpm for the agitation speed of homogenization and 0.4 for the volume ratio of organic solvent phase to external aqueous phase. The entrapment efficiency and the average particle size of the NPs were 38.75 ± 4.74% and 322.7 ± 18.1 nm, respectively. Further scanning electron microscopy image shows that the NPs have a smooth and spherical surface, with mean particle size around 300 nm. The MMP-1 activity assay and in vitro drug release profile of NPs indicated that the bioactivity of the enzyme can be reserved where the encapsulation allows prolonged release of MMP-1 over 60 days. Taken together, we reported here novel PLGA-PCL NPs for sustained release of MMP-1, which may provide an ideal MMP-1 delivery approach for tissue reconstruction therapy.

  13. Optimization of injection molding process parameters for a plastic cell phone housing component

    NASA Astrophysics Data System (ADS)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  14. Optimization of Shea (Vitellaria paradoxa) butter quality using screw expeller extraction.

    PubMed

    Gezahegn, Yonas A; Emire, Shimelis A; Asfaw, Sisay F

    2016-11-01

    The quality of Shea butter is highly affected by processing factors. Hence, the aim of this work was to evaluate the effects of conditioning duration (CD), moisture content (MC), and die temperature (DT) of screw expeller on Shea butter quality. A combination of 3 3 full factorial design and response surface methodology was used for this investigation. Response variables were refractive index, acid value, and peroxide value. The model enabled to identify the optimum operating settings (CD = 28-30 min, MC = 3-5 g/100 g, and DT = 65-70°C) for maximize refractive index and minimum acid value. For minimum peroxide value 0 min CD, 10 g/100 g MC, and 30°C were discovered. In all-over optimization, optimal values of 30 min CD, 9.7 g/100 g MC, and 70°C DT were found. Hence, the processing factors must be at their optimal values to achieve high butter quality and consistence.

  15. Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents.

    PubMed

    Bicu, Ioan; Mustata, Fanica

    2013-10-15

    Response surface methodology was used to optimize cellulose recovery from orange peel using sodium hydroxide (NaOH) as isolation reagent, and to minimize its ash content using ethylenediaminetetraacetic acid (EDTA) as chelating agent. The independent variables were NaOH charge, EDTA charge and cooking time. Other two constant parameters were cooking temperature (98 °C) and liquid-to-solid ratio (7.5). The dependent variables were cellulose yield and ash content. A second-order polynomial model was used for plotting response surfaces and for determining optimum cooking conditions. The analysis of coefficient values for independent variables in the regression equation showed that NaOH and EDTA charges were major factors influencing the cellulose yield and ash content, respectively. Optimum conditions were defined by: NaOH charge 38.2%, EDTA charge 9.56%, and cooking time 317 min. The predicted cellulose yield was 24.06% and ash content 0.69%. A good agreement between the experimental values and the predicted was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Optimization of biostimulant for bioremediation of contaminated coastal sediment by response surface methodology (RSM) and evaluation of microbial diversity by pyrosequencing.

    PubMed

    Subha, Bakthavachallam; Song, Young Chae; Woo, Jung Hui

    2015-09-15

    The present study aims to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Different bacterial communities were evaluated using a pyrosequencing-based approach in contaminated coastal sediments. The effects of BSB size (1-5cm), distance (1-10cm) and time (1-4months) on changes in chemical oxygen demand (COD) and volatile solid (VS) reduction were determined. Maximum reductions of COD and VS, 89.7% and 78.8%, respectively, were observed at a 3cm ball size, 5.5cm distance and 4months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. Most of the variance in COD and VS (0.9291 and 0.9369, respectively) was explained in our chosen models. BSB is a promising method for COD and VS reduction and enhancement of SRB diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction.

    PubMed

    Heleno, Sandrina A; Diz, Patrícia; Prieto, M A; Barros, Lillian; Rodrigues, Alírio; Barreiro, Maria Filomena; Ferreira, Isabel C F R

    2016-04-15

    Ergosterol, a molecule with high commercial value, is the most abundant mycosterol in Agaricus bisporus L. To replace common conventional extraction techniques (e.g. Soxhlet), the present study reports the optimal ultrasound-assisted extraction conditions for ergosterol. After preliminary tests, the results showed that solvents, time and ultrasound power altered the extraction efficiency. Using response surface methodology, models were developed to investigate the favourable experimental conditions that maximize the extraction efficiency. All statistical criteria demonstrated the validity of the proposed models. Overall, ultrasound-assisted extraction with ethanol at 375 W during 15 min proved to be as efficient as the Soxhlet extraction, yielding 671.5 ± 0.5mg ergosterol/100 g dw. However, with n-hexane extracts with higher purity (mg ergosterol/g extract) were obtained. Finally, it was proposed for the removal of the saponification step, which simplifies the extraction process and makes it more feasible for its industrial transference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: an optimization study via Response Surface Methodology.

    PubMed

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-02-01

    In this study, fatty acid methyl esters (FAME) have been successfully produced from transesterification reaction between triglycerides and methyl acetate, instead of alcohol. In this non-catalytic supercritical methyl acetate (SCMA) technology, triacetin which is a valuable biodiesel additive is produced as side product rather than glycerol, which has lower commercial value. Besides, the properties of the biodiesel (FAME and triacetin) were found to be superior compared to those produced from conventional catalytic reactions (FAME only). In this study, the effects of various important parameters on the yield of biodiesel were optimized by utilizing Response Surface Methodology (RSM) analysis. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum yield of biodiesel. The optimum conditions were found to be 399 degrees C for reaction temperature, 30 mol/mol of methyl acetate to oil molar ratio and reaction time of 59 min to achieve 97.6% biodiesel yield.

  19. Production of Chitin from Penaeus vannamei By-Products to Pilot Plant Scale Using a Combination of Enzymatic and Chemical Processes and Subsequent Optimization of the Chemical Production of Chitosan by Response Surface Methodology.

    PubMed

    Vázquez, José A; Ramos, Patrícia; Mirón, Jesús; Valcarcel, Jesus; Sotelo, Carmen G; Pérez-Martín, Ricardo I

    2017-06-16

    The waste generated from shrimp processing contains valuable materials such as protein, carotenoids, and chitin. The present study describes a process at pilot plant scale to recover chitin from the cephalothorax of Penaeus vannamei using mild conditions. The application of a sequential enzymatic-acid-alkaline treatment yields 30% chitin of comparable purity to commercial sources. Effluents from the process are rich in protein and astaxanthin, and represent inputs for further by-product recovery. As a last step, chitin is deacetylated to produce chitosan; the optimal conditions are established by applying a response surface methodology (RSM). Under these conditions, deacetylation reaches 92% as determined by Proton Nuclear Magnetic Resonance (¹H-NMR), and the molecular weight (Mw) of chitosan is estimated at 82 KDa by gel permeation chromatography (GPC). Chitin and chitosan microstructures are characterized by Scanning Electron Microscopy (SEM).

  20. Rapid Adsorption of Heavy Metals by Fe3O4/Talc Nanocomposite and Optimization Study Using Response Surface Methodology

    PubMed Central

    Kalantari, Katayoon; Ahmad, Mansor B.; Masoumi, Hamid Reza Fard; Shameli, Kamyar; Basri, Mahiran; Khandanlou, Roshanak

    2014-01-01

    Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions. PMID:25050784

  1. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    PubMed

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.

  2. Response Surface Methodology for the Optimization of Preparation of Biocomposites Based on Poly(lactic acid) and Durian Peel Cellulose

    PubMed Central

    Penjumras, Patpen; Abdul Rahman, Russly; Talib, Rosnita A.; Abdan, Khalina

    2015-01-01

    Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R 2) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m2, respectively. PMID:26167523

  3. Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: optimization using response surface methodology and determination of antioxidant activity.

    PubMed

    Horchani, Habib; Ben Salem, Nadia; Zarai, Zied; Sayari, Adel; Gargouri, Youssef; Chaâbouni, Moncef

    2010-04-01

    The ability of a non-commercial immobilized Staphylococcus aureus lipase to catalyze the esterification of eugenol with benzoic acid was checked and the antioxidant power of the ester formed was evaluated. Response surface methodology based on four variables (the reaction temperature, the amount of lipase, the benzoic acid/eugenol molar ratio and the volume of solvent) was used to optimize the experimental conditions of eugenol benzoate synthesis. The maximum conversion yield (75%) was obtained using 240 IU of immobilized lipase, a benzoic acid/eugenol molar ratio of 1.22 dissolved in 4.6 ml chloroform at 41 degrees Celsius. The antioxidant activities of eugenol and its ester were evaluated. Compared to BHT, used as a model synthetic antioxidant, the eugenol benzoate showed a higher antioxidative activity. The IC(50) value for 1,1-diphenyl-2-picrylhydrazyl was found to be 18.2 microg/ml versus 20.2 microg/ml for eugenol and eugenol benzoate. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen.

    PubMed

    Zhuang, Yong-liang; Zhao, Xue; Li, Ba-fang

    2009-08-01

    To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 degrees C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da

  5. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen*

    PubMed Central

    Zhuang, Yong-liang; Zhao, Xue; Li, Ba-fang

    2009-01-01

    To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 °C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da

  6. Process optimization of an auger pyrolyzer with heat carrier using response surface methodology.

    PubMed

    Brown, J N; Brown, R C

    2012-01-01

    A 1 kg/h auger reactor utilizing mechanical mixing of steel shot heat carrier was used to pyrolyze red oak wood biomass. Response surface methodology was employed using a circumscribed central composite design of experiments to optimize the system. Factors investigated were: heat carrier inlet temperature and mass flow rate, rotational speed of screws in the reactor, and volumetric flow rate of sweep gas. Conditions for maximum bio-oil and minimum char yields were high flow rate of sweep gas (3.5 standard L/min), high heat carrier temperature (∼600 °C), high auger speeds (63 RPM) and high heat carrier mass flow rates (18 kg/h). Regression models for bio-oil and char yields are described including identification of a novel interaction effect between heat carrier mass flow rate and auger speed. Results suggest that auger reactors, which are rarely described in literature, are well suited for bio-oil production. The reactor achieved liquid yields greater than 73 wt.%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Statistical optimization of process parameters for lipase-catalyzed synthesis of triethanolamine-based esterquats using response surface methodology in 2-liter bioreactor.

    PubMed

    Masoumi, Hamid Reza Fard; Basri, Mahiran; Kassim, Anuar; Abdullah, Dzulkefly Kuang; Abdollahi, Yadollah; Abd Gani, Siti Salwa; Rezaee, Malahat

    2013-01-01

    Lipase-catalyzed production of triethanolamine-based esterquat by esterification of oleic acid (OA) with triethanolamine (TEA) in n-hexane was performed in 2 L stirred-tank reactor. A set of experiments was designed by central composite design to process modeling and statistically evaluate the findings. Five independent process variables, including enzyme amount, reaction time, reaction temperature, substrates molar ratio of OA to TEA, and agitation speed, were studied under the given conditions designed by Design Expert software. Experimental data were examined for normality test before data processing stage and skewness and kurtosis indices were determined. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum conversion of product. Response surface methodology with central composite design gave the best performance in this study, and the methodology as a whole has been proven to be adequate for the design and optimization of the enzymatic process.

  8. Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology.

    PubMed

    Kalantari, Katayoon; Ahmad, Mansor B; Masoumi, Hamid Reza Fard; Shameli, Kamyar; Basri, Mahiran; Khandanlou, Roshanak

    2014-07-21

    Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.

  9. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology.

    PubMed

    Barati, Ali; Shamsipur, Mojtaba; Arkan, Elham; Hosseinzadeh, Leila; Abdollahi, Hamid

    2015-02-01

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg(2+) ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. Copyright © 2014. Published by Elsevier B.V.

  10. Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology

    PubMed Central

    Körbahti, Bahadır K.; Demirbüken, Pelin

    2017-01-01

    Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode (BDD) was investigated in a batch electrochemical reactor in the presence of Na2SO4 supporting electrolyte. The effect of process parameters such as resorcinol concentration (100–500 g/L), current density (2–10 mA/cm2), Na2SO4 concentration (0–20 g/L), and reaction temperature (25–45°C) was analyzed on electrochemical oxidation using response surface methodology (RSM). The optimum operating conditions were determined as 300 mg/L resorcinol concentration, 8 mA/cm2 current density, 12 g/L Na2SO4 concentration, and 34°C reaction temperature. One hundred percent of resorcinol removal and 89% COD removal were obtained in 120 min reaction time at response surface optimized conditions. These results confirmed that the electrochemical mineralization of resorcinol was successfully accomplished using BDD anode depending on the process conditions, however the formation of intermediates and by-products were further oxidized at much lower rate. The reaction kinetics were evaluated at optimum conditions and the reaction order of electrochemical oxidation of resorcinol in aqueous medium using BDD anode was determined as 1 based on COD concentration with the activation energy of 5.32 kJ/mol that was supported a diffusion-controlled reaction. PMID:29082225

  11. Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology.

    PubMed

    Tepe, Ozlem; Dursun, Arzu Y

    2014-01-01

    In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.

  12. Designed polar cosolvent-modified supercritical CO2 removing caffeine from and retaining catechins in green tea powder using response surface methodology.

    PubMed

    Huang, Kuo-Jong; Wu, Jia-Jiuan; Chiu, Yung-Ho; Lai, Cheng-Yung; Chang, Chieh-Ming J

    2007-10-31

    This study examines cosolvent-modified supercritical carbon dioxide (SC-CO2) to remove caffeine from and to retain catechins in green tea powder. The response surface method was adopted to determine the optimal operation conditions in terms of the extraction efficiencies and concentration factors of caffeine and catechins during the extractions. When SC-CO2 was used at 333 K and 300 bar, 91.5% of the caffeine was removed and 80.8% of catechins were retained in the tea: 3600 g of carbon dioxide was used in the extraction of 4 g of tea soaked with 1 g of water. Under the same extraction conditions, 10 g of water was added to <800 g of carbon dioxide in an extraction that completely removed caffeine (that is, the caffeine extraction efficiency was 100%). The optimal result as predicted by three-factor response surface methodology and supported by experimental data was that in 1.5 h of extraction, 640 g of carbon dioxide at 323 K and 275 bar with the addition of 6 g of water extracted 71.9% of the caffeine while leaving 67.8% of the catechins in 8 g of tea. Experimental data indicated that supercritical carbon dioxide decaffeination increased the concentrations of caffeine in the SC-CO2 extracts at 353 K.

  13. Plant Phenolics Extraction from Flos Chrysanthemi: Response Surface Methodology Based Optimization and the Correlation Between Extracts and Free Radical Scavenging Activity.

    PubMed

    Wu, Yanfang; Wang, Xinsheng; Xue, Jintao; Fan, Enguo

    2017-11-01

    Huaiju is one of the most famous and widely used Flos Chrysanthemi (FC) for medicinal purposes in China. Although various investigations aimed at phenolics extraction from other FC have been reported, a thorough optimization of the phenolics extraction conditions from Huaiju has not been achieved. This work applied the widely used response surface methodology (RSM) to investigate the effects of 3 independent variables including ethanol concentration (%), extraction time (min), and solvent-to-material ratio (mL/g) on the ultrasound-assisted extraction (UAE) of phenolics from FC. The data suggested the optimal UAE condition was an ethanol concentration of 75.3% and extraction time of 43.5 min, whereas the ratio of solvent to material has no significant effect. When the free radical scavenging ability was used as an indicator for a successful extraction, a similar optimal extraction was achieved with an ethanol concentration of 72.8%, extraction time of 44.3 min, and the ratio of solvent to material was 29.5 mL/g. Furthermore, a moderate correlation between the antioxidant activity of TP extract and the content of extracted phenolic compounds was observed. Moreover, a well consistent of the experimental values under optimal conditions with those predicted values suggests RSM successfully optimized the UAE conditions for phenolics extraction from FC. The work of the research investigated the plant phenolics in Flos Chrysanthemi and antioxidant capacities. These results of this study can support the development of antioxidant additive and relative food. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  14. Ethanol production from sweet sorghum bagasse through process optimization using response surface methodology.

    PubMed

    Lavudi, Saida; Oberoi, Harinder Singh; Mangamoori, Lakshmi Narasu

    2017-08-01

    In this study, comparative evaluation of acid- and alkali pretreatment of sweet sorghum bagasse (SSB) was carried out for sugar production after enzymatic hydrolysis. Results indicated that enzymatic hydrolysis of alkali-pretreated SSB resulted in higher production of glucose, xylose and arabinose, compared to the other alkali concentrations and also acid-pretreated biomass. Response Surface Methodology (RSM) was, therefore, used to optimize parameters, such as alkali concentration, temperature and time of pretreatment prior to enzymatic hydrolysis to maximize the production of sugars. The independent variables used during RSM included alkali concentration (1.5-4%), pretreatment temperature (125-140 °C) and pretreatment time (10-30 min) were investigated. Process optimization resulted in glucose and xylose concentration of 57.24 and 10.14 g/L, respectively. Subsequently, second stage optimization was conducted using RSM for optimizing parameters for enzymatic hydrolysis, which included substrate concentration (10-15%), incubation time (24-60 h), incubation temperature (40-60 °C) and Celluclast concentration (10-20 IU/g-dwt). Substrate concentration 15%, (w/v) temperature of 60 °C, Celluclast concentration of 20 IU/g-dwt and incubation time of 58 h led to a glucose concentration of 68.58 g/l. Finally, simultaneous saccharification fermentation (SSF) as well as separated hydrolysis and fermentation (SHF) was evaluated using Pichia kudriavzevii HOP-1 for production of ethanol. Significant difference in ethanol concentration was not found using either SSF or SHF; however, ethanol productivity was higher in case of SSF, compared to SHF. This study has established a platform for conducting scale-up studies using the optimized process parameters.

  15. A method for optimizing the cosine response of solar UV diffusers

    NASA Astrophysics Data System (ADS)

    Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki

    2013-07-01

    Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.

  16. Exploiting a new electrochemical sensor for biofilm monitoring and water treatment optimization.

    PubMed

    Pavanello, Giovanni; Faimali, Marco; Pittore, Massimiliano; Mollica, Angelo; Mollica, Alessandro; Mollica, Alfonso

    2011-02-01

    Bacterial biofilm development is a serious problem in many fields, and the existing biofilm monitoring sensors often turn out to be inadequate. In this perspective, a new sensor (ALVIM) has been developed, exploiting the natural marine and freshwater biofilms electrochemical activity, proportional to surface covering. The results presented in this work, obtained testing the ALVIM system both in laboratory and in an industrial environment, show that the sensor gives a fast and accurate response to biofilm growth, and that this response can be used to optimize cleaning treatments inside pipelines. Compared to the existing biofilm sensors, the proposed system show significant technological innovations, higher sensitivity and precision. © 2010 Elsevier Ltd. All rights reserved.

  17. Optimum Tolerance Design Using Component-Amount and Mixture-Amount Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Ozler, Cenk; Sehirlioglu, Ali Kemal

    2013-08-01

    One type of tolerance design problem involves optimizing component and assembly tolerances to minimize the total cost (sum of manufacturing cost and quality loss). Previous literature recommended using traditional response surface (RS) designs and models to solve this type of tolerance design problem. In this article, component-amount (CA) and mixture-amount (MA) approaches are proposed as more appropriate for solving this type of tolerance design problem. The advantages of the CA and MA approaches over the RS approach are discussed. Reasons for choosing between the CA and MA approaches are also discussed. The CA and MA approaches (experimental design, response modeling,more » and optimization) are illustrated using real examples.« less

  18. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids

    DOEpatents

    Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn M.; Tokumaru, Phil; Martin, Charles R.; Mitchell, David T.

    2006-10-17

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  19. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids

    DOEpatents

    Lewis, Nathan S [La Canada, CA; Freund, Michael S [Winnipeg, CA; Briglin, Shawn S [Chittenango, NY; Tokumaru, Phillip [Moorpark, CA; Martin, Charles R [Gainesville, FL; Mitchell, David [Newtown, PA

    2009-09-29

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  20. Process optimization for osmo-dehydrated carambola (Averrhoa carambola L) slices and its storage studies.

    PubMed

    Roopa, N; Chauhan, O P; Raju, P S; Das Gupta, D K; Singh, R K R; Bawa, A S

    2014-10-01

    An osmotic-dehydration process protocol for Carambola (Averrhoacarambola L.,), an exotic star shaped tropical fruit, was developed. The process was optimized using Response Surface Methodology (RSM) following Central Composite Rotatable Design (CCRD). The experimental variables selected for the optimization were soak solution concentration (°Brix), soaking temperature (°C) and soaking time (min) with 6 experiments at central point. The effect of process variables was studied on solid gain and water loss during osmotic dehydration process. The data obtained were analyzed employing multiple regression technique to generate suitable mathematical models. Quadratic models were found to fit well (R(2), 95.58 - 98.64 %) in describing the effect of variables on the responses studied. The optimized levels of the process variables were achieved at 70°Brix, 48 °C and 144 min for soak solution concentration, soaking temperature and soaking time, respectively. The predicted and experimental results at optimized levels of variables showed high correlation. The osmo-dehydrated product prepared at optimized conditions showed a shelf-life of 10, 8 and 6 months at 5 °C, ambient (30 ± 2 °C) and 37 °C, respectively.

Top