This report summarizes the results of a field demonstration conducted under the SITE program. The technology which was demonstrated was a solvent extraction technology developed by Terra-Kleen Response Group. Inc. to remove organic contaminants from soil. The technology employs...
Limited Digital Response. Satellite Technology Demonstration, Technical Report No. 0426.
ERIC Educational Resources Information Center
Laurence, Dennis; Woughter, William
The VHF system used by the Satellite Technology Demonstration had a built-in digital response system to collect data about student programing. This paper describes the hardware and software required to implement and operate the system. In addition, information on the applications of this device is provided along with the results of a field…
Mumford, Leslie; Lam, Rachel; Wright, Virginia; Chau, Tom
2014-08-01
This study applied response efficiency theory to create the Access Technology Delivery Protocol (ATDP), a child and family-centred collaborative approach to the implementation of access technologies. We conducted a descriptive, mixed methods case study to demonstrate the ATDP method with a 12-year-old boy with no reliable means of access to an external device. Evaluations of response efficiency, satisfaction, goal attainment, technology use and participation were made after 8 and 16 weeks of training with a custom smile-based access technology. At the 16 week mark, the new access technology offered better response quality; teacher satisfaction was high; average technology usage was 3-4 times per week for up to 1 h each time; switch sensitivity and specificity reached 78% and 64%, respectively, and participation scores increased by 38%. This case supports further development and testing of the ATDP with additional children with multiple or severe disabilities.
ERIC Educational Resources Information Center
Smith, Myron P.; Sosey, Phillip
The Satellite Technology Demonstration employs the latest telecommunications technology to deliver community oriented programing to rural areas. To meet the demand for contemporary broadcasts responsive to community needs, a studio was constructed in the Denver area to produce and coordinate future programs for the Rocky Mountains area. Problems…
DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.
The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...
2017-01-23
of classification technologies for Munitions Response (MR). This demonstration was designed to evaluate advanced classification methodology at the...advanced electromagnetic induction sensors and static, cued surveys to classify anomalies as either targets of interest (TOI) or non -TOI. Static data...17 5.1 Conceptual Experimental Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herter, Karen; Rasin, Josh; Perry, Tim
2009-11-30
The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricingmore » information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.« less
ERIC Educational Resources Information Center
Kiser, Angelina I. T.; Morrison, Eileen E.; Craven, Annette
2009-01-01
This study examined undergraduate university students' (n=121) responses to six ethical dilemmas within the realm of information technology (IT). Using a framework based on Kohlberg's stages of moral development, the study evaluated the level of moral development as demonstrated in these responses. An apriori coding system was used to analyze the…
2009-07-01
nonferrous metallic objects. The applicability of the instrument for ordnance and explosives (OE) detection has been widely demonstrated at sites...was cleared of all metallic items. This clearing of the metallic anomalies from the 2 acre Active Response Demonstration Site was broken into three...with their Multiple Towed Array Detection System (MTADS). This system is known for its effectiveness and ability to detect metallic items. Once the
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott
2012-01-01
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Astrophysics Data System (ADS)
Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
ERIC Educational Resources Information Center
Anderson, Frank; And Others
The Satellite Technology Demonstration (STD) of the Federation of Rocky Mountain States (FRMS) employed a technical delivery system to merge effectively hardware and software, products and services. It also needed a nontechnical component to insure product and service acceptance. Accordingly, the STD's Utilization Component was responsible for…
District Response to the Demonstration: The Practice of Technology.
ERIC Educational Resources Information Center
Fleming-McCormick, Treseen; And Others
This paper reports on how technology is currently used in nine schools that educators view as "promising" exemplars of technology use. Four elementary, three middle and two high schools from Arizona, California and Nevada (three schools from each state) were examined. Extensive document review and telephone interviews were conducted in…
Oil in Ice Project Final Report
2018-03-01
describes the various field technology demonstrations and provides an appendix with a description of 11 tactics using the most promising response...This report describes the various field technology demonstrations and provides an appendix with a description of 11 tactics using the most promising...water. RDC developed and evaluated two prototype temporary storage containers that could be mounted on the deck of a WLB. The tie-down method still
GPIM AF-M315E Propulsion System
NASA Technical Reports Server (NTRS)
Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris
2014-01-01
The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.
Reconfigurable and responsive droplet-based compound micro-lenses.
Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias
2017-03-07
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.
Private E-Mail Requests and the Diffusion of Responsibility.
ERIC Educational Resources Information Center
Barron, Greg; Yechiam, Eldad
2002-01-01
Discussion of e-mail technology and requesting information from multiple sources simultaneously focuses on an experiment demonstrating that addressing e-mails simultaneously to multiple recipients may actually reduce the number of helpful responses. Discusses diffusion of responsibility and implications for the application of social cueing theory…
2017-09-01
CANNOT BE ANALYZED ....... 17 7.0 COST BENEFIT ANALYSIS...20 7.3 COST BENEFIT ...sites and assess the performance and cost benefits of implementing AGC technologies. OBJECTIVES OF THE DEMONSTRATION The demonstrations were
1990 UPDATE OF THE US ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM
The Superfund Amendments and Reauthorization Act of 1986 (SARA) directed the U.S. Environmental Protection AGency (EPA) to establish an Alternative/Innovative Treatment Technology Research and Demonstration Program. The EPA's Office of Solid Waste and Emergency Response and the ...
Status of ERA Vehicle System Integration Technology Demonstrators
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Fernandez, Hamilton; Khorrami, Mehdi; James, Kevin D.; Thomas, Russell
2015-01-01
The Environmentally Responsible Aviation (ERA) Project within the Integrated Systems Research Program (ISRP) of the NASA Aeronautics Research Mission Directorate (ARMD) has the responsibility to explore and document the feasibility, benefits, and technical risk of air vehicle concepts and enabling technologies that will reduce the impact of aviation on the environment. The primary goal of the ERA Project is to select air vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions. In addition, the ERA Project will identify and mitigate technical risk and transfer knowledge to the aeronautics community at large so that new technologies and vehicle concepts can be incorporated into the future design of aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen
The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less
DOT National Transportation Integrated Search
2000-12-01
The focus of this paper is on advanced public transportation systems (APTS) technologies. It assesses the extent of their deployment and judges their degree of success. It covers APTS technologies in use only by bus and demand responsive service oper...
Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, T.; Gasper, W.; Lacher, L.
1999-07-06
The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) themore » adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-10-01
The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT andmore » E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.« less
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
NASA Astrophysics Data System (ADS)
Ivancic, W. D.; Paulsen, P. E.; Miller, E. M.; Sage, S. P.
This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe® satellites to obtain space-based sensor data.
Elsaesser, Linda-Jeanne; Bauer, Stephen
2012-07-01
ISO26000 provides guidance on effective organizational performance that recognizes social responsibility (including rights of persons with disabilities (PWD)), engages stakeholders, and contributes to sustainable development [1]. Millennium Development Goals 2010 state: while progress has been made, insufficient dedication to sustainable development, and inequalities to the most vulnerable people require attention [2]. World Report on Disability 2011 recommendations includes improved data collection and removal of barriers to rehabilitation that empower PWD [3]. The Assistive Technology Service Method (ATSM), Assistive Technology Device Classification (ATDC) and Matching Person and Technology (MPT) provide an evidence-based, standardized, internationally comparable framework to improve rehabilitation interventions [4-6]. The ATSM and ATDC support universal design (UD) principles and provision of universal technology. The MPT assures interventions are effective and satisfactory to end-users [7]. The ICF conceptual framework and common language are used throughout [8]. Research findings on healthcare needs are translated. ATSM applications in support of these findings are presented. National initiatives demonstrate the need and value of the ATSM as an evidence-based, user-centric, interdisciplinary method to improve individual and organizational performance for rehabilitation [including AT] services. Two Disability & Rehabilitation: Assistive Technology articles demonstrate ATSM and ATDC use to strengthen rehabilitation services and integrate Universal Design principles for socially responsible behavior.
Enhancing Ear and Hearing Health Access for Children With Technology and Connectivity.
Swanepoel, De Wet
2017-10-12
Technology and connectivity advances are demonstrating increasing potential to improve access of service delivery to persons with hearing loss. This article demonstrates use cases from community-based hearing screening and automated diagnosis of ear disease. This brief report reviews recent evidence for school- and home-based hearing testing in underserved communities using smartphone technologies paired with calibrated headphones. Another area of potential impact facilitated by technology and connectivity is the use of feature extraction algorithms to facilitate automated diagnosis of most common ear conditions from video-otoscopic images. Smartphone hearing screening using calibrated headphones demonstrated equivalent sensitivity and specificity for school-based hearing screening. Automating test sequences with a forced-choice response paradigm allowed persons with minimal training to offer screening in underserved communities. The automated image analysis and diagnosis system for ear disease demonstrated an overall accuracy of 80.6%, which is up to par and exceeds accuracy rates previously reported for general practitioners and pediatricians. The emergence of these tools that capitalize on technology and connectivity advances enables affordable and accessible models of service delivery for community-based ear and hearing care.
DOT National Transportation Integrated Search
2016-08-01
Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...
Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels
NASA Technical Reports Server (NTRS)
Russell, Rick
2012-01-01
This new start project (FY12-14) will design and demonstrate the ability of nondestructive evaluation sensors for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. Results will be correlated with other nondestructive evaluation technologies such as Acoustic Emission. The project will build upon a proof of concept study performed at KSC which demonstrated the ability of Magnetic Stress Gages to measure stresses at internal overwraps and upon current acoustic emission research being performed at WSTF; The gages will be produced utilizing Maundering Winding Magnetometer and/or Maundering Winding Magnetometer-array eddy current technology. The proof-of-concept study demonstrated a correlation between the sensor response and pressure or strain. The study also demonstrated the ability of Maundering Winding Magnetometer technology to monitor the stresses in a Composite Overwrapped Pressure Vessel at different orientations and depths. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs.
2009-07-01
of the 2 acre site was cleared of all metallic items. This clearing of the metallic anomalies from the 2 acre Active Response Demonstration Site... metallic items. Once the NRL MTADS surveyed the site, ATC collected their data and conducted another intrusive operation in order to remove any additional...anomalies. During each clearance operation, the exact placement of all the metallic items was carefully measured in order to create a GT for each
Initial flight qualification and operational maintenance of X-29A flight software
NASA Technical Reports Server (NTRS)
Earls, Michael R.; Sitz, Joel R.
1989-01-01
A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed.
2015-11-01
ground surface (bgs) and is composed of crystalline igneous and metamorphic rocks . The ranges are located on Cajon soils (Jacobs Engineering Group...Twentynine Palms, California ESTCP Project MR-201229 NOVEMBER 2015 Steve Stacy ARCADIS- US , Inc. Distribution Statement A REPORT DOCUMENTATION PAGE...geophysical classification (AGC) technologies for Munitions Response (MR). This demonstration was designed to evaluate the use of AGC methodology
Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat
2016-01-01
The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1984-01-01
Active controls technology is assessed based on a review of most of the wind-tunnel and flight tests and actual applications of active control concepts since the late sixties. The distinction is made between so-called ""rigid-body'' active control functions and those that involve significant modification of structural elastic response or stability. Both areas are reviewed although the focus is on the latter area. The basic goals and major results of the various studies or applications are summarized, and the anticipated use of active controls on current and near-future research and demonstration aircraft is discussed. Some of the ""holes'' remaining in the feasbility/benefits demonstration of active controls technology are examined.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.
2013-01-01
This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.
Hypersonic missile propulsion system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazmar, R.R.
1998-11-01
Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technologymore » base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.« less
Wiki Technology: A Virtual, Cooperative Learning Tool Used to Enhance Student Learning
ERIC Educational Resources Information Center
Barrera, Alessandra L.
2015-01-01
This study demonstrates the use of wiki technology (an editable webpage environment) to provide a virtual, asynchronous collaborative-learning environment for students for the purpose of working on course-content-focused study-guide questions. To analyze the effectiveness of this course tool, students' responses to various qualitative and…
Great Lakes Oil-In-Ice Demonstration 3
2013-10-01
October 2013 3 - Alpena Community College - CG Marine Safety Unit (MSU) Duluth, MN 2.2 Demonstration Concept This demonstration focused on...Marine Sanctuary Gabe Schneider Regional Rep for US Senator Carl Levin Dr. Olin Joynton President, Alpena Community College David Cummins Marine...Technology Advisor, Alpena CC Don MacMaster Dean of Workforce Development, Alpena CC Adam Wojciehowski Response & Security Coordinator - U.S. Operations
Responsibility and Responsiveness. Case Studies in Further Education.
ERIC Educational Resources Information Center
Kedney, Bob, Ed.; Parkes, David, Ed.
These eight case studies illustrate the capacity of United Kingdom Colleges of Further Education to respond effectively to training needs of local industry and commerce. Case 1 demonstrates shifts across a range of local authority colleges towards provision in the new information technologies and the service industries. Case 2 illustrates a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebber, Ian; Deru, Michael; Trenbath, Kim
NREL worked with the Bonneville Power Administration's Technology Innovation Office to demonstrate a turnkey, retrofit technology that combines demand response (DR) and energy efficiency (EE) benefits for HVAC and lighting in retail buildings. As a secondary benefit, we also controlled various plug loads and electric hot water heaters (EHWH). The technology demonstrated was Transformative Wave's eIQ Building Management System (BMS) automatically responding to DR signals. The BMS controlled the HVAC rooftop units (RTU) using the CATALYST retrofit solution also developed by Transformative Wave. The non-HVAC loads were controlled using both hardwired and ZigBee wireless communication. The wireless controllers, manufactured bymore » Autani, were used when the building's electrical layout was too disorganized to leverage less expensive hardwired control. The six demonstration locations are within the Seattle metro area. Based on the assets curtailed by the BMS at each location, we projected the DR resource. We were targeting a 1.7 W/ft2 shed for the summer Day-Ahead events and a 0.7 W/ft2 shed for the winter events. While summarized in Table ES-1, only one summer DR event was conducted at Casino #2.« less
NASA Technical Reports Server (NTRS)
Prater, T. J.; Werkheiser, N. J.; Ledbetter, F. E., III
2018-01-01
In-space manufacturing seeks to develop the processes, skill sets, and certification architecture needed to provide a rapid response manufacturing capability on long-duration exploration missions. The first 3D printer on the Space Station was developed by Made in Space, Inc. and completed two rounds of operation on orbit as part of the 3D Printing in Zero-G Technology Demonstration Mission. This Technical Publication provides a comprehensive overview of the technical objections of the mission, the two phases of hardware operation conducted on orbit, and the subsequent detailed analysis of specimens produced. No engineering significant evidence of microgravity effects on material outcomes was noted. This technology demonstration mission represents the first step in developing a suite of manufacturing capabilities to meet future mission needs.
Low-background detector arrays for infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.
1989-01-01
The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.
NASA Lewis Research Center Workshop on Forced Response in Turbomachinery
NASA Technical Reports Server (NTRS)
Stefko, George L. (Compiler); Murthy, Durbha V. (Compiler); Morel, Michael (Compiler); Hoyniak, Dan (Compiler); Gauntner, Jim W. (Compiler)
1994-01-01
A summary of the NASA Lewis Research Center (LeRC) Workshop on Forced Response in Turbomachinery in August, 1993 is presented. It was sponsored by the following NASA organizations: Structures, Space Propulsion Technology, and Propulsion Systems Divisions of NASA LeRC and the Aeronautics and Advanced Concepts & Technology Offices of NASA Headquarters. In addition, the workshop was held in conjunction with the GUIde (Government/Industry/Universities) Consortium on Forced Response. The workshop was specifically designed to receive suggestions and comments from industry on current research at NASA LeRC in the area of forced vibratory response of turbomachinery blades which includes both computational and experimental approaches. There were eight presentations and a code demonstration. Major areas of research included aeroelastic response, steady and unsteady fluid dynamics, mistuning, and corresponding experimental work.
Technology Assessment of Doe's 55-we Stirling Technology Demonstrator Convector (TDC)
NASA Technical Reports Server (NTRS)
Furlong, Richard; Shaltens, Richard
2000-01-01
The Department of Energy (DOE), Germantown, Maryland and the NASA Glenn Research Center (GRC), Cleveland, Ohio are developing a Stirling Convertor for an advanced radioisotope power system as a potential power source for spacecraft on-board electric power for NASA deep space science missions. The Stirling Convertor is being evaluated as an alternative high efficiency power source to replace Radioisotope Thermoelectric Generators (RTGs). Stirling Technology Company (STC), Kennewick, Washington, is developing the highly efficient, long life 55-We free-piston Stirling Convertor known as the Technology Demonstrator Convertor (TDC) under contract to DOE. GRC provides Stirling technology expertise under a Space Act Agreement with the DOE. Lockheed Martin Astronautics (LMA), Valley Forge, Pennsylvania is the current power system integrator for the Advanced Radioisotope Power System (ARPS) Project for the DOE. JPL is responsible for the Outer Planets/Solar Probe Project for NASA.
Technology Catalogue. First edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, asmore » well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).« less
Overview of the NASA Environmentally Responsible Aviation Project's Propulsion Technology Portfolio
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
2012-01-01
The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and the status and results to date will be presented.
Orbital storage and supply of subcritical liquid nitrogen
NASA Technical Reports Server (NTRS)
Aydelott, John C.
1990-01-01
Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.
Application of an access technology delivery protocol to two children with cerebral palsy.
Mumford, Leslie; Chau, Tom
2015-07-14
This study further delineates the merits and limitations of the Access Technology Delivery Protocol (ATDP) through its application to two children with severe disabilities. We conducted mixed methods case studies to demonstrate the ATDP with two children with no reliable means of access to an external device. Evaluations of response efficiency, satisfaction, goal attainment, technology use and participation were made after 8 and 16 weeks of training with custom access technologies. After 16 weeks, one child's switch offered improved response efficiency, high teacher satisfaction and increased participation. The other child's switch resulted in improved satisfaction and switch effectiveness but lower overall efficiency. The latter child was no longer using his switch by the end of the study. These contrasting findings indicate that changes to any contextual factors that may impact the user's switch performance should mandate a reassessment of the access pathway. Secondly, it is important to ensure that individuals who will be responsible for switch training be identified at the outset and engaged throughout the ATDP. Finally, the ATDP should continue to be tested with individuals with severe disabilities to build an evidence base for the delivery of response efficient access solutions. Implications for Rehabilitation A data-driven, comprehensive access technology delivery protocol for children with complex communication needs could help to mitigate technology abandonment. Successful adoption of an access technology requires personalized design, training of the technology user, the teaching staff, the caregivers and other communication partners, and integration with functional activities.
Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Terrance
This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, andmore » to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.« less
NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology
NASA Technical Reports Server (NTRS)
Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William
1987-01-01
A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Carrillo, Ismael M.; Jin, Xin
This document is the final report of a two-year development, test, and demonstration project, 'Cohesive Application of Standards- Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL's) Integrated Network Testbed for Energy Grid Research and Technology (INTEGRATE) initiative hosted at Energy Systems Integration Facility (ESIF). This project demonstrated techniques to control distribution grid events using the coordination of traditional distribution grid devices and high-penetration renewable resources and demand response. Using standard communication protocols and semantic standards, the project examined the use cases of high/low distribution voltage, requests for volt-ampere-reactive (VAR)more » power support, and transactive energy strategies using Volttron. Open source software, written by EPRI to control distributed energy resources (DER) and demand response (DR), was used by an advanced distribution management system (ADMS) to abstract the resources reporting to a collection of capabilities rather than needing to know specific resource types. This architecture allows for scaling both horizontally and vertically. Several new technologies were developed and tested. Messages from the ADMS based on the common information model (CIM) were developed to control the DER and DR management systems. The OpenADR standard was used to help manage grid events by turning loads off and on. Volttron technology was used to simulate a homeowner choosing the price at which to enter the demand response market. Finally, the ADMS used newly developed algorithms to coordinate these resources with a capacitor bank and voltage regulator to respond to grid events.« less
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.
NASA Astrophysics Data System (ADS)
Coughlan, J. C.
2005-12-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions
NASA Technical Reports Server (NTRS)
Coughlan, Joseph C.
2005-01-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.
Automated Demand Response for Energy Sustainability Cost and Performance Report
2015-09-01
Install solar thermal system for pool heating in fitness Bldg 325 2022 $ 21,359 $ 7,199 3.6 yrs Renewable energy project p. 124- 126 Note: All data...and R. Bienert, 2011. Smart Grid Standards and Systems Interoperability: A Precedent with OpenADR, Lawrence Berkeley National Laboratory, LBNL...response (DR) system at Fort Irwin, CA. This demonstration employed industry-standard OpenADR (Open Automated Demand Response) technology to perform
Aerospace Communications Security Technologies Demonstrated
NASA Technical Reports Server (NTRS)
Griner, James H.; Martzaklis, Konstantinos S.
2003-01-01
In light of the events of September 11, 2001, NASA senior management requested an investigation of technologies and concepts to enhance aviation security. The investigation was to focus on near-term technologies that could be demonstrated within 90 days and implemented in less than 2 years. In response to this request, an internal NASA Glenn Research Center Communications, Navigation, and Surveillance Aviation Security Tiger Team was assembled. The 2-year plan developed by the team included an investigation of multiple aviation security concepts, multiple aircraft platforms, and extensively leveraged datalink communications technologies. It incorporated industry partners from NASA's Graphical Weather-in-the-Cockpit research, which is within NASA's Aviation Safety Program. Two concepts from the plan were selected for demonstration: remote "black box," and cockpit/cabin surveillance. The remote "black box" concept involves real-time downlinking of aircraft parameters for remote monitoring and archiving of aircraft data, which would assure access to the data following the loss or inaccessibility of an aircraft. The cockpit/cabin surveillance concept involves remote audio and/or visual surveillance of cockpit and cabin activity, which would allow immediate response to any security breach and would serve as a possible deterrent to such breaches. The datalink selected for the demonstrations was VDL Mode 2 (VHF digital link), the first digital datalink for air-ground communications designed for aircraft use. VDL Mode 2 is beginning to be implemented through the deployment of ground stations and aircraft avionics installations, with the goal of being operational in 2 years. The first demonstration was performed December 3, 2001, onboard the LearJet 25 at Glenn. NASA worked with Honeywell, Inc., for the broadcast VDL Mode 2 datalink capability and with actual Boeing 757 aircraft data. This demonstration used a cockpitmounted camera for video surveillance and a coupling to the intercom system for audio surveillance. Audio, video, and "black box" data were simultaneously streamed to the ground, where they were displayed to a Glenn audience of senior management and aviation security team members.
2011-06-06
8 Figure 2-10 – Peak anomaly amplitude results from the GEMTADS and pit measurements of the 4.2-in mortar (open diamonds). The modeled system...projectiles in the FEW GPO. The modeled system response for the most (red) and least (blue) favorable orientations of the mortar are shown as lines...and measurements of the emplaced 75-mm projectiles in the FEW GPO. The modeled system response for the most (red) and least (blue) favorable
2016 Consequence Management Advisory Division's (CMAD) Annual Report
CMAD annual report for 2016 which covers activities such as radiation task force leaders annual training, national criminal enforcement response team annual training, field technology demonstrations, and a new method to detect perfluorinated compounds.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... technology, e.g., permitting electronic submission of responses. This notice also lists the following.... Data will be gathered through a variety of methods including informational interviews, direct...
Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes
NASA Technical Reports Server (NTRS)
Jardine, Peter
2014-01-01
Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.
2016-01-01
The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.
DOT National Transportation Integrated Search
1999-08-01
The Office of Railroad Development of the Federal Railroad Administration conducts research, development, test, and evaluation projects to directly support the Federal Railroad Administrations safety responsibility and to enhance the railroad system,...
Recent progress in flexible OLED displays
NASA Astrophysics Data System (ADS)
Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.
2001-09-01
Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.
Status of ERA Airframe Technology Demonstrators
NASA Technical Reports Server (NTRS)
Davis, Pamela; Jegley, Dawn; Rigney, Tom
2015-01-01
NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. The Airframe Technology subproject contains two elements. Under the Damage Arresting Composite Demonstration an advanced material system is being explored which will lead to lighter airframes that are more structural efficient than the composites used in aircraft today. Under the Adaptive Compliant Trailing Edge Flight Experiment a new concept of a flexible wing trailing edge is being evaluated which will reduce weight and improve aerodynamic performance. This presentation will describe the development these two airframe technologies.
NASA Environmentally Responsible Aviation's Highly-Loaded Front Block Compressor Demonstration
NASA Technical Reports Server (NTRS)
Celestina, Mark
2017-01-01
The ERA project was created in 2009 as part of NASAs Aeronautics Research Mission Directorates (ARMD) Integrated Systems Aviation Program (IASP). The purpose of the ERA project was to explore and document the feasibility, benefit, and technical risk of vehicles concepts and enabling technologies to reduce aviations impact on the environment. The metrics for this technology is given in Figure 1 with the N+2 metrics highlighted in green. It is anticipated that the United States air transportation system will continue to expand significantly over the next few decades thus adversely impacting the environment unless new technology is incorporated to simultaneously reduce nitrous oxides (NOx), noise and fuel consumption. In order to achieve the overall goals and meet the technology insertion challenges, these goals were divided into technical challenges that were to be achieved during the execution of the ERA project. Technical challenges were accomplished through test campaigns conducted by Integrated Technology Demonstration (ITDs). ERAs technical performance period ended in 2015.
Synthetic Fuel Blend Demonstration Program at Fort Bliss, Texas
2010-05-01
A. Muzzell National Automotive Center U.S. Army RDECOM Warren, MI for U.S. Army TARDEC Force Projection Technologies Warren, Michigan...Projection Technologies Warren, Michigan Contract No. DAAE-07-99-C-L053 (WD23 – Task XII) SwRI® Project No. 08.03227.23.250 Approved for public...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 764
2006-04-01
Attainable accuracy of depth (z) ± 0.3 meter Detection performance for ferrous and nonferrous metals : will detect ammunition components 20-mm...ASSOCIATES, INC. 6832 OLD DOMINION DRIVE MCLEAN, VA 22101 TECHNOLOGY TYPE/PLATFORM: MULTI CHANNEL DETECTOR SYSTEM (AMOS)/TOWED PREPARED BY: U.S...Multi Channel Detector System (AMOS)/Towed, MEC 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT Unclassified b. ABSTRACT
Laser Imaging Video Camera Sees Through Fire, Fog, Smoke
NASA Technical Reports Server (NTRS)
2015-01-01
Under a series of SBIR contracts with Langley Research Center, inventor Richard Billmers refined a prototype for a laser imaging camera capable of seeing through fire, fog, smoke, and other obscurants. Now, Canton, Ohio-based Laser Imaging through Obscurants (LITO) Technologies Inc. is demonstrating the technology as a perimeter security system at Glenn Research Center and planning its future use in aviation, shipping, emergency response, and other fields.
Technology Trends and Remote Sensing
NASA Technical Reports Server (NTRS)
Wegener, Steve; Hipskind, R. Stephen (Technical Monitor)
2001-01-01
The science and application of remote sensing is flourishing in the digital age. Geographical information systems can provide a broad range of information tailored to the specific needs of disaster managers. Recent advances in airborne platforms, sensors and information technologies have come together provide the ability to put geo-registered, multispectral imagery on the web in near real-time. Highlights of a demonstration of NASA's First Response Experiment (FiRE) will be presented.
NASA Technical Reports Server (NTRS)
Van Zante, Dale; Suder, Kenneth
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Delaat, John C.
2012-01-01
The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and highlights of the results obtained during the first phase of ERA will be presented.
NASA Technical Reports Server (NTRS)
Van Zante, Dale E.; Suder, Kenneth L.
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.
1991-12-31
The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protectionmore » Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.
1991-01-01
The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protectionmore » Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.« less
Demonstration of Unmanned Aircraft Systems Use for Traffic Incident Management (UAS-TIM)
DOT National Transportation Integrated Search
2017-12-01
Previous investigations into technologies that can improve incident response, monitoring, and clearance resulted in the potential application of Unmanned Aerial System (UAS) for use in Traffic Incident Management (TIM). An initial investigation of UA...
EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA
The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...
Alonso-Alconada, L; Barbazan, J; Candamio, S; Falco, J L; Anton, C; Martin-Saborido, C; Fuster, G; Sampedro, M; Grande, C; Lado, R; Sampietro-Colom, L; Crego, E; Figueiras, S; Leon-Mateos, L; Lopez-Lopez, R; Abal, M
2018-05-01
Management of metastatic disease in oncology includes monitoring of therapy response principally by imaging techniques like CT scan. In addition to some limitations, the irruption of liquid biopsy and its application in personalized medicine has encouraged the development of more efficient technologies for prognosis and follow-up of patients in advanced disease. PrediCTC constitutes a panel of genes for the assessment of circulating tumor cells (CTC) in metastatic colorectal cancer patients, with demonstrated improved efficiency compared to CT scan for the evaluation of early therapy response in a multicenter prospective study. In this work, we designed and developed a technology transfer strategy to define the market opportunity for an eventual implementation of PrediCTC in the clinical practice. This included the definition of the regulatory framework, the analysis of the regulatory roadmap needed for CE mark, a benchmarking study, the design of a product development strategy, a revision of intellectual property, a cost-effectiveness study and an expert panel consultation. The definition and analysis of an appropriate technology transfer strategy and the correct balance among regulatory, financial and technical determinants are critical for the transformation of a promising technology into a viable technology, and for the decision of implementing liquid biopsy in the monitoring of therapy response in advanced disease.
Environmentally Responsible Aviation N plus 2 Advanced Vehicle Study
NASA Technical Reports Server (NTRS)
Drake, Aaron; Harris, Christopher A.; Komadina, Steven C.; Wang, Donny P.; Bender, Anne M.
2013-01-01
This is the Northrop Grumman final report for the Environmentally Responsible Aviation (ERA) N+2 Advanced Vehicle Study performed for the National Aeronautics and Space Administration (NASA). Northrop Grumman developed advanced vehicle concepts and associated enabling technologies with a high potential for simultaneously achieving significant reductions in emissions, airport area noise, and fuel consumption for transport aircraft entering service in 2025. A Preferred System Concept (PSC) conceptual design has been completed showing a 42% reduction in fuel burn compared to 1998 technology, and noise 75dB below Stage 4 for a 224- passenger, 8,000 nm cruise transport aircraft. Roadmaps have been developed for the necessary technology maturation to support the PSC. A conceptual design for a 55%-scale demonstrator aircraft to reduce development risk for the PSC has been completed.
Haudek, Kevin C.; Kaplan, Jennifer J.; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark
2011-01-01
Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students’ thinking, but are time- and resource-intensive to evaluate. This report describes the initial meeting of a National Science Foundation–funded cross-institutional collaboration of interdisciplinary science, technology, engineering, and mathematics (STEM) education researchers interested in exploring the use of automated text analysis to evaluate constructed-response assessments. Participants at the meeting shared existing work on lexical analysis and concept inventories, participated in technology demonstrations and workshops, and discussed research goals. We are seeking interested collaborators to join our research community. PMID:21633063
Haudek, Kevin C; Kaplan, Jennifer J; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark
2011-01-01
Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students' thinking, but are time- and resource-intensive to evaluate. This report describes the initial meeting of a National Science Foundation-funded cross-institutional collaboration of interdisciplinary science, technology, engineering, and mathematics (STEM) education researchers interested in exploring the use of automated text analysis to evaluate constructed-response assessments. Participants at the meeting shared existing work on lexical analysis and concept inventories, participated in technology demonstrations and workshops, and discussed research goals. We are seeking interested collaborators to join our research community.
Users speak out on technology deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Mark; Prochaska, Marty; Cromer, Paul
2001-02-25
This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less
Demonstrating artificial intelligence for space systems - Integration and project management issues
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Difilippo, Denise M.
1990-01-01
As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.
Smart-actuated continuous moldline technology (CMT) mini wind tunnel test
NASA Astrophysics Data System (ADS)
Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.
1999-07-01
The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.
Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T
2018-05-10
The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.
Collaboration in Research and Engineering for Advanced Technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrieling, P. Douglas
SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.
Demonstration/Validation of Long-Term Monitoring Using Wells Installed by Direct-Push Technologies
2008-04-01
procedures for technology startup , and maintenance are presented in detail in Section 5.2 of this document. 1.6 Calculation of Data Quality...and university statisticians . Results are described as follows: For the Dover and Hanscom sites, the data or log data was tested for normality...to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
Artificial intelligence in a mission operations and satellite test environment
NASA Technical Reports Server (NTRS)
Busse, Carl
1988-01-01
A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.
Bioelectronic Sensors and Devices
NASA Astrophysics Data System (ADS)
Reed, Mark
Nanoscale electronic devices have recently enabled the ability to controllably probe biological systems, from the molecular to the cellular level, opening up new applications and understanding of biological function and response. This talk reviews some of the advances in the field, ranging from diagnostic and therapeutic applications, to cellular manipulation and response, to the emulation of biological response. In diagnostics, integrated nanodevice biosensors compatible with CMOS technology have achieved unprecedented sensitivity, enabling a wide range of label-free biochemical and macromolecule sensing applications down to femtomolar concentrations. These systems have demonstrated integrated assays of biomarkers at clinically important concentrations for both diagnostics and as a quantitative tool for drug design and discovery. Cellular level response can also be observed, including immune response function and dynamics. Finally, the field is beginning to create devices that emulate function, and the demonstration of a solid state artificial ion channel will be discussed.
Development of Metal Casting Molds By Sol-Gel Technology Using Planetary Resources
NASA Technical Reports Server (NTRS)
Sibille, L.; Sen, S.; Curreri, P.; Stefanescu, D.
2000-01-01
Metals extracted from planetary soils will eventually need to be casted and shaped in-situ to produce useful products. In response to this challenge, we propose to develop and demonstrate the manufacturing of a specific product using Lunar and Martian soil simulants, i.e. a mold for the casting of metal and alloy parts, which will be an indispensable tool for the survival of outposts on the Moon and Mars. Drawing from our combined knowledge of sol-gel and metal casting technologies, we set out to demonstrate the extraordinary potential of mesoporous materials such as aerogels to serve as efficient casting molds as well as fulfilling numerous other needs of an autonomous planetary outpost.
Malinowski, Douglas P
2007-05-01
In recent years, the application of genomic and proteomic technologies to the problem of breast cancer prognosis and the prediction of therapy response have begun to yield encouraging results. Independent studies employing transcriptional profiling of primary breast cancer specimens using DNA microarrays have identified gene expression profiles that correlate with clinical outcome in primary breast biopsy specimens. Recent advances in microarray technology have demonstrated reproducibility, making clinical applications more achievable. In this regard, one such DNA microarray device based upon a 70-gene expression signature was recently cleared by the US FDA for application to breast cancer prognosis. These DNA microarrays often employ at least 70 gene targets for transcriptional profiling and prognostic assessment in breast cancer. The use of PCR-based methods utilizing a small subset of genes has recently demonstrated the ability to predict the clinical outcome in early-stage breast cancer. Furthermore, protein-based immunohistochemistry methods have progressed from using gene clusters and gene expression profiling to smaller subsets of expressed proteins to predict prognosis in early-stage breast cancer. Beyond prognostic applications, DNA microarray-based transcriptional profiling has demonstrated the ability to predict response to chemotherapy in early-stage breast cancer patients. In this review, recent advances in the use of multiple markers for prognosis of disease recurrence in early-stage breast cancer and the prediction of therapy response will be discussed.
V.C.3 Technology Validation : Fuel Cell Bus Evaluations
DOT National Transportation Integrated Search
2005-01-06
Based on the results of this analysis and the response from the project partners, the SunLine demonstration was deemed to be a success. Although it was a prototype (or pre-commercial) vehicle, the ThunderPower bus operated in revenue service at a rel...
EPA'S URBAN RESEARCH PROGRAM IN BMPS AND RESTORATION FOR WATER QUALITY IMPROVEMENT
The Urban Watershed Management Branch is responsible for developing, and demonstrating technologies and methods required to manage the risk to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed at rest...
EPA'S URBAN RESEARCH PROGRAM IN BMPS AND RESTORATION FOR WATER QUALITY IMPROVEMENT
The Urban Watershed Management Branch is responsible for developing, and demonstrating technologies and methods required to managing the risk to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed at re...
Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes
NASA Astrophysics Data System (ADS)
Armin, Ardalan; Jansen-van Vuuren, Ross D.; Kopidakis, Nikos; Burn, Paul L.; Meredith, Paul
2015-02-01
Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is material-agnostic and applicable to other disordered and polycrystalline semiconductors.
Narrowband Light Detection via Internal Quantum Efficiency Manipulation of Organic Photodiodes
Armin, A.; Jansen-van Vuuren, R. D.; Kopidakis, N.; ...
2015-02-01
Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (inputmore » filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is materialagnostic and applicable to other disordered and polycrystalline semiconductors.« less
Use of BRFSS data and GIS technology for rapid public health response during natural disasters.
Holt, James B; Mokdad, Ali H; Ford, Earl S; Simoes, Eduardo J; Mensah, George A; Bartoli, William P
2008-07-01
Having information about preexisting chronic diseases and available public health assets is critical to ensuring an adequate public health response to natural disasters and acts of terrorism. We describe a method to derive this information using a combination of data from the Behavioral Risk Factor Surveillance System and geographic information systems (GIS) technology. Our demonstration focuses on counties in states that are within 100 miles of the Gulf of Mexico and the Atlantic Ocean coastlines. To illustrate the flexible nature of planning made possible through the interactive use of a GIS, we use a hypothetical scenario of a hurricane making landfall in Myrtle Beach, South Carolina.
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1984-01-01
The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.
Pietsch, Hollie A; Bosch, Kelly E; Weyland, David R; Spratley, E Meade; Henderson, Kyvory A; Salzar, Robert S; Smith, Terrance A; Sagara, Brandon M; Demetropoulos, Constantine K; Dooley, Christopher J; Merkle, Andrew C
2016-11-01
Three laboratory simulated sub-injurious under-body blast (UBB) test conditions were conducted with whole-body Post Mortem Human Surrogates (PMHS) and the Warrior Assessment Injury Manikin (WIAMan) Technology Demonstrator (TD) to establish and assess UBB biofidelity of the WIAMan TD. Test conditions included a rigid floor and rigid seat with independently varied pulses. On the floor, peak velocities of 4 m/s and 6 m/s were applied with a 5 ms time to peak (TTP). The seat peak velocity was 4 m/s with varied TTP of 5 and 10 ms. Tests were conducted with and without personal protective equipment (PPE). PMHS response data was compiled into preliminary biofidelity response corridors (BRCs), which served as evaluation metrics for the WIAMan TD. Each WIAMan TD response was evaluated against the PMHS preliminary BRC for the loading and unloading phase of the signal time history using Correlation Analysis (CORA) software to assign a numerical score between 0 and 1. A weighted average of all responses was calculated to determine body region and whole body biofidelity scores for each test condition. The WIAMan TD received UBB biofidelity scores of 0.62 in Condition A, 0.59 in Condition B, and 0.63 in Condition C, putting it in the fair category (0.44-0.65). Body region responses with scores below a rating of good (0.65-0.84) indicate potential focus areas for the next generation of the WIAMan design.
Eclipse project QF-106 and C-141A climbs out under tow on first tethered flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
TOW LAUNCH DEMONSTRATION - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 climbs out under tow by a USAF C-141A on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Low-Dimensional Nanomaterials and Molecular Dielectrics for Radiation-Hard Electronics
NASA Astrophysics Data System (ADS)
McMorrow, Julian
The electronic materials research driving Moore's law has provided several decades of increasingly powerful yet simultaneously miniaturized computer technologies. As we approach the physical and practical limits of what can be accomplished with silicon electronics, we look to new materials to drive innovation in future electronic applications. New materials paradigms require the development of understanding from first principles to the demonstration of applications that comes with mature technologies. Semiconducting single-walled carbon nanotubes (SWCNTs), single- and few-layer molybdenum disulfide (MoS2) and self-assembled nanodielectric (SAND) gate materials have all made significant impacts in the research field of unconventional electronic materials. The materials selection, interfaces between materials, processing steps to assemble them, and their interaction with their environment all have significant bearing on the operation of the overall device. Operating in harsh radiation environments, like those of satellites orbiting the Earth, present unique challenges to the functionality and reliability of electronic devices. Because the future of space-bound electronics is often informed by the technology of terrestrial devices, a proactive approach is adopted to identify and understand the radiation response of new materials systems as they emerge and develop. The work discussed here drives the innovation and development of multiple nanomaterial based electronic technologies while simultaneously exploring their relevant radiation response mechanisms. First, collaborative efforts result in the demonstration of a SWCNT-based circuit technology that is solution processed, large-area, and compatible with flexible substrates. The statistical characterization of SWCNT transistors enables the development of robust doping and encapsulation schemes, which make the SWCNT circuits stable, scalable, and low-power. These SWCNTs are then integrated into static random access memory (SRAM) cells, an accomplishment that illustrates the technological relevance of this work by implementing a highly utilized component of modern day computing. Next, these SRAM devices demonstrate functionality as true random number generators (TRNGs), which are critical components in cryptography and encryption. The randomness of these SWCNT TRNGs is verified by a suite of statistical tests. This achievement has implications for securing data and communication in future solution-processed, large-area, flexible electronics. The unprecedented integration achieved by the underlying SWCNT doping and encapsulation motivates the study of this technology in a radiation environment. Doing so results in an understanding of the fundamental charge trapping mechanisms responsible for the radiation response in this system. The integrated nature of these devices enables, for the first time, the observation of system-level effects in a SWCNT integrated circuit technology. This technology is found to be total ionizing dose-hard, a promising result for the adoption of SWCNTs in future space-bound applications. Compared to SWCNTs, the field of MoS2 electronics is relatively nascent. As a result, studies of radiation effects in MoS2 devices focus on the fundamental mechanisms at play in the materials system. Here, we reveal the critical role of atmospheric adsorbates in the radiation effects of MoS2 transistors by measuring their response to vacuum ultraviolet radiation. These results highlight the importance of controlling the atmosphere of MoS2 devices during irradiation. Furthermore, we make recommendations for radiation-hard MoS2-based devices in the future as the technology continues to mature. One such recommendation is the incorporation of specialized dielectrics with proven radiation hardness. To this end, we address the materials integration challenge of incorporating SAND gate dielectrics on arbitrary substrates. We explore a novel approach for preparing metal substrates for SAND deposition, supporting the SAND superlattice structure and its superlative electronic properties on a metal surface. This result is critical for conducting fundamental transport studies when integrating SAND with novel semiconductor materials, as well as enabling complex circuit integration and SAND on flexible substrates. Altogether, these works drive the integration of novel nanoelectronic materials for future electronics while providing an understanding of their varying radiation response mechanisms to enable their adoption in future space-bound applications.
2017-06-01
DGM Digital Geophysical Mapping DTSC California Department of Toxic Substances Control EM Electromagnetic EPA U.S. Environmental...land mines, pyrotechnics, bombs , and demolition materials. Surface sweeps identified MEC items throughout Units 11 and 12, including 37mm, 40mm, 57mm...electromagnetic ( EM ) data are being collected. If no GPS readings are collected during that period, the most recent GPS position and the platform
NASA Technical Reports Server (NTRS)
Dominick, Jeffrey; Bull, John; Healey, Kathleen J.
1990-01-01
The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.
Reconfigurable and responsive droplet-based compound micro-lenses
Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias
2017-01-01
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven;
2015-01-01
LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.
Enzyme-Responsive Delivery of Multiple Proteins with Spatiotemporal Control.
Zhu, Suwei; Nih, Lina; Carmichael, S Thomas; Lu, Yunfeng; Segura, Tatiana
2015-06-24
Orchestrated biological materials such as enzymes and growth factors regulate the growth of tissues and organs. A chirality-controlled, single-protein technology is devised to tailor the spatiotemporally defined delivery of therapeutic proteins in response to natural enzymes present at wound sites. Sustained delivery of one protein and sequential delivery of two proteins are demonstrated for stroke and skin wound healing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley
NASA Technical Reports Server (NTRS)
DeBusk, Wesley M.
2009-01-01
Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.
NASA Astrophysics Data System (ADS)
Chittleborough, Gail
2014-06-01
The Australian Government initiative, Teaching Teachers for the Future (TTF), was a targeted response to improve the preparation of future teachers with integrating technology into their practice. This paper reports on TTF research involving 28 preservice teachers undertaking a chemistry curriculum studies unit that adopted a technological focus. For chemistry teaching the results showed that technological knowledge augmented the fundamental pedagogical knowledge necessary for teaching chemistry content. All the pre-service teachers demonstrated an understanding of the role of technology in teaching and learning and reported an increased skill level in a variety of technologies, many they had not used previously. Some students were sceptical about this learning when schools did not have technological resources available. This paper argues that teacher education courses should include technological skills that match those available in schools, as well as introduce new technologies to support a change in the culture of using technology in schools.
Design definition study of a lift/cruise fan technology V/STOL airplane: Summary
NASA Technical Reports Server (NTRS)
Zabinsky, J. M.; Higgins, H. C.
1975-01-01
A two-engine three-fan V/STOL airplane was designed to fulfill naval operational requirements. A multimission airplane was developed from study of specific point designs. Based on the multimission concept, airplanes were designed to demonstrate and develop the technology and operational procedures for this class of aircraft. Use of interconnected variable pitch fans led to a good balance between high thrust with responsive control and efficient thrust at cruise speeds. The airplanes and their characteristics are presented.
Infusing Technology into Customer Relationships: Balancing High-Tech and High-Touch
NASA Astrophysics Data System (ADS)
Salomann, Harald; Kolbe, Lutz; Brenner, Walter
In today's business environment, self-service is becoming increasingly important. In order to promote their self-service activities, banks have created online-only products and airlines offer exclusive discounts for passengers booking online. Self-service technologies' practical applications demonstrate this approach's potential. For example, Amtrak introduced an IVR (Interactive Voice Response) system, allowing cost savings of 13m; likewise Royal Mail installed an IVR system leading to a reduction of its customer service costs by 25% (Economist 2004).
AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE
NASA Technical Reports Server (NTRS)
Liever, P. A.; Sheta, E. F.; Habchi, S. D.
2006-01-01
A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.
A Community-Based Approach to Leading the Nation in Smart Energy Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2013-12-31
Project Objectives The AEP Ohio gridSMART® Demonstration Project (Project) achieved the following objectives: • Built a secure, interoperable, and integrated smart grid infrastructure in northeast central Ohio that demonstrated the ability to maximize distribution system efficiency and reliability and consumer use of demand response programs that reduced energy consumption, peak demand, and fossil fuel emissions. • Actively attracted, educated, enlisted, and retained consumers in innovative business models that provided tools and information reducing consumption and peak demand. • Provided the U.S. Department of Energy (DOE) information to evaluate technologies and preferred smart grid business models to be extended nationally. Projectmore » Description Ohio Power Company (the surviving company of a merger with Columbus Southern Power Company), doing business as AEP Ohio (AEP Ohio), took a community-based approach and incorporated a full suite of advanced smart grid technologies for 110,000 consumers in an area selected for its concentration and diversity of distribution infrastructure and consumers. It was organized and aligned around: • Technology, implementation, and operations • Consumer and stakeholder acceptance • Data management and benefit assessment Combined, these functional areas served as the foundation of the Project to integrate commercially available products, innovative technologies, and new consumer products and services within a secure two-way communication network between the utility and consumers. The Project included Advanced Metering Infrastructure (AMI), Distribution Management System (DMS), Distribution Automation Circuit Reconfiguration (DACR), Volt VAR Optimization (VVO), and Consumer Programs (CP). These technologies were combined with two-way consumer communication and information sharing, demand response, dynamic pricing, and consumer products, such as plug-in electric vehicles and smart appliances. In addition, the Project incorporated comprehensive cyber security capabilities, interoperability, and a data assessment that, with grid simulation capabilities, made the demonstration results an adaptable, integrated solution for AEP Ohio and the nation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is beingmore » implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.« less
A case study for teaching information literacy skills.
Kingsley, Karla V; Kingsley, Karl
2009-01-29
The Internet has changed contemporary workplace skills, resulting in a need for proficiency with specific digital, online and web-based technologies within the fields of medicine, dentistry and public health. Although younger students, generally under 30 years of age, may appear inherently comfortable with the use of technology-intensive environments and digital or online search methods, competence in information literacy among these students may be lacking. This project involved the design and assessment of a research-based assignment to help first-year, graduate-level health science students to develop and integrate information literacy skills with clinical relevance. One cohort of dental students (n = 78) was evaluated for this project and the results demonstrate that although all students were able to provide the correct response from the content-specific, or technology-independent, portion of the assignment, more than half (54%) were unable to demonstrate competence with a web-based, technology-dependent section of this assignment. No correlation was found between any demographic variable measured (gender, age, or race). More evidence is emerging that demonstrates the need for developing curricula that integrates new knowledge and current evidence-based practices and technologies, traditionally isolated from graduate and health-care curricula, that can enhance biomedical and clinical training for students. This study provides evidence, critical for the evaluation of new practices, which can promote and facilitate the integration of information literacy into the curriculum.
A case study for teaching information literacy skills
Kingsley, Karla V; Kingsley, Karl
2009-01-01
Background The Internet has changed contemporary workplace skills, resulting in a need for proficiency with specific digital, online and web-based technologies within the fields of medicine, dentistry and public health. Although younger students, generally under 30 years of age, may appear inherently comfortable with the use of technology-intensive environments and digital or online search methods, competence in information literacy among these students may be lacking. Methods This project involved the design and assessment of a research-based assignment to help first-year, graduate-level health science students to develop and integrate information literacy skills with clinical relevance. Results One cohort of dental students (n = 78) was evaluated for this project and the results demonstrate that although all students were able to provide the correct response from the content-specific, or technology-independent, portion of the assignment, more than half (54%) were unable to demonstrate competence with a web-based, technology-dependent section of this assignment. No correlation was found between any demographic variable measured (gender, age, or race). Conclusion More evidence is emerging that demonstrates the need for developing curricula that integrates new knowledge and current evidence-based practices and technologies, traditionally isolated from graduate and health-care curricula, that can enhance biomedical and clinical training for students. This study provides evidence, critical for the evaluation of new practices, which can promote and facilitate the integration of information literacy into the curriculum. PMID:19178715
Hagerstown Community College: Building a High Tech Base.
ERIC Educational Resources Information Center
Regional Technology Strategies, Inc., Carrboro, NC.
This document describes the Advanced Technology Center (ATC) at Hagerstown Community College (HCC) (Maryland), created in 1990 as a response to the region's economic decline. The ATC is a partnership between the College, industry, and government to help promote industrial modernization and regional competitiveness through training, demonstration,…
U.S. EPA'S URBAN WATERSHED RESEARCH PROGRAM IN BMPS AND RESTORATION FOR WATER QUALITY MANAGEMENT
The U.S. EPA's Urban Watershed Management Branch is responsible for developing and demonstrating technologies and methods required managing the risk to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed...
Demonstration the Class, Object and Inheritance Concepts by Software
ERIC Educational Resources Information Center
Udvaros, József; Gubán, Miklós
2016-01-01
The world all around us is rapidly developing. We are witnessing the rapid evolution of technology and communication. This means new challenges and responsibilities to future strategies and attitudes. Today's operating systems and development environments apply the principle of OOP; therefore today's developments are inconceivable without the…
Smoke Sense Demonstration at National Academies of Science Citizen Science Expo
Exposure to wildland fire smoke can be sudden and unexpected, last hours to weeks, and affect communities that may or may not have a public health response plan to reduce the adverse impacts of smoke exposure. EPA is continuing to advance the science and technology required to u...
32 CFR 37.575 - What are my responsibilities for determining milestone payment amounts?
Code of Federal Regulations, 2013 CFR
2013-07-01
... SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business... agreement or in separate instructions to the post-award administrative agreements officer. That will help..., observable and verifiable technical outcomes (e.g., demonstrations, tests, or data analysis) that you...
32 CFR 37.575 - What are my responsibilities for determining milestone payment amounts?
Code of Federal Regulations, 2014 CFR
2014-07-01
... SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business... agreement or in separate instructions to the post-award administrative agreements officer. That will help..., observable and verifiable technical outcomes (e.g., demonstrations, tests, or data analysis) that you...
32 CFR 37.575 - What are my responsibilities for determining milestone payment amounts?
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business... agreement or in separate instructions to the post-award administrative agreements officer. That will help..., observable and verifiable technical outcomes (e.g., demonstrations, tests, or data analysis) that you...
32 CFR 37.575 - What are my responsibilities for determining milestone payment amounts?
Code of Federal Regulations, 2012 CFR
2012-07-01
... SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business... agreement or in separate instructions to the post-award administrative agreements officer. That will help..., observable and verifiable technical outcomes (e.g., demonstrations, tests, or data analysis) that you...
32 CFR 37.575 - What are my responsibilities for determining milestone payment amounts?
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business... agreement or in separate instructions to the post-award administrative agreements officer. That will help..., observable and verifiable technical outcomes (e.g., demonstrations, tests, or data analysis) that you...
Health care technology adoption and diffusion in a social context.
Coyte, Peter C; Holmes, Dave
2007-02-01
This article highlights mechanisms that may further sustainable technological development for the 21st century. The distributional effects associated with the adoption and diffusion of health care technologies are addressed wherein the capacity to capitalize on the health gains from the adoption of technology varies in society. These effects are caused by the actions of individuals as they segment themselves into distinct social groups. The circumstances under which social institutions are further segmented are explored and may motivate public sector limits on the funding for and diffusion of health care technologies. Safety and efficacy benchmarks are necessary but insufficient conditions for sustainability as product advantage on grounds of cost-effectiveness must also be demonstrated. Furthermore, given the substantial role played by public sector decision makers in purchasing health care technologies, the distributional consequences associated with the uptake and diffusion of technology need to be gauged by product designers and those responsible for marketing.
Eclipse program F-106 aircraft in flight, front view
NASA Technical Reports Server (NTRS)
1997-01-01
Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Spacecraft
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Pryor, Mark; Holmes, Buck; Schaechter, David; Pedreiro, Nelson; Carrington, Connie
2007-01-01
In 2005, NASA commenced Phase 1 of the Modular Reconfigurable High Energy Technology Demonstrator (MRHE) program to investigate reconfigurable systems of small spacecraft. During that year, Lockheed Martin's Advanced Technology Center (ATC) led an accelerated effort to develop a 1-g MRHE concept demonstration featuring robotic spacecraft simulators equipped with docking mechanisms and deployable booms. The deployable boom built for MRHE was the result of a joint effort in which ATK was primarily responsible for developing and fabricating the Collapsible Rollable Tube (CRT patent pending) boom while Lockheed Martin designed and built the motorized Boom Deployment Mechanism (BDM) under a concurrent but separate IR&D program. Tight coordination was necessary to meet testbed integration and functionality requirements. This paper provides an overview of the CRT boom and BDM designs and presents preliminary results of integration and testing to support the MRHE demonstration.
NASA Technical Reports Server (NTRS)
Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth
1997-01-01
The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.
NASA Astrophysics Data System (ADS)
Berthier, Florent; Beigne, Edith; Heitzmann, Frédéric; Debicki, Olivier; Christmann, Jean-Frédéric; Valentian, Alexandre; Billoint, Olivier; Amat, Esteve; Morche, Dominique; Chairat, Soundous; Sentieys, Olivier
2016-11-01
In this paper, we propose to analyze Ultra Thin Body and Box FDSOI technology suitability and architectural solutions for IoT applications and more specifically for autonomous Wireless Sensor Nodes (WSNs). As IoT applications are extremely diversified there is a strong need for flexible solutions at design, architectural level but also at technological level. Moreover, as most of those systems are recovering their energy from the environment, they are challenged by low voltage supplies and low leakage functionalities. We detail in this paper some Ultra Thin Body and Box FDSOI 28 nm characteristics and results demonstrating that this technology could be a perfect option for multidisciplinary IoT devices. Back biasing capabilities and low voltage features are investigated demonstrating efficient high speed/low leakage flexibility. In addition, architectural solutions for WSNs microcontroller are also proposed taking advantage of Ultra Thin Body and Box FDSOI characteristics for full user applicative flexibility. A partitioned architecture between an Always Responsive part with an asynchronous Wake Up Controller (WUC) managing WSN current tasks and an On Demand part with a main processor for application maintenance is presented. First results of the Always Responsive part implemented in Ultra Thin Body and Box FDSOI 28 nm are also exposed.
The use of dopants in high field asymmetric waveform spectrometry.
Ross, Stuart K; McDonald, Gwenda; Marchant, Sarah
2008-05-01
Ion mobility spectrometry (IMS) is proven core technology for the gas-phase detection of chemical warfare (CW) agents. One disadvantage of IMS technology is that ions of similar mobility cannot readily be resolved, resulting in false alarm responses and a loss of user confidence. High field asymmetric waveform spectrometry (HiFAWS) is an emerging technology for the gas-phase detection of CW agents. Of particular interest is the potential of a HiFAWS-based platform to reduce the number of false alarms by resolving ions that cannot be discriminated using IMS. It has been demonstrated that a water clustering/declustering mechanism can be a dominant process in HiFAWS. Ions that cannot be discriminated in IMS because they possess the same low field mobility value can be resolved using HiFAWS due to differences in the extent of low field ion solvation and high field ion desolvation. When operating in complex environments such as those potentially experienced in military and security arenas, IMS systems commonly employ internal dopants to reduce the number of background responses. It is possible that HiFAWS systems may also require the use of internal dopants for the same reason. It has been demonstrated that dopants employed for use in IMS may not be suitable for use in HiFAWS.
An improved conjugate vaccine technology; induction of antibody responses to the tumor vasculature.
Huijbers, Elisabeth J M; van Beijnum, Judy R; Lê, Chung T; Langman, Sofya; Nowak-Sliwinska, Patrycja; Mayo, Kevin H; Griffioen, Arjan W
2018-05-17
The induction of an antibody response against self-antigens requires a conjugate vaccine technology, where the self-antigen is conjugated to a foreign protein sequence, and the co-application of a potent adjuvant. The choice of this foreign sequence is crucial as a very strong antibody response towards it may compromise the anti-self immune response. Here, we aimed to optimize the conjugate design for application of vaccination against the tumor vasculature, using two different approaches. First, the immunogenicity of the previously employed bacterial thioredoxin (TRX) was reduced by using a truncated from (TRXtr). Second, the Escherichia coli proteome was scrutinized to identify alternative proteins, based on immunogenicity and potency to increase solubility, suitable for use in a conjugate vaccine. This technology was used for vaccination against a marker of the tumor vasculature, the well-known extra domain B (EDB) of fibronectin. We demonstrate that engineering of the foreign sequence of a conjugate vaccine can significantly improve antibody production. The TRXtr construct outperformed the one containing full-length TRX, for the production of anti-self antibodies to EDB. In addition, efficient tumor growth inhibition was observed with the new TRXtr-EDB vaccine. Microvessel density was decreased and enhanced leukocyte infiltration was observed, indicative of an active immune response directed against the tumor vasculature. Summarizing, we have identified a truncated form of the foreign antigen TRX that can improve conjugate vaccine technology for induction of anti-self antibody titers. This technology was named Immuno-Boost (I-Boost). Our findings are important for the clinical development of cancer vaccines directed against self antigens, e.g. the ones selectively found in the tumor vasculature. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Selecting cockpit functions for speech I/O technology
NASA Technical Reports Server (NTRS)
Simpson, C. A.
1985-01-01
A general methodology for the initial selection of functions for speech generation and speech recognition technology is discussed. The SCR (Stimulus/Central-Processing/Response) compatibility model of Wickens et al. (1983) is examined, and its application is demonstrated for a particular cockpit display problem. Some limits of the applicability of that model are illustrated in the context of predicting overall pilot-aircraft system performance. A program of system performance measurement is recommended for the evaluation of candidate systems. It is suggested that no one measure of system performance can necessarily be depended upon to the exclusion of others. Systems response time, system accuracy, and pilot ratings are all important measures. Finally, these measures must be collected in the context of the total flight task environment.
Tropical medicine: Telecommunications and technology transfer
NASA Technical Reports Server (NTRS)
Legters, Llewellyn J.
1991-01-01
The potential for global outbreaks of tropical infectious diseases, and our ability to identify and respond to such outbreaks is a major concern. Rapid, efficient telecommunications is viewed as part of the solution to this set of problems - the means to link a network of epidemiological field stations via satellite with U.S. academic institutions and government agencies, for purposes of research, training in tropical medicine, and observation of and response to epidemic emergencies. At a workshop, telecommunications and technology transfer were addressed and applications of telecommunications technology in long-distance consultation, teaching and disaster relief were demonstrated. Applications in teaching and consultation in tropical infectious diseases is discussed.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin
2015-07-21
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Myong Kim, Dong; Hwan Kim, Dae; Choi, Sung-Jin
2015-01-01
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 105 times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 105 with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105
An academic medical center's response to widespread computer failure.
Genes, Nicholas; Chary, Michael; Chason, Kevin W
2013-01-01
As hospitals incorporate information technology (IT), their operations become increasingly vulnerable to technological breakdowns and attacks. Proper emergency management and business continuity planning require an approach to identify, mitigate, and work through IT downtime. Hospitals can prepare for these disasters by reviewing case studies. This case study details the disruption of computer operations at Mount Sinai Medical Center (MSMC), an urban academic teaching hospital. The events, and MSMC's response, are narrated and the impact on hospital operations is analyzed. MSMC's disaster management strategy prevented computer failure from compromising patient care, although walkouts and time-to-disposition in the emergency department (ED) notably increased. This incident highlights the importance of disaster preparedness and mitigation. It also demonstrates the value of using operational data to evaluate hospital responses to disasters. Quantifying normal hospital functions, just as with a patient's vital signs, may help quantitatively evaluate and improve disaster management and business continuity planning.
NASA Technical Reports Server (NTRS)
Jankovsky, Robert; Elliott, Fred
2000-01-01
It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated >2400 s, >500 mN thrust over 1000 hours of operation documented.
Liu, Chen-Chung; Chou, Chien-Chia; Liu, Baw-Jhiune; Yang, Jui-Wen
2006-01-01
Hard of hearing students usually face more difficulties at school than other students. A classroom environment with wireless technology was implemented to explore whether wireless technology could enhance mathematics learning and teaching activities for a hearing teacher and her 7 hard of hearing students in a Taiwan junior high school. Experiments showed that the highly interactive communication through the wireless network increased student participation in learning activities. Students demonstrated more responses to the teacher and fewer distraction behaviors. Fewer mistakes were made in in-class course work because Tablet PCs provided students scaffolds. Students stated that the environment with wireless technology was desirable and said that they hoped to continue using the environment to learn mathematics.
Psychometric evaluation of a new assessment of the ability to manage technology in everyday life.
Malinowsky, Camilla; Nygård, Louise; Kottorp, Anders
2011-03-01
Technology increasingly influences the everyday lives of most people, and the ability to manage technology can be seen as a prerequisite for participation in everyday occupations. However, knowledge of the ability and skills required for management of technology is sparse. This study aimed to validate a new observation-based assessment, the Management of Everyday Technology Assessment (META). The META has been developed to assess the ability to manage technology in everyday life. A sample of 116 older adults with and without cognitive impairment were observed and interviewed by the use of the META when managing their everyday technology at home. The results indicate that the META demonstrates acceptable person response validity and technology goodness-of-fit. Additionally, the META can separate individuals with higher ability from individuals with lower ability to manage everyday technology. The META can be seen as a complement to existing ADL assessment techniques and is planned to be used in both research and practice.
320 x 240 uncooled IRFPA with pixel wise thin film vacuum packaging
NASA Astrophysics Data System (ADS)
Yon, J.-J.; Dumont, G.; Rabaud, W.; Becker, S.; Carle, L.; Goudon, V.; Vialle, C.; Hamelin, A.; Arnaud, A.
2012-10-01
Silicon based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) as required by the promising mass market for very low cost IR applications, such as automotive driving assistance, energy loss monitoring in buildings, motion sensors… Among the various approaches studied worldwide, the CEA, LETI is developing a unique technology where each bolometer pixel is sealed under vacuum at the wafer level, using an IR transparent thin film deposition. This technology referred to as PLP (Pixel Level Packaging), leads to an array of hermetic micro-caps each containing a single microbolometer. Since the successful demonstration that the PLP technology, when applied on a single microbolometer pixel, can provide the required vacuum < 10-3 mbar, the authors have pushed forward the development of the technology on fully operational QVGA readout circuits CMOS base wafers (320 x 240 pixels). In this outlook, the article reports on the electro optical performance obtained from this preliminary PLP based QVGA demonstrator. Apart from the response, noise and NETD distributions, the paper also puts emphasis on additional key features such as thermal time constant, image quality, and ageing properties.
Damian, Simona; Necula, Roxana; Sandu, A; Iliescu, Maria Liliana; Ioan, Beatrice
2013-01-01
Romanian Government Decision (GD) No. 8/2012 amending and supplementing GD No. 144/2010 regarding the function and organization structures of the Ministry of Health defines health technology assessment (HTA) as "a systematic and multidisciplinary analysis of the existing and new medical technologies, through which medical, economic, social, ethical and organizational information are synthesized so that medical technologies to be used in a transparent and unbiased manner". We propose an ethical assessment model of technologies used in the care of diabetic patients. The nature of this research was exploratory, giving the novelty of this approach to the clinical and social context of Romania. The assessment of health technologies used in the care of diabetic patients was based on the following research question: What is the role of health technology in developing autonomy and responsibility in patients suffering from chronic diseases? Individual interviews and focus groups were held from June, 2011 to November, 2012 in Iasi. The criterion for selecting the participants was belonging to the target groups: family doctors or diabetes specialist, patients with type 1 (TID) and type 2 diabetes (T2D), caregivers and other professionals involved in diabetes patient care. The diabetic patient benefits from a specific treatment and has the privilege of self-administering it, his life expectancy and quality of life depending upon the compliance and responsibility he demonstrates.
Eclipse project QF-106 and C-141A takeoff on first tethered flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
TOW ROPE TAKEOFF - The Kelly Space & Technology (KST)/USAF Eclipse project's modified QF-106 and a USAF C-141A takeoff for the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse project closeup of QF-106 under tow on takeoff on first flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
OFF THE GROUND - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 lifts off under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse project closeup of QF-106 under tow on first tethered flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
The Kelly Space and Technology (KST)/USAF/NASA Eclipse project's modified QF-106 is shown under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, is hosting the project, providing engineering and facility support as well as the project pilot, Mark Stucky. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
A field effect glucose sensor with a nanostructured amorphous In-Ga-Zn-O network.
Du, Xiaosong; Li, Yajuan; Herman, Gregory S
2016-11-03
Amorphous indium gallium zinc oxide (IGZO) field effect transistors (FETs) are a promising technology for a wide range of electronic applications. Herein, we fabricated and characterized FETs with a nanostructured IGZO network as a sensing transducer. The IGZO was patterned using colloidal lithography and electrohydrodynamic printing, where an 8 μm wide nanostructured close-packed hexagonal IGZO network was obtained. Electrical characterization of the nanostructured IGZO network FET demonstrated a drain-source current on-off ratio of 6.1 × 10 3 and effective electron mobilities of 3.6 cm 2 V -1 s -1 . The nanostructured IGZO network was functionalized by aminosilane groups with cross-linked glucose oxidase. The devices demonstrated a decrease in drain-source conductance and a more positive V ON with increasing glucose concentration. These changes are ascribed to the acceptor-like surface states associated with positively charged aminosilane groups attached to the nanostructured IGZO surface. Continuous monitoring of the drain-source current indicates a stepwise and fully reversible response to glucose concentrations with a short response time. The specific catalytic reaction between the GOx enzyme and glucose eliminates interference from acetaminophen/ascorbic acid. We demonstrate that nanostructured IGZO FETs have improved sensitivity compared to non-nanostructured IGZO for sensing glucose and can be potentially extended to other biosensor technologies.
An Overview of NASA's In-Space Cryogenic Propellant Management Technologies
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)
2001-01-01
Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.
2010-01-14
removed and a connector added for the use of external battery packs to extend measurement times. A rigid carbon- fiber pole was provided by the vendor...responses found in areas containing strongly ferromagnetic soils or bedrock have been well documented [5]. Fresh basaltic bedrock, like that found in...8650 (November 27, 2002). 5. “Demonstration of Basalt -UXO Discrimination by Advanced Analysis of Multi-Channel EM63 Data at Kaho’olawe, Hawaii,” G
NASA's Use of Commercial Satellite Systems: Concepts and Challenges
NASA Technical Reports Server (NTRS)
Budinger, James M.
1998-01-01
Lewis Research Center's Space Communications Program has a responsibility to investigate, plan for, and demonstrate how NASA Enterprises can use advanced commercial communications services and technologies to satisfy their missions' space communications needs. This presentation looks at the features and challenges of alternative hardware system architecture concepts for providing specific categories of communications services.
K-Band Traveling-Wave Tube Amplifier
NASA Technical Reports Server (NTRS)
Force, Dale A.; Simons, Rainee N.; Peterson, Todd T.; Spitsen, Paul C.
2010-01-01
A new space-qualified, high-power, high-efficiency, K-band traveling-wave tube amplifier (TWTA) will provide high-rate, high-capacity, direct-to-Earth communications for science data and video gathered by the Lunar Reconnaissance Orbiter (LRO) during its mission. Several technological advances were responsible for the successful demonstration of the K-band TWTA.
THz local oscillator sources: performance and capabilities
NASA Technical Reports Server (NTRS)
Mehdi, I.; Chattopadhyah, G.; Schlecht, E.; Siegel, P.
2002-01-01
Frequency multiplier circuits based on planar GaAs Schottky diodes have made significant advances in the last decade. Useful power in the >1 THz range has now been demonstrated from a complete solid-state chain. This paper will review some of the technology responsible for this achievement along with presenting a brief look at future challenges.
3.5 square meters: Constructive responses to natural disasters
Vinitsky, Maya
2017-01-01
Natural disasters and their consequences dominate the news almost on a daily basis. Quick-impact preventive and aid measures are essential for the victims to survive. This volume presents a selection of projects which demonstrate impressively how both cutting-edge technology and locally available materials and resources can be used for this purpose.
Crockett, Katie
2011-09-01
Following the terrorist attacks in 2001, much time and effort has been put toward improving catastrophic incident response. But recovery--the period following initial response that focuses on the long-term viability of the affected area--has received less attention. Recognizing the importance of being able to recover an area following a catastrophic incident, the Department of Defense, through its Defense Threat Reduction Agency (DTRA), and the Department of Homeland Security, through its Science and Technology Directorate (DHS S&T), created the Interagency Biological Restoration Demonstration (IBRD) program. IBRD was a 4-year program jointly managed and funded by DTRA and DHS S&T, the goal of which was to reduce the time and resources necessary to recover a wide urban area from an intentional release of Bacillus anthracis. Specific program objectives included understanding the social, economic, and operational interdependencies that affect recovery; establishing long-term coordination between the Departments of Defense and Homeland Security; developing strategic recovery/restoration plans; identifying and demonstrating technologies that support recovery; and exercising recovery activities and technology solutions. IBRD has made important first steps toward improving national preparedness in the area biological incident recovery. Specifically, IBRD has helped enhance the efficacy and efficiency of recovering large urban areas by developing consequence management guidance; identifying key S&T capabilities and integrating them with planning and guidance documents; and establishing key relationships across the federal interagency, federal-to-regional, civilian-to-military, and public-to-private stakeholders. Upon completion of IBRD in fall 2010, both DTRA and DHS S&T planned follow-on programs.
2016-04-01
with cores of igneous and metamorphic rocks flanked by steeply dipping sedimentary rocks . The valley floors range in elevation from about 9,310 to...Camp Hale, East Fork Valley Range Complex Munitions Response Site. This project is one in a series of projects funded by ESTCP to use advanced...Technology Certification Program ft Feet FUDS Formerly Used Defense Site GPS Global Positioning System ID Identification IMU Inertial Measurement Unit
Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.
This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less
The history and nature of the Baltimore applications project
NASA Technical Reports Server (NTRS)
Peake, H. J.
1978-01-01
The Baltimore Applications Project (BAP), an experiment jointly conducted by the City of Baltimore and the National Aeronautics and Space Administration (NASA), was begun in May 1974 in response to a request by the City. The main purpose of the BAP is the identification of technology for beneficial application to the City operations. An independent evaluation, performed after three years of operation, indicates very good project results and confirms the choices of the experiment's basic features. The BAP demonstrates one way to achieve successful intergovernmental transfer of Federal technology.
Science Support Room Operations During Desert RATS 2009
NASA Technical Reports Server (NTRS)
Lofgren, G. E.; Horz, F.; Bell, M. S.; Cohen, B. A.; Eppler,D. B.; Evans, C. a.; Hodges, K. V.; Hynek, B. M.; Gruener, J. E.; Kring, D. A.;
2010-01-01
NASA's Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.
Transforming Child and Youth Mental Health Care via Innovative Technological Solutions.
Pepler, Antonio; Boydell, Katherine M; Teshima, John; Volpe, Tiziana; Braunberger, Peter G; Minden, Debbie
2011-01-01
Live interactive videoconferencing and other technologies offer innovative opportunities for effective delivery of specialized child and adolescent mental health services. In this article, an example of a comprehensive telepsychiatry program is presented to highlight a variety of capacity-building initiatives that are responsive to community needs and cultures; these initiatives are allowing children, youth and caregivers to access otherwise-distant specialist services within their home communities. Committed, enthusiastic champions, adequate funding and infrastructure, creativity and a positive attitude represent key elements in the adaptation of this demonstrated user-friendly modality.
Video-speed electronic paper based on electrowetting
NASA Astrophysics Data System (ADS)
Hayes, Robert A.; Feenstra, B. J.
2003-09-01
In recent years, a number of different technologies have been proposed for use in reflective displays. One of the most appealing applications of a reflective display is electronic paper, which combines the desirable viewing characteristics of conventional printed paper with the ability to manipulate the displayed information electronically. Electronic paper based on the electrophoretic motion of particles inside small capsules has been demonstrated and commercialized; but the response speed of such a system is rather slow, limited by the velocity of the particles. Recently, we have demonstrated that electrowetting is an attractive technology for the rapid manipulation of liquids on a micrometre scale. Here we show that electrowetting can also be used to form the basis of a reflective display that is significantly faster than electrophoretic displays, so that video content can be displayed. Our display principle utilizes the voltage-controlled movement of a coloured oil film adjacent to a white substrate. The reflectivity and contrast of our system approach those of paper. In addition, we demonstrate a colour concept, which is intrinsically four times brighter than reflective liquid-crystal displays and twice as bright as other emerging technologies. The principle of microfluidic motion at low voltages is applicable in a wide range of electro-optic devices.
Eclipse program C-141A aircraft
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wind loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse program QF-106 aircraft in flight
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
A revolute joint with linear load-displacement response for a deployable lidar telescope
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research Center is developing concepts for an advanced spacecraft, called LidarTechSat, to demonstrate key structures and mechanisms technologies necessary to deploy a segmented telescope reflector. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design, such as the revolute joint presented herein. The joint exhibits load-cycling response that is essentially linear with less than 2% hysteresis, and the joint rotates with less than 7 mN-m (1 in-oz) of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repected deployment and impulse loading. No other mechanically deployment structure found in the literature has been demonstrated to be this kinematically accurate.
The Space Station as a Construction Base for Large Space Structures
NASA Technical Reports Server (NTRS)
Gates, R. M.
1985-01-01
The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.
Berzosa, Álvaro; Barandica, Jesús M; Fernández-Sánchez, Gonzalo
2014-01-01
In recent years, several methodologies have been developed for the quantification of greenhouse gas (GHG) emissions. However, determining who is responsible for these emissions is also quite challenging. The most common approach is to assign emissions to the producer (based on the Kyoto Protocol), but proposals also exist for its allocation to the consumer (based on an ecological footprint perspective) and for a hybrid approach called shared responsibility. In this study, the existing proposals and standards regarding the allocation of GHG emissions responsibilities are analyzed, focusing on their main advantages and problems. A new model of shared responsibility that overcomes some of the existing problems is also proposed. This model is based on applying the best available technologies (BATs). This new approach allocates the responsibility between the producers and the final consumers based on the real capacity of each agent to reduce emissions. The proposed approach is demonstrated using a simple case study of a 4-step life cycle of ammonia nitrate (AN) fertilizer production. The proposed model has the characteristics that the standards and publications for assignment of GHG emissions responsibilities demand. This study presents a new way to assign responsibilities that pushes all the actors in the production chain, including consumers, to reduce pollution. © 2013 SETAC.
NASA Technology Applications Team: Commercial applications of aerospace technology
NASA Technical Reports Server (NTRS)
1994-01-01
The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.
NASA Technology Applications Team: Commercial applications of aerospace technology
NASA Technical Reports Server (NTRS)
1994-01-01
The Research Triangle Institute (RTI) is pleased to report the results of NASA contract NASW-4367, 'Operation of a Technology Applications Team'. Through a period of significant change within NASA, the RTI Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. RTI's ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed an implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs; (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology; and (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.
An overview of DARPA's advanced space technology program
NASA Astrophysics Data System (ADS)
Nicastri, E.; Dodd, J.
1993-02-01
The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.
Irvine Smart Grid Demonstration, a Regional Smart Grid Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yinger, Robert; Irwin, Mark
ISGD was a comprehensive demonstration that spanned the electricity delivery system and extended into customer homes. The project used phasor measurement technology to enable substation-level situational awareness, and demonstrated SCE’s next-generation substation automation system. It extended beyond the substation to evaluate the latest generation of distribution automation technologies, including looped 12-kV distribution circuit topology using URCIs. The project team used DVVC capabilities to demonstrate CVR. In customer homes, the project evaluated HAN devices such as smart appliances, programmable communicating thermostats, and home energy management components. The homes were also equipped with energy storage, solar PV systems, and a number ofmore » energy efficiency measures (EEMs). The team used one block of homes to evaluate strategies and technologies for achieving ZNE. A home achieves ZNE when it produces at least as much renewable energy as the amount of energy it consumes annually. The project also assessed the impact of device-specific demand response (DR), as well as load management capabilities involving energy storage devices and plug-in electric vehicle charging equipment. In addition, the ISGD project sought to better understand the impact of ZNE homes on the electric grid. ISGD’s SENet enabled end-to-end interoperability between multiple vendors’ systems and devices, while also providing a level of cybersecurity that is essential to smart grid development and adoption across the nation. The ISGD project includes a series of sub-projects grouped into four logical technology domains: Smart Energy Customer Solutions, Next-Generation Distribution System, Interoperability and Cybersecurity, and Workforce of the Future. Section 2.3 provides a more detailed overview of these domains.« less
Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration
NASA Technical Reports Server (NTRS)
Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)
2001-01-01
The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.
NASA Technical Reports Server (NTRS)
Ruff, Gary A.
2011-01-01
The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA s fire safety work will continue under this new program and will build upon the accomplishments described herein.
NASA Astrophysics Data System (ADS)
Tian, Ye; Zetterling, Carl-Mikael
2017-09-01
This paper presents a comprehensive investigation of the frequency response of a monolithic OpAmp-RC integrator implemented in a 4H-SiC bipolar IC technology. The circuits and devices have been measured and characterized from 27 to 500 °C. The devices have been modelled to identify that the substrate capacitance is a dominant factor affecting the OpAmp's high-frequency response. Large Miller compensation capacitors of more than 540 pF are required to ensure stability of the internal OpAmp. The measured unit-gain-bandwidth product of the OpAmp is ∼1.1 MHz at 27 °C, and decreases to ∼0.5 MHz at 500 °C mainly due to the reduction of the transistor's current gain. On the other hand, it is not necessary to compensate the integrator in a relatively wide bandwidth ∼0.7 MHz over the investigated temperature range. At higher frequencies, the integrator's frequency response has been identified to be significantly affected by that of the OpAmp and load impedance. This work demonstrates the potential of this technology for high temperature applications requiring bandwidths of several megahertz.
Casting the Net: The Development of a Resource Collection for an Internet Database.
ERIC Educational Resources Information Center
McKiernan, Gerry
CyberStacks(sm), a demonstration prototype World Wide Web information service, was established on the home page server at Iowa State University with the intent of facilitating identification and use of significant Internet resources in science and technology. CyberStacks(sm) was created in response to perceived deficiencies in early efforts to…
Laboratory-and mill-scale study of surfactant spray flotation deinking
Greg Delozier; Yulin Zhao; Yulin Deng; David White; Junyong Zhu; Mark Prein
2005-01-01
As the cost of quality waste paper continues to escalate in response to an increased global demand for this finite resource, loss of saleable fiber within flotation rejects becomes both environmentally and economically unacceptable. The ability of surfactant spray technology to reduce fiber loss without detriment to pulp brightness gains has been demonstrated during...
Hybrid nanoporous silicon optical biosensor architectures for biological sample analysis
NASA Astrophysics Data System (ADS)
Bonanno, Lisa M.; Zheng, Hong; DeLouise, Lisa A.
2010-02-01
This work focuses on demonstrating proof-of-concept for a novel nanoparticle optical signal amplification scheme employing hybrid porous silicon (PSi) sensors. We are investigating the development of target responsive hydrogels integrated with PSi optical transducers. These hybrid-PSi sensors can be designed to provide a tunable material response to target concentration ranging from swelling to complete chain dissolution. The corresponding refractive index changes are significant and readily detected by the PSi transducer. However, to increase signal to noise, lower the limit of detection, and provide a visual read out capability, we are investigating the incorporation of high refractive index nanoparticles (NP) into the hydrogel for optical signal amplification. These NPs can be nonspecifically encapsulated, or functionalized with bioactive ligands to bind polymer chains or participate in cross linking. In this work, we demonstrate encapsulation of high refractive index QD nanoparticles into a 5wt% polyacrylamide hydrogel crosslinked with N,N'-methylenebisacrylamide (BIS) and N,N Bis-acryloyl cystamine (BAC). A QD loading (~0.29 wt%) produced a 2X larger optical shift compared to the control. Dissolution of disulphide crosslinks, using Tris[2-carboxyethyl] phosphine (TCEP) reducing agent, induced gel swelling and efficient QD release. We believe this hybrid sensor concept constitutes a versatile technology platform capable of detecting a wide range of bio/chemical targets provided target analogs can be linked to the polymer backbone and crosslinks can be achieved with target responsive multivalent receptors, such a antibodies. The optical signal amplification scheme will enable a lower limit of detection sensitivity not yet demonstrated with PSi technology and colorimetric readout visible to the naked eye.
The Responsivity of a Miniaturized Passive Implantable Wireless Pressure Sensor.
Jiang, Hao; Lan, Di; Goldman, Ken; Etemadi, Mozziyar; Shahnasser, Hamid; Roy, Shuvo
2011-01-01
A miniature batteryless implantable wireless pressure sensor that can be used deep inside the body is desired by the medical community. MEMS technology makes it possible to achieve high responsivity that directly determines the operating distance between a miniature implanted sensor and the external RF probe, while providing the read-out. In this paper, for the first time, an analytical expression of the system responsivity versus the sensor design is derived using an equivalent circuit model. Also, the integration of micro-coil inductors and pressure sensitive capacitors on a single silicon chip using MEMS fabrication techniques is demonstrated. Further, the derived analytical design theory is validated by the measured responsivity of these sensors.
Development of Technology Transfer Economic Growth Metrics
NASA Technical Reports Server (NTRS)
Mastrangelo, Christina M.
1998-01-01
The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.
NASA Technical Reports Server (NTRS)
Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan
2016-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.
Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses
NASA Astrophysics Data System (ADS)
Baek, Hyun Jae; Kim, Hyun Seok; Heo, Jeong; Lim, Yong Gyu; Park, Kwang Suk
2013-04-01
Objective. Brain-computer interface (BCI) technologies have been intensely studied to provide alternative communication tools entirely independent of neuromuscular activities. Current BCI technologies use electroencephalogram (EEG) acquisition methods that require unpleasant gel injections, impractical preparations and clean-up procedures. The next generation of BCI technologies requires practical, user-friendly, nonintrusive EEG platforms in order to facilitate the application of laboratory work in real-world settings. Approach. A capacitive electrode that does not require an electrolytic gel or direct electrode-scalp contact is a potential alternative to the conventional wet electrode in future BCI systems. We have proposed a new capacitive EEG electrode that contains a conductive polymer-sensing surface, which enhances electrode performance. This paper presents results from five subjects who exhibited visual or auditory steady-state responses according to BCI using these new capacitive electrodes. The steady-state visual evoked potential (SSVEP) spelling system and the auditory steady-state response (ASSR) binary decision system were employed. Main results. Offline tests demonstrated BCI performance high enough to be used in a BCI system (accuracy: 95.2%, ITR: 19.91 bpm for SSVEP BCI (6 s), accuracy: 82.6%, ITR: 1.48 bpm for ASSR BCI (14 s)) with the analysis time being slightly longer than that when wet electrodes were employed with the same BCI system (accuracy: 91.2%, ITR: 25.79 bpm for SSVEP BCI (4 s), accuracy: 81.3%, ITR: 1.57 bpm for ASSR BCI (12 s)). Subjects performed online BCI under the SSVEP paradigm in copy spelling mode and under the ASSR paradigm in selective attention mode with a mean information transfer rate (ITR) of 17.78 ± 2.08 and 0.7 ± 0.24 bpm, respectively. Significance. The results of these experiments demonstrate the feasibility of using our capacitive EEG electrode in BCI systems. This capacitive electrode may become a flexible and non-intrusive tool fit for various applications in the next generation of BCI technologies.
NASA Technical Reports Server (NTRS)
Wolfe, Jean
2010-01-01
Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment
Exploring the efficacy of electronic response devices in ninth-grade science classrooms
NASA Astrophysics Data System (ADS)
Dey, John A., Jr.
Student use of electronic response technology has been prevalent in postsecondary institutions and is beginning to penetrate K--12 classroom settings. Despite these trends, research exploring the impact of this technology in these settings has been limited. The extant research has relied heavily on survey methodologies and largely has focused on student/teacher perception or implementation practices while remaining silent on learning outcomes. The purpose of this study was to broaden the scope of research models used to explore electronic response technology and its impact on student learning. The study took place in a ninth-grade science classroom at a large high school with a comprehensive curriculum. Study participants were first-year high school students enrolled in one of two sections of the freshman science sequence focusing on Physical Science content. One section, serving as the Treatment group, used electronic response devices on a daily basis to respond to preplanned teacher questions. The other section, serving as the Comparison group, relied on traditional methods of interaction such as raising hands to respond to questions. They responded to the same set of preplanned questions and differed only in the manner of response, with the teacher asking the class and then calling on one of the students to answer. The study focused on academic achievement, as measured by student performance on a pre- and posttest, as well as student engagement, measured by momentary time sample data taken throughout the entire class with focused attention on periods of teacher questioning. The analysis of academic achievement employed an ANOVA, and no statistically significant difference was found between the groups. Engagement data were analyzed using an independent samples t test, and statistically significant differences were found between the two groups. Findings from this study indicated that, when using electronic response technology in their science classes, students demonstrated significantly higher levels of engagement across an entire class period as well as during teacher questioning. Implications of the study have been framed around the promise of electronic response technology for engaging and motivating students.
High Performance, Dependable Multiprocessor
NASA Technical Reports Server (NTRS)
Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric;
2006-01-01
With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.
Overview of the Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
Wright, Mary Etta
1999-01-01
MSG is a third generation glovebox for Microgravity Science investigations: SpaceLab Glovebox (GBX); Middeck/MIR Gloveboxes (M/MGBX); and GBX and M/MGBX developed by Bradford Engineering (NL). Previous flights have demonstrated utility of glovebox facilities: Contained environment enables broader range of science experiments; Affords better control of video and photographic imaging (a prime data source); Provides better environmental control than cabin atmosphere; and Useful for contingency operations. MSG developed in response to demands for increased work volume, increased capabilities and additional resources. MSG is multi-user facility to support a wide range of small science and technology investigations: Fluid physics; Combustion science; Material science; Biotechnology (cell culturing and protein crystal growth); Space processing; Fundamental physics; and Technology demonstrations. Topics included in this viewgraph are: MSG capabilities; MSG hardware items; MSG, GSE, and OSE items; MSG development approach; and Science utilization.
Designing Hysteresis with Dipolar Chains
NASA Astrophysics Data System (ADS)
Concha, Andrés; Aguayo, David; Mellado, Paula
2018-04-01
Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.
Designing Hysteresis with Dipolar Chains.
Concha, Andrés; Aguayo, David; Mellado, Paula
2018-04-13
Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.
Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector
NASA Astrophysics Data System (ADS)
Wei, Ming; Xu, Chun-Xiang; Qin, Fei-Fei; Gowri Manohari, Arumugam; Lu, Jun-Feng; Zhu, Qiu-Xiang
2017-07-01
ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the Al nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration of Al NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of Al NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, Al NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors. Supported by the National Natural Science Foundation of China under Grant Nos 61475035 and 61275054, the Science and Technology Support Program of Jiangsu Province under Grant No BE2016177, and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
NASA Astrophysics Data System (ADS)
Romine, William L.; Sadler, Troy D.
2016-06-01
Improving interest in science, technology, engineering, and mathematics (STEM) is crucial to widening participation and success in STEM studies at the college level. To understand how classroom and extracurricular interventions affect interest, it is necessary to have appropriate measurement tools. We describe the adaptation and revalidation of a previously existing multidimensional instrument to the end of measuring interest in environmental science and technology in college nonscience majors. We demonstrate the revised instrument's ability to detect change in this group over an 8-week time period. While collection of demographic information was not part of the study design, participating students were similar in that they hailed from three environmental science nonmajor classes sharing a common syllabus and instructional delivery method. Change in interest was measured in response to two types of scientific literature-based learning approaches: a scientific practice approach and a traditional, quiz-driven approach. We found that both approaches led to moderate gains in interest in learning environmental science and careers in environmental science across an 8-week time period. Interest in using technology for learning increased among students using the scientific practice approach; in contrast, the same measure decreased among students using the reading/quiz approach. This result invites the possibility that interest in using technology as a learning tool may relate to technological literacy, which must be taught explicitly in the context of authentic inquiry experiences.
The NASA ASTP Combined-Cycle Propulsion Database Project
NASA Technical Reports Server (NTRS)
Hyde, Eric H.; Escher, Daric W.; Heck, Mary T.; Roddy, Jordan E.; Lyles, Garry (Technical Monitor)
2000-01-01
The National Aeronautics and Space Administration (NASA) communicated its long-term R&D goals for aeronautics and space transportation technologies in its 1997-98 annual progress report (Reference 1). Under "Pillar 3, Goal 9" a 25-year-horizon set of objectives has been stated for the Generation 3 Reusable Launch Vehicle ("Gen 3 RLV") class of space transportation systems. An initiative referred to as "Spaceliner 100" is being conducted to identify technology roadmaps in support of these objectives. Responsibility for running "Spaceliner 100" technology development and demonstration activities have been assigned to NASA's agency-wide Advanced Space Transportation Program (ASTP) office located at the Marshall Space Flight Center. A key technology area in which advances will be required in order to meet these objectives is propulsion. In 1996, in order to expand their focus beyond "allrocket" propulsion systems and technologies (see Appendix A for further discussion), ASTP initiated technology development and demonstration work on combined-cycle airbreathing/rocket propulsion systems (ARTT Contracts NAS8-40890 through 40894). Combined-cycle propulsion (CCP) activities (see Appendix B for definitions) have been pursued in the U.S. for over four decades, resulting in a large documented knowledge base on this subject (see Reference 2). In the fall of 1999 the Combined-Cycle Propulsion Database (CCPD) project was established with the primary purpose of collecting and consolidating CCP related technical information in support of the ASTP's ongoing technology development and demonstration program. Science Applications International Corporation (SAIC) was selected to perform the initial development of the Database under its existing support contract with MSFC (Contract NAS8-99060) because of the company's unique combination of capabilities in database development, information technology (IT) and CCP knowledge. The CCPD is summarized in the descriptive 2-page flyer appended to this paper as Appendix C. The purpose of this paper is to provide the reader with an understanding of the objectives of the CCPD and relate the progress that has been made toward meeting those objectives.
Validation of Clinical Testing for Warfarin Sensitivity
Langley, Michael R.; Booker, Jessica K.; Evans, James P.; McLeod, Howard L.; Weck, Karen E.
2009-01-01
Responses to warfarin (Coumadin) anticoagulation therapy are affected by genetic variability in both the CYP2C9 and VKORC1 genes. Validation of pharmacogenetic testing for warfarin responses includes demonstration of analytical validity of testing platforms and of the clinical validity of testing. We compared four platforms for determining the relevant single nucleotide polymorphisms (SNPs) in both CYP2C9 and VKORC1 that are associated with warfarin sensitivity (Third Wave Invader Plus, ParagonDx/Cepheid Smart Cycler, Idaho Technology LightCycler, and AutoGenomics Infiniti). Each method was examined for accuracy, cost, and turnaround time. All genotyping methods demonstrated greater than 95% accuracy for identifying the relevant SNPs (CYP2C9 *2 and *3; VKORC1 −1639 or 1173). The ParagonDx and Idaho Technology assays had the shortest turnaround and hands-on times. The Third Wave assay was readily scalable to higher test volumes but had the longest hands-on time. The AutoGenomics assay interrogated the largest number of SNPs but had the longest turnaround time. Four published warfarin-dosing algorithms (Washington University, UCSF, Louisville, and Newcastle) were compared for accuracy for predicting warfarin dose in a retrospective analysis of a local patient population on long-term, stable warfarin therapy. The predicted doses from both the Washington University and UCSF algorithms demonstrated the best correlation with actual warfarin doses. PMID:19324988
Langley, Michael R; Booker, Jessica K; Evans, James P; McLeod, Howard L; Weck, Karen E
2009-05-01
Responses to warfarin (Coumadin) anticoagulation therapy are affected by genetic variability in both the CYP2C9 and VKORC1 genes. Validation of pharmacogenetic testing for warfarin responses includes demonstration of analytical validity of testing platforms and of the clinical validity of testing. We compared four platforms for determining the relevant single nucleotide polymorphisms (SNPs) in both CYP2C9 and VKORC1 that are associated with warfarin sensitivity (Third Wave Invader Plus, ParagonDx/Cepheid Smart Cycler, Idaho Technology LightCycler, and AutoGenomics Infiniti). Each method was examined for accuracy, cost, and turnaround time. All genotyping methods demonstrated greater than 95% accuracy for identifying the relevant SNPs (CYP2C9 *2 and *3; VKORC1 -1639 or 1173). The ParagonDx and Idaho Technology assays had the shortest turnaround and hands-on times. The Third Wave assay was readily scalable to higher test volumes but had the longest hands-on time. The AutoGenomics assay interrogated the largest number of SNPs but had the longest turnaround time. Four published warfarin-dosing algorithms (Washington University, UCSF, Louisville, and Newcastle) were compared for accuracy for predicting warfarin dose in a retrospective analysis of a local patient population on long-term, stable warfarin therapy. The predicted doses from both the Washington University and UCSF algorithms demonstrated the best correlation with actual warfarin doses.
Micro-elastometry on whole blood clots using actuated surface-attached posts (ASAPs).
Judith, Robert M; Fisher, Jay K; Spero, Richard Chasen; Fiser, Briana L; Turner, Adam; Oberhardt, Bruce; Taylor, R M; Falvo, Michael R; Superfine, Richard
2015-03-07
We present a novel technology for microfluidic elastometry and demonstrate its ability to measure stiffness of blood clots as they form. A disposable micro-capillary strip draws small volumes (20 μL) of whole blood into a chamber containing a surface-mounted micropost array. The posts are magnetically actuated, thereby applying a shear stress to the blood clot. The posts' response to magnetic field changes as the blood clot forms; this response is measured by optical transmission. We show that a quasi-static model correctly predicts the torque applied to the microposts. We experimentally validate the ability of the system to measure clot stiffness by correlating our system with a commercial thromboelastograph. We conclude that actuated surface-attached post (ASAP) technology addresses a clinical need for point-of-care and small-volume elastic haemostatic assays.
A technology platform to assess multiple cancer agents simultaneously within a patient's tumor
Klinghoffer, Richard A.; Frazier, Jason P.; Moreno-Gonzalez, Alicia; Strand, Andrew D.; Kerwin, William S.; Casalini, Joseph R.; Thirstrup, Derek J.; You, Sheng; Morris, Shelli M.; Watts, Korashon L.; Veiseh, Mandana; Grenley, Marc O.; Tretyak, Ilona; Dey, Joyoti; Carleton, Michael; Beirne, Emily; Pedro, Kyle D.; Ditzler, Sally H.; Girard, Emily J.; Deckwerth, Thomas L.; Bertout, Jessica A.; Meleo, Karri A.; Filvaroff, Ellen H.; Chopra, Rajesh; Press, Oliver W.; Olson, James M.
2016-01-01
A fundamental problem in cancer drug development is that antitumor efficacy in preclinical cancer models does not translate faithfully to patient outcomes. Much of early cancer drug discovery is performed under in vitro conditions in cell-based models that poorly represent actual malignancies. To address this inconsistency, we have developed a technology platform called CIVO, which enables simultaneous assessment of up to eight drugs or drug combinations within a single solid tumor in vivo. The platform is currently designed for use in animal models of cancer and patients with superficial tumors but can be modified for investigation of deeper-seated malignancies. In xenograft lymphoma models, CIVO microinjection of well-characterized anticancer agents (vincristine, doxorubicin, mafosfamide, and prednisolone) induced spatially defined cellular changes around sites of drug exposure, specific to the known mechanisms of action of each drug. The observed localized responses predicted responses to systemically delivered drugs in animals. In pair-matched lymphoma models, CIVO correctly demonstrated tumor resistance to doxorubicin and vincristine and an unexpected enhanced sensitivity to mafosfamide in multidrug-resistant lymphomas compared with chemotherapy-naïve lymphomas. A CIVO-enabled in vivo screen of 97 approved oncology agents revealed a novel mTOR (mammalian target of rapamycin) pathway inhibitor that exhibits significantly increased tumor-killing activity in the drug-resistant setting compared with chemotherapy-naïve tumors. Finally, feasibility studies to assess the use of CIVO in human and canine patients demonstrated that microinjection of drugs is toxicity-sparing while inducing robust, easily tracked, drug-specific responses in autochthonous tumors, setting the stage for further application of this technology in clinical trials. PMID:25904742
Powered Conveyor System for Tray Pack. Short Term Project No. 1
1991-08-28
responsibilities are de- scribed in the Technical and Cost Proposals for STP # 1 . 3.0 Short Term Project Activities 3.1 Technology Review & Preliminary...I - ------- F f~/ AD-A241 562: CMBAT RATION TECHNOLOGY DEMONSTRATION (CRAMTD) PtIwered onveyor Systein fbrfray Ph&k Short Tenn Piject # 1 -, TNAL...REPORT’ A ~~~STP Results and Acmolislssents (Odober 1989to~~ 1 91 Rpe ar.o.CRAMTDSlP #.L rR.-LO q~eO~4DTI.’ cRAi.4m CwcE~rA NO. DLA90088D-033 g ELECTb f C
Development Status of the International Space Station Urine Processor Assembly
NASA Technical Reports Server (NTRS)
Holder, Donald W.; Hutchens, Cindy F.
2003-01-01
NASA, Marshall Space Flight Center (MSFC) is developing a Urine Processor Assembly (UPA) for the International Space Station (ISS). The UPA uses Vapor Compression Distillation (VCD) technology to reclaim water from pre-treated urine. This water is further processed by the Water Processor Assembly (WPA) to potable quality standards for use on the ISS. NASA has developed this technology over the last 25-30 years. Over this history, many technical issues were solved with thousands of hours of ground testing that demonstrate the ability of the UPA technology to reclaim water from urine. In recent years, NASA MSFC has been responsible for taking the UPA technology to "flight design" maturity. This paper will give a brief overview of the UPA design and a status of the major design and development efforts completed recently to mature the UPA to a flight level.
Achieving Weak Light Response with Plasmonic Nanogold-Decorated Organic Phototransistors.
Luo, Xiao; Du, Lili; Liang, Yuanlong; Zhao, Feiyu; Lv, Wenli; Xu, Kun; Wang, Ying; Peng, Yingquan
2018-05-09
Weak light response of organic photodetectors has fascinating potentials in fields of modern science and technology. However, their photoresponsivity is hindered by poor photocarrier excitation and transport. Decorating active-layer surface with plasmonic nanometals is considered a viable strategy to address this issue. Here, we demonstrate a plasmonic nanogold decorated organic phototransistor achieving remarkable enhancement of photoresponsivity. Meanwhile, the photoresponsive range is broadened by 4 orders of magnitude. The proposed design is substantiated by a schematic energy level model combined with theoretical simulation analysis, enabling the development of the advanced optoelectronics.
New technologies to investigate the brain-gut axis
Sharma, Abhishek; Lelic, Dina; Brock, Christina; Paine, Peter; Aziz, Qasim
2009-01-01
Functional gastrointestinal disorders are commonly encountered in clinical practice, and pain is their commonest presenting symptom. In addition, patients with these disorders often demonstrate a heightened sensitivity to experimental visceral stimulation, termed visceral pain hypersensitivity that is likely to be important in their pathophysiology. Knowledge of how the brain processes sensory information from visceral structures is still in its infancy. However, our understanding has been propelled by technological imaging advances such as functional Magnetic Resonance Imaging, Positron Emission Tomography, Magnetoencephalography, and Electroencephalography (EEG). Numerous human studies have non-invasively demonstrated the complexity involved in functional pain processing, and highlighted a number of subcortical and cortical regions involved. This review will focus on the neurophysiological pathways (primary afferents, spinal and supraspinal transmission), brain-imaging techniques and the influence of endogenous and psychological processes in healthy controls and patients suffering from functional gastrointestinal disorders. Special attention will be paid to the newer EEG source analysis techniques. Understanding the phenotypic differences that determine an individual’s response to injurious stimuli could be the key to understanding why some patients develop pain and hyperalgesia in response to inflammation/injury while others do not. For future studies, an integrated approach is required incorporating an individual’s psychological, autonomic, neuroendocrine, neurophysiological, and genetic profile to define phenotypic traits that may be at greater risk of developing sensitised states in response to gut inflammation or injury. PMID:19132768
Graduate students' teaching experiences improve their methodological research skills.
Feldon, David F; Peugh, James; Timmerman, Briana E; Maher, Michelle A; Hurst, Melissa; Strickland, Denise; Gilmore, Joanna A; Stiegelmeyer, Cindy
2011-08-19
Science, technology, engineering, and mathematics (STEM) graduate students are often encouraged to maximize their engagement with supervised research and minimize teaching obligations. However, the process of teaching students engaged in inquiry provides practice in the application of important research skills. Using a performance rubric, we compared the quality of methodological skills demonstrated in written research proposals for two groups of early career graduate students (those with both teaching and research responsibilities and those with only research responsibilities) at the beginning and end of an academic year. After statistically controlling for preexisting differences between groups, students who both taught and conducted research demonstrate significantly greater improvement in their abilities to generate testable hypotheses and design valid experiments. These results indicate that teaching experience can contribute substantially to the improvement of essential research skills.
ERIC Educational Resources Information Center
Lawlor, Joseph, Ed.
Suggestions for integrating computer technology and composition instruction are presented in four conference papers, summaries of four conference courseware demonstrations, a paper describing computer-based evaluation of textual responses, and a reactor's address. In an overview of the current state of computer-based composition instruction,…
ERIC Educational Resources Information Center
VanMeter-Adams, Amy; Frankenfeld, Cara L.; Bases, Jessica; Espina, Virginia; Liotta, Lance A.
2014-01-01
What early experiences attract students to pursue an education and career in science, technology, engineering, and mathematics (STEM)? Does hands-on research influence them to persevere and complete a major course of academic study in STEM? We evaluated survey responses from 149 high school and undergraduate students who gained hands-on research…
ERIC Educational Resources Information Center
Clements, John D.; Connell, Nancy D.; Dirks, Clarissa; El-Faham, Mohamed; Hay, Alastair; Heitman, Elizabeth; Stith, James H.; Bond, Enriqueta C.; Colwell, Rita R.; Anestidou, Lida; Husbands, Jo L.; Labov, Jay B.
2013-01-01
Numerous studies are demonstrating that engaging undergraduate students in original research can improve their achievement in the science, technology, engineering, and mathematics (STEM) fields and increase the likelihood that some of them will decide to pursue careers in these disciplines. Associated with this increased prominence of research in…
Favre, Leonardo Cristian; Dos Santos, Cristina; López-Fernández, María Paula; Mazzobre, María Florencia; Buera, María Del Pilar
2018-11-01
Thyme (Thymus vulgaris) has been demonstrated to extend the shelf-life of food products, being also a potential source of bioactive compounds. The aim of this research was to optimize the ultrasound assisted extraction employing β-cyclodextrin aqueous solutions as no-contaminant technology and Response Surface Methodology to obtain thyme extracts with the maximum antioxidant capacity. The optimal extraction conditions were: a solution of β-ciclodextrin 15 mM, an ultrasonic treatment time of 5.9 min at a temperature of 36.6 °C. They resulted in an extract with a polyphenolic content of 189.3 mg GAE/mL, an antioxidant activity (DPPH) of 14.8 mg GAE/mL, and ferric reducing/antioxidant power (FRAP) of 3.3 mg GAE/mL. Interestingly, the extract demonstrated to inhibit the production of Maillard browning products and can be considered a potential antiglycant agent. The obtained data is important for developing eco-friendly technologies in order to obtain natural antioxidant extracts with a potential inhibitory capacity of Maillard glycation reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Whalen, Edward A.
2016-01-01
This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.
NASA Astrophysics Data System (ADS)
Calamaio, C. L.; Walker, J.; Beck, J. M.; Graves, S. J.; Johnson, C.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are working closely with the Madison County Emergency Management Agency (EMA), GeoHuntsville's UAS Working Group, and the NOAA UAS Program Office, to conduct a series of practical demonstrations testing the use of small unmanned aerial systems (sUAS) for emergency response activities in Madison County, Alabama. These exercises demonstrate the use of UAS to detect and visualize hazards in affected areas via the delivery of aerial imagery and associated data products to law enforcement first responders in a variety of different scenarios, for example, search and rescue, tornado track mapping, damage assessment, and situational awareness/containment during active shooter incidents. In addition to showcasing the use of UAS as a tool for emergency services, these pilot exercises provide the opportunity to engage the appropriate stakeholders from several communities including first responders, geospatial intelligence, active members of the unmanned systems industry, and academia. This presentation will showcase the challenges associated with delivering quality data products for emergency services in a timely manner as well as the related challenges in integrating the technology into local emergency management.
F-106 tow cable attachment and release mechanism for Eclipse program
NASA Technical Reports Server (NTRS)
1997-01-01
View of the tow cable attachment and release mechanism forward of the cockpit on the QF-106 Eclipse aircraft. This mechanism held and then released the Vectran rope used to tow the QF-106 behind an Air Force C-141A. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Closeup of QF-106 release hook for Eclipse program
NASA Technical Reports Server (NTRS)
1997-01-01
View of the release hook on the QF-106 that allowed the pilot to release the tow rope extending from the C-141A tow plane in the Eclipse project. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse program C-141A aircraft
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. The project used a QF-106 interceptor aircraft to simulate a future orbiter, which would be towed to a high altitude and released to fire its own engines and carry a payload into space. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
A Response Function Approach for Rapid Far-Field Tsunami Forecasting
NASA Astrophysics Data System (ADS)
Tolkova, Elena; Nicolsky, Dmitry; Wang, Dailin
2017-08-01
Predicting tsunami impacts at remote coasts largely relies on tsunami en-route measurements in an open ocean. In this work, these measurements are used to generate instant tsunami predictions in deep water and near the coast. The predictions are generated as a response or a combination of responses to one or more tsunameters, with each response obtained as a convolution of real-time tsunameter measurements and a pre-computed pulse response function (PRF). Practical implementation of this method requires tables of PRFs in a 3D parameter space: earthquake location-tsunameter-forecasted site. Examples of hindcasting the 2010 Chilean and the 2011 Tohoku-Oki tsunamis along the US West Coast and beyond demonstrated high accuracy of the suggested technology in application to trans-Pacific seismically generated tsunamis.
Advanced text and video analytics for proactive decision making
NASA Astrophysics Data System (ADS)
Bowman, Elizabeth K.; Turek, Matt; Tunison, Paul; Porter, Reed; Thomas, Steve; Gintautas, Vadas; Shargo, Peter; Lin, Jessica; Li, Qingzhe; Gao, Yifeng; Li, Xiaosheng; Mittu, Ranjeev; Rosé, Carolyn Penstein; Maki, Keith; Bogart, Chris; Choudhari, Samrihdi Shree
2017-05-01
Today's warfighters operate in a highly dynamic and uncertain world, and face many competing demands. Asymmetric warfare and the new focus on small, agile forces has altered the framework by which time critical information is digested and acted upon by decision makers. Finding and integrating decision-relevant information is increasingly difficult in data-dense environments. In this new information environment, agile data algorithms, machine learning software, and threat alert mechanisms must be developed to automatically create alerts and drive quick response. Yet these advanced technologies must be balanced with awareness of the underlying context to accurately interpret machine-processed indicators and warnings and recommendations. One promising approach to this challenge brings together information retrieval strategies from text, video, and imagery. In this paper, we describe a technology demonstration that represents two years of tri-service research seeking to meld text and video for enhanced content awareness. The demonstration used multisource data to find an intelligence solution to a problem using a common dataset. Three technology highlights from this effort include 1) Incorporation of external sources of context into imagery normalcy modeling and anomaly detection capabilities, 2) Automated discovery and monitoring of targeted users from social media text, regardless of language, and 3) The concurrent use of text and imagery to characterize behaviour using the concept of kinematic and text motifs to detect novel and anomalous patterns. Our demonstration provided a technology baseline for exploiting heterogeneous data sources to deliver timely and accurate synopses of data that contribute to a dynamic and comprehensive worldview.
Deciphering the role of a coleopteran steering muscle via free flight stimulation.
Sato, Hirotaka; Vo Doan, Tat Thang; Kolev, Svetoslav; Huynh, Ngoc Anh; Zhang, Chao; Massey, Travis L; van Kleef, Joshua; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M
2015-03-16
Testing hypotheses of neuromuscular function during locomotion ideally requires the ability to record cellular responses and to stimulate the cells being investigated to observe downstream behaviors [1]. The inability to stimulate in free flight has been a long-standing hurdle for insect flight studies. The miniaturization of computation and communication technologies has delivered ultra-small, radio-enabled neuromuscular recorders and stimulators for untethered insects [2-8]. Published stimulation targets include the areas in brain potentially responsible for pattern generation in locomotion [5], the nerve chord for abdominal flexion [9], antennal muscles [2, 10], and the flight muscles (or their excitatory junctions) [7, 11-13]. However, neither fine nor graded control of turning has been demonstrated in free flight, and responses to the stimulation vary widely [2, 5, 7, 9]. Technological limitations have precluded hypotheses of function validation requiring exogenous stimulation during flight. We investigated the role of a muscle involved in wing articulation during flight in a coleopteran. We set out to identify muscles whose stimulation produced a graded turning in free flight, a feat that would enable fine steering control not previously demonstrated. We anticipated that gradation might arise either as a function of the phase of muscle firing relative to the wing stroke (as in the classic fly b1 muscle [14, 15] or the dorsal longitudinal and ventral muscles of moth [16]), or due to regulated tonic control, in which phase-independent summation of twitch responses produces varying amounts of force delivered to the wing linkages [15, 17, 18]. Copyright © 2015 Elsevier Ltd. All rights reserved.
An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response
Stipčević, Mario; Ursin, Rupert
2015-01-01
Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physicsal process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, wich can be described by a probabilistic theory only, even in principle. Here we present a conceptualy simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology. PMID:26057576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, S.T.; Atwood, T.; Qiu Daxiong
1997-12-31
Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, H. C.; Chen, K.; Liu, Y. Y.
The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (modelsmore » 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.« less
Design of a virtual reality based adaptive response technology for children with autism.
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2013-01-01
Children with autism spectrum disorder (ASD) demonstrate potent impairments in social communication skills including atypical viewing patterns during social interactions. Recently, several assistive technologies, particularly virtual reality (VR), have been investigated to address specific social deficits in this population. Some studies have coupled eye-gaze monitoring mechanisms to design intervention strategies. However, presently available systems are designed to primarily chain learning via aspects of one's performance only which affords restricted range of individualization. The presented work seeks to bridge this gap by developing a novel VR-based interactive system with Gaze-sensitive adaptive response technology that can seamlessly integrate VR-based tasks with eye-tracking techniques to intelligently facilitate engagement in tasks relevant to advancing social communication skills. Specifically, such a system is capable of objectively identifying and quantifying one's engagement level by measuring real-time viewing patterns, subtle changes in eye physiological responses, as well as performance metrics in order to adaptively respond in an individualized manner to foster improved social communication skills among the participants. The developed system was tested through a usability study with eight adolescents with ASD. The results indicate the potential of the system to promote improved social task performance along with socially-appropriate mechanisms during VR-based social conversation tasks.
Design of a Virtual Reality Based Adaptive Response Technology for Children With Autism
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2013-01-01
Children with autism spectrum disorder (ASD) demonstrate potent impairments in social communication skills including atypical viewing patterns during social interactions. Recently, several assistive technologies, particularly virtual reality (VR), have been investigated to address specific social deficits in this population. Some studies have coupled eye-gaze monitoring mechanisms to design intervention strategies. However, presently available systems are designed to primarily chain learning via aspects of one’s performance only which affords restricted range of individualization. The presented work seeks to bridge this gap by developing a novel VR-based interactive system with Gaze-sensitive adaptive response technology that can seamlessly integrate VR-based tasks with eye-tracking techniques to intelligently facilitate engagement in tasks relevant to advancing social communication skills. Specifically, such a system is capable of objectively identifying and quantifying one’s engagement level by measuring real-time viewing patterns, subtle changes in eye physiological responses, as well as performance metrics in order to adaptively respond in an individualized manner to foster improved social communication skills among the participants. The developed system was tested through a usability study with eight adolescents with ASD. The results indicate the potential of the system to promote improved social task performance along with socially-appropriate mechanisms during VR-based social conversation tasks. PMID:23033333
FIELD TESTING & OPTIMIZATION OF CO2/SAND FRACTURING TECHNOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond L. Mazza
2004-11-30
These contract efforts involved the demonstration of a unique liquid free stimulation technology which was, at the beginning of these efforts, in 1993 unavailable in the US. The process had been developed, and patented in Canada in 1981, and held promise for stimulating liquid sensitive reservoirs in the US. The technology differs from that conventionally used in that liquid carbon dioxide (CO{sub 2}), instead of water is the base fluid. The CO{sub 2} is pumped as a liquid and then vaporizes at reservoir conditions, and because no other liquids or chemicals are used, a liquid free fracture is created. Themore » process requires a specialized closed system blender to mix the liquid CO{sub 2} with proppant under pressure. These efforts were funded to consist of up to 21 cost-shared stimulation events. Because of the vagaries of CO{sub 2} supplies, service company support and operator interest only 19 stimulation events were performed in Montana, New Mexico, and Texas. Final reports have been prepared for each of the four demonstration groups, and the specifics of those demonstrations are summarized. A summary of the demonstrations of a novel liquid-free stimulation process which was performed in four groups of ''Candidate Wells'' situated in Crockett Co., TX; San Juan Co., NM; Phillips Co., MT; and Blaine Co., MT. The stimulation process which employs CO{sub 2} as the working fluid and the production responses were compared with those from wells treated with conventional stimulation technologies, primarily N{sub 2} foam, excepting those in Blaine Co., MT where the reservoir pressure is too low to clean up spent stimulation liquids. A total of 19 liquid-free CO{sub 2}/sand stimulations were performed in 16 wells and the production improvements were generally uneconomic.« less
DEMONSTRATION AND QUALITY ASSURANCE PROJECT ...
The demonstration of technologies for determining the presence of dioxin in soil and sediment is being conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in Saginaw, Michigan, at Green Point Environmental Learning Center from approximately April 26 to May 6, 2004. The primary purpose of the demonstration is to evaluate innovative monitoring technologies. The technologies listed below will be demonstrated. .AhRC PCRTM Kit, Hybrizyme Corporation .Ah-IMMUNOASSY@ Kit, Paralsian, Inc. .Coplanar PCB Immunoassay Kit, Abraxis LLC .DF-l Dioxin/Furan Immunoassay Kit, CAPE Technologies L.L.C. .CALUX@ by Xenobiotic Detection Systems, Inc- .Dioxin ELISA Kit, Wako Pure Chemical Industries LTD. This demonstration plan describes the procedures that will be used to verify the performance and cost of these technologies. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to document each technology's performance and cost. A separate innovative technology verification report (ITVR) will.be prepared for each technology. The ITVRs will present the demonstration findings associated with the demonstration objectives. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented performance and cost data obtained from field demonstrations.
Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.
2006-11-14
This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silicamore » high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.« less
Sil, Soumitri; Dahlquist, Lynnda M; Thompson, Caitlin; Hahn, Amy; Herbert, Linda; Wohlheiter, Karen; Horn, Susan
2014-02-01
This study sought to evaluate the effectiveness of virtual reality (VR) enhanced interactive videogame distraction for children undergoing experimentally induced cold pressor pain and examined the role of avoidant and approach coping style as a moderator of VR distraction effectiveness. Sixty-two children (6-13 years old) underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered both with and without a VR helmet in counterbalanced order. As predicted, children demonstrated significant improvement in pain tolerance during both interactive videogame distraction conditions. However, a differential response to videogame distraction with or without the enhancement of VR technology was not found. Children's coping style did not moderate their response to distraction. Rather, interactive videogame distraction with and without VR technology was equally effective for children who utilized avoidant or approach coping styles.
Two-Way Chemical Communication between Artificial and Natural Cells
2017-01-01
Artificial cells capable of both sensing and sending chemical messages to bacteria have yet to be built. Here we show that artificial cells that are able to sense and synthesize quorum signaling molecules can chemically communicate with V. fischeri, V. harveyi, E. coli, and P. aeruginosa. Activity was assessed by fluorescence, luminescence, RT-qPCR, and RNA-seq. Two potential applications for this technology were demonstrated. First, the extent to which artificial cells could imitate natural cells was quantified by a type of cellular Turing test. Artificial cells capable of sensing and in response synthesizing and releasing N-3-(oxohexanoyl)homoserine lactone showed a high degree of likeness to natural V. fischeri under specific test conditions. Second, artificial cells that sensed V. fischeri and in response degraded a quorum signaling molecule of P. aeruginosa (N-(3-oxododecanoyl)homoserine lactone) were constructed, laying the foundation for future technologies that control complex networks of natural cells. PMID:28280778
Trierweiller, Andréa Cristina; Peixe, Blênio César Severo; Tezza, Rafael; Pereira, Vera Lúcia Duarte do Valle; Pacheco, Waldemar; Bornia, Antonio Cezar; de Andrade, Dalton Francisco
2012-01-01
The aim of this paper is to measure the effectiveness of the organizations Information and Communication Technology (ICT) from the point of view of the manager, using Item Response Theory (IRT). There is a need to verify the effectiveness of these organizations which are normally associated to complex, dynamic, and competitive environments. In academic literature, there is disagreement surrounding the concept of organizational effectiveness and its measurement. A construct was elaborated based on dimensions of effectiveness towards the construction of the items of the questionnaire which submitted to specialists for evaluation. It demonstrated itself to be viable in measuring organizational effectiveness of ICT companies under the point of view of a manager through using Two-Parameter Logistic Model (2PLM) of the IRT. This modeling permits us to evaluate the quality and property of each item placed within a single scale: items and respondents, which is not possible when using other similar tools.
Large space-based systems for dealing with global environment change
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M.
1992-01-01
Increased concern over the effects of global climate change and depletion of the ozone layer has resulted in support for the Global Change Research Program and the Mission to Planet Earth. Research to understand Earth system processes is critical, but it falls short of providing ways of mitigating the effects of change. Geoengineering options and alternatives to interactively manage change need to be developed. Space-based concepts for dealing with changes to the environment should be considered in addition to Earth-based actions. 'Mission for Planet Earth' describes those space-based geoengineering solutions that may combine with an international global change program to stabilize the Global environment. Large space systems that may be needed for this response challenge guidance and control engineering and technology. Definition, analysis, demonstration, and preparation of geoengineering technology will provide a basis for policy response if global change consequences are severe.
U.S. EPA SITE DEMONSTRATION OF AWD TECHNOLOGIES, INC AQUADETOX/SVE SYSTEM
Under the Superfund Innovation TechnologyEvaluation (SITE) Program, a technology developed by AWD Technologies, Inc. was demonstrated in September 1990. This paper presents the major results of the SITE demonstration of AWD Technologies" AquaDetox/SVE Treatment system designed f...
Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle (RLV) mounted on NASA 747 ferry air
NASA Technical Reports Server (NTRS)
1997-01-01
This is an artist's conception of the NASA/Lockheed Martin X-33 Advanced Technology Demonstrator being carried on the back of the 747 Shuttle Carrier Aircraft. This was a concept for moving the X-33 from its landing site back to NASA's Dryden Flight Research Center, Edwards, California. The X-33 was a technology demonstrator vehicle for the Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.
Genetics and Genomics of Endometriosis
Hansen, Keith A.; Eyster, Kathleen M.
2015-01-01
Endometriosis is a common cause of morbidity in women with an unknown etiology. Studies have demonstrated the familial nature of endometriosis and suggest that inheritance occurs in a polygenic/multifactorial fashion. Studies have attempted to define the gene or genes responsible for endometriosis through association or linkage studies with candidate genes or DNA mapping technology. A number of genomics studies have demonstrated significant alterations in gene expression in endometriosis. A more thorough understanding of the genetics and genomics of endometriosis will facilitate understanding the basic biology of the disease and open new inroads to diagnosis and treatment of this enigmatic condition. PMID:20436317
NASA Technical Reports Server (NTRS)
1991-01-01
Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom Program reported on the results of their work to date. The results of SSF Advanced Studies provide a road map for the evolution of Freedom in terms of user requirements, utilization and operations concepts, and growth options for distributed systems. Regarding these specific systems, special attention is given to: highlighting changes made during restructuring; description of growth paths thru the follow-on and evolution phases; identification of minimum impact provisions to allow flexibility in the baseline; and identification of enhancing and enabling technologies. Products of these tasks include: engineering fidelity demonstrations and evaluations of advanced technology; detailed requirements, performance specifications, and design accommodations for insertion of advanced technology.
Climatic controls on Later Stone Age human adaptation in Africa's southern Cape.
Chase, Brian M; Faith, J Tyler; Mackay, Alex; Chevalier, Manuel; Carr, Andrew S; Boom, Arnoud; Lim, Sophak; Reimer, Paula J
2018-01-01
Africa's southern Cape is a key region for the evolution of our species, with early symbolic systems, marine faunal exploitation, and episodic production of microlithic stone tools taken as evidence for the appearance of distinctively complex human behavior. However, the temporally discontinuous nature of this evidence precludes ready assumptions of intrinsic adaptive benefit, and has encouraged diverse explanations for the occurrence of these behaviors, in terms of regional demographic, social and ecological conditions. Here, we present a new high-resolution multi-proxy record of environmental change that indicates that faunal exploitation patterns and lithic technologies track climatic variation across the last 22,300 years in the southern Cape. Conditions during the Last Glacial Maximum and deglaciation were humid, and zooarchaeological data indicate high foraging returns. By contrast, the Holocene is characterized by much drier conditions and a degraded resource base. Critically, we demonstrate that systems for technological delivery - or provisioning - were responsive to changing humidity and environmental productivity. However, in contrast to prevailing models, bladelet-rich microlithic technologies were deployed under conditions of high foraging returns and abandoned in response to increased aridity and less productive subsistence environments. This suggests that posited links between microlithic technologies and subsistence risk are not universal, and the behavioral sophistication of human populations is reflected in their adaptive flexibility rather than in the use of specific technological systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automated Planning and Scheduling for Orbital Express (151)
NASA Technical Reports Server (NTRS)
Knight, Russell
2008-01-01
The challenging timeline for DARPA's Orbital Express mission demanded a flexible, responsive, and (above all) safe approach to mission planning. Because the mission was a technology demonstration, pertinent planning information was learned during actual mission execution. This information led to amendments to procedures, which led to changes in the mission plan. In general, we used the ASPEN planner scheduler to generate and validate the mission plans. We enhanced ASPEN to enable it to reason about uncertainty. We also developed a model generator that would read the text of a procedure and translate it into an ASPEN model. These technologies had a significant impact on the success of the Orbital Express mission.
Cybulski, Pamela; Zantinge, Johanna; Abbott-McNeil, Deanna
2006-01-01
The purpose of this quality improvement initiative was to improve the utilization of continuous lateral rotation therapy (CLRT) in a nine-bed community hospital ICU within the context of a nurse-driven protocol. Nursing focus groups, analyzed using a strength, weakness, opportunity, threat (SWOT) approach, resulted in the implementation of four interventions over seven weeks. Change management strategies guided all aspects of the project. Results showed a modest increase in the utilization of CLRT. This initiative demonstrates that change management strategies may assist with the incorporation of technology into nursing practice by increasing empowerment and creating an attachment to and responsibility for outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLellan, G.W.
This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation`s drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy,more » Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool).« less
Mittelmark, M B
2001-09-01
The 1997 Jakarta Declaration on Health Promotion into the 21st Century called for new responses to address the emerging threats to health. The declaration placed a high priority on promoting social responsibility for health, and it identified equity-focused health impact assessment as a high priority for action. This theme was among the foci at the 2000 Fifth Global Conference on Health Promotion held in Mexico. This paper, which is an abbreviation of a technical report prepared for the Mexico conference, advances arguments for focusing on health impact assessment at the local level. Health impact assessment identifies negative health impacts that call for policy responses, and identifies and encourages practices and policies that promote health. Health impact assessment may be highly technical and require sophisticated technology and expertise. But it can also be a simple, highly practical process, accessible to ordinary people, and one that helps a community come to grips with local circumstances that need changing for better health. To illustrate the possibilities, this paper presents a case study, the People Assessing Their Health (PATH) project from Eastern Nova Scotia, Canada. It places ordinary citizens, rather than community elites, at the very heart of local decision-making. Evidence from PATH demonstrates that low technology health impact assessment, done by and for local people, can shift thinking beyond the illness problems of individuals. It can bring into consideration, instead, how programmes and policies support or weaken community health, and illuminate a community's capacity to improve local circumstances for better health. This stands in contrast to evidence that highly technological approaches to community-level health impact assessment can be self-defeating. Further development of simple, people-centred, low technology approaches to health impact assessment at the local level is called for.
Life assessment of structural components using inelastic finite element analyses
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
Technological challenges of theranostics in oncology.
Warenius, Hilmar M
2009-07-01
Although the term theranostics has been coined only fairly recently, attempts to relate the level of biomarkers to therapeutic response in the oncology clinic go back several decades. After a long period in which a limited number of individual theranostic molecular biomarkers gained general clinical acceptance, extremely powerful genomic and proteomic technologies have now emerged. These technologies, reviewed here, promise a potential revolution in our ability to predict therapeutic response in cancer, and by so doing, guide new anticancer drugs more successfully into clinical oncology practice. A full understanding of the detailed molecular nature of clinical cancer is, however, still evolving. The need for appropriate models of the highly complex disease, against which we are attempting to direct effective therapy more accurately, is also addressed. These should include an understanding of genomic and proteomic heterogeneity, genetic instability and systems biology models of cancer that take into account recent demonstrations of the vastly increased mutational state of the average clinical cancer as compared with the normal cell(s) from which it arose. The way forward in theranostics is, arguably, less dependent on further improvements in the already powerful genomic and proteomic technologies themselves than on our improved understanding of how we should apply them to the complex reality of the average clinical cancer.
NASA Astrophysics Data System (ADS)
Singh, Balbir
This paper is an effort to study and analyze several constraints and issues of space technology and education that organizations other than governmental organizations face in awareness program. In recent years, advancements in technologies have made it possible for Volunteer and Technical Communities, non-government organizations, private agencies and academic research institutions to provide increasing support to space education management and emphasis on response efforts. Important cornerstones of this effort and support are the possibility to access and take advantage of satellite imagery as well as the use of other space-based technologies such as telecommunications satellites and global navigation satellite systems included in main curriculum plus the implementation of programs for use of high class sophisticated technologies used by industries to the students and researchers of non-space faring nations. The authors recognize the importance of such new methodologies for education and public Awareness. This paper demonstrates many hurdles universities and scientific institutions face including lack of access in terms of financial and technical resources for better support. A new model for coordinated private sector partnership in response to space sciences and education has been discussed. In depth analysis and techniques need to connect these pioneering communities with the space industry as well as the space governmental agencies, with special emphasis on financial constraints. The paper mandates its role to promote the use of space-based information; its established networks bringing together national institutions responsible for these space based activities, as well as other end users, and space solution experts; and its technical foundation, particularly in the area of information technologies. To help building a tighter cooperation and further understanding among all these communities, paper delivers an intensive report and solutions for future coordination and ease
NASA Astrophysics Data System (ADS)
Fairley, J. P.; Hinds, J. J.
2003-12-01
The advent of the World Wide Web in the early 1990s not only revolutionized the exchange of ideas and information within the scientific community, but also provided educators with a new array of teaching, informational, and promotional tools. Use of computer graphics and animation to explain concepts and processes can stimulate classroom participation and student interest in the geosciences, which has historically attracted students with strong spatial and visualization skills. In today's job market, graduates are expected to have knowledge of computers and the ability to use them for acquiring, processing, and visually analyzing data. Furthermore, in addition to promoting visibility and communication within the scientific community, computer graphics and the Internet can be informative and educational for the general public. Although computer skills are crucial for earth science students and educators, many pitfalls exist in implementing computer technology and web-based resources into research and classroom activities. Learning to use these new tools effectively requires a significant time commitment and careful attention to the source and reliability of the data presented. Furthermore, educators have a responsibility to ensure that students and the public understand the assumptions and limitations of the materials presented, rather than allowing them to be overwhelmed by "gee-whiz" aspects of the technology. We present three examples of computer technology in the earth sciences classroom: 1) a computer animation of water table response to well pumping, 2) a 3-D fly-through animation of a fault controlled valley, and 3) a virtual field trip for an introductory geology class. These examples demonstrate some of the challenges and benefits of these new tools, and encourage educators to expand the responsible use of computer technology for teaching and communicating scientific results to the general public.
NASA Astrophysics Data System (ADS)
Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania
2017-03-01
Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.
Ethics in pharmacy: a new definition of responsibility.
Dessing, Rudolf P; Flameling, Jan
2003-02-01
Ethics and responsibility are expressions that should characterize professional practice in many sectors of society. Pharmacy, being a high technology activity, is just an example of a field where (responsible) decisions about medicines and health care are closely connected to private and public life. Responsible behavior can only be demonstrated when the moral basis, the values on which decisions are taken, is clear and accepted by society as a whole. The basis for responsible action in medicine is still considered to connect with the Hippocratic Oath. But this code has no clear philosophical basis, other than the fact that it was recognized by the inner circle of physicians. Modern dilemmas like the role of technology, public costs, the definition of life, genetic engineering and assisted suicide ask for an approach that is rational, based on philosophical ideas and understandable and accepted by the public. From the work of 20th century philosophers like Rawls, Nussbaum and Sen, essential values can be abstracted, which apply to health and health care. Although the plurality of human beings makes it complicated to translate such values into general rules of conduct, this article presents a model for responsible behavior, based on these values. It appears that responsibility includes the obligation to interact with a patient to an extent in which the values of self-determination, compassion and justice have real significance for the parties involved. This responsibility calls for ('Aristotelian') experience and practical wisdom and should be recognizable through guidelines and legislation.
In Vitro Evaluation of Fluorescence Glucose Biosensor Response
Aloraefy, Mamdouh; Pfefer, T. Joshua; Ramella-Roman, Jessica C.; Sapsford, Kim E.
2014-01-01
Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor. PMID:25006996
In vitro evaluation of fluorescence glucose biosensor response.
Aloraefy, Mamdouh; Pfefer, T Joshua; Ramella-Roman, Jessica C; Sapsford, Kim E
2014-07-08
Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.
NASA Technical Reports Server (NTRS)
Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping
2011-01-01
NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.
NASA Astrophysics Data System (ADS)
Bozeman, Barry; Coker, Karen
1992-05-01
This study, based on a national survey of U.S. government laboratories, assesses the degree of success laboratories have had in transferring technology to industry, taking into account the laboratories' differing receptivity to market influences. Three success criteria are considered here, two based on self-evaluations and a third based on the number of technology licenses issued from the laboratory. The two self-evaluations are rooted in different types of effectiveness, `getting technology out the door,' in one case, and, in the other, having a demonstrable commercial impact. A core hypothesis of the study is that the two types of effectiveness will be responsive to different factors and, in particular, the laboratories with a clearer market orientation will have a higher degree of success on the commercial impact and technology license criteria. Overall, the results seem to suggest that multifaceted, multimission laboratories are likely to enjoy the most success in technology transfer, especially if they have relatively low levels of bureaucratization and either ties to industry (particularly direct financial ties) or a commercial orientation in the selection of projects.
Paudel, Deepak; Ahmed, Marie; Pradhan, Anjushree; Lal Dangol, Rajendra
2013-08-01
Computer-Assisted Personal Interviewing (CAPI), coupled with the use of mobile and wireless technology, is growing as a data collection methodology. Nepal, a geographically diverse and resource-scarce country, implemented the 2011 Nepal Demographic and Health Survey, a nationwide survey of major health indicators, using tablet personal computers (tablet PCs) and wireless technology for the first time in the country. This paper synthesizes responses on the benefits and challenges of using new technology in such a challenging environment from the 89 interviewers who administered the survey. Overall, feedback from the interviewers indicate that the use of tablet PCs and wireless technology to administer the survey demonstrated potential to improve data quality and reduce data collection time-benefits that outweigh manageable challenges, such as storage and transport of the tablet PCs during fieldwork, limited options for confidential interview space due to screen readability issues under direct sunlight, and inconsistent electricity supply at times. The introduction of this technology holds great promise for improving data availability and quality, even in a context with limited infrastructure and extremely difficult terrain.
Biel, Nikolett M; Santostefano, Katherine E; DiVita, Bayli B; El Rouby, Nihal; Carrasquilla, Santiago D; Simmons, Chelsey; Nakanishi, Mahito; Cooper-DeHoff, Rhonda M; Johnson, Julie A; Terada, Naohiro
2015-12-01
Studies in hypertension (HTN) pharmacogenomics seek to identify genetic sources of variable antihypertensive drug response. Genetic association studies have detected single-nucleotide polymorphisms (SNPs) that link to drug responses; however, to understand mechanisms underlying how genetic traits alter drug responses, a biological interface is needed. Patient-derived induced pluripotent stem cells (iPSCs) provide a potential source for studying otherwise inaccessible tissues that may be important to antihypertensive drug response. The present study established multiple iPSC lines from an HTN pharmacogenomics cohort. We demonstrated that established HTN iPSCs can robustly and reproducibly differentiate into functional vascular smooth muscle cells (VSMCs), a cell type most relevant to vasculature tone control. Moreover, a sensitive traction force microscopy assay demonstrated that iPSC-derived VSMCs show a quantitative contractile response on physiological stimulus of endothelin-1. Furthermore, the inflammatory chemokine tumor necrosis factor α induced a typical VSMC response in iPSC-derived VSMCs. These studies pave the way for a large research initiative to decode biological significance of identified SNPs in hypertension pharmacogenomics. Treatment of hypertension remains suboptimal, and a pharmacogenomics approach seeks to identify genetic biomarkers that could be used to guide treatment decisions; however, it is important to understand the biological underpinnings of genetic associations. Mouse models do not accurately recapitulate individual patient responses based on their genetics, and hypertension-relevant cells are difficult to obtain from patients. Induced pluripotent stem cell (iPSC) technology provides a great interface to bring patient cells with their genomic data into the laboratory and to study hypertensive responses. As an initial step, the present study established an iPSC bank from patients with primary hypertension and demonstrated an effective and reproducible method of generating functional vascular smooth muscle cells. ©AlphaMed Press.
Dols, W. Stuart; Persily, Andrew K.; Morrow, Jayne B.; Matzke, Brett D.; Sego, Landon H.; Nuffer, Lisa L.; Pulsipher, Brent A.
2010-01-01
In an effort to validate and demonstrate response and recovery sampling approaches and technologies, the U.S. Department of Homeland Security (DHS), along with several other agencies, have simulated a biothreat agent release within a facility at Idaho National Laboratory (INL) on two separate occasions in the fall of 2007 and the fall of 2008. Because these events constitute only two realizations of many possible scenarios, increased understanding of sampling strategies can be obtained by virtually examining a wide variety of release and dispersion scenarios using computer simulations. This research effort demonstrates the use of two software tools, CONTAM, developed by the National Institute of Standards and Technology (NIST), and Visual Sample Plan (VSP), developed by Pacific Northwest National Laboratory (PNNL). The CONTAM modeling software was used to virtually contaminate a model of the INL test building under various release and dissemination scenarios as well as a range of building design and operation parameters. The results of these CONTAM simulations were then used to investigate the relevance and performance of various sampling strategies using VSP. One of the fundamental outcomes of this project was the demonstration of how CONTAM and VSP can be used together to effectively develop sampling plans to support the various stages of response to an airborne chemical, biological, radiological, or nuclear event. Following such an event (or prior to an event), incident details and the conceptual site model could be used to create an ensemble of CONTAM simulations which model contaminant dispersion within a building. These predictions could then be used to identify priority area zones within the building and then sampling designs and strategies could be developed based on those zones. PMID:27134782
Dols, W Stuart; Persily, Andrew K; Morrow, Jayne B; Matzke, Brett D; Sego, Landon H; Nuffer, Lisa L; Pulsipher, Brent A
2010-01-01
In an effort to validate and demonstrate response and recovery sampling approaches and technologies, the U.S. Department of Homeland Security (DHS), along with several other agencies, have simulated a biothreat agent release within a facility at Idaho National Laboratory (INL) on two separate occasions in the fall of 2007 and the fall of 2008. Because these events constitute only two realizations of many possible scenarios, increased understanding of sampling strategies can be obtained by virtually examining a wide variety of release and dispersion scenarios using computer simulations. This research effort demonstrates the use of two software tools, CONTAM, developed by the National Institute of Standards and Technology (NIST), and Visual Sample Plan (VSP), developed by Pacific Northwest National Laboratory (PNNL). The CONTAM modeling software was used to virtually contaminate a model of the INL test building under various release and dissemination scenarios as well as a range of building design and operation parameters. The results of these CONTAM simulations were then used to investigate the relevance and performance of various sampling strategies using VSP. One of the fundamental outcomes of this project was the demonstration of how CONTAM and VSP can be used together to effectively develop sampling plans to support the various stages of response to an airborne chemical, biological, radiological, or nuclear event. Following such an event (or prior to an event), incident details and the conceptual site model could be used to create an ensemble of CONTAM simulations which model contaminant dispersion within a building. These predictions could then be used to identify priority area zones within the building and then sampling designs and strategies could be developed based on those zones.
NASA Experience with UAS Science Applications
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Jennison, Chris
2007-01-01
Viewgraphs of NASA's Unmanned Aerial Systems (UAS) as it applies to Earth science missions is presented. The topics include: 1) Agenda; 2) Background; 3) NASA Science Aircraft Endurance; 4) Science UAS Development Challenges; 5) USCG Alaskan Maritime Surveillance; 6) NOAA/NASA UAV Demonstration Project; 7) Western States Fire Mission; 8) Esperanza Fire Emergency Response; 9) Ikhana (Predator B); 10) UAV Synthetic Aperture Radar (UAVSAR); 11) Global Hawk; and 12) Related Technologies
Field Demonstration of Light Obscuration Particle Counting Technologies to Detect Fuel Contaminates
2016-12-01
to detect fuel contamiation including particulates and free water 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water ...undissolved water , F24 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON Joel...technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the time during
Sensitive Infrared Photodetectors: Optimized Electron Kinetics for Room-Temperature Operation
2010-12-20
QD levels; (iii) High photoconductive gain and responsivity; (iv) Low generation-recombination noise due to the long photoelectron lifetime. The...etc. [1-6]. For example, quantum-well infrared photodetectors ( QWIPs ) is currently a well-established technology, which is widely employed in...various imaging devices working at liquid nitrogen temperatures and below [7,8]. At 77K, modern QWIPs operating around λ = 10 μm demonstrate the
Low NOx Fuel Flexible Combustor Integration Project Overview
NASA Technical Reports Server (NTRS)
Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen
2015-01-01
The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.
Novel highly dispersible, thermally stable core/shell proppants for geothermal applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childers, Ian M.; Endres, Mackenzie; Burns, Carolyne
The use of proppants during reservoir stimulation in tight oil and gas plays requires the introduction of highly viscous fluids to transport the proppants (µm–mm) with the fracturing fluid. The highly viscous fluids required result in increased pump loads and energy costs. Furthermore, although proppant deployment with fracturing fluids is a standard practice for unconventional oil and gas stimulation operations, there are only a few examples in the US of the applying proppant technology to geothermal energy production. This is due to proppant dissolution, proppant flowback and loss of permeability associated with the extreme temperatures found in enhanced geothermal systemsmore » (EGS). This work demonstrates proof-of-concept of a novel, CO2-responsive, lightweight sintered-bauxite/polymer core/shell proppant. The polymer shell has two main roles; 1) increase the stability of the proppant dispersion in water without the addition of rheology modifiers, and 2) once at the fracture network react with CO2 to promote particle aggregation and prop fractures open. In this work, both of these roles are demonstrated together with the thermal and chemical stability of the materials showing the potential of these CO2-responsive proppants as an alternative proppant technology for geothermal and unconventional oil/gas applications.« less
Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji
2016-01-01
The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors. PMID:27713550
Macpherson, Kevin; Charlop, Marjorie H; Miltenberger, Catherine A
2015-12-01
A multiple baseline design across participants was used to examine the effects of a portable video modeling intervention delivered in the natural environment on the verbal compliments and compliment gestures demonstrated by five children with autism. Participants were observed playing kickball with peers and adults. In baseline, participants demonstrated few compliment behaviors. During intervention, an iPad(®) was used to implement the video modeling treatment during the course of the athletic game. Viewing the video rapidly increased the verbal compliments participants gave to peers. Participants also demonstrated more response variation after watching the videos. Some generalization to an untrained activity occurred and compliment gestures also occurred. Results are discussed in terms of contributions to the literature.
An Advanced Trajectory-Based Operations Prototype Tool and Focus Group Evaluation
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.; Rogers, Laura J.; Underwood, Matthew C.; Johnson, Sally C.
2017-01-01
Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. The National Aeronautics and Space Administration (NASA) has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality that may reside in an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. After viewing the interactive demonstration scenarios, the SMEs felt the operational capabilities demonstrated would be useful for performing TBO while maintaining situation awareness and low mental workload. The TBO concept demonstrated produced defined routings around weather which resulted in a more organized, consistent flow of traffic where it was clear to both the controller and pilot what route the aircraft was to follow. In general, the controller SMEs felt that traffic flow management should be responsible for generating and negotiating the operational constraints demonstrated, in cooperation with the Air Traffic Control System Command Center, while air traffic control should be responsible for the implementation of those constraints. The SMEs also indicated that digital data communications would be very beneficial for TBO operations and would result in less workload due to reduced communications, would eliminate issues due to language barriers and frequency problems, and would make receiving, loading, accepting, and executing clearances easier, less ambiguous, and more expeditious. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group evaluation.
Connecting the Force from Space: The IRIS Joint Capability Technology Demonstration
2010-01-01
the Joint in Joint Capability Technology Demonstration, we have two sponsors, both U.S. Strategic Command and the Defense Information Systems...Capability Technology Demonstration will provide an excellent source of data on space-based Internet Protocol net- working. Operational... Internet Routing in Space Joint Capability Technology Demonstration Operational Manager, Space and Missile Defense Battle Lab, Colorado Springs
NASA Astrophysics Data System (ADS)
Lama, Carlos E.; Fagan, Joe E.
2009-09-01
The United States Department of Defense (DoD) defines 'force protection' as "preventive measures taken to mitigate hostile actions against DoD personnel (to include family members), resources, facilities, and critical information." Advanced technologies enable significant improvements in automating and distributing situation awareness, optimizing operator time, and improving sustainability, which enhance protection and lower costs. The JFPASS Joint Capability Technology Demonstration (JCTD) demonstrates a force protection environment that combines physical security and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) defense through the application of integrated command and control and data fusion. The JFPASS JCTD provides a layered approach to force protection by integrating traditional sensors used in physical security, such as video cameras, battlefield surveillance radars, unmanned and unattended ground sensors. The optimization of human participation and automation of processes is achieved by employment of unmanned ground vehicles, along with remotely operated lethal and less-than-lethal weapon systems. These capabilities are integrated via a tailorable, user-defined common operational picture display through a data fusion engine operating in the background. The combined systems automate the screening of alarms, manage the information displays, and provide assessment and response measures. The data fusion engine links disparate sensors and systems, and applies tailored logic to focus the assessment of events. It enables timely responses by providing the user with automated and semi-automated decision support tools. The JFPASS JCTD uses standard communication/data exchange protocols, which allow the system to incorporate future sensor technologies or communication networks, while maintaining the ability to communicate with legacy or existing systems.
Structuring Light to Manipulate Multipolar Resonances for Metamaterial Applications
NASA Astrophysics Data System (ADS)
Das, Tanya
Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. Typically, researchers engineer multipolar light-matter interactions by modifying the size, shape, and composition of the resonators. Here, we instead engineer multipolar interactions by modifying properties of the incident radiation. In this dissertation, we propose a new framework for determining the scattering response of resonators based on properties of the local excitation field. First, we derive an analytical theory to determine the scattering response of spherical nanoparticles under any type of illumination. Using this theory, we demonstrate the ability to drastically manipulate the scattering properties of a spherical nanoparticle by varying the illumination and demonstrate excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. Next, we investigate the response of dielectric dimer structures illuminated by cylindrical vector beams. Using finite-difference time-domain simulations, we demonstrate significant modification of the scattering spectra of dimer antennas and reveal how the illumination condition gives rise to these spectra through manipulation of electric and magnetic mode hybridization. Finally, we present a simple and efficient numerical simulation based on local field principles for extracting the multipolar response of any resonator under illumination by structured light. This dissertation enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.
Ideal Magnetic Dipole Scattering
NASA Astrophysics Data System (ADS)
Feng, Tianhua; Xu, Yi; Zhang, Wei; Miroshnichenko, Andrey E.
2017-04-01
We introduce the concept of tunable ideal magnetic dipole scattering, where a nonmagnetic nanoparticle scatters light as a pure magnetic dipole. High refractive index subwavelength nanoparticles usually support both electric and magnetic dipole responses. Thus, to achieve ideal magnetic dipole scattering one has to suppress the electric dipole response. Such a possibility was recently demonstrated for the so-called anapole mode, which is associated with zero electric dipole scattering. By spectrally overlapping the magnetic dipole resonance with the anapole mode, we achieve ideal magnetic dipole scattering in the far field with tunable strong scattering resonances in the near infrared spectrum. We demonstrate that such a condition can be realized at least for two subwavelength geometries. One of them is a core-shell nanosphere consisting of a Au core and silicon shell. It can be also achieved in other geometries, including nanodisks, which are compatible with current nanofabrication technology.
Current Status and Perspectives of Hyperthermia in Cancer Therapy
NASA Astrophysics Data System (ADS)
Hiraoka, Masahiro; Nagata, Yasushi; Mitsumori, Michihide; Sakamoto, Masashi; Masunaga, Shin-ichiro
2004-08-01
Clinical trials of hyperthermia in combination with radiation therapy or chemotherapy undertaken over the past decades in Japan have been reviewed. Originally developed heating devices were mostly used for these trials, which include RF (radiofrequency) capacitive heating devices, a microwave heating device with a lens applicator, an RF intracavitary heating device, an RF current interstitial heating device, and ferromagnetic implant heating device. Non-randomized trials for various cancers, demonstrated higher response rate in thermoradiotherapy than in radiotherapy alone. Randomized trials undertaken for esophageal cancers also demonstrated improved local response with the combined use of hyperthermia. Furthermore, the complications associated with treatment were not generally serious. These clinical results indicate the benefit of combined treatment of hyperthermia and radiotherapy for various malignancies. On the other hand, the presently available heating devices are not satisfactory from the clinical viewpoints. With the advancement of heating and thermometry technologies, hyperthermia will be more widely and safely used in the treatment of cancers.
Radiation effects in advanced microelectronics technologies
NASA Astrophysics Data System (ADS)
Johnston, A. H.
1998-06-01
The pace of device scaling has increased rapidly in recent years. Experimental CMOS devices have been produced with feature sizes below 0.1 /spl mu/m, demonstrating that devices with feature sizes between 0.1 and 0.25 /spl mu/m will likely be available in mainstream technologies after the year 2000. This paper discusses how the anticipated changes in device dimensions and design are likely to affect their radiation response in space environments. Traditional problems, such as total dose effects, SEU and latchup are discussed, along with new phenomena. The latter include hard errors from heavy ions (microdose and gate-rupture errors), and complex failure modes related to advanced circuit architecture. The main focus of the paper is on commercial devices, which are displacing hardened device technologies in many space applications. However, the impact of device scaling on hardened devices is also discussed.
Emergency Response Fire-Imaging UAS Missions over the Southern California Wildfire Disaster
NASA Technical Reports Server (NTRS)
DelFrate, John H.
2008-01-01
Objectives include: Demonstrate capabilities of UAS to overfly and collect sensor data on widespread fires throughout Western US. Demonstrate long-endurance mission capabilities (20-hours+). Image multiple fires (greater than 4 fires per mission), to showcase extendable mission configuration and ability to either linger over key fires or station over disparate regional fires. Demonstrate new UAV-compatible, autonomous sensor for improved thermal characterization of fires. Provide automated, on-board, terrain and geo-rectified sensor imagery over OTH satcom links to national fire personnel and Incident commanders. Deliver real-time imagery (within 10-minutes of acquisition). Demonstrate capabilities of OTS technologies (GoogleEarth) to serve and display mission-critical sensor data, coincident with other pertinent data elements to facilitate information processing (WX data, ground asset data, other satellite data, R/T video, flight track info, etc).
Emergency Response Fire-Imaging UAS Missions over the Southern California Wildfire Disaster
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.
2007-01-01
Objectives include: Demonstrate capabilities of UAS to overfly and collect sensor data on widespread fires throughout Western US. Demonstrate long-endurance mission capabilities (20-hours+). Image multiple fires (greater than 4 fires per mission), to showcase extendable mission configuration and ability to either linger over key fires or station over disparate regional fires. Demonstrate new UAV-compatible, autonomous sensor for improved thermal characterization of fires. Provide automated, on-board, terrain and geo-rectified sensor imagery over OTH satcom links to national fire personnel and Incident commanders. Deliver real-time imagery (within 10-minutes of acquisition). Demonstrate capabilities of OTS technologies (GoogleEarth) to serve and display mission-critical sensor data, coincident with other pertinent data elements to facilitate information processing (WX data, ground asset data, other satellite data, R/T video, flight track info, etc).
Shape-Morphing Nanocomposite Origami
2015-01-01
Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications. PMID:24689908
Gallium arsenide quantum well-based far infrared array radiometric imager
NASA Technical Reports Server (NTRS)
Forrest, Kathrine A.; Jhabvala, Murzy D.
1991-01-01
We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.
Effects of Demand Response on Retail and Wholesale Power Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Kalsi, Karanjit
2012-07-26
Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energy’s Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets ismore » discussed with necessary and sufficient conditions on system controllability, observability and stability derived.« less
A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...
Kashibe, Masayoshi; Matsumoto, Kengo; Hori, Yuichiro
2017-01-01
Controlled release is one of the key technologies for medical innovation, and many stimulus-responsive nanocarriers have been developed to utilize this technology. Enzyme activity is one of the most useful stimuli, because many enzymes are specifically activated in diseased tissues. However, controlled release stimulated by enzyme activity has not been frequently reported. One of the reasons for this is the lack of versatility of carriers. Most of the reported stimulus-responsive systems involve a sophisticated design and a complicated process for the synthesis of stimulus-responsive nanocarrier components. The purpose of this study was to develop versatile controlled release systems triggered by various stimuli, including enzyme activity, without modifying the nanocarrier components. We developed two controlled release systems, both of which comprised a liposome as the nanocarrier and a membrane-damaging peptide, temporin L (TL), and its derivatives as the release-controllers. One system utilized branched peptides for proteases, and the other utilized phosphopeptides for phosphatases. In our systems, the target enzymes converted the non-membrane-damaging TL derivatives into membrane-damaging peptides and released the liposome inclusion. We demonstrated the use of our antimicrobial peptide-based controlled release systems for different enzymes and showed the promise of this technology as a novel theranostic tool. PMID:28451373
Haralambieva, Iana H.; Gibson, Michael J.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Warner, Nathaniel D.; Grill, Diane E.
2017-01-01
Introduction//Background The lack of standardization of the currently used commercial anti-rubella IgG antibody assays leads to frequent misinterpretation of results for samples with low/equivocal antibody concentration. The use of alternative approaches in rubella serology could add new information leading to a fuller understanding of rubella protective immunity and neutralizing antibody response after vaccination. Methods We applied microarray technology to measure antibodies to all rubella virus proteins in 75 high and 75 low rubella virus-specific antibody responders after two MMR vaccine doses. These data were used in multivariate penalized logistic regression modeling of rubella-specific neutralizing antibody response after vaccination. Results We measured antibodies to all rubella virus structural proteins (i.e., the glycoproteins E1 and E2 and the capsid C protein) and to the non-structural protein P150. Antibody levels to each of these proteins were: correlated with the neutralizing antibody titer (p<0.006); demonstrated differences between the high and the low antibody responder groups (p<0.008); and were components of the model associated with/predictive of vaccine-induced rubella virus-specific neutralizing antibody titers (misclassification error = 0.2). Conclusion Our study supports the use of this new technology, as well as the use of antibody profiles/patterns (rather than single antibody measures) as biomarkers of neutralizing antibody response and correlates of protective immunity in rubella virus serology. PMID:29145521
As part of the Superfund Innovative Technology Evaluation (SITE) program, the U.S. Environmental Protection Agency (EPA) demonstrated the Chemical Waste Management, Inc. (CWM), PO*WW*ER™ technology. The SITE demonstration was conducted in September 1992 at CWM's Lake Charles Tre...
Transforming classroom questioning using emerging technology.
Mahon, Paul; Lyng, Colette; Crotty, Yvonne; Farren, Margaret
2018-04-12
Classroom questioning is a common teaching and learning strategy in postgraduate nurse education. Technologies such as audience response systems (ARS) may offer advantage over traditional approaches to classroom questioning. However, despite being available since the 1960s, ARSs are still considered novel in many postgraduate nurse education classroom settings. This article aims to explicate the attitudes of postgraduate nursing students in an Irish academic teaching hospital towards classroom questioning (CQ) and the use of ARSs as an alternative to traditional CQ techniques. The results of this small-scale study demonstrate that ARSs have a role to play in CQ in the postgraduate setting, being regarded by students as beneficial to learning, psychological safety and classroom interaction.
The New HIT: Human Health Information Technology.
Leung, Tiffany I; Goldstein, Mary K; Musen, Mark A; Cronkite, Ruth; Chen, Jonathan H; Gottlieb, Assaf; Leitersdorf, Eran
2017-01-01
Humanism in medicine is defined as health care providers' attitudes and actions that demonstrate respect for patients' values and concerns in relation to their social, psychological and spiritual life domains. Specifically, humanistic clinical medicine involves showing respect for the patient, building a personal connection, and eliciting and addressing a patient's emotional response to illness. Health information technology (IT) often interferes with humanistic clinical practice, potentially disabling these core aspects of the therapeutic patient-physician relationship. Health IT has evolved rapidly in recent years - and the imperative to maintain humanism in practice has never been greater. In this vision paper, we aim to discuss why preserving humanism is imperative in the design and implementation of health IT systems.
Advanced technology for space shuttle auxiliary propellant valves
NASA Technical Reports Server (NTRS)
Wichmann, H.
1973-01-01
Valves for the gaseous hydrogen/gaseous oxygen shuttle auxiliary propulsion system are required to feature low leakage over a wide temperature range coupled with high cycle life, long term compatibility and minimum maintenance. In addition, those valves used as thruster shutoff valves must feature fast response characteristics to achieve small, repeatable minimum impulse bits. These valve technology problems are solved by developing unique valve components such as sealing closures, guidance devices, and actuation means and by demonstrating two prototype valve concepts. One of the prototype valves is cycled over one million cycles without exceeding a leakage rate of 27 scc's per hour at 450 psia helium inlet pressure throughout the cycling program.
Perfluorocarbon Nanoparticles:. A Theranostic Platform Technology
NASA Astrophysics Data System (ADS)
Lanza, Gregory M.; Winter, Patrick M.; Caruthers, Shelton D.; Hughes, Michael S.; Hu, Grace; Pan, Dipanjan; Schmieder, Anne H.; Pham, Christine; Wickline, Samuel A.
2013-09-01
Nanomedicine clearly offers unique tools to address intractable medical problems in cancer and cardiovascular disease from entirely new perspectives. Among the theranostic options emerging in this new wave of biotechnology development, the perfluorocarbon nanoparticles have shown robust potential in vivo for diagnosing, characterizing, treating and following proliferating cancers, progressive atherosclerosis, rheumatoid arthritis and much more. These molecular imaging agents have been demonstrated for use with ultrasound, MRI, CT, and SPECT/CT. Moreover, the synergism of imaging for confirmation of therapeutic delivery, for dosimetry, and for noninvasively following early treatment responses is discussed. Image-guided drug delivery based on nanotechnology is emerging as a powerful clinical opportunity, and PFC nanoparticles are among the leading technologies reaching clinical testing today with this potential.
Socioscientific Issues as a Vehicle for Promoting Character and Values for Global Citizens
NASA Astrophysics Data System (ADS)
Lee, Hyunju; Yoo, Jungsook; Choi, Kyunghee; Kim, Sung-Won; Krajcik, Joseph; Herman, Benjamin C.; Zeidler, Dana L.
2013-08-01
Our guiding presupposition in this study was that socioscientific issues (SSI) instruction, given the humanistic features that comprise this type of instruction, could play a role as a vehicle for cultivating character and values as global citizens. Our main objective was to observe how and to what extent SSI instruction might contribute to this. In order to achieve this aim, we implemented a SSI program on genetic modification technology for 132 ninth-grade students over 3-4 weeks and identified its educational effects using a mixed method approach. Data sources included student responses to questionnaire items that measure the students' character and values, records of student discussions, and semi-structured interviews with the students and their teachers. Results indicated that the students became more sensitive to moral and ethical aspects of scientific and technological development and compassionate to diverse people who are either alienated by the benefits of advanced technology or who are vulnerable to the dangers of its unintended effects. In addition, the students felt more responsible for the future resolution of the genetic SSI. However, the students struggled to demonstrate willingness and efficacy to participate within broader communities that entailed action toward SSI resolution.
King, Roderick; Hanhan, Jaber; Harrison, T Kyle; Kou, Alex; Howard, Steven K; Borg, Lindsay K; Shum, Cynthia; Udani, Ankeet D; Mariano, Edward R
2018-05-15
Malignant hyperthermia is a rare but potentially fatal complication of anesthesia, and several different cognitive aids designed to facilitate a timely and accurate response to this crisis currently exist. Eye tracking technology can measure voluntary and involuntary eye movements, gaze fixation within an area of interest, and speed of visual response and has been used to a limited extent in anesthesiology. With eye tracking technology, we compared the accessibility of five malignant hyperthermia cognitive aids by collecting gaze data from twelve volunteer participants. Recordings were reviewed and annotated to measure the time required for participants to locate objects on the cognitive aid to provide an answer; cumulative time to answer was the primary outcome. For the primary outcome, there were differences detected between cumulative time to answer survival curves (P < 0.001). Participants demonstrated the shortest cumulative time to answer when viewing the Society for Pediatric Anesthesia (SPA) cognitive aid compared to four other publicly available cognitive aids for malignant hyperthermia, and this outcome was not influenced by the anesthesiologists' years of experience. This is the first study to utilize eye tracking technology in a comparative evaluation of cognitive aid design, and our experience suggests that there may be additional applications of eye tracking technology in healthcare and medical education. Potentially advantageous design features of the SPA cognitive aid include a single page, linear layout, and simple typescript with minimal use of single color blocking.
Field Testing of Activated Carbon Mixing and In Situ Stabilization of PCBs in Sediment
2009-05-01
hazardous emissions and residuals were produced by this in situ treatment technology during the demonstration. 8.2 Other Regulatory Issues The...dibenzofuran concentrations in grebes, ducks and their prey near Port Alberni, British Columbia, Canada. Marine Pollution Bulletin 1993, 26, 431-435. (44...system HASP – Health and Safety Plan HAZWOPER – Hazardous Waste Operations and Emergency Response HPS – Hunters Point Shipyard HSO – Site Health
2013-12-01
of power from sunlight or a wind turbine (same solar panel tarps used in NEST Raptor Solar Light Trailer) • Global Positioning System (GPS) devices...satellite-enabled rapid wireless communications to the most critical areas and functions, working with Joint Task Forces. The first priority after the...a rapid response wireless communications system from military, civilian government, and non-government organizations. The tasks performed by HFN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorpening, Benjamin T.; Kamler, Jonathan
The Raman Gas Analyzer (RGA) has been demonstrated to have an extremely fast response (<1 second), pressurized, multi-gas analysis capability. All but the noble gases are Raman active, although the Raman interaction is weak. The RGA uses a reflectively lined capillary as the optical cell, providing both a small sample volume for fast gas exchange, and a much greater Raman signal collection than traditional instrument configurations.
Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record Number 842
2007-06-01
collection sessions. Daily: A location identified as having no subsurface metal will be designated as a calibration point. Readings will be... metallic item will be placed below the center of the sensors, and the instrument’s response will be observed. The item will then be removed, and static... nonferrous anomalies. Due to limitations of the magnetometer, the nonferrous items cannot be detected. Therefore, the ROC curves presented in Figures
Quantum Well Intrasubband Photodetector for Far Infared and Terahertz Radiation Detection
NASA Technical Reports Server (NTRS)
Ting, David Z. -Y.; Chang, Yia-Chung; Bandara, Sumith V.; Gunapala, Sarath D.
2007-01-01
The authors present a theoretical analysis on the possibility of using the dopant-assisted intrasubband absorption mechanism in quantum wells for normal-incidence far infrared/terahertz radiation detection. The authors describe the proposed concept of the quantum well intrasubband photodetector (QWISP), which is a compact semiconductor heterostructure device compatible with existing GaAs focal-plane array technology, and present theoretical results demonstrating strong normal-incidence absorption and responsivity in the QWISP.
Canadian Forces in Joint Fires Support - Human Factors Analysis: Coalition Operations
2010-08-01
mesure/l’estimation des dommages collatéraux (EDC). Outil pour comprendre l’EDC de certains pays comparativement à celle des membres de l’OTAN et...Program (TDP). The TDP is aimed at concept development, evaluation for force design , and the demonstration of technologies fostered by Defence Research...logistics and the designation of targets on the joint targeting list. • Tactical capability / response time / training. The tactical capability of a fire
Waste Separations and Pretreatment Workshop report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruse, J.M.; Harrington, R.A.; Quadrel, M.J.
1994-01-01
This document provides the minutes from the Waste Separations and Pretreatment Workshop sponsored by the Underground Storage Tank-Integrated Demonstration in Salt Lake City, Utah, February 3--5, 1993. The Efficient Separations and Processing-Integrated Program and the Hanford Site Tank Waste Remediation System were joint participants. This document provides the detailed minutes, including responses to questions asked, an attendance list, reproductions of the workshop presentations, and a revised chart showing technology development activities.
NASA Astrophysics Data System (ADS)
Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen
2017-07-01
The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.
Platelet–neutrophil interactions under thromboinflammatory conditions
Li, Jing; Kim, Kyungho; Barazia, Andrew; Tseng, Alan
2015-01-01
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet–neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet–neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet– neutrophil interactions in thromboinflammatory disease. PMID:25650236
Three-dimensional micro electromechanical system piezoelectric ultrasound transducer
NASA Astrophysics Data System (ADS)
Hajati, Arman; Latev, Dimitre; Gardner, Deane; Hajati, Azadeh; Imai, Darren; Torrey, Marc; Schoeppler, Martin
2012-12-01
Here we present the design and experimental acoustic test data for an ultrasound transducer technology based on a combination of micromachined dome-shaped piezoelectric resonators arranged in a flexible architecture. Our high performance niobium-doped lead zirconate titanate film is implemented in three-dimensional dome-shaped structures, which form the basic resonating cells. Adjustable frequency response is realized by mixing these basic cells and modifying their dimensions by lithography. Improved characteristics such as high sensitivity, adjustable wide-bandwidth frequency response, low transmit voltage compatible with ordinary integrated circuitry, low electrical impedance well matched to coaxial cabling, and intrinsic acoustic impedance match to water are demonstrated.
Remote radio control of insect flight.
Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M
2009-01-01
We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.
Wiesmeth, Hans; Häckl, Dennis
2011-09-01
This paper investigates the concept of extended producer responsibility (EPR) from an economic point of view. Particular importance will be placed on the concept of 'economic feasibility' of an EPR policy, which should guide decision-making in this context. Moreover, the importance of the core EPR principle of 'integrating signals throughout the product chain' into the incentive structure will be demonstrated with experiences from Germany. These examples refer to sales packaging consumption, refillable drinks packages and waste electrical and electronic equipment collection. As a general conclusion, the interaction between economic principles and technological development needs to be observed carefully when designing incentive-compatible EPR policies.
Caged compounds: tools for illuminating neuronal responses and connections.
Nerbonne, J M
1996-06-01
A number of new 'caged' intracellular second messengers and neurotransmitters have been developed using the photolabile o-nitrobenzyl group. This chemistry has also recently been exploited in novel ways, including the development of caged enzyme substrates and caged proteins. Although caged compounds continue to be used primarily for mechanistic (kinetic) studies of processes mediated by transmitters or second messengers, the spatial resolution afforded by the use of light to effect changes in transmitter concentrations has now been clearly demonstrated. The increased availability of caged compounds and of the technologies required to exploit them provides neurobiologists with powerful tools for probing neuronal response properties and connectivity patterns.
Mahoney, Diane F; Tarlow, Barbara
2006-01-01
Research has demonstrated the health and financial cost to working caregivers of older adults and the cost to business in lost productivity. This paper describes the implementation of the Worker Interactive Networking (WIN) project, a Web-based program designed to support employed caregivers at work. WIN innovatively linked working caregivers via the Internet to home to monitor elders' status using wireless sensor technology and included an online information and support group for a six-month period. Twenty-seven employees from thirteen business sites participated. Despite problems with wireless carrier service, feasibility outcomes were achieved. We were able to collect six months of continuous real time data wirelessly from multiple types of homes across 4 states. This model demonstrates that businesses can offer a similar program and not be overwhelmed by employee demand or abuse of technology access. Reluctance to consider home monitoring was apparent and was influenced by familial relationships and values of privacy and independence.
Application of virtual reality graphics in assessment of concussion.
Slobounov, Semyon; Slobounov, Elena; Newell, Karl
2006-04-01
Abnormal balance in individuals suffering from traumatic brain injury (TBI) has been documented in numerous recent studies. However, specific mechanisms causing balance deficits have not been systematically examined. This paper demonstrated the destabilizing effect of visual field motion, induced by virtual reality graphics in concussed individuals but not in normal controls. Fifty five student-athletes at risk for concussion participated in this study prior to injury and 10 of these subjects who suffered MTBI were tested again on day 3, day 10, and day 30 after the incident. Postural responses to visual field motion were recorded using a virtual reality (VR) environment in conjunction with balance (AMTI force plate) and motion tracking (Flock of Birds) technologies. Two experimental conditions were introduced where subjects passively viewed VR scenes or actively manipulated the visual field motion. Long-lasting destabilizing effects of visual field motion were revealed, although subjects were asymptomatic when standard balance tests were introduced. The findings demonstrate that advanced VR technology may detect residual symptoms of concussion at least 30 days post-injury.
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.
X-34 Technology Demonstrator in High Bay
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.
Functional Nanomaterials for Environmental Applications and Bioassemblies
NASA Astrophysics Data System (ADS)
Nguyen, Michelle Anne
The rational design of nanomaterials has yielded new technologies that have revolutionized numerous diverse fields. The work detailed herein first describes the application of photocatalytic nanomaterials towards the environmental remediation of harmful toxins. Specifically, a low-temperature solution-phase synthetic route for size-controlled Cu2O octahedra particles was developed, and these materials were evaluated as catalysts for the photocatalytic degradation of aromatic organic compounds. Moreover, cubic Cu2O/Pd composite structures were fabricated and demonstrated to be effective photocatalysts for the generation of H2 and the reductive dehalogenation of polychlorinated biphenyls, well-known carcinogens present at many contaminated sites around the world. This photocatalytic approach to environmental remediation exemplifies the adaptation of light-driven technologies and sustainable practices to energy-intensive catalytic systems. In addition, this work also investigates the organic/inorganic interface of peptide-mediated Au nanoparticles as a means to identify rational design principles for materials binding peptide sequences for the advancement of stimuli-responsive bionanoassemblies. Factors inherent to peptide sequences that can promote strong materials-binding affinity and/or effective nanoparticle stabilization capability were identified in order to progress biomimetic technologies. These findings were elucidated using a combinational approach of peptide binding experiments to Au in partnership with molecular dynamics simulations. Overall, this work demonstrates the growing applications of nanomaterials in remediation technologies and aids in the understanding of the origins of peptide material affinity and nanoparticle stabilization.
Deep silicon etching: current capabilities and future directions
NASA Astrophysics Data System (ADS)
Westerman, Russ; Martinez, Linnell; Pays-Volard, David; Mackenzie, Ken; Lazerand, Thierry
2014-03-01
Deep Reactive Ion Etching (DRIE) has revolutionized a wide variety of MEMS applications since its inception nearly two decades ago. The DRIE technology has been largely responsible for allowing lab scale technology demonstrations to become manufacturable and profitable consumer products. As applications which utilize DRIE technologies continue to expand and evolve, they continue to spawn a range of new requirements and open up exciting opportunities for advancement of DRIE. This paper will examine a number of current and emerging DRIE applications including nanotechnology, and DRIE related packaging technologies such as Through Silicon Via (TSV) and plasma dicing. The paper will discuss a number of technical challenges and solutions associated with these applications including: feature profile control at high aspect ratios, causes and elimination of feature tilt/skew, process options for fragile device structures, and problems associated with through substrate etching. The paper will close with a short discussion around the challenges of implementing DRIE in production environments as well as looking at potentially disruptive enhancements / substitutions for DRIE.
EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY
A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...
X-34 Technology Testbed Demonstrator being mated with the L-1011 mothership
1999-03-11
This is the X-34 Technology Testbed Demonstrator being mated with the L-1011 mothership. The X-34 will demonstrate key vehicle and operational technologies applicable to future low-cost resuable launch vehicles.
The psychosocial impacts of multimedia biographies on persons with cognitive impairments.
Damianakis, Thecla; Crete-Nishihata, Masashi; Smith, Karen L; Baecker, Ronald M; Marziali, Elsa
2010-02-01
The purpose of this feasibility pilot project was to observe Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients' responses to personalized multimedia biographies (MBs). We developed a procedure for using digital video technology to construct DVD-based MBs of persons with AD or MCI, documented their responses to observing their MBs, and evaluated the psychosocial benefits. An interdisciplinary team consisting of multimedia biographers and social workers interviewed 12 family members of persons with AD and MCI and collected archival materials to best capture the families' and patients' life histories. We filmed patients' responses to watching the MBs and conducted follow-up interviews with the families and patients at 3 and 6 months following the initial viewing. Qualitative analytic strategies were used for extracting themes and key issues identified in both the filmed and the interview response data. Analysis of the interview and video data showed how evoked long-term memories stimulated reminiscing, brought mostly joy but occasionally moments of sadness to the persons with cognitive impairments, aided family members in remembering and better understanding their loved ones, and stimulated social interactions with family members and with formal caregivers. This study demonstrates the feasibility of using readily available digital video technology to produce MBs that hold special meaning for individuals experiencing AD or MCI and their families.
Li, Yuanyuan; Leneghan, Darren B; Miura, Kazutoyo; Nikolaeva, Daria; Brian, Iona J; Dicks, Matthew D J; Fyfe, Alex J; Zakutansky, Sarah E; de Cassan, Simone; Long, Carole A; Draper, Simon J; Hill, Adrian V S; Hill, Fergal; Biswas, Sumi
2016-01-08
Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine.
Cui, Jie; Yu, Siyuan; Li, Yihui; Li, Pan; Liu, Feng
2018-03-01
Microglia, the primary immune cells in the brain, are the predominant cells regulating inflammation-mediated neuronal damage. In response to immunological challenges, such as lipopolysaccharide (LPS), microglia are activated and the inflammatory process is subsequently initiated. The aim of the present study was to determine whether LPS induces interactions between the Toll-like receptor 4 (TLR4) and the ionotropic glutamate receptor N-methyl-D‑aspartate subunit 1 (GluN1) in N9 and EOC 20 microglial cells. Immunocytochemistry demonstrated co-localization of TLR4 and GluN1 in response to LPS, and the direct binding of TLR4 and GluN1 was further validated by antibody-based Fluorescence Resonance Energy Transfer technology. Inhibition of the group I metabotropic glutamate receptor 5 with its selective antagonist, MTEP, abolished LPS-induced direct binding of TLR4 to GluN1. Therefore, these data demonstrated that GluN1 and TLR4 act reciprocally in response to LPS in N9 and EOC 20 microglial cells.
ERIC Educational Resources Information Center
Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Lang, Russell
2012-01-01
Background: A camera-based microswitch technology was recently developed to monitor small facial responses of persons with multiple disabilities and allow those responses to control environmental stimulation. This study assessed such a technology with 2 new participants using slight variations of previous responses. Method: The technology involved…
2008-09-01
Psychophysiologic Response and Technology -Enabled Learning and Intervention Systems PRINCIPAL INVESTIGATOR: Leigh W. Jerome, Ph.D...NUMBER Transformative Learning : Patterns of Psychophysiologic Response and Technology - Enabled Learning and Intervention Systems 5b. GRANT NUMBER...project entitled “Transformative Learning : Patterns of Psychophysiologic Response in Technology Enabled Learning and Intervention Systems.” The
Electro-optic routing of photons from a single quantum dot in photonic integrated circuits
NASA Astrophysics Data System (ADS)
Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren
2017-12-01
Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.
Chitnis, Danial; Cooper, Robert J; Dempsey, Laura; Powell, Samuel; Quaggia, Simone; Highton, David; Elwell, Clare; Hebden, Jeremy C; Everdell, Nicholas L
2016-10-01
We present the first three-dimensional, functional images of the human brain to be obtained using a fibre-less, high-density diffuse optical tomography system. Our technology consists of independent, miniaturized, silicone-encapsulated DOT modules that can be placed directly on the scalp. Four of these modules were arranged to provide up to 128, dual-wavelength measurement channels over a scalp area of approximately 60 × 65 mm 2 . Using a series of motor-cortex stimulation experiments, we demonstrate that this system can obtain high-quality, continuous-wave measurements at source-detector separations ranging from 14 to 55 mm in adults, in the presence of hair. We identify robust haemodynamic response functions in 5 out of 5 subjects, and present diffuse optical tomography images that depict functional haemodynamic responses that are well-localized in all three dimensions at both the individual and group levels. This prototype modular system paves the way for a new generation of wearable, wireless, high-density optical neuroimaging technologies.
Tenuta, Joachim J
2006-01-01
The transformation of the modern battlefield with respect to weaponry, modes of transportation, enemy capabilities and location, as well as technological advances, has greatly altered the tactical approach to the mission. Combat casualty care must continually evolve in response to the differences in types of injury, the number and triage of casualties, timing of treatment, and location of care. These battlefield changes have been demonstrated on a large scale in the global war on terrorism, which includes the military operations in Afghanistan and Iraq. The medical response has kept pace with this 21st-century conflict. Even in the new environment of armed conflict and with the advent of new technologies, the principles of managing orthopaedic combat casualties remain clear: preservation of life and limb, skeletal stabilization, and aggressive wound débridement. For United States service members wounded in the current conflicts, Landstuhl Regional Medical Center is a crucial stop along the road to recovery.
One-volt-driven superfast polymer actuators based on single-ion conductors
Kim, Onnuri; Kim, Hoon; Choi, U. Hyeok; Park, Moon Jeong
2016-01-01
The key challenges in the advancement of actuator technologies related to artificial muscles include fast-response time, low operation voltages and durability. Although several researchers have tackled these challenges over the last few decades, no breakthrough has been made. Here we describe a platform for the development of soft actuators that moves a few millimetres under 1 V in air, with a superfast response time of tens of milliseconds. An essential component of this actuator is the single-ion-conducting polymers that contain well-defined ionic domains through the introduction of zwitterions; this achieved an exceptionally high dielectric constant of 76 and a 300-fold enhancement in ionic conductivity. Moreover, the actuator demonstrated long-term durability, with negligible changes in the actuator stroke over 20,000 cycles in air. Owing to its low-power consumption (only 4 mW), we believe that this actuator could pave the way for cutting-edge biomimetic technologies in the future. PMID:27857067
Flexible structure control laboratory development and technology demonstration
NASA Technical Reports Server (NTRS)
Vivian, H. C.; Blaire, P. E.; Eldred, D. B.; Fleischer, G. E.; Ih, C.-H. C.; Nerheim, N. M.; Scheid, R. E.; Wen, J. T.
1987-01-01
An experimental structure is described which was constructed to demonstrate and validate recent emerging technologies in the active control and identification of large flexible space structures. The configuration consists of a large, 20 foot diameter antenna-like flexible structure in the horizontal plane with a gimballed central hub, a flexible feed-boom assembly hanging from the hub, and 12 flexible ribs radiating outward. Fourteen electrodynamic force actuators mounted to the hub and to the individual ribs provide the means to excite the structure and exert control forces. Thirty permanently mounted sensors, including optical encoders and analog induction devices provide measurements of structural response at widely distributed points. An experimental remote optical sensor provides sixteen additional sensing channels. A computer samples the sensors, computes the control updates and sends commands to the actuators in real time, while simultaneously displaying selected outputs on a graphics terminal and saving them in memory. Several control experiments were conducted thus far and are documented. These include implementation of distributed parameter system control, model reference adaptive control, and static shape control. These experiments have demonstrated the successful implementation of state-of-the-art control approaches using actual hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey
2014-03-03
The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less
Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits
NASA Astrophysics Data System (ADS)
Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.
2017-12-01
In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.
Penicillin: the medicine with the greatest impact on therapeutic outcomes.
Kardos, Nelson; Demain, Arnold L
2011-11-01
The principal point of this paper is that the discovery of penicillin and the development of the supporting technologies in microbiology and chemical engineering leading to its commercial scale production represent it as the medicine with the greatest impact on therapeutic outcomes. Our nomination of penicillin for the top therapeutic molecule rests on two lines of evidence concerning the impact of this event: (1) the magnitude of the therapeutic outcomes resulting from the clinical application of penicillin and the subsequent widespread use of antibiotics and (2) the technologies developed for production of penicillin, including both microbial strain selection and improvement plus chemical engineering methods responsible for successful submerged fermentation production. These became the basis for production of all subsequent antibiotics in use today. These same technologies became the model for the development and production of new types of bioproducts (i.e., anticancer agents, monoclonal antibodies, and industrial enzymes). The clinical impact of penicillin was large and immediate. By ushering in the widespread clinical use of antibiotics, penicillin was responsible for enabling the control of many infectious diseases that had previously burdened mankind, with subsequent impact on global population demographics. Moreover, the large cumulative public effect of the many new antibiotics and new bioproducts that were developed and commercialized on the basis of the science and technology after penicillin demonstrates that penicillin had the greatest therapeutic impact event of all times. © Springer-Verlag 2011
Societal response to nanotechnology: converging technologies-converging societal response research?
NASA Astrophysics Data System (ADS)
Ronteltap, Amber; Fischer, Arnout R. H.; Tobi, Hilde
2011-10-01
Nanotechnology is an emerging technology particularly vulnerable to societal unrest, which may hinder its further development. With the increasing convergence of several technological domains in the field of nanotechnology, so too could convergence of social science methods help to anticipate societal response. This paper systematically reviews the current state of convergence in societal response research by first sketching the predominant approaches to previous new technologies, followed by an analysis of current research into societal response to nanotechnology. A set of 107 papers on previous new technologies shows that rational actor models have played an important role in the study of societal response to technology, in particular in the field of information technology and the geographic region of Asia. Biotechnology and nuclear power have, in contrast, more often been investigated through risk perception and other affective determinants, particularly in Europe and the USA. A set of 42 papers on societal response to nanotechnology shows similarities to research in biotechnology, as it also builds on affective variables such as risk perception. Although there is a tendency to extend the rational models with affective variables, convergence in social science approaches to response to new technologies still has a long way to go. The challenge for researchers of societal response to technologies is to converge to some shared principles by taking up the best parts from the rational actor models dominant in information technology, whilst integrating non-rational constructs from biotechnology research. The introduction of nanotechnology gives a unique opportunity to do so.
Sensor Acquisition for Water Utilities: Survey, Down Selection Process, and Technology List
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alai, M; Glascoe, L; Love, A
2005-06-29
The early detection of the biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The LLNL deliverable from this Operational Technology Demonstration (OTD) wasmore » to assist the development of a technology acquisition process for a water distribution early warning system. The technology survey includes a review of previous sensor surveys and current test programs and a compiled database of relevant technologies. In the survey paper we discuss previous efforts by governmental agencies, research organizations, and private companies. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) that includes earlier surveys, testing programs, and response studies. The list of sensor technologies was ultimately developed to assist in the recommendation of candidate technologies for laboratory and field testing. A set of recommendations for future sensor selection efforts has been appended to this document, as has a down selection example for a hypothetical water utility.« less
Dynamic studies of small animals with a four-color diffuse optical tomography imager
NASA Astrophysics Data System (ADS)
Schmitz, Christoph H.; Graber, Harry L.; Pei, Yaling; Farber, Mark; Stewart, Mark; Levina, Rita D.; Levin, Mikhail B.; Xu, Yong; Barbour, Randall L.
2005-09-01
We present newly developed instrumentation for full-tomographic four-wavelength, continuous wave, diffuse optical tomography (DOT) imaging on small animals. A small-animal imaging stage was constructed, from materials compatible with in-magnet studies, which offers stereotaxic fixation of the animal and precise, stable probe positioning. Instrument performance, based on calibration and phantom studies, demonstrates excellent long-term signal stability. DOT measurements of the functional rat brain response to electric paw stimulation are presented, and these demonstrate high data quality and excellent sensitivity to hemodynamic changes. A general linear model analysis on individual trials is used to localize and quantify the occurrence of functional behavior associated with the different hemoglobin state responses. Statistical evaluation of outcomes of individual trials is employed to identify significant regional response variations for different stimulation sites. Image results reveal a diffuse cortical response and a strong reaction of the thalamus, both indicative of activation of pain pathways by the stimulation. In addition, a weaker lateralized functional component is observed in the brain response, suggesting presence of motor activation. An important outcome of the experiment is that it shows that reactions to individual provocations can be monitored, without having to resort to signal averaging. Thus the described technology may be useful for studies of long-term trends in hemodynamic response, as would occur, for example, in behavioral studies involving freely moving animals.
Development and Implementation of Real-Time Information Delivery Systems for Emergency Management
NASA Technical Reports Server (NTRS)
Wegener, Steve; Sullivan, Don; Ambrosia, Vince; Brass, James; Dann, R. Scott
2000-01-01
The disaster management community has an on-going need for real-time data and information, especially during catastrophic events. Currently, twin engine or jet aircraft with limited altitude and duration capabilities collect much of the data. Flight safety is also an issue. Clearly, much of the needed data could be delivered via over-the-horizon transfer through a uninhabited aerial vehicles (UAV) platform to mission managers at various locations on the ground. In fact, because of the ability to stay aloft for long periods of time, and to fly above dangerous situations, UAV's are ideally suited for disaster missions. There are numerous situations that can be considered disastrous for the human population. Some, such as fire or flood, can continue over a period of days. Disaster management officials rely on data from the site to respond in an optimum way with warnings, evacuations, rescue, relief, and to the extent possible, damage control. Although different types of disasters call for different types of response, most situations can be improved by having visual images and other remotely sensed data available. "Disaster Management" is actually made up of a number of activities, including: - Disaster Prevention and Mitigation - Emergency Response Planning - Disaster Management (real-time deployment of resources, during an event) - Disaster / Risk Modeling All of these activities could benefit from real-time information, but a major focus for UAV-based technology is in real-time deployment of resources (i.e., emergency response teams), based on changing conditions at the location of the event. With all these potential benefits, it is desirable to demonstrate to user agencies the ability to perform disaster management missions as described. The following demonstration project is the first in a program designed to prove the feasibility of supporting disaster missions with UAV technology and suitable communications packages on-board. A several-year program is envisioned, in which a broad range of disaster-related activities are demonstrated to the appropriate user communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.
The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.
In support of EPA's Superfund Innovative Technology Evaluation (SITE) Program, this report presents the results of the Ultrox International technology demonstration. The Ultrox® technology (a registered trademark of Ultrox International) simultaneously uses ultraviolet (UV) radi...
Smart Technology Brings Power to the People
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerstrom, Donald J.; Gephart, Julie M.
2006-12-01
Imagine you’re at home one Saturday morning on the computer, as your son takes a shower, your daughter is watching TV, and a load of laundry is in your washer and dryer. Meanwhile, the fragrance of fresh-brewed coffee fills the house. You hear a momentary beep from the dryer that tells you that if you were to look, a high-energy price indicator would be displayed on the front panels of some of your favorite appliances. This tells you that you could save money right now by using less energy. (You’ve agreed to this arrangement to help your utility avoid amore » substation upgrade. In return, you get a lower rate most of the time.) So you turn off some of the unneeded lights in your home and opt to wait until evening to run the dishwasher. Meanwhile, some of your largest appliances have automatically responded to this signal and have already reduced your home’s energy consumption, saving you money. On January 11, 2006, demonstration projects were launched in 200 homes in the Pacific Northwest region of the United States to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient. Pacific Northwest National Laboratory, a U.S. Department of Energy national laboratory in Richland, Washington, is managing the yearlong study called the Pacific Northwest GridWise™ Testbed Demonstration, a project funded primarily by DOE. Through the GridWise™ Demonstration projects, researchers are gaining insight into energy consumers’ behavior while testing new technologies designed to bring the electric transmission system into the information age. Northwest utilities, appliance manufacturers and technology companies are also supporting this effort to demonstrate the devices and assess the resulting consumer response. A combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and we want to know if this will modify their behavior. Approximately 100 homes on the Olympic Peninsula in Washington State receive energy price information through a broadband Internet connection and have received automated demand-response thermostats and water heaters that can adjust energy use based on price. Fifty of those homes and an additional 50 homes in Yakima, Washington, and 50 homes in Gresham, Oregon, have computer chips helping control their dryers. These chips sense when the power transmission system is under stress and automatically turn off certain functions briefly until the grid can be stabilized by power operators.« less
Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems
The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...
Demonstration of Innovative Sewer System Inspection Technology: SL-RAT
The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...
Effect of structural mount dynamics on a pair of operating Stirling Convertors
NASA Astrophysics Data System (ADS)
Goodnight, Thomas W.; Suárez, Vicente J.; Hughes, William O.; Samorezov, Sergey
2002-01-01
The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic base-shake tests were conducted on a dynamic simulation of the structural mount for a pair of Operating Stirling Convertors. These tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of these tests was to identify the changes in transmissibility and the effect on structural dynamic response on a pair of operating Stirling Technology Demonstration Convertors (TDCs). This paper addresses the base-shake test, setup, procedure and results conducted on the Stirling TDC mount simulator in April 2001. .
QUEST: Qualifying Environmentally Sustainable Technologies
NASA Technical Reports Server (NTRS)
2006-01-01
Over the years, pollution prevention has proven to be a means to comply with environmental regulations, improve product performance and reduce costs. The NASA Acquisition Pollution Prevention (AP2) Program was created to help individual NASA Centers and programs work together to evaluate and adopt environmentally preferable technologies and practices. The AP2 Program accomplishes its mission using a variety of tools such as networking, information/technology exchange and partnering. Due to its extensive network of contacts, the AP2 Program is an excellent resource for finding existing solutions to problems. If no solution is readily known, the AP2 Program works to identify potential solutions and partners for demonstration/ validation projects. Partnering to prevent pollution is a cornerstone of NASA's prime mission and the One NASA Initiative. This annual newsletter highlights some of our program's collaborative efforts. I believe you will discover how the AP2 Program is responsive in meeting the Agency's environmental management strategic plans.
Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer.
Singh, Nathan; Shi, Junwei; June, Carl H; Ruella, Marco
2017-12-01
In this review, we discuss the most recent developments in gene-editing technology and discuss their application to adoptive T cell immunotherapy. Engineered T cell therapies targeting cancer antigens have demonstrated significant efficacy in specific patient populations. Most impressively, CD19-directed chimeric antigen receptor T cells (CART19) have led to impressive responses in patients with B-cell leukemia and lymphoma. CTL019, or KYMRIAH™ (tisagenlecleucel), a CD19 CAR T cell product developed by Novartis and the University of Pennsylvania, was recently approved for clinical use by the Food and Drug Administration, representing a landmark in the application of adoptive T cell therapies. As CART19 enters routine clinical use, improving the efficacy of this exciting platform is the next step in broader application. Novel gene-editing technologies like CRISPR-Cas9 allow facile editing of specific genes within the genome, generating a powerful platform to further optimize the activity of engineered T cells.
Marketing Plan for Demonstration and Validation Assets
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The National Security Preparedness Project (NSPP), is to be sustained by various programs, including technology demonstration and evaluation (DEMVAL). This project assists companies in developing technologies under the National Security Technology Incubator program (NSTI) through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. This report documents the DEMVAL marketing and visibility plan, which will focus on collecting information about, and expanding the visibility of, DEMVAL assets serving businesses with national security technology applications in southern New Mexico.
Smart Actuators and Adhesives for Reconfigurable Matter.
Ko, Hyunhyub; Javey, Ali
2017-04-18
Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.
King, Samuel; Cataldi-Roberts, Erica; Wentz, Erin
2017-01-01
Objective The purposes of this survey were to determine the nature and extent of collaboration between health sciences libraries and their information technology (IT) departments, to identify strengths and issues connected to this relationship, and to provide examples demonstrating exceptional collaborative success. Methods A fourteen-question survey was sent to a broad selection of health care and academic libraries through a variety of email discussion lists and was limited to one response per institution. Convenience sampling was used to collect the responses. Results An overwhelming majority of libraries described the relationship with their IT departments as good or excellent, and there were a variety of creative joint initiatives underway. Opportunities exist for continued and expanded library/IT collaboration. Conclusions Good quality relationships between libraries and their IT departments are essential due to the interconnected nature of their services, and fortunately, this appears to be the norm at a variety of institutions. Mutual respect, open communication, realization of each department’s mission, and responsiveness to each other’s needs are part of what makes these relationships successful, which in turn leads to successful collaborative ventures that bode well for the future of both services. PMID:28096743
King, Samuel; Cataldi-Roberts, Erica; Wentz, Erin
2017-01-01
The purposes of this survey were to determine the nature and extent of collaboration between health sciences libraries and their information technology (IT) departments, to identify strengths and issues connected to this relationship, and to provide examples demonstrating exceptional collaborative success. A fourteen-question survey was sent to a broad selection of health care and academic libraries through a variety of email discussion lists and was limited to one response per institution. Convenience sampling was used to collect the responses. An overwhelming majority of libraries described the relationship with their IT departments as good or excellent, and there were a variety of creative joint initiatives underway. Opportunities exist for continued and expanded library/IT collaboration. Good quality relationships between libraries and their IT departments are essential due to the interconnected nature of their services, and fortunately, this appears to be the norm at a variety of institutions. Mutual respect, open communication, realization of each department's mission, and responsiveness to each other's needs are part of what makes these relationships successful, which in turn leads to successful collaborative ventures that bode well for the future of both services.
Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity.
Zander, Thorsten O; Krol, Laurens R; Birbaumer, Niels P; Gramann, Klaus
2016-12-27
The effectiveness of today's human-machine interaction is limited by a communication bottleneck as operators are required to translate high-level concepts into a machine-mandated sequence of instructions. In contrast, we demonstrate effective, goal-oriented control of a computer system without any form of explicit communication from the human operator. Instead, the system generated the necessary input itself, based on real-time analysis of brain activity. Specific brain responses were evoked by violating the operators' expectations to varying degrees. The evoked brain activity demonstrated detectable differences reflecting congruency with or deviations from the operators' expectations. Real-time analysis of this activity was used to build a user model of those expectations, thus representing the optimal (expected) state as perceived by the operator. Based on this model, which was continuously updated, the computer automatically adapted itself to the expectations of its operator. Further analyses showed this evoked activity to originate from the medial prefrontal cortex and to exhibit a linear correspondence to the degree of expectation violation. These findings extend our understanding of human predictive coding and provide evidence that the information used to generate the user model is task-specific and reflects goal congruency. This paper demonstrates a form of interaction without any explicit input by the operator, enabling computer systems to become neuroadaptive, that is, to automatically adapt to specific aspects of their operator's mindset. Neuroadaptive technology significantly widens the communication bottleneck and has the potential to fundamentally change the way we interact with technology.
Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Spray
2007-09-30
The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less
NASA Integrated Systems Research with an Environmental Focus
NASA Technical Reports Server (NTRS)
Wolfe, Jean; Collier, Fay
2010-01-01
This slide presentation reviews the Integrated Systems Research Program (ISRP) with a focus on the work being done on reduction of environmental impact from aeronautics. The focus of the ISRP is to Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment. The presentation reviews the criteria for an ISRP project, and discusses the Environmentally Responsible Aviation (ERA) project, and the technical challenges.
Qubit-Based Memcapacitors and Meminductors
NASA Astrophysics Data System (ADS)
Shevchenko, Sergey N.; Pershin, Yuriy V.; Nori, Franco
2016-07-01
It is shown that superconducting charge and flux quantum bits (qubits) can be classified as memory capacitive and inductive systems, respectively. We demonstrate that such memcapacitive and meminductive devices offer remarkable and rich response functionalities. In particular, when subjected to periodic input, qubit-based memcapacitors and meminductors exhibit unusual hysteresis curves. Our work not only extends the set of known memcapacitive and meminductive systems to qubit-based devices, but also highlights their unique properties potentially useful for future technological applications.
The Evolution of High Temperature Gas Sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, F. H.; Brosha, E. L.; Mukundan, R.
2001-01-01
Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.
The Site Program demonstration of CF Systems' organics extraction technology was conducted to obtain specific operating and cost information that could be used in evaluating the potential applicability of the technology to Superfund sites. The demonstration was conducted concurr...
Space Technology 5 - A Successful Micro-Satellite Constellation Mission
NASA Technical Reports Server (NTRS)
Carlisle, Candace; Webb, Evan H.
2007-01-01
The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.
Feliu, Neus; Kohonen, Pekka; Ji, Jie; Zhang, Yuning; Karlsson, Hanna L; Palmberg, Lena; Nyström, Andreas; Fadeel, Bengt
2015-01-27
Gene expression profiling has developed rapidly in recent years with the advent of deep sequencing technologies such as RNA sequencing (RNA Seq) and could be harnessed to predict and define mechanisms of toxicity of chemicals and nanomaterials. However, the full potential of these technologies in (nano)toxicology is yet to be realized. Here, we show that systems biology approaches can uncover mechanisms underlying cellular responses to nanomaterials. Using RNA Seq and computational approaches, we found that cationic poly(amidoamine) dendrimers (PAMAM-NH2) are capable of triggering down-regulation of cell-cycle-related genes in primary human bronchial epithelial cells at doses that do not elicit acute cytotoxicity, as demonstrated using conventional cell viability assays, while gene transcription was not affected by neutral PAMAM-OH dendrimers. The PAMAMs were internalized in an active manner by lung cells and localized mainly in lysosomes; amine-terminated dendrimers were internalized more efficiently when compared to the hydroxyl-terminated dendrimers. Upstream regulator analysis implicated NF-κB as a putative transcriptional regulator, and subsequent cell-based assays confirmed that PAMAM-NH2 caused NF-κB-dependent cell cycle arrest. However, PAMAM-NH2 did not affect cell cycle progression in the human A549 adenocarcinoma cell line. These results demonstrate the feasibility of applying systems biology approaches to predict cellular responses to nanomaterials and highlight the importance of using relevant (primary) cell models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eleanor S.; Fernandes, Luis L.; Goudey, Chad Howdy
Chromogenic glazing materials are emerging technologies that tint reversibly from a clear to dark tinted state either passively in response to environmental conditions or actively in response to a command from a switch or building automation system. Switchable coatings on glass manage solar radiation and visible light while enabling unobstructed views to the outdoors. Building energy simulations estimate that actively controlled, near-term chromogenic glazings can reduce perimeter zone heating, ventilation, and airconditioning (HVAC) and lighting energy use by 10-20% and reduce peak electricity demand by 20-30%, achieving energy use levels that are lower than an opaque, insulated wall. This projectmore » demonstrates the use of two types of chromogenic windows: thermochromic and electrochromic windows. By 2013, these windows will begin production in the U.S. by multiple vendors at high-volume manufacturing plants, enabling lower cost and larger area window products to be specified. Both technologies are in the late R&D stage of development, where cost reductions and performance improvements are underway. Electrochromic windows have been installed in numerous buildings over the past four years, but monitored energy-efficiency performance has been independently evaluated in very limited applications. Thermochromic windows have been installed in one other building with an independent evaluation, but results have not yet been made public.« less
Joint Test Plan for Gas Dynamic Spray Technology Demonstration
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2008-01-01
Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.
Demonstration of Innovative Sewer System Inspection Technology SewerBatt
The overall objective of this EPA-funded study was to demonstrate innovative a sewer line assessment technology that is designed for rapid deployment using portable equipment. This study focused on demonstration of a technology that is suitable for smaller diameter pipes (less th...
U.S. EPA Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems
The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...
A low-cost approach to the exploration of Mars through a robotic technology demonstrator mission
NASA Astrophysics Data System (ADS)
Ellery, Alex; Richter, Lutz; Parnell, John; Baker, Adam
2003-11-01
We present a proposed robotic mission to Mars - Vanguard - for the Aurora Arrow programme which combines an extensive technology demonstrator with a high scientific return. The novel aspect of this technology demonstrator is the demonstration of "water mining" capabilities for in-situ resource utilisation in conjunction with high-value astrobiological investigation within a low mass lander package of 70 kg. The basic architecture comprises a small lander, a micro-rover and a number of ground-penetrating moles. This basic architecture offers the possibility of testing a wide variety of generic technologies associated with space systems and planetary exploration. The architecture provides for the demonstration of specific technologies associated with planetary surface exploration, and with the Aurora programme specifically. Technology demonstration of in-situ resource utilisation will be a necessary precursor to any future human mission to Mars. Furthermore, its modest mass overhead allows the reuse of the already built Mars Express bus, making it a very low cost option.
A low-cost approach to the exploration of Mars through a robotic technology demonstrator mission
NASA Astrophysics Data System (ADS)
Ellery, Alex; Richter, Lutz; Parnell, John; Baker, Adam
2006-10-01
We present a proposed robotic mission to Mars—Vanguard—for the Aurora Arrow programme which combines an extensive technology demonstrator with a high scientific return. The novel aspect of this technology demonstrator is the demonstration of “water mining” capabilities for in situ resource utilisation (ISRU) in conjunction with high-value astrobiological investigation within a low-mass lander package of 70 kg. The basic architecture comprises a small lander, a micro-rover and a number of ground-penetrating moles. This basic architecture offers the possibility of testing a wide variety of generic technologies associated with space systems and planetary exploration. The architecture provides for the demonstration of specific technologies associated with planetary surface exploration, and with the Aurora programme specifically. Technology demonstration of ISRU will be a necessary precursor to any future human mission to Mars. Furthermore, its modest mass overhead allows the re-use of the already built Mars Express bus, making it a very low-cost option.
Advanced diffraction-based overlay for double patterning
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Yongdong; Dasari, Prasad; Hu, Jiangtao; Smith, Nigel; Kritsun, Oleg; Volkman, Catherine
2010-03-01
Diffraction based overlay (DBO) technologies have been developed to address the tighter overlay control challenges as the dimensions of integrated circuit continue to shrink. Several studies published recently have demonstrated that the performance of DBO technologies has the potential to meet the overlay metrology budget for 22nm technology node. However, several hurdles must be cleared before DBO can be used in production. One of the major hurdles is that most DBO technologies require specially designed targets that consist of multiple measurement pads, which consume too much space and increase measurement time. A more advanced spectroscopic ellipsometry (SE) technology-Mueller Matrix SE (MM-SE) is developed to address the challenge. We use a double patterning sample to demonstrate the potential of MM-SE as a DBO candidate. Sample matrix (the matrix that describes the effects of the sample on the incident optical beam) obtained from MM-SE contains up to 16 elements. We show that the Mueller elements from the off-diagonal 2x2 blocks respond to overlay linearly and are zero when overlay errors are absent. This superior property enables empirical DBO (eDBO) using two pads per direction. Furthermore, the rich information in Mueller matrix and its direct response to overlay make it feasible to extract overlay errors from only one pad per direction using modeling approach (mDBO). We here present the Mueller overlay results using both eDBO and mDBO and compare the results with image-based overlay (IBO) and CD-SEM results. We also report the tool induced shifts (TIS) and dynamic repeatability.
Energy technologies and the environment: Environmental information handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-10-01
This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acidmore » rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).« less
Robotic follower experimentation results: ready for FCS increment I
NASA Astrophysics Data System (ADS)
Jaczkowski, Jeffrey J.
2003-09-01
Robotics is a fundamental enabling technology required to meet the U.S. Army's vision to be a strategically responsive force capable of domination across the entire spectrum of conflict. The U. S. Army Research, Development and Engineering Command (RDECOM) Tank Automotive Research, Development & Engineering Center (TARDEC), in partnership with the U.S. Army Research Laboratory, is developing a leader-follower capability for Future Combat Systems. The Robotic Follower Advanced Technology Demonstration (ATD) utilizes a manned leader to provide a highlevel proofing of the follower's path, which operates with minimal user intervention. This paper will give a programmatic overview and discuss both the technical approach and operational experimentation results obtained during testing conducted at Ft. Bliss, New Mexico in February-March 2003.
Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications
NASA Astrophysics Data System (ADS)
Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra
2011-09-01
Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).
Development of dialog system powered by textual educational content
NASA Astrophysics Data System (ADS)
Bisikalo, Oleg V.; Dovgalets, Sergei M.; Pijarski, Paweł; Lisovenko, Anna I.
2016-09-01
The advances in computer technology require an interconnection between a man and computer, more specifically, between complex information systems. The paper is therefore dedicated to creation of dialog systems, able to respond to users depending on the implemented textual educational content. To support the dialog there had been suggested the knowledge base model on the basis of the unit and a fuzzy sense relation. Lexical meanings is taken out from the text by processing the syntactic links between the allologs of all the sentences and the answer shall be generated as the composition of a fuzzy ratios upon the formal criterion. The information support technology had been put to an evaluation sample test, which demonstrates the combination of information from some sentences in the final response.
Surface chemistry driven actuation in nanoporous gold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biener, J; Wittstock, A; Zepeda-Ruiz, L
Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into amore » mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.« less
Emerging Vaccine Therapy Approaches for Prostate Cancer
Sonpavde, Guru; Slawin, Kevin M; Spencer, David M; Levitt, Jonathan M
2010-01-01
Prostate cancer vaccines attempt to induce clinically relevant, cancer-specific systemic immune responses in patients with prostate cancer and represent a new class of targeted, nontoxic therapies. With a growing array of vaccine technologies in preclinical or clinical development, autologous antigen-presenting cell vaccines loaded with the antigen, prostate acid phosphatase, and poxvirus vaccines targeting prostate-specific antigen have recently demonstrated a significant survival benefit in randomized trials of patients with metastatic castration-resistant prostate cancer, whereas others have failed to demonstrate any benefit. The combination of vaccines with chemotherapy, radiotherapy, and other biologic agents is also being evaluated. Efforts to optimize vaccine approaches and select ideal patient populations need to continue to build on these early successes. PMID:20428291
The radioactive waste debate in the United States and nuclear technology for peaceful purposes
NASA Astrophysics Data System (ADS)
Tehan, Terrence Norbert
Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.
DEMONSTRATION AND EVALUATION OF INNOVATIVE REMEDIATION TECHNOLOGIES THROUGH THE EPA SITE PROGRAM
The Superfund Innovative Technology Evaluation (SITE) Program has successfuly promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration an...
MINERGY CORPORATION GLASS FURNACE TECHNOLOGY EVALUATION: INNOVATION TECHNOLOGY EVALUATION REPORT
This report presents performance and economic data for a U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program demonstration of the Minergy Corporation (Minergy) Glass Furnace Technology (GFT). The demonstration evaluated the techno...
The Race Toward Becoming Operationally Responsive in Space
NASA Astrophysics Data System (ADS)
Nagy, J.; Hernandez, V.; Strunce, R.
The US Air Force Research Laboratory (AFRL) is currently supporting the joint Operationally Responsive Space (ORS) program with two aggressive research space programs. The goal of the ORS program is to improve the responsiveness of space capabilities to meet national security requirements. ORS systems aim to provide operational space capabilities as well as flexibility and responsiveness to the theater that do not exist today. ORS communication, navigation, and Intelligence, Surveillance and Reconnaissance (ISR) satellites are being designed to rapidly meet near term space needs of in-theater tactical forces by supporting contingency operations, such as increased communication bandwidth, and ISR imagery over the theater for a limited period to support air, ground, and naval force missions. This paper will discuss how AFRL/RHA is supporting the ORS effort and describe the hardware and software being developed with a particular focus on the Satellite Design Tool for plug-n-play satellites (SDT). AFRLs Space Vehicles Directorate together with the Scientific Simulation, Inc. was the first to create the Plug-and-play (PnP) satellite design for rapid construction through modular components that encompass the structural panels, as well as the guidance and health/status components. Expansion of the PnP technology is currently being led by AFRL's Human Effectiveness Directorate and Star Technologies Corp. by pushing the boundaries of mobile hardware and software technology through the development of the teams "Training and Tactical ORS Operations (TATOO) Laboratory located in Great Falls, VA. The TATOO Laboratory provides a computer-based simulation environment directed at improving Warfighters space capability responsiveness by delivering the means to create and exercise methods of in-theater tactical satellite tasking for and by the Warfighter. In an effort to further support the evolution of ORS technologies with Warfighters involvement, Star recently started coordinating the integration of the TATOO Laboratory with a satellite robotics test bed. Accessible via the TATOO Lab, the robotics test bed will be used to demonstrate and evaluate leading edge satellite technologies, such as Guidance Navigation and Control, attitude control, formation flying, and plug-and-play electronics. The test bed will consist of a Mission Control Center with wireless control and telemetry, an exceptionally flat and smooth floor area, and two robotic satellite simulators equipped with next generation plug-and-play hardware.
GUIDANCE OF THE FIELD DEMONSTRATION OF REMEDIATION TECHNOLOGIES
This paper will focus on the demonstration of hazardous waste cleanup technologies in the field. The technologies will be at the pilot- or full-scale, and further referred to as field-scale. The main objectives of demonstration at the field-scale are development of reliable perfo...
Active Matrix OLED Test Report
NASA Technical Reports Server (NTRS)
Salazar, George
2013-01-01
This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits from the environmental testing results by understanding its performance limitations/shortcomings to improve subsequent generations of AMOLED technology. Note that the AMOLED used in this test was not deSigned for the space environment but rather for commercial/industrial terrestrial applications.
NASA Astrophysics Data System (ADS)
Abdolahad
2015-01-01
Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane.Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06102k
Optics in engineering education: stimulating the interest of first-year students
NASA Astrophysics Data System (ADS)
Blanco-García, Jesús; Vazquez-Dorrío, Benito
2014-07-01
The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.
Composite Cryotank Technologies and Demonstration
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
NASA is exploring advanced composite materials and processes to reduce the overall cost and weight of liquid hydrogen (LH2) cryotanks while maintaining the reliability of existing metallic designs. The fundamental goal of the composite cryotank project was to provide new and innovative technologies that enable human space exploration to destinations beyond low-Earth orbit such as the Moon, near-Earth asteroids, and Mars. In September 2011, NASA awarded Boeing the contract to design, manufacture, and test two lightweight composite cryogenic propellant tanks. The all-composite tanks shown iare fabricated with an automated fiber placement machine using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight. Composite Cryotank Technologies and Demonstration testing was an agency-wide effort with NASA Marshall Space Flight Center (MSFC) leading project management, manufacturing, and test; Glenn Research Center leading the materials; and Langley Research Center leading the structures effort for this project. Significant contributions from NASA loads/stress personnel contributed to the understanding of thermal/mechanical strain response while undergoing testing at cryogenic temperatures. The project finalized in September 2014.
Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György
2015-03-14
The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.
A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research center is developing key structures and mechanisms technologies for micron-accuracy, in-space deployment of future space instruments. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design such as the revolute joint presented herein. The joint presented herein exhibits a load-cycling response that is essentially linear with less than two percent hysteresis, and the joint rotates with less than one in.-oz. of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repeated deployment and impulse loading. No other mechanically deployable structure found in literature has been demonstrated to be this kinematically accurate.
Crash Testing of Helicopter Airframe Fittings
NASA Technical Reports Server (NTRS)
Clarke, Charles W.; Townsend, William; Boitnott, Richard
2004-01-01
As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.
Surface acoustic-wave piezoelectric crystal aerosol mass microbalance
NASA Technical Reports Server (NTRS)
Bowers, W. D.; Chuan, R. L.
1989-01-01
The development of a particulate mass-sensing instrument based on a quartz-crystal microbalance and enhanced with the new surface acoustic-wave (SAW) technology is reported. Mass sensitivity comparisons of a 158-MHz SAW piezoelectric microbalance and a conventional 10-MHz quartz-crystal microbalance show that the SAW crystal is 266 times more sensitive, in good agreement with the theoretical value of 250. The frequency stability of a single SAW resonator is 6 parts in 10 to the 8th over 1 min. The response to temperature changes is found to be very linear over the range +30 to -30 C. A strong response to 15 ppm SO2 has been demonstrated on a chemically coated SAW crystal.
The Confluence of Stereotactic Ablative Radiotherapy and Tumor Immunology
Finkelstein, Steven Eric; Timmerman, Robert; McBride, William H.; Schaue, Dörthe; Hoffe, Sarah E.; Mantz, Constantine A.; Wilson, George D.
2011-01-01
Stereotactic radiation approaches are gaining more popularity for the treatment of intracranial as well as extracranial tumors in organs such as the liver and lung. Technology, rather than biology, is driving the rapid adoption of stereotactic body radiation therapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), in the clinic due to advances in precise positioning and targeting. Dramatic improvements in tumor control have been demonstrated; however, our knowledge of normal tissue biology response mechanisms to large fraction sizes is lacking. Herein, we will discuss how SABR can induce cellular expression of MHC I, adhesion molecules, costimulatory molecules, heat shock proteins, inflammatory mediators, immunomodulatory cytokines, and death receptors to enhance antitumor immune responses. PMID:22162711
Inexpensive Demonstrations for a Communications Technology Course.
ERIC Educational Resources Information Center
Mirabito, Michael M.
1987-01-01
Discusses the effects of fiber-optics and other new technologies on communication technology courses. Explores several of the technologies that are applicable to this type of course. Describes how various applications can be presented and highlighted using inexpensive classroom demonstrations. (TW)
GEOTECH, INC., COLD TOP EX-SITU VITRIFICATION SYSTEM; INNOVATIVE TECHNOLOGY EVALUATION REPORT
A Superfund Innovative Technology Evaluation (SITE) technology demonstration was conducted in February and March 1997 to evaluate the Geotech Development Corporation (Geotech) Cold Top ex-situ vitrification technology in chromium-contaminated soils. The demonstration was conduct...
High-speed civil transport issues and technology program
NASA Technical Reports Server (NTRS)
Hewett, Marle D.
1992-01-01
A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomsen, K.O.; Richardson, C.B.; Valder, K.M.
1996-12-31
Millions of acres of US government property are contaminated with unexploded ordnance (UXO) as a result of weapons system testing and troop training activities conducted over the past century at Department of Defense (DoD) sites. Recent DoD downsizing has resulted in the closing of many military bases, many of which are contaminated with UXO. One unexpected result of DoD`s downsizing is the attention focused on the unique problems associated with UXO remediation at these closed military bases. The U.S. Army Environmental Center (U SAEC) is the lead DoD agency for UXO clearance technology demonstrations, evaluation, and technology transfer. USAEC directedmore » the Naval Explosive Ordnance Disposal Technology Division (NAVEODTECHDIV) to serve as the technical lead for the advanced technology demonstration (ATD) program. In 1994, USAEC and NAVEODTECHDIV created controlled test facilities at the U.S. Army Jefferson Proving Ground in Madison, Indiana, to demonstrate and evaluate commercial UXO clearance systems and technologies. Phase I controlled site demonstrations were conducted during the summer of 1994. These demonstrations were followed by the Phase II controlled site demonstrations at JPG. This paper presents the results of the Phase II controlled site demonstrations. The overall performance of the demonstrators is presented along with the operational characteristics and limitations of the various systems and technologies evaluated. Individual demonstrator performance statistics are evaluated by sensor type and sensor transport method.« less
The report gives results of the full-scale demonstration of Limestone Injection Multistage Burner (LIMB) technology on the coal-fired, 105 MW, Unit 4 boiler at Ohio Edison's Edgewater Station. eveloped as a technology aimed at moderate levels of sulfur dioxide (SO2) and nitrogen ...
Clean Coal Technology Demonstration Program: Program Update 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assistant Secretary for Fossil Energy
1999-03-01
Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance standards reflecting the best available demonstrated control technology (NSPS). Any new source... 40 Protection of Environment 30 2011-07-01 2011-07-01 false New source performance standards reflecting the best available demonstrated control technology (NSPS). 450.24 Section 450.24 Protection of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... performance standards reflecting the best available demonstrated control technology (NSPS). Any new source... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards reflecting the best available demonstrated control technology (NSPS). 450.24 Section 450.24 Protection of...
A demonstration of field portable/mobile technologies for measuring trace elements in soil and sediments was conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. The demonstration took place from January 24 to 28, 200...
Investigation of a Space Delta Technology Facility (SDTF) for Spacelab
NASA Technical Reports Server (NTRS)
Welch, J. D.
1977-01-01
The Space Data Technology Facility (SDTF) would have the role of supporting a wide range of data technology related demonstrations which might be performed on Spacelab. The SDTF design is incorporated primarily in one single width standardized Spacelab rack. It consists of various display, control and data handling components together with interfaces with the demonstration-specific equipment and Spacelab. To arrive at this design a wide range of data related technologies and potential demonstrations were also investigated. One demonstration concerned with online image rectification and registration was developed in some depth.
Wind tunnel tests of the dynamic characteristics of the fluidic rudder
NASA Technical Reports Server (NTRS)
Belsterling, C. A.
1976-01-01
The fourth phase is given of a continuing program to develop the means to stabilize and control aircraft without moving parts or a separate source of power. Previous phases have demonstrated the feasibility of (1) generating adequate control forces on a standard airfoil, (2) controlling those forces with a fluidic amplifier and (3) cascading non-vented fluidic amplifiers operating on ram air supply pressure. The foremost objectives of the fourth phase covered under Part I of this report were to demonstrate a complete force-control system in a wind tunnel environment and to measure its static and dynamic control characteristics. Secondary objectives, covered under Part II, were to evaluate alternate configurations for lift control. The results demonstrate an overall response time of 150 msec, confirming this technology as a viable means for implementing low-cost reliable flight control systems.
Percutaneous fiber-optic sensor for the detection of chemotherapy-induced apoptosis in vivo
NASA Astrophysics Data System (ADS)
O'Kelly, James; Liao, Kuo-Chih; Clifton, William; Lu, Daning; Koeffler, Phillip; Loeb, Gerald
2010-02-01
Early imaging of tumor response to chemotherapy has the potential for significant clinical benefits. We are developing a family of fiber-optic sensors called SencilsTM (sensory cilia), which are disposable, minimally invasive, and can provide in vivo monitoring of various analytes for several weeks. The objective of this study was to develop and test our sensor to image the labeling of phosphatidylserine by apoptotic cells in response to chemotherapeutic drugs. FM1-43 was a better fluorescent marker for detecting phosphatidylserine expression than Annexin V-FITC; both the proportion of labeled cells (Annexin V, 15%; FM1-43, 58%) and the relative fluorescent increase (Annexin V-FITC, 1.5-fold; FM1-43, 4.5-fold) was greater when FM1-43 was used to detect apoptosis. Initial testing of the optical sensing technology using Taxol-treated MCF-7 cells demonstrated that injection of FM1-43 resulted in a rapid, transient increase in fluorescence that was greater in apoptotic cells compared to control cells (apoptotic cells, 4-fold increase; control cells, 2-fold increase). Using an established animal model, mice were injected with cyclophosphamide and hepatic apoptosis was assessed by imaging of PS expression. Both the amplitude of fluorescence increase and the time taken for the amplitude to decay to half of its peak were increased in livers from animals treated with cyclophosphamide. Our optical sensing technology can be used to detect the early apoptotic response of cells to chemotherapeutic drugs both in vitro and in vivo. This novel technology represents a unique option for the imaging of tumor responses in vivo, and provides an inexpensive, specific system for the detection of early-stage apoptosis.
Information and communication technology in disease surveillance, India: a case study
2010-01-01
India has made appreciable progress and continues to demonstrate a strong commitment for establishing and operating a disease surveillance programme responsive to the requirements of the International Health Regulations (IHR[2005]). Within five years of its launch, India has effectively used modern information and communication technology for collection, storage, transmission and management of data related to disease surveillance and effective response. Terrestrial and/or satellite based linkages are being established within all states, districts, state-run medical colleges, infectious disease hospitals, and public health laboratories. This network enables speedy data transfer, video conferencing, training and e-learning for outbreaks and programme monitoring. A 24x7 call centre is in operation to receive disease alerts. To complement these efforts, a media scanning and verification cell functions to receive reports of early warning signals. During the 2009 H1N1 outbreak, the usefulness of the information and communication technology (ICT) network was well appreciated. India is using ICT as part of its Integrated Disease Surveillance Project (IDSP) to help overcome the challenges in further expansion in hard-to-reach populations, to increase the involvement of the private sector, and to increase the use of other modes of communication like e-mail and voicemail. PMID:21143821
Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.
Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun
2016-06-01
Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microstamped opto-mechanical actuator for tactile displays
NASA Astrophysics Data System (ADS)
Camargo, Carlos J.; Torras, Núria; Campanella, Humberto; Marshall, Jean E.; Zinoviev, Kirill; Campo, Eva M.; Terentjev, Eugene M.; Esteve, Jaume
2011-10-01
Over the last few years, several technologies have been adapted for use in tactile displays, such as thermo-pneumatic actuators, piezoelectric polymers and dielectric elastomers. None of these approaches offers high-performance for refreshable Braille display system (RBDS), due to considerations of weight, power efficiency and response speed. Optical actuation offers an attractive alternative to solve limitations of current-art technologies, allowing electromechanical decoupling, elimination of actuation circuits and remote controllability. Creating these opticallydriven devices requires liquid crystal - carbon nanotube (LC-CNT) composites that show a reversible shape change in response to an applied light. This work thus reports on novel opto-actuated Braille dots based on LC-CNT composite and silicon mold microstamping. The manufacturing approach succeeds on producing blisters according to the Braille standard for the visually impaired, by taking shear-aligned LC-CNT films and silicon stamps. For this application, we need to define specifically-shaped structures. Some technologies have succeeded on elastomer microstructuring. Nevertheless, they are not applicable for LC-CNT molding because they do not consider the stretching of the polymer which is required for LC-CNT fabrication. Our process demonstrates that composites micro-molding and their 3-D structuring is feasible by silicon-based stamping. Its work principle involves the mechanical stretching, allowing the LC mesogens alignment.
Wavelength specific excitation of gold nanoparticle thin-films
NASA Astrophysics Data System (ADS)
Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.
2014-01-01
Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.
NASA Astrophysics Data System (ADS)
Novak, Nikola; Weyland, Florian; Patel, Satyanarayan; Guo, Hanzheng; Tan, Xiaoli; Rödel, Jürgen; Koruza, Jurij
2018-03-01
The electrocaloric effect in ferroics is considered a powerful solid-state cooling technology. Its potential is enhanced by correlation to the inverse electrocaloric effect and leads into mechanisms of decreasing or increasing dipolar entropy under applied electric field. Nevertheless, the mechanism underlying the increase of the dipolar entropy with applied electric field remains unclear and controversial. This study investigates the electrocaloric response of the antiferroelectric P b0.99N b0.02[(Zr0.58Sn0.43) 0.92T i0.08] 0.98O3 in which the critical electric field is low enough to induce the ferroelectric phase over a broad temperature range. Utilizing temperature- and electric-field-dependent dielectric measurements, direct electrocaloric measurements, and in situ transmission electron microscopy, a crossover from conventional to inverse electrocaloric response is demonstrated. The origin of the inverse electrocaloric effect is rationalized by investigating the field-induced phase transition between antiferroelectric and ferroelectric phases. The disappearance of the latent heat at field-induced transition coincides with the crossover of the electrocaloric effect and demonstrates that the overall electrocaloric response is an interplay of different entropy contributions. This opens new opportunities for highly efficient, environmentally friendly cooling devices based on ferroic materials.
This report summarizes the results of a field demonstration conducted under the SITE Program. The technology which was demonstrated was a wastewater treatment technology developed by Zenon Environmental Inc. The process, named ZenoGem™, integrates biological treatment with memb...
Micro-magnetic Structures for Biological Applications
NASA Astrophysics Data System (ADS)
Howdyshell, Marci L.
Developments in single-molecule and single-cell experiments over the past century have provided researchers with many tools to probe the responses of cells to stresses such as physical force or to the injection of foreign genes. Often these techniques target the cell membrane, although many are now advancing to probe within the cell. As these techniques are improved upon and the investigations advance toward clinical applications, it has become more critical to achieve high-throughput outcomes which in turn lead to statistically significant results. The technologies developed in this thesis are targeted at transfecting large populations of cells with controlled doses of specific exogenic material without adversely affecting cell viability. Underlying this effort is a platform of lithographically patterned ferromagnetic thin films capable of remotely manipulating and localizing magnetic microbeads attached to biological entities. A novel feature of this approach, as demonstrated here with both DNA and cells, is the opportunity for multiplexed operations on targeted biological specimens. This thesis includes two main thrusts: (1) the advancement of the trapping platforms through experimental verification of mathematical models providing the energy landscapes associated with the traps and (2) implementation of the platform as a basis for rapid and effective high-throughput microchannel and nanochannel cell electroporation devices. The electroporation devices have, in our studies, not only been demonstrated to sustain cell viability with extremely low cell mortality rates, but are also found to be effective for various types of cells. The advances over current electroporation technologies that are achieved in these efforts demonstrate the potential for detection of mRNA expression in heterogeneous cell populations and probing intracellular responses to the introduction of foreign genes into cells.
2008-12-01
Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the...Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY...on Investment (ROI) of the Zephyr system. This is achieved by ( 1 ) Developing a model to carry out Business Case Analysis (BCA) of JCTDs, including
2009-06-01
additionally be utilized to cover a wider spectral range. In recent years, the long-wave IR ( LWIR : 8–12 m) region of the electromagnetic spectrum has been... LWIR region, and they can be sensed by their apparent temper- atures and spectral signatures in the LWIR . Currently, there are three main material...technologies for photonic IR photodetectors in the LWIR region. The HgCdTe (MCT) detector is the current state of the art due to its high responsivity
1988-04-01
Government-related pro- curement, the United States Government incurs no responsibility or any obli -j gation whatsoever. The fact that the Government...Arizona. NIIERI then began a program to deveiop a slurry mix design for use in the structure, as well as construction techniques for placing the SIFCON in...OBJECTIVES 3 II CONSTRUCTION AND FIELDING OPERATIONS 4 INTRODUCTION 4 I DEMONSTRATION PROGRAM 4 Introduct ion 4 Procedure 4 Results 7 $ DESIGN 7 I ntrod uc
2013-07-11
The Close Orbiting Propellant Plume Elemental Recognition (COPPER) was developed by students from St. Louis University as a technology demonstration mission whose objective is to test the suitability of a commercially-available compact uncooled microbolometer (tiny infrared camera) array for scientific imagery of Earth in the long-wave infrared range (LWIR, 7-13 microns). Launched by NASA’s CubeSat Launch Initiative on the ELaNa IV mission as an auxiliary payload aboard the U.S. Air Force-led Operationally Responsive Space (ORS-3) Mission on November 19, 2013.
Demonstration of Resolving Urban Problems by Applying Smart Technology.
NASA Astrophysics Data System (ADS)
Kim, Y.
2016-12-01
Recently, movements to seek various alternatives are becoming more active around the world to resolve urban problems related to energy, water, a greenhouse gas, and disaster by utilizing smart technology system. The purpose of this study is to evaluate service verification aimed at demonstration region applied with actual smart technology in order to raise the efficiency of the service and explore solutions for urban problems. This process must be required for resolving urban problems in the future and establishing `integration platform' for sustainable development. The demonstration region selected in this study to evaluate service verification is `Busan' in Korea. Busan adopted 16 services in 4 sections last year and begun demonstration to improve quality of life and resolve urban environment problems. In addition, Busan participated officially in `Global City Teams Challenge (GCTC)' held by National Institute of Standards and Technology (NIST) in USA last year and can be regarded as representative demonstration region in Korea. The result of survey showed that there were practical difficulties as explained below in the demonstration for resolving urban problems by applying smart technology. First, the participation for demonstration was low because citizens were either not aware or did not realize the demonstration. Second, after demonstrating various services at low cost, it resulted in less effect of service demonstration. Third, as functions get fused, it was found that management department, application criteria of technology and its process were ambiguous. In order to increase the efficiency of the demonstration for the rest of period through the result of this study, it is required to draw demand that citizens requires in order to raise public participation. In addition, it needs to focus more on services which are wanted to demonstrate rather than various service demonstrations. Lastly, it is necessary to build integration platform through cooperation between departments and branches. The data collected from various source while conducting service demonstration will provide meaningful suggestion in order to explore solution for resolving urban problems by applying smart technology in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Jeremy Diez; Jeffrey Wishart
2013-07-01
The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration inmore » an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.« less
Maifeld, Sarah V; Ro, Bodrey; Mok, Hoyin; Chu, Marla; Yu, Li; Yamagata, Ryan; Leonardson, Tansy; Chio, Vera; Parhy, Bandita; Park, Samuel; Carlson, Marcia; Machhi, Shushil; Ulbrandt, Nancy; Falsey, Ann R; Walsh, Edward E; Wang, C Kathy; Esser, Mark T; Zuo, Fengrong
2016-01-01
Sensitive and precise serology assays are needed to measure the humoral response to antigens of respiratory syncytial virus (RSV) following natural infection or vaccination. We developed and evaluated a collection of electrochemiluminescent (ECL) serology assays using four RSV antigens (F, N, Ga and Gb). To assess the merits of ECL technology, the four ECL serology assays were evaluated using a well-characterized "gold standard" panel of acute and convalescent serum samples from fifty-nine RSV-positive and thirty RSV-negative elderly subjects (≥65 years old). The combined results from the four ECL assays demonstrated good concordance to the "gold standard" diagnosis, reaching 95% diagnostic sensitivity and 100% diagnostic specificity. Additionally, a combination of ECL assays provided higher diagnostic sensitivity than a commercially available diagnostic ELISA or cell-based microneutralization assay. In summary, these data demonstrate the advantages of using ECL-based serology assays and highlight their use as a sensitive diagnostic approach to detect recent RSV infection in an elderly population.
NASA Astrophysics Data System (ADS)
Stakhira, Y. M.; Tovstyuk, N. K.; Fomenko, V. L.; Grigorchak, I. I.; Borysyuk, A. K.; Seredyuk, B. A.
2012-01-01
A solid-phase mechanochemical technology of production of polycrystalline InSе intercalated with Ni up to 1.25 at. % has been developed. The x-ray and phase analyses of the produced NixInSe samples confirm their homogeneity and demonstrate a nonmonotonic Ni-content dependence of the lattice constant along the axis normal to the layers. Analysis of the low-temperature (77 K) impedance response within the frequency region 10-3-106 Hz shows a good correlation between the change in interlayer distance and in the band conductivity observed with increasing Ni concentration. However, the Ni concentration dependence of specific magnetization demonstrates an irregular increase at x ˜ 1 and does not coincide with the former. Such behavior is explained by the proposed theoretical model, which at the same time unveiled the mechanism behind the increasing contribution of free carrier concentration to conductivity - hybridization of electron orbitals of guest nickel and the lattice layers.
Carbonic anhydrase enzymes regulate mast cell–mediated inflammation
Soteropoulos, Patricia
2016-01-01
Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine–mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2–associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy–like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell–mediated inflammation. PMID:27526715
Dual Arm Work Platform teleoperated robotics system. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The US Department of Energy (DOE) and the Federal Energy Technology Center (FETC) has developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial Deactivation and Decommissioning (D and D) technologies in comparison with current baseline technologies. The Dual Arm Work Platform (DAWP) demonstration focused on the use of the DAWP to segment and dismantle the CP-5 reactor tank and surrounding bio-shield components (including the graphite block reflector, lead and boral sheeting) and performing some minor tasks best suited for themore » use of teleoperated robotics that were not evaluated in this demonstration. The DAWP system is not a commercially available product at this time. The CP-5 implementation was its first D and D application. The demonstration of the DAWP was to determine the areas on which improvements must be made to make this technology commercially viable. The results of the demonstration are included in this greenbook. It is the intention of the developers to incorporate lessons learned at this demonstration and current technological advancements in robotics into the next generation of the DAWP.« less
National Security Technology Incubator Business Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This document contains a business plan for the National Security Technology Incubator (NSTI), developed as part of the National Security Preparedness Project (NSPP) and performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This business plan describes key features of the NSTI, including the vision and mission, organizational structure and staffing, services, evaluation criteria, marketing strategies, client processes, a budget, incubator evaluation criteria, and a development schedule. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with nationalmore » security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland. The NSTI is operated and managed by the Arrowhead Center, responsible for leading the economic development mission of New Mexico State University (NMSU). The Arrowhead Center will recruit business with applications for national security technologies recruited for the NSTI program. The Arrowhead Center and its strategic partners will provide business incubation services, including hands-on mentoring in general business matters, marketing, proposal writing, management, accounting, and finance. Additionally, networking opportunities and technology development assistance will be provided.« less
Jaeger, Paul T; Fleischmann, Kenneth R; Preece, Jennifer; Shneiderman, Ben; Wu, Philip Fei; Qu, Yan
2007-12-01
Access to accurate and trusted information is vital in preparing for, responding to, and recovering from an emergency. To facilitate response in large-scale emergency situations, Community Response Grids (CRGs) integrate Internet and mobile technologies to enable residents to report information, professional emergency responders to disseminate instructions, and residents to assist one another. CRGs use technology to help residents and professional emergency responders to work together in community response to emergencies, including bioterrorism events. In a time of increased danger from bioterrorist threats, the application of advanced information and communication technologies to community response is vital in confronting such threats. This article describes CRGs, their underlying concepts, development efforts, their relevance to biosecurity and bioterrorism, and future research issues in the use of technology to facilitate community response.
NASA Astrophysics Data System (ADS)
Beazley, M. J.; Martinez, R.; Rajan, S.; Powell, J.; Piceno, Y.; Tom, L.; Andersen, G. L.; Hazen, T. C.; Van Nostrand, J. D.; Zhou, J.; Mortazavi, B.; Sobecky, P. A.
2011-12-01
Microbial community responses of an Alabama coastal salt marsh environment to the Deepwater Horizon oil spill were studied by 16S rRNA (PhyloChip) and functional gene (GeoChip) microarray-based analysis. Oil and tar balls associated with the oil spill arrived along the Alabama coast in June 2010. Marsh and inlet sediment samples collected in June, July, and September 2010 from a salt marsh ecosystem at Point Aux Pines Alabama were analyzed to determine if bacterial community structure changed as a result of oil perturbation. Sediment total petroleum hydrocarbon (TPH) concentrations ranged from below detection to 189 mg kg-1 and were randomly dispersed throughout the salt marsh sediments. Total DNA extracted from sediment and particulates were used for PhyloChip and GeoChip hybridization. A total of 4000 to 8000 operational taxonomic units (OTUs) were detected in marsh and inlet samples. Distinctive changes in the number of detectable OTUs were observed between June, July, and September 2010. Surficial inlet sediments demonstrated a significant increase in the total number of OTUs between June and September that correlated with TPH concentrations. The most significant increases in bacterial abundance were observed in the phyla Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. Bacterial richness in marsh sediments also correlated with TPH concentrations with significant changes primarily in Acidobacteria, Actinobacteria, Firmicutes, Fusobacteria, Nitrospirae, and Proteobacteria. GeoChip microarray analysis detected 5000 to 8300 functional genes in marsh and inlet samples. Surficial inlet sediments demonstrated distinctive increases in the number of detectable genes and gene signal intensities in July samples compared to June. Signal intensities increased (> 1.5-fold) in genes associated with petroleum degradation. Genes related to metal resistance, stress, and carbon cycling also demonstrated increases in oiled sediments. This study demonstrates the value of applying phylogenetic and functional gene microarray technology to characterize the extensive microbial diversity of marsh environments. Moreover, this technology provides significant insight into bacterial community responses to anthropogenic oil events.
COBRA ATD multispectral camera response model
NASA Astrophysics Data System (ADS)
Holmes, V. Todd; Kenton, Arthur C.; Hilton, Russell J.; Witherspoon, Ned H.; Holloway, John H., Jr.
2000-08-01
A new multispectral camera response model has been developed in support of the US Marine Corps (USMC) Coastal Battlefield Reconnaissance and Analysis (COBRA) Advanced Technology Demonstration (ATD) Program. This analytical model accurately estimates response form five Xybion intensified IMC 201 multispectral cameras used for COBRA ATD airborne minefield detection. The camera model design is based on a series of camera response curves which were generated through optical laboratory test performed by the Naval Surface Warfare Center, Dahlgren Division, Coastal Systems Station (CSS). Data fitting techniques were applied to these measured response curves to obtain nonlinear expressions which estimates digitized camera output as a function of irradiance, intensifier gain, and exposure. This COBRA Camera Response Model was proven to be very accurate, stable over a wide range of parameters, analytically invertible, and relatively simple. This practical camera model was subsequently incorporated into the COBRA sensor performance evaluation and computational tools for research analysis modeling toolbox in order to enhance COBRA modeling and simulation capabilities. Details of the camera model design and comparisons of modeled response to measured experimental data are presented.
NASA Technical Reports Server (NTRS)
Carter, John; Kelly, John; Jones, Dan; Lee, James
2013-01-01
There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.
Project A+ Elementary Technology Demonstration Schools 1990-91. The First Year.
ERIC Educational Resources Information Center
Marable, Paula; Frazer, Linda
Project A+ Elementary Technology Demonstration Schools is a program made possible through grants from IBM (International Business Machines Corporation) and Apple, Inc. The primary purpose of the program is to demonstrate the educational effectiveness of technology in accelerating the learning of low achieving at-risk students and enhancing the…
Investments in energy technological change under uncertainty
NASA Astrophysics Data System (ADS)
Shittu, Ekundayo
2009-12-01
This dissertation addresses the crucial problem of how environmental policy uncertainty influences investments in energy technological change. The rising level of carbon emissions due to increasing global energy consumption calls for policy shift. In order to stem the negative consequences on the climate, policymakers are concerned with carving an optimal regulation that will encourage technology investments. However, decision makers are facing uncertainties surrounding future environmental policy. The first part considers the treatment of technological change in theoretical models. This part has two purposes: (1) to show--through illustrative examples--that technological change can lead to quite different, and surprising, impacts on the marginal costs of pollution abatement. We demonstrate an intriguing and uncommon result that technological change can increase the marginal costs of pollution abatement over some range of abatement; (2) to show the impact, on policy, of this uncommon observation. We find that under the assumption of technical change that can increase the marginal cost of pollution abatement over some range, the ranking of policy instruments is affected. The second part builds on the first by considering the impact of uncertainty in the carbon tax on investments in a portfolio of technologies. We determine the response of energy R&D investments as the carbon tax increases both in terms of overall and technology-specific investments. We determine the impact of risk in the carbon tax on the portfolio. We find that the response of the optimal investment in a portfolio of technologies to an increasing carbon tax depends on the relative costs of the programs and the elasticity of substitution between fossil and non-fossil energy inputs. In the third part, we zoom-in on the portfolio model above to consider how uncertainty in the magnitude and timing of a carbon tax influences investments. Under a two-stage continuous-time optimal control model, we consider the impact of these uncertainties on R&D spending that aims to lower the cost of non-fossil energy technology. We find that our results tally with the classical results because it discourages near-term investment. However, timing uncertainty increases near-term investment.
Hot electron induced NIR detection in CdS films.
Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir
2016-03-11
We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm(2). The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications.
Composite Technology for Exploration
NASA Technical Reports Server (NTRS)
Fikes, John
2017-01-01
The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.
Surface Contamination Monitor and Survey Information Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
Shonka Research Associates, Inc.`s (SRA) Surface Contamination Monitor and Survey Information management System (SCM/SIMS) is designed to perform alpha and beta radiation surveys of floors and surfaces and document the measured data. The SRA-SCM/SIMS technology can be applied to routine operational surveys, characterization surveys, and free release and site closure surveys. Any large nuclear site can make use of this technology. This report describes a demonstration of the SRA-SCM/SIMS technology. This demonstration is part of the chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), Office of Science and Technology (ST), Deactivation and Decommissioningmore » Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East`s (ANL) CP-5 Research Reactor Facility. The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.« less
Hybrid Life Support System Technology Demonstrations
NASA Astrophysics Data System (ADS)
Morrow, R. C.; Wetzel, J. P.; Richter, R. C.
2018-02-01
Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.
Multiplexed Electrochemical Immunosensors for Clinical Biomarkers
Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M.
2017-01-01
Management and prognosis of disease requires the accurate determination of specific biomarkers indicative of normal or disease-related biological processes or responses to therapy. Moreover since multiple determinations of biomarkers have demonstrated to provide more accurate information than individual determinations to assist the clinician in prognosis and diagnosis, the detection of several clinical biomarkers by using the same analytical device hold enormous potential for early detection and personalized therapy and will simplify the diagnosis providing more information in less time. In this field, electrochemical immunosensors have demonstrated to offer interesting alternatives against conventional strategies due to their simplicity, fast response, low cost, high sensitivity and compatibility with multiplexed determination, microfabrication technology and decentralized determinations, features which made them very attractive for integration in point-of-care (POC) devices. Therefore, in this review, the relevance and current challenges of multiplexed determination of clinical biomarkers are briefly introduced, and an overview of the electrochemical immunosensing platforms developed so far for this purpose is given in order to demonstrate the great potential of these methodologies. After highlighting the main features of the selected examples, the unsolved challenges and future directions in this field are also briefly discussed. PMID:28448466
Fault tolerant testbed evaluation, phase 1
NASA Technical Reports Server (NTRS)
Caluori, V., Jr.; Newberry, T.
1993-01-01
In recent years, avionics systems development costs have become the driving factor in the development of space systems, military aircraft, and commercial aircraft. A method of reducing avionics development costs is to utilize state-of-the-art software application generator (autocode) tools and methods. The recent maturity of application generator technology has the potential to dramatically reduce development costs by eliminating software development steps that have historically introduced errors and the need for re-work. Application generator tools have been demonstrated to be an effective method for autocoding non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom (SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O, flight critical environments. This contract will evaluate the use of application generators in these harsh environments. Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated in the Johnson (Space Center) Avionics Engineering Laboratory (JAEL). The response of the autocoded system will be shown to match the response of the existing Shuttle General Purpose Computers (GPC's), thereby demonstrating the viability of using autocode techniques in the development of future avionics systems.
Simultaneous Multiparameter Cellular Energy Metabolism Profiling of Small Populations of Cells.
Kelbauskas, Laimonas; Ashili, Shashaanka P; Lee, Kristen B; Zhu, Haixin; Tian, Yanqing; Meldrum, Deirdre R
2018-03-12
Functional and genomic heterogeneity of individual cells are central players in a broad spectrum of normal and disease states. Our knowledge about the role of cellular heterogeneity in tissue and organism function remains limited due to analytical challenges one encounters when performing single cell studies in the context of cell-cell interactions. Information based on bulk samples represents ensemble averages over populations of cells, while data generated from isolated single cells do not account for intercellular interactions. We describe a new technology and demonstrate two important advantages over existing technologies: first, it enables multiparameter energy metabolism profiling of small cell populations (<100 cells)-a sample size that is at least an order of magnitude smaller than other, commercially available technologies; second, it can perform simultaneous real-time measurements of oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and mitochondrial membrane potential (MMP)-a capability not offered by any other commercially available technology. Our results revealed substantial diversity in response kinetics of the three analytes in dysplastic human epithelial esophageal cells and suggest the existence of varying cellular energy metabolism profiles and their kinetics among small populations of cells. The technology represents a powerful analytical tool for multiparameter studies of cellular function.
BTDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Eckardt, Andreas; Krutz, David
2017-11-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.
Stochastic Technology Choice Model for Consequential Life Cycle Assessment.
Kätelhön, Arne; Bardow, André; Suh, Sangwon
2016-12-06
Discussions on Consequential Life Cycle Assessment (CLCA) have relied largely on partial or general equilibrium models. Such models are useful for integrating market effects into CLCA, but also have well-recognized limitations such as the poor granularity of the sectoral definition and the assumption of perfect oversight by all economic agents. Building on the Rectangular-Choice-of-Technology (RCOT) model, this study proposes a new modeling approach for CLCA, the Technology Choice Model (TCM). In this approach, the RCOT model is adapted for its use in CLCA and extended to incorporate parameter uncertainties and suboptimal decisions due to market imperfections and information asymmetry in a stochastic setting. In a case study on rice production, we demonstrate that the proposed approach allows modeling of complex production technology mixes and their expected environmental outcomes under uncertainty, at a high level of detail. Incorporating the effect of production constraints, uncertainty, and suboptimal decisions by economic agents significantly affects technology mixes and associated greenhouse gas (GHG) emissions of the system under study. The case study also shows the model's ability to determine both the average and marginal environmental impacts of a product in response to changes in the quantity of final demand.
The National Aerospace Initiative (NAI): Technologies For Responsive Space Access
NASA Technical Reports Server (NTRS)
Culbertson, Andrew; Bhat, Biliyar N.
2003-01-01
The Secretary of Defense has set new goals for the Department of Defense (DOD) to transform our nation's military forces. The Director for Defense Research and Engineering (DDR&E) has responded to this challenge by defining and sponsoring a transformational initiative in Science and Technology (S&T) - the National Aerospace Initiative (NAI) - which will have a fundamental impact on our nation's military capabilities and on the aerospace industry in general. The NAI is planned as a joint effort among the tri-services, DOD agencies and National Aeronautics and Space Administration (NASA). It is comprised of three major focus areas or pillars: 1) High Speed Hypersonics (HSH), 2) Space Access (SA), and 3) Space Technology (ST). This paper addresses the Space Access pillar. The NAI-SA team has employed a unique approach to identifying critical technologies and demonstrations for satisfying both military and civilian space access capabilities needed in the future. For planning and implementation purposes the NAI-SA is divided into five technology subsystem areas: Airframe, Propulsion, Flight Subsystems, Operations and Payloads. Detailed technology roadmaps were developed under each subsystem area using a time-phased, goal oriented approach that provides critical space access capabilities in a timely manner and involves subsystem ground and flight demonstrations. This S&T plan addresses near-term (2009), mid-term (2016), and long-term (2025) goals and objectives for space access. In addition, system engineering and integration approach was used to make sure that the plan addresses the requirements of the end users. This paper describes in some detail the technologies in NAI-Space Access pillar. Some areas of emphasis are: high temperature materials, thermal protection systems, long life, lightweight, highly efficient airframes, metallic and composite cryotanks, advanced liquid rocket engines, integrated vehicle health monitoring and management, highly operable systems and payloads. Implementation strategies for NAI are also described.
ERIC Educational Resources Information Center
Poirier, Christopher R.; Feldman, Robert S.
2007-01-01
Individual response technology (IRT), in which students use wireless handsets to communicate real-time responses, permits the recording and display of aggregated student responses during class. In comparison to a traditional class that did not employ IRT, students using IRT performed better on exams and held positive attitudes toward the…
Acceptability of instructional videos.
Rayyan, Mohammad; Elagra, Marwa; Alfataftah, Nida; Alammar, Amirah
2017-08-01
Over the past few decades, instructional videos have been incorporated as important tools in the dental classroom setting. This study aimed to investigate the acceptability of video demonstrations in comparison with live broadcasting and with the traditional face-to-face demonstrations in preclinical fixed prosthodontic classes. A group of dental students who have been exposed to three different methods of delivering practical demonstrations - face-to-face demonstrations, live broadcasting and recorded instructional videos - were included in the study. Preferences regarding these three methods were investigated using a questionnaire comprising a number of closed- and open-ended questions. Descriptive statistics were used to analyse the survey data using spss software. Survey comments were summarised and coded into categories. A total of 163 questionnaires were distributed, and 145 responses were returned (a response rate of 89%). Ninety-two students (63%) considered the recorded video demonstrations to be the most convenient. Moreover, ninety-seven students (67%) found live demonstrations to be the least convenient. The majority of students either agreed (67 students) or strongly agreed (60 students) that watching the video before the session made it easier for them to perform the procedure in the lab. Recorded instructional videos were the preferred method of delivering practical demonstrations for students in the preclinical courses of fixed prosthodontics. Instructors must focus on using the technological aids to increase their positive interaction with students. Instructional videos have been incorporated as important tools in the dental classroom setting. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
CapiBRIC- Capillary-Based Brine Residual In-Containment for Secondary Water Recovery
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam; Pensinger, S.; Callahan, M.
2015-01-01
One of the goals of the AES Life Support Systems Project is to achieve 98% water loop closure for long-duration human exploration missions. Brine water recovery is the primary technology gap that must be bridged to realize this goal. In response to an Agency call for technologies to compete in an October down-select, Capi-BRIC was chosen through a JSC down-select as the strongest candidate to go forward. This resulted in a period of intense development to increase its TRL in preparation for the Agency down-select. This was achieved through rapid prototype design, fabrication, and test at JSC and in a zero-g drop tower at Portland State University. INNOVATION CapiBRIC takes a novel approach of optimizing the containment geometry to support capillary flow and static phase separation to enable evaporation in a microgravity environment. OUTCOME TRL was advanced from 3 to 4, and was selected for continued funding through the AES program. CapiBRIC is poised for development into an ISS technology demonstration, proving its viability as an enabling technology for exploration.
NASA Technical Reports Server (NTRS)
Ferguson, James S.; Ferguson, Joanne E.; Peel, John, III; Vance, Larry
1995-01-01
Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry.
Retinal stimulation strategies to restore vision: Fundamentals and systems.
Yue, Lan; Weiland, James D; Roska, Botond; Humayun, Mark S
2016-07-01
Retinal degeneration, a leading cause of blindness worldwide, is primarily characterized by the dysfunctional/degenerated photoreceptors that impair the ability of the retina to detect light. Our group and others have shown that bioelectronic retinal implants restore useful visual input to those who have been blind for decades. This unprecedented approach of restoring sight demonstrates that patients can adapt to new visual input, and thereby opens up opportunities to not only improve this technology but also develop alternative retinal stimulation approaches. These future improvements or new technologies could have the potential of selectively stimulating specific cell classes in the inner retina, leading to improved visual resolution and color vision. In this review we will detail the progress of bioelectronic retinal implants and future devices in this genre as well as discuss other technologies such as optogenetics, chemical photoswitches, and ultrasound stimulation. We will discuss the principles, biological aspects, technology development, current status, clinical outcomes/prospects, and challenges for each approach. The review will cover functional imaging documented cortical responses to retinal stimulation in blind patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Small Rocket/Spacecraft Technology (SMART) Platform
NASA Technical Reports Server (NTRS)
Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.
2011-01-01
The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.
NASA Astrophysics Data System (ADS)
White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.
2000-01-01
Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .
Crawler Acquisition and Testing Demonstration Project Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
DEFIGH-PRICE, C.
2000-10-23
If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support finalmore » design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan includes the following: (1) Identification of acquisition strategy and plan to obtain a crawler based retrieval system; (2) Plan for sufficient cold testing to make a decision for W-523 and to comply with TPA Milestone M-45-03H; (3) Cost and schedule for path forward; (4) Responsibilities of the participants; and (5) The plan is supported by updated Level 1 logics, a Relative Order of Magnitude cost estimate and preliminary project schedule.« less
NASA Astrophysics Data System (ADS)
Olszowski, Tomasz
2017-10-01
The paper contains the results of a study into mass concentration of the dispersed aerosol fraction with the aerodynamic diameter of up to 2.5 and 10 micrometers. The study was conducted during classes with students participating in them in two laboratories located at Faculty of Mechanical Engineering, Opole University of Technology as well as outdoor outside the building. It was demonstrated that the values of the mass concentration of PM2.5 and PM10 measured in the laboratories differ considerably from the levels measured in the ambient air in the outdoor areas surrounding the faculty building. It was concluded that the diversity of PM2.5/PM10 ratio was greater in the laboratories. Direct correlation was not established between the concentrations of the particular PM fractions in the two investigated environments. It was demonstrated that there is a statistically significant relation between the concentration of PM2.5 and PM10 and the number of people present in the laboratory. The conducted cluster analysis led to the detection of the existence of dominant structures determining air quality parameters. For the analyzed case, endogenic factors are responsible for the aerosanitary condition. The study demonstrated that the evaluation of air quality needs to be performed individually for the specific rooms.
4D printing of a self-morphing polymer driven by a swellable guest medium.
Su, Jheng-Wun; Tao, Xiang; Deng, Heng; Zhang, Cheng; Jiang, Shan; Lin, Yuyi; Lin, Jian
2018-01-31
There is a significant need of advanced materials that can be fabricated into functional devices with defined three-dimensional (3D) structures for application in tissue engineering, flexible electronics, and soft robotics. This need motivates an emerging four-dimensional (4D) printing technology, by which printed 3D structures consisting of active materials can transform their configurations over time in response to stimuli. Despite the ubiquity of active materials in performing self-morphing processes, their potential for 4D printing has not been fully explored to date. In this study, we demonstrate 4D printing of a commercial polymer, SU-8, which has not been reported to date in this field. The working principle is based on a self-morphing process of the printed SU-8 structures through spatial control of the swelling medium inside the polymer matrix by a modified process. To understand the self-morphing behavior, fundamental studies on the effect of the geometries including contours and filling patterns were carried out. A soft electronic device as an actuator was demonstrated to realize an application of this programmable polymer using the 3D printing technology. These studies provide a new paradigm for application of SU-8 in 4D printing, paving a new route to the exploration of more potential candidates by this demonstrated strategy.
A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator
NASA Technical Reports Server (NTRS)
Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean
2013-01-01
Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.
Jackson, Brian A; Faith, Kay Sullivan
2013-02-01
Although significant progress has been made in measuring public health emergency preparedness, system-level performance measures are lacking. This report examines a potential approach to such measures for Strategic National Stockpile (SNS) operations. We adapted an engineering analytic technique used to assess the reliability of technological systems-failure mode and effects analysis-to assess preparedness. That technique, which includes systematic mapping of the response system and identification of possible breakdowns that affect performance, provides a path to use data from existing SNS assessment tools to estimate likely future performance of the system overall. Systems models of SNS operations were constructed and failure mode analyses were performed for each component. Linking data from existing assessments, including the technical assistance review and functional drills, to reliability assessment was demonstrated using publicly available information. The use of failure mode and effects estimates to assess overall response system reliability was demonstrated with a simple simulation example. Reliability analysis appears an attractive way to integrate information from the substantial investment in detailed assessments for stockpile delivery and dispensing to provide a view of likely future response performance.
2013-04-01
Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change Kathryn Aten and John T. Dillard Naval...Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change...describes the preliminary analysis and findings of our study exploring what drives successful organizational adaptation in the context of technology
2013-10-01
pmlkploba=obmloq=pbofbp= Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a...of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change 5a. CONTRACT NUMBER 5b. GRANT...findings of our study exploring what drives successful organizational adaptation in the context of technology transition and acquisition within the
ATP Interior Noise Technology and Flight Demonstration Program
NASA Technical Reports Server (NTRS)
Stephens, David G.; Powell, Clemans A.
1988-01-01
The paper provides an overview of the ATP (Advanced Turboprop Program) acoustics program with emphasis on the NASA technology program and the recent NASA/Industry demonstration programs aimed at understanding and controlling passenger cabin noise. Technology developments in propeller (source) noise, cabin noise transmission, and subjective acoustics are described. Finally, an overview of the industry demonstrator programs is presented.
Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. T. Brown; G. Matthern; A. Glenn
The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted andmore » is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies.« less
McCahill, Peter W; Noste, Erin E; Rossman, A J; Callaway, David W
2014-12-01
Disasters create major strain on energy infrastructure in affected communities. Advances in microgrid technology offer the potential to improve "off-grid" mobile disaster medical response capabilities beyond traditional diesel generation. The Carolinas Medical Center's mobile emergency medical unit (MED-1) Green Project (M1G) is a multi-phase project designed to demonstrate the benefits of integrating distributive generation (DG), high-efficiency batteries, and "smart" energy utilization in support of major out-of-hospital medical response operations. Carolinas MED-1 is a mobile medical facility composed of a fleet of vehicles and trailers that provides comprehensive medical care capacities to support disaster response and special-event operations. The M1G project partnered with local energy companies to deploy energy analytics and an energy microgrid in support of mobile clinical operations for the 2012 Democratic National Convention (DNC) in Charlotte, North Carolina (USA). Energy use data recorded throughout the DNC were analyzed to create energy utilization models that integrate advanced battery technology, solar photovoltaic (PV), and energy conservation measures (ECM) to improve future disaster response operations. The generators that supply power for MED-1 have a minimum loading ratio (MLR) of 30 kVA. This means that loads below 30 kW lead to diesel fuel consumption at the same rate as a 30 kW load. Data gathered from the two DNC training and support deployments showed the maximum load of MED-1 to be around 20 kW. This discrepancy in MLR versus actual load leads to significant energy waste. The lack of an energy storage system reduces generator efficiency and limits integration of alternative energy generation strategies. A storage system would also allow for alternative generation sources, such as PV, to be incorporated. Modeling with a 450 kWh battery bank and 13.5 kW PV array showed a 2-fold increase in potential deployment times using the same amount of fuel versus the current conventional system. The M1G Project demonstrated that the incorporation of a microgrid energy management system and a modern battery system maximize the MED-1 generators' output. Using a 450 kWh battery bank and 13.5 kW PV array, deployment operations time could be more than doubled before refueling. This marks a dramatic increase in patient care capabilities and has significant public health implications. The results highlight the value of smart-microgrid technology in developing energy independent mobile medical capabilities and expanding cost-effective, high-quality medical response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrocco, M.
The Ohio Power Company`s Tidd Pressurized Fluidized Bed Combined Cycle (PFBC) program continues to be the only operating PFBC demonstration program in the nation. The 70 MWe Tidd Demonstration Plant is a Round 1 Clean Coal Technology Project constructed to demonstrate the viability of PFBC combined cycle technology. The plant is now in Rs fourth year of operation. The technology has clearly demonstrated Rs ability to achieve sulfur capture of greater than 95%. The calcium to sulfur molar ratios have been demonstrated to exceed original projections. Unit availability has steadily increased and has been demonstrated to be competitive with othermore » technologies. The operating experience of the first forty-four months of testing has moved the PFBC process from a {open_quotes}promising technology{close_quotes} to available, proven option for efficient, environmentally acceptable base load generation. Funding for the $210 million program is provided by Ohio Power Company, The U.S. Department of Energy, The Ohio Coal Development Office, and the PFBC process vendors - Asea Brown Boveri Carbon (ABBC) and Babcock and Wilcox (B&W).« less
Los Alamos Team Demonstrates Bottle Scanner Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espy, Michelle; Schultz, Larry
2014-05-06
Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.
Los Alamos Team Demonstrates Bottle Scanner Technology
Espy, Michelle; Schultz, Larry
2018-02-13
Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.
DEMONSTRATION AND QUALITY ASSURANCE PROJECT ...
A demonstration of field portable/mobile technologies for measuring trace elements in soil and sediments was conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. The demonstration took place from January 24 to 28, 2005, at the Kennedy Athletic, Recreational and Social Park at Kennedy Space Center on Merritt Island, Florida. The purpose of the demonstration was to verify the performance of various instruments that employ X-ray fluorescence (XRF) measurement technologies for the determination of 13 toxic elements in a variety of soil and sediment samples. Instruments from the technology developers listed below were demonstrated. o Innov-X Systems, Inc.o NITON LLC (2 instruments ) o Oxford Instruments Portable Division (formerly Metorex, Inc.) .Oxford Instruments Analytical .Rigaku, Inc.o RONTEC USA Inc.o Xcalibur XRF Services Inc. (Division of Elvatech Ltd. ) This demonstration plan describes the procedures that will be used to verify the performance and cost of the XRF instruments provided by these technology developers. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to perform this verification. A separate innovative technology verification report (ITVR) will be prepared for each instrument. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented perfor
The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE
2011-01-01
Background The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.). While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other) crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level. Results We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags) from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold) under salt stress in both organs, witnessing a differential organ-specific response to stress. Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 UniTags were able to be linked to UniProt entries. Additionally, gene ontology (GO) categories over-representation analysis enabled to filter out enriched biological processes among the differentially expressed UniTags. Subsequently, the gathered information was further cross-checked with stress-related pathways. From several filtered pathways, here we focus exemplarily on transcripts associated with the generation and scavenging of reactive oxygen species (ROS), as well as on transcripts involved in Na+ homeostasis. Although both processes are already very well characterized in other plants, the information generated in the present work is of high value. Information on expression profiles and sequence similarity for several hundreds of transcripts of potential interest is now available. Conclusions This report demonstrates, that the combination of the high-throughput transcriptome profiling technology SuperSAGE with one of the next-generation sequencing platforms allows deep insights into the first molecular reactions of a plant exposed to salinity. Cross validation with recent reports enriched the information about the salt stress dynamics of more than 9,000 chickpea ESTs, and enlarged their pool of alternative transcripts isoforms. As an example for the high resolution of the employed technology that we coin deepSuperSAGE, we demonstrate that ROS-scavenging and -generating pathways undergo strong global transcriptome changes in chickpea roots and nodules already 2 hours after onset of moderate salt stress (25 mM NaCl). Additionally, a set of more than 15 candidate transcripts are proposed to be potential components of the salt overly sensitive (SOS) pathway in chickpea. Newly identified transcript isoforms are potential targets for breeding novel cultivars with high salinity tolerance. We demonstrate that these targets can be integrated into breeding schemes by micro-arrays and RT-PCR assays downstream of the generation of 26 bp tags by SuperSAGE. PMID:21320317
The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE.
Molina, Carlos; Zaman-Allah, Mainassara; Khan, Faheema; Fatnassi, Nadia; Horres, Ralf; Rotter, Björn; Steinhauer, Diana; Amenc, Laurie; Drevon, Jean-Jacques; Winter, Peter; Kahl, Günter
2011-02-14
The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.). While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other) crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level. We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags) from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold) under salt stress in both organs, witnessing a differential organ-specific response to stress.Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 UniTags were able to be linked to UniProt entries. Additionally, gene ontology (GO) categories over-representation analysis enabled to filter out enriched biological processes among the differentially expressed UniTags. Subsequently, the gathered information was further cross-checked with stress-related pathways. From several filtered pathways, here we focus exemplarily on transcripts associated with the generation and scavenging of reactive oxygen species (ROS), as well as on transcripts involved in Na+ homeostasis. Although both processes are already very well characterized in other plants, the information generated in the present work is of high value. Information on expression profiles and sequence similarity for several hundreds of transcripts of potential interest is now available. This report demonstrates, that the combination of the high-throughput transcriptome profiling technology SuperSAGE with one of the next-generation sequencing platforms allows deep insights into the first molecular reactions of a plant exposed to salinity. Cross validation with recent reports enriched the information about the salt stress dynamics of more than 9,000 chickpea ESTs, and enlarged their pool of alternative transcripts isoforms. As an example for the high resolution of the employed technology that we coin deepSuperSAGE, we demonstrate that ROS-scavenging and -generating pathways undergo strong global transcriptome changes in chickpea roots and nodules already 2 hours after onset of moderate salt stress (25 mM NaCl). Additionally, a set of more than 15 candidate transcripts are proposed to be potential components of the salt overly sensitive (SOS) pathway in chickpea. Newly identified transcript isoforms are potential targets for breeding novel cultivars with high salinity tolerance. We demonstrate that these targets can be integrated into breeding schemes by micro-arrays and RT-PCR assays downstream of the generation of 26 bp tags by SuperSAGE.
Disaster mobile health technology: lessons from Haiti.
Callaway, David W; Peabody, Christopher R; Hoffman, Ari; Cote, Elizabeth; Moulton, Seth; Baez, Amado Alejandro; Nathanson, Larry
2012-04-01
Mobile health (mHealth) technology can play a critical role in improving disaster victim tracking, triage, patient care, facility management, and theater-wide decision-making. To date, no disaster mHealth application provides responders with adequate capabilities to function in an austere environment. The Operational Medicine Institute (OMI) conducted a qualitative trial of a modified version of the off-the-shelf application iChart at the Fond Parisien Disaster Rescue Camp during the large-scale response to the January 12, 2010 earthquake in Haiti. The iChart mHealth system created a patient log of 617 unique entries used by on-the-ground medical providers and field hospital administrators to facilitate provider triage, improve provider handoffs, and track vulnerable populations such as unaccompanied minors, pregnant women, traumatic orthopedic injuries and specified infectious diseases. The trial demonstrated that even a non-disaster specific application with significant programmatic limitations was an improvement over existing patient tracking and facility management systems. A unified electronic medical record and patient tracking system would add significant value to first responder capabilities in the disaster response setting.
Integrating technologies for oil spill response in the SW Iberian coast
NASA Astrophysics Data System (ADS)
Janeiro, J.; Neves, A.; Martins, F.; Relvas, P.
2017-09-01
An operational oil spill modelling system developed for the SW Iberia Coast is used to investigate the relative importance of the different components and technologies integrating an oil spill monitoring and response structure. A backtrack of a CleanSeaNet oil detection in the region is used to demonstrate the concept. Taking advantage of regional operational products available, the system provides the necessary resolution to go from regional to coastal scales using a downscalling approach, while a multi-grid methodology allows the based oil spill model to span across model domains taking full advantage of the increasing resolution between the model grids. An extensive validation procedure using a multiplicity of sensors, with good spatial and temporal coverage, strengthens the operational system ability to accurately solve coastal scale processes. The model is validated using available trajectories from satellite-tracked drifters. Finally, a methodology is proposed to identifying potential origins for the CleanSeaNet oil detection, by combining model backtrack results with ship trajectories supplied by AIS was developed, including the error estimations found in the backtrack validation.
Improving OCD time to solution using Signal Response Metrology
NASA Astrophysics Data System (ADS)
Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny
2016-03-01
In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.
NASA Astrophysics Data System (ADS)
Li, Qichao; Shan, Chao; Yang, Qing; Chen, Feng; Bian, Hao; Hou, Xun
2017-02-01
This paper demonstrates a novel electro-thermal micro actuator's design, fabrication and device tests which combine microfluidic technology and microsolidics process. A three-dimensional solenoid microchannel with high aspect ratio is fabricated inside the silica glass by an improved femtosecond laser wet etch (FLWE) technology, and the diameter of the spiral coil is only 200 μm. Molten alloy (Bi/In/Sn/Pb) with high melting point is injected into the three-dimensional solenoid microchannel inside the silica glass , then it solidifys and forms an electro-thermal micro actuator. The device is capable of achieving precise temperature control and quick response, and can also be easily integrated into MEMS, sensors and `lab on a chip' (LOC) platform inside the fused silica substrate.
Distrubtion Tolerant Network Technology Flight Validation Report: DINET
NASA Technical Reports Server (NTRS)
Jones, Ross M.
2009-01-01
In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.
Distribution Tolerant Network Technology Flight Validation Report: DINET
NASA Technical Reports Server (NTRS)
Jones, Ross M.
2009-01-01
In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.
NASA Astrophysics Data System (ADS)
Nuytten, T.; Bogdanowicz, J.; Witters, L.; Eneman, G.; Hantschel, T.; Schulze, A.; Favia, P.; Bender, H.; De Wolf, I.; Vandervorst, W.
2018-05-01
The continued importance of strain engineering in semiconductor technology demands fast and reliable stress metrology that is non-destructive and process line-compatible. Raman spectroscopy meets these requirements but the diffraction limit prevents its application in current and future technology nodes. We show that nano-focused Raman scattering overcomes these limitations and can be combined with oil-immersion to obtain quantitative anisotropic stress measurements. We demonstrate accurate stress characterization in strained Ge fin field-effect transistor channels without sample preparation or advanced microscopy. The detailed analysis of the enhanced Raman response from a periodic array of 20 nm-wide Ge fins provides direct access to the stress levels inside the nanoscale channel, and the results are validated using nano-beam diffraction measurements.
Bovine Mastitis: Frontiers in Immunogenetics
Thompson-Crispi, Kathleen; Atalla, Heba; Miglior, Filippo; Mallard, Bonnie A.
2014-01-01
Mastitis is one of the most prevalent and costly diseases in the dairy industry with losses attributable to reduced milk production, discarded milk, early culling, veterinary services, and labor costs. Typically, mastitis is an inflammation of the mammary gland most often, but not limited to, bacterial infection, and is characterized by the movement of leukocytes and serum proteins from the blood to the site of infection. It contributes to compromised milk quality and the potential spread of antimicrobial resistance if antibiotic treatment is not astutely applied. Despite the implementation of management practises and genetic selection approaches, bovine mastitis control continues to be inadequate. However, some novel genetic strategies have recently been demonstrated to reduce mastitis incidence by taking advantage of a cow’s natural ability to make appropriate immune responses against invading pathogens. Specifically, dairy cattle with enhanced and balanced immune responses have a lower occurrence of disease, including mastitis, and they can be identified and selected for using the high immune response (HIR) technology. Enhanced immune responsiveness is also associated with improved response to vaccination, increased milk, and colostrum quality. Since immunity is an important fitness trait, beneficial associations with longevity and reproduction are also often noted. This review highlights the genetic regulation of the bovine immune system and its vital contributions to disease resistance. Genetic selection approaches currently used in the dairy industry to reduce the incidence of disease are reviewed, including the HIR technology, genomics to improve disease resistance or immune response, as well as the Immunity+™ sire line. Improving the overall immune responsiveness of cattle is expected to provide superior disease resistance, increasing animal welfare and food quality while maintaining favorable production levels to feed a growing population. PMID:25339959
Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2011-01-01
The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.
A 100 kW-Class Technology Demonstrator for Space Solar Power
NASA Astrophysics Data System (ADS)
Howell, J.; Carrington, C.; Day, G.
2004-12-01
A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class free-flying platform suitable for flight demonstration of Space Solar Power (SSP) technology experiments.
Migration and Environmental Hazards
Hunter, Lori M.
2011-01-01
Losses due to natural hazards (e.g., earthquakes, hurricanes) and technological hazards (e.g., nuclear waste facilities, chemical spills) are both on the rise. One response to hazard-related losses is migration, with this paper offering a review of research examining the association between migration and environmental hazards. Using examples from both developed and developing regional contexts, the overview demonstrates that the association between migration and environmental hazards varies by setting, hazard types, and household characteristics. In many cases, however, results demonstrate that environmental factors play a role in shaping migration decisions, particularly among those most vulnerable. Research also suggests that risk perception acts as a mediating factor. Classic migration theory is reviewed to offer a foundation for examination of these associations. PMID:21886366
CARs in Chronic Lymphocytic Leukemia – Ready to Drive
Wierda, William; Jena, Bipulendu; Cooper, Laurence J. N.; Shpall, Elizabeth
2013-01-01
Adoptive transfer of antigen-specific T cells has been adapted by investigators for treatment of chronic lymphocytic leukemia (CLL). To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens (TAAs), robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve potency. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, these early-phase trials are demonstrating impressive anti-tumor effects, particularly for CLL patients, paving the way for multi-center trials to establish the efficacy of CAR+ T cell therapy. PMID:23225251
McCoyd, Judith L M
2010-12-01
Theories about authoritative knowledge (AK) and the technological imperative have received varying levels of interest in anthropological, feminist and science and technology studies. Although the anthropological literature abounds with empirical considerations of authoritative knowledge, few have considered both theories through an empirical, inductive lens. Data extracted from an earlier study of 30 women's responses to termination for fetal anomaly are reanalyzed to consider the women's views of, and responses to, prenatal diagnostic technologies (PNDTs). Findings indicate that a small minority embrace the societal portrayal of technology as univalently positive, while the majority have nuanced and ambivalent responses to the use of PNDTs. Further, the interface of authoritative knowledge and the technological imperative suggests that AK derives not only from medical provider status and technology use, but also from the adequacy and trustworthiness of the information. The issue of timing and uncertainty of the information also are interrogated for their impact on women's lives and what that can illuminate about the theories of AK and the technological imperative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earle, L.; Sparn, B.; Rutter, A.
2014-03-01
In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.
ATD-1 Avionics Phase 2 Flight Test: Flight Test Operations and Saftey Report (FTOSR)
NASA Technical Reports Server (NTRS)
Boyle, Dan; Rein-Weston, Karl; Berckefeldt, Rick; Eggling, Helmuth; Stankiewicz, Craig; Silverman, George
2017-01-01
The Air Traffic Management Technology Demonstration-1 (ATD-1) is a major applied research and development activity of NASA's Airspace Operations and Safety Program (AOSP). The demonstration is the first of an envisioned series of Air Traffic Management (ATM) Technology Demonstration sub-projects that will demonstrate innovative NASA technologies that have attained a sufficient level of maturity to merit more in-depth research and evaluation at the system level in relevant environments.
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is NASA's poster art for the X-34 technology Demonstrator. The X-34 was part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments would support the Agency's goal of dramatically reducing the cost of access to space and would define the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.
2004-04-15
Pictured is NASA's poster art for the X-34 technology Demonstrator. The X-34 was part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments would support the Agency's goal of dramatically reducing the cost of access to space and would define the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.
2004-04-15
Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.
Variable Cycle Engine Technology Program Planning and Definition Study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Stern, A. M.
1978-01-01
The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.
2012-01-01
The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.
Core Design Characteristics of the Fluoride Salt-Cooled High Temperature Demonstration Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R; Qualls, A L; Betzler, Benjamin R
2016-01-01
Fluoride salt-cooled high temperature reactors (FHRs) are a promising reactor technology option with significant knowledge gaps to implementation. One potential approach to address those technology gaps is via a small-scale demonstration reactor with the goal of increasing the technology readiness level (TRL) of the overall system for the longer term. The objective of this paper is to outline a notional concept for such a system, and to address how the proposed concept would advance the TRL of FHR concepts. Development of the proposed FHR Demonstration Reactor (DR) will enable commercial FHR deployment through disruptive and rapid technology development and demonstration.more » The FHR DR will close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. Important capabilities that will be demonstrated by building and operating the FHR DR include core design methodologies; fabrication and operation of high temperature reactors; salt procurement, handling, maintenance, and ultimate disposal; salt chemistry control to maximize vessel life; tritium management; heat exchanger performance; pump performance; and reactivity control. The FHR DR is considered part of a broader set of FHR technology development and demonstration efforts, some of which are already underway. Nonreactor test efforts (e.g., heated salt loops or loops using simulant fluids) can demonstrate many technologies necessary for commercial deployment of FHRs. The FHR DR, however, fulfills a crucial role in FHR technology development by advancing the technical maturity and readiness level of the system as a whole.« less
Cost-effective implementation of intelligent systems
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.; Heer, Ewald
1990-01-01
Significant advances have occurred during the last decade in knowledge-based engineering research and knowledge-based system (KBS) demonstrations and evaluations using integrated intelligent system technologies. Performance and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent system technologies can be realized. In this paper the rationale and potential benefits for typical examples of application projects that demonstrate an increase in productivity through the use of intelligent system technologies are discussed. These demonstration projects have provided an insight into additional technology needs and cultural barriers which are currently impeding the transition of the technology into operational environments. Proposed methods which addresses technology evolution and implementation are also discussed.
Current Status of Concentrator Photovoltaic (CPV) Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philipps, Simon P.; Bett, Andreas W.; Horowitz, Kelsey
2015-12-01
This report summarizes the status of the concentrator photovoltaic (CPV) market and industry as well as current trends in research and technology. This report is intended to guide research agendas for Fraunhofer ISE, the National Renewable Energy Laboratory (NREL), and other R&D organizations. Version 1.1 of this report includes recent progress in CPV. The recent record module efficiency of 38.9% at Concentrator Standard Test Conditions (CSTC) is an impressive result, demonstrating the continuing opportunity for CPV technology to improve. 38.9% at Concentrator Standard Test Conditions (CSTC) is an impressive result, demonstrating the continuing opportunity for CPV technology to improve. 38.9%more » at Concentrator Standard Test Conditions (CSTC) is an impressive result, demonstrating the continuing opportunity for CPV technology to improve. 38.9% at Concentrator Standard Test Conditions (CSTC) is an impressive result, demonstrating the continuing opportunity for CPV technology to improve.« less
Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less
ERIC Educational Resources Information Center
Anderson, Frank; And Others
Though the Satellite Technology Demonstration (STD) system had the capacity to deliver quality broadcast signals to specially designed ground terminals its budget did not provide for more than one receiver in each rural community. In order to translate the satellite signal into a broadcast available to the individual home viewer, several systems…
Test and Demonstration Assets of New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstrationmore » and validation environment.« less
Space Solar Power Concepts: Demonstrations to Pilot Plants
NASA Technical Reports Server (NTRS)
Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)
2002-01-01
The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossabi, J.; Jenkins, R.A.; Wise, M.B.
1993-12-31
The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise.more » Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.« less
Transferring new technologies within the federal sector: The New Technology Demonstration Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, D.R.; Hunt, D.M.
1994-08-01
The federal sector is the largest consumer of products in the United States and annually purchases almost 1.5 quads of energy measured at the building site at a cost of almost $10 billion (U.S. Department of Energy 1991). A review of design, construction, and procurement practices in the federal sector, as well as discussions with manufacturers and vendors, indicated that new technologies are not utilized in as timely a manner as possible. As a consequence of this technology transfer lag, the federal sector loses valuable energy and environmental benefits that can be derived through the application of new technologies. Inmore » addition, opportunities are lost to reduce federal energy expenditures and spur U.S. economic growth through the procurement of such technologies. In 1990, under the direction of the U.S. Department of Energy (DOE) Federal Energy Management Program, the Pacific Northwest Laboratory began the design of a program to accelerate the introduction of new U.S. technologies into the federal sector. Designated first as the Test Bed Demonstration Program and more recently the New Technology Demonstration Program, it sought to shorten the acceptance period of new technologies within the federal sector. By installing and evaluating various new technologies at federal facilities, the Program attempts to increase the acceptance of those new technologies through the results of {open_quotes}real-world{close_quotes} federal installations. Since that time, the Program has conducted new technology demonstrations and evaluations, evolved to address the need for more timely information transfer, and explored collaborative opportunities with other DOE offices and laboratories. This paper explains the processes by which a new technology demonstration project is implemented and presents a general description of the Program results to date.« less
Next generation DIRCM for 2.1-2.3 micron wavelength based on direct-diode GaSb technology
NASA Astrophysics Data System (ADS)
Dvinelis, Edgaras; Naujokaitė, Greta; Greibus, Mindaugas; Trinkūnas, Augustinas; Vizbaras, Kristijonas; Vizbaras, Augustinas
2018-02-01
Continuous advances in low-cost MANPAD heat-seeking missile technology over the past 50 years remains the number one hostile threat to airborne platforms globally responsible for over 60 % of casualties. Laser based directional countermeasure (DIRCM) technology have been deployed to counter the threat. Ideally, a laser based DIRCM system must involve a number of lasers emitting at different spectral bands mimicking the spectral signature of the airborne platform. Up to now, near and mid infrared spectral bands have been covered with semiconductor laser technology and only SWIR band remained with bulky fiber laser technology. Recent technology developments on direct-diode GaSb laser technology at Brolis Semiconductors offer a replacement for the fiber laser source leading to significant improvements by few orders of magnitude in weight, footprint, efficiency and cost. We demonstrate that with careful engineering, several multimode emitters can be combined to provide a directional laser beam with radiant intensity from 10 kW/sr to 60 kW/sr in an ultra-compact hermetic package with weight < 30 g and overall efficiency of 15 % in the 2.1- 2.3 micron spectral band offering 150 times improvement in efficiency and reduction in footprint. We will discuss present results, challenges and future developments for such next-generation integrated direct diode DIRCM modules for SWIR band.
Whipple, Terry L
2009-10-01
Tendinopathy arises from a failed tendon healing process. Current non-invasive therapeutic alternatives are anti-inflammatory in nature, and outcomes are unpredictable. The benefit of invasive alternatives resides in the induction of the healing response. A new technology that uses non-invasive monopolar capacitive coupled radiofrequency has demonstrated the ability to raise temperatures in tendons and ligaments above 50 degrees C, the threshold for collagen modulation, tissue shrinkage and recruitment of macrophages, fibroblasts, and heat shock protein factors, without damaging the overlying structures, resulting in activation of the wound healing response. Monopolar capacitive-coupled radiofrequency offers a new non-invasive choice for tendinopathies and sprained ligaments. It does not interfere with subsequent surgical procedures should they become necessary.
ERIC Educational Resources Information Center
Beatty, Ian D.; Gerace, William J.
2009-01-01
"Classroom response systems" (CRSs) are a promising instructional technology, but most literature on CRS use fails to distinguish between technology and pedagogy, to define and justify a pedagogical perspective, or to discriminate between pedagogies. "Technology-enhanced formative assessment" (TEFA) is our pedagogy for CRS-based science…
Green Mono Propulsion Activities at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2014-01-01
In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of Prisma, a 1-N thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1-N, and 22-N hydroxyl ammonium nitrate (HAN)-based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units (APUs). This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications.
Green Mono Propulsion Activities at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2014-01-01
In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TA's that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of PRISMA, a one Newton thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1 N, and 22 N hydroxyl ammonium nitrate based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units. This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trippe, J. M.; Reed, R. A.; Austin, R. A.
In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
Sequencing to Station in 12 Months (Targeting Orbital 5 Launch, March 30th)
NASA Technical Reports Server (NTRS)
Smith, David J.; Burton, Aaron Steven
2015-01-01
The Biomolecule Sequencer is a Commercial Off-The-Shelf device developed by Oxford Nanopore Technologies and implements a method of DNA sequencing unlike any other current sequencers. The device measures changes in electrical current through a nanopore depending on the sequence of the DNA strand that is passing through it. Since the technology is built on nanometer-scale ion pores, the hardware itself is exceptionally small (3 x 1 x 58 inches), lightweight (less than 120 grams with USB cable), and powered only by a USB connection. The sequencing device is permanent, while the flow cells, to which the samples are added, are periodically replaced. The goal of our upcoming technology demonstration on ISS is to provide evidence that DNA sequencing in space is possible, which holds the exciting potential to enable the identification of microorganisms, monitor changes in microbes and humans in response to spaceflight, and possibly aid in the detection of DNA-based life elsewhere in the universe.
Photonic and Plasmonic Nanotweezing of Nano- and Microscale Particles.
Conteduca, Donato; Dell'Olio, Francesco; Krauss, Thomas F; Ciminelli, Caterina
2017-03-01
The ability to manipulate and sense biological molecules is important in many life science domains, such as single-molecule biophysics, the development of new drugs and cancer detection. Although the manipulation of biological matter at the nanoscale continues to be a challenge, several types of nanotweezers based on different technologies have recently been demonstrated to address this challenge. In particular, photonic and plasmonic nanotweezers are attracting a strong research effort especially because they are efficient and stable, they offer fast response time, and avoid any direct physical contact with the target object to be trapped, thus preventing its disruption or damage. In this paper, we critically review photonic and plasmonic resonant technologies for biomolecule trapping, manipulation, and sensing at the nanoscale, with a special emphasis on hybrid photonic/plasmonic nanodevices allowing a very strong light-matter interaction. The state-of-the-art of competing technologies, e.g., electronic, magnetic, acoustic and carbon nanotube-based nanotweezers, and a description of their applications are also included.
Mars Helicopter Technology Demonstration
2018-05-11
The Mars Helicopter is a technology demonstration that will fly as a secondary payload with the Mars 2020 mission. It will demonstrate the potential of aerial flight on Mars, which may enable more ambitious missions in the future.
SYNOPSES OF FEDERAL DEMONSTRATIONS OF INNOVATIVE REMEDIATION TECHNOLOGIES
This collection of abstracts, compiled by the Federal Remediation Technology Roundtable, describes field demonstrations of innovative technologies to treat hazardous waste. The collection is intended to be an information resource for hazardous waste site project managers for asse...
This report consolidates key reference information in a matrix that allows project mangers to quickly identify new technologies that may answer their cleanup needs and contacts for obtaining technology demonstration results and other information.
Technology Demonstration Summary, Chemfix Solidification/Stabilization Process, Clackamas, Oregon
ChemfIx's* patented stabilization/solidification technology was demonstrated at the Portable Equipment Salvage Company (PESC) site in Clackamas, Oregon, as part of the Superfund Innovative Technology Evaluation (SITE) program. The Chemfix process is designed to solidify and sta...
EVALUATION OF THE BIOGENESIS SOIL WASHING TECHNOLOGY
The BioGenesis Enterprises, Inc. (BioGenesis) soil washing technology was demonstrated as part of the US Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) program in November 1992. The demonstration was conducted over three days at a petrol...
Operational Lessons Leaned During bioreactor Demonstrations for Acid Rock Drainage Treatment
The U.S. Environmental Protection Agency's Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sulf...
The major objective of the HAZCON Solidification SITE Program Demonstration Test was to develop reliable performance and cost information. The demonstration occurred at a 50-acre site of a former oil reprocessing plant at Douglassville, PA containing a wide range of organic...
Final Technical Report. Project Boeing SGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Thomas E.
Boeing and its partner, PJM Interconnection, teamed to bring advanced “defense-grade” technologies for cyber security to the US regional power grid through demonstration in PJM’s energy management environment. Under this cooperative project with the Department of Energy, Boeing and PJM have developed and demonstrated a host of technologies specifically tailored to the needs of PJM and the electric sector as a whole. The team has demonstrated to the energy industry a combination of processes, techniques and technologies that have been successfully implemented in the commercial, defense, and intelligence communities to identify, mitigate and continuously monitor the cyber security of criticalmore » systems. Guided by the results of a Cyber Security Risk-Based Assessment completed in Phase I, the Boeing-PJM team has completed multiple iterations through the Phase II Development and Phase III Deployment phases. Multiple cyber security solutions have been completed across a variety of controls including: Application Security, Enhanced Malware Detection, Security Incident and Event Management (SIEM) Optimization, Continuous Vulnerability Monitoring, SCADA Monitoring/Intrusion Detection, Operational Resiliency, Cyber Range simulations and hands on cyber security personnel training. All of the developed and demonstrated solutions are suitable for replication across the electric sector and/or the energy sector as a whole. Benefits identified include; Improved malware and intrusion detection capability on critical SCADA networks including behavioral-based alerts resulting in improved zero-day threat protection; Improved Security Incident and Event Management system resulting in better threat visibility, thus increasing the likelihood of detecting a serious event; Improved malware detection and zero-day threat response capability; Improved ability to systematically evaluate and secure in house and vendor sourced software applications; Improved ability to continuously monitor and maintain secure configuration of network devices resulting in reduced vulnerabilities for potential exploitation; Improved overall cyber security situational awareness through the integration of multiple discrete security technologies into a single cyber security reporting console; Improved ability to maintain the resiliency of critical systems in the face of a targeted cyber attack of other significant event; Improved ability to model complex networks for penetration testing and advanced training of cyber security personnel« less
Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-09-01
The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric powermore » marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.« less
Radiation Hardened Electronics Destined For Severe Nuclear Reactor Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holbert, Keith E.; Clark, Lawrence T.
Post nuclear accident conditions represent a harsh environment for electronics. The full station blackout experience at Fukushima shows the necessity for emergency sensing capabilities in a radiation-enhanced environment. This NEET (Nuclear Energy Enabling Technologies) research project developed radiation hardened by design (RHBD) electronics using commercially available technology that employs commercial off-the-shelf (COTS) devices and present generation circuit fabrication techniques to improve the total ionizing dose (TID) hardness of electronics. Such technology not only has applicability to severe accident conditions but also to facilities throughout the nuclear fuel cycle in which radiation tolerance is required. For example, with TID tolerance tomore » megarads of dose, electronics could be deployed for long-term monitoring, inspection and decontamination missions. The present work has taken a two-pronged approach, specifically, development of both board and application-specific integrated circuit (ASIC) level RHBD techniques. The former path has focused on TID testing of representative microcontroller ICs with embedded flash (eFlash) memory, as well as standalone flash devices that utilize the same fabrication technologies. The standalone flash devices are less complicated, allowing better understanding of the TID response of the crucial circuits. Our TID experiments utilize biased components that are in-situ tested, and in full operation during irradiation. A potential pitfall in the qualification of memory circuits is the lack of rigorous testing of the possible memory states. For this reason, we employ test patterns that include all ones, all zeros, a checkerboard of zeros and ones, an inverse checkerboard, and random data. With experimental evidence of improved radiation response for unbiased versus biased conditions, a demonstration-level board using the COTS devices was constructed. Through a combination of redundancy and power gating, the demonstration board exhibits radiation resilience to over 200 krad. Furthermore, our ASIC microprocessor using RHBD techniques was shown to be fully functional after an exposure of 2.5 Mrad whereas the COTS microcontroller units failed catastrophically at <100 krad. The methods developed in this work can facilitate the long-term viability of radiation-hard robotic systems, thereby avoiding obsolescence issues. As a case in point, the nuclear industry with its low purchasing power does not drive the semiconductor industry strategic plans, and the rapid advancements in electronics technology can leave legacy systems stranded.« less
Tangudu, Naveen K; Verma, Vinod K; Clemons, Tristan D; Beevi, Syed S; Hay, Trevor; Mahidhara, Ganesh; Raja, Meera; Nair, Rekha A; Alexander, Liza E; Patel, Anant B; Jose, Jedy; Smith, Nicole M; Zdyrko, Bogdan; Bourdoncle, Anne; Luzinov, Igor; Iyer, K Swaminathan; Clarke, Alan R; Dinesh Kumar, Lekha
2015-05-01
In this article, we report the development and preclinical validation of combinatorial therapy for treatment of cancers using RNA interference (RNAi). RNAi technology is an attractive approach to silence genes responsible for disease onset and progression. Currently, the critical challenge facing the clinical success of RNAi technology is in the difficulty of delivery of RNAi inducers, due to low transfection efficiency, difficulties of integration into host DNA and unstable expression. Using the macromolecule polyglycidal methacrylate (PGMA) as a platform to graft multiple polyethyleneimine (PEI) chains, we demonstrate effective delivery of small oligos (anti-miRs and mimics) and larger DNAs (encoding shRNAs) in a wide variety of cancer cell lines by successful silencing/activation of their respective target genes. Furthermore, the effectiveness of this therapy was validated for in vivo tumor suppression using two transgenic mouse models; first, tumor growth arrest and increased animal survival was seen in mice bearing Brca2/p53-mutant mammary tumors following daily intratumoral treatment with nanoparticles conjugated to c-Myc shRNA. Second, oral delivery of the conjugate to an Apc-deficient crypt progenitor colon cancer model increased animal survival and returned intestinal tissue to a non-wnt-deregulated state. This study demonstrates, through careful design of nonviral nanoparticles and appropriate selection of therapeutic gene targets, that RNAi technology can be made an affordable and amenable therapy for cancer. ©2015 American Association for Cancer Research.
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.
2014-01-01
As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.
2013-01-01
As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).
Operational Lessons Learned During Bioreactor Demonstrations for Acid Rock Drainage Treatment
The U.S. Environmental Protection Agency’s Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sul...
Alabama warm mix asphalt field study : final report.
DOT National Transportation Integrated Search
2010-05-01
The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...
Applying telehealth in natural and anthropogenic disasters.
Simmons, Scott; Alverson, Dale; Poropatich, Ronald; D'Iorio, Joe; DeVany, Mary; Doarn, Charles R
2008-11-01
There are myriad telehealth applications for natural or anthropogenic disaster response. Telehealth technologies and methods have been demonstrated in a variety of real and simulated disasters. Telehealth is a force multiplier, providing medical and public health expertise at a distance, minimizing the logistic and safety issues associated with on-site care provision. Telehealth provides a virtual surge capacity, enabling physicians and other health professionals from around the world to assist overwhelmed local health and medical personnel with the increased demand for services postdisaster. There are several categories of telehealth applications in disaster response, including ambulatory/primary care, specialty consultation, remote monitoring, and triage, medical logistics, and transportation coordination. External expertise would be connected via existing telehealth networks in the disaster area or specially deployed telehealth systems in shelters or on-scene. This paper addresses the role of telehealth in disaster response and recommends a roadmap for its widespread use in preparing for and responding to natural and anthropogenic disasters.
Transient flows in active porous media
NASA Astrophysics Data System (ADS)
Kosmidis, Lefteris I.; Jensen, Kaare H.
2017-06-01
Stimuli-responsive materials that modify their shape in response to changes in environmental conditions—such as solute concentration, temperature, pH, and stress—are widespread in nature and technology. Applications include micro- and nanoporous materials used in filtration and flow control. The physiochemical mechanisms that induce internal volume modifications have been widely studied. The coupling between induced volume changes and solute transport through porous materials, however, is not well understood. Here, we consider advective and diffusive transport through a small channel linking two large reservoirs. A section of stimulus-responsive material regulates the channel permeability, which is a function of the local solute concentration. We derive an exact solution to the coupled transport problem and demonstrate the existence of a flow regime in which the steady state is reached via a damped oscillation around the equilibrium concentration value. Finally, the feasibility of an experimental observation of the phenomena is discussed.
Monitoring human melanocytic cell responses to piperine using multispectral imaging
NASA Astrophysics Data System (ADS)
Samatham, Ravikant; Phillips, Kevin G.; Sonka, Julia; Yelma, Aznegashe; Reddy, Neha; Vanka, Meenakshi; Thuillier, Philippe; Soumyanath, Amala; Jacques, Steven
2011-03-01
Vitiligo is a depigmentary disease characterized by melanocyte loss attributed most commonly to autoimmune mechanisms. Currently vitiligo has a high incidence (1% worldwide) but a poor set of treatment options. Piperine, a compound found in black pepper, is a potential treatment for the depigmentary skin disease vitiligo, due to its ability to stimulate mouse epidermal melanocyte proliferation in vitro and in vivo. The present study investigates the use of multispectral imaging and an image processing technique based on local contrast to quantify the stimulatory effects of piperine on human melanocyte proliferation in reconstructed epidermis. We demonstrate the ability of the imaging method to quantify increased pigmentation in response to piperine treatment. The quantization of melanocyte stimulation by the proposed imaging technique illustrates the potential use of this technology to quickly assess therapeutic responses of vitiligo tissue culture models to treatment non-invasively.
A Fast Technology Infusion Model for Aerospace Organizations
NASA Technical Reports Server (NTRS)
Shapiro, Andrew A.; Schone, Harald; Brinza, David E.; Garrett, Henry B.; Feather, Martin S.
2006-01-01
A multi-year Fast Technology Infusion initiative proposes a model for aerospace organizations to improve the cost-effectiveness by which they mature new, in-house developed software and hardware technologies for space mission use. The first year task under the umbrella of this initiative will provide the framework to demonstrate and document the fast infusion process. The viability of this approach will be demonstrated on two technologies developed in prior years with internal Jet Propulsion Laboratory (JPL) funding. One hardware technology and one software technology were selected for maturation within one calendar year or less. The overall objective is to achieve cost and time savings in the qualification of technologies. At the end of the recommended three-year effort, we will have demonstrated for six or more in-house developed technologies a clear path to insertion using a documented process that permits adaptation to a broad range of hardware and software projects.
ERIC Educational Resources Information Center
Ivy, Diana K.; And Others
Continuous Attitudinal Response Technology (CART) is an alternative approach to testing students' instantaneous response to teacher behaviors in the classroom. The system uses a microcomputer and video technology device that allows researchers to measure subjects' instantaneous responses to static and continuous stimuli, graphic or verbal. A…
The Use of Phone Technology in Outpatient Populations: A Systematic Review
Duarte, Ana C.; Thomas, Sue A.
2016-01-01
Objective: A systematic review was conducted to identify the types of phone technology used in the adult outpatient population with a focus on Hispanic patients and psychiatric populations. Methods: A search for articles was conducted on the EMBASE, PubMed and PsycINFO databases. Articles reviewed were peer-reviewed, full-text, English language and published through mid-November 2014. Results: Twenty-one articles were included in this review and grouped according to combinations of phone technology, medical specialty area and population. For all articles, phone technology was defined as telephone, cell, or smart phone. Technology was used in psychiatry with Hispanic population in four articles, in psychiatry with non-Hispanic population in seven articles and in other specialties with Hispanic population in ten articles. Articles were evaluated for quality. Six articles were assessed as strong, eight were moderate and seven were weak in global quality. Interventions included direct communication, text messaging, interactive voice response, camera and smart phone app. Studies with Hispanic populations used more text messaging, while studies in psychiatry favored direct communication. The majority of articles in all groups yielded improvements in health outcomes. Conclusion: Few studies have been conducted using phone technology in Hispanic and psychiatric populations. Various phone technologies can be helpful to patients in diverse populations and have demonstrated success in improving a variety of specific and overall healthcare outcomes. Phone technologies are easily adapted to numerous settings and populations and are valuable tools in efforts to increase access to care. PMID:27347255
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.
2014-01-01
In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.
The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of ozone laundry system installations at the Charleston Place Hotel in Charleston, South Carolina, and the Rogerson House assisted living facility in Boston, Massachusetts.
The State of Educational Technology: Responses to Mitchell.
ERIC Educational Resources Information Center
Agostino, Andrew; And Others
1989-01-01
Presents eight responses to an article in a previous issue by Mitchell, "The Future of Educational Technology Is Past." Highlights include the theory of educational technology, the future of the field of educational technology, cybernetics, educational psychology, systems theory, the role of teachers, control systems, computer assisted…
The purpose of the field demonstration program is to gather technically reliable cost and performance information on selected condition assessment technologies under defined field conditions. The selected technologies include zoom camera, focused electrode leak location (FELL), ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory... to eight legacy Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration (demo) Project Plans resulting from section 1107(c) of the National Defense Authorization Act...
2012-03-01
both a transmitter and receiver antenna. The lower coil was located 42 cm above the ground surface for optimal data collection using the standard wheel ... eccentricity . Over 54% (26 of the 46) had P0x parameter values below the 4,500 Category 3 threshold in order to reduce the risk of missing TOI smaller...it is not uncommon to have a large eccentricity for an ordnance item. As previously stated, URS used LM as secondary, in that it served to override
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veedu, Vinod; Hadmack, Michael; Pollock, Jacob
Nanite™ is a cementitious material that contains a proprietary formulation of functionalized nanomaterial additive to transform conventional cement into a smart material responsive to pressure (or stress), temperature, and any intrinsic changes in composition. This project has identified optimal sensing modalities of smart well cement and demonstrated how real-time sensing of Nanite™ can improve long-term wellbore integrity and zonal isolation in shale gas and applicable oil and gas operations. Oceanit has explored Nanite’s electrical sensing properties in depth and has advanced the technology from laboratory proof-of-concept to sub-scale testing in preparation for field trials.
Influence of Surface Properties and Impact Conditions on Insect Residue Adhesion
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Doss, Jereme R.; Shanahan, Michelle H.; Smith, Joseph G., Jr.; Penner, Ronald K.; Connell, John W.; Siochi, Emilie J.
2015-01-01
Airflow over airfoils used on current commercial aircraft transitions from laminar to turbulent at relatively low chord positions. As a result, drag increases, requiring more thrust to maintain flight. An airfoil with increased laminar flow would experience reduced drag and a lower fuel burn rate. One of the objectives of NASA's Environmentally Responsible Aviation project is to identify and demonstrate technologies that will enable more environmentally friendly commercial aircraft. While more aerodynamically efficient airfoil shapes can be designed, surface contamination from ice, dirt, pollen, runway debris, and insect residue can degrade performance.
Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E
2015-03-11
Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.
Clean Heat: A Technical Response to a Policy Innovation
Hernández, Diana
2017-01-01
New York City clean heat policies were enacted to improve air quality, especially reducing exposure to black carbon, particulate matter and sulfur that are linked to environmental degradation and various health risks. This policy measure specifically called for the phase out of residual oil and adoption of cleaner burning fuel sources through boiler conversions in commercial and residential properties throughout the city. This paper describes the process of clean heat technology adoption within the innovative clean heat policy context demonstrating its thorough compliance and discussing implications for scalability in other urban settings. PMID:29657663
hydropower biological evaluation tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
This software is a set of analytical tools to evaluate the physical and biological performance of existing, refurbished, or newly installed conventional hydro-turbines nationwide where fish passage is a regulatory concern. The current version is based on information collected by the Sensor Fish. Future version will include other technologies. The tool set includes data acquisition, data processing, and biological response tools with applications to various turbine designs and other passage alternatives. The associated database is centralized, and can be accessed remotely. We have demonstrated its use for various applications including both turbines and spillways
Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A
2011-09-01
Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health effects studies of pre-2007 DE likely have little relevance in assessing the potential health risks of NTDE exposures.
Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James
2016-01-01
This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.