Science.gov

Sample records for resting human brain

  1. Neuronal avalanches in the resting MEG of the human brain.

    PubMed

    Shriki, Oren; Alstott, Jeff; Carver, Frederick; Holroyd, Tom; Henson, Richard N A; Smith, Marie L; Coppola, Richard; Bullmore, Edward; Plenz, Dietmar

    2013-04-17

    What constitutes normal cortical dynamics in healthy human subjects is a major question in systems neuroscience. Numerous in vitro and in vivo animal studies have shown that ongoing or resting cortical dynamics are characterized by cascades of activity across many spatial scales, termed neuronal avalanches. In experiment and theory, avalanche dynamics are identified by two measures: (1) a power law in the size distribution of activity cascades with an exponent of -3/2 and (2) a branching parameter of the critical value of 1, reflecting balanced propagation of activity at the border of premature termination and potential blowup. Here we analyzed resting-state brain activity recorded using noninvasive magnetoencephalography (MEG) from 124 healthy human subjects and two different MEG facilities using different sensor technologies. We identified large deflections at single MEG sensors and combined them into spatiotemporal cascades on the sensor array using multiple timescales. Cascade size distributions obeyed power laws. For the timescale at which the branching parameter was close to 1, the power law exponent was -3/2. This relationship was robust to scaling and coarse graining of the sensor array. It was absent in phase-shuffled controls with the same power spectrum or empty scanner data. Our results demonstrate that normal cortical activity in healthy human subjects at rest organizes as neuronal avalanches and is well described by a critical branching process. Theory and experiment have shown that such critical, scale-free dynamics optimize information processing. Therefore, our findings imply that the human brain attains an optimal dynamical regime for information processing.

  2. Mapping the human brain at rest with diffuse optical tomography

    PubMed Central

    White, Brian R.; Snyder, Abraham Z.; Cohen, Alexander L.; Petersen, Steven E.; Raichle, Marcus E.; Schlaggar, Bradley L.; Culver, Joseph P.

    2014-01-01

    Diffuse optical tomography (DOT) is a portable functional neuroimaging technique that is able to simultaneously measure both oxy- and deoxyhemoglobin responses to brain activity. Herein, we demonstrate a technique for mapping functional connections in the brain by measuring the spatial distribution of temporal correlations in resting brain activity. Simultaneous DOT imaging over the motor and visual cortices yielded robust correlation maps reproducing the expected functional neural architecture. These functional connectivity methods will have utility in certain populations, such as those who are unconscious or very young, who have difficulty performing the behaviors required in traditional task-based functional neuroimaging paradigms. PMID:19964102

  3. Resting-state fMRI: a window into human brain plasticity.

    PubMed

    Guerra-Carrillo, Belén; Mackey, Allyson P; Bunge, Silvia A

    2014-10-01

    Although brain plasticity is greatest in the first few years of life, the brain continues to be shaped by experience throughout adulthood. Advances in fMRI have enabled us to examine the plasticity of large-scale networks using blood oxygen level-dependent (BOLD) correlations measured at rest. Resting-state functional connectivity analysis makes it possible to measure task-independent changes in brain function and therefore could provide unique insights into experience-dependent brain plasticity in humans. Here, we evaluate the hypothesis that resting-state functional connectivity reflects the repeated history of co-activation between brain regions. To this end, we review resting-state fMRI studies in the sensory, motor, and cognitive learning literature. This body of research provides evidence that the brain's resting-state functional architecture displays dynamic properties in young adulthood.

  4. PDYN, a gene implicated in brain/mental disorders, is targeted by REST in the adult human brain.

    PubMed

    Henriksson, Richard; Bäckman, Cristina M; Harvey, Brandon K; Kadyrova, Helena; Bazov, Igor; Shippenberg, Toni S; Bakalkin, Georgy

    2014-11-01

    The dynorphin κ-opioid receptor system is implicated in mental health and brain/mental disorders. However, despite accumulating evidence that PDYN and/or dynorphin peptide expression is altered in the brain of individuals with brain/mental disorders, little is known about transcriptional control of PDYN in humans. In the present study, we show that PDYN is targeted by the transcription factor REST in human neuroblastoma SH-SY5Y cells and that that interfering with REST activity increases PDYN expression in these cells. We also show that REST binding to PDYN is reduced in the adult human brain compared to SH-SY5Y cells, which coincides with higher PDYN expression. This may be related to MIR-9 mediated down-regulation of REST as suggested by a strong inverse correlation between REST and MIR-9 expression. Our results suggest that REST represses PDYN expression in SH-SY5Y cells and the adult human brain and may have implications for mental health and brain/mental disorders.

  5. Frequency-specific network topologies in the resting human brain

    PubMed Central

    Sasai, Shuntaro; Homae, Fumitaka; Watanabe, Hama; Sasaki, Akihiro T.; Tanabe, Hiroki C.; Sadato, Norihiro; Taga, Gentaro

    2014-01-01

    A community is a set of nodes with dense inter-connections, while there are sparse connections between different communities. A hub is a highly connected node with high centrality. It has been shown that both “communities” and “hubs” exist simultaneously in the brain's functional connectivity network (FCN), as estimated by correlations among low-frequency spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signal changes (0.01–0.10 Hz). This indicates that the brain has a spatial organization that promotes both segregation and integration of information. Here, we demonstrate that frequency-specific network topologies that characterize segregation and integration also exist within this frequency range. In investigating the coherence spectrum among 87 brain regions, we found that two frequency bands, 0.01–0.03 Hz (very low frequency [VLF] band) and 0.07–0.09 Hz (low frequency [LF] band), mainly contributed to functional connectivity. Comparing graph theoretical indices for the VLF and LF bands revealed that the network in the former had a higher capacity for information segregation between identified communities than the latter. Hubs in the VLF band were mainly located within the anterior cingulate cortices, whereas those in the LF band were located in the posterior cingulate cortices and thalamus. Thus, depending on the timescale of brain activity, at least two distinct network topologies contributed to information segregation and integration. This suggests that the brain intrinsically has timescale-dependent functional organizations. PMID:25566037

  6. Structural foundations of resting-state and task-based functional connectivity in the human brain.

    PubMed

    Hermundstad, Ann M; Bassett, Danielle S; Brown, Kevin S; Aminoff, Elissa M; Clewett, David; Freeman, Scott; Frithsen, Amy; Johnson, Arianne; Tipper, Christine M; Miller, Michael B; Grafton, Scott T; Carlson, Jean M

    2013-04-09

    Magnetic resonance imaging enables the noninvasive mapping of both anatomical white matter connectivity and dynamic patterns of neural activity in the human brain. We examine the relationship between the structural properties of white matter streamlines (structural connectivity) and the functional properties of correlations in neural activity (functional connectivity) within 84 healthy human subjects both at rest and during the performance of attention- and memory-demanding tasks. We show that structural properties, including the length, number, and spatial location of white matter streamlines, are indicative of and can be inferred from the strength of resting-state and task-based functional correlations between brain regions. These results, which are both representative of the entire set of subjects and consistently observed within individual subjects, uncover robust links between structural and functional connectivity in the human brain.

  7. Acute effects of alcohol on the human brain: a resting-state FMRI study.

    PubMed

    Zheng, Hongyi; Kong, Lingmei; Chen, Lanmei; Zhang, Haidu; Zheng, Wenbin

    2015-01-01

    The aim of this study is to assess the value of resting-state fMRI in detecting the acute effects of alcohol on healthy human brains. Thirty-two healthy volunteers were studied by conventional MR imaging and resting-state fMRI prior to and 0.5 hours after initiation of acute alcohol administration. The fMRI data, acquired during the resting state, were correlated with different breath alcohol concentrations (BrAC). We use the posterior cingulate cortex/precuneus as a seed for the default mode network (DMN) analysis. ALFF and ReHo were also used to investigate spontaneous neural activity in the resting state. Conventional MR imaging showed no abnormalities on all subjects. Compared with the prior alcohol administration, the ALFF and ReHo also indicated some specific brain regions which are affected by alcohol, including the superior frontal gyrus, cerebellum, hippocampal gyrus, left basal ganglia, and right internal capsule. Functional connectivity of the DMN was affected by alcohol. This resting-state fMRI indicates that brain regions implicated are affected by alcohol and might provide a neural basis for alcohol's effects on behavioral performance.

  8. Functional brain networks related to individual differences in human intelligence at rest.

    PubMed

    Hearne, Luke J; Mattingley, Jason B; Cocchi, Luca

    2016-08-26

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.

  9. Early visual learning induces long-lasting connectivity changes during rest in the human brain

    PubMed Central

    Urner, Maren; Schwarzkopf, Dietrich Samuel; Friston, Karl; Rees, Geraint

    2013-01-01

    Spontaneous fluctuations in resting state activity can change in response to experience-dependent plasticity and learning. Visual learning is fast and can be elicited in an MRI scanner. Here, we showed that a random dot motion coherence task can be learned within one training session. While the task activated primarily visual and parietal brain areas, learning related changes in neural activity were observed in the hippocampus. Crucially, even this rapid learning affected resting state dynamics both immediately after the learning and 24 h later. Specifically, the hippocampus changed its coupling with the striatum, in a way that was best explained as a consolidation of early learning related changes. Our findings suggest that long-lasting changes in neuronal coupling are accompanied by changes in resting state activity. PMID:23558105

  10. Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study

    PubMed Central

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning. PMID:25243168

  11. Defining Functional Areas in Individual Human Brains using Resting Functional Connectivity MRI

    PubMed Central

    Cohen, Alexander L.; Fair, Damien A.; Dosenbach, Nico U.F.; Miezin, Francis M.; Dierker, Donna; Van Essen, David C.; Schlaggar, Bradley L.; Petersen, Steven E.

    2009-01-01

    The cerebral cortex is anatomically organized at many physical scales starting at the level of single neurons and extending up to functional systems. Current functional magnetic resonance imaging (fMRI) studies often focus at the level of areas, networks, and systems. Except in restricted domains, (e.g. topographically-organized sensory regions), it is difficult to determine area boundaries in the human brain using fMRI. The ability to delineate functional areas non-invasively would enhance the quality of many experimental analyses allowing more accurate across-subject comparisons of independently identified functional areas. Correlations in spontaneous BOLD activity, often referred to as resting state functional connectivity (rs-fcMRI), are especially promising as a way to accurately localize differences in patterns of correlated activity across large expanses of cortex. In the current report, we applied a novel set of image analysis tools to explore the utility of rs-fcMRI for defining wide-ranging functional area boundaries. We find that rs-fcMRI patterns show sharp transitions in correlation patterns and that these putative areal boundaries can be reliably detected in individual subjects as well as in group data. Additionally, combining surface-based analysis techniques with image processing algorithms allows automated mapping of putative areal boundaries across large expanses of cortex without the need for prior information about a region’s function or topography. Our approach reliably produces maps of bounded regions appropriate in size and number for putative functional areas. These findings will hopefully stimulate further methodological refinements and validations. PMID:18367410

  12. Resting-state functional connectivity in the human brain revealed with diffuse optical tomography

    PubMed Central

    White, Brian R.; Snyder, Abraham Z.; Cohen, Alexander L.; Petersen, Steven E.; Raich-le, Marcus E.; Schlaggar, Bradley L.; Culver, Joseph P.

    2009-01-01

    Mapping resting-state networks allows insight into the brain's functional architecture and physiology and has rapidly become important in contemporary neuroscience research. Diffuse optical tomography (DOT) is an emerging functional neuroimaging technique with the advantages, relative to functional magnetic resonance imaging (fMRI), of portability and the ability to simultaneously measure both oxy- and deoxy-hemoglobin. Previous optical studies have evaluated the temporal features of spontaneous resting brain signals. Herein, we develop techniques for spatially mapping functional connectivity with DOT (fc-DOT). Simultaneous imaging over the motor and visual cortices yielded robust correlation maps reproducing the expected functional neural architecture. The localization of the maps was confirmed with task-response studies and with subject-matched fc-MRI. These fc-DOT methods provide a task-less approach to mapping brain function in populations that were previously difficult to research. Our advances may permit new studies of early childhood development and of unconscious patients. In addition, the comprehensive hemoglobin contrasts of fc-DOT enable innovative studies of the biophysical origin of the functional connectivity signal. PMID:19344773

  13. Typical and Atypical Development of Functional Human Brain Networks: Insights from Resting-State fMRI

    PubMed Central

    Uddin, Lucina Q.; Supekar, Kaustubh; Menon, Vinod

    2010-01-01

    Over the past several decades, structural MRI studies have provided remarkable insights into human brain development by revealing the trajectory of gray and white matter maturation from childhood to adolescence and adulthood. In parallel, functional MRI studies have demonstrated changes in brain activation patterns accompanying cognitive development. Despite these advances, studying the maturation of functional brain networks underlying brain development continues to present unique scientific and methodological challenges. Resting-state fMRI (rsfMRI) has emerged as a novel method for investigating the development of large-scale functional brain networks in infants and young children. We review existing rsfMRI developmental studies and discuss how this method has begun to make significant contributions to our understanding of maturing brain organization. In particular, rsfMRI has been used to complement studies in other modalities investigating the emergence of functional segregation and integration across short and long-range connections spanning the entire brain. We show that rsfMRI studies help to clarify and reveal important principles of functional brain development, including a shift from diffuse to focal activation patterns, and simultaneous pruning of local connectivity and strengthening of long-range connectivity with age. The insights gained from these studies also shed light on potentially disrupted functional networks underlying atypical cognitive development associated with neurodevelopmental disorders. We conclude by identifying critical gaps in the current literature, discussing methodological issues, and suggesting avenues for future research. PMID:20577585

  14. Rest Is Not Idleness: Implications of the Brain's Default Mode for Human Development and Education.

    PubMed

    Immordino-Yang, Mary Helen; Christodoulou, Joanna A; Singh, Vanessa

    2012-07-01

    When people wakefully rest in the functional MRI scanner, their minds wander, and they engage a so-called default mode (DM) of neural processing that is relatively suppressed when attention is focused on the outside world. Accruing evidence suggests that DM brain systems activated during rest are also important for active, internally focused psychosocial mental processing, for example, when recalling personal memories, imagining the future, and feeling social emotions with moral connotations. Here the authors review evidence for the DM and relations to psychological functioning, including associations with mental health and cognitive abilities like reading comprehension and divergent thinking. This article calls for research into the dimensions of internally focused thought, ranging from free-form daydreaming and off-line consolidation to intensive, effortful abstract thinking, especially with socioemotional relevance. It is argued that the development of some socioemotional skills may be vulnerable to disruption by environmental distraction, for example, from certain educational practices or overuse of social media. The authors hypothesize that high environmental attention demands may bias youngsters to focus on the concrete, physical, and immediate aspects of social situations and self, which may be more compatible with external attention. They coin the term constructive internal reflection and advocate educational practices that promote effective balance between external attention and internal reflection.

  15. Metabolic connectivity mapping reveals effective connectivity in the resting human brain.

    PubMed

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P; Ploner, Markus; Friston, Karl J; Drzezga, Alexander; Sorg, Christian

    2016-01-12

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using "eyes open" versus "eyes closed" conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders.

  16. Metabolic connectivity mapping reveals effective connectivity in the resting human brain

    PubMed Central

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P.; Drzezga, Alexander; Sorg, Christian

    2016-01-01

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using “eyes open” versus “eyes closed” conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders. PMID:26712010

  17. Levodopa effects on [ 11C]raclopride binding in the resting human brain

    PubMed Central

    Black, Kevin J.; Piccirillo, Marilyn L.; Koller, Jonathan M.; Hseih, Tiffany; Wang, Lei; Mintun, Mark A.

    2015-01-01

    Rationale: Synaptic dopamine (DA) release induced by amphetamine or other experimental manipulations can displace [ 11C]raclopride (RAC*) from dopamine D2-like receptors. We hypothesized that exogenous levodopa might increase dopamine release at striatal synapses under some conditions but not others, allowing a more naturalistic assessment of presynaptic dopaminergic function. Presynaptic dopaminergic abnormalities have been reported in Tourette syndrome (TS). Objective: Test whether levodopa induces measurable synaptic DA release in healthy people at rest, and gather pilot data in TS. Methods: This double-blind crossover study used RAC* and positron emission tomography (PET) to measure synaptic dopamine release 4 times in each of 10 carbidopa-pretreated, neuroleptic-naïve adults: before and during an infusion of levodopa on one day and placebo on another (in random order). Five subjects had TS and 5 were matched controls. RAC* binding potential (BP ND) was quantified in predefined anatomical volumes of interest (VOIs). A separate analysis compared BP ND voxel by voxel over the entire brain. Results: DA release declined between the first and second scan of each day (p=0.012), including on the placebo day. Levodopa did not significantly reduce striatal RAC* binding and striatal binding did not differ significantly between TS and control groups. However, levodopa’s effect on DA release differed significantly in a right midbrain region (p=0.002, corrected), where levodopa displaced RAC* by 59% in control subjects but increased BP ND by 74% in TS subjects. Discussion: Decreased DA release on the second scan of the day is consistent with the few previous studies with a similar design, and may indicate habituation to study procedures. We hypothesize that mesostriatal DA neurons fire relatively little while subjects rest, possibly explaining the non-significant effect of levodopa on striatal RAC* binding. The modest sample size argues for caution in interpreting the

  18. fMRI resting state networks define distinct modes of long-distance interactions in the human brain.

    PubMed

    De Luca, M; Beckmann, C F; De Stefano, N; Matthews, P M; Smith, S M

    2006-02-15

    Functional magnetic resonance imaging (fMRI) studies of the human brain have suggested that low-frequency fluctuations in resting fMRI data collected using blood oxygen level dependent (BOLD) contrast correspond to functionally relevant resting state networks (RSNs). Whether the fluctuations of resting fMRI signal in RSNs are a direct consequence of neocortical neuronal activity or are low-frequency artifacts due to other physiological processes (e.g., autonomically driven fluctuations in cerebral blood flow) is uncertain. In order to investigate further these fluctuations, we have characterized their spatial and temporal properties using probabilistic independent component analysis (PICA), a robust approach to RSN identification. Here, we provide evidence that: i. RSNs are not caused by signal artifacts due to low sampling rate (aliasing); ii. they are localized primarily to the cerebral cortex; iii. similar RSNs also can be identified in perfusion fMRI data; and iv. at least 5 distinct RSN patterns are reproducible across different subjects. The RSNs appear to reflect "default" interactions related to functional networks related to those recruited by specific types of cognitive processes. RSNs are a major source of non-modeled signal in BOLD fMRI data, so a full understanding of their dynamics will improve the interpretation of functional brain imaging studies more generally. Because RSNs reflect interactions in cognitively relevant functional networks, they offer a new approach to the characterization of state changes with pathology and the effects of drugs.

  19. Frequency Specificity of Regional Homogeneity in the Resting-State Human Brain

    PubMed Central

    Song, Xiaopeng; Zhang, Yi; Liu, Yijun

    2014-01-01

    Resting state-fMRI studies have found that the inter-areal correlations in cortical networks concentrate within ultra-low frequencies (0.01–0.04 Hz) while long-distance connections within subcortical networks distribute over a wider frequency range (0.01–0.14 Hz). However, the frequency characteristics of regional homogeneity (ReHo) in different areas are still unclear. To examine the ReHo properties in different frequency bands, a data-driven method, Empirical Mode Decomposition (EMD), was adopted to decompose the time series of each voxel into several components with distinct frequency bands. ReHo values in each of the components were then calculated. Our results showed that ReHo in cortical areas were higher and more frequency-dependent than those in the subcortical regions. BOLD oscillations of 0.02–0.04 Hz mainly contributed to the cortical ReHo, whereas the ReHo in limbic areas involved a wider frequency range and were dominated by higher-frequency BOLD oscillations (>0.08 Hz). The frequency characteristics of ReHo are distinct between different parts of the striatum, with the frequency band of 0.04–0.1 Hz contributing the most to ReHo in caudate nucleus, and oscillations lower than 0.02 Hz contributing more to ReHo in putamen. The distinct frequency-specific ReHo properties of different brain areas may arise from the assorted cytoarchitecture or synaptic types in these areas. Our work may advance the understanding of the neural-physiological basis of local BOLD activities and the functional specificity of different brain regions. PMID:24466256

  20. Frequency specificity of regional homogeneity in the resting-state human brain.

    PubMed

    Song, Xiaopeng; Zhang, Yi; Liu, Yijun

    2014-01-01

    Resting state-fMRI studies have found that the inter-areal correlations in cortical networks concentrate within ultra-low frequencies (0.01-0.04 Hz) while long-distance connections within subcortical networks distribute over a wider frequency range (0.01-0.14 Hz). However, the frequency characteristics of regional homogeneity (ReHo) in different areas are still unclear. To examine the ReHo properties in different frequency bands, a data-driven method, Empirical Mode Decomposition (EMD), was adopted to decompose the time series of each voxel into several components with distinct frequency bands. ReHo values in each of the components were then calculated. Our results showed that ReHo in cortical areas were higher and more frequency-dependent than those in the subcortical regions. BOLD oscillations of 0.02-0.04 Hz mainly contributed to the cortical ReHo, whereas the ReHo in limbic areas involved a wider frequency range and were dominated by higher-frequency BOLD oscillations (>0.08 Hz). The frequency characteristics of ReHo are distinct between different parts of the striatum, with the frequency band of 0.04-0.1 Hz contributing the most to ReHo in caudate nucleus, and oscillations lower than 0.02 Hz contributing more to ReHo in putamen. The distinct frequency-specific ReHo properties of different brain areas may arise from the assorted cytoarchitecture or synaptic types in these areas. Our work may advance the understanding of the neural-physiological basis of local BOLD activities and the functional specificity of different brain regions.

  1. Ferumoxytol enhanced resting state fMRI and relative cerebral blood volume mapping in normal human brain.

    PubMed

    D'Arceuil, Helen; Coimbra, Alexandre; Triano, Pamela; Dougherty, Margaret; Mello, Julie; Moseley, Michael; Glover, Gary; Lansberg, Maarten; Blankenberg, Francis

    2013-12-01

    The brain demonstrates spontaneous low-frequency (<0.1 Hz) cerebral blood flow (CBF) fluctuations, measurable by resting state functional MRI (rs-fMRI). Ultra small superparamagnetic iron oxide particles have been shown to enhance task-based fMRI signals (cerebral blood volume fMRI or CBV-fMRI), compared to the BOLD effect, by a factor of ≈2.5 at 3 T in primates and humans. We evaluated the use of ferumoxytol for steady state, resting state FMRI (CBV-rs-fMRI) and relative cerebral blood volume (rCBV) mapping, at 3T, in healthy volunteers. All standard resting state networks (RSNs) were identified in all subjects. On average the RSN Z statistics (MELODIC independent components) and volumes of the visual and default mode (DMN) networks were comparable. rCBV values were averaged for the visual (Vis) and DMN networks and correlated with the corresponding DMN and visual network Z statistics. There was a negative correlation between the rCBV and the Z statistics for the DMN, for both BOLD and CBV-rs-fMRI contrast (R2=0.63, 0.76). A similar correlation was not found for the visual network. Short repetition time rs-fMRI data were Fourier transformed to evaluate the effect of ferumoxytol on cardiac and respiratory fluctuations in the brain rs-BOLD, CBV signals. Cardiac and respiratory fluctuations decreased to baseline within large vessels post ferumoxytol. Robust rs-fMRI and CBV mapping is possible in normal human brain.

  2. Watching the fetal brain at 'rest'.

    PubMed

    Schöpf, V; Kasprian, G; Brugger, P C; Prayer, D

    2012-02-01

    Functional magnetic resonance imaging (fMRI) has allowed insights into the spatiotemporal distribution of human brain networks. According to the neurophysiological property of the fetal brain to generate spontaneous activity, we aimed to determine the feasibility of investigating the maturation of intrinsic networks, beginning at gestational week 20 in healthy human fetuses by combining resting-state fMRI and an analytical approach, independent component analysis (ICA). In this study, functional images of 16 fetuses with morphologically normal brain development, from 20 to 36 gestational weeks of age, were acquired on a 1.5T unit (Philips Medical Systems, Best, The Netherlands) using single-shot, gradient-recalled echo-planar imaging. After preprocessing (motion correction, brain extraction), images were analyzed using single-subject ICA. We visualized a bilateral occipital network and medial and lateral prefrontal activity pattern that involved the future Brodmann areas 9-11. Furthermore, there was one either predominantly right (3/7 cases) or left (4/7 cases) hemispheric lateralized network that involved the superior temporal cortical regions (Brodmann areas 22 and 39). Frequency oscillations were in the range of 0.01-0.06Hz for all networks. This study shows that resting-state networks (RSNs) are shaped and are detectable in utero. Further investigations of resting-state measurements in the fetus may therefore allow developmental brain activity monitoring and may provide insights into early brain function. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  3. Default Mode Network, Motor Network, Dorsal and Ventral Basal Ganglia Networks in the Rat Brain: Comparison to Human Networks Using Resting State-fMRI

    PubMed Central

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862

  4. Correspondence of the brain's functional architecture during activation and rest.

    PubMed

    Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F

    2009-08-04

    Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."

  5. The Resting Brain of Alcoholics

    PubMed Central

    Müller-Oehring, Eva M.; Jung, Young-Chul; Pfefferbaum, Adolf; Sullivan, Edith V.; Schulte, Tilman

    2015-01-01

    Chronic alcohol consumption affects multiple cognitive processes supported by far-reaching cerebral networks. To identify neurofunctional mechanisms underlying selective deficits, 27 sober alcoholics and 26 age-matched controls underwent resting-state functional magnetic resonance imaging and neuropsychological testing. Functional connectivity analysis assessed the default mode network (DMN); integrative executive control (EC), salience (SA), and attention (AT) networks; primary somatosensory, auditory, and visual (VI) input networks; and subcortical reward (RW) and emotion (EM) networks. The groups showed an extensive overlap of intrinsic connectivity in all brain networks examined, suggesting overall integrity of large-scale functional networks. Despite these similar patterns, connectivity analyses identified network-specific differences of weaker within-network connectivity and expanded connectivity to regions outside the main networks in alcoholics compared with controls. For AT and VI networks, better task performance was related to expanded connectivity in alcoholism, supporting the concept of network expansion as a neural mechanism for functional compensation. For default mode, SA, RW, and EC networks, both weaker within-network and expanded outside-network connectivity correlated with poorer performance and mood. Current smoking contributed to some of these abnormalities in connectivity. The observed pattern of resting-state connectivity might reflect neural vulnerability of intrinsic networking in alcoholics and suggests a mechanism to explain signature impairments in EM, RW evaluation, and EC ability. PMID:24935777

  6. Daydreaming, Thought Blocking and Strudels in the Taskless, Resting Human Brain's Magnetic Fields

    SciTech Connect

    Mandell, Arnold J.; Selz, Karen A.; Aven, John; Holroyd, Tom; Coppola, Richard

    2011-04-19

    The incidence, i(S), and duration, l(S), of transient, intermittent, hierarchical vorticities, strudels, S, in magnetic flux fluctuations, were computed from MEG records. from 91 task-free resting subjects. The MEG's i(S) and l(S) manifested characteristic times and entropic sensitivity resembling those reported in psychological studies of daydreaming and task-unrelated thoughts, TUTs. Transient reduction or absences of strudels can be found in patients with syndromes characterized by thought blocking. Positive ergodic single orbit measures of expansiveness and mixing predict i(S) and l(S). An analogy with the relationship between intermittent pontine-geniculate-occipital waves and dreaming is made to strudels with daydreaming. Both can be interpreted as neurophysiological correlates of the spontaneous intrusions into consciousness of the never idle unconscious mind.

  7. Daydreaming, Thought Blocking and Strudels in the Taskless, Resting Human Brain's Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Mandell, Arnold J.; Selz, Karen A.; Aven, John; Holroyd, Tom; Coppola, Richard

    2011-04-01

    The incidence, i(S), and duration, l(S), of transient, intermittent, hierarchical vorticities, strudels, S, in magnetic flux fluctuations, were computed from MEG records. from 91 task-free resting subjects. The MEG's i(S) and l(S) manifested characteristic times and entropic sensitivity resembling those reported in psychological studies of daydreaming and task-unrelated thoughts, TUTs. Transient reduction or absences of strudels can be found in patients with syndromes characterized by thought blocking. Positive ergodic single orbit measures of expansiveness and mixing predict i(S) and l(S). An analogy with the relationship between intermittent pontine-geniculate-occipital waves and dreaming is made to strudels with daydreaming. Both can be interpreted as neurophysiological correlates of the spontaneous intrusions into consciousness of the never idle unconscious mind.

  8. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.

    PubMed

    James, George Andrew; Hazaroglu, Onder; Bush, Keith A

    2016-02-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during

  9. Dominant frequencies of resting human brain activity as measured by the electrocorticogram

    PubMed Central

    Groppe, David M.; Bickel, Stephan; Keller, Corey J.; Jain, Sanjay K.; Hwang, Sean T.; Harden, Cynthia; Mehta, Ashesh D.

    2014-01-01

    The brain’s spontaneous, intrinsic activity is increasingly being shown to reveal brain function, delineate large scale brain networks, and diagnose brain disorders. One of the most studied and clinically utilized types of intrinsic brain activity are oscillations in the electrocorticogram (ECoG), a relatively localized measure of cortical synaptic activity. Here we objectively characterize the types of ECoG oscillations commonly observed over particular cortical areas when an individual is awake and immobile with eyes closed, using a surface-based cortical atlas and cluster analysis. Both methods show that [1] there is generally substantial variability in the dominant frequencies of cortical regions and substantial overlap in dominant frequencies across the areas sampled (primarily lateral central, temporal, and frontal areas), [2] theta (4–8 Hz) is the most dominant type of oscillation in the areas sampled with a mode around 7 Hz, [3] alpha (8–13 Hz) is largely limited to parietal and occipital regions, and [4] beta (13–30 Hz) is prominent peri-Rolandically, over the middle frontal gyrus, and the pars opercularis. In addition, the cluster analysis revealed seven types of ECoG spectral power densities (SPDs). Six of these have peaks at 3, 5, 7 (narrow), 7 (broad), 10, and 17 Hz, while the remaining cluster is broadly distributed with less pronounced peaks at 8, 19, and 42 Hz. These categories largely corroborate conventional sub-gamma frequency band distinctions (delta, theta, alpha, and beta) and suggest multiple sub-types of theta. Finally, we note that gamma/high gamma activity (30+ Hz) was at times prominently observed, but was too infrequent and variable across individuals to be reliably characterized. These results should help identify abnormal patterns of ECoG oscillations, inform the interpretation of EEG/MEG intrinsic activity, and provide insight into the functions of these different oscillations and the networks that produce them. Specifically

  10. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain

    PubMed Central

    2016-01-01

    Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540

  11. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data

    PubMed Central

    James, G. Andrew; Hazaroglu, Onder; Bush, Keith A.

    2015-01-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI’s translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants’ functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group’s mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI= 0.72–0.85) than with the Random atlases (JI=0.59–0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal

  12. Stress Impact on Resting State Brain Networks.

    PubMed

    Soares, José Miguel; Sampaio, Adriana; Ferreira, Luís Miguel; Santos, Nadine Correia; Marques, Paulo; Marques, Fernanda; Palha, Joana Almeida; Cerqueira, João José; Sousa, Nuno

    2013-01-01

    Resting state brain networks (RSNs) are spatially distributed large-scale networks, evidenced by resting state functional magnetic resonance imaging (fMRI) studies. Importantly, RSNs are implicated in several relevant brain functions and present abnormal functional patterns in many neuropsychiatric disorders, for which stress exposure is an established risk factor. Yet, so far, little is known about the effect of stress in the architecture of RSNs, both in resting state conditions or during shift to task performance. Herein we assessed the architecture of the RSNs using functional magnetic resonance imaging (fMRI) in a cohort of participants exposed to prolonged stress (participants that had just finished their long period of preparation for the medical residence selection exam), and respective gender- and age-matched controls (medical students under normal academic activities). Analysis focused on the pattern of activity in resting state conditions and after deactivation. A volumetric estimation of the RSNs was also performed. Data shows that stressed participants displayed greater activation of the default mode (DMN), dorsal attention (DAN), ventral attention (VAN), sensorimotor (SMN), and primary visual (VN) networks than controls. Importantly, stressed participants also evidenced impairments in the deactivation of resting state-networks when compared to controls. These functional changes are paralleled by a constriction of the DMN that is in line with the pattern of brain atrophy observed after stress exposure. These results reveal that stress impacts on activation-deactivation pattern of RSNs, a finding that may underlie stress-induced changes in several dimensions of brain activity.

  13. Correspondence of the brain's functional architecture during activation and rest

    PubMed Central

    Smith, Stephen M.; Fox, Peter T.; Miller, Karla L.; Glahn, David C.; Fox, P. Mickle; Mackay, Clare E.; Filippini, Nicola; Watkins, Kate E.; Toro, Roberto; Laird, Angela R.; Beckmann, Christian F.

    2009-01-01

    Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.” PMID:19620724

  14. Correspondence between resting state activity and brain gene expression

    PubMed Central

    Wang, Guang-Zhong; Belgard, T. Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M.; Lu, Hanzhang; Geschwind, Daniel H.; Konopka, Genevieve

    2015-01-01

    SUMMARY The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional Amplitude of Low Frequency Fluctuations (fALFF) from two independent human fMRI resting state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance, and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady state brain gene expression and resting state brain activity. PMID:26590343

  15. Frequency-Dependent Modulation of Regional Synchrony in the Human Brain by Eyes Open and Eyes Closed Resting-States

    PubMed Central

    Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong

    2015-01-01

    The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel’s original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01–0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0–0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02–0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC. PMID:26545233

  16. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    PubMed

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  17. [Right extremities pain caused by a malacia lesion in the left putamen:a resting functional magnetic resonance imaging of the marginal division of the human brain].

    PubMed

    Chen, Zhi-Ye; Ma, Lin

    2014-04-01

    To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.

  18. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.

    PubMed

    van den Heuvel, M P; Stam, C J; Boersma, M; Hulshoff Pol, H E

    2008-11-15

    The brain is a complex dynamic system of functionally connected regions. Graph theory has been successfully used to describe the organization of such dynamic systems. Recent resting-state fMRI studies have suggested that inter-regional functional connectivity shows a small-world topology, indicating an organization of the brain in highly clustered sub-networks, combined with a high level of global connectivity. In addition, a few studies have investigated a possible scale-free topology of the human brain, but the results of these studies have been inconclusive. These studies have mainly focused on inter-regional connectivity, representing the brain as a network of brain regions, requiring an arbitrary definition of such regions. However, using a voxel-wise approach allows for the model-free examination of both inter-regional as well as intra-regional connectivity and might reveal new information on network organization. Especially, a voxel-based study could give information about a possible scale-free organization of functional connectivity in the human brain. Resting-state 3 Tesla fMRI recordings of 28 healthy subjects were acquired and individual connectivity graphs were formed out of all cortical and sub-cortical voxels with connections reflecting inter-voxel functional connectivity. Graph characteristics from these connectivity networks were computed. The clustering-coefficient of these networks turned out to be much higher than the clustering-coefficient of comparable random graphs, together with a short average path length, indicating a small-world organization. Furthermore, the connectivity distribution of the number of inter-voxel connections followed a power-law scaling with an exponent close to 2, suggesting a scale-free network topology. Our findings suggest a combined small-world and scale-free organization of the functionally connected human brain. The results are interpreted as evidence for a highly efficient organization of the functionally connected

  19. Diurnal Variations in Neural Activity of Healthy Human Brain Decoded with Resting-State Blood Oxygen Level Dependent fMRI.

    PubMed

    Jiang, Chunxiang; Yi, Li; Su, Shi; Shi, Caiyun; Long, Xiaojing; Xie, Guoxi; Zhang, Lijuan

    2016-01-01

    It remains an ongoing investigation about how the neural activity alters with the diurnal rhythms in human brain. Resting-state functional magnetic resonance imaging (RS-fMRI) reflects spontaneous activities and/or the endogenous neurophysiological process of the human brain. In the present study, we applied the ReHo (regional homogeneity) and ALFF (amplitude of low frequency fluctuation) based on RS-fMRI to explore the regional differences in the spontaneous cerebral activities throughout the entire brain between the morning and evening sessions within a 24-h time cycle. Wide spread brain areas were found to exhibit diurnal variations, which may be attributed to the internal molecular systems regulated by clock genes, and the environmental factors including light-dark cycle, daily activities and homeostatic sleep drive. Notably, the diurnal variation of default mode network (DMN) suggests that there is an adaptation or compensation response within the subregions of DMN, implying a balance or a decoupling of regulation between these regions.

  20. Diurnal Variations in Neural Activity of Healthy Human Brain Decoded with Resting-State Blood Oxygen Level Dependent fMRI

    PubMed Central

    Jiang, Chunxiang; Yi, Li; Su, Shi; Shi, Caiyun; Long, Xiaojing; Xie, Guoxi; Zhang, Lijuan

    2016-01-01

    It remains an ongoing investigation about how the neural activity alters with the diurnal rhythms in human brain. Resting-state functional magnetic resonance imaging (RS-fMRI) reflects spontaneous activities and/or the endogenous neurophysiological process of the human brain. In the present study, we applied the ReHo (regional homogeneity) and ALFF (amplitude of low frequency fluctuation) based on RS-fMRI to explore the regional differences in the spontaneous cerebral activities throughout the entire brain between the morning and evening sessions within a 24-h time cycle. Wide spread brain areas were found to exhibit diurnal variations, which may be attributed to the internal molecular systems regulated by clock genes, and the environmental factors including light-dark cycle, daily activities and homeostatic sleep drive. Notably, the diurnal variation of default mode network (DMN) suggests that there is an adaptation or compensation response within the subregions of DMN, implying a balance or a decoupling of regulation between these regions. PMID:28066207

  1. MEG Source Imaging Method using Fast L1 Minimum-norm and its Applications to Signals with Brain Noise and Human Resting-state Source Amplitude Images

    PubMed Central

    Huang, Ming-Xiong; Huang, Charles W.; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L.; Baker, Dewleen G.; Song, Tao; Harrington, Deborah L.; Theilmann, Rebecca J.; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M.; Edgar, J. Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T.; Drake, Angela; Lee, Roland R.

    2014-01-01

    The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL’s performance of was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL’s performance was then examined in the analysis of human mediannerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer’s problems of signal leaking and distorted source time-courses. PMID:24055704

  2. Balancing the Brain: Resting State Networks and Deep Brain Stimulation

    PubMed Central

    Kringelbach, Morten L.; Green, Alexander L.; Aziz, Tipu Z.

    2011-01-01

    Over the last three decades, large numbers of patients with otherwise treatment-resistant disorders have been helped by deep brain stimulation (DBS), yet a full scientific understanding of the underlying neural mechanisms is still missing. We have previously proposed that efficacious DBS works by restoring the balance of the brain's resting state networks. Here, we extend this proposal by reviewing how detailed investigations of the highly coherent functional and structural brain networks in health and disease (such as Parkinson's) have the potential not only to increase our understanding of fundamental brain function but of how best to modulate the balance. In particular, some of the newly identified hubs and connectors within and between resting state networks could become important new targets for DBS, including potentially in neuropsychiatric disorders. At the same time, it is of essence to consider the ethical implications of this perspective. PMID:21577250

  3. Resting-State Networks and the Functional Connectome of the Human Brain in Agenesis of the Corpus Callosum

    PubMed Central

    Owen, Julia P.; Li, Yi-Ou; Yang, Fanpei G.; Shetty, Charvi; Bukshpun, Polina; Vora, Shivani; Wakahiro, Mari; Hinkley, Leighton B.N.; Nagarajan, Srikantan S.; Sherr, Elliott H.

    2013-01-01

    Abstract The corpus callosum is the largest white matter fiber bundle connecting the two cerebral hemispheres. In this work, we investigate the effect of callosal dysgenesis on functional magnetic resonance imaging (fMRI) resting-state networks and the functional connectome. Since alternate commissural routes between the cerebral hemispheres exist, we hypothesize that bilateral cortical networks can still be maintained in partial or even complete agenesis of the corpus callosum (AgCC). However, since these commissural routes are frequently indirect, requiring polysynaptic pathways, we hypothesize that quantitative measurements of interhemispheric functional connectivity in bilateral networks will be reduced in AgCC compared with matched controls, especially in the most highly interconnected cortical regions that are the hubs of the connectome. Seventeen resting-state networks were extracted from fMRI of 11 subjects with partial or complete AgCC and 11 matched controls. The results show that the qualitative organization of resting-state networks is very similar between controls and AgCC. However, interhemispheric functional connectivity of precuneus, posterior cingulate cortex, and insular-opercular regions was significantly reduced in AgCC. The preserved network organization was confirmed with a connectomic analysis of the resting-state fMRI data, showing five functional modules that are largely consistent across the control and AgCC groups. Hence, the reduction or even complete absence of callosal connectivity does not affect the qualitative organization of bilateral resting-state networks or the modular organization of the functional connectome, although quantitatively reduced functional connectivity can be demonstrated by measurements within bilateral cortical hubs, supporting the hypothesis that indirect polysynaptic pathways are utilized to preserve interhemispheric temporal synchrony. PMID:24063289

  4. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    PubMed

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Metabolic resting-state brain networks in health and disease.

    PubMed

    Spetsieris, Phoebe G; Ko, Ji Hyun; Tang, Chris C; Nazem, Amir; Sako, Wataru; Peng, Shichun; Ma, Yilong; Dhawan, Vijay; Eidelberg, David

    2015-02-24

    The delineation of resting state networks (RSNs) in the human brain relies on the analysis of temporal fluctuations in functional MRI signal, representing a small fraction of total neuronal activity. Here, we used metabolic PET, which maps nonfluctuating signals related to total activity, to identify and validate reproducible RSN topographies in healthy and disease populations. In healthy subjects, the dominant (first component) metabolic RSN was topographically similar to the default mode network (DMN). In contrast, in Parkinson's disease (PD), this RSN was subordinated to an independent disease-related pattern. Network functionality was assessed by quantifying metabolic RSN expression in cerebral blood flow PET scans acquired at rest and during task performance. Consistent task-related deactivation of the "DMN-like" dominant metabolic RSN was observed in healthy subjects and early PD patients; in contrast, the subordinate RSNs were activated during task performance. Network deactivation was reduced in advanced PD; this abnormality was partially corrected by dopaminergic therapy. Time-course comparisons of DMN loss in longitudinal resting metabolic scans from PD and Alzheimer's disease subjects illustrated that significant reductions appeared later for PD, in parallel with the development of cognitive dysfunction. In contrast, in Alzheimer's disease significant reductions in network expression were already present at diagnosis, progressing over time. Metabolic imaging can directly provide useful information regarding the resting organization of the brain in health and disease.

  6. Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis

    PubMed Central

    Zhou, Fuqing; Zhuang, Ying; Gong, Honghan; Zhan, Jie; Grossman, Murray; Wang, Ze

    2016-01-01

    Brain entropy (BEN) mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI), reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS), a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS) patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS) and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS. PMID:26727514

  7. Negative functional connectivity and its dependence on the shortest path length of positive network in the resting-state human brain.

    PubMed

    Chen, Guangyu; Chen, Gang; Xie, Chunming; Li, Shi-Jiang

    2011-01-01

    It is suggested that structurally segregated and functionally specialized brain regions are mediated by synchrony over large-scale networks in order to provide the formation of dynamic links and integration functions. The existence of negative synchrony, or negative functional connectivity (NFC), however, has been a subject of debate in terms of its origin, interpretation, relationship with structural connectivity, and possible neurophysiological function. The present study, which incorporated 20 cognitively healthy elderly human subjects, focused on testing the hypothesis that NFC significantly correlates with the shortest path length (SPL) in the human brain network. Our theoretical calculation, simulated data, and human study results support this hypothesis. In the human study, we find that (1) the percentage of NFC connections among all connections between brain regions significantly correlates with spatial Euclidian distance; (2) the strength of the NFC between the right amygdala and the left dorsolateral prefrontal cortex is significantly correlated with the SPL across the 20 human subjects; (3) such a significant relationship between the NFC and SPL exists in all the NFC connections in the whole brain; and (4) the correlations between the NFC and SPL also are frequency bandwidth dependent. These results suggest that an accumulated phased delay gives rise to the NFC, along the shortest path in the large-scale brain functional network. It is suggested that our study can be extended to examine a variety of neurological diseases and psychiatric disorders by measuring the changes of SPL and functional reorganization in the brain.

  8. Negative Functional Connectivity and Its Dependence on the Shortest Path Length of Positive Network in the Resting-State Human Brain

    PubMed Central

    Chen, Guangyu; Chen, Gang; Xie, Chunming

    2011-01-01

    Abstract It is suggested that structurally segregated and functionally specialized brain regions are mediated by synchrony over large-scale networks in order to provide the formation of dynamic links and integration functions. The existence of negative synchrony, or negative functional connectivity (NFC), however, has been a subject of debate in terms of its origin, interpretation, relationship with structural connectivity, and possible neurophysiological function. The present study, which incorporated 20 cognitively healthy elderly human subjects, focused on testing the hypothesis that NFC significantly correlates with the shortest path length (SPL) in the human brain network. Our theoretical calculation, simulated data, and human study results support this hypothesis. In the human study, we find that (1) the percentage of NFC connections among all connections between brain regions significantly correlates with spatial Euclidian distance; (2) the strength of the NFC between the right amygdala and the left dorsolateral prefrontal cortex is significantly correlated with the SPL across the 20 human subjects; (3) such a significant relationship between the NFC and SPL exists in all the NFC connections in the whole brain; and (4) the correlations between the NFC and SPL also are frequency bandwidth dependent. These results suggest that an accumulated phased delay gives rise to the NFC, along the shortest path in the large-scale brain functional network. It is suggested that our study can be extended to examine a variety of neurological diseases and psychiatric disorders by measuring the changes of SPL and functional reorganization in the brain. PMID:22433048

  9. The Resting Brain: Unconstrained yet Reliable

    PubMed Central

    Shehzad, Zarrar; Kelly, A. M. Clare; Reiss, Philip T.; Gee, Dylan G.; Gotimer, Kristin; Uddin, Lucina Q.; Lee, Sang Han; Margulies, Daniel S.; Roy, Amy Krain; Biswal, Bharat B.; Petkova, Eva; Castellanos, F. Xavier

    2009-01-01

    Recent years have witnessed an upsurge in the usage of resting-state functional magnetic resonance imaging (fMRI) to examine functional connectivity (fcMRI), both in normal and pathological populations. Despite this increasing popularity, concerns about the psychologically unconstrained nature of the “resting-state” remain. Across studies, the patterns of functional connectivity detected are remarkably consistent. However, the test–retest reliability for measures of resting state fcMRI measures has not been determined. Here, we quantify the test–retest reliability, using resting scans from 26 participants at 3 different time points. Specifically, we assessed intersession (>5 months apart), intrasession (<1 h apart), and multiscan (across all 3 scans) reliability and consistency for both region-of-interest and voxel-wise analyses. For both approaches, we observed modest to high reliability across connections, dependent upon 3 predictive factors: 1) correlation significance (significantly nonzero > nonsignificant), 2) correlation valence (positive > negative), and 3) network membership (default mode > task positive network). Short- and long-term measures of the consistency of global connectivity patterns were highly robust. Finally, hierarchical clustering solutions were highly reproducible, both across participants and sessions. Our findings provide a solid foundation for continued examination of resting state fcMRI in typical and atypical populations. PMID:19221144

  10. Are Auditory Hallucinations Related to the Brain's Resting State Activity? A 'Neurophenomenal Resting State Hypothesis'

    PubMed Central

    2014-01-01

    While several hypotheses about the neural mechanisms underlying auditory verbal hallucinations (AVH) have been suggested, the exact role of the recently highlighted intrinsic resting state activity of the brain remains unclear. Based on recent findings, we therefore developed what we call the 'resting state hypotheses' of AVH. Our hypothesis suggest that AVH may be traced back to abnormally elevated resting state activity in auditory cortex itself, abnormal modulation of the auditory cortex by anterior cortical midline regions as part of the default-mode network, and neural confusion between auditory cortical resting state changes and stimulus-induced activity. We discuss evidence in favour of our 'resting state hypothesis' and show its correspondence with phenomenal, i.e., subjective-experiential features as explored in phenomenological accounts. Therefore I speak of a 'neurophenomenal resting state hypothesis' of auditory hallucinations in schizophrenia. PMID:25598821

  11. Energy landscape analysis of the subcortical brain network unravels system properties beneath resting state dynamics.

    PubMed

    Kang, Jiyoung; Pae, Chongwon; Park, Hae-Jeong

    2017-04-01

    The configuration of the human brain system at rest, which is in a transitory phase among multistable states, remains unknown. To investigate the dynamic systems properties of the human brain at rest, we constructed an energy landscape for the state dynamics of the subcortical brain network, a critical center that modulates whole brain states, using resting state fMRI. We evaluated alterations in energy landscapes following perturbation in network parameters, which revealed characteristics of the state dynamics in the subcortical brain system, such as maximal number of attractors, unequal temporal occupations, and readiness for reconfiguration of the system. Perturbation in the network parameters, even those as small as the ones in individual nodes or edges, caused a significant shift in the energy landscape of brain systems. The effect of the perturbation on the energy landscape depended on the network properties of the perturbed nodes and edges, with greater effects on hub nodes and hubs-connecting edges in the subcortical brain system. Two simultaneously perturbed nodes produced perturbation effects showing low sensitivity in the interhemispheric homologous nodes and strong dependency on the more primary node among the two. This study demonstrated that energy landscape analysis could be an important tool to investigate alterations in brain networks that may underlie certain brain diseases, or diverse brain functions that may emerge due to the reconfiguration of the default brain network at rest. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Multi-scale integration and predictability in resting state brain activity

    PubMed Central

    Kolchinsky, Artemy; van den Heuvel, Martijn P.; Griffa, Alessandra; Hagmann, Patric; Rocha, Luis M.; Sporns, Olaf; Goñi, Joaquín

    2014-01-01

    The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales. PMID:25104933

  13. Resting-state brain networks: literature review and clinical applications.

    PubMed

    Rosazza, Cristina; Minati, Ludovico

    2011-10-01

    This review focuses on resting-state functional connectivity, a functional MRI technique which allows the study of spontaneous brain activity generated under resting conditions. This approach is useful to explore the brain's functional organization and to examine if it is altered in neurological or psychiatric diseases. Resting-state functional connectivity has revealed a number of networks which are consistently found in healthy subjects and represent specific patterns of synchronous activity. In this review, we examine the behavioral, physiological and neurological evidences relevant to this coherent brain activity and, in particular, to each network. The investigation of functional connectivity appears promising from a clinical perspective, considering the amount of evidence regarding the importance of spontaneous activity and that resting-state paradigms are inherently simple to implement. We also discuss some examples of existing clinical applications, such as in Alzheimer's disease, and emerging possibilities such as in pre-operative mapping and disorders of consciousness.

  14. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core.

    PubMed

    Deco, Gustavo; Kringelbach, Morten L; Jirsa, Viktor K; Ritter, Petra

    2017-06-08

    In the human brain, spontaneous activity during resting state consists of rapid transitions between functional network states over time but the underlying mechanisms are not understood. We use connectome based computational brain network modeling to reveal fundamental principles of how the human brain generates large-scale activity observable by noninvasive neuroimaging. We used structural and functional neuroimaging data to construct whole- brain models. With this novel approach, we reveal that the human brain during resting state operates at maximum metastability, i.e. in a state of maximum network switching. In addition, we investigate cortical heterogeneity across areas. Optimization of the spectral characteristics of each local brain region revealed the dynamical cortical core of the human brain, which is driving the activity of the rest of the whole brain. Brain network modelling goes beyond correlational neuroimaging analysis and reveals non-trivial network mechanisms underlying non-invasive observations. Our novel findings significantly pertain to the important role of computational connectomics in understanding principles of brain function.

  15. Language in the brain at rest: new insights from resting state data and graph theoretical analysis

    PubMed Central

    Muller, Angela M.; Meyer, Martin

    2014-01-01

    In humans, the most obvious functional lateralization is the specialization of the left hemisphere for language. Therefore, the involvement of the right hemisphere in language is one of the most remarkable findings during the last two decades of fMRI research. However, the importance of this finding continues to be underestimated. We examined the interaction between the two hemispheres and also the role of the right hemisphere in language. From two seeds representing Broca's area, we conducted a seed correlation analysis (SCA) of resting state fMRI data and could identify a resting state network (RSN) overlapping to significant extent with a language network that was generated by an automated meta-analysis tool. To elucidate the relationship between the clusters of this RSN, we then performed graph theoretical analyses (GTA) using the same resting state dataset. We show that the right hemisphere is clearly involved in language. A modularity analysis revealed that the interaction between the two hemispheres is mediated by three partitions: A bilateral frontal partition consists of nodes representing the classical left sided language regions as well as two right-sided homologs. The second bilateral partition consists of nodes from the right frontal, the left inferior parietal cortex as well as of two nodes within the posterior cerebellum. The third partition is also bilateral and comprises five regions from the posterior midline parts of the brain to the temporal and frontal cortex, two of the nodes are prominent default mode nodes. The involvement of this last partition in a language relevant function is a novel finding. PMID:24808843

  16. Language in the brain at rest: new insights from resting state data and graph theoretical analysis.

    PubMed

    Muller, Angela M; Meyer, Martin

    2014-01-01

    In humans, the most obvious functional lateralization is the specialization of the left hemisphere for language. Therefore, the involvement of the right hemisphere in language is one of the most remarkable findings during the last two decades of fMRI research. However, the importance of this finding continues to be underestimated. We examined the interaction between the two hemispheres and also the role of the right hemisphere in language. From two seeds representing Broca's area, we conducted a seed correlation analysis (SCA) of resting state fMRI data and could identify a resting state network (RSN) overlapping to significant extent with a language network that was generated by an automated meta-analysis tool. To elucidate the relationship between the clusters of this RSN, we then performed graph theoretical analyses (GTA) using the same resting state dataset. We show that the right hemisphere is clearly involved in language. A modularity analysis revealed that the interaction between the two hemispheres is mediated by three partitions: A bilateral frontal partition consists of nodes representing the classical left sided language regions as well as two right-sided homologs. The second bilateral partition consists of nodes from the right frontal, the left inferior parietal cortex as well as of two nodes within the posterior cerebellum. The third partition is also bilateral and comprises five regions from the posterior midline parts of the brain to the temporal and frontal cortex, two of the nodes are prominent default mode nodes. The involvement of this last partition in a language relevant function is a novel finding.

  17. Intensive reasoning training alters patterns of brain connectivity at rest.

    PubMed

    Mackey, Allyson P; Miller Singley, Alison T; Bunge, Silvia A

    2013-03-13

    Patterns of correlated activity among brain regions reflect functionally relevant networks that are widely assumed to be stable over time. We hypothesized that if these correlations reflect the prior history of coactivation of brain regions, then a marked shift in cognition could alter the strength of coupling between these regions. We sought to test whether intensive reasoning training in humans would result in tighter coupling among regions in the lateral frontoparietal network, as measured with resting-state fMRI (rs-fMRI). Rather than designing an artificial training program, we studied individuals who were preparing for a standardized test that places heavy demands on relational reasoning, the Law School Admissions Test (LSAT). LSAT questions require test takers to group or sequence items according to a set of complex rules. We recruited young adults who were enrolled in an LSAT course that offers 70 h of reasoning instruction (n = 25), and age- and IQ-matched controls intending to take the LSAT in the future (n = 24). rs-fMRI data were collected for all subjects during two scanning sessions separated by 90 d. An analysis of pairwise correlations between brain regions implicated in reasoning showed that fronto-parietal connections were strengthened, along with parietal-striatal connections. These findings provide strong evidence for neural plasticity at the level of large-scale networks supporting high-level cognition.

  18. Repressor element-1 silencing transcription factor (REST) is present in human control and Huntington's disease neurones.

    PubMed

    Schiffer, Davide; Caldera, Valentina; Mellai, Marta; Conforti, Paola; Cattaneo, Elena; Zuccato, Chiara

    2014-12-01

    The repressor element-1 silencing transcription factor/neurone-restrictive silencer factor (REST/NRSF) is a master regulator of neuronal gene expression. REST/NRSF functions by recruiting other cofactors to genomic loci that contain the repressor element 1/neurone restrictive silencer element (RE1/NRSE) binding motif. In brain, demonstration of REST protein presence in neurones has remained controversial. However, RE1/NRSE containing neuronal genes are actively modulated and REST dysregulation is implicated in Huntington's disease (HD). We aimed to investigate REST distribution in autopsy brain from control and HD patients. Brain tissues from six controls and six HD cases (Vonsattel grade 3 and 4) were investigated using immunohistochemical analysis. REST was present in neurones and glial cells of the cortex, caudate nucleus, hippocampus and cerebellum. REST labelling was mainly cytoplasmic in neurones while preferential nuclear staining of REST was found in glial cells. We also found that REST and huntingtin (HTT) colocalize in human neurones. Low levels of cytoplasmic REST were detected in neurones of the HD cortex and caudate but no direct relationship between decreased neuronal REST expression and disease grade was observed. These data support the notion of REST presence in human brain neurones and glial cells and indicate the importance of developing compounds able to restore REST-regulated transcription of neuronal genes in HD. © 2014 British Neuropathological Society.

  19. Altered Resting-State Brain Activity in Obstructive Sleep Apnea

    PubMed Central

    Zhang, Quan; Wang, Dawei; Qin, Wen; Li, Qiong; Chen, Baoyuan; Zhang, Yunting; Yu, Chunshui

    2013-01-01

    Study Objectives: Structural and functional brain changes may contribute to neural dysfunction in patients with obstructive sleep apnea (OSA). However, the effect of OSA on resting-state brain activity has not been established. The objective of this study was to investigate alterations in resting-state functional connectivity (rsFC) of the common brain networks in patients with OSA and their relationships with changes in gray matter volume (GMV) in the corresponding brain regions. Designs: Resting-state functional and structural MRI data were acquired from patients with OSA and healthy controls. Seven brain networks were identified by independent component analysis. The rsFC in each network was compared between groups and the GMV of brain regions with significant differences in rsFC was also compared. Setting: University hospital. Patients and Participants: Twenty-four male patients with untreated OSA and 21 matched healthy controls. Interventions: N/A. Measurements and Results: OSA specifically affected the cognitive and sensorimotor-related brain networks but not the visual and auditory networks. The medial prefrontal cortex and left dorsolateral prefrontal cortex (DLPFC) showed decreased rsFC and GMV in patients with OSA, suggesting structural and functional deficits. The right DLPFC and left precentral gyrus showed decreased rsFC and unchanged GMV, suggesting a functional deficit. The right posterior cingulate cortex demonstrated increased rsFC and unchanged GMV, suggesting functional compensation. In patients with OSA, the rsFC of the right DLPFC was negatively correlated with the apnea-hypopnea index. Conclusions: OSA specifically affects resting-state functional connectivity in cognitive and sensorimotor-related brain networks, which may be related to the impaired cognitive and motor functions in these patients. Citation: Zhang Q; Wang D; Qin W; Li Q; Chen B; Zhang Y; Yu C. Altered resting-state brain activity in obstructive sleep apnea. SLEEP 2013

  20. Acute effects of single-dose aripiprazole and haloperidol on resting cerebral blood flow (rCBF) in the human brain.

    PubMed

    Handley, Rowena; Zelaya, Fernando O; Reinders, A A T Simone; Marques, Tiago Reis; Mehta, Mitul A; O'Gorman, Ruth; Alsop, David C; Taylor, Heather; Johnston, Atholl; Williams, Steve; McGuire, Philip; Pariante, Carmine M; Kapur, Shitij; Dazzan, Paola

    2013-02-01

    Antipsychotic drugs act on the dopaminergic system (first-generation antipsychotics, FGA), but some also directly affect serotonergic function (second-generation antipsychotics, SGA) in the brain. Short and long-term effects of these drugs on brain physiology remain poorly understood. Moreover, it remains unclear whether any physiological effect in the brain may be different for FGAs and SGAs. Immediate (+3.30 h) and different effects of single-dose FGA (haloperidol, 3 mg) and a SGA (aripiprazole, 10 mg) on resting cerebral blood flow (rCBF) were explored in the same 20 healthy volunteers using a pulsed continuous arterial spin labeling (pCASL) sequence (1.5T) in a placebo-controlled, repeated measures design. Both antipsychotics increased striatal rCBF but the effect was greater after haloperidol. Both decreased frontal rCBF, and opposite effects of the drugs were observed in the temporal cortex (haloperidol decreased, aripiprazole increased rCBF) and in the posterior cingulate (haloperidol increased, aripiprazole decreased rCBF). Further increases were evident in the insula, hippocampus, and anterior cingulate after both antipsychotics, in the motor cortex following haloperidol and in the occipital lobe the claustrum and the cerebellum after aripiprazole. Further decreases were observed in the parietal and occipital cortices after aripiprazole. This study suggests that early and different rCBF changes are evident following a single-dose of FGA and SGA. The effects occur in healthy volunteers, thus may be independent from any underlying pathology, and in the same regions identified as structurally and functionally altered in schizophrenia, suggesting a possible relationship between antipsychotic-induced rCBF changes and brain alterations in schizophrenia.

  1. Resting state brain networks and their implications in neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Sohn, William S.; Yoo, Kwangsun; Kim, Jinho; Jeong, Yong

    2012-10-01

    Neurons are the basic units of the brain, and form network by connecting via synapses. So far, there have been limited ways to measure the brain networks. Recently, various imaging modalities are widely used for this purpose. In this paper, brain network mapping using resting state fMRI will be introduced with several applications including neurodegenerative disease such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinson's disease. The resting functional connectivity using intrinsic functional connectivity in mouse is useful since we can take advantage of perturbation or stimulation of certain nodes of the network. The study of brain connectivity will open a new era in understanding of brain and diseases thus will be an essential foundation for future research.

  2. Characterizing Resting-State Brain Function Using Arterial Spin Labeling

    PubMed Central

    Jann, Kay; Wang, Danny J.J.

    2015-01-01

    Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930

  3. Characterizing Resting-State Brain Function Using Arterial Spin Labeling.

    PubMed

    Chen, J Jean; Jann, Kay; Wang, Danny J J

    2015-11-01

    Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function.

  4. Simulating human space physiology with bed rest.

    PubMed

    Jost, P D

    2008-08-01

    In a recent review on bed rest studies of the past 20 years, it was concluded that head-down bed rest has proved its usefulness as a reliable simulation model for most physiological effects of spaceflight. Much of this research has been conducted to find countermeasures against the negative effects, which are associated with gravitational unloading. There have been partial successes in the prevention of, for example muscle wasting, cardio-vascular deconditioning, adverse metabolic changes, and bone demineralization. Reviews refer to bone-related measurements of the U.S. and Russian space programmes, as well as data from bed rest analogues, and conclude that in spite of the wealth of knowledge obtained thus far, many questions remain regarding bone loss, bone recovery, and the factors affecting these skeletal processes. Bed rest research has also direct relevance for medical science on Earth. Valuable data on physiology and early reversible pathological changes that are associated with a sedentary lifestyle on Earth can be obtained. A good example is the conclusion from a metabolic protocol implemented during the 2001/2002 90-day ESA/CNES/NASDA male bed rest study. The results of that experiment on fatty acid oxidation suggest that Mediterranean diets should be recommended in recumbent patients. Some other unexpected results obtained during the ESA/NASA/CNES/CSA 60-day female bed rest study WISE-2005 may well prompt the development of a treatment for certain cardiac diseases. A nutritional supplement that was designed to alleviate skeletal muscle atrophy turned out to preserve cardiac muscle mass. In order to optimise bed rest research, a systematic and standardised approach will be beneficial. During the last years, serious efforts have been made towards such standardisation on an international level. It is expected that results from future studies, combined with in-flight validation, will provide the answers to many biomedical problems that currently limit safe

  5. Whole brain resting state functional connectivity abnormalities in schizophrenia.

    PubMed

    Venkataraman, Archana; Whitford, Thomas J; Westin, Carl-Fredrik; Golland, Polina; Kubicki, Marek

    2012-08-01

    Schizophrenia has been associated with disturbances in brain connectivity; however the exact nature of these disturbances is not fully understood. Measuring temporal correlations between the functional MRI time courses of spatially disparate brain regions obtained during rest has recently emerged as a popular paradigm for estimating brain connectivity. Previous resting state studies in schizophrenia explored connections related to particular clinical or cognitive symptoms (connectivity within a-priori selected networks), or connections restricted to functional networks obtained from resting state analysis. Relatively little has been done to understand global brain connectivity in schizophrenia. Eighteen patients with chronic schizophrenia and 18 healthy volunteers underwent a resting state fMRI scan on a 3T magnet. Whole brain temporal correlations have been estimated using resting-state fMRI data and free surfer cortical parcellations. A multivariate classification method was then used to indentify brain connections that distinguish schizophrenia patients from healthy controls. The classification procedure achieved a prediction accuracy of 75% in differentiating between groups on the basis of their functional connectivity. Relative to controls, schizophrenia patients exhibited co-existing patterns of increased connectivity between parietal and frontal regions, and decreased connectivity between parietal and temporal regions, and between the temporal cortices bilaterally. The decreased parieto-temporal connectivity was associated with the severity of patients' positive symptoms, while increased fronto-parietal connectivity was associated with patients' negative and general symptoms. Our analysis revealed two co-existing patterns of functional connectivity abnormalities in schizophrenia, each related to different clinical profiles. Such results provide further evidence that abnormalities in brain connectivity, characteristic of schizophrenia, are directly related to

  6. Brain REST/NRSF Is Not Only a Silent Repressor but Also an Active Protector.

    PubMed

    Zhao, Yangang; Zhu, Min; Yu, Yanlan; Qiu, Linli; Zhang, Yuanyuan; He, Li; Zhang, Jiqiang

    2017-01-01

    During neurogenesis, specific transcription factors are needed to repress neuronal genes in nonneuronal cells to ensure precise development. Repressor element-1 binding transcription factor (REST), or neuron-restrictive silencer factor (NRSF), has been shown to be an important regulator for the establishment of neuronal specificity. It restricts the expression of neuronal genes by binding to the neuron-restrictive silencer element (NRSE/RE1) domain in neuron-specific genes. REST/NRSF regulates many target genes in stem cells, nonneural cells, and neurons, which are involved in neuronal differentiation, axonal growth, vesicular transport, and release as well as ionic conductance. However, it is also regulated by some cytokines/regulators such as epigenetic factors (microRNAs) and even its truncated isoform. REST/NRSF is widely detected in brain regions and has been shown to be highly expressed in nonneuronal cells, but current findings also reveal that, at least in the human brain, it is also highly expressed in neurons and increases with ageing. However, its loss in expression and cytoplasmic translocation seems to play a pivotal role in several human dementias. Additionally, REST/NRSF knockdown leads to malformations in nerve and nonneural tissues and embryonic lethality. Altered REST/NRSF expression has been not only related to deficient brain functions such as neurodegenerative diseases, mental disorders, brain tumors, and neurobehavioral disorders but also highly correlated to brain injuries such as alcoholism and stroke. Encouragingly, several compounds such as valproic acid and X5050 that target REST/NRSF have been shown to be clinically effective at rescuing seizures or Niemann-Pick type C disease. Surprisingly, studies have also shown that REST/NRSF can function as an activator to induce neuronal differentiation. These findings strongly indicate that REST/NRSF is not only a classical repressor to maintain normal neurogenesis, but it is also a fine

  7. Slow brain oscillations of sleep, resting state, and vigilance.

    PubMed

    Van Someren, E J W; Van Der Werf, Y D; Roelfsema, P R; Mansvelder, H D; da Silva, F H Lopes

    2011-01-01

    The most important quest of cognitive neuroscience may be to unravel the mechanisms by which the brain selects, links, consolidates, and integrates new information into its neuronal network, while preventing saturation to occur. During the past decade, neuroscientists working within several disciplines have observed an important involvement of the specific types of brain oscillations that occur during sleep--the cortical slow oscillations; during the resting state--the fMRI resting state networks including the default-mode network (DMN); and during task performance--the performance modulations that link as well to modulations in electroencephalography or magnetoencephalography frequency content. Understanding the role of these slow oscillations thus appears to be essential for our fundamental understanding of brain function. Brain activity is characterized by oscillations occurring in spike frequency, field potentials or blood oxygen level-dependent functional magnetic resonance imaging signals. Environmental stimuli, reaching the brain through our senses, activate or inactivate neuronal populations and modulate ongoing activity. The effect they sort is to a large extent determined by the momentary state of the slow endogenous oscillations of the brain. In the absence of sensory input, as is the case during rest or sleep, brain activity does not cease. Rather, its oscillations continue and change with respect to their dominant frequencies and coupling topography. This chapter briefly introduces the topics that will be addressed in this dedicated volume of Progress in Brain Research on slow oscillations and sets the stage for excellent papers discussing their molecular, cellular, network physiological and cognitive performance aspects. Getting to know about slow oscillations is essential for our understanding of plasticity, memory, brain structure from synapse to DMN, cognition, consciousness, and ultimately for our understanding of the mechanisms and functions of

  8. Personality traits and its association with resting regional brain activity.

    PubMed

    Tran, Yvonne; Craig, Ashley; Boord, Peter; Connell, Kathy; Cooper, Nicholas; Gordon, Evian

    2006-06-01

    The association between personality and resting brain activity was investigated. Personality was assessed using the NEO-Five-factor Inventory (NEO-FFI) and resting brain activity was indexed by eyes closed EEG spectral magnitude from four frequency bands over the entire cortex. Results suggest that there are differences between males and females in the NEO-FFI personality traits. The NEO FFI traits were associated with lower frequency brain activity in both males and females. Mild significant and consistent associations were found between delta and theta activity across all cortical regions with Extraversion and Conscientiousness. There were few associations between personality traits and alpha and beta activity, this was shown in males only. Fewer associations between personality and faster frequency bands such as alpha may be due to the methodological problem of using fixed alpha bands. Multiple regression analyses showed that individual alpha frequencies had a greater contribution to personality traits than fixed band alpha waves.

  9. Posture alters human resting-state.

    PubMed

    Thibault, Robert T; Lifshitz, Michael; Jones, Jennifer M; Raz, Amir

    2014-09-01

    Neuroimaging is ubiquitous; however, neuroimagers seldom investigate the putative impact of posture on brain activity. Whereas participants in most psychological experiments sit upright, many prominent neuroimaging techniques (e.g., functional magnetic resonance imaging (fMRI)) require participants to lie supine. Such postural discrepancies may hold important implications for brain function in general and for fMRI in particular. We directly investigated the effect of posture on spontaneous brain dynamics by recording scalp electrical activity in four orthostatic conditions (lying supine, inclined at 45°, sitting upright, and standing erect). Here we show that upright versus supine posture increases widespread high-frequency oscillatory activity. Our electroencephalographic findings highlight the importance of posture as a determinant in neuroimaging. When generalizing supine imaging results to ecological human cognition, therefore, cognitive neuroscientists would benefit from considering the influence of posture on brain dynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    PubMed

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  11. Brain resting state is disrupted in chronic back pain patients

    PubMed Central

    Tagliazucchi, Enzo; Balenzuela, Pablo; Fraiman, Daniel; Chialvo, Dante R.

    2010-01-01

    Recent brain functional magnetic resonance imaging (fMRI) studies have shown that chronic back pain (CBP) alters brain dynamics beyond the feeling of pain. In particular, the response of the brain default mode network (DMN) during an attention task was found abnormal. In the present work similar alterations are demonstrated for spontaneous resting patterns of fMRI brain activity over a population of CBP patients (n=12, 29–67 years old, mean=51.2). Results show abnormal correlations of three out of four highly connected sites of the DMN with bilateral insular cortex and regions in the middle frontal gyrus (p<0.05), in comparison with a control group of healthy subjects (n=20, 21–60 years old, mean=38.4). The alterations were confirmed by the calculation of triggered averages, which demonstrated increased coactivation of the DMN and the former regions. These findings demonstrate that CBP disrupts normal activity in the DMN even during the brain resting state, highlighting the impact of enduring pain over brain structure and function. PMID:20800649

  12. Measuring Asymmetric Interactions in Resting State Brain Networks*

    PubMed Central

    Joshi, Anand A.; Salloum, Ronald; Bhushan, Chitresh; Leahy, Richard M.

    2015-01-01

    Directed graph representations of brain networks are increasingly being used in brain image analysis to indicate the direction and level of influence among brain regions. Most of the existing techniques for directed graph representations are based on time series analysis and the concept of causality, and use time lag information in the brain signals. These time lag-based techniques can be inadequate for functional magnetic resonance imaging (fMRI) signal analysis due to the limited time resolution of fMRI as well as the low frequency hemodynamic response. The aim of this paper is to present a novel measure of necessity that uses asymmetry in the joint distribution of brain activations to infer the direction and level of interaction among brain regions. We present a mathematical formula for computing necessity and extend this measure to partial necessity, which can potentially distinguish between direct and indirect interactions. These measures do not depend on time lag for directed modeling of brain interactions and therefore are more suitable for fMRI signal analysis. The necessity measures were used to analyze resting state fMRI data to determine the presence of hierarchy and asymmetry of brain interactions during resting state. We performed ROI-wise analysis using the proposed necessity measures to study the default mode network. The empirical joint distribution of the fMRI signals was determined using kernel density estimation, and was used for computation of the necessity and partial necessity measures. The significance of these measures was determined using a one-sided Wilcoxon rank-sum test. Our results are consistent with the hypothesis that the posterior cingulate cortex plays a central role in the default mode network. PMID:26221690

  13. A Linear/Nonlinear Characterization of Resting State Brain Networks in fMRI Time Series

    PubMed Central

    Gultepe, Eren

    2012-01-01

    Resting state functional connectivity studies in fMRI have been used to demonstrate that the human brain is organized into inherent functional networks in the absence of stimuli. The basis for this activity is based on the spontaneous fluctuations observed during rest. In the present study, the time series generated from these fluctuations were characterized as either being linear or nonlinear based on the Delay Vector Variance method, applied through an examination of the local predictability of the signal. It was found that the default mode resting state network is composed of relatively more linear signals compared to the visual, task positive visuospatial, motor, and auditory resting state network time series. Also, it was shown that the visual cortex resting state network is more nonlinear relative to these aforementioned networks. Furthermore, using a histogram map of the nonlinearly characterized voxels for all the subjects, the histogram map was able to retrieve the peak intensity in four out of six resting state networks. Thus, the findings may provide the basis for a novel way to explore spontaneous fluctuations in the resting state brain. PMID:22941499

  14. A linear/nonlinear characterization of resting state brain networks in FMRI time series.

    PubMed

    Gultepe, Eren; He, Bin

    2013-01-01

    Resting state functional connectivity studies in fMRI have been used to demonstrate that the human brain is organized into inherent functional networks in the absence of stimuli. The basis for this activity is based on the spontaneous fluctuations observed during rest. In the present study, the time series generated from these fluctuations were characterized as either being linear or nonlinear based on the Delay Vector Variance method, applied through an examination of the local predictability of the signal. It was found that the default mode resting state network is composed of relatively more linear signals compared to the visual, task positive visuospatial, motor, and auditory resting state network time series. Also, it was shown that the visual cortex resting state network is more nonlinear relative to these aforementioned networks. Furthermore, using a histogram map of the nonlinearly characterized voxels for all the subjects, the histogram map was able to retrieve the peak intensity in four out of six resting state networks. Thus, the findings may provide the basis for a novel way to explore spontaneous fluctuations in the resting state brain.

  15. Large-scale brain networks in the awake, truly resting marmoset monkey.

    PubMed

    Belcher, Annabelle M; Yen, Cecil C; Stepp, Haley; Gu, Hong; Lu, Hanbing; Yang, Yihong; Silva, Afonso C; Stein, Elliot A

    2013-10-16

    Resting-state functional MRI is a powerful tool that is increasingly used as a noninvasive method for investigating whole-brain circuitry and holds great potential as a possible diagnostic for disease. Despite this potential, few resting-state studies have used animal models (of which nonhuman primates represent our best opportunity of understanding complex human neuropsychiatric disease), and no work has characterized networks in awake, truly resting animals. Here we present results from a small New World monkey that allows for the characterization of resting-state networks in the awake state. Six adult common marmosets (Callithrix jacchus) were acclimated to light, comfortable restraint using individualized helmets. Following behavioral training, resting BOLD data were acquired during eight consecutive 10 min scans for each conscious subject. Group independent component analysis revealed 12 brain networks that overlap substantially with known anatomically constrained circuits seen in the awake human. Specifically, we found eight sensory and "lower-order" networks (four visual, two somatomotor, one cerebellar, and one caudate-putamen network), and four "higher-order" association networks (one default mode-like network, one orbitofrontal, one frontopolar, and one network resembling the human salience network). In addition to their functional relevance, these network patterns bear great correspondence to those previously described in awake humans. This first-of-its-kind report in an awake New World nonhuman primate provides a platform for mechanistic neurobiological examination for existing disease models established in the marmoset.

  16. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.

    PubMed

    Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B

    2017-08-30

    Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity.SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that

  17. Intrinsically organized resting state networks in the human spinal cord

    PubMed Central

    Kong, Yazhuo; Eippert, Falk; Beckmann, Christian F.; Andersson, Jesper; Finsterbusch, Jürgen; Büchel, Christian; Tracey, Irene; Brooks, Jonathan C. W.

    2014-01-01

    Spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals of the brain have repeatedly been observed when no task or external stimulation is present. These fluctuations likely reflect baseline neuronal activity of the brain and correspond to functionally relevant resting-state networks (RSN). It is not known however, whether intrinsically organized and spatially circumscribed RSNs also exist in the spinal cord, the brain’s principal sensorimotor interface with the body. Here, we use recent advances in spinal fMRI methodology and independent component analysis to answer this question in healthy human volunteers. We identified spatially distinct RSNs in the human spinal cord that were clearly separated into dorsal and ventral components, mirroring the functional neuroanatomy of the spinal cord and likely reflecting sensory and motor processing. Interestingly, dorsal (sensory) RSNs were separated into right and left components, presumably related to ongoing hemibody processing of somatosensory information, whereas ventral (motor) RSNs were bilateral, possibly related to commissural interneuronal networks involved in central pattern generation. Importantly, all of these RSNs showed a restricted spatial extent along the spinal cord and likely conform to the spinal cord’s functionally relevant segmental organization. Although the spatial and temporal properties of the dorsal and ventral RSNs were found to be significantly different, these networks showed significant interactions with each other at the segmental level. Together, our data demonstrate that intrinsically highly organized resting-state fluctuations exist in the human spinal cord and are thus a hallmark of the entire central nervous system. PMID:25472845

  18. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    NASA Technical Reports Server (NTRS)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; Bloomberg, J.; Mulavara, A; Seidler, R.

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural

  19. Effects of cranial electrotherapy stimulation on resting state brain activity

    PubMed Central

    Feusner, Jamie D; Madsen, Sarah; Moody, Teena D; Bohon, Cara; Hembacher, Emily; Bookheimer, Susan Y; Bystritsky, Alexander

    2012-01-01

    Cranial electrotherapy stimulation (CES) is a U.S. Food and Drug Administration (FDA)-approved treatment for insomnia, depression, and anxiety consisting of pulsed, low-intensity current applied to the earlobes or scalp. Despite empirical evidence of clinical efficacy, its mechanism of action is largely unknown. The goal was to characterize the acute effects of CES on resting state brain activity. Our primary hypothesis was that CES would result in deactivation in cortical and subcortical regions. Eleven healthy controls were administered CES applied to the earlobes at subsensory thresholds while being scanned with functional magnetic resonance imaging in the resting state. We tested 0.5- and 100-Hz stimulation, using blocks of 22 sec “on” alternating with 22 sec of baseline (device was “off”). The primary outcome measure was differences in blood oxygen level dependent data associated with the device being on versus baseline. The secondary outcome measures were the effects of stimulation on connectivity within the default mode, sensorimotor, and fronto-parietal networks. Both 0.5- and 100-Hz stimulation resulted in significant deactivation in midline frontal and parietal regions. 100-Hz stimulation was associated with both increases and decreases in connectivity within the default mode network (DMN). Results suggest that CES causes cortical brain deactivation, with a similar pattern for high- and low-frequency stimulation, and alters connectivity in the DMN. These effects may result from interference from high- or low-frequency noise. Small perturbations of brain oscillations may therefore have significant effects on normal resting state brain activity. These results provide insight into the mechanism of action of CES, and may assist in the future development of optimal parameters for effective treatment. PMID:22741094

  20. Resting-State Brain Activity in Adult Males Who Stutter

    PubMed Central

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  1. Lasting impact of regret and gratification on resting brain activity and its relation to depressive traits.

    PubMed

    Eryilmaz, Hamdi; Van De Ville, Dimitri; Schwartz, Sophie; Vuilleumier, Patrik

    2014-06-04

    Obtaining lower gains than rejected alternatives during decision making evokes feelings of regret, whereas higher gains elicit gratification. Although decision-related emotions produce lingering effects on mental state, neuroscience research has generally focused on transient brain responses to positive or negative events, but ignored more sustained consequences of emotional episodes on subsequent brain states. We investigated how spontaneous brain activity and functional connectivity at rest are modulated by postdecision regret and gratification in 18 healthy human subjects using a gambling task in fMRI. Differences between obtained and unobtained outcomes were manipulated parametrically to evoke different levels of regret or gratification. We investigated how individual personality traits related to depression and rumination affected these responses. Medial and ventral prefrontal areas differentially responded to favorable and unfavorable outcomes during the gambling period. More critically, during subsequent rest, rostral anterior and posterior cingulate cortex, ventral striatum, and insula showed parametric response to the gratification level of preceding outcomes. Functional coupling of posterior cingulate with striatum and amygdala was also enhanced during rest after high gratification. Regret produced distinct changes in connectivity of subgenual cingulate with orbitofrontal cortex and thalamus. Interestingly, individual differences in depressive traits and ruminations correlated with activity of the striatum after gratification and orbitofrontal cortex after regret, respectively. By revealing lingering effects of decision-related emotions on key nodes of resting state networks, our findings illuminate how such emotions may influence self-reflective processing and subsequent behavioral adjustment, but also highlight the malleability of resting networks in emotional contexts.

  2. Altered Resting Brain Function and Structure in Professional Badminton Players

    PubMed Central

    Di, Xin; Zhu, Senhua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan

    2012-01-01

    Abstract Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241

  3. Altered resting brain function and structure in professional badminton players.

    PubMed

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  4. Rest

    PubMed Central

    2015-01-01

    Rest is a health-related phenomenon. Researchers have explored the phenomenon of rest, but further concept development is recommended. The aim of my study was to develop and describe a concept of rest, from interviews with a total of 63 participants about their lived experiences of rest. I performed the developing process in two stages: first with descriptive phenomenology and second with a hermeneutic approach. The concept of rest is comprised of the essences of both rest and “non-rest,” and there is a current movement between these two conditions in peoples’ lives. The essence of rest is being in harmony in motivation, feeling, and action. The essence of non-rest is being in disharmony in motivation, feeling, and action. The essences reveal some meaning constituents. Health care professionals and researchers can use the concept as a frame of reference in health care praxis and in applied research. PMID:28462307

  5. Task vs. rest—different network configurations between the coactivation and the resting-state brain networks

    PubMed Central

    Di, Xin; Gohel, Suril; Kim, Eun H.; Biswal, Bharat B.

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest. PMID:24062654

  6. Dose and effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats

    EPA Science Inventory

    Dose and effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats Authors: Gary E. Hatch, John McKee, James Brown, Bill McDonnell, Elston Seal, Joleen Soukup, Ralph Slade, Kay Crissman and Robert Devlin, National Health and Environmental...

  7. Dose and effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats

    EPA Science Inventory

    Dose and effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats Authors: Gary E. Hatch, John McKee, James Brown, Bill McDonnell, Elston Seal, Joleen Soukup, Ralph Slade, Kay Crissman and Robert Devlin, National Health and Environmental...

  8. Detecting Mild Traumatic Brain Injury Using Resting State Magnetoencephalographic Connectivity

    PubMed Central

    da Costa, Leodante; Jetly, Rakesh; Pang, Elizabeth W.; Taylor, Margot J.

    2016-01-01

    Accurate means to detect mild traumatic brain injury (mTBI) using objective and quantitative measures remain elusive. Conventional imaging typically detects no abnormalities despite post-concussive symptoms. In the present study, we recorded resting state magnetoencephalograms (MEG) from adults with mTBI and controls. Atlas-guided reconstruction of resting state activity was performed for 90 cortical and subcortical regions, and calculation of inter-regional oscillatory phase synchrony at various frequencies was performed. We demonstrate that mTBI is associated with reduced network connectivity in the delta and gamma frequency range (>30 Hz), together with increased connectivity in the slower alpha band (8–12 Hz). A similar temporal pattern was associated with correlations between network connectivity and the length of time between the injury and the MEG scan. Using such resting state MEG network synchrony we were able to detect mTBI with 88% accuracy. Classification confidence was also correlated with clinical symptom severity scores. These results provide the first evidence that imaging of MEG network connectivity, in combination with machine learning, has the potential to accurately detect and determine the severity of mTBI. PMID:27906973

  9. Exploring the brain network: a review on resting-state fMRI functional connectivity.

    PubMed

    van den Heuvel, Martijn P; Hulshoff Pol, Hilleke E

    2010-08-01

    Our brain is a network. It consists of spatially distributed, but functionally linked regions that continuously share information with each other. Interestingly, recent advances in the acquisition and analysis of functional neuroimaging data have catalyzed the exploration of functional connectivity in the human brain. Functional connectivity is defined as the temporal dependency of neuronal activation patterns of anatomically separated brain regions and in the past years an increasing body of neuroimaging studies has started to explore functional connectivity by measuring the level of co-activation of resting-state fMRI time-series between brain regions. These studies have revealed interesting new findings about the functional connections of specific brain regions and local networks, as well as important new insights in the overall organization of functional communication in the brain network. Here we present an overview of these new methods and discuss how they have led to new insights in core aspects of the human brain, providing an overview of these novel imaging techniques and their implication to neuroscience. We discuss the use of spontaneous resting-state fMRI in determining functional connectivity, discuss suggested origins of these signals, how functional connections tend to be related to structural connections in the brain network and how functional brain communication may form a key role in cognitive performance. Furthermore, we will discuss the upcoming field of examining functional connectivity patterns using graph theory, focusing on the overall organization of the functional brain network. Specifically, we will discuss the value of these new functional connectivity tools in examining believed connectivity diseases, like Alzheimer's disease, dementia, schizophrenia and multiple sclerosis. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.

    PubMed

    Kang, Jin; Wang, Liang; Yan, Chaogan; Wang, Jinhui; Liang, Xia; He, Yong

    2011-06-01

    The cognitive activity of the human brain benefits from the functional connectivity of multiple brain regions that form specific, functional brain networks. Recent studies have indicated that the relationship between brain regions can be investigated by examining the temporal interaction (known as functional connectivity) of spontaneous blood oxygen level-dependent (BOLD) signals derived from resting-state functional MRI. Most of these studies plausibly assumed that inter-regional interactions were temporally stationary. However, little is known about the dynamic characteristics of resting-state functional connectivity (RSFC). In this study, we thoroughly examined this question within and between multiple functional brain networks. Twenty-two healthy subjects were scanned in a resting state. Several of the RSFC networks observed, including the default-mode, motor, attention, memory, auditory, visual, language and subcortical networks, were first identified using a conventional voxel-wise correlation analysis with predefined region of interests (ROIs). Then, a variable parameter regression model combined with the Kalman filtering method was employed to detect the dynamic interactions between each ROI and all other brain voxels within each of the RSFC maps extracted above. Experimental results revealed that the functional interactions within each RSFC map showed time-varying properties, and that approximately 10-20% of the voxels within each RSFC map showed significant functional connectivity to each ROI during the scanning session. This dynamic pattern was also observed for the interactions between different functional networks. In addition, the spatial pattern of dynamic connectivity maps obtained from neighboring time points had a high similarity. Overall, this study provides insights into the dynamic properties of resting-state functional networks.

  11. Brain dynamics of post‐task resting state are influenced by expertise: Insights from baseball players

    PubMed Central

    Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O.; Verstynen, Timothy; Vettel, Jean M.; Sherwin, Jason

    2016-01-01

    Abstract Post‐task resting state dynamics can be viewed as a task‐driven state where behavioral performance is improved through endogenous, non‐explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post‐task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division‐1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No‐Go task before a resting state scan, and we compared post‐task resting state connectivity using a seed‐based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post‐task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA–L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD‐alpha oscillation correlations between groups suggests variability in modulatory attention in the post‐task state, and (3) group differences between BOLD‐beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post‐task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454–4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27448098

  12. Brain dynamics of post-task resting state are influenced by expertise: Insights from baseball players.

    PubMed

    Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul

    2016-12-01

    Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  13. Identifying sparse connectivity patterns in the brain using resting-state fMRI

    PubMed Central

    Eavani, Harini; Satterthwaite, Theodore D.; Filipovych, Roman; Gur, Raquel E.; Gur, Ruben C.; Davatzikos, Christos

    2014-01-01

    The human brain processes information via multiple distributed networks. An accurate model of the brain's functional connectome is critical for understanding both normal brain function as well as the dysfunction present in neuropsychiatric illnesses. Current methodologies that attempt to discover the organization of the functional connectome typically assume spatial or temporal separation of the underlying networks. This assumption deviates from an intuitive understanding of brain function, which is that of multiple, inter-dependent spatially overlapping brain networks that efficiently integrate information pertinent to diverse brain functions. It is now increasingly evident that neural systems use parsimonious formations and functional representations to efficiently process information while minimizing redundancy. Hence we exploit recent advances in the mathematics of sparse modeling to develop a methodological framework aiming to understand complex resting-state fMRI connectivity data. By favoring networks that explain the data via a relatively small number of participating brain regions, we obtain a parsimonious representation of brain function in terms of multiple “Sparse Connectivity Patterns” (SCPs), such that differential presence of these SCPs explains inter-subject variability. In this manner the sparsity-based framework can effectively capture the heterogeneity of functional activity patterns across individuals while potentially highlighting multiple sub-populations within the data that display similar patterns. Our results from simulated as well as real resting state fMRI data show that SCPs are accurate and reproducible between sub-samples as well as across datasets. These findings substantiate existing knowledge of intrinsic functional connectivity and provide novel insights into the functional organization of the human brain. PMID:25284301

  14. Probing Intrinsic Resting-State Networks in the Infant Rat Brain

    PubMed Central

    Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino

    2016-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653

  15. Discovering dynamic brain networks from big data in rest and task.

    PubMed

    Vidaurre, Diego; Abeysuriya, Romesh; Becker, Robert; Quinn, Andrew J; Alfaro-Almagro, Fidel; Smith, Stephen M; Woolrich, Mark W

    2017-06-29

    Brain activity is a dynamic combination of the responses to sensory inputs and its own spontaneous processing. Consequently, such brain activity is continuously changing whether or not one is focusing on an externally imposed task. Previously, we have introduced an analysis method that allows us, using Hidden Markov Models (HMM), to model task or rest brain activity as a dynamic sequence of distinct brain networks, overcoming many of the limitations posed by sliding window approaches. Here, we present an advance that enables the HMM to handle very large amounts of data, making possible the inference of very reproducible and interpretable dynamic brain networks in a range of different datasets, including task, rest, MEG and fMRI, with potentially thousands of subjects. We anticipate that the generation of large and publicly available datasets from initiatives such as the Human Connectome Project and UK Biobank, in combination with computational methods that can work at this scale, will bring a breakthrough in our understanding of brain function in both health and disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. Resting-state functional brain networks in Parkinson's disease.

    PubMed

    Baggio, Hugo C; Segura, Bàrbara; Junque, Carme

    2015-10-01

    The network approach is increasingly being applied to the investigation of normal brain function and its impairment. In the present review, we introduce the main methodological approaches employed for the analysis of resting-state neuroimaging data in Parkinson's disease studies. We then summarize the results of recent studies that used a functional network perspective to evaluate the changes underlying different manifestations of Parkinson's disease, with an emphasis on its cognitive symptoms. Despite the variability reported by many studies, these methods show promise as tools for shedding light on the pathophysiological substrates of different aspects of Parkinson's disease, as well as for differential diagnosis, treatment monitoring and establishment of imaging biomarkers for more severe clinical outcomes.

  17. EEG oscillatory phase-dependent markers of corticospinal excitability in the resting brain.

    PubMed

    Berger, Barbara; Minarik, Tamas; Liuzzi, Gianpiero; Hummel, Friedhelm C; Sauseng, Paul

    2014-01-01

    Functional meaning of oscillatory brain activity in various frequency bands in the human electroencephalogram (EEG) is increasingly researched. While most research focuses on event-related changes of brain activity in response to external events there is also increasing interest in internal brain states influencing information processing. Several studies suggest amplitude changes of EEG oscillatory activity selectively influencing cortical excitability, and more recently it was shown that phase of EEG activity (instantaneous phase) conveys additional meaning. Here we review this field with many conflicting findings and further investigate whether corticospinal excitability in the resting brain is dependent on a specific spontaneously occurring brain state reflected by amplitude and instantaneous phase of EEG oscillations. We applied single pulse transcranial magnetic stimulation (TMS) over the left sensorimotor cortex, while simultaneously recording ongoing oscillatory activity with EEG. Results indicate that brain oscillations reflect rapid, spontaneous fluctuations of cortical excitability. Instantaneous phase but not amplitude of oscillations at various frequency bands at stimulation site at the time of TMS-pulse is indicative for brain states associated with different levels of excitability (defined by size of the elicited motor evoked potential). These results are further evidence that ongoing brain oscillations directly influence neural excitability which puts further emphasis on their role in orchestrating neuronal firing in the brain.

  18. Plasticity of resting state brain networks in recovery from stress.

    PubMed

    Soares, José M; Sampaio, Adriana; Marques, Paulo; Ferreira, Luís M; Santos, Nadine C; Marques, Fernanda; Palha, Joana A; Cerqueira, João J; Sousa, Nuno

    2013-01-01

    Chronic stress has been widely reported to have deleterious impact in multiple biological systems. Specifically, structural and functional remodeling of several brain regions following prolonged stress exposure have been described; importantly, some of these changes are eventually reversible. Recently, we showed the impact of stress on resting state networks (RSNs), but nothing is known about the plasticity of RSNs after recovery from stress. Herein, we examined the "plasticity" of RSNs, both at functional and structural levels, by comparing the same individuals before and after recovery from the exposure to chronic stress; results were also contrasted with a control group. Here we show that the stressed individuals after recovery displayed a decreased resting functional connectivity in the default mode network (DMN), ventral attention network (VAN), and sensorimotor network (SMN) when compared to themselves immediately after stress; however, this functional plastic recovery was only partial as when compared with the control group, as there were still areas of increased connectivity in dorsal attention network (DAN), SMN and primary visual network (VN) in participants recovered from stress. Data also shows that participants after recovery from stress displayed increased deactivations in DMN, SMN, and auditory network (AN), to levels similar to those of controls, showing a normalization of the deactivation pattern in RSNs after recovery from stress. In contrast, structural changes (volumetry) of the brain areas involving these networks are absent after the recovery period. These results reveal plastic phenomena in specific RSNs and a functional remodeling of the activation-deactivation pattern following recovery from chronic-stress, which is not accompanied by significant structural plasticity.

  19. Frequency Dependent Topological Patterns of Resting-State Brain Networks

    PubMed Central

    Qian, Long; Zhang, Yi; Zheng, Li; Shang, Yuqing; Gao, Jia-Hong; Liu, Yijun

    2015-01-01

    The topological organization underlying brain networks has been extensively investigated using resting-state fMRI, focusing on the low frequency band from 0.01 to 0.1 Hz. However, the frequency specificities regarding the corresponding brain networks remain largely unclear. In the current study, a data-driven method named complementary ensemble empirical mode decomposition (CEEMD) was introduced to separate the time series of each voxel into several intrinsic oscillation rhythms with distinct frequency bands. Our data indicated that the whole brain BOLD signals could be automatically divided into five specific frequency bands. After applying the CEEMD method, the topological patterns of these five temporally correlated networks were analyzed. The results showed that global topological properties, including the network weighted degree, network efficiency, mean characteristic path length and clustering coefficient, were observed to be most prominent in the ultra-low frequency bands from 0 to 0.015 Hz. Moreover, the saliency of small-world architecture demonstrated frequency-density dependency. Compared to the empirical mode decomposition method (EMD), CEEMD could effectively eliminate the mode-mixing effects. Additionally, the robustness of CEEMD was validated by the similar results derived from a split-half analysis and a conventional frequency division method using the rectangular window band-pass filter. Our findings suggest that CEEMD is a more effective method for extracting the intrinsic oscillation rhythms embedded in the BOLD signals than EMD. The application of CEEMD in fMRI data analysis will provide in-depth insight in investigations of frequency specific topological patterns of the dynamic brain networks. PMID:25927525

  20. Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.

    2014-03-01

    Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.

  1. Altered resting-state brain activity at functional MRI during automatic memory consolidation of fear conditioning.

    PubMed

    Feng, Tingyong; Feng, Pan; Chen, Zhencai

    2013-07-26

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of automatic memory consolidation of fear conditioning is still unclear. To address this question, we measured brain activity following fear acquisition using resting-state functional magnetic resonance imaging (rs-fMRI). In the current study, we used a marker of fMRI, amplitude of low-frequency (0.01-0.08Hz) fluctuation (ALFF) to quantify the spontaneous brain activity. Brain activity correlated to fear memory consolidation was observed in parahippocampus, insula, and thalamus in resting-state. Furthermore, after acquired fear conditioning, compared with control group some brain areas showed ALFF increased in ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) in the experimental group, whereas some brain areas showed decreased ALFF in striatal regions (caudate, putamen). Moreover, the change of ALFF in vmPFC was positively correlated with the subjective fear ratings. These findings suggest that the parahippocampus, insula, and thalamus are the neural substrates of fear memory consolidation. The difference in activity could be attributed to a homeostatic process in which the vmPFC and ACC were involved in the fear recovery process, and change of ALFF in vmPFC predicts subjective fear ratings. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Resting Brain Activity Varies with Dream Recall Frequency Between Subjects

    PubMed Central

    Eichenlaub, Jean-Baptiste; Nicolas, Alain; Daltrozzo, Jérôme; Redouté, Jérôme; Costes, Nicolas; Ruby, Perrine

    2014-01-01

    Dreaming is still poorly understood. Notably, its cerebral underpinning remains unclear. Neuropsychological studies have shown that lesions in the temporoparietal junction (TPJ) and/or the white matter of the medial prefrontal cortex (MPFC) lead to the global cessation of dream reports, suggesting that these regions of the default mode network have key roles in the dreaming process (forebrain ‘dream-on' hypothesis). To test this hypothesis, we measured regional cerebral blood flow (rCBF) using [15O]H2O positron emission tomography in healthy subjects with high and low dream recall frequencies (DRFs) during wakefulness (rest) and sleep (rapid eye movement (REM) sleep, N2, and N3). Compared with Low recallers (0.5±0.3 dream recall per week in average), High recallers (5.2±1.4) showed higher rCBF in the TPJ during REM sleep, N3, and wakefulness, and in the MPFC during REM sleep and wakefulness. We demonstrate that the resting states of High recallers and Low recallers differ during sleep and wakefulness. It coheres with previous ERP results and confirms that a high/low DRF is associated with a specific functional organization of the brain. These results support the forebrain ‘dream-on' hypothesis and suggest that TPJ and MPFC are not only involved in dream recall during wakefulness but also have a role in dreaming during sleep (production and/or encoding). Increased activity in the TPJ and MPFC might promote the mental imagery and/or memory encoding of dreams. Notably, increased activity in TPJ might facilitate attention orienting toward external stimuli and promote intrasleep wakefulness, facilitating the encoding of the dreams in memory. PMID:24549103

  3. Resting brain activity varies with dream recall frequency between subjects.

    PubMed

    Eichenlaub, Jean-Baptiste; Nicolas, Alain; Daltrozzo, Jérôme; Redouté, Jérôme; Costes, Nicolas; Ruby, Perrine

    2014-06-01

    Dreaming is still poorly understood. Notably, its cerebral underpinning remains unclear. Neuropsychological studies have shown that lesions in the temporoparietal junction (TPJ) and/or the white matter of the medial prefrontal cortex (MPFC) lead to the global cessation of dream reports, suggesting that these regions of the default mode network have key roles in the dreaming process (forebrain 'dream-on' hypothesis). To test this hypothesis, we measured regional cerebral blood flow (rCBF) using [(15)O]H2O positron emission tomography in healthy subjects with high and low dream recall frequencies (DRFs) during wakefulness (rest) and sleep (rapid eye movement (REM) sleep, N2, and N3). Compared with Low recallers (0.5 ± 0.3 dream recall per week in average), High recallers (5.2 ± 1.4) showed higher rCBF in the TPJ during REM sleep, N3, and wakefulness, and in the MPFC during REM sleep and wakefulness. We demonstrate that the resting states of High recallers and Low recallers differ during sleep and wakefulness. It coheres with previous ERP results and confirms that a high/low DRF is associated with a specific functional organization of the brain. These results support the forebrain 'dream-on' hypothesis and suggest that TPJ and MPFC are not only involved in dream recall during wakefulness but also have a role in dreaming during sleep (production and/or encoding). Increased activity in the TPJ and MPFC might promote the mental imagery and/or memory encoding of dreams. Notably, increased activity in TPJ might facilitate attention orienting toward external stimuli and promote intrasleep wakefulness, facilitating the encoding of the dreams in memory.

  4. Altered resting brain connectivity in persistent cancer related fatigue

    PubMed Central

    Hampson, Johnson P.; Zick, Suzanna M.; Khabir, Tohfa; Wright, Benjamin D.; Harris, Richard E.

    2015-01-01

    There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected). Mental fatigue scores were associated with greater default mode network (DMN) connectivity to the superior frontal gyrus (P = 0.05 FDR corrected) among fatigued subjects (r = 0.82) and less connectivity in the non-fatigued group (r = −0.88). These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent fatigue. As

  5. Altered resting brain connectivity in persistent cancer related fatigue.

    PubMed

    Hampson, Johnson P; Zick, Suzanna M; Khabir, Tohfa; Wright, Benjamin D; Harris, Richard E

    2015-01-01

    There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected). Mental fatigue scores were associated with greater default mode network (DMN) connectivity to the superior frontal gyrus (P = 0.05 FDR corrected) among fatigued subjects (r = 0.82) and less connectivity in the non-fatigued group (r = -0.88). These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent fatigue. As

  6. Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard

    2016-04-01

    The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment.

  7. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    PubMed

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network.

  8. Speech networks at rest and in action: interactions between functional brain networks controlling speech production

    PubMed Central

    Fuertinger, Stefan

    2015-01-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. PMID:25673742

  9. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.

    PubMed

    Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.

  10. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    PubMed Central

    Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467

  11. Universal organization of resting brain activity at the thermodynamic critical point.

    PubMed

    Yu, Shan; Yang, Hongdian; Shriki, Oren; Plenz, Dietmar

    2013-01-01

    Thermodynamic criticality describes emergent phenomena in a wide variety of complex systems. In the mammalian cortex, one type of complex dynamics that spontaneously emerges from neuronal interactions has been characterized as neuronal avalanches. Several aspects of neuronal avalanches such as their size and life time distributions are described by power laws with unique exponents, indicating an underlying critical branching process that governs avalanche formation. Here, we show that neuronal avalanches also reflect an organization of brain dynamics close to a thermodynamic critical point. We recorded spontaneous cortical activity in monkeys and humans at rest using high-density intracranial microelectrode arrays and magnetoencephalography, respectively. By numerically changing a control parameter equivalent to thermodynamic temperature, we observed typical critical behavior in cortical activities near the actual physiological condition, including the phase transition of an order parameter, as well as the divergence of susceptibility and specific heat. Finite-size scaling of these quantities allowed us to derive robust critical exponents highly consistent across monkey and humans that uncover a distinct, yet universal organization of brain dynamics. Our results demonstrate that normal brain dynamics at rest resides near or at criticality, which maximizes several aspects of information processing such as input sensitivity and dynamic range.

  12. Resting-state functional connectivity of the human hypothalamus.

    PubMed

    Kullmann, Stephanie; Heni, Martin; Linder, Katarzyna; Zipfel, Stephan; Häring, Hans-Ulrich; Veit, Ralf; Fritsche, Andreas; Preissl, Hubert

    2014-12-01

    The hypothalamus is of enormous importance for multiple bodily functions such as energy homeostasis. Especially, rodent studies have greatly contributed to our understanding how specific hypothalamic subregions integrate peripheral and central signals into the brain to control food intake. In humans, however, the neural circuitry of the hypothalamus, with its different subregions, has not been delineated. Hence, the aim of this study was to map the hypothalamus network using resting-state functional connectivity (FC) analyses from the medial hypothalamus (MH) and lateral hypothalamus (LH) in healthy normal-weight adults (n = 49). Furthermore, in a separate sample, we examined differences within the LH and MH networks between healthy normal-weight (n = 25) versus overweight/obese adults (n = 23). FC patterns from the LH and MH revealed significant connections to the striatum, thalamus, brainstem, orbitofrontal cortex, middle and posterior cingulum and temporal brain regions. However, our analysis revealed subtler distinctions within hypothalamic subregions. The LH was functionally stronger connected to the dorsal striatum, anterior cingulum, and frontal operculum, while the MH showed stronger functional connections to the nucleus accumbens and medial orbitofrontal cortex. Furthermore, overweight/obese participants revealed heightened FC in the orbitofrontal cortex and nucleus accumbens within the MH network. Our results indicate that the MH and LH network are tapped into different parts of the dopaminergic circuitry of the brain, potentially modulating food reward based on the functional connections to the ventral and dorsal striatum, respectively. In obese adults, FC changes were observed in the MH network. © 2014 Wiley Periodicals, Inc.

  13. Functional connectivity in the resting brain as biological correlate of the Affective Neuroscience Personality Scales.

    PubMed

    Deris, Nadja; Montag, Christian; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-02-15

    According to Jaak Panksepp's Affective Neuroscience Theory and the derived self-report measure, the Affective Neuroscience Personality Scales (ANPS), differences in the responsiveness of primary emotional systems form the basis of human personality. In order to investigate neuronal correlates of personality, the underlying neuronal circuits of the primary emotional systems were analyzed in the present fMRI-study by associating the ANPS to functional connectivity in the resting brain. N=120 healthy participants were invited for the present study. The results were reinvestigated in an independent, smaller sample of N=52 participants. A seed-based whole brain approach was conducted with seed-regions bilaterally in the basolateral and superficial amygdalae. The selection of seed-regions was based on meta-analytic data on affective processing and the Juelich histological atlas. Multiple regression analyses on the functional connectivity maps revealed associations with the SADNESS-scale in both samples. Functional resting-state connectivity between the left basolateral amygdala and a cluster in the postcentral gyrus, and between the right basolateral amygdala and clusters in the superior parietal lobe and subgyral in the parietal lobe was associated with SADNESS. No other ANPS-scale revealed replicable results. The present findings give first insights into the neuronal basis of the SADNESS-scale of the ANPS and support the idea of underlying neuronal circuits. In combination with previous research on genetic associations of the ANPS functional resting-state connectivity is discussed as a possible endophenotype of personality.

  14. [Study on Brain Functional Connectivity Using Resting State Electroencephalogram Based on Synchronization Likelihood in Alzheimer's Disease].

    PubMed

    Li, Li; Chen, Jingjing; Zheng, Xuyuan

    2015-10-01

    Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disease with progressive cognitive dysfunction as the main feature. How to identify the early changes of cognitive dysfunction and give appropriate treatments is of great significance to delay the onset of dementia. Some other researches have shown that AD is associated with abnormal changes of brain networks. To study human brain functional connectivity characteristics in AD, 16 channels electroencephalogram (EEG) were recorded under resting and eyes-closed condition in 15 AD patients and 15 subjects in the control group. The synchronization likelihood of the full-band and alpha-band (8-13 Hz) data were evaluated, which resulted in the synchronization likelihood coefficient matrices. Considering a threshold T, the matrices were converted into binary graphs. Then the graphs of two groups were measured by topological parameters including the clustering coefficient and global efficiency. The results showed that the global efficiency of the network in full-band EEG was significantly smaller in AD group for the values of T = 0.06 and T = 0.07, but there was no statistically significant difference in the clustering coefficients between the two groups for the values of T (0.05-0.07). However, the clustering coefficient and global efficiency were significantly lower in AD patients at alpha-band for the same threshold range than those of subjects in the control group. It suggests that there may be decreases of the brain connectivity strength in AD patients at alpha-band of the resting-state EEG. This study provides a support for quantifying functional brain state of AD from the brain network perspective.

  15. Seasonal and geographical impact on human resting periods.

    PubMed

    Monsivais, Daniel; Bhattacharya, Kunal; Ghosh, Asim; Dunbar, Robin I M; Kaski, Kimmo

    2017-09-06

    We study the influence of seasonally and geographically related daily dynamics of daylight and ambient temperature on human resting or sleeping patterns using mobile phone data of a large number of individuals. We observe two daily inactivity periods in the people's aggregated mobile phone calling patterns and infer these to represent the resting times of the population. We find that the nocturnal resting period is strongly influenced by the length of daylight, and that its seasonal variation depends on the latitude, such that for people living in two different cities separated by eight latitudinal degrees, the difference in the resting periods of people between the summer and winter in southern cities is almost twice that in the northern cities. We also observe that the duration of the afternoon resting period is influenced by the temperature, and that there is a threshold from which this influence sets in. Finally, we observe that the yearly dynamics of the afternoon and nocturnal resting periods appear to be counterbalancing each other. This also lends support to the notion that the total daily resting time of people is more or less conserved across the year.

  16. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.

    PubMed

    Yuan, Han; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2012-05-01

    Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~10s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~100 ms) transient brain states reflected in EEG signals, that are referred to as "microstates". To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These

  17. Characterization of optimal resting tension in human pulmonary arteries

    PubMed Central

    Hussain, Azar; Bennett, Robert T; Chaudhry, Mubarak A; Qadri, Syed S; Cowen, Mike; Morice, Alyn H; Loubani, Mahmoud

    2016-01-01

    AIM To determine the optimum resting tension (ORT) for in vitro human pulmonary artery (PA) ring preparations. METHODS Pulmonary arteries were dissected from disease free sections of the resected lung in the operating theatre and tissue samples were directly sent to the laboratory in Krebs-Henseleit solution (Krebs). The pulmonary arteries were then cut into 2 mm long rings. PA rings were mounted in 25 mL organ baths or 8 mL myograph chambers containing Krebs compound (37 °C, bubbled with 21% O2: 5% CO2) to measure changes in isometric tension. The resting tension was set at 1-gram force (gf) with vessels being left static to equilibrate for duration of one hour. Baseline contractile reactions to 40 mmol/L KCl were obtained from a resting tension of 1 gf. Contractile reactions to 40 mmol/L KCl were then obtained from stepwise increases in resting tension (1.2, 1.4, 1.6, 1.8 and 2.0 gf). RESULTS Twenty PA rings of internal diameter between 2-4 mm were prepared from 4 patients. In human PA rings incrementing the tension during rest stance by 0.6 gf, up to 1.6 gf significantly augmented the 40 mmol/L KCl stimulated tension. Further enhancement of active tension by 0.4 gf, up to 2.0 gf mitigate the 40 mmol/L KCl stimulated reaction. Both Myograph and the organ bath demonstrated identical conclusions, supporting that the radial optimal resting tension for human PA ring was 1.61 g. CONCLUSION The radial optimal resting tension in our experiment is 1.61 gf (15.78 mN) for human PA rings. PMID:27721938

  18. Changes in Brain Resting-state Functional Connectivity Associated with Peripheral Nerve Block: A Pilot Study.

    PubMed

    Melton, M Stephen; Browndyke, Jeffrey N; Harshbarger, Todd B; Madden, David J; Nielsen, Karen C; Klein, Stephen M

    2016-08-01

    Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally

  19. Brain and behavioural evidence for rest-activity cycles in Octopus vulgaris.

    PubMed

    Brown, Euan R; Piscopo, Stefania; De Stefano, Rosanna; Giuditta, Antonio

    2006-09-25

    Octopus vulgaris maintained under a 12/12h light/dark cycle exhibit a pronounced nocturnal activity pattern. Animals deprived of rest during the light period show a marked 'rebound' in activity in the following 24h. 'Active' octopuses attack faster than 'quiet' animals and brain activity recorded electrically intensifies during 'quiet' behaviour. Thus, in Octopus as in vertebrates, brain areas involved in memory or 'higher' processes exhibit 'off-line' activity during rest periods.

  20. Resting State Brain Function Analysis Using Concurrent BOLD in ASL Perfusion fMRI

    PubMed Central

    Zhu, Senhua; Fang, Zhuo; Hu, Siyuan; Wang, Ze; Rao, Hengyi

    2013-01-01

    The past decade has seen astounding discoveries about resting-state brain activity patterns in normal brain as well as their alterations in brain diseases. While the vast majority of resting-state studies are based on the blood-oxygen-level-dependent (BOLD) functional MRI (fMRI), arterial spin labeling (ASL) perfusion fMRI can simultaneously capture BOLD and cerebral blood flow (CBF) signals, providing a unique opportunity for assessing resting brain functions with concurrent BOLD (ccBOLD) and CBF signals. Before taking that benefit, it is necessary to validate the utility of ccBOLD signal for resting-state analysis using conventional BOLD (cvBOLD) signal acquired without ASL modulations. To address this technical issue, resting cvBOLD and ASL perfusion MRI were acquired from a large cohort (n = 89) of healthy subjects. Four widely used resting-state brain function analyses were conducted and compared between the two types of BOLD signal, including the posterior cingulate cortex (PCC) seed-based functional connectivity (FC) analysis, independent component analysis (ICA), analysis of amplitude of low frequency fluctuation (ALFF), and analysis of regional homogeneity (ReHo). Consistent default mode network (DMN) as well as other resting-state networks (RSNs) were observed from cvBOLD and ccBOLD using PCC-FC analysis and ICA. ALFF from both modalities were the same for most of brain regions but were different in peripheral regions suffering from the susceptibility gradients induced signal drop. ReHo showed difference in many brain regions, likely reflecting the SNR and resolution differences between the two BOLD modalities. The DMN and auditory networks showed highest CBF values among all RSNs. These results demonstrated the feasibility of ASL perfusion MRI for assessing resting brain functions using its concurrent BOLD in addition to CBF signal, which provides a potentially useful way to maximize the utility of ASL perfusion MRI. PMID:23750275

  1. REST Controls Self-Renewal and Tumorigenic Competence of Human Glioblastoma Cells

    PubMed Central

    Conti, Luciano; Crisafulli, Laura; Brilli, Elisa; Conforti, Paola; Zunino, Franco; Magrassi, Lorenzo; Schiffer, Davide; Cattaneo, Elena

    2012-01-01

    The Repressor Element 1 Silencing Transcription factor (REST/NRSF) is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM) specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets. PMID:22701651

  2. REST controls self-renewal and tumorigenic competence of human glioblastoma cells.

    PubMed

    Conti, Luciano; Crisafulli, Laura; Caldera, Valentina; Tortoreto, Monica; Brilli, Elisa; Conforti, Paola; Zunino, Franco; Magrassi, Lorenzo; Schiffer, Davide; Cattaneo, Elena

    2012-01-01

    The Repressor Element 1 Silencing Transcription factor (REST/NRSF) is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM) specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets.

  3. Association between resting-state brain network topological organization and creative ability: Evidence from a multiple linear regression model.

    PubMed

    Jiao, Bingqing; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Li, Junchao; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Huang, Ruiwang; Liu, Ming

    2017-09-07

    Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability. Copyright © 2017. Published by Elsevier B.V.

  4. Alcohol affects the brain's resting-state network in social drinkers.

    PubMed

    Lithari, Chrysa; Klados, Manousos A; Pappas, Costas; Albani, Maria; Kapoukranidou, Dorothea; Kovatsi, Leda; Bamidis, Panagiotis D; Papadelis, Christos L

    2012-01-01

    Acute alcohol intake is known to enhance inhibition through facilitation of GABA(A) receptors, which are present in 40% of the synapses all over the brain. Evidence suggests that enhanced GABAergic transmission leads to increased large-scale brain connectivity. Our hypothesis is that acute alcohol intake would increase the functional connectivity of the human brain resting-state network (RSN). To test our hypothesis, electroencephalographic (EEG) measurements were recorded from healthy social drinkers at rest, during eyes-open and eyes-closed sessions, after administering to them an alcoholic beverage or placebo respectively. Salivary alcohol and cortisol served to measure the inebriation and stress levels. By calculating Magnitude Square Coherence (MSC) on standardized Low Resolution Electromagnetic Tomography (sLORETA) solutions, we formed cortical networks over several frequency bands, which were then analyzed in the context of functional connectivity and graph theory. MSC was increased (p<0.05, corrected with False Discovery Rate, FDR corrected) in alpha, beta (eyes-open) and theta bands (eyes-closed) following acute alcohol intake. Graph parameters were accordingly altered in these bands quantifying the effect of alcohol on the structure of brain networks; global efficiency and density were higher and path length was lower during alcohol (vs. placebo, p<0.05). Salivary alcohol concentration was positively correlated with the density of the network in beta band. The degree of specific nodes was elevated following alcohol (vs. placebo). Our findings support the hypothesis that short-term inebriation considerably increases large-scale connectivity in the RSN. The increased baseline functional connectivity can -at least partially- be attributed to the alcohol-induced disruption of the delicate balance between inhibitory and excitatory neurotransmission in favor of inhibitory influences. Thus, it is suggested that short-term inebriation is associated, as expected

  5. Complex network analysis of resting-state fMRI of the brain.

    PubMed

    Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman

    2016-08-01

    Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.

  6. Weak Higher-order Interactions in Macroscopic Functional Networks of the Resting Brain.

    PubMed

    Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan

    2017-09-26

    Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, i.e., higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far whether HOIs exist among brain regions and how they can affect brain's activities remain largely elusive. To address these issues, here we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak, regardless of the network size, topology, degree of spatial proximity, spatial scales and whether the global signal was regressed or not. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model, and also found that HOIs were generally weak within a wide range of key parameters, provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Taken together, our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches.SIGNIFICANCE STATEMENTTo explain how activities of different brain areas are coordinated through interactions is essential to reveal the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied by using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role

  7. Comparative primate neuroimaging: insights into human brain evolution.

    PubMed

    Rilling, James K

    2014-01-01

    Comparative neuroimaging can identify unique features of the human brain and teach us about human brain evolution. Comparisons with chimpanzees, our closest living primate relative, are critical in this endeavor. Structural magnetic resonance imaging (MRI) has been used to compare brain size development, brain structure proportions and brain aging. Positron emission tomography (PET) imaging has been used to compare resting brain glucose metabolism. Functional MRI (fMRI) has been used to compare auditory and visual system pathways, as well as resting-state networks of connectivity. Finally, diffusion-weighted imaging (DWI) has been used to compare structural connectivity. Collectively, these methods have revealed human brain specializations with respect to development, cortical organization, connectivity, and aging. These findings inform our knowledge of the evolutionary changes responsible for the special features of the modern human mind.

  8. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS).

    PubMed

    Fox, Michael D; Halko, Mark A; Eldaief, Mark C; Pascual-Leone, Alvaro

    2012-10-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include using resting state fcMRI to guide target selection for TMS and using TMS to modulate pathological network interactions identified with resting state fcMRI. The combination of TMS and resting state fcMRI has the potential to accelerate the translation of both techniques into the clinical realm and promises a new approach to the diagnosis and treatment of neurological and psychiatric diseases that demonstrate network pathology.

  9. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)

    PubMed Central

    Fox, Michael D.; Halko, Mark A.; Eldaief, Mark C.; Pascual-Leone, Alvaro

    2012-01-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include using resting state fcMRI to guide target selection for TMS and using TMS to modulate pathological network interactions identified with resting state fcMRI. The combination of TMS and resting state fcMRI has the potential to accelerate the translation of both techniques into the clinical realm and promises a new approach to the diagnosis and treatment of neurological and psychiatric diseases that demonstrate network pathology. PMID:22465297

  10. Abnormalities in Resting-State Functional Connectivity in Early Human Immunodeficiency Virus Infection

    PubMed Central

    Wang, Xue; Foryt, Paul; Ochs, Renee; Chung, Jae-Hoon; Wu, Ying; Parrish, Todd

    2011-01-01

    Abstract Limited information is available concerning changes that occur in the brain early in human immunodeficiency virus (HIV) infection. This investigation evaluated resting-state functional connectivity, which is based on correlations of spontaneous blood oxygen level-dependent functional magnetic resonance imaging (fMRI) oscillations between brain regions, in 15 subjects within the first year of HIV infection and in 15 age-matched controls. Resting-state fMRI data for each session were concatenated in time across subjects to create a single 4D dataset and decomposed into 36 independent component analysis (ICA) using Multivariate Exploratory Linear Optimized Decomposition into Independent Components. ICA components were back-reconstructed for each subject's 4D data to estimate subject-specific spatial maps using the dual-regression technique. Comparison of spatial maps between HIV and controls revealed significant differences in the lateral occipital cortex (LOC) network. Reduced coactivation in left inferior parietal cortex within the LOC network was identified in the HIV subjects. Connectivity strength within this region correlated with performance on tasks involving visual-motor coordination (Grooved Pegboard and Rey Figure Copy) in the HIV group. The findings indicate prominent changes in resting-state functional connectivity of visual networks early in HIV infection. This network may sustain injury in association with the intense viremia and brain viral invasion before immune defenses can contain viral replication. Resting-state functional connectivity may have utility as a noninvasive neuroimaging biomarker for central nervous system impairment in early HIV infection. PMID:22433049

  11. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    PubMed

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  12. The development of Human Functional Brain Networks

    PubMed Central

    Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L

    2010-01-01

    Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306

  13. Resting state brain dynamics and its transients: a combined TMS-EEG study.

    PubMed

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-08-04

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.

  14. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    PubMed

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  15. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    PubMed Central

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong

    2015-01-01

    Abstract The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size. PMID:25535788

  16. Regional aerobic glycolysis in the human brain

    PubMed Central

    Vaishnavi, S. Neil; Vlassenko, Andrei G.; Rundle, Melissa M.; Snyder, Abraham Z.; Mintun, Mark A.; Raichle, Marcus E.

    2010-01-01

    Aerobic glycolysis is defined as glucose utilization in excess of that used for oxidative phosphorylation despite sufficient oxygen to completely metabolize glucose to carbon dioxide and water. Aerobic glycolysis is present in the normal human brain at rest and increases locally during increased neuronal activity; yet its many biological functions have received scant attention because of a prevailing energy-centric focus on the role of glucose as substrate for oxidative phosphorylation. As an initial step in redressing this neglect, we measured the regional distribution of aerobic glycolysis with positron emission tomography in 33 neurologically normal young adults at rest. We show that the distribution of aerobic glycolysis in the brain is differentially present in previously well-described functional areas. In particular, aerobic glycolysis is significantly elevated in medial and lateral parietal and prefrontal cortices. In contrast, the cerebellum and medial temporal lobes have levels of aerobic glycolysis significantly below the brain mean. The levels of aerobic glycolysis are not strictly related to the levels of brain energy metabolism. For example, sensory cortices exhibit high metabolic rates for glucose and oxygen consumption but low rates of aerobic glycolysis. These striking regional variations in aerobic glycolysis in the normal human brain provide an opportunity to explore how brain systems differentially use the diverse cell biology of glucose in support of their functional specializations in health and disease. PMID:20837536

  17. Enhanced task related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation.

    PubMed

    Bowtell, Joanna L; Aboo-Bakkar, Zainie; Conway, Myra; Adlam, Anna-Lynne R; Fulford, Jonathan

    2017-03-01

    Blueberries are rich in flavonoids, which possess antioxidant and anti-inflammatory properties. High flavonoid intakes attenuate age-related cognitive decline, but data from human intervention studies are sparse. We investigated whether 12 weeks of blueberry concentrate supplementation improved brain perfusion, task-related activation and cognitive function in healthy older adults. Participants were randomised to consume either 30 ml blueberry concentrate providing 387 mg anthocyanidins (5 female, 7 male; age 67.5±3.0 y; BMI, 25.9±3.3 kg.m-2) or isoenergetic placebo (8 female, 6 male; age 69.0 ±3.3 y; BMI, 27.1±.4.0 kg.m-2). Pre- and post-supplementation, participants undertook a battery of cognitive function tests and a numerical Stroop test within a 1.5T MRI scanner while functional magnetic resonance images (fMRI) were continuously acquired. Quantitative resting brain perfusion was determined using an arterial spin labelling (ASL) technique, and blood biomarkers of inflammation and oxidative stress were measured. Significant increases in brain activity were observed in response to blueberry supplementation relative to the placebo group within Brodmann areas 4/6/10/21/40/44/45, precuneus, anterior cingulate, and insula/thalamus (p<0.001), as well as significant improvements in grey matter perfusion in the parietal (5.0±1.8 vs -2.9±2.4 %, p=0.013) and occipital (8.0±2.6 vs -0.7±3.2 %, p=0.031) lobes. There was also evidence suggesting improvement in working memory (two back test) after blueberry versus placebo supplementation (p=0.05). Supplementation with an anthocyanin rich blueberry concentrate improved brain perfusion and activation in brain areas associated with cognitive function in healthy older adults.

  18. Resting-State Brain Anomalies in Type 2 Diabetes: A Meta-Analysis

    PubMed Central

    Xia, Wenqing; Chen, Yu-Chen; Ma, Jianhua

    2017-01-01

    Resting-state functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in patients with type 2 diabetes mellitus (T2DM). Nonetheless, these findings are heterogeneous and have not been quantitatively reviewed. Thus, we aimed to conduct a meta-analysis that identified consistent results of existing resting-state fMRI studies to determine concordant resting-state neural brain activity alterations in T2DM patients. A systematic search was conducted for resting-state fMRI studies comparing T2DM patients with healthy controls. Coordinates were extracted from clusters with significant differences. The meta-analysis was performed using the activation likelihood estimation method, and nine studies were included. This meta-analysis identified robustly reduced resting-state brain activity in the whole brain of T2DM patients, including the bilateral lingual gyrus, left postcentral gyrus, right inferior temporal gyrus, right cerebellar culmen, right insula and right posterior cingulate cortex (PCC). The present study demonstrates a characteristic pattern of resting-state brain anomalies that will contribute to the understanding of neuropathophysiological mechanisms underlying T2DM. PMID:28197096

  19. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance.

    PubMed

    Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong

    2013-12-01

    Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.

  20. Extracting brain regions from rest fMRI with total-variation constrained dictionary learning.

    PubMed

    Abraham, Alexandre; Dohmatob, Elvis; Thirion, Bertrand; Samaras, Dimitris; Varoquaux, Gael

    2013-01-01

    Spontaneous brain activity reveals mechanisms of brain function and dysfunction. Its population-level statistical analysis based on functional images often relies on the definition of brain regions that must summarize efficiently the covariance structure between the multiple brain networks. In this paper, we extend a network-discovery approach, namely dictionary learning, to readily extract brain regions. To do so, we introduce a new tool drawing from clustering and linear decomposition methods by carefully crafting a penalty. Our approach automatically extracts regions from rest fMRI that better explain the data and are more stable across subjects than reference decomposition or clustering methods.

  1. Altered Resting State Brain Networks in Parkinson’s Disease

    PubMed Central

    Göttlich, Martin; Münte, Thomas F.; Heldmann, Marcus; Kasten, Meike; Hagenah, Johann; Krämer, Ulrike M.

    2013-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37) compared to healthy controls (n = 20). Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine), but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence of

  2. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study.

    PubMed

    Bosma, I; Stam, C J; Douw, L; Bartolomei, F; Heimans, J J; van Dijk, B W; Postma, T J; Klein, M; Reijneveld, J C

    2008-05-01

    In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity compared to healthy controls and that particularly global slowing correlates with neurocognitive dysfunction. Resting state MEG recordings were obtained from 17 LGG patients and 17 age-, sex-, and education-matched healthy controls. Relative spectral power was calculated in the delta, theta, upper and lower alpha, beta, and gamma frequency band. A battery of standardized neurocognitive tests measuring 6 neurocognitive domains was administered. LGG patients showed a slowing of the resting state brain activity when compared to healthy controls. Decrease in relative power was mainly found in the gamma frequency band in the bilateral frontocentral MEG regions, whereas an increase in relative power was found in the theta frequency band in the left parietal region. An increase of the relative power in the theta and lower alpha band correlated with impaired executive functioning, information processing, and working memory. LGG patients are characterized by global slowing of their resting state brain activity and this slowing phenomenon correlates with the observed neurocognitive deficits.

  3. Resting State Brain Connectivity After Surgical and Behavioral Weight Loss

    PubMed Central

    Lepping, Rebecca J.; Bruce, Amanda S.; Francisco, Alex; Yeh, Hung-Wen; Martin, Laura E.; Powell, Joshua N.; Hancock, Laura; Patrician, Trisha M.; Breslin, Florence J.; Selim, Niazy; Donnelly, Joseph E.; Brooks, William M.; Savage, Cary R.; Simmons, W. Kyle; Bruce, Jared M.

    2015-01-01

    OBJECTIVE We previously reported changes in food-cue neural reactivity associated with behavioral and surgical weight loss interventions. Resting functional connectivity represents tonic neural activity that may contribute to weight loss success. Here we explore whether intervention type is associated with differences in functional connectivity after weight loss. METHODS Fifteen obese participants were recruited prior to adjustable gastric banding surgery. Thirteen demographically matched obese participants were selected from a separate behavioral diet intervention. Resting state fMRI was collected three months after surgery/behavioral intervention. ANOVA was used to examine post-weight loss differences between the two groups in connectivity to seed regions previously identified as showing differential cue-reactivity after weight loss. RESULTS Following weight loss, behavioral dieters exhibited increased connectivity between left precuneus/superior parietal lobule (SPL) and bilateral insula pre- to post-meal and bariatric patients exhibited decreased connectivity between these regions pre- to post-meal (pcorrected<.05). CONCLUSIONS Behavioral dieters showed increased connectivity pre- to post-meal between a region associated with processing of self-referent information (precuneus/SPL) and a region associated with interoception (insula) whereas bariatric patients showed decreased connectivity between these regions. This may reflect increased attention to hunger signals following surgical procedures, and increased attention to satiety signals following behavioral diet interventions. PMID:26053145

  4. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    PubMed

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  5. Exploration of the Brain in Rest: Resting-State Functional MRI Abnormalities in Patients with Classic Galactosemia.

    PubMed

    van Erven, Britt; Jansma, Bernadette M; Rubio-Gozalbo, M Estela; Timmers, Inge

    2017-08-22

    Patients with classic galactosemia, a genetic metabolic disorder, encounter cognitive impairments, including motor (speech), language, and memory deficits. We used functional magnetic resonance imaging to evaluate spontaneous functional connectivity during rest to investigate potential abnormalities in neural networks. We characterized networks using seed-based correlation analysis in 13 adolescent patients and 13 matched controls. Results point towards alterations in several networks, including well-known resting-state networks (e.g. default mode, salience, visual network). Particularly, patients showed alterations in networks encompassing medial prefrontal cortex, parietal lobule and (pre)cuneus, involved in spatial orientation and attention. Furthermore, altered connectivity of networks including the insula and superior frontal gyrus -important for sensory-motor integration and motor (speech) planning- was demonstrated. Lastly, abnormalities were found in networks involving occipital regions, linked to visuospatial capacities and working memory. Importantly, across several seeds, altered functional connectivity to the superior frontal cortex, anterior insula, parietal lobule and the (pre)cuneus was observed in patients, suggesting special importance of these brain regions. Moreover, these alterations correlated with neurocognitive test results, supporting a relation with the clinical phenotype. Our findings contribute to improved characterization of brain impairments in classic galactosemia and provide directions for further investigations.

  6. Information gain in the brain's resting state: A new perspective on autism

    PubMed Central

    Pérez Velázquez, José L.; Galán, Roberto F.

    2013-01-01

    Along with the study of brain activity evoked by external stimuli, an increased interest in the research of background, “noisy” brain activity is fast developing in current neuroscience. It is becoming apparent that this “resting-state” activity is a major factor determining other, more particular, responses to stimuli and hence it can be argued that background activity carries important information used by the nervous systems for adaptive behaviors. In this context, we investigated the generation of information in ongoing brain activity recorded with magnetoencephalography (MEG) in children with autism spectrum disorder (ASD) and non-autistic children. Using a stochastic dynamical model of brain dynamics, we were able to resolve not only the deterministic interactions between brain regions, i.e., the brain's functional connectivity, but also the stochastic inputs to the brain in the resting state; an important component of large-scale neural dynamics that no other method can resolve to date. We then computed the Kullback-Leibler (KLD) divergence, also known as information gain or relative entropy, between the stochastic inputs and the brain activity at different locations (outputs) in children with ASD compared to controls. The divergence between the input noise and the brain's ongoing activity extracted from our stochastic model was significantly higher in autistic relative to non-autistic children. This suggests that brains of subjects with autism create more information at rest. We propose that the excessive production of information in the absence of relevant sensory stimuli or attention to external cues underlies the cognitive differences between individuals with and without autism. We conclude that the information gain in the brain's resting state provides quantitative evidence for perhaps the most typical characteristic in autism: withdrawal into one's inner world. PMID:24399963

  7. Biomarkers of Dose and Effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats

    EPA Science Inventory

    Background: Human controlled exposure studies have generally focused on subjects exposed to ozone (O3) while exercising while exposures in rats have been done at rest. We exposed resting subjects to labeled O3 (18O3, 0.4 ppm, for 2 hr) and compared O3 dose and effects with our...

  8. Biomarkers of Dose and Effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats

    EPA Science Inventory

    Background: Human controlled exposure studies have generally focused on subjects exposed to ozone (O3) while exercising while exposures in rats have been done at rest. We exposed resting subjects to labeled O3 (18O3, 0.4 ppm, for 2 hr) and compared O3 dose and effects with our...

  9. Description and prediction of resting metabolic rate after stroke and traumatic brain injury.

    PubMed

    Frankenfield, David C; Ashcraft, Christine M

    2012-09-01

    To compare the effect of stroke on the metabolic rate compared with the effect of traumatic brain injury and to determine whether the metabolic rate is predictable in both types of brain injury. Indirect calorimetry was conducted prospectively in mechanically ventilated patients within the first 6 d of admission to a critical care unit owing to ischemic stroke, hemorrhagic stroke, isolated traumatic brain injury, or traumatic brain injury with collateral injuries. Clinical data were collected simultaneously and a predicted value of the resting metabolic rate was calculated using the Penn State equation (using body size, body temperature, and minute ventilation). One hundred thirty patients were measured. Ischemic stroke showed a lower incidence of fever, a lower body temperature, and a lower resting metabolic rate than the other groups; whereas in hemorrhagic stroke, these variables were similar to the trauma groups. Sedation decreased the resting metabolic rate, but this effect seemed particular to the trauma patients. The Penn State equation predicted the resting metabolic rate accurately 72% of the time, and when its component variables of body temperature and minute ventilation were controlled in an analysis of variance, all the differences among the brain injury and sedation groups were eliminated. Stroke is a hypermetabolic event most of the time. Body size, temperature, and minute ventilation explain most of the variation in the resting metabolic rate after traumatic and non-traumatic brain injuries. The Penn State equation therefore predicts the resting metabolic rate in brain-injured patients no matter the mechanism of injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    PubMed

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Brain correlates of hypnotic paralysis-a resting-state fMRI study.

    PubMed

    Pyka, M; Burgmer, M; Lenzen, T; Pioch, R; Dannlowski, U; Pfleiderer, B; Ewert, A W; Heuft, G; Arolt, V; Konrad, C

    2011-06-15

    Hypnotic paralysis has been used since the times of Charcot to study altered states of consciousness; however, the underlying neurobiological correlates are poorly understood. We investigated human brain function during hypnotic paralysis using resting-state functional magnetic resonance imaging (fMRI), focussing on two core regions of the default mode network and the representation of the paralysed hand in the primary motor cortex. Hypnotic suggestion induced an observable left-hand paralysis in 19 participants. Resting-state fMRI at 3T was performed in pseudo-randomised order awake and in the hypnotic condition. Functional connectivity analyses revealed increased connectivity of the precuneus with the right dorsolateral prefrontal cortex, angular gyrus, and a dorsal part of the precuneus. Functional connectivity of the medial frontal cortex and the primary motor cortex remained unchanged. Our results reveal that the precuneus plays a pivotal role during maintenance of an altered state of consciousness. The increased coupling of selective cortical areas with the precuneus supports the concept that hypnotic paralysis may be mediated by a modified representation of the self which impacts motor abilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Temporal Non-Local Means Filtering Reveals Real-Time Whole-Brain Cortical Interactions in Resting fMRI.

    PubMed

    Bhushan, Chitresh; Chong, Minqi; Choi, Soyoung; Joshi, Anand A; Haldar, Justin P; Damasio, Hanna; Leahy, Richard M

    2016-01-01

    Intensity variations over time in resting BOLD fMRI exhibit spatial correlation patterns consistent with a set of large scale cortical networks. However, visualizations of this data on the brain surface, even after extensive preprocessing, are dominated by local intensity fluctuations that obscure larger scale behavior. Our novel adaptation of non-local means (NLM) filtering, which we refer to as temporal NLM or tNLM, reduces these local fluctuations without the spatial blurring that occurs when using standard linear filtering methods. We show examples of tNLM filtering that allow direct visualization of spatio-temporal behavior on the cortical surface. These results reveal patterns of activity consistent with known networks as well as more complex dynamic changes within and between these networks. This ability to directly visualize brain activity may facilitate new insights into spontaneous brain dynamics. Further, temporal NLM can also be used as a preprocessor for resting fMRI for exploration of dynamic brain networks. We demonstrate its utility through application to graph-based functional cortical parcellation. Simulations with known ground truth functional regions demonstrate that tNLM filtering prior to parcellation avoids the formation of false parcels that can arise when using linear filtering. Application to resting fMRI data from the Human Connectome Project shows significant improvement, in comparison to linear filtering, in quantitative agreement with functional regions identified independently using task-based experiments as well as in test-retest reliability.

  13. Temporal Non-Local Means Filtering Reveals Real-Time Whole-Brain Cortical Interactions in Resting fMRI

    PubMed Central

    Bhushan, Chitresh; Chong, Minqi; Choi, Soyoung; Joshi, Anand A.; Haldar, Justin P.; Damasio, Hanna; Leahy, Richard M.

    2016-01-01

    Intensity variations over time in resting BOLD fMRI exhibit spatial correlation patterns consistent with a set of large scale cortical networks. However, visualizations of this data on the brain surface, even after extensive preprocessing, are dominated by local intensity fluctuations that obscure larger scale behavior. Our novel adaptation of non-local means (NLM) filtering, which we refer to as temporal NLM or tNLM, reduces these local fluctuations without the spatial blurring that occurs when using standard linear filtering methods. We show examples of tNLM filtering that allow direct visualization of spatio-temporal behavior on the cortical surface. These results reveal patterns of activity consistent with known networks as well as more complex dynamic changes within and between these networks. This ability to directly visualize brain activity may facilitate new insights into spontaneous brain dynamics. Further, temporal NLM can also be used as a preprocessor for resting fMRI for exploration of dynamic brain networks. We demonstrate its utility through application to graph-based functional cortical parcellation. Simulations with known ground truth functional regions demonstrate that tNLM filtering prior to parcellation avoids the formation of false parcels that can arise when using linear filtering. Application to resting fMRI data from the Human Connectome Project shows significant improvement, in comparison to linear filtering, in quantitative agreement with functional regions identified independently using task-based experiments as well as in test-retest reliability. PMID:27391481

  14. Immanuel Kant's mind and the brain's resting state.

    PubMed

    Northoff, Georg

    2012-07-01

    The early philosopher Immanuel Kant suggested that the mind’s intrinsic features are intimately linked to the extrinsic stimuli of the environment it processes. Currently, the field faces an analogous problem with regard to the brain. Kant’s ideas may provide novel insights into how the brain’s intrinsic features must be so that they can be linked to the neural processing of extrinsic stimuli to enable the latter’s association with consciousness and self.

  15. Resting state brain dynamics and its transients: a combined TMS-EEG study

    PubMed Central

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-01-01

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain’s relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks. PMID:27488504

  16. Influence of Anodal Transcranial Direct Current Stimulation (tDCS) over the Right Angular Gyrus on Brain Activity during Rest

    PubMed Central

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013

  17. Metabolic Brain Covariant Networks as Revealed by FDG-PET with Reference to Resting-State fMRI Networks

    PubMed Central

    Di, Xin

    2012-01-01

    Abstract The human brain is inherently organized as separate networks, as has been widely revealed by resting-state functional magnetic resonance imaging (fMRI). Although the large-scale functional connectivity can be partially explained by the underlying white-matter structural connectivity, the question of whether the underlying functional connectivity is related to brain metabolic factors is still largely unanswered. The present study investigated the presence of metabolic covariant networks across subjects using a set of fluorodeoxyglucose (18F, FDG) positron-emission tomography (PET) images. Spatial-independent component analysis was performed on the subject series of FDG-PET images. A number of networks that were mainly homotopic regions could be identified, including visual, auditory, motor, cerebellar, and subcortical networks. However, the anterior-posterior networks such as the default-mode and left frontoparietal networks could not be observed. Region-of-interest-based correlation analysis confirmed that the intersubject metabolic covariances within the default-mode and left frontoparietal networks were reduced as compared with corresponding time-series correlations using resting-state fMRI from an independent sample. In contrast, homotopic intersubject metabolic covariances observed using PET were comparable to the corresponding fMRI resting-state time-series correlations. The current study provides preliminary illustration, suggesting that the human brain metabolism pertains to organized covariance patterns that might partially reflect functional connectivity as revealed by resting-state blood oxygen level dependent (BOLD). The discrepancy between the PET covariance and BOLD functional connectivity might reflect the differences of energy consumption coupling and ongoing neural synchronization within these brain networks. PMID:23025619

  18. Independent component analysis of EEG dipole source localization in resting and action state of brain

    NASA Astrophysics Data System (ADS)

    Almurshedi, Ahmed; Ismail, Abd Khamim

    2015-04-01

    EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.

  19. Fatigue during acute isovolemic anemiain healthy, resting humans.

    PubMed

    Toy, P; Feiner, J; Viele, M K; Watson, J; Yeap, H; Weiskopf, R B

    2000-04-01

    Transfusion guidelines recommend that clinicians assess patients for signs and symptoms of anemia before the transfusion of RBCs. However, studies of signs and symptoms associated with acute isovolemic anemia are limited. The objective of this study was to determine whether acute reduction of Hb concentration to 5 g per dL would result in fatigue, tachycardia, or hypotension in resting, young, healthy, isovolemic humans, and whether changes were reversible with RBC transfusion. Conscious, resting, healthy adults less than 35 years old (n = 8) underwent acute isovolemic hemodilution to Hb of 5 g per dL and self-scored their energy level at various Hb concentrations. Heart rate and blood pressure were also measured. For controls, measurements of each subject were made during a comparable period of rest without hemodilution. During acute isovolemic hemodilution, energy levels decreased progressively and were lower at Hb of 7, 6, and 5 g per dL than at baseline (p<0.01) or in control sessions (p<0.05). The energy level was lower at Hb 7 g per dL than at 14 ( p = 0.005), lower at Hb 6 g per dL than at 7 (p = 0.01), and lower at Hb 5 g per dL than at 6 (p =0.01). Energy levels rose and were not different from baseline or control levels after transfusion of all autologous RBCs. Similarly, median heart rate increased with hemodilution to Hb of 7, 6, and 5 g per dL and decreased with transfusion of autologous RBCs. Supine blood pressure did not decrease with isovolemic hemodilution. In resting, young, healthy humans, acute isovolemic anemia to Hb levels of 7, 6, and 5 g per dL results in decreased self-scored energy levels and in an increase in heart rate but not in hypotension. Changes in energy and heart rate are reversible with the transfusion of autologous RBCs.

  20. Acupuncture modulates resting state connectivity in default and sensorimotor brain networks.

    PubMed

    Dhond, Rupali P; Yeh, Calvin; Park, Kyungmo; Kettner, Norman; Napadow, Vitaly

    2008-06-01

    Previous studies have defined low-frequency, spatially consistent networks in resting fMRI data which may reflect functional connectivity. We sought to explore how a complex somatosensory stimulation, acupuncture, influences intrinsic connectivity in two of these networks: the default mode network (DMN) and sensorimotor network (SMN). We analyzed resting fMRI data taken before and after verum and sham acupuncture. Electrocardiography data were used to infer autonomic modulation through measures of heart rate variability (HRV). Probabilistic independent component analysis was used to separate resting fMRI data into DMN and SMN components. Following verum, but not sham, acupuncture there was increased DMN connectivity with pain (anterior cingulate cortex (ACC), periaqueductal gray), affective (amygdala, ACC), and memory (hippocampal formation, middle temporal gyrus) related brain regions. Furthermore, increased DMN connectivity with the hippocampal formation, a region known to support memory and interconnected with autonomic brain regions, was negatively correlated with acupuncture-induced increase in a sympathetic related HRV metric (LFu), and positively correlated with a parasympathetic related metric (HFu). Following verum, but not sham, acupuncture there was also increased SMN connectivity with pain-related brain regions (ACC, cerebellum). We attribute differences between verum and sham acupuncture to more varied and stronger sensations evoked by verum acupuncture. Our results demonstrate for the first time that acupuncture can enhance the post-stimulation spatial extent of resting brain networks to include anti-nociceptive, memory, and affective brain regions. This modulation and sympathovagal response may relate to acupuncture analgesia and other potential therapeutic effects.

  1. Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates.

    PubMed

    Chen, Li Min; Yang, Pai-Feng; Wang, Feng; Mishra, Arabinda; Shi, Zhaoyue; Wu, Ruiqi; Wu, Tung-Lin; Wilson, George H; Ding, Zhaohua; Gore, John C

    2017-06-01

    Functional MRI (fMRI) has evolved from simple observations of regional changes in MRI signals caused by cortical activity induced by a task or stimulus, to task-free acquisitions of images in a resting state. Such resting state signals contain low frequency fluctuations which may be correlated between voxels, and strongly correlated regions are deemed to reflect functional connectivity within synchronized circuits. Resting state functional connectivity (rsFC) measures have been widely adopted by the neuroscience community, and are being used and interpreted as indicators of intrinsic neural circuits and their functional states in a broad range of applications, both basic and clinical. However, there has been relatively little work reported that validates whether inter-regional correlations in resting state fluctuations of fMRI (rsfMRI) signals actually measure functional connectivity between brain regions, or to establish how MRI data correlate with other metrics of functional connectivity. In this mini-review, we summarize recent studies of rsFC within mesoscopic scale cortical networks (100μm-10mm) within a well defined functional region of primary somatosensory cortex (S1), as well as spinal cord and brain white matter in non-human primates, in which we have measured spatial patterns of resting state correlations and validated their interpretation with electrophysiological signals and anatomic connections. Moreover, we emphasize that low frequency correlations are a general feature of neural systems, as evidenced by their presence in the spinal cord as well as white matter. These studies demonstrate the valuable role of high field MRI and invasive measurements in an animal model to inform the interpretation of human imaging studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Expertise modulates local regional homogeneity of spontaneous brain activity in the resting brain: an fMRI study using the model of skilled acupuncturists.

    PubMed

    Dong, Minghao; Qin, Wei; Zhao, Ling; Yang, Xuejuan; Yuan, Kai; Zeng, Fang; Sun, Jinbo; Yu, Dahua; von Deneen, Karen M; Liang, Fanrong; Tian, Jie

    2014-03-01

    Studies on training/expertise-related effects on human brain in context of neuroplasticity have revealed that plastic changes modulate not only task activations but also patterns and strength of internetworks and intranetworks functional connectivity in the resting state. Much has known about plastic changes in resting state on global level; however, how training/expertise-related effect affects patterns of local spontaneous activity in resting brain remains elusive. We investigated the homogeneity of local blood oxygen level-dependent fluctuations in the resting state using a regional homogeneity (ReHo) analysis among 16 acupuncturists and 16 matched nonacupuncturists (NA). To prove acupuncturists' expertise, we used a series of psychophysical tests. Our results demonstrated that, acupuncturists significantly outperformed NA in tactile-motor and emotional regulation domain and the acupuncturist group showed increased coherence in local BOLD signal fluctuations in the left primary motor cortex (MI), the left primary somatosensory cortex (SI) and the left ventral medial prefrontal cortex/orbitofrontal cortex (VMPFC/OFC). Regression analysis displayed that, in the acupuncturists group, ReHo of VMPFC/OFC could predict behavioral outcomes, evidenced by negative correlation between unpleasantness ratings and ReHo of VMPFC/OFC and ReHo of SI and MI positively correlated with the duration of acupuncture practice. We suggest that expertise could modulate patterns of local resting state activity by increasing regional clustering strength, which is likely to contribute to advanced local information processing efficiency. Our study completes the understanding of neuroplasticity changes by adding the evidence of local resting state activity alterations, which is helpful for elucidating in what manner training effect extends beyond resting state.

  3. Distributed effects of methylphenidate on the network structure of the resting brain: a connectomic pattern classification analysis.

    PubMed

    Sripada, Chandra Sekhar; Kessler, Daniel; Welsh, Robert; Angstadt, Michael; Liberzon, Israel; Phan, K Luan; Scott, Clayton

    2013-11-01

    Methylphenidate is a psychostimulant medication that produces improvements in functions associated with multiple neurocognitive systems. To investigate the potentially distributed effects of methylphenidate on the brain's intrinsic network architecture, we coupled resting state imaging with multivariate pattern classification. In a within-subject, double-blind, placebo-controlled, randomized, counterbalanced, cross-over design, 32 healthy human volunteers received either methylphenidate or placebo prior to two fMRI resting state scans separated by approximately one week. Resting state connectomes were generated by placing regions of interest at regular intervals throughout the brain, and these connectomes were submitted for support vector machine analysis. We found that methylphenidate produces a distributed, reliably detected, multivariate neural signature. Methylphenidate effects were evident across multiple resting state networks, especially visual, somatomotor, and default networks. Methylphenidate reduced coupling within visual and somatomotor networks. In addition, default network exhibited decoupling with several task positive networks, consistent with methylphenidate modulation of the competitive relationship between these networks. These results suggest that connectivity changes within and between large-scale networks are potentially involved in the mechanisms by which methylphenidate improves attention functioning.

  4. Resting-State Brain Abnormalities in Chronic Subjective Tinnitus: A Meta-Analysis

    PubMed Central

    Chen, Yu-Chen; Wang, Fang; Wang, Jie; Bo, Fan; Xia, Wenqing; Gu, Jian-Ping; Yin, Xindao

    2017-01-01

    Purpose: The neural mechanisms that give rise to the phantom sound of tinnitus have not been fully elucidated. Neuroimaging studies have revealed abnormalities in resting-state activity that could represent the neural signature of tinnitus, but there is considerable heterogeneity in the data. To address this issue, we conducted a meta-analysis of published neuroimaging studies aimed at identifying a common core of resting-state brain abnormalities in tinnitus patients. Methods: A systematic search was conducted for whole-brain resting-state neuroimaging studies with SPECT, PET and functional MRI that compared chronic tinnitus patients with healthy controls. The authors searched PubMed, Science Direct, Web of Knowledge and Embase databases for neuroimaging studies on tinnitus published up to September 2016. From each study, coordinates were extracted from clusters with significant differences between tinnitus subjects and controls. Meta-analysis was performed using the activation likelihood estimation (ALE) method. Results: Data were included from nine resting-state neuroimaging studies that reported a total of 51 distinct foci. The meta-analysis identified consistent regions of increased resting-state brain activity in tinnitus patients relative to controls that included, bilaterally, the insula, middle temporal gyrus (MTG), inferior frontal gyrus (IFG), parahippocampal gyrus, cerebellum posterior lobe and right superior frontal gyrus. Moreover, decreased brain activity was only observed in the left cuneus and right thalamus. Conclusions: The current meta-analysis is, to our knowledge, the first to demonstrate a characteristic pattern of resting-state brain abnormalities that may serve as neuroimaging markers and contribute to the understanding of neuropathophysiological mechanisms for chronic tinnitus. PMID:28174532

  5. Resting-State Brain Abnormalities in Chronic Subjective Tinnitus: A Meta-Analysis.

    PubMed

    Chen, Yu-Chen; Wang, Fang; Wang, Jie; Bo, Fan; Xia, Wenqing; Gu, Jian-Ping; Yin, Xindao

    2017-01-01

    Purpose: The neural mechanisms that give rise to the phantom sound of tinnitus have not been fully elucidated. Neuroimaging studies have revealed abnormalities in resting-state activity that could represent the neural signature of tinnitus, but there is considerable heterogeneity in the data. To address this issue, we conducted a meta-analysis of published neuroimaging studies aimed at identifying a common core of resting-state brain abnormalities in tinnitus patients. Methods: A systematic search was conducted for whole-brain resting-state neuroimaging studies with SPECT, PET and functional MRI that compared chronic tinnitus patients with healthy controls. The authors searched PubMed, Science Direct, Web of Knowledge and Embase databases for neuroimaging studies on tinnitus published up to September 2016. From each study, coordinates were extracted from clusters with significant differences between tinnitus subjects and controls. Meta-analysis was performed using the activation likelihood estimation (ALE) method. Results: Data were included from nine resting-state neuroimaging studies that reported a total of 51 distinct foci. The meta-analysis identified consistent regions of increased resting-state brain activity in tinnitus patients relative to controls that included, bilaterally, the insula, middle temporal gyrus (MTG), inferior frontal gyrus (IFG), parahippocampal gyrus, cerebellum posterior lobe and right superior frontal gyrus. Moreover, decreased brain activity was only observed in the left cuneus and right thalamus. Conclusions: The current meta-analysis is, to our knowledge, the first to demonstrate a characteristic pattern of resting-state brain abnormalities that may serve as neuroimaging markers and contribute to the understanding of neuropathophysiological mechanisms for chronic tinnitus.

  6. Resting functional connectivity in patients with brain tumors in eloquent areas

    PubMed Central

    Martino, Juan; Honma, Susanne M.; Findlay, Anne M.; Guggisberg, Adrian G.; Kirsch, Heidi E.; Berger, Mitchel S.; Nagarajan, Srikantan S.

    2014-01-01

    Objective Resection of brain tumors adjacent to eloquent areas represents a challenge in neurosurgery. If maximal resection is desired without inducing postoperative neurological deficits, a detailed knowledge of the functional topography in and around the tumor is crucial. The aim of the present work is to evaluate the value of preoperative magnetoencephalography (MEG) imaging of functional connectivity to predict the results of intraoperative electrical stimulation (IES) mapping, the clinical gold standard for neurosurgical localization of functional areas. Methods Resting-state whole-cortex MEG recordings were obtained from 57 consecutive subjects with focal brain tumors near or within motor, sensory or language areas. Neural activity was estimated using adaptive spatial filtering algorithms, and the mean imaginary coherence between the rest of the brain and voxels in and around brain tumors were compared to the mean imaginary coherence between the rest of the brain and contralesional voxels as an index of functional connectivity. IES mapping was performed in all subjects. The cortical connectivity pattern near the tumor was compared to IES results. Results Maps with decreased resting-state functional connectivity in the entire tumor area had a negative predictive value of 100% for absence of eloquent cortex during IES. Maps showing increased resting-state functional connectivity within the tumor area had a positive predictive value of 64% for finding language, motor or sensory cortical sites during IES mapping. Interpretation Preoperative resting state MEG connectivity analysis is a useful noninvasive tool to evaluate the functionality of the tissue surrounding tumors within eloquent areas, and could potentially contribute to surgical planning and patient counseling. PMID:21400562

  7. Efficiency of a "small-world" brain network depends on consciousness level: a resting-state FMRI study.

    PubMed

    Uehara, Taira; Yamasaki, Takao; Okamoto, Tsuyoshi; Koike, Takahiko; Kan, Shigeyuki; Miyauchi, Satoru; Kira, Jun-Ichi; Tobimatsu, Shozo

    2014-06-01

    It has been revealed that spontaneous coherent brain activity during rest, measured by functional magnetic resonance imaging (fMRI), self-organizes a "small-world" network by which the human brain could sustain higher communication efficiency across global brain regions with lower energy consumption. However, the state-dependent dynamics of the network, especially the dependency on the conscious state, remain poorly understood. In this study, we conducted simultaneous electroencephalographic recording with resting-state fMRI to explore whether functional network organization reflects differences in the conscious state between an awake state and stage 1 sleep. We then evaluated whole-brain functional network properties with fine spatial resolution (3781 regions of interest) using graph theoretical analysis. We found that the efficiency of the functional network evaluated by path length decreased not only at the global level, but also in several specific regions depending on the conscious state. Furthermore, almost two-thirds of nodes that showed a significant decrease in nodal efficiency during stage 1 sleep were categorized as the default-mode network. These results suggest that brain functional network organizations are dynamically optimized for a higher level of information integration in the fully conscious awake state, and that the default-mode network plays a pivotal role in information integration for maintaining conscious awareness.

  8. Subspace-based Identification Algorithm for characterizing causal networks in resting brain.

    PubMed

    Kadkhodaeian Bakhtiari, Shahab; Hossein-Zadeh, Gholam-Ali

    2012-04-02

    The resting brain has been extensively investigated for low frequency synchrony between brain regions, namely Functional Connectivity (FC). However the other main stream of brain connectivity analysis that seeks causal interactions between brain regions, Effective Connectivity (EC), has been little explored. Inherent complexity of brain activities in resting-state, as observed in BOLD (Blood Oxygenation-Level Dependant) fluctuations, calls for exploratory methods for characterizing these causal networks. On the other hand, the inevitable effects that hemodynamic system imposes on causal inferences in fMRI data, lead us toward the methods in which causal inferences can take place in latent neuronal level, rather than observed BOLD time-series. To simultaneously satisfy these two concerns, in this paper, we introduce a novel state-space system identification approach for studying causal interactions among brain regions in the absence of explicit cognitive task. This algorithm is a geometrically inspired method for identification of stochastic systems, purely based on output observations. Using extensive simulations, three aspects of our proposed method are investigated: ability in discriminating existent interactions from non-existent ones, the effect of observation noise, and downsampling on algorithm performance. Our simulations demonstrate that Subspace-based Identification Algorithm (SIA) is sufficiently robust against above-mentioned factors, and can reliably uncover the underlying causal interactions of resting-state fMRI. Furthermore, in contrast to previously established state-space approaches in Effective Connectivity studies, this method is able to characterize causal networks with large number of brain regions. In addition, we utilized the proposed algorithm for identification of causal relationships underlying anti-correlation of default-mode and Dorsal Attention Networks during the rest, using fMRI. We observed that Default-Mode Network places in a

  9. Resting state functional connectivity changes induced by prior brain state are not network specific.

    PubMed

    Tailby, Chris; Masterton, Richard A J; Huang, Jenny Y; Jackson, Graeme D; Abbott, David F

    2015-02-01

    Resting state functional connectivity (rFC) is used to identify functionally related brain areas without requiring subjects to perform specific tasks. Previous work suggests that prior brain state, as determined by the activity engaged in immediately prior to collection of resting state data, can influence the networks recovered by rFC analyses. We determined the prevalence and network specificity of rFC changes induced by manipulations of prior state (including an unstructured (unconstrained) state, and language and motor tasks). Three blocks of rest data (one after each of the specified prior states) were acquired on each of 25 subjects. We hypothesised that prior state induced changes in rFC would be greatest within the networks most actively recruited by that prior state. Changes in rFC were greatest following the motor task and, contrary to our hypothesis, were not network specific. This was demonstrated by comparing (1) the timecourses within a set of ROIs selected on the basis of task-related de/activation, and (2) seed-based whole brain voxel-wise connectivity maps, seeded from local maxima in the task-related de/activation maps. Changes in connectivity strength tended to manifest as increases in rFC relative to that in the unstructured rest state, with change maps resembling partially complete maps of the primary sensory cortices and the cognitive control network. The majority of rFC changes occurred in areas moderately (but not weakly) connected to the seeds. Constrained prior states were associated with lower across-participant variance in rFC. This systematic investigation of the effect of prior brain state on rFC indicates that the rFC changes induced by prior brain state occur both in brain networks related to that brain activity and in networks nominally unrelated to that brain activity.

  10. Resting-state brain networks revealed by granger causal connectivity in frogs.

    PubMed

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-10-15

    Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. Specifically (1) ascending causal connections from the left mesencephalon to both sides of the telencephalon are significantly higher than those from the right mesencephalon, while the right telencephalon gives rise to the strongest efferent projections among all brain regions; (2) causal connections from the left mesencephalon in females are significantly higher than those in males and (3) these connections are similar during both the high and low behavioral activity phases in this species although almost all electroencephalograph (EEG) spectral bands showed higher power in the high activity phase for all nodes. The functional features of this network match important characteristics of auditory perception in this species. Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Sex differences in resting state brain function of cigarette smokers and links to nicotine dependence.

    PubMed

    Beltz, Adriene M; Berenbaum, Sheri A; Wilson, Stephen J

    2015-08-01

    Sex--a marker of biological and social individual differences--matters for drug use, particularly for cigarette smoking, which is the leading cause of preventable death in the United States. More men than women smoke, but women are less likely than men to quit. Resting state brain function, or intrinsic brain activity that occurs in the absence of a goal-directed task, is important for understanding cigarette smoking, as it has been shown to differentiate between smokers and nonsmokers. But, it is unclear whether and how sex influences the link between resting state brain function and smoking behavior. In this study, the authors demonstrate that sex is indeed associated with resting state connectivity in cigarette smokers, and that sex moderates the link between resting state connectivity and self-reported nicotine dependence. Using functional MRI and behavioral data from 50 adult daily smokers (23 women), the authors found that women had greater connectivity than men within the default mode network, and that increased connectivity within the reward network was related to increased nicotine tolerance in women but to decreased nicotine tolerance in men. Findings highlight the importance of sex-related individual differences reflected in resting state connectivity for understanding the etiology and treatment of substance use problems.

  12. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory

    PubMed Central

    Chen, Wen; Chen, Chunhui; Xia, Mingrui; Wu, Karen; Chen, Chuansheng; He, Qinghua; Xue, Gui; Wang, Wenjing; He, Yong; Dong, Qi

    2016-01-01

    Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo). PMID:27853425

  13. Resting-state functional brain connectivity: lessons from functional near-infrared spectroscopy.

    PubMed

    Niu, Haijing; He, Yong

    2014-04-01

    Resting-state functional near-infrared spectroscopy (R-fNIRS) is an active area of interest and is currently attracting considerable attention as a new imaging tool for the study of resting-state brain function. Using variations in hemodynamic concentration signals, R-fNIRS measures the brain's low-frequency spontaneous neural activity, combining the advantages of portability, low-cost, high temporal sampling rate and less physical burden to participants. The temporal synchronization of spontaneous neuronal activity in anatomically separated regions is referred to as resting-state functional connectivity (RSFC). In the past several years, an increasing body of R-fNIRS RSFC studies has led to many important findings about functional integration among local or whole-brain regions by measuring inter-regional temporal synchronization. Here, we summarize recent advances made in the R-fNIRS RSFC methodologies, from the detection of RSFC (e.g., seed-based correlation analysis, independent component analysis, whole-brain correlation analysis, and graph-theoretical topological analysis), to the assessment of RSFC performance (e.g., reliability, repeatability, and validity), to the application of RSFC in studying normal development and brain disorders. The literature reviewed here suggests that RSFC analyses based on R-fNIRS data are valid and reliable for the study of brain function in healthy and diseased populations, thus providing a promising imaging tool for cognitive science and clinics.

  14. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest

    PubMed Central

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A.; De Dios, Yiri E.; Gadd, Nichole E.; Wood, Scott J.; Riascos, Roy; Kofman, Igor S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight. PMID:27601982

  15. Atypical functional brain connectivity during rest in autism spectrum disorders.

    PubMed

    Doyle-Thomas, Krissy A R; Lee, Wayne; Foster, Nicholas E V; Tryfon, Ana; Ouimet, Tia; Hyde, Krista L; Evans, Alan C; Lewis, John; Zwaigenbaum, Lonnie; Anagnostou, Evdokia

    2015-05-01

    Connectivity atypicalities in autism spectrum disorders (ASD) have been extensively proposed. The default mode network (DMN) is critical in this study, given the insight it provides for long-distance connectivity, and the importance of regions in this network for introspection and social emotion processing, areas affected in ASD. However, study of this network has largely been limited to adults; research earlier in development is lacking. The objective of this study was to examine DMN connectivity in children/adolescents with ASD. A total of 115 children/adolescents, aged 6 to 17 years (71 males with ASD and 44 group age-matched TD males) were included in these analyses. We examined group differences in (1) functional connectivity between the posterior cingulate cortex and regions across the brain, (2) connectivity within the DMN as a function of age and intelligence quotient (IQ), and (3) the association between DMN connectivity and empathic accuracy. Individuals with ASD, relative to controls, showed either stronger or weaker connectivity between the posterior cingulate cortex (PCC) and DMN regions, depending on the region, but also showed stronger connectivity with non-DMN regions. A significant group-by-age interaction was observed in functional connectivity between the PCC and medial prefrontal cortex; connectivity increased with age in controls, but decreased in individuals with ASD. No effects of IQ were found. There was a significant group difference in the relation between DMN connectivity and empathic accuracy. Differences in functional connectivity may suggest the presence of neural atypicalities that impact the development of typical connectivity in ASD. In addition to affecting DMN dynamics, these atypicalities may also impact social-cognitive abilities. © 2015 American Neurological Association.

  16. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity

    PubMed Central

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

  17. Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder

    PubMed Central

    Niu, Qihui; Yang, Lei; Song, Xueqin; Chu, Congying; Liu, Hao; Zhang, Lifang; Li, Yan; Zhang, Xiang; Cheng, Jingliang; Li, Youhui

    2017-01-01

    Objective This paper attempts to explore the brain activity of patients with obsessive-compulsive disorder (OCD) and its correlation with the disease at resting duration in patients with first-episode OCD, providing a forceful imaging basis for clinic diagnosis and pathogenesis of OCD. Methods Twenty-six patients with first-episode OCD and 25 healthy controls (HC group; matched for age, sex, and education level) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Statistical parametric mapping 8, data processing assistant for resting-state fMRI analysis toolkit, and resting state fMRI data analysis toolkit packages were used to process the fMRI data on Matlab 2012a platform, and the difference of regional homogeneity (ReHo) values between the OCD group and HC group was detected with independent two-sample t-test. With age as a concomitant variable, the Pearson correlation analysis was adopted to study the correlation between the disease duration and ReHo value of whole brain. Results Compared with HC group, the ReHo values in OCD group were decreased in brain regions, including left thalamus, right thalamus, right paracentral lobule, right postcentral gyrus, and the ReHo value was increased in the left angular gyrus region. There was a negative correlation between disease duration and ReHo value in the bilateral orbitofrontal cortex (OFC). Conclusion OCD is a multifactorial disease generally caused by abnormal activities of many brain regions at resting state. Worse brain activity of the OFC is related to the OCD duration, which provides a new insight to the pathogenesis of OCD. PMID:28243104

  18. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    PubMed

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition.

  19. [Oxygen consumption by resting humans at different Elbrus altitudes].

    PubMed

    Demin, A V; D'iachenko, A I; Ivanov, A I

    2010-01-01

    The purpose of the work was to test experimentally the "hypoxic paradox" of growing or constant oxygen consumption by normal humans exposed to O2-deficient environments. The objective was to perform thorough statistical analysis of O2 consumption at two altitudes above sea level under the conditions of close to basic metabolism, and to develop an analytical expression for adequate description of O2 consumption dependence on altitude above seal level. The investigation was fulfilled in August, 2009 at the altitudes of 2224 and 4200 m on Elbrus flanks with participation of 4 volunteers. It was shown that O2 consumption by resting humans decreases with altitude, i.e. the "hypoxic paradox" is invalid. An analytical expression was proposed to describe change in O2 consumption in the interval of altitudes from 0 to 4200 m above sea level.

  20. Effects of methylphenidate on resting-state brain activity in normal adults: an fMRI study.

    PubMed

    Zhu, Yihong; Gao, Bin; Hua, Jianming; Liu, Weibo; Deng, Yichao; Zhang, Lijie; Jiang, Biao; Zang, Yufeng

    2013-02-01

    Methylphenidate (MPH) is one of the most commonly used stimulants for the treatment of attention deficit hyperactivity disorder (ADHD). Although several studies have evaluated the effects of MPH on human brain activation during specific cognitive tasks using functional magnetic resonance imaging (fMRI), few studies have focused on spontaneous brain activity. In the current study, we investigated the effect of MPH on the intra-regional synchronization of spontaneous brain activity during the resting state in 18 normal adult males. A handedness questionnaire and the Wechsler Adult Intelligence Scale were applied before medication, and a resting-state fMRI scan was obtained 1 h after medication (20 mg MPH or placebo, order counterbalanced between participants). We demonstrated that: (1) there were no significant differences in the performance of behavioral tasks between the MPH and placebo groups; (2) the left middle and superior temporal gyri had stronger MPHrelated regional homogeneity (ReHo); and (3) the left lingual gyrus had weaker MPH-related ReHo. Our findings showed that the ReHo in some brain areas changes with MPH compared to placebo in normal adults, even though there are no behavioral differences. This method can be applied to patients with mental illness who may be treated with MPH, and be used to compare the difference between patients taking MPH and normal participants, to help reveal the mechanism of how MPH works.

  1. Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks.

    PubMed

    Calhoun, Vince D; Kiehl, Kent A; Pearlson, Godfrey D

    2008-07-01

    Brain regions which exhibit temporally coherent fluctuations, have been increasingly studied using functional magnetic resonance imaging (fMRI). Such networks are often identified in the context of an fMRI scan collected during rest (and thus are called "resting state networks"); however, they are also present during (and modulated by) the performance of a cognitive task. In this article, we will refer to such networks as temporally coherent networks (TCNs). Although there is still some debate over the physiological source of these fluctuations, TCNs are being studied in a variety of ways. Recent studies have examined ways TCNs can be used to identify patterns associated with various brain disorders (e.g. schizophrenia, autism or Alzheimer's disease). Independent component analysis (ICA) is one method being used to identify TCNs. ICA is a data driven approach which is especially useful for decomposing activation during complex cognitive tasks where multiple operations occur simultaneously. In this article we review recent TCN studies with emphasis on those that use ICA. We also present new results showing that TCNs are robust, and can be consistently identified at rest and during performance of a cognitive task in healthy individuals and in patients with schizophrenia. In addition, multiple TCNs show temporal and spatial modulation during the cognitive task versus rest. In summary, TCNs show considerable promise as potential imaging biological markers of brain diseases, though each network needs to be studied in more detail.

  2. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest.

    PubMed

    Fauvel, Baptiste; Groussard, Mathilde; Chételat, Gaël; Fouquet, Marine; Landeau, Brigitte; Eustache, Francis; Desgranges, Béatrice; Platel, Hervé

    2014-04-15

    The aim of this study was to explore whether musical practice-related gray matter increases in brain regions are accompanied by modifications in their resting-state functional connectivity. 16 young musically experienced adults and 17 matched nonmusicians underwent an anatomical magnetic resonance imaging (MRI) and a resting-state functional MRI (rsfMRI). A whole-brain two-sample t test run on the T1-weighted structural images revealed four clusters exhibiting significant increases in gray matter (GM) volume in the musician group, located within the right posterior and middle cingulate gyrus, left superior temporal gyrus and right inferior orbitofrontal gyrus. Each cluster was used as a seed region to generate and compare whole-brain resting-state functional connectivity maps. The two clusters within the cingulate gyrus exhibited greater connectivity for musicians with the right prefrontal cortex and left temporal pole, which play a role in autobiographical and semantic memory, respectively. The cluster in the left superior temporal gyrus displayed enhanced connectivity with several language-related areas (e.g., left premotor cortex, bilateral supramarginal gyri). Finally, the cluster in the right inferior frontal gyrus displayed more synchronous activity at rest with claustrum, areas thought to play a role in binding sensory and motor information. We interpreted these findings as the consequence of repeated collaborative use in general networks supporting some of the memory, perceptual-motor and emotional features of musical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Decreased integration and information capacity in stroke measured by whole brain models of resting state activity.

    PubMed

    Adhikari, Mohit H; Hacker, Carl D; Siegel, Josh S; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo; Corbetta, Maurizio

    2017-04-01

    While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and that these changes may correlate with behavioural deficits, their impact on brain's information processing capacity is currently unknown. Here we test the hypothesis that focal lesions decrease the brain's information processing capacity, of which changes in functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize correlation between model and empirical functional connectivity, so that the model's effective connectivity was a veridical representation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: 'integration', a graph theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and 'information capacity', an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured. This study shows that focal lesions affect the brain's ability to

  4. The restless brain: attention-deficit hyperactivity disorder, resting-state functional connectivity, and intrasubject variability.

    PubMed

    Castellanos, F Xavier; Kelly, Clare; Milham, Michael P

    2009-10-01

    To highlight recent advances in the conceptualization of attention-deficit hyperactivity disorder (ADHD) emerging from neuroimaging and endophenotypic approaches. We selectively reviewed recent published literature on the phenomena of resting-state functional connectivity, intrasubject variability, and diffusion tensor imaging pertaining to ADHD. Recent advances based on the novel approach of resting-state functional connectivity appear to be highly promising and likely to link to studies of intrasubject variability. Endophenotypic fractionation may offer a means of addressing the complex heterogeneity of ADHD on the path to testable models of pathophysiology. Such models focusing on intrasubject variability, intrinsic brain activity, and reward-related processing are progressing rapidly.

  5. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study.

    PubMed

    Gabard-Durnam, Laurel Joy; Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim

    2016-04-27

    Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long

  6. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study

    PubMed Central

    Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim

    2016-01-01

    Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. SIGNIFICANCE STATEMENT A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we

  7. Lateralized Resting-State Functional Brain Network Organization Changes in Heart Failure

    PubMed Central

    Park, Bumhee; Roy, Bhaswati; Woo, Mary A.; Palomares, Jose A.; Fonarow, Gregg C.; Harper, Ronald M.; Kumar, Rajesh

    2016-01-01

    Heart failure (HF) patients show brain injury in autonomic, affective, and cognitive sites, which can change resting-state functional connectivity (FC), potentially altering overall functional brain network organization. However, the status of such connectivity or functional organization is unknown in HF. Determination of that status was the aim here, and we examined region-to-region FC and brain network topological properties across the whole-brain in 27 HF patients compared to 53 controls with resting-state functional MRI procedures. Decreased FC in HF appeared between the caudate and cerebellar regions, olfactory and cerebellar sites, vermis and medial frontal regions, and precentral gyri and cerebellar areas. However, increased FC emerged between the middle frontal gyrus and sensorimotor areas, superior parietal gyrus and orbito/medial frontal regions, inferior temporal gyrus and lingual gyrus/cerebellar lobe/pallidum, fusiform gyrus and superior orbitofrontal gyrus and cerebellar sites, and within vermis and cerebellar areas; these connections were largely in the right hemisphere (p<0.005; 10,000 permutations). The topology of functional integration and specialized characteristics in HF are significantly changed in regions showing altered FC, an outcome which would interfere with brain network organization (p<0.05; 10,000 permutations). Brain dysfunction in HF extends to resting conditions, and autonomic, cognitive, and affective deficits may stem from altered FC and brain network organization that may contribute to higher morbidity and mortality in the condition. Our findings likely result from the prominent axonal and nuclear structural changes reported earlier in HF; protecting neural tissue may improve FC integrity, and thus, increase quality of life and reduce morbidity and mortality. PMID:27203600

  8. Slow neuronal oscillations in the resting brain vs task execution: A BSS investigation of EEG recordings.

    PubMed

    Demanuele, Charmaine; Sonuga-Barke, Edmund J S; James, Christopher J

    2010-01-01

    Spontaneous very low frequency oscillations (< 0.5 Hz) occurring within widely distributed neuroanatomical systems have been increasingly analyzed in brain imaging studies. Whilst being more prominent in the resting brain, these slow waves also persist into task sessions and may potentially interfere with active goal-directed attention, leading to periodic lapses in attention during task execution. This work presents a new experimental framework and a multistage signal processing methodology - comprising blind source separation (BSS) coupled with a neural network feature extraction and classification method - developed for assessing variations in the slow wave characteristics in EEG data recorded during periods of quiet wakefulness (termed as "rest"), and during visual tasks of various difficulty levels. Core results demonstrate that the amplitude and phase of the brain sources in the slow wave band share essential similarities during rest and task conditions, but are distinct enough to be classified separately. These slow wave variations are also significantly correlated with the level of cognitive attention assessed by task performance measures (such as reaction times and error rates). Moreover, the power of the brain sources in the slow wave band is attenuated during task, and the level of attenuation drops as the task difficulty level is increased, whilst the slow wave phase undergoes a change in structure (measured through entropy). The methodology and findings presented here provide a new basis for assessing neural activity during various mental conditions.

  9. Signature of consciousness in the dynamics of resting-state brain activity.

    PubMed

    Barttfeld, Pablo; Uhrig, Lynn; Sitt, Jacobo D; Sigman, Mariano; Jarraya, Béchir; Dehaene, Stanislas

    2015-01-20

    At rest, the brain is traversed by spontaneous functional connectivity patterns. Two hypotheses have been proposed for their origins: they may reflect a continuous stream of ongoing cognitive processes as well as random fluctuations shaped by a fixed anatomical connectivity matrix. Here we show that both sources contribute to the shaping of resting-state networks, yet with distinct contributions during consciousness and anesthesia. We measured dynamical functional connectivity with functional MRI during the resting state in awake and anesthetized monkeys. Under anesthesia, the more frequent functional connectivity patterns inherit the structure of anatomical connectivity, exhibit fewer small-world properties, and lack negative correlations. Conversely, wakefulness is characterized by the sequential exploration of a richer repertoire of functional configurations, often dissimilar to anatomical structure, and comprising positive and negative correlations among brain regions. These results reconcile theories of consciousness with observations of long-range correlation in the anesthetized brain and show that a rich functional dynamics might constitute a signature of consciousness, with potential clinical implications for the detection of awareness in anesthesia and brain-lesioned patients.

  10. Signature of consciousness in the dynamics of resting-state brain activity

    PubMed Central

    Barttfeld, Pablo; Uhrig, Lynn; Sitt, Jacobo D.; Sigman, Mariano; Dehaene, Stanislas

    2015-01-01

    At rest, the brain is traversed by spontaneous functional connectivity patterns. Two hypotheses have been proposed for their origins: they may reflect a continuous stream of ongoing cognitive processes as well as random fluctuations shaped by a fixed anatomical connectivity matrix. Here we show that both sources contribute to the shaping of resting-state networks, yet with distinct contributions during consciousness and anesthesia. We measured dynamical functional connectivity with functional MRI during the resting state in awake and anesthetized monkeys. Under anesthesia, the more frequent functional connectivity patterns inherit the structure of anatomical connectivity, exhibit fewer small-world properties, and lack negative correlations. Conversely, wakefulness is characterized by the sequential exploration of a richer repertoire of functional configurations, often dissimilar to anatomical structure, and comprising positive and negative correlations among brain regions. These results reconcile theories of consciousness with observations of long-range correlation in the anesthetized brain and show that a rich functional dynamics might constitute a signature of consciousness, with potential clinical implications for the detection of awareness in anesthesia and brain-lesioned patients. PMID:25561541

  11. Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review.

    PubMed

    Andellini, Martina; Cannatà, Vittorio; Gazzellini, Simone; Bernardi, Bruno; Napolitano, Antonio

    2015-09-30

    The employment of graph theory to analyze spontaneous fluctuations in resting state BOLD fMRI data has become a dominant theme in brain imaging studies and neuroscience. Analysis of resting state functional brain networks based on graph theory has proven to be a powerful tool to quantitatively characterize functional architecture of the brain and it has provided a new platform to explore the overall structure of local and global functional connectivity in the brain. Due to its increased use and possible expansion to clinical use, it is essential that the reliability of such a technique is very strongly assessed. In this review, we explore the outcome of recent studies in network reliability which apply graph theory to analyze connectome resting state networks. Therefore, we investigate which preprocessing steps may affect reproducibility the most. In order to investigate network reliability, we compared the test-retest (TRT) reliability of functional data of published neuroimaging studies with different preprocessing steps. In particular we tested influence of global signal regression, correlation metric choice, binary versus weighted link definition, frequency band selection and length of time-series. Statistical analysis shows that only frequency band selection and length of time-series seem to affect TRT reliability. Our results highlight the importance of the choice of the preprocessing steps to achieve more reproducible measurements.

  12. Disrupted Small-World Brain Networks in Moderate Alzheimer's Disease: A Resting-State fMRI Study

    PubMed Central

    Wang, Xiangbin; Liu, Bing; Xi, Qian; Guo, Qihao; Jiang, Hong; Jiang, Tianzi; Wang, Peijun

    2012-01-01

    The small-world organization has been hypothesized to reflect a balance between local processing and global integration in the human brain. Previous multimodal imaging studies have consistently demonstrated that the topological architecture of the brain network is disrupted in Alzheimer's disease (AD). However, these studies have reported inconsistent results regarding the topological properties of brain alterations in AD. One potential explanation for these inconsistent results lies with the diverse homogeneity and distinct progressive stages of the AD involved in these studies, which are thought to be critical factors that might affect the results. We investigated the topological properties of brain functional networks derived from resting functional magnetic resonance imaging (fMRI) of carefully selected moderate AD patients and normal controls (NCs). Our results showed that the topological properties were found to be disrupted in AD patients, which showing increased local efficiency but decreased global efficiency. We found that the altered brain regions are mainly located in the default mode network, the temporal lobe and certain subcortical regions that are closely associated with the neuropathological changes in AD. Of note, our exploratory study revealed that the ApoE genotype modulates brain network properties, especially in AD patients. PMID:22457774

  13. Project NO REST: Addressing Human Trafficking in North Carolina.

    PubMed

    Duncan, Dean F

    Project NO REST (North Carolina Organizing and Responding to the Exploitation and Sexual Trafficking of Children) is a 5-year effort funded by the US Children's Bureau to address the trafficking of individuals age 25 years and younger in North Carolina. The project aims to increase awareness of human trafficking affecting children and youth, especially those in the child welfare system; to reduce the number of these youth who are trafficked; and to improve outcomes for those who are trafficked. In the project's first year, nearly 100 stakeholders statewide developed a comprehensive plan to address trafficking. Later, 5 communities were recruited to implement the plan at the local level. Their experiences will be used to develop a toolkit for future anti-trafficking efforts.

  14. Determination of effective brain connectivity from functional connectivity with application to resting state connectivities

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Sarkar, S.; Pandejee, Grishma Mehta; Henderson, J. A.

    2014-07-01

    Neural field theory insights are used to derive effective brain connectivity matrices from the functional connectivity matrix defined by activity covariances. The symmetric case is exactly solved for a resting state system driven by white noise, in which strengths of connections, often termed effective connectivities, are inferred from functional data; these include strengths of connections that are underestimated or not detected by anatomical imaging. Proximity to criticality is calculated and found to be consistent with estimates obtainable from other methods. Links between anatomical, effective, and functional connectivity and resting state activity are quantified, with applicability to other complex networks. Proof-of-principle results are illustrated using published experimental data on anatomical connectivity and resting state functional connectivity. In particular, it is shown that functional connection matrices can be used to uncover the existence and strength of connections that are missed from anatomical connection matrices, including interhemispheric connections that are difficult to track with techniques such as diffusion spectrum imaging.

  15. Correspondent Functional Topography of the Human Left Inferior Parietal Lobule at Rest and Under Task Revealed Using Resting-State fMRI and Coactivation Based Parcellation.

    PubMed

    Wang, Jiaojian; Xie, Sangma; Guo, Xin; Becker, Benjamin; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2017-03-01

    The human left inferior parietal lobule (LIPL) plays a pivotal role in many cognitive functions and is an important node in the default mode network (DMN). Although many previous studies have proposed different parcellation schemes for the LIPL, the detailed functional organization of the LIPL and the exact correspondence between the DMN and LIPL subregions remain unclear. Mounting evidence indicates that spontaneous fluctuations in the brain are strongly associated with cognitive performance at the behavioral level. However, whether a consistent functional topographic organization of the LIPL during rest and under task can be revealed remains unknown. Here, they used resting-state functional connectivity (RSFC) and task-related coactivation patterns separately to parcellate the LIPL and identified seven subregions. Four subregions were located in the supramarginal gyrus (SMG) and three subregions were located in the angular gyrus (AG). The subregion-specific networks and functional characterization revealed that the four anterior subregions were found to be primarily involved in sensorimotor processing, movement imagination and inhibitory control, audition perception and speech processing, and social cognition, whereas the three posterior subregions were mainly involved in episodic memory, semantic processing, and spatial cognition. The results revealed a detailed functional organization of the LIPL and suggested that the LIPL is a functionally heterogeneous area. In addition, the present study demonstrated that the functional architecture of the LIPL during rest corresponds with that found in task processing. Hum Brain Mapp 38:1659-1675, 2017. © 2017 Wiley Periodicals, Inc.

  16. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    PubMed

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  17. Resting state brain oscillations and symptom profiles in attention deficit/hyperactivity disorder.

    PubMed

    Barry, Robert J; Clarke, Adam R

    2013-01-01

    Our perspective on resting-state electroencephalogram (EEG) is that it provides a window into the substrate of cognitive and perceptual processing, reflecting the dynamic potential of the brain's current functional state. In an extended research program into the electrophysiology of attention deficit/hyperactivity disorder (AD/HD), we have examined resting-state EEG power and coherence, and event-related potentials (ERPs), in children, adolescents, and adults with the disorder. We sought initially to identify consistent AD/HD anomalies in these measures, relative to normal control subjects, and then to understand how these differences related to existing models of AD/HD. An emergent strand in this program has been to clarify the EEG correlates of "arousal" and to understand the role of arousal dysfunction as a core anomaly in AD/HD. To date, findings in this strand serve to rule out a commonly held dictum in the AD/HD field: that elevated theta/beta ratio is an indicator of hypo-arousal. In turn, this requires further work to elucidate the ratio's functional significance in the disorder. Our brain dynamics studies relating prestimulus EEG amplitude and phase states to ERP outcomes are expected to help in this regard, but we are still at a relatively early stage, currently examining these relationships in control children, in order to better understand normal aspects of brain dynamics before turning to children with AD/HD. This range of studies provides a framework for our recent work relating resting-state EEG anomalies, in individuals with AD/HD, to their symptom profile. This has had promising results, indicating links between increased inattention scores and reduced resting EEG gamma power. With resting-state EEG coherence, reduced left lateralized coherences across several bands have correlated negatively with inattention scores, while reduced frontal interhemispheric coherence has been correlated negatively with hyperactivity/impulsivity scores. Such linkages

  18. Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State

    PubMed Central

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577

  19. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.

    PubMed

    Wiech, K; Jbabdi, S; Lin, C S; Andersson, J; Tracey, I

    2014-10-01

    Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing.

  20. Relation of visual creative imagery manipulation to resting-state brain oscillations.

    PubMed

    Cai, Yuxuan; Zhang, Delong; Liang, Bishan; Wang, Zengjian; Li, Junchao; Gao, Zhenni; Gao, Mengxia; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-03-07

    Visual creative imagery (VCI) manipulation is the key component of visual creativity; however, it remains largely unclear how it occurs in the brain. The present study investigated the brain neural response to VCI manipulation and its relation to intrinsic brain activity. We collected functional magnetic resonance imaging (fMRI) datasets related to a VCI task and a control task as well as pre- and post-task resting states in sequential sessions. A general linear model (GLM) was subsequently used to assess the specific activation of the VCI task compared with the control task. The changes in brain oscillation amplitudes across the pre-, on-, and post-task states were measured to investigate the modulation of the VCI task. Furthermore, we applied a Granger causal analysis (GCA) to demonstrate the dynamic neural interactions that underlie the modulation effect. We determined that the VCI task specifically activated the left inferior frontal gyrus pars triangularis (IFGtriang) and the right superior frontal gyrus (SFG), as well as the temporoparietal areas, including the left inferior temporal gyrus, right precuneus, and bilateral superior parietal gyrus. Furthermore, the VCI task modulated the intrinsic brain activity of the right IFGtriang (0.01-0.08 Hz) and the left caudate nucleus (0.2-0.25 Hz). Importantly, an inhibitory effect (negative) may exist from the left SFG to the right IFGtriang in the on-VCI task state, in the frequency of 0.01-0.08 Hz, whereas this effect shifted to an excitatory effect (positive) in the subsequent post-task resting state. Taken together, the present findings provide experimental evidence for the existence of a common mechanism that governs the brain activity of many regions at resting state and whose neural activity may engage during the VCI manipulation task, which may facilitate an understanding of the neural substrate of visual creativity.

  1. Network scaling effects in graph analytic studies of human resting-state FMRI data.

    PubMed

    Fornito, Alex; Zalesky, Andrew; Bullmore, Edward T

    2010-01-01

    Graph analysis has become an increasingly popular tool for characterizing topological properties of brain connectivity networks. Within this approach, the brain is modeled as a graph comprising N nodes connected by M edges. In functional magnetic resonance imaging (fMRI) studies, the nodes typically represent brain regions and the edges some measure of interaction between them. These nodes are commonly defined using a variety of regional parcellation templates, which can vary both in the volume sampled by each region, and the number of regions parcellated. Here, we sought to investigate how such variations in parcellation templates affect key graph analytic measures of functional brain organization using resting-state fMRI in 30 healthy volunteers. Seven different parcellation resolutions (84, 91, 230, 438, 890, 1314, and 4320 regions) were investigated. We found that gross inferences regarding network topology, such as whether the brain is small-world or scale-free, were robust to the template used, but that both absolute values of, and individual differences in, specific parameters such as path length, clustering, small-worldness, and degree distribution descriptors varied considerably across the resolutions studied. These findings underscore the need to consider the effect that a specific parcellation approach has on graph analytic findings in human fMRI studies, and indicate that results obtained using different templates may not be directly comparable.

  2. Resting-State and Task-Based Functional Brain Connectivity in Developmental Dyslexia

    PubMed Central

    Schurz, Matthias; Wimmer, Heinz; Richlan, Fabio; Ludersdorfer, Philipp; Klackl, Johannes; Kronbichler, Martin

    2015-01-01

    Reading requires the interaction between multiple cognitive processes situated in distant brain areas. This makes the study of functional brain connectivity highly relevant for understanding developmental dyslexia. We used seed-voxel correlation mapping to analyse connectivity in a left-hemispheric network for task-based and resting-state fMRI data. Our main finding was reduced connectivity in dyslexic readers between left posterior temporal areas (fusiform, inferior temporal, middle temporal, superior temporal) and the left inferior frontal gyrus. Reduced connectivity in these networks was consistently present for 2 reading-related tasks and for the resting state, showing a permanent disruption which is also present in the absence of explicit task demands and potential group differences in performance. Furthermore, we found that connectivity between multiple reading-related areas and areas of the default mode network, in particular the precuneus, was stronger in dyslexic compared with nonimpaired readers. PMID:25169986

  3. Residual functional connectivity in the split-brain revealed with resting-state functional MRI.

    PubMed

    Uddin, Lucina Q; Mooshagian, Eric; Zaidel, Eran; Scheres, Anouk; Margulies, Daniel S; Kelly, A M Clare; Shehzad, Zarrar; Adelstein, Jonathan S; Castellanos, F Xavier; Biswal, Bharat B; Milham, Michael P

    2008-05-07

    Split-brain patients present a unique opportunity to address controversies regarding subcortical contributions to interhemispheric coordination. We characterized residual functional connectivity in a complete commissurotomy patient by examining patterns of low-frequency BOLD functional MRI signal. Using independent components analysis and region-of-interest-based functional connectivity analyses, we demonstrate bilateral resting state networks in a patient lacking all major cerebral commissures. Compared with a control group, the patient's interhemispheric correlation scores fell within the normal range for two out of three regions examined. Thus, we provide evidence for bilateral resting state networks in a patient with complete commissurotomy. Such continued interhemispheric interaction suggests that, at least in part, cortical networks in the brain can be coordinated by subcortical mechanisms.

  4. Residual functional connectivity in the split-brain revealed with resting-state fMRI

    PubMed Central

    Uddin, Lucina Q.; Mooshagian, Eric; Zaidel, Eran; Scheres, Anouk; Margulies, Daniel S.; Kelly, A. M. Clare; Shehzad, Zarrar; Adelstein, Jonathan S.; Castellanos, F. Xavier; Biswal, Bharat B.; Milham, Michael P.

    2013-01-01

    Split-brain patients present a unique opportunity to address controversies regarding subcortical contributions to interhemispheric coordination. We characterized residual functional connectivity in a complete commissurotomy patient by examining patterns of low-frequency BOLD fMRI signal. Using independent components analysis (ICA) and region-of-interest (ROI) based functional connectivity analyses, we demonstrate bilateral resting state networks in a patient lacking all major cerebral commissures. Compared to a control group, the patient’s interhemispheric correlation scores fell within the normal range for two out of three regions examined. Thus we provide evidence for bilateral resting state networks in a patient with complete commissurotomy. Such continued interhemispheric interaction suggests that, at least in part, cortical networks in the brain can be coordinated by subcortical mechanisms. PMID:18418243

  5. Educating the Human Brain. Human Brain Development Series

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  6. Educating the Human Brain. Human Brain Development Series

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  7. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  8. Exercise Effects on the Brain and Sensorimotor Function in Bed Rest

    NASA Technical Reports Server (NTRS)

    Koppelmans, V.; Cassady, K.; De Dios, Y. E.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, R. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; hide

    2016-01-01

    Long duration spaceflight microgravity results in cephalad fluid shifts and deficits in posture control and locomotion. Effects of microgravity on sensorimotor function have been investigated on Earth using head down tilt bed rest (HDBR). HDBR serves as a spaceflight analogue because it mimics microgravity in body unloading and bodily fluid shifts. Preliminary results from our prior 70 days HDBR studies showed that HDBR is associated with focal gray matter (GM) changes and gait and balance deficits, as well as changes in brain functional connectivity. In consideration of the health and performance of crewmembers we investigated whether exercise reduces the effects of HDBR on GM, functional connectivity, and motor performance. Numerous studies have shown beneficial effects of exercise on brain health. We therefore hypothesized that an exercise intervention during HDBR could potentially mitigate the effects of HDBR on the central nervous system. Eighteen subjects were assessed before (12 and 7 days), during (7, 30, and 70 days) and after (8 and 12 days) 70 days of 6-degrees HDBR at the NASA HDBR facility in UTMB, Galveston, TX, US. Each subject was randomly assigned to a control group or one of two exercise groups. Exercise consisted of daily supine exercise which started 20 days before the start of HDBR. The exercise subjects participated either in regular aerobic and resistance exercise (e.g. squat, heel raise, leg press, cycling and treadmill running), or aerobic and resistance exercise using a flywheel apparatus (rowing). Aerobic and resistance exercise intensity in both groups was similar, which is why we collapsed the two exercise groups for the current experiment. During each time point T1-weighted MRI scans and resting state functional connectivity scans were obtained using a 3T Siemens scanner. Focal changes over time in GM density were assessed using voxel based morphometry (VBM8) under SPM. Changes in resting state functional connectivity was assessed

  9. Resting-state functional MR imaging shed insights into the brain of diabetes.

    PubMed

    Wang, Yun Fei; Ji, Xue Man; Lu, Guang Ming; Zhang, Long Jiang

    2016-10-01

    Diabetes mellitus is a common metabolic disease which is associated with increasing risk for multiple cognitive declines. Alterations in brain functional connectivity are believed to be the mechanisms underlying the cognitive function impairments. During the past decade, resting-state functional magnetic resonance imaging (rs-fMRI) has been developed as a major tool to study brain functional connectivity in vivo. This paper briefly reviews the diabetes-associated cognitive impairment, analysis algorithms and clinical applications of rs-fMRI. We also provide future perspectives of rs-fMRI in diabetes.

  10. Extreme brain events: Higher-order statistics of brain resting activity and its relation with structural connectivity

    NASA Astrophysics Data System (ADS)

    Amor, T. A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J. M.; de Arcangelis, L.; Chialvo, D. R.

    2015-09-01

    The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level-dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of these patterns evolving continuously in the brain. Here we explore the third-moment statistics of the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions and negative values for subcortical regions. Furthermore, the combined analysis of structural and functional connectivity demonstrates that relatively more connected regions exhibit activity with high negative skewness. Overall, these results highlight the relevance of recent results emphasizing that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series contains relevant information to reproduce a number of features of the brain dynamics during resting state in health and disease.

  11. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases

    PubMed Central

    Fox, Michael D.; Buckner, Randy L.; Liu, Hesheng; Chakravarty, M. Mallar; Lozano, Andres M.; Pascual-Leone, Alvaro

    2014-01-01

    Brain stimulation, a therapy increasingly used for neurological and psychiatric disease, traditionally is divided into invasive approaches, such as deep brain stimulation (DBS), and noninvasive approaches, such as transcranial magnetic stimulation. The relationship between these approaches is unknown, therapeutic mechanisms remain unclear, and the ideal stimulation site for a given technique is often ambiguous, limiting optimization of the stimulation and its application in further disorders. In this article, we identify diseases treated with both types of stimulation, list the stimulation sites thought to be most effective in each disease, and test the hypothesis that these sites are different nodes within the same brain network as defined by resting-state functional-connectivity MRI. Sites where DBS was effective were functionally connected to sites where noninvasive brain stimulation was effective across diseases including depression, Parkinson's disease, obsessive-compulsive disorder, essential tremor, addiction, pain, minimally conscious states, and Alzheimer’s disease. A lack of functional connectivity identified sites where stimulation was ineffective, and the sign of the correlation related to whether excitatory or inhibitory noninvasive stimulation was found clinically effective. These results suggest that resting-state functional connectivity may be useful for translating therapy between stimulation modalities, optimizing treatment, and identifying new stimulation targets. More broadly, this work supports a network perspective toward understanding and treating neuropsychiatric disease, highlighting the therapeutic potential of targeted brain network modulation. PMID:25267639

  12. Motor Learning Induces Plasticity in the Resting Brain-Drumming Up a Connection.

    PubMed

    Amad, Ali; Seidman, Jade; Draper, Stephen B; Bruchhage, Muriel M K; Lowry, Ruth G; Wheeler, James; Robertson, Andrew; Williams, Steven C R; Smith, Marcus S

    2017-03-01

    Neuroimaging methods have recently been used to investigate plasticity-induced changes in brain structure. However, little is known about the dynamic interactions between different brain regions after extensive coordinated motor learning such as drumming. In this article, we have compared the resting-state functional connectivity (rs-FC) in 15 novice healthy participants before and after a course of drumming (30-min drumming sessions, 3 days a week for 8 weeks) and 16 age-matched novice comparison participants. To identify brain regions showing significant FC differences before and after drumming, without a priori regions of interest, a multivariate pattern analysis was performed. Drum training was associated with an increased FC between the posterior part of bilateral superior temporal gyri (pSTG) and the rest of the brain (i.e., all other voxels). These regions were then used to perform seed-to-voxel analysis. The pSTG presented an increased FC with the premotor and motor regions, the right parietal lobe and a decreased FC with the cerebellum. Perspectives and the potential for rehabilitation treatments with exercise-based intervention to overcome impairments due to brain diseases are also discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Precision Functional Mapping of Individual Human Brains.

    PubMed

    Gordon, Evan M; Laumann, Timothy O; Gilmore, Adrian W; Newbold, Dillan J; Greene, Deanna J; Berg, Jeffrey J; Ortega, Mario; Hoyt-Drazen, Catherine; Gratton, Caterina; Sun, Haoxin; Hampton, Jacqueline M; Coalson, Rebecca S; Nguyen, Annie L; McDermott, Kathleen B; Shimony, Joshua S; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E; Nelson, Steven M; Dosenbach, Nico U F

    2017-08-16

    Human functional MRI (fMRI) research primarily focuses on analyzing data averaged across groups, which limits the detail, specificity, and clinical utility of fMRI resting-state functional connectivity (RSFC) and task-activation maps. To push our understanding of functional brain organization to the level of individual humans, we assembled a novel MRI dataset containing 5 hr of RSFC data, 6 hr of task fMRI, multiple structural MRIs, and neuropsychological tests from each of ten adults. Using these data, we generated ten high-fidelity, individual-specific functional connectomes. This individual-connectome approach revealed several new types of spatial and organizational variability in brain networks, including unique network features and topologies that corresponded with structural and task-derived brain features. We are releasing this highly sampled, individual-focused dataset as a resource for neuroscientists, and we propose precision individual connectomics as a model for future work examining the organization of healthy and diseased individual human brains. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Auditory Hallucinations and the Brain's Resting-State Networks: Findings and Methodological Observations.

    PubMed

    Alderson-Day, Ben; Diederen, Kelly; Fernyhough, Charles; Ford, Judith M; Horga, Guillermo; Margulies, Daniel S; McCarthy-Jones, Simon; Northoff, Georg; Shine, James M; Turner, Jessica; van de Ven, Vincent; van Lutterveld, Remko; Waters, Flavie; Jardri, Renaud

    2016-09-01

    In recent years, there has been increasing interest in the potential for alterations to the brain's resting-state networks (RSNs) to explain various kinds of psychopathology. RSNs provide an intriguing new explanatory framework for hallucinations, which can occur in different modalities and population groups, but which remain poorly understood. This collaboration from the International Consortium on Hallucination Research (ICHR) reports on the evidence linking resting-state alterations to auditory hallucinations (AH) and provides a critical appraisal of the methodological approaches used in this area. In the report, we describe findings from resting connectivity fMRI in AH (in schizophrenia and nonclinical individuals) and compare them with findings from neurophysiological research, structural MRI, and research on visual hallucinations (VH). In AH, various studies show resting connectivity differences in left-hemisphere auditory and language regions, as well as atypical interaction of the default mode network and RSNs linked to cognitive control and salience. As the latter are also evident in studies of VH, this points to a domain-general mechanism for hallucinations alongside modality-specific changes to RSNs in different sensory regions. However, we also observed high methodological heterogeneity in the current literature, affecting the ability to make clear comparisons between studies. To address this, we provide some methodological recommendations and options for future research on the resting state and hallucinations.

  15. EEG Resting-State Brain Topological Reorganization as a Function of Age.

    PubMed

    Petti, Manuela; Toppi, Jlenia; Babiloni, Fabio; Cincotti, Febo; Mattia, Donatella; Astolfi, Laura

    2016-01-01

    Resting state connectivity has been increasingly studied to investigate the effects of aging on the brain. A reduced organization in the communication between brain areas was demonstrated by combining a variety of different imaging technologies (fMRI, EEG, and MEG) and graph theory. In this paper, we propose a methodology to get new insights into resting state connectivity and its variations with age, by combining advanced techniques of effective connectivity estimation, graph theoretical approach, and classification by SVM method. We analyzed high density EEG signals recorded at rest from 71 healthy subjects (age: 20-63 years). Weighted and directed connectivity was computed by means of Partial Directed Coherence based on a General Linear Kalman filter approach. To keep the information collected by the estimator, weighted and directed graph indices were extracted from the resulting networks. A relation between brain network properties and age of the subject was found, indicating a tendency of the network to randomly organize increasing with age. This result is also confirmed dividing the whole population into two subgroups according to the age (young and middle-aged adults): significant differences exist in terms of network organization measures. Classification of the subjects by means of such indices returns an accuracy greater than 80%.

  16. Abnormal resting-state brain activity in headache-free migraine patients: A magnetoencephalography study.

    PubMed

    Li, Feng; Xiang, Jing; Wu, Ting; Zhu, Donglin; Shi, Jingping

    2016-08-01

    The aim of this study is to quantitatively assess the resting-state brain activity in migraine patients during the headache-free phase with magnetoencephalography (MEG). A total of 25 migraine patients during the headache-free phase and 25 gender- and age-matched control patients were studied with a whole-head MEG system at eyes-closed resting-state. MEG data were analyzed in multifrequency range of 4-200Hz. In a regional cortex analysis, the spectral power of gamma oscillations in left frontal and left temporal regions was significantly increased in migraine patients as compared to controls (all p<0.001), but no significant difference was found between the two groups for the global channels. Analyses of source location showed that there were significant differences in the distribution of gamma oscillation between migraine subjects and controls (p<0.025). Migraine patients in resting-state had altered brain activities in spectral power value and source distribution that can be detected and analyzed by MEG. Abnormal brain activities in the left frontal and temporal regions may be involved in pain modulation and processing of migraine. These findings provide new insights into the possible mechanisms of migraine attacks. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Hemispheric Specialization Varies with EEG Brain Resting States and Phase of Menstrual Cycle

    PubMed Central

    Cacioppo, Stephanie; Bianchi-Demicheli, Francesco; Bischof, Paul; DeZiegler, Dominique; Michel, Christoph M.; Landis, Theodor

    2013-01-01

    A growing body of behavioral studies has demonstrated that women’s hemispheric specialization varies as a function of their menstrual cycle, with hemispheric specialization enhanced during their menstruation period. Our recent high-density electroencephalogram (EEG) study with lateralized emotional versus neutral words extended these behavioral results by showing that hemispheric specialization in men, but not in women under birth-control, depends upon specific EEG resting brain states at stimulus arrival, suggesting that hemispheric specialization may be pre-determined at the moment of the stimulus onset. To investigate whether EEG brain resting state for hemispheric specialization could vary as a function of the menstrual phase, we tested 12 right-handed healthy women over different phases of their menstrual cycle combining high-density EEG recordings and the same lateralized lexical decision paradigm with emotional versus neutral words. Results showed the presence of specific EEG resting brain states, associated with hemispheric specialization for emotional words, at the moment of the stimulus onset during the menstruation period only. These results suggest that the pre-stimulus EEG pattern influencing hemispheric specialization is modulated by the hormonal state. PMID:23638185

  18. Age-related adaptations of brain function during a memory task are also present at rest.

    PubMed

    Filippini, N; Nickerson, L D; Beckmann, C F; Ebmeier, K P; Frisoni, G B; Matthews, P M; Smith, S M; Mackay, C E

    2012-02-15

    Several studies have demonstrated age-related regional differences in the magnitude of the BOLD signal using task-based fMRI. It has been suggested that functional changes reflect either compensatory or de-differentiation mechanisms, both of which assume response to a specific stimulus. Here, we have tested whether ageing affects both task-based and resting brain function, and the extent to which functional changes are mediated by reductions in grey matter (GM) volume. Two groups, of 22 healthy younger and 22 older volunteers, underwent an imaging protocol involving structural and functional MRI, both during a memory task and at rest. The two groups had similar socio-demographical characteristics and cognitive performance. Image analysis revealed both structural and functional differences. Increased BOLD signal in older relative to younger volunteers was mainly observed in the frontal lobes, both during the task and at rest. Functional changes in the frontal lobes were largely located in brain regions spared from GM loss, and adding GM covariates to the fMRI analysis did not significantly alter the group differences. Our results are consistent with the suggestion that, during normal ageing, the brain responds to neuronal loss by fine-tuning connections between spared neurons. Longitudinal studies will be necessary to fully test this hypothesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The Human Brain Uses Noise

    NASA Astrophysics Data System (ADS)

    Mori, Toshio; Kai, Shoichi

    2003-05-01

    We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a sub-threshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g. perception and cognition, may exploit SR.

  20. Resting state connectivity of the human habenula at ultra-high field.

    PubMed

    Torrisi, Salvatore; Nord, Camilla L; Balderston, Nicholas L; Roiser, Jonathan P; Grillon, Christian; Ernst, Monique

    2017-02-15

    The habenula, a portion of the epithalamus, is implicated in the pathophysiology of depression, anxiety and addiction disorders. Its small size and connection to other small regions prevent standard human imaging from delineating its structure and connectivity with confidence. Resting state functional connectivity is an established method for mapping connections across the brain from a seed region of interest. The present study takes advantage of 7T fMRI to map, for the first time, the habenula resting state network with very high spatial resolution in 32 healthy human participants. Results show novel functional connections in humans, including functional connectivity with the septum and bed nucleus of the stria terminalis (BNST). Results also show many habenula connections previously described only in animal research, such as with the nucleus basalis of Meynert, dorsal raphe, ventral tegmental area (VTA), and periaqueductal grey (PAG). Connectivity with caudate, thalamus and cortical regions such as the anterior cingulate, retrosplenial cortex and auditory cortex are also reported. This work, which demonstrates the power of ultra-high field for mapping human functional connections, is a valuable step toward elucidating subcortical and cortical regions of the habenula network.

  1. Alterations of resting state functional network connectivity in the brain of nicotine and alcohol users.

    PubMed

    Vergara, Victor M; Liu, Jingyu; Claus, Eric D; Hutchison, Kent; Calhoun, Vince

    2016-11-15

    Alcohol and nicotine intake result in neurological alterations at the circuit level. Resting state functional connectivity has shown great potential in identifying these alterations. However, current studies focus on specific seeds and leave out many brain regions where effects might exist. The present study uses a data driven technique for brain segmentation covering the whole brain. Functional magnetic-resonance-imaging (fMRI) data were collected from 188 subjects:51 non-substance consumption controls (CTR), 36 smoking-and-drinking subjects (SAD), 28 drinkers (DRN), and 73 smokers (SMK). Data were processed using group independent component analysis to derive resting state networks (RSN). The resting state functional network connectivity (rsFNC) was then calculated through correlation between time courses. One-way ANOVA tests were used to detect rsFNC differences among the four groups. A total of 50 ANOVA tests were significant after multi-comparison correction. Results delineate a general pattern of hypo-connectivity in the substance consumers. Precuneus, postcentral gyrus, insula and visual cortex were the main brain areas with rsFNC reduction suggesting reduced interoceptive awareness in drinkers. In addition, connectivity reduction between postcentral and one RSN covering right fusiform and lingual gyri showed significant association with severity of hazardous drinking. In smokers, connectivity changes agreed with the idea of a shift towards endogenous information processing, represented by the DMN. Hypo-connectivity between thalamus and putamen was observed in smokers. In contrast, the angular gyrus showed hyper-connectivity with the precuneus linked to smoking and significantly correlated with nicotine dependence severity. In spite of the presence of common effects, our results suggest that particular effects of alcohol and nicotine can be separated and identified. Results also suggest that concurrent use of both substances affects brain connectivity in a

  2. Evolution and genomics of the human brain.

    PubMed

    Rosales-Reynoso, M A; Juárez-Vázquez, C I; Barros-Núñez, P

    2015-08-21

    Most living beings are able to perform actions that can be considered intelligent or, at the very least, the result of an appropriate reaction to changing circumstances in their environment. However, the intelligence or intellectual processes of humans are vastly superior to those achieved by all other species. The adult human brain is a highly complex organ weighing approximately 1500g, which accounts for only 2% of the total body weight but consumes an amount of energy equal to that required by all skeletal muscle at rest. Although the human brain displays a typical primate structure, it can be identified by its specific distinguishing features. The process of evolution and humanisation of the Homo sapiens brain resulted in a unique and distinct organ with the largest relative volume of any animal species. It also permitted structural reorganization of tissues and circuits in specific segments and regions. These steps explain the remarkable cognitive abilities of modern humans compared not only with other species in our genus, but also with older members of our own species. Brain evolution required the coexistence of two adaptation mechanisms. The first involves genetic changes that occur at the species level, and the second occurs at the individual level and involves changes in chromatin organisation or epigenetic changes. The genetic mechanisms include: a) genetic changes in coding regions that lead to changes in the sequence and activity of existing proteins; b) duplication and deletion of previously existing genes; c) changes in gene expression through changes in the regulatory sequences of different genes; and d) synthesis of non-coding RNAs. Lastly, this review describes some of the main documented chromosomal differences between humans and great apes. These differences have also contributed to the evolution and humanisation process of the H. sapiens brain.

  3. Distinct disruptions of resting-state functional brain networks in familial and sporadic schizophrenia

    PubMed Central

    Zhu, Jiajia; Zhuo, Chuanjun; Liu, Feng; Qin, Wen; Xu, Lixue; Yu, Chunshui

    2016-01-01

    Clinical and brain structural differences have been reported between patients with familial and sporadic schizophrenia; however, little is known about the brain functional differences between the two subtypes of schizophrenia. Twenty-six patients with familial schizophrenia (PFS), 26 patients with sporadic schizophrenia (PSS) and 26 healthy controls (HC) underwent a resting-state functional magnetic resonance imaging. The whole-brain functional network was constructed and analyzed using graph theoretical approaches. Topological properties (including global, nodal and edge measures) were compared among the three groups. We found that PFS, PSS and HC exhibited common small-world architecture of the functional brain networks. However, at a global level, only PFS showed significantly lower normalized clustering coefficient, small-worldness, and local efficiency, indicating a randomization shift of their brain networks. At a regional level, PFS and PSS disrupted different neural circuits, consisting of abnormal nodes (increased or decreased nodal centrality) and edges (decreased functional connectivity strength), which were widely distributed throughout the entire brain. Furthermore, some of these altered network measures were significantly correlated with severity of psychotic symptoms. These results suggest that familial and sporadic schizophrenia had segregated disruptions in the topological organization of the intrinsic functional brain network, which may be due to different etiological contributions. PMID:27032817

  4. Functional integration between brain regions at rest occurs in multiple-frequency bands.

    PubMed

    Gohel, Suril R; Biswal, Bharat B

    2015-02-01

    Studies of resting-state fMRI have shown that blood oxygen level dependent (BOLD) signals giving rise to temporal correlation across voxels (or regions) are dominated by low-frequency fluctuations in the range of ∼ 0.01-0.1 Hz. These low-frequency fluctuations have been further divided into multiple distinct frequency bands (slow-5 and -4) based on earlier neurophysiological studies, though low sampling frequency of fMRI (∼ 0.5 Hz) has substantially limited the exploration of other known frequency bands of neurophysiological origins (slow-3, -2, and -1). In this study, we used resting-state fMRI data acquired from 21 healthy subjects at a higher sampling frequency of 1.5 Hz to assess the presence of resting-state functional connectivity (RSFC) across multiple frequency bands: slow-5 to slow-1. The effect of different frequency bands on spatial extent and connectivity strength for known resting-state networks (RSNs) was also evaluated. RSNs were derived using independent component analysis and seed-based correlation. Commonly known RSNs, such as the default mode, the fronto-parietal, the dorsal attention, and the visual networks, were consistently observed at multiple frequency bands. Significant inter-hemispheric connectivity was observed between each seed and its contra lateral brain region across all frequency bands, though overall spatial extent of seed-based correlation maps decreased in slow-2 and slow-1 frequency bands. These results suggest that functional integration between brain regions at rest occurs over multiple frequency bands and RSFC is a multiband phenomenon. These results also suggest that further investigation of BOLD signal in multiple frequency bands for related cognitive processes should be undertaken.

  5. Human brain networks function in connectome-specific harmonic waves.

    PubMed

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  6. Human brain networks function in connectome-specific harmonic waves

    PubMed Central

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call ‘connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory–inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation–inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267

  7. The impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion.

    PubMed

    Lamke, Jan-Peter; Daniels, Judith K; Dörfel, Denise; Gaebler, Michael; Abdel Rahman, Rasha; Hummel, Falk; Erk, Susanne; Walter, Henrik

    2014-01-01

    Task-rest interactions, defined as the modulation of brain activation during fixation periods depending on the preceding stimulation and experimental manipulation, have been described repeatedly for different cognitively demanding tasks in various regions across the brain. However, task-rest interactions in emotive paradigms have received considerably less attention. In this study, we therefore investigated task-rest interactions evoked by the induction and instructed regulation of negative emotion. Whole-brain, functional MRI data were acquired from 55 healthy participants. Two-level general linear model statistics were computed to test for differences between conditions, separately for stimulation and for fixation periods, as well as for interactions between stimulation and fixation (task-rest interactions). Results showed that the regulation of negative emotion led to reverse task-rest interactions (decreased activation during stimulation but increased activation during fixation) in the amygdala as well as in visual cortex regions and to concordant task-rest interactions (increased activation during both, stimulation and fixation) in the dorsolateral prefrontal cortex as well as in a number of brain regions at the intersection of the default mode and the dorsal attention networks. Thus, this first whole-brain investigation of task-rest interactions following the induction and regulation of negative emotion identified a widespread specific modulation of brain activation in regions subserving emotion generation and regulation as well as regions implicated in attention and default mode.

  8. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    PubMed

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development.

  9. Brain regions involved in dispositional mindfulness during resting state and their relation with well-being.

    PubMed

    Kong, Feng; Wang, Xu; Song, Yiying; Liu, Jia

    2016-01-01

    Mindfulness can be viewed as an important dispositional characteristic that reflects the tendency to be mindful in daily life, which is beneficial for improving individuals' both hedonic and eudaimonic well-being. However, no study to date has examined the brain regions involved in individual differences in dispositional mindfulness during the resting state and its relation with hedonic and eudaimonic well-being. To investigate this issue, the present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to evaluate the regional homogeneity (ReHo) that measures the local synchronization of spontaneous brain activity in a large sample. We found that dispositional mindfulness was positively associated with the ReHo in the left orbitofrontal cortex (OFC), left parahippocampal gyrus (PHG), and right insula implicated in emotion processing, body awareness, and self-referential processing, and negatively associated with the ReHo in right inferior frontal gyrus (IFG) implicated in response inhibition and attentional control. Furthermore, we found different neural associations with hedonic (i.e., positive and negative affect) and eudaimonic well-being (i.e., the meaningful and purposeful life). Specifically, the ReHo in the IFG predicted eudaimonic well-being whereas the OFC predicted positive affect, both of which were mediated by dispositional mindfulness. Taken together, our study provides the first evidence for linking individual differences in dispositional mindfulness to spontaneous brain activity and demonstrates that dispositional mindfulness engages multiple brain mechanisms that differentially influence hedonic and eudaimonic well-being.

  10. Boosting Norepinephrine Transmission Triggers Flexible Reconfiguration of Brain Networks at Rest.

    PubMed

    Guedj, Carole; Monfardini, Elisabetta; Reynaud, Amélie J; Farnè, Alessandro; Meunier, Martine; Hadj-Bouziane, Fadila

    2016-09-06

    The locus coeruleus-norepinephrine (LC-NE) system is thought to act as a reset signal allowing brain network reorganization in response to salient information in the environment. However, no direct evidence of NE-dependent whole-brain reorganization has ever been described. We used resting-state functional magnetic resonance imaging in monkeys to investigate the impact of NE-reuptake inhibition on whole-brain connectivity patterns. We found that boosting NE transmission changes functional connectivity between and within resting-state networks. It modulated the functional connectivity pattern of a brainstem network including the LC region and interactions between associative and sensory-motor networks as well as within sensory-motor networks. Among the observed changes, those involving the fronto-parietal attention network exhibited a unique pattern of uncoupling with other sensory-motor networks and correlation switching from negative to positive with the brainstem network that included the LC nucleus. These findings provide the first empirical evidence of NE-dependent large-scale brain network reorganization and further demonstrate that the fronto-parietal attention network represents a central feature within this reorganization. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Nutritional Status in Humans during Long-Duration Bed Rest

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; MatthewsOliver, Susan A.; Dillon, E. Lichar; Fesperman, Vernell

    2006-01-01

    Bed rest is a valuable ground-based model for many of the physiological changes associated with space flight. A series of studies was undertaken to evaluate nutritional changes during and after 60 or 90 days of -6 head-down-tilt bed rest. A total of 11 subjects (8 M, 3 F; age 26-55 y) participated in the studies. Blood and urine were collected twice before bed rest and once per month during bed rest. Samples were analyzed in batch at the end of each study. Data were analyzed using repeated-measures ANOVA. Markers of bone resorption (such as n-telopeptide excretion, p less than 0.05) increased during bed rest, and 25-OH vitamin D status tended to decline (p=0.06). During bed rest oxidative damage markers, such as superoxide dismutase increased (p less than 0.01) and 8-(OH)-2'-deoxyguanosine tended to increase (p=0.07); whereas total antioxidant capacity decreased (p less than 0.02). Iron status indices showed patterns of increased iron stores, with decreased transferrin receptors (p less than 0.001). Biochemical markers revealed a tendency toward a loss of muscle mass, by lower excretion of creatinine and 3-methyl-histidine during bed rest. All of these changes are very similar to those observed during space flight, and further document the utility of bed rest as a model of space flight.

  12. Nutritional Status in Humans during Long-Duration Bed Rest

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; MatthewsOliver, Susan A.; Dillon, E. Lichar; Fesperman, Vernell

    2006-01-01

    Bed rest is a valuable ground-based model for many of the physiological changes associated with space flight. A series of studies was undertaken to evaluate nutritional changes during and after 60 or 90 days of -6 head-down-tilt bed rest. A total of 11 subjects (8 M, 3 F; age 26-55 y) participated in the studies. Blood and urine were collected twice before bed rest and once per month during bed rest. Samples were analyzed in batch at the end of each study. Data were analyzed using repeated-measures ANOVA. Markers of bone resorption (such as n-telopeptide excretion, p less than 0.05) increased during bed rest, and 25-OH vitamin D status tended to decline (p=0.06). During bed rest oxidative damage markers, such as superoxide dismutase increased (p less than 0.01) and 8-(OH)-2'-deoxyguanosine tended to increase (p=0.07); whereas total antioxidant capacity decreased (p less than 0.02). Iron status indices showed patterns of increased iron stores, with decreased transferrin receptors (p less than 0.001). Biochemical markers revealed a tendency toward a loss of muscle mass, by lower excretion of creatinine and 3-methyl-histidine during bed rest. All of these changes are very similar to those observed during space flight, and further document the utility of bed rest as a model of space flight.

  13. Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality

    PubMed Central

    Mongerson, Chandler R. L.; Jennings, Russell W.; Borsook, David; Becerra, Lino; Bajic, Dusica

    2017-01-01

    Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is associated with increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal at rest that reflect baseline neuronal activity. Over the past decade, its application has expanded to infant populations providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal states. However, many methodological issues of rs-fMRI analysis need to be resolved prior to standardization of the technique to infant populations. As a primary goal, this methodological manuscript will (1) present a robust methodological protocol to extract and assess resting-state networks in early infancy using independent component analysis (ICA), such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature; (2) review the current methodological challenges and ethical considerations associated with emerging field of infant rs-fMRI analysis; and (3) discuss the significance of rs-fMRI application in infants for future investigations of neurodevelopment in the context of early life stressors and pathological processes. The overarching goal is to catalyze efforts toward development of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used. PMID:28856131

  14. A Bayesian Double Fusion Model for Resting State Brain Connectivity Using Joint Functional and Structural Data.

    PubMed

    Kang, Hakmook; Ombao, Hernando; Fonnesbeck, Christopher; Ding, Zhaohua; Morgan, Victoria L

    2017-03-19

    Current approaches separately analyze concurrently acquired diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) data. The primary limitation of these approaches is that they do not take advantage of the information from DTI that could potentially enhance estimation of resting state functional connectivity (FC) between brain regions. To overcome this limitation, we develop a Bayesian hierarchical spatio-temporal model that incorporates structural connectivity into estimating FC. In our proposed approach, structural connectivity (SC) based on DTI data is used to construct an informative prior for functional connectivity based on resting state fMRI data via the Cholesky decomposition. Simulation studies showed that incorporating the two data produced significantly reduced mean squared errors compared to the standard approach of separately analyzing the two data from different modalities. We applied our model to analyze the resting state DTI and fMRI data collected to estimate FC between the brain regions that were hypothetically important in the origination and spread of temporal lobe epilepsy seizures. Our analysis concludes that the proposed model achieves smaller false positive rates and is much robust to data decimation compared to the conventional approach.

  15. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury.

    PubMed

    Stevens, Michael C; Lovejoy, David; Kim, Jinsuh; Oakes, Howard; Kureshi, Inam; Witt, Suzanne T

    2012-06-01

    Several reports show that traumatic brain injury (TBI) results in abnormalities in the coordinated activation among brain regions. Because most previous studies examined moderate/severe TBI, the extensiveness of functional connectivity abnormalities and their relationship to postconcussive complaints or white matter microstructural damage are unclear in mild TBI. This study characterized widespread injury effects on multiple integrated neural networks typically observed during a task-unconstrained "resting state" in mild TBI patients. Whole brain functional connectivity for twelve separate networks was identified using independent component analysis (ICA) of fMRI data collected from thirty mild TBI patients mostly free of macroscopic intracerebral injury and thirty demographically-matched healthy control participants. Voxelwise group comparisons found abnormal mild TBI functional connectivity in every brain network identified by ICA, including visual processing, motor, limbic, and numerous circuits believed to underlie executive cognition. Abnormalities not only included functional connectivity deficits, but also enhancements possibly reflecting compensatory neural processes. Postconcussive symptom severity was linked to abnormal regional connectivity within nearly every brain network identified, particularly anterior cingulate. A recently developed multivariate technique that identifies links between whole brain profiles of functional and anatomical connectivity identified several novel mild TBI abnormalities, and represents a potentially important new tool in the study of the complex neurobiological sequelae of TBI.

  16. Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors.

    PubMed

    Bruno, Jennifer; Hosseini, S M Hadi; Kesler, Shelli

    2012-12-01

    Many women with breast cancer, especially those treated with chemotherapy, experience cognitive decline due in part to neurotoxic brain injury. Recent neuroimaging studies suggest widespread brain structural abnormalities pointing to disruption of large-scale brain networks. We applied resting state functional magnetic resonance imaging and graph theoretical analysis to examine the connectome in breast cancer survivors treated with chemotherapy relative to healthy comparison women. Compared to healthy females, the breast cancer group displayed altered global brain network organization characterized by significantly decreased global clustering as well as disrupted regional network characteristics in frontal, striatal and temporal areas. Breast cancer survivors also showed significantly increased self-report of executive function and memory difficulties compared to healthy females. These results suggest that topological organization of both global and regional brain network properties may be disrupted following breast cancer and chemotherapy. This pattern of altered network organization is believed to result in reduced efficiency of parallel information transfer. This is the first report of alterations in large-scale functional brain networks in this population and contributes novel information regarding the neurobiologic mechanisms underlying breast cancer-related cognitive impairment. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Modular Organization of Brain Resting State Networks in Chronic Back Pain Patients

    PubMed Central

    Balenzuela, Pablo; Chernomoretz, Ariel; Fraiman, Daniel; Cifre, Ignacio; Sitges, Carol; Montoya, Pedro; Chialvo, Dante R.

    2010-01-01

    Recent work on functional magnetic resonance imaging large-scale brain networks under resting conditions demonstrated its potential to evaluate the integrity of brain function under normal and pathological conditions. A similar approach is used in this work to study a group of chronic back pain patients and healthy controls to determine the impact of long enduring pain over brain dynamics. Correlation networks were constructed from the mutual partial correlations of brain activity's time series selected from ninety regions using a well validated brain parcellation atlas. The study of the resulting networks revealed an organization of up to six communities with similar modularity in both groups, but with important differences in the membership of key communities of frontal and temporal regions. The bulk of these findings were confirmed by a surprisingly naive analysis based on the pairwise correlations of the strongest and weakest correlated healthy regions. Beside confirming the brain effects of long enduring pain, these results provide a framework to study the effect of other chronic conditions over cortical function. PMID:21206760

  18. Changes in the regional homogeneity of resting-state brain activity in minimal hepatic encephalopathy.

    PubMed

    Chen, Hua-Jun; Zhu, Xi-Qi; Yang, Ming; Liu, Bin; Zhang, Yi; Wang, Yu; Teng, Gao-Jun

    2012-01-17

    Resting-state functional magnetic resonance imaging (fMRI) has facilitated the study of spontaneous brain activity by measuring low-frequency oscillations in blood-oxygen-level-dependent signals. Analyses of regional homogeneity (ReHo), which reflects the local synchrony of neural activity, have been used to reveal the mechanisms underlying the brain dysfunction in various neuropsychiatric diseases. However, it is not known whether the ReHo is altered in cirrhotic patients with minimal hepatic encephalopathy (MHE). We recruited 18 healthy controls and 18 patients with MHE. The ReHo was calculated to assess the strength of the local signal synchrony. Compared with the healthy controls, the patients with MHE had significantly decreased ReHo in the cuneus and adjacent precuneus, and left inferior parietal lobe, whereas the regions showing increased ReHo in patients with MHE included the left parahippocampal gyrus, right cerebellar vermis, and bilateral anterior cerebellar lobes. We found a positive correlation between the mean ReHo in the cuneus and adjacent precuneus and the score on the digit-symbol test in the patient group. In conclusion, the analysis of the regional homogeneity of resting-state brain activity may provide additional information with respect to a clinical definition of MHE.

  19. Hypothalamus-Related Resting Brain Network Underlying Short-Term Acupuncture Treatment in Primary Hypertension

    PubMed Central

    Chen, Hongyan; Zhang, Xiaozhe; Wang, Kai; Huang, Shuhua; Cao, Qingtian; Wang, Hong; Liang, Yuhong; Shi, Chuanying; Li, Mengyuan; Ha, Tingting; Ai, Lin; Li, Shaowu; Ma, Jun; Wei, Wenjuan; You, Youbo; Liu, Zhenyu; Tian, Jie; Bai, Lijun

    2013-01-01

    The present study attempted to explore modulated hypothalamus-seeded resting brain network underlying the cardiovascular system in primary hypertensive patients after short-term acupuncture treatment. Thirty right-handed patients (14 male) were divided randomly into acupuncture and control groups. The acupuncture group received a continuous five-day acupuncture treatment and undertook three resting-state fMRI scans and 24-hour ambulatory blood pressure monitoring (ABPM) as well as SF-36 questionnaires before, after, and one month after acupuncture treatment. The control group undertook fMRI scans and 24-hour ABPM. For verum acupuncture, average blood pressure (BP) and heart rate (HR) decreased after treatment but showed no statistical differences. There were no significant differences in BP and HR between the acupuncture and control groups. Notably, SF-36 indicated that bodily pain (P = 0.005) decreased and vitality (P = 0.036) increased after acupuncture compared to the baseline. The hypothalamus-related brain network showed increased functional connectivity with the medulla, brainstem, cerebellum, limbic system, thalamus, and frontal lobes. In conclusion, short-term acupuncture did not decrease BP significantly but appeared to improve body pain and vitality. Acupuncture may regulate the cardiovascular system through a complicated brain network from the cortical level, the hypothalamus, and the brainstem. PMID:23781269

  20. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging

    PubMed Central

    Caplan, Jeremy B.; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A.

    2015-01-01

    Rhythmic brain activity at low frequencies (<12 Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; [10], [65]) avoids these problems by using the signal’s own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18–25 years) and older (60–74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1–4 Hz), at which rhythms are sporadic (but topographies were more similar in the 8–12 Hz alpha band). There was little theta-band activity meeting the BOSC method’s criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In sum, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. PMID:25769279

  1. Relative differences in resting-state brain connectivity associated with long term intensive lifestyle intervention.

    PubMed

    Casanova, Ramon; Hayasaka, Satoru; Saldana, Santiago; Bryan, Nick R; Demos, Kathryn E; Desiderio, Lisa; Erickson, Kirk I; Espeland, Mark A; Nasrallah, Ilya M; Wadden, Thomas; Laurienti, Paul J

    2016-12-01

    A number of studies have reported that type 2 diabetes mellitus (T2DM) is associated with alterations in resting-state activity and connectivity in the brain. There is also evidence that interventions involving physical activity and weight loss may affect brain functional connectivity. In this study, we examined the effects of nearly 10 years of an intensive lifestyle intervention (ILI), designed to induce and sustain weight loss through lower caloric intake and increased physical activity, on resting-state networks in adults with T2DM. We performed a cross-sectional comparison of global and local characteristics from functional brain networks between individuals who had been randomly assigned to ILI or a control condition of health education and support. Upon examining brain networks from 312 participants (average age: 68.8 for ILI and 67.9 for controls), we found that ILI participants (N=160) had attenuated local efficiency at the network-level compared with controls (N=152). Although there was no group difference in the network-level global efficiency, we found that, among ILI participants, nodal global efficiency was elevated in left fusiform gyrus, right middle frontal gyrus, and pars opercularis of right inferior frontal gyrus. These effects were age-dependent, with more pronounced effects for older participants. Overall these results indicate that the individuals assigned to the ILI had brain networks with less regional and more global connectivity, particularly involving frontal lobes. Such patterns would support greater distributed information processing. Future studies are needed to determine if these differences are associated with age-related compensatory function in the ILI group or worse pathology in the control group. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Magnetoencephalographic Imaging of Resting-State Functional Connectivity Predicts Postsurgical Neurological Outcome in Brain Gliomas

    PubMed Central

    Tarapore, Phiroz E.; Martino, Juan; Guggisberg, Adrian G.; Owen, Julia; Honma, Susanne M.; Findlay, Anne; Berger, Mitchel S.; Kirsch, Heidi E.; Nagarajan, Srikantan S.

    2013-01-01

    Background The removal of brain tumors in peri-eloquent or eloquent cortex risks causing new neurological deficits in patients. The assessment of the functionality of peri-lesional tissue is essential to avoidance of postoperative neurological morbidity. Objective To evaluate preoperative magnetoencephalography (MEG)-based functional connectivity as a predictor of short- and medium-term neurological outcome after removal of gliomas in peri-eloquent and eloquent areas. Methods Resting-state whole-brain MEG recordings were obtained from 79 consecutive subjects with focal brain gliomas near or within motor, sensory, or language areas. Neural activity was estimated using adaptive spatial filtering. The mean imaginary coherence between voxels in and around brain tumors was compared to contralesional voxels and used as an index of their functional connectivity with the rest of the brain. The connectivity values of the tissue resected during surgery were correlated to the early (one week post-operatively) and medium-term (six months post-operatively) neurological morbidity. Results Patients undergoing resection of tumors with decreased functional connectivity had a 29% rate of new neurological deficit 1 week after surgery and a 0% rate at 6-month follow-up. Patients undergoing resection of tumors with increased functional connectivity had a 60% rate of new deficit at 1 week and a 25% rate at 6 months. Conclusion MEG connectivity analysis gives a valuable preoperative evaluation of the functionality of the tissue surrounding tumors in peri-eloquent and eloquent areas. These data may be used to optimize pre-operative patient counseling and surgical strategy. PMID:22895403

  3. Robust brain parcellation using sparse representation on resting-state fMRI.

    PubMed

    Zhang, Yu; Caspers, Svenja; Fan, Lingzhong; Fan, Yong; Song, Ming; Liu, Cirong; Mo, Yin; Roski, Christian; Eickhoff, Simon; Amunts, Katrin; Jiang, Tianzi

    2015-11-01

    Resting-state fMRI (rs-fMRI) has been widely used to segregate the brain into individual modules based on the presence of distinct connectivity patterns. Many parcellation methods have been proposed for brain parcellation using rs-fMRI, but their results have been somewhat inconsistent, potentially due to various types of noise. In this study, we provide a robust parcellation method for rs-fMRI-based brain parcellation, which constructs a sparse similarity graph based on the sparse representation coefficients of each seed voxel and then uses spectral clustering to identify distinct modules. Both the local time-varying BOLD signals and whole-brain connectivity patterns may be used as features and yield similar parcellation results. The robustness of our method was tested on both simulated and real rs-fMRI datasets. In particular, on simulated rs-fMRI data, sparse representation achieved good performance across different noise levels, including high accuracy of parcellation and high robustness to noise. On real rs-fMRI data, stable parcellation of the medial frontal cortex (MFC) and parietal operculum (OP) were achieved on three different datasets, with high reproducibility within each dataset and high consistency across these results. Besides, the parcellation of MFC was little influenced by the degrees of spatial smoothing. Furthermore, the consistent parcellation of OP was also well corresponding to cytoarchitectonic subdivisions and known somatotopic organizations. Our results demonstrate a new promising approach to robust brain parcellation using resting-state fMRI by sparse representation.

  4. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    PubMed

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  5. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.

    PubMed

    Yuan, Han; Ding, Lei; Zhu, Min; Zotev, Vadim; Phillips, Raquel; Bodurka, Jerzy

    2016-03-01

    Functional magnetic resonance imaging (fMRI) studies utilizing measures of hemodynamic signal, such as the blood oxygenation level-dependent (BOLD) signal, have discovered that resting-state brain activities are organized into multiple large-scale functional networks, coined as resting-state networks (RSNs). However, an important limitation of the available fMRI studies is that hemodynamic signals only provide an indirect measure of the neuronal activity. In contrast, electroencephalography (EEG) directly measures electrophysiological activity of the brain. However, little is known about the brain-wide organization of such spontaneous neuronal population signals at the resting state. It is not entirely clear if or how the network structure built upon slowly fluctuating hemodynamic signals is represented in terms of fast, dynamic, and spontaneous neuronal activity. In this study, we investigated the electrophysiological representation of RSNs from simultaneously acquired EEG and fMRI data in the resting human brain. We developed a data-driven analysis approach that reconstructed multiple large-scale electrophysiological networks from high-resolution EEG data alone. The networks derived from EEG were then compared with RSNs independently derived from simultaneously acquired fMRI in their spatial structures as well as temporal dynamics. Results reveal spatially and temporally specific electrophysiological correlates for the fMRI-RSNs. Findings suggest that the spontaneous activity of various large-scale cortical networks is reflected in macroscopic EEG potentials.

  6. Test-retest reliability of graph metrics in functional brain networks: a resting-state fNIRS study.

    PubMed

    Niu, Haijing; Li, Zhen; Liao, Xuhong; Wang, Jinhui; Zhao, Tengda; Shu, Ni; Zhao, Xiaohu; He, Yong

    2013-01-01

    Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network

  7. Multiregional integration in the brain during resting-state fMRI activity.

    PubMed

    Hay, Etay; Ritter, Petra; Lobaugh, Nancy J; McIntosh, Anthony R

    2017-03-01

    Data-driven models of functional magnetic resonance imaging (fMRI) activity can elucidate dependencies that involve the combination of multiple brain regions. Activity in some regions during resting-state fMRI can be predicted with high accuracy from the activities of other regions. However, it remains unclear in which regions activity depends on unique integration of multiple predictor regions. To address this question, sparse (parsimonious) models could serve to better determine key interregional dependencies by reducing false positives. We used resting-state fMRI data from 46 subjects, and for each region of interest (ROI) per subject we performed whole-brain recursive feature elimination (RFE) to select the minimal set of ROIs that best predicted activity in the modeled ROI. We quantified the dependence of activity on multiple predictor ROIs, by measuring the gain in prediction accuracy of models that incorporated multiple predictor ROIs compared to models that used a single predictor ROI. We identified regions that showed considerable evidence of multiregional integration and determined the key regions that contributed to their observed activity. Our models reveal fronto-parietal integration networks, little integration in primary sensory regions, as well as redundancy between some regions. Our study demonstrates the utility of whole-brain RFE to generate data-driven models with minimal sets of ROIs that predict activity with high accuracy. By determining the extent to which activity in each ROI depended on integration of signals from multiple ROIs, we find cortical integration networks during resting-state activity.

  8. Multiregional integration in the brain during resting-state fMRI activity

    PubMed Central

    Ritter, Petra; Lobaugh, Nancy J.; McIntosh, Anthony R.

    2017-01-01

    Data-driven models of functional magnetic resonance imaging (fMRI) activity can elucidate dependencies that involve the combination of multiple brain regions. Activity in some regions during resting-state fMRI can be predicted with high accuracy from the activities of other regions. However, it remains unclear in which regions activity depends on unique integration of multiple predictor regions. To address this question, sparse (parsimonious) models could serve to better determine key interregional dependencies by reducing false positives. We used resting-state fMRI data from 46 subjects, and for each region of interest (ROI) per subject we performed whole-brain recursive feature elimination (RFE) to select the minimal set of ROIs that best predicted activity in the modeled ROI. We quantified the dependence of activity on multiple predictor ROIs, by measuring the gain in prediction accuracy of models that incorporated multiple predictor ROIs compared to models that used a single predictor ROI. We identified regions that showed considerable evidence of multiregional integration and determined the key regions that contributed to their observed activity. Our models reveal fronto-parietal integration networks, little integration in primary sensory regions, as well as redundancy between some regions. Our study demonstrates the utility of whole-brain RFE to generate data-driven models with minimal sets of ROIs that predict activity with high accuracy. By determining the extent to which activity in each ROI depended on integration of signals from multiple ROIs, we find cortical integration networks during resting-state activity. PMID:28248957

  9. Monoamine metabolism in human brain.

    PubMed

    Robinson, D S; Sourkes, T L; Nies, A; Harris, L S; Spector, S; Bartlett, D L; Kaye, I S

    1977-01-01

    Norepinephrine (NE), dopamine (DA), tyrosine hydroxylase (TH), catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) levels were measured in human brain tissue obtained at autopsy from a series of 39 patients dying of various medical and accidental causes. The nine following brain areas were studied: globus pallidus, thalamus, hypothalamus, hippocampus, substantia nigra, floor of the fourth ventricle, orbital cortex, caudate nucleus, and mammillary bodies. Enzyme activity correlated positively with age in all brain areas for MAO (with both benzylamine and tryptamine substrates) but no consistent pattern of correlation was found for COMT and TH. Mean MAO activity was significantly higher in women than men. There is increased brain MAO activity during late childhood and adolescence. These data are consistent with previous evidence suggesting that age and sex are important determinants of amine metabolism in the human central nervous system.

  10. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    PubMed

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of P<0.05 (P=0.001, initial threshold). Our findings support the hypothesis of abnormal frontal-striatal-cerebellar circuits in ADHD and the suggestion that sample entropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders. © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts.

    PubMed

    Dong, Guangheng; Huang, Jie; Du, Xiaoxia

    2012-08-18

    Internet gaming addiction (IGA), as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo) measures were used to detect the abnormal functional integrations. Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  12. Structural Brain Changes following Long-Term 6° Head-Down Tilt Bed Rest as an Analog for Spaceflight.

    PubMed

    Roberts, D R; Zhu, X; Tabesh, A; Duffy, E W; Ramsey, D A; Brown, T R

    2015-11-01

    Following long-term spaceflight, a subset of the National Aeronautics and Space Administration astronauts present with visual impairment and increased intracranial pressure, known as visual impairment and intracranial pressure syndrome. We investigated structural brain changes following long-term head-down tilt bed rest as a spaceflight analog. Volumetric analysis was performed on structural pre- and post-bed rest brain MR images. Comparing post-bed rest to pre-bed rest images, we found the following: 1) no significant group differences in GM, WM, CSF, or ventricular volumes; 2) shift of the center of mass of the brain upward and posterior rotation of the brain relative to the skull; 3) a significant correlation between posterior brain rotation and changes in ventricular volume; and 4) significant increases in brain tissue density in regions at the vertex, including the frontoparietal lobes, with contraction of adjacent extra-axial CSF spaces, and significant decreases in tissue density in areas along the base of the brain, including the orbitofrontal cortex. We observed widespread morphologic changes with brain tissue redistribution in response to gravity changes; possible associated functional changes are unknown. The observation that ventricular change is correlated to posterior brain rotation suggests an alteration in CSF homeostasis. Ultimately, to elucidate any structural changes that may play a role in visual impairment and intracranial pressure syndrome, volumetric analysis of pre- and postflight structural scans of astronauts is needed. © 2015 by American Journal of Neuroradiology.

  13. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations

    PubMed Central

    Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058

  14. Contribution of structural brain phenotypes to the variance in resting energy expenditure in healthy Caucasian subjects.

    PubMed

    Geisler, Corinna; Hübers, Mark; Granert, Oliver; Muller, Manfred James

    2017-09-21

    Brain gray (GM) and white matter (WM) volumes are related to weight changes. The impact of structural variations in GM and WM on the variance in resting energy expenditure (REE) and the REE on fat free mass (FFM) association is unknown. The aim of this study was to address this in healthy Caucasian subjects. Cross-sectional data analysis of 493 healthy Caucasian subjects (age range 6 to 80 years; three age groups) with comprehensive information on FFM, organ and tissue masses and detailed brain composition as assessed by whole body magnetic resonance imaging (MRI) and REE (assessed by indirect calorimetry). REE was calculated (REEc) using organ and tissue masses times their specific metabolic rates. FFM was the major determinant of REE (70.6%), individual masses of liver, total brain and heart explained further 2.1% of the variance in REE. Replacing total brain by GM and WM did not change the total R². Nevertheless, GM added more to the variance in REE (5.6%) and corresponding residuals (12.5%) than total brain. Additionally, up to 12% were explained by age and sex (<2%). There was a systematic bias between REE and REEc with positive values in younger subjects but negative values in the older ones. This bias remained after substituting the specific metabolic rate of brain by the specific metabolic rates of GM and WM. In healthy Caucasian subjects, GM and WM contributed to the variance in REE. Detailed brain structures do not explain the bias between REE and REEc. Copyright © 2017, Journal of Applied Physiology.

  15. Effects of acute CDP-choline treatment on resting state brain oscillations in healthy volunteers.

    PubMed

    Knott, Verner; de la Salle, Sara; Smith, Dylan; Choueiry, Joelle; Impey, Danielle; Smith, Meaghan; Beaudry, Elise; Saghir, Salman; Ilivitsky, Vadim; Labelle, Alain

    2015-03-30

    CDP-choline (cytidine-5'-diphosphocholine) is a phospholipid used to treat cognitive disorders, presumably repairing and maintaining brain cell membranes. Additional mechanisms may include enhanced cholinergic neurotransmission as the α7 nicotinic receptor actions of choline and increased acetylcholine synthesis accompanying CDP-choline administration may modulate brain oscillations underlying cognitive processes. This study utilizes electroencephalographic (EEG) recordings in healthy volunteers to evaluate CDP-choline induction of an oscillatory response profile associated with nicotinic stimulation. Resting state EEG was acquired in 24 male volunteers administered low (500mg) and moderate (1000mg) doses of CDP-choline in a randomized placebo-controlled, crossover trial. Consistent with nicotinic agonist treatment, spectral analysis showed dose-dependent reductions in delta and increases in alpha oscillations, which were also accompanied by decreases in beta and gamma oscillatory activity. These findings support the posit that CDP-choline cognitive enhancement involves multiple mechanisms including facilitated nicotinic cholinergic action.

  16. Discriminating between brain rest and attention states using fMRI connectivity graphs and subtree SVM

    NASA Astrophysics Data System (ADS)

    Mokhtari, Fatemeh; Bakhtiari, Shahab K.; Hossein-Zadeh, Gholam Ali; Soltanian-Zadeh, Hamid

    2012-02-01

    Decoding techniques have opened new windows to explore the brain function and information encoding in brain activity. In the current study, we design a recursive support vector machine which is enriched by a subtree graph kernel. We apply the classifier to discriminate between attentional cueing task and resting state from a block design fMRI dataset. The classifier is trained using weighted fMRI graphs constructed from activated regions during the two mentioned states. The proposed method leads to classification accuracy of 1. It is also able to elicit discriminative regions and connectivities between the two states using a backward edge elimination algorithm. This algorithm shows the importance of regions including cerebellum, insula, left middle superior frontal gyrus, post cingulate cortex, and connectivities between them to enhance the correct classification rate.

  17. Resting-state fMRI in the Human Connectome Project

    PubMed Central

    Smith, Stephen M; Andersson, Jesper; Auerbach, Edward J.; Beckmann, Christian F; Bijsterbosch, Janine; Douaud, Gwenaëlle; Duff, Eugene; Feinberg, David A; Griffanti, Ludovica; Harms, Michael P; Kelly, Michael; Laumann, Timothy; Miller, Karla L; Moeller, Steen; Petersen, Steve; Power, Jonathan; Salimi-Khorshidi, Gholamreza; Snyder, Abraham Z; Vu, An; Woolrich, Mark W; Xu, Junqian; Yacoub, Essa; Ugurbil, Kamil; Van Essen, David; Glasser, Matthew F

    2013-01-01

    Resting-state functional magnetic resonance imaging (rfMRI) allows one to study functional connectivity in the brain by acquiring fMRI data while subjects lie inactive in the MRI scanner, and taking advantage of the fact that functionally related brain regions spontaneously co-activate. rfMRI is one of the two primary data modalities being acquired for the Human Connectome Project (the other being diffusion MRI). A key objective is to generate a detailed in vivo mapping of functional connectivity in a large cohort of healthy adults (over 1,000 subjects), and to make these datasets freely available for use by the neuroimaging community. In each subject we acquire a total of one hour of whole-brain rfMRI data at 3 Tesla, with a spatial resolution of 2×2×2mm and a temporal resolution of 0.7s, capitalizing on recent developments in slice-accelerated echo-planar imaging. We will also scan a subset of the cohort at higher field strength and resolution. In this paper we outline the work behind, and rationale for, decisions taken regarding the rfMRI data acquisition protocol and pre-processing pipelines, and present some initial results showing data quality and example functional connectivity analyses. PMID:23702415

  18. The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations

    PubMed Central

    Florin, Esther; Baillet, Sylvain

    2015-01-01

    Functional imaging of the resting brain consistently reveals broad motifs of correlated blood oxygen level dependent (BOLD) activity that engage cerebral regions from distinct functional systems. Yet, the neurophysiological processes underlying these organized, large-scale fluctuations remain to be uncovered. Using magnetoencephalography (MEG) imaging during rest in 12 healthy subjects we analyse the resting state networks and their underlying neurophysiology. We first demonstrate non-invasively that cortical occurrences of high-frequency oscillatory activity are conditioned to the phase of slower spontaneous fluctuations in neural ensembles. We further show that resting-state networks emerge from synchronized phase-amplitude coupling across the brain. Overall, these findings suggest a unified principle of local-to-global neural signaling for long-range brain communication. PMID:25680519

  19. Superiority illusion arises from resting-state brain networks modulated by dopamine.

    PubMed

    Yamada, Makiko; Uddin, Lucina Q; Takahashi, Hidehiko; Kimura, Yasuyuki; Takahata, Keisuke; Kousa, Ririko; Ikoma, Yoko; Eguchi, Yoko; Takano, Harumasa; Ito, Hiroshi; Higuchi, Makoto; Suhara, Tetsuya

    2013-03-12

    The majority of individuals evaluate themselves as superior to average. This is a cognitive bias known as the "superiority illusion." This illusion helps us to have hope for the future and is deep-rooted in the process of human evolution. In this study, we examined the default states of neural and molecular systems that generate this illusion, using resting-state functional MRI and PET. Resting-state functional connectivity between the frontal cortex and striatum regulated by inhibitory dopaminergic neurotransmission determines individual levels of the superiority illusion. Our findings help elucidate how this key aspect of the human mind is biologically determined, and identify potential molecular and neural targets for treatment for depressive realism.

  20. Semi-supervised clustering for parcellating brain regions based on resting state fMRI data

    NASA Astrophysics Data System (ADS)

    Cheng, Hewei; Fan, Yong

    2014-03-01

    Many unsupervised clustering techniques have been adopted for parcellating brain regions of interest into functionally homogeneous subregions based on resting state fMRI data. However, the unsupervised clustering techniques are not able to take advantage of exiting knowledge of the functional neuroanatomy readily available from studies of cytoarchitectonic parcellation or meta-analysis of the literature. In this study, we propose a semi-supervised clustering method for parcellating amygdala into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented under the framework of graph partitioning, and adopts prior information and spatial consistent constraints to obtain a spatially contiguous parcellation result. The graph partitioning problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated for parcellating amygdala into 3 subregions based on resting state fMRI data of 28 subjects. The experiment results have demonstrated that the proposed method is more robust than unsupervised clustering and able to parcellate amygdala into centromedial, laterobasal, and superficial parts with improved functionally homogeneity compared with the cytoarchitectonic parcellation result. The validity of the parcellation results is also supported by distinctive functional and structural connectivity patterns of the subregions and high consistency between coactivation patterns derived from a meta-analysis and functional connectivity patterns of corresponding subregions.

  1. Effect of tolperisone on the resting brain and on evoked responses, an phMRI BOLD study.

    PubMed

    Kocsis, Pál; Gajári, Dávid; Deli, Levente; Gőcze, Krisztina Zsedrovitsné; Pozsgay, Zsófia; Tihanyi, Károly

    2013-10-01

    Tolperisone is a voltage gated sodium channel blocker, centrally acting muscle relaxant drug, with a very advantageous side effect profile. Like other sodium channel blockers, it has weak affinity to the resting state and high affinity to the open/inactivated state of the channel. In this paper, its effect on BOLD responses in rat brain were elucidated both on the resting brain and paw stimulation evoked BOLD responses. Tolperisone did not exert any visible effect on resting brain, but strongly inhibited the paw stimulation evoked BOLD responses, showing somewhat higher efficacy in brain areas involved in pain sensation. This finding is in a good agreement with its sodium channel blocking profile. In the resting brain, most of the channels are in resting state. Electric train stimuli of the paw results in over activated neurons, where most sodium channels are in open or inactivated state. These data suggest that the very advantageous profile of tolperisone can be explained by its selective action on open or inactivated sodium channels of over-activated neurons in various brain regions rather than by a selective effect in the spinal cord as suggested previously.

  2. Extraversion modulates functional connectivity hubs of resting-state brain networks.

    PubMed

    Pang, Yajing; Cui, Qian; Duan, Xujun; Chen, Heng; Zeng, Ling; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2015-11-14

    Personality dimension extraversion describes individual differences in social behaviour and socio-emotional functioning. The intrinsic functional connectivity patterns of the brain are reportedly associated with extraversion. However, whether or not extraversion is associated with functional hubs warrants clarification. Functional hubs are involved in the rapid integration of neural processing, and their dysfunction contributes to the development of neuropsychiatric disorders. In this study, we employed the functional connectivity density (FCD) method for the first time to distinguish the energy-efficient hubs associated with extraversion. The resting-state functional magnetic resonance imaging data of 71 healthy subjects were used in the analysis. Short-range FCD was positively correlated with extraversion in the left cuneus, revealing a link between the local functional activity of this region and extraversion in risk-taking. Long-range FCD was negatively correlated with extraversion in the right superior frontal gyrus and the inferior frontal gyrus. Seed-based resting-state functional connectivity (RSFC) analyses revealed that a decreased long-range FCD in individuals with high extraversion scores showed a low long-range functional connectivity pattern between the medial and dorsolateral prefrontal cortex, middle temporal gyrus, and anterior cingulate cortex. This result suggests that decreased RSFC patterns are responsible for self-esteem, self-evaluation, and inhibitory behaviour system that account for the modulation and shaping of extraversion. Overall, our results emphasize specific brain hubs, and reveal long-range functional connections in relation to extraversion, thereby providing a neurobiological basis of extraversion.

  3. Hypothalamus-Anchored Resting Brain Network Changes before and after Sertraline Treatment in Major Depression

    PubMed Central

    Yang, Rui; Zhang, Hongbo; Wu, Xiaoping; Yang, Junle; Ma, Mingyue; Gao, Yanjun; Liu, Hongsheng; Li, Shengbin

    2014-01-01

    Sertraline, one of the oldest antidepressants, remains to be the most efficacious treatment for depression. However, major depression disorder (MDD) is characterized by altered emotion processing and deficits in cognitive control. In cognitive interference tasks, patients with MDD have shown excessive hypothalamus activity. The purpose of this study was to examine the effects of antidepressant treatment (sertraline) on hypothalamus-anchored resting brain circuitry. Functional magnetic resonance imaging was conducted on depressed patients (n=12) both before and after antidepressant treatment. After eight weeks of antidepressant treatment, patients with depression showed significantly increased connectivity between the hypothalamus and dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex, insula, putamen, caudate, and claustrum. By contrast, decreased connectivity of the hypothalamus-related areas was primarily located in the inferior frontal gyrus, medial frontal gyrus, cingulated gyrus, precuneus, thalamus, and cerebellum. After eight weeks of antidepressant therapy, 8 out of the 12 depressed subjects achieved 70% reduction or better in depressive symptoms, as measured on the Hamilton depression rating scale. Our findings may infer that antidepressant treatment can alter the functional connectivity of the hypothalamus resting brain to achieve its therapeutic effect. PMID:24772438

  4. Hypothalamus-anchored resting brain network changes before and after sertraline treatment in major depression.

    PubMed

    Yang, Rui; Zhang, Hongbo; Wu, Xiaoping; Yang, Junle; Ma, Mingyue; Gao, Yanjun; Liu, Hongsheng; Li, Shengbin

    2014-01-01

    Sertraline, one of the oldest antidepressants, remains to be the most efficacious treatment for depression. However, major depression disorder (MDD) is characterized by altered emotion processing and deficits in cognitive control. In cognitive interference tasks, patients with MDD have shown excessive hypothalamus activity. The purpose of this study was to examine the effects of antidepressant treatment (sertraline) on hypothalamus-anchored resting brain circuitry. Functional magnetic resonance imaging was conducted on depressed patients (n = 12) both before and after antidepressant treatment. After eight weeks of antidepressant treatment, patients with depression showed significantly increased connectivity between the hypothalamus and dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex, insula, putamen, caudate, and claustrum. By contrast, decreased connectivity of the hypothalamus-related areas was primarily located in the inferior frontal gyrus, medial frontal gyrus, cingulated gyrus, precuneus, thalamus, and cerebellum. After eight weeks of antidepressant therapy, 8 out of the 12 depressed subjects achieved 70% reduction or better in depressive symptoms, as measured on the Hamilton depression rating scale. Our findings may infer that antidepressant treatment can alter the functional connectivity of the hypothalamus resting brain to achieve its therapeutic effect.

  5. The Transliminal Brain at Rest: Baseline EEG, Unusual Experiences, and Access to Unconscious Mental Activity

    PubMed Central

    Fleck, Jessica I.; Green, Deborah L.; Stevenson, Jennifer L.; Payne, Lisa; Bowden, Edward M.; Jung-Beeman, Mark; Kounios, John

    2008-01-01

    Transliminality reflects individual differences in the threshold at which unconscious processes or external stimuli enter into consciousness. Individuals high in transliminality possess characteristics such as magical ideation, belief in the paranormal, and creative personality traits, and also report the occurrence of manic/mystic experiences. The goal of the present research was to determine if resting brain activity differs for individuals high versus low in transliminality. We compared baseline EEG recordings (eyes-closed) between individuals high versus low in transliminality, assessed using The Revised Transliminality Scale of Lange et al. (2000). Identifying reliable differences at rest between high- and low-transliminality individuals would support a predisposition for transliminality-related traits. Individuals high in transliminality exhibited lower alpha, beta, and gamma power than individuals low in transliminality over left posterior association cortex and lower high alpha, low beta, and gamma power over the right superior temporal region. In contrast, when compared to individuals low in transliminality, individuals high in transliminality exhibited greater gamma power over the frontal-midline region. These results are consistent with prior research reporting reductions in left temporal/parietal activity, as well as the desynchronization of right temporal activity in schizotypy and related schizophrenia spectrum disorders. Further, differences between high- and low-transliminality groups extend existing theories linking altered hemispheric asymmetries in brain activity to a predisposition toward schizophrenia, paranormal beliefs, and unusual experiences. PMID:18814870

  6. The impact of normalization and segmentation on resting-state brain networks.

    PubMed

    Magalhães, Ricardo; Marques, Paulo; Soares, José; Alves, Victor; Sousa, Nuno

    2015-04-01

    Graph theory has recently received a lot of attention from the neuroscience community as a method to represent and characterize brain networks. Still, there is a lack of a gold standard for the methods that should be employed for the preprocessing of the data and the construction of the networks, as well as a lack of knowledge on how different methodologies can affect the metrics reported. The authors used graph theory analysis applied to resting-state functional magnetic resonance imaging to investigate the influence of different node-defining strategies and the effect of normalizing the functional acquisition on several commonly reported metrics used to characterize brain networks. The nodes of the network were defined using either the individual FreeSurfer segmentation of each subject or the FreeSurfer segmented Montreal National Institute (MNI) 152 template, using the Destrieux and subcortical atlas. The functional acquisition was either kept on the functional native space or normalized into MNI standard space. The comparisons were done at three levels: on the connections, on the edge properties, and on the network properties levels. The results reveal that different registration and brain parcellation strategies have a strong impact on all the levels of analysis, possibly favoring the use of individual segmentation strategies and conservative registration approaches. In conclusion, several technical aspects must be considered so that graph theoretical analysis of connectivity MRI data can provide a framework to understand brain pathologies.

  7. Acute Effects of Modafinil on Brain Resting State Networks in Young Healthy Subjects

    PubMed Central

    Pieramico, Valentina; Ferretti, Antonio; Macchia, Antonella; Tommasi, Marco; Saggino, Aristide; Ciavardelli, Domenico; Manna, Antonietta; Navarra, Riccardo; Cieri, Filippo; Stuppia, Liborio; Tartaro, Armando; Sensi, Stefano L.

    2013-01-01

    Background There is growing debate on the use of drugs that promote cognitive enhancement. Amphetamine-like drugs have been employed as cognitive enhancers, but they show important side effects and induce addiction. In this study, we investigated the use of modafinil which appears to have less side effects compared to other amphetamine-like drugs. We analyzed effects on cognitive performances and brain resting state network activity of 26 healthy young subjects. Methodology A single dose (100 mg) of modafinil was administered in a double-blind and placebo-controlled study. Both groups were tested for neuropsychological performances with the Raven’s Advanced Progressive Matrices II set (APM) before and three hours after administration of drug or placebo. Resting state functional magnetic resonance (rs-FMRI) was also used, before and after three hours, to investigate changes in the activity of resting state brain networks. Diffusion Tensor Imaging (DTI) was employed to evaluate differences in structural connectivity between the two groups. Protocol ID: Modrest_2011; NCT01684306; http://clinicaltrials.gov/ct2/show/NCT01684306. Principal Findings Results indicate that a single dose of modafinil improves cognitive performance as assessed by APM. Rs-fMRI showed that the drug produces a statistically significant increased activation of Frontal Parietal Control (FPC; p<0.04) and Dorsal Attention (DAN; p<0.04) networks. No modifications in structural connectivity were observed. Conclusions and Significance Overall, our findings support the notion that modafinil has cognitive enhancing properties and provide functional connectivity data to support these effects. Trial Registration ClinicalTrials.gov NCT01684306 http://clinicaltrials.gov/ct2/show/NCT01684306. PMID:23935959

  8. Susceptibility to everyday cognitive failure is reflected in functional network interactions in the resting brain.

    PubMed

    Bey, Katharina; Montag, Christian; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2015-11-01

    The proneness to minor errors and slips in everyday life as assessed by the Cognitive Failures Questionnaire (CFQ) constitutes a trait characteristic and is reflected in stable features of brain structure and function. It is unclear, however, how dynamic interactions of large-scale brain networks contribute to this disposition. To address this question, we performed a high model order independent component analysis (ICA) with subsequent dual regression on resting-state fMRI data from 71 subjects to extract temporal time courses describing the dynamics of 17 resting-state networks (RSN). Dynamic network interactions between all 17 RSN were assessed by linear correlations between networks' time courses. On this basis, we investigated the relationship between subject-level RSN interactions and the susceptibility to everyday cognitive failure. We found that CFQ scores were significantly correlated with the interplay of the cingulo-opercular network (CON) and a posterior parietal network which unifies clusters in the posterior cingulate, precuneus, intraparietal lobules and middle temporal regions. Specifically, a higher positive functional connectivity between these two RSN was indicative of higher proneness to cognitive failure. Both the CON and posterior parietal network are implicated in cognitive functions, such as tonic alertness and executive control. Results indicate that proper checks and balances between the two networks are needed to protect against cognitive failure. Furthermore, we demonstrate that the study of temporal network dynamics in the resting state is a feasible tool to investigate individual differences in cognitive ability and performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. An Evaluation of the Left-Brain vs. Right-Brain Hypothesis with Resting State Functional Connectivity Magnetic Resonance Imaging

    PubMed Central

    Nielsen, Jared A.; Zielinski, Brandon A.; Ferguson, Michael A.; Lainhart, Janet E.; Anderson, Jeffrey S.

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network

  10. Time-frequency dynamics of resting-state brain connectivity measured with fMRI.

    PubMed

    Chang, Catie; Glover, Gary H

    2010-03-01

    Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from both task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit dynamic changes within time scales of seconds to minutes. In the present study, we investigated the dynamic behavior of resting-state connectivity across the course of a single scan, performing a time-frequency coherence analysis based on the wavelet transform. We focused on the connectivity of the posterior cingulate cortex (PCC), a primary node of the default-mode network, examining its relationship with both the "anticorrelated" ("task-positive") network as well as other nodes of the default-mode network. It was observed that coherence and phase between the PCC and the anticorrelated network was variable in time and frequency, and statistical testing based on Monte Carlo simulations revealed the presence of significant scale-dependent temporal variability. In addition, a sliding-window correlation procedure identified other regions across the brain that exhibited variable connectivity with the PCC across the scan, which included areas previously implicated in attention and salience processing. Although it is unclear whether the observed coherence and phase variability can be attributed to residual noise or modulation of cognitive state, the present results illustrate that resting-state functional connectivity is not static, and it may therefore prove valuable to consider measures of variability, in addition to average quantities, when characterizing resting-state networks. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  11. Extraversion and neuroticism relate to topological properties of resting-state brain networks

    PubMed Central

    Gao, Qing; Xu, Qiang; Duan, Xujun; Liao, Wei; Ding, Jurong; Zhang, Zhiqiang; Li, Yuan; Lu, Guangming; Chen, Huafu

    2013-01-01

    With the advent and development of modern neuroimaging techniques, there is an increasing interest in linking extraversion and neuroticism to anatomical and functional brain markers. Here, we aimed to test the theoretically derived biological personality model as proposed by Eysenck using graph theoretical analyses. Specifically, the association between the topological organization of whole-brain functional networks and extraversion/neuroticism was explored. To construct functional brain networks, functional connectivity among 90 brain regions was measured by temporal correlation using resting-state functional magnetic resonance imaging (fMRI) data of 71 healthy subjects. Graph theoretical analysis revealed a positive association of extraversion scores and normalized clustering coefficient values. These results suggested a more clustered configuration in brain networks of individuals high in extraversion, which could imply a higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts. On a local network level, we observed that a specific nodal measure, i.e., betweenness centrality (BC), was positively associated with neuroticism scores in the right precentral gyrus (PreCG), right caudate nucleus, right olfactory cortex, and bilateral amygdala. For individuals high in neuroticism, these results suggested a more frequent participation of these specific regions in information transition within the brain network and, in turn, may partly explain greater regional activation levels and lower arousal thresholds in these regions. In contrast, extraversion scores were positively correlated with BC in the right insula, while negatively correlated with BC in the bilateral middle temporal gyrus (MTG), indicating that the relationship between extraversion and regional arousal is not as simple as proposed by Eysenck. PMID:23781183

  12. Real-time imaging of brain areas involved in the generation of spontaneous skin sympathetic nerve activity at rest.

    PubMed

    James, Cheree; Henderson, Luke; Macefield, Vaughan G

    2013-07-01

    In thermoneutral conditions resting skin sympathetic nerve activity (SSNA) is related to the level of arousal and emotional state. The brain regions responsible for the generation of spontaneous SSNA are not known. In the present study we used concurrent recordings of SSNA and brain activity in awake humans to identify cortical and subcortical areas involved in the generation of spontaneous SSNA in 13 healthy subjects. Blood oxygen level dependent signal intensity increases covaried with SSNA in the left thalamus in the region of the ventromedial nucleus, the left posterior and right anterior insula, the right orbitofrontal cortex, the right frontal cortex, and bilaterally in the mid-cingulate cortex and precuneus. Functional connectivity analysis revealed a strong positive coupling between the right orbitofrontal cortex and the right anterior insula. Furthermore, signal intensity changes within the precuneus were temporally coupled to the left anterior and posterior insula, cerebellum, cingulate cortex and thalamus. It has been hypothesized that these brain regions monitor the internal state of the body and may regulate emotional state changes. Our results show that the activities within these regions are also correlated to spontaneous fluctuations in SSNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A Supervoxel-Based Method for Groupwise Whole Brain Parcellation with Resting-State fMRI Data

    PubMed Central

    Wang, Jing; Wang, Haixian

    2016-01-01

    Node definition is a very important issue in human brain network analysis and functional connectivity studies. Typically, the atlases generated from meta-analysis, random criteria, and structural criteria are utilized as nodes in related applications. However, these atlases are not originally designed for such purposes and may not be suitable. In this study, we combined normalized cut (Ncut) and a supervoxel method called simple linear iterative clustering (SLIC) to parcellate whole brain resting-state fMRI data in order to generate appropriate brain atlases. Specifically, Ncut was employed to extract features from connectivity matrices, and then SLIC was applied on the extracted features to generate parcellations. To obtain group level parcellations, two approaches named mean SLIC and two-level SLIC were proposed. The cluster number varied in a wide range in order to generate parcellations with multiple granularities. The two SLIC approaches were compared with three state-of-the-art approaches under different evaluation metrics, which include spatial contiguity, functional homogeneity, and reproducibility. Both the group-to-group reproducibility and the group-to-subject reproducibility were evaluated in our study. The experimental results showed that the proposed approaches obtained relatively good overall clustering performances in different conditions that included different weighting functions, different sparsifying schemes, and several confounding factors. Therefore, the generated atlases are appropriate to be utilized as nodes for network analysis. The generated atlases and major source codes of this study have been made publicly available at http://www.nitrc.org/projects/slic/. PMID:28082885

  14. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    PubMed

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  15. Metabolic costs and evolutionary implications of human brain development.

    PubMed

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-09

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.

  16. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury

    PubMed Central

    Williams, Shawniqua T; Conte, Mary M; Goldfine, Andrew M; Noirhomme, Quentin; Gosseries, Olivia; Thonnard, Marie; Beattie, Bradley; Hersh, Jennifer; Katz, Douglas I; Victor, Jonathan D; Laureys, Steven; Schiff, Nicholas D

    2013-01-01

    Zolpidem produces paradoxical recovery of speech, cognitive and motor functions in select subjects with severe brain injury but underlying mechanisms remain unknown. In three diverse patients with known zolpidem responses we identify a distinctive pattern of EEG dynamics that suggests a mechanistic model. In the absence of zolpidem, all subjects show a strong low frequency oscillatory peak ∼6–10 Hz in the EEG power spectrum most prominent over frontocentral regions and with high coherence (∼0.7–0.8) within and between hemispheres. Zolpidem administration sharply reduces EEG power and coherence at these low frequencies. The ∼6–10 Hz activity is proposed to arise from intrinsic membrane properties of pyramidal neurons that are passively entrained across the cortex by locally-generated spontaneous activity. Activation by zolpidem is proposed to arise from a combination of initial direct drug effects on cortical, striatal, and thalamic populations and further activation of underactive brain regions induced by restoration of cognitively-mediated behaviors. DOI: http://dx.doi.org/10.7554/eLife.01157.001 PMID:24252875

  17. Increased Brain Activation for Foot Movement During 70-Day 6 Deg Head-Down Bed Rest (HDBR): Evidence from Functional Magnetic Resonance Imaging (fMRI)

    NASA Technical Reports Server (NTRS)

    Yuan, P.; Koppelmans, V.; Cassady, K.; Cooke, K.; De Dios, Y. E.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, P. A.; Riascos-Castaneda, R.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2015-01-01

    Bed rest has been widely used as a simulation of weightlessness in studying the effects of microgravity exposure on human physiology and cognition. Changes in muscle function and functional mobility have been reported to be associated with bed rest. Understanding the effect of bed rest on neural control of movement would provide helpful information for spaceflight. In the current study, we evaluated how the brain activation for foot movement changed as a function of bed rest. Eighteen healthy men (aged 25 to 39 years) participated in this HDBR study. They remained continuously in the 6deg head-down tilt position for 70 days. Functional MRI was acquired during 1-Hz right foot tapping, and repeated at 7 time points: 12 days pre-, 8 days pre-, 7 days in-, 50 days in-, 70 days in-, 8 days post-, and 12 days post- HDBR. In all 7 sessions, we observed increased activation in the left motor cortex, right cerebellum and right occipital cortex during foot movement blocks compared to rest. Compared to the pre-HDBR baseline (1st and 2nd sessions), foot movement-induced activation in the left hippocampus increased during HDBR. This increase emerged in the 4th session, enlarged in the 5th session, and remained significant in the 6th and 7th sessions. Furthermore, increased activation relative to the baseline in left precuneus was observed in the 5th, 6th and 7th sessions. In addition, in comparison with baseline, increased activation in the left cerebellum was found in the 4th and 5th sessions, whereas increased activation in the right cerebellum was observed in the 4th, 6th and 7th sessions. No brain region exhibited decreased activation during bed rest compared to baseline. The increase of foot movement related brain activation during HDBR suggests that in a long-term head-down position, more neural control is needed to accomplish foot movements. This change required a couple of weeks to develop in HDBR (between 3rd and 4th sessions), and did not return to baseline even 12

  18. Modulation of resting brain cerebral blood flow by the GABA B agonist, baclofen: A longitudinal perfusion fMRI study

    PubMed Central

    Franklin, Teresa R.; Wang, Ze; Sciortino, Nathan; Harper, Derek; Li, Yin; Hakun, Jonathan; Kildea, Susan; Kampman, Kyle; Ehrman, Ron; Detre, John A.; O’Brien, Charles P.; Childress, Anna Rose

    2011-01-01

    Background Preclinical studies confirm that the GABA B agonist, baclofen blocks dopamine release in the reward-responsive ventral striatum (VS) and medial prefrontal cortex, and consequently, blocks drug motivated behavior. Its mechanism in humans is unknown. Here, we used continuous arterial spin labeled (CASL) perfusion fMRI to examine baclofen’s effects on blood flow in the human brain. Methods Twenty-one subjects (all smokers, 12 females) were randomized to receive either baclofen (80 mg/day; N = 10) or placebo (N = 11). A five minute quantitative perfusion fMRI resting baseline (RB) scan was acquired at two time points; prior to the dosing regimen (Time 1) and on the last day of 21 days of drug administration (Time 2). SPM2 was employed to compare changes in RB from Time 1 to 2. Results Baclofen diminished cerebral blood flow (CBF) in the VS and mOFC and increased it in the lateral OFC, a region involved in suppressing previously rewarded behavior. CBF in bilateral insula was also blunted by baclofen (T values ranged from −11.29 to 15.3 at p = 0.001, 20 contiguous voxels). CBF at Time 2 was unchanged in placebo subjects. There were no differences between groups in side effects or cigarettes smoked per day (at either time point). Conclusions Baclofen’s modulatory actions on regions involved in motivated behavior in humans are reflected in the resting state and provide insight into the underlying mechanism behind its potential to block drug-motivated behavior, in preclinical studies, and its putative effectiveness as an anti-craving/anti-relapse agent in humans. PMID:21333466

  19. Network analysis of resting state EEG in the developing young brain: structure comes with maturation.

    PubMed

    Boersma, Maria; Smit, Dirk J A; de Bie, Henrica M A; Van Baal, G Caroline M; Boomsma, Dorret I; de Geus, Eco J C; Delemarre-van de Waal, Henriette A; Stam, Cornelis J

    2011-03-01

    During childhood, brain structure and function changes substantially. Recently, graph theory has been introduced to model connectivity in the brain. Small-world networks, such as the brain, combine optimal properties of both ordered and random networks, i.e., high clustering and short path lengths. We used graph theoretical concepts to examine changes in functional brain networks during normal development in young children. Resting-state eyes-closed electroencephalography (EEG) was recorded (14 channels) from 227 children twice at 5 and 7 years of age. Synchronization likelihood (SL) was calculated in three different frequency bands and between each pair of electrodes to obtain SL-weighted graphs. Mean normalized clustering index, average path length and weight dispersion were calculated to characterize network organization. Repeated measures analysis of variance tested for time and gender effects. For all frequency bands mean SL decreased from 5 to 7 years. Clustering coefficient increased in the alpha band. Path length increased in all frequency bands. Mean normalized weight dispersion decreased in beta band. Girls showed higher synchronization for all frequency bands and a higher mean clustering in alpha and beta bands. The overall decrease in functional connectivity (SL) might reflect pruning of unused synapses and preservation of strong connections resulting in more cost-effective networks. Accordingly, we found increases in average clustering and path length and decreased weight dispersion indicating that normal brain maturation is characterized by a shift from random to more organized small-world functional networks. This developmental process is influenced by gender differences early in development. Copyright © 2010 Wiley-Liss, Inc.

  20. Behavioral, Brain Imaging and Genomic Measures to Predict Functional Outcomes Post - Bed Rest and Spaceflight

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; DeDios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Batson, C. D.; Goel, R.; Seidler, R. D.; Oddsson, L.; Zanello, S.; Clarke, T.; Peters, B.; Cohen, H. S.; Reschke, M.; Wood, S.; Bloomberg, J. J.

    2016-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may disrupt crewmembers' ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual spaceflight, which crewmembers are likely to experience the greatest challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures. Our approach includes: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features, using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; and 3) assessment of genotypic markers of genetic polymorphisms in the catechol-O-methyl transferase, dopamine receptor D2, and brain-derived neurotrophic factor genes and genetic polymorphisms of alpha2-adrenergic receptors that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate that these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration spaceflight and exposure to an analog bed rest environment. We will be conducting a

  1. In Vivo measurement of human body composition. [during continuous bed rest

    NASA Technical Reports Server (NTRS)

    Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Price, D. C.

    1975-01-01

    Physiological changes in human beings were studied during a 21 day bed rest regime. Results of blood analyses indicated clearly that major metabolic adjustments occurred during prolonged bed rest. However, urinary metabolic analyses showed variances attributed to specimen collection inaccuracies and the small number of test subjects.

  2. Interictal brain activity differs in migraine with and without aura: resting state fMRI study.

    PubMed

    Faragó, Péter; Tuka, Bernadett; Tóth, Eszter; Szabó, Nikoletta; Király, András; Csete, Gergő; Szok, Délia; Tajti, János; Párdutz, Árpád; Vécsei, László; Kincses, Zsigmond Tamás

    2017-12-01

    Migraine is one of the most severe primary headache disorders. The nature of the headache and the associated symptoms during the attack suggest underlying functional alterations in the brain. In this study, we examined amplitude, the resting state fMRI fluctuation in migraineurs with and without aura (MWA, MWoA respectively) and healthy controls. Resting state functional MRI images and T1 high-resolution images were acquired from all participants. For data analysis we compared the groups (MWA-Control, MWA-MWoA, MWoA-Control). The resting state networks were identified by MELODIC. The mean time courses of the networks were identified for each participant for all networks. The time-courses were decomposed into five frequency bands by discrete wavelet decomposition. The amplitude of the frequency-specific activity was compared between groups. Furthermore, the preprocessed resting state images were decomposed by wavelet analysis into five specific frequency bands voxel-wise. The voxel-wise amplitudes were compared between groups by non-parametric permutation test. In the MWA-Control comparison the discrete wavelet decomposition found alterations in the lateral visual network. Higher activity was measured in the MWA group in the highest frequency band (0.16-0.08 Hz). In case of the MWA-MWoA comparison all networks showed higher activity in the 0.08-0.04 Hz frequency range in MWA, and the lateral visual network in in higher frequencies. In MWoA-Control comparison only the default mode network revealed decreased activity in MWoA group in the 0.08-0.04 Hz band. The voxel-wise frequency specific analysis of the amplitudes found higher amplitudes in MWA as compared to MWoA in the in fronto-parietal regions, anterior cingulate cortex and cerebellum. The amplitude of the resting state fMRI activity fluctuation is higher in MWA than in MWoA. These results are in concordance with former studies, which found cortical hyperexcitability in MWA.

  3. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study.

    PubMed

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d'Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain's functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an "in-love" group (LG, N = 34, currently intensely in love), an "ended-love" group (ELG, N = 34, ended romantic relationship recently), and a "single" group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate the

  4. Relationship between the LHPP Gene Polymorphism and Resting-State Brain Activity in Major Depressive Disorder

    PubMed Central

    Cui, Lingling; Gong, Xiaohong; Tang, Yanqing; Kong, Lingtao; Chang, Miao; Geng, Haiyang

    2016-01-01

    A single-nucleotide polymorphism at the LHPP gene (rs35936514) has been reported in genome-wide association studies to be associated with major depressive disorder (MDD). However, the neural system effects of rs35936514 that mediate the association are unknown. The present work explores whether the LHPP rs35936514 polymorphism moderates brain regional activity in MDD. A total of 160 subjects were studied: a CC group homozygous for the C allele (23 individuals with MDD and 57 controls) and a T-carrier group carrying the high risk T allele (CT/TT genotypes; 22 MDD and 58 controls). All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. Brain activity was assessed using the amplitudes of low-frequency fluctuations (ALFF). MDD patients showed a significant increased ALFF in the left middle temporal gyrus and occipital cortex. The T-carrier group showed increased ALFF in the left superior temporal gyrus. Significant diagnosis × genotype interaction was noted in the bilateral lingual gyri, bilateral dorsal lateral prefrontal cortex (dlPFC), and left medial prefrontal cortex (mPFC) (P < 0.05, corrected). Results demonstrated that MDD patients with LHPP rs35936514 CT/TT genotype may influence the regional brain activity. These findings implicate the effects of the rs35936514 variation on the neural system in MDD. PMID:27843651

  5. The unrested resting brain: sleep deprivation alters activity within the default-mode network.

    PubMed

    Gujar, Ninad; Yoo, Seung-Schik; Hu, Peter; Walker, Matthew P

    2010-08-01

    The sleep-deprived brain has principally been characterized by examining dysfunction during cognitive task performance. However, far less attention has been afforded the possibility that sleep deprivation may be as, if not more, accurately characterized on the basis of abnormal resting-state brain activity. Here we report that one night of sleep deprivation significantly disrupts the canonical signature of task-related deactivation, resulting in a double dissociation within anterior as well as posterior midline regions of the default network. Indeed, deactivation within these regions alone discriminated sleep-deprived from sleep-control subjects with a 93% degree of sensitivity and 92% specificity. In addition, the relative balance of deactivation within these default nodes significantly correlated with the amount of prior sleep in the control group (and not extended time awake in the deprivation group). Therefore, the stability and the balance of task-related deactivation in key default-mode regions may be dependent on prior sleep, such that a lack thereof disrupts this signature pattern of brain activity, findings that may offer explanatory insights into conditions associated with sleep loss at both a clinical as well as societal level.

  6. Quantitative Imaging of Energy Expenditure in Human Brain

    PubMed Central

    Zhu, Xiao-Hong; Qiao, Hongyan; Du, Fei; Xiong, Qiang; Liu, Xiao; Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2012-01-01

    Despite the essential role of the brain energy generated from ATP hydrolysis in supporting cortical neuronal activity and brain function, it is challenging to noninvasively image and directly quantify the energy expenditure in the human brain. In this study, we applied an advanced in vivo 31P MRS imaging approach to obtain regional cerebral metabolic rates of high-energy phosphate reactions catalyzed by ATPase (CMRATPase) and creatine kinase (CMRCK), and to determine CMRATPase and CMRCK in pure grey mater (GM) and white mater (WM), respectively. It was found that both ATPase and CK rates are three times higher in GM than WM; and CMRCK is seven times higher than CMRATPase in GM and WM. Among the total brain ATP consumption in the human cortical GM and WM, 77% of them are used by GM in which approximately 96% is by neurons. A single cortical neuron utilizes approximately 4.7 billion ATPs per second in a resting human brain. This study demonstrates the unique utility of in vivo 31P MRS imaging modality for direct imaging of brain energy generated from ATP hydrolysis, and provides new insights into the human brain energetics and its role in supporting neuronal activity and brain function. PMID:22487547

  7. Quantitative imaging of energy expenditure in human brain.

    PubMed

    Zhu, Xiao-Hong; Qiao, Hongyan; Du, Fei; Xiong, Qiang; Liu, Xiao; Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2012-05-01

    Despite the essential role of the brain energy generated from ATP hydrolysis in supporting cortical neuronal activity and brain function, it is challenging to noninvasively image and directly quantify the energy expenditure in the human brain. In this study, we applied an advanced in vivo(31)P MRS imaging approach to obtain regional cerebral metabolic rates of high-energy phosphate reactions catalyzed by ATPase (CMR(ATPase)) and creatine kinase (CMR(CK)), and to determine CMR(ATPase) and CMR(CK) in pure gray mater (GM) and white mater (WM), respectively. It was found that both ATPase and CK rates are three times higher in GM than WM; and CMR(CK) is seven times higher than CMR(ATPase) in GM and WM. Among the total brain ATP consumption in the human cortical GM and WM, 77% of them are used by GM in which approximately 96% is by neurons. A single cortical neuron utilizes approximately 4.7 billion ATPs per second in a resting human brain. This study demonstrates the unique utility of in vivo(31)P MRS imaging modality for direct imaging of brain energy generated from ATP hydrolysis, and provides new insights into the human brain energetics and its role in supporting neuronal activity and brain function. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Tobacco Smoking and the Resting Maternal Brain: A Preliminary Study of Frontal EEG

    PubMed Central

    Wilbanks, Haley E.; Von Mohr, Mariana; Potenza, Marc N.; Mayes, Linda C.; Rutherford, Helena J.V.

    2016-01-01

    Tobacco smoking has been attributed to a wide range of detrimental health consequences for both women and their children. In addition to its known physical health effects, smoking may also impact maternal neural responses and subsequent caregiving behavior. To begin investigating this issue, we employed electroencephalography (EEG) to examine resting neural oscillations of tobacco-smoking mothers (n = 35) and non-smoking mothers (n = 35). We examined seven EEG frequency bands recorded from frontal electrode sites (delta, theta, alpha, alpha1, alpha2, beta, and gamma). While no between-group differences were present in high-frequency bands (alpha2, beta, gamma), smokers showed greater spectral power in low-frequency bands (delta, theta, alpha, alpha1) compared to non-smokers. This increased power in low-frequency bands of tobacco-smoking mothers is consistent with a less aroused state and may be one mechanism through which smoking might affect the maternal brain and caregiving behavior. PMID:27354838

  9. Determination of dominant frequency of resting-state brain interaction within one functional system.

    PubMed

    Zhang, Yu-Jin; Duan, Lian; Zhang, Han; Biswal, Bharat B; Lu, Chun-Ming; Zhu, Chao-Zhe

    2012-01-01

    Accumulating evidence has revealed that the resting-state functional connectivity (RSFC) is frequency specific and functional system dependent. Determination of dominant frequency of RSFC (RSFC(df)) within a functional system, therefore, is of importance for further understanding the brain interaction and accurately assessing the RSFC within the system. Given the unique advantages over other imaging techniques, functional near-infrared spectroscopy (fNIRS) holds distinct merits for RSFC(df) determination. However, an obstacle that hinders fNIRS from potential RSFC(df) investigation is the interference of various global noises in fNIRS data which could bring spurious connectivity at the frequencies unrelated to spontaneous neural activity. In this study, we first quantitatively evaluated the interferences of multiple systemic physiological noises and the motion artifact by using simulated data. We then proposed a functional system dependent and frequency specific analysis method to solve the problem by introducing anatomical priori information on the functional system of interest. Both the simulated and real resting-state fNIRS experiments showed that the proposed method outperforms the traditional one by effectively eliminating the negative effects of the global noises and significantly improving the accuracy of the RSFC(df) estimation. The present study thus provides an effective approach to RSFC(df) determination for its further potential applications in basic and clinical neurosciences.

  10. Resting cortical brain activity and social behavior in higher functioning children with autism.

    PubMed

    Sutton, Steven K; Burnette, Courtney P; Mundy, Peter C; Meyer, Jessica; Vaughan, Amy; Sanders, Chris; Yale, Marygrace

    2005-02-01

    Psychophysiological measurement of processes related to social behavior may be valuable for research on individual differences and subgroups among children with autism spectrum disorders (Coleman, 1987; Dawson, Klinger, Panagiotides, Lewy, & Castelloe, 1995; Modahl et al., 1998). In particular, recent research and theory suggests that measures of resting anterior EEG asymmetry reflect complex brain processes associated with individual differences in approach or avoidance motivation that may be associated with social and emotional interaction tendencies among children with autism. This hypothesis was examined in a study of the relations among resting anterior asymmetry, social impairment, and social anxiety in 23 high functioning children with autism (HFA) and 20 controls (age range 9-14 years). These groups were significantly different on the measures of anterior asymmetry, social symptoms and anxiety-related measures. Moreover, HFA children who displayed right frontal asymmetry (RFA group) displayed more symptoms of social impairments and better visual analytic skills than did children who displayed left frontal asymmetry (LFA group). Alternatively, while the LFA group displayed fewer symptoms of social impairment they also reported greater levels of social anxiety, social stress, and lower satisfaction with interpersonal relations than did the RFA group. These observations indicate that anterior EEG asymmetry may be a marker of motivation and emotion processes that refract the autism taxon into important individual differences in social presentation among higher functioning children.

  11. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    PubMed

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.

  12. Functional connectivity in BOLD and CBF data: Similarity and reliability of resting brain networks

    PubMed Central

    Jann, Kay; Gee, Dylan G.; Kilroy, Emily; Schwab, Simon; Smith, Robert X.; Cannon, Tyrone D.; Wang, Danny J.J.

    2014-01-01

    Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing approach to mapping the brain’s intrinsic functional organization. Blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) are the two main rs-fcMRI approaches to assess alterations in brain networks associated with individual differences, behavior and psychopathology. While the BOLD signal is stronger with a higher temporal resolution, ASL provides quantitative, direct measures of the physiology and metabolism of specific networks. This study systematically investigated the similarity and reliability of resting brain networks (RBNs) in BOLD and ASL. A 2 × 2 × 2 factorial design was employed where each subject underwent repeated BOLD and ASL rs-fcMRI scans on two occasions on two MRI scanners respectively. Both independent and joint FC analyses revealed common RBNs in ASL and BOLD rs-fcMRI with a moderate to high level of spatial overlap, verified by Dice Similarity Coefficients. Test–retest analyses indicated more reliable spatial network patterns in BOLD (average modal Intraclass Correlation Coefficients: 0.905 ± 0.033 between-sessions; 0.885 ± 0.052 between-scanners) than ASL (0.545 ± 0.048; 0.575 ± 0.059). Nevertheless, ASL provided highly reproducible (0.955 ± 0.021; 0.970 ± 0.011) network-specific CBF measurements. Moreover, we observed positive correlations between regional CBF and FC in core areas of all RBNs indicating a relationship between network connectivity and its baseline metabolism. Taken together, the combination of ASL and BOLD rs-fcMRI provides a powerful tool for characterizing the spatiotemporal and quantitative properties of RBNs. These findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical populations that are carried out across time and scanners. PMID:25463468

  13. Low-Frequency Fluctuations of the Resting Brain: High Magnitude Does Not Equal High Reliability

    PubMed Central

    Jia, Wenbin; Liao, Wei; Li, Xun; Huang, Huiyuan; Yuan, Jianhua; Zang, Yu-Feng; Zhang, Han

    2015-01-01

    The amplitude of low-frequency fluctuation (ALFF) measures low-frequency oscillations of the blood-oxygen-level-dependent signal, characterizing local spontaneous activity during the resting state. ALFF is a commonly used measure for resting-state functional magnetic resonance imaging (rs-fMRI) in numerous basic and clinical neuroscience studies. Using a test-retest rs-fMRI dataset consisting of 21 healthy subjects and three repetitive scans, we found that several key brain regions with high ALFF intensities (or magnitude) had poor reliability. Such regions included the posterior cingulate cortex, the medial prefrontal cortex in the default mode network, parts of the right and left thalami, and the primary visual and motor cortices. The above finding was robust with regard to different sample sizes (number of subjects), different scanning parameters (repetition time) and variations of test-retest intervals (i.e., intra-scan, intra-session, and inter-session reliability), as well as with different scanners. Moreover, the qualitative, map-wise results were validated further with a region-of-interest-based quantitative analysis using “canonical” coordinates as reported previously. Therefore, we suggest that the reliability assessments be incorporated in future ALFF studies, especially for the brain regions with a large ALFF magnitude as listed in our paper. Splitting single data into several segments and assessing within-scan “test-retest” reliability is an acceptable alternative if no “real” test-retest datasets are available. Such evaluations might become more necessary if the data are collected with clinical scanners whose performance is not as good as those that are used for scientific research purposes and are better maintained because the lower signal-to-noise ratio may further dampen ALFF reliability. PMID:26053265

  14. Hemodynamic low-frequency oscillation reflects resting-state neuronal activity in rodent brain

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Liu, Peng; Li, James; Pan, Yingtian; Du, Congwu

    2015-03-01

    Brain functional connectivity is mapped using spontaneous low-frequency oscillations (LFOs) in blood-oxygen-leveldependent (BOLD) signals using fMRI. However, the origin of spontaneous BOLD oscillations remains elusive. Specifically, the coupling of regional hemodynamic LFOs to neuronal activity in a resting brain is rarely examined directly. Here we present a method based on instantaneous-frequency (IF) analysis to detect regional LFOs of cerebral blood flow (CBF) along with local-field potential (LFP) changes of neurons in resting state to study neurovascular coupling. CBF and LFP were simultaneously acquired using laser Doppler flowmetry (LDF) and electroencephalography in the rat's somatosensory cortex with high temporal resolution (i.e., 20Hz for CBF and 2kHz for LDF, respectively). Instead of fast Fourier transform analysis, a peak-detection algorithm was used to define the LFP activities and CBF spontaneous oscillations in the time domain and the time lapses were used to calculate the IFs of hemodynamic (i.e., CBF) oscillations and neuronal (i.e., LFP) activities. Our results showed that the CBF mostly oscillated at ~0.1Hz with a full-half-bandwidth of [0.08Hz, 0.15Hz]. In addition, the maximal frequency of LFP firings was also approximately at 0.1Hz, which collaborated with to the frequency of CBF oscillations. Interestingly, CBF increased linearly with the LFP activity up to 0.15Hz (r=0.93), and both signals then decreased rapidly as a function of activity frequency. This indicates the spontaneous hemodynamic LFOs were associated with neuronal activities, thus confirming the neuronal origin of the hemodynamic oscillations.

  15. Altered Causal Connectivity of Resting State Brain Networks in Amnesic MCI

    PubMed Central

    Liang, Peipeng; Li, Zhihao; Deshpande, Gopikrishna; Wang, Zhiqun; Hu, Xiaoping; Li, Kuncheng

    2014-01-01

    Most neuroimaging studies of resting state networks in amnesic mild cognitive impairment (aMCI) have concentrated on functional connectivity (FC) based on instantaneous correlation in a single network. The purpose of the current study was to investigate effective connectivity in aMCI patients based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data – default mode network (DMN), hippocampal cortical memory network (HCMN), dorsal attention network (DAN) and fronto-parietal control network (FPCN). Structural and functional MRI data were collected from 16 aMCI patients and 16 age, gender-matched healthy controls. Correlation-purged Granger causality analysis was used, taking gray matter atrophy as covariates, to compare the group difference between aMCI patients and healthy controls. We found that the causal connectivity between networks in aMCI patients was significantly altered with both increases and decreases in the aMCI group as compared to healthy controls. Some alterations were significantly correlated with the disease severity as measured by mini-mental state examination (MMSE), and California verbal learning test (CVLT) scores. When the whole-brain signal averaged over the entire brain was used as a nuisance co-variate, the within-group maps were significantly altered while the between-group difference maps did not. These results suggest that the alterations in causal influences may be one of the possible underlying substrates of cognitive impairments in aMCI. The present study extends and complements previous FC studies and demonstrates the coexistence of causal disconnection and compensation in aMCI patients, and thus might provide insights into biological mechanism of the disease. PMID:24613934

  16. Resting state brain connectivity patterns before eventual relapse into cocaine abuse.

    PubMed

    Berlingeri, M; Losasso, D; Girolo, A; Cozzolino, E; Masullo, T; Scotto, M; Sberna, M; Bottini, G; Paulesu, E

    2017-06-01

    According to recent theories, drug addicted patients suffer of an impaired response inhibition and salience attribution (I-RISA) together with a perturbed connectivity between the nuclei accumbens (NAcs) and the orbito-prefrontal (oPFC) and dorsal prefrontal (dPFC) cortices, brain regions associated with motivation and cognitive control. To empirically test these assumptions, we evaluated the (neuro)psychological trait and the functional organization of the resting state brain networks associated with the NAcs in 18 former cocaine abusers (FCAs), while being in drug abstinence since 5 months. The psychological data were grouped into three empirical variables related with emotion regulation, emotion awareness and strategic and controlled behaviour. Comparison of the resting state patterns between the entire sample of FCAs and 19 controls revealed a reduction of functional connectivity between the NAcs and the dPFC and enhanced connectivity between the NAcs and the dorsal-striatum. In the 8 FCAs who relapsed into cocaine use after 3 months, the level of functional connectivity between the NAcs and dPFC was lower than the functional connectivity estimated in the group of patients that did not relapsed. Finally, in the entire sample of FCAs, the higher the connectivity between the NAc and the oPFC the lower was the level of strategic and controlled behaviour. Taken together, these results are compatible with models of the interactions between the NAcs, the dorsal striatum and frontal cortices in the I-RISA syndrome, showing that such interactions are particularly perturbed in patients at greater risk of relapse into cocaine abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake

    PubMed Central

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B

    2016-01-01

    Background: In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals—that is, resting-state brain activity—in the context of food intake are, however, less well studied. Objective: To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Methods: Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m−2) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m−2), both before and 30 min after consumption of a standardized meal (~260 kcal). Results: Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (P<0.05). This group difference was not altered by food intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (P<0.05); however, these changes did not differ between the BMI groups. Conclusion: Reward-related brain regions are more active under resting-state conditions in obese than in normal-weight females. This difference was independent of food intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans. PMID:27349694

  18. Sex differences in associations of arginine vasopressin and oxytocin with resting-state functional brain connectivity.

    PubMed

    Rubin, Leah H; Yao, Li; Keedy, Sarah K; Reilly, James L; Bishop, Jeffrey R; Carter, C Sue; Pournajafi-Nazarloo, Hossein; Drogos, Lauren L; Tamminga, Carol A; Pearlson, Godfrey D; Keshavan, Matcheri S; Clementz, Brett A; Hill, Scot K; Liao, Wei; Ji, Gong-Jun; Lui, Su; Sweeney, John A

    2017-01-02

    Oxytocin (OT) and arginine vasopressin (AVP) exert robust and sexually dimorphic influences on cognition and emotion. How these hormones regulate relevant functional brain systems is not well understood. OT and AVP serum concentrations were assayed in 60 healthy individuals (36 women). Brain functional networks assessed with resting-state functional magnetic resonance imaging (rs-fMRI) were constructed with graph theory-based approaches that characterize brain networks as connected nodes. Sex differences were demonstrated in rs-fMRI. Men showed higher nodal degree (connectedness) and efficiency (information propagation capacity) in left inferior frontal gyrus (IFG) and bilateral superior temporal gyrus (STG) and higher nodal degree in left rolandic operculum. Women showed higher nodal betweenness (being part of paths between nodes) in right putamen and left inferior parietal gyrus (IPG). Higher hormone levels were associated with less intrinsic connectivity. In men, higher AVP was associated with lower nodal degree and efficiency in left IFG (pars orbitalis) and left STG and less efficiency in left IFG (pars triangularis). In women, higher AVP was associated with lower betweenness in left IPG, and higher OT was associated with lower nodal degree in left IFG (pars orbitalis). Hormones differentially correlate with brain networks that are important for emotion processing and cognition in men and women. AVP in men and OT in women may regulate orbital frontal cortex connectivity, which is important in emotion processing. Hormone associations with STG and pars triangularis in men and parietal cortex in women may account for well-established sex differences in verbal and visuospatial abilities, respectively. © 2016 Wiley Periodicals, Inc.

  19. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest

    PubMed Central

    Bloomberg, Jacob J.; De Dios, Yiri E.; Wood, Scott J.; Reuter-Lorenz, Patricia A.; Kofman, Igor S.; Riascos, Roy; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    Background Adverse effects of spaceflight on sensorimotor function have been linked to altered somatosensory and vestibular inputs in the microgravity environment. Whether these spaceflight sequelae have a central nervous system component is unknown. However, experimental studies have shown spaceflight-induced brain structural changes in rodents’ sensorimotor brain regions. Understanding the neural correlates of spaceflight-related motor performance changes is important to ultimately develop tailored countermeasures that ensure mission success and astronauts’ health. Method Head down-tilt bed rest (HDBR) can serve as a microgravity analog because it mimics body unloading and headward fluid shifts of microgravity. We conducted a 70-day 6° HDBR study with 18 right-handed males to investigate how microgravity affects focal gray matter (GM) brain volume. MRI data were collected at 7 time points before, during and post-HDBR. Standing balance and functional mobility were measured pre and post-HDBR. The same metrics were obtained at 4 time points over ~90 days from 12 control subjects, serving as reference data. Results HDBR resulted in widespread increases GM in posterior parietal regions and decreases in frontal areas; recovery was not yet complete by 12 days post-HDBR. Additionally, HDBR led to balance and locomotor performance declines. Increases in a cluster comprising the precuneus, precentral and postcentral gyrus GM correlated with less deterioration or even improvement in standing balance. This association did not survive Bonferroni correction and should therefore be interpreted with caution. No brain or behavior changes were observed in control subjects. Conclusions Our results parallel the sensorimotor deficits that astronauts experience post-flight. The widespread GM changes could reflect fluid redistribution. Additionally, the association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation. Future

  20. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest.

    PubMed

    Koppelmans, Vincent; Bloomberg, Jacob J; De Dios, Yiri E; Wood, Scott J; Reuter-Lorenz, Patricia A; Kofman, Igor S; Riascos, Roy; Mulavara, Ajitkumar P; Seidler, Rachael D

    2017-01-01

    Adverse effects of spaceflight on sensorimotor function have been linked to altered somatosensory and vestibular inputs in the microgravity environment. Whether these spaceflight sequelae have a central nervous system component is unknown. However, experimental studies have shown spaceflight-induced brain structural changes in rodents' sensorimotor brain regions. Understanding the neural correlates of spaceflight-related motor performance changes is important to ultimately develop tailored countermeasures that ensure mission success and astronauts' health. Head down-tilt bed rest (HDBR) can serve as a microgravity analog because it mimics body unloading and headward fluid shifts of microgravity. We conducted a 70-day 6° HDBR study with 18 right-handed males to investigate how microgravity affects focal gray matter (GM) brain volume. MRI data were collected at 7 time points before, during and post-HDBR. Standing balance and functional mobility were measured pre and post-HDBR. The same metrics were obtained at 4 time points over ~90 days from 12 control subjects, serving as reference data. HDBR resulted in widespread increases GM in posterior parietal regions and decreases in frontal areas; recovery was not yet complete by 12 days post-HDBR. Additionally, HDBR led to balance and locomotor performance declines. Increases in a cluster comprising the precuneus, precentral and postcentral gyrus GM correlated with less deterioration or even improvement in standing balance. This association did not survive Bonferroni correction and should therefore be interpreted with caution. No brain or behavior changes were observed in control subjects. Our results parallel the sensorimotor deficits that astronauts experience post-flight. The widespread GM changes could reflect fluid redistribution. Additionally, the association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation. Future studies are warranted to determine

  1. Decoding Spontaneous Emotional States in the Human Brain

    PubMed Central

    Kragel, Philip A.; Knodt, Annchen R.; Hariri, Ahmad R.; LaBar, Kevin S.

    2016-01-01

    Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems. PMID:27627738

  2. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram

    PubMed Central

    Noh, Nor Azila

    2016-01-01

    Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP−/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses. PMID:27660540

  3. Mindboggling morphometry of human brains

    PubMed Central

    Bao, Forrest S.; Giard, Joachim; Stavsky, Eliezer; Lee, Noah; Rossa, Brian; Reuter, Martin; Chaibub Neto, Elias

    2017-01-01

    Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available. PMID:28231282

  4. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study

    PubMed Central

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d’Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an “in-love” group (LG, N = 34, currently intensely in love), an “ended-love” group (ELG, N = 34, ended romantic relationship recently), and a “single” group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate

  5. Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity

    PubMed Central

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl

    2014-01-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both ‘action’ and ‘resting’ motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the ‘effective’ connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network—disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses. PMID:24566670

  6. DIFFUSION-WEIGHTED IMAGING TRACTOGRAPHY-BASED PARCELLATION OF THE HUMAN PARIETAL CORTEX AND COMPARISON WITH HUMAN AND MACAQUE RESTING STATE FUNCTIONAL CONNECTIVITY

    PubMed Central

    Mars, Rogier B.; Jbabdi, Saad; Sallet, Jérôme; O’Reilly, Jill X.; Croxson, Paula L.; Olivier, Etienne; Noonan, MaryAnn P.; Bergmann, Caroline; Mitchell, Anna S.; Baxter, Mark G.; Behrens, Timothy E.J.; Johansen-Berg, Heidi; Tomassini, Valentina; Miller, Karla L.; Rushworth, Matthew F.S.

    2011-01-01

    Despite the prominence of parietal activity in human neuromaging investigations of sensorimotor and cognitive processes there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI) based tractography and functional interactions were assessed by correlations in activity measured with functional MRI (fMRI) at rest. Resting state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into ten component clusters. The resting state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex. PMID:21411650

  7. Metabolic costs and evolutionary implications of human brain development

    PubMed Central

    Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

    2014-01-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  8. A test-retest dataset for assessing long-term reliability of brain morphology and resting-state brain activity.

    PubMed

    Huang, Lijie; Huang, Taicheng; Zhen, Zonglei; Liu, Jia

    2016-03-15

    We present a test-retest dataset for evaluation of long-term reliability of measures from structural and resting-state functional magnetic resonance imaging (sMRI and rfMRI) scans. The repeated scan dataset was collected from 61 healthy adults in two sessions using highly similar imaging parameters at an interval of 103-189 days. However, as the imaging parameters were not completely identical, the reliability estimated from this dataset shall reflect the lower bounds of the true reliability of sMRI/rfMRI measures. Furthermore, in conjunction with other test-retest datasets, our dataset may help explore the impact of different imaging parameters on reliability of sMRI/rfMRI measures, which is especially critical for assessing datasets collected from multiple centers. In addition, intelligence quotient (IQ) was measured for each participant using Raven's Advanced Progressive Matrices. The data can thus be used for purposes other than assessing reliability of sMRI/rfMRI alone. For example, data from each single session could be used to associate structural and functional measures of the brain with the IQ metrics to explore brain-IQ association.

  9. A test-retest dataset for assessing long-term reliability of brain morphology and resting-state brain activity

    PubMed Central

    Huang, Lijie; Huang, Taicheng; Zhen, Zonglei; Liu, Jia

    2016-01-01

    We present a test-retest dataset for evaluation of long-term reliability of measures from structural and resting-state functional magnetic resonance imaging (sMRI and rfMRI) scans. The repeated scan dataset was collected from 61 healthy adults in two sessions using highly similar imaging parameters at an interval of 103–189 days. However, as the imaging parameters were not completely identical, the reliability estimated from this dataset shall reflect the lower bounds of the true reliability of sMRI/rfMRI measures. Furthermore, in conjunction with other test-retest datasets, our dataset may help explore the impact of different imaging parameters on reliability of sMRI/rfMRI measures, which is especially critical for assessing datasets collected from multiple centers. In addition, intelligence quotient (IQ) was measured for each participant using Raven’s Advanced Progressive Matrices. The data can thus be used for purposes other than assessing reliability of sMRI/rfMRI alone. For example, data from each single session could be used to associate structural and functional measures of the brain with the IQ metrics to explore brain-IQ association. PMID:26978040

  10. Moral competence and brain connectivity: A resting-state fMRI study.

    PubMed

    Jung, Wi Hoon; Prehn, Kristin; Fang, Zhuo; Korczykowski, Marc; Kable, Joseph W; Rao, Hengyi; Robertson, Diana C

    2016-11-01

    Moral competence (MC) refers to the ability to apply certain moral orientations in a consistent and differentiated manner when judging moral issues. People greatly differ in terms of MC, however, little is known about how these differences are implemented in the brain. To investigate this question, we used functional magnetic resonance imaging and examined resting-state functional connectivity (RSFC) in n=31 individuals with MC scores in the highest 15% of the population and n=33 individuals with MC scores in the lowest 15%, selected from a large sample of 730 Master of Business Administration (MBA) students. Compared to individuals with lower MC, individuals with higher MC showed greater amygdala-ventromedial prefrontal connectivity, which may reflect better ability to cope with emotional conflicts elicited by moral dilemmas. Moreover, individuals with higher MC showed less inter-network connectivity between the amygdalar and fronto-parietal networks, suggesting a more independent operation of these networks. Our findings provide novel insights into how individual differences in moral judgment are associated with RSFC in brain circuits related to emotion processing and cognitive control. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Disrupted resting brain graph measures in individuals at high risk for alcoholism.

    PubMed

    Holla, Bharath; Panda, Rajanikant; Venkatasubramanian, Ganesan; Biswal, Bharat; Bharath, Rose Dawn; Benegal, Vivek

    2017-07-30

    Familial susceptibility to alcoholism is likely to be linked to the externalizing diathesis seen in high-risk offspring from high-density alcohol use disorder (AUD) families. The present study aimed at comparing resting brain functional connectivity and their association with externalizing symptoms and alcoholism familial density in 40 substance-naive high-risk (HR) male offspring from high-density AUD families and 30 matched healthy low-risk (LR) males without a family history of substance dependence using graph theory-based network analysis. The HR subjects from high-density AUD families compared with LR, showed significantly reduced clustering, small-worldness, and local network efficiency. The frontoparietal, cingulo-opercular, sensorimotor and cerebellar networks exhibited significantly reduced functional segregation. These disruptions exhibited independent incremental value in predicting the externalizing symptoms over and above the demographic variables. The reduction of functional segregation in HR subjects was significant across both the younger and older age groups and was proportional to the family loading of AUDs. Detection and estimation of these developmentally relevant disruptions in small-world architecture at critical brain regions sub-serving cognitive, affective, and sensorimotor processes are vital for understanding the familial risk for early onset alcoholism as well as for understanding the pathophysiological mechanism of externalizing behaviors. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  12. Creativity and the default network: A functional connectivity analysis of the creative brain at rest.

    PubMed

    Beaty, Roger E; Benedek, Mathias; Wilkins, Robin W; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J; Hodges, Donald A; Koschutnig, Karl; Neubauer, Aljoscha C

    2014-11-01

    The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes.

  13. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder

    PubMed Central

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T.; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R.

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916

  14. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder.

    PubMed

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R; Fan, Jin

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition.

  15. Neural correlates of envy: Regional homogeneity of resting-state brain activity predicts dispositional envy.

    PubMed

    Xiang, Yanhui; Kong, Feng; Wen, Xue; Wu, Qihan; Mo, Lei

    2016-11-15

    Envy differs from common negative emotions across cultures. Although previous studies have explored the neural basis of episodic envy via functional magnetic resonance imaging (fMRI), little is known about the neural processes associated with dispositional envy. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in dispositional envy, as measured by the Dispositional Envy Scale (DES). Results showed that ReHo in the inferior/middle frontal gyrus (IFG/MFG) and dorsomedial prefrontal cortex (DMPFC) positively predicted dispositional envy. Moreover, of all the personality traits measured by the Revised NEO Personality Inventory (NEO-PI-R), only neuroticism was significantly associated with dispositional envy. Furthermore, neuroticism mediated the underlying association between the ReHo of the IFG/MFG and dispositional envy. Hence, to the best of our knowledge, this study provides the first evidence that spontaneous brain activity in multiple regions related to self-evaluation, social perception, and social emotion contributes to dispositional envy. In addition, our findings reveal that neuroticism may play an important role in the cognitive processing of dispositional envy.

  16. Unmasking Language Lateralization in Human Brain Intrinsic Activity.

    PubMed

    McAvoy, Mark; Mitra, Anish; Coalson, Rebecca S; d'Avossa, Giovanni; Keidel, James L; Petersen, Steven E; Raichle, Marcus E

    2016-04-01

    Lateralization of function is a fundamental feature of the human brain as exemplified by the left hemisphere dominance of language. Despite the prominence of lateralization in the lesion, split-brain and task-based fMRI literature, surprisingly little asymmetry has been revealed in the increasingly popular functional imaging studies of spontaneous fluctuations in the fMRI BOLD signal (so-called resting-state fMRI). Here, we show the global signal, an often discarded component of the BOLD signal in resting-state studies, reveals a leftward asymmetry that maps onto regions preferential for semantic processing in left frontal and temporal cortex and the right cerebellum and a rightward asymmetry that maps onto putative attention-related regions in right frontal, temporoparietal, and parietal cortex. Hemispheric asymmetries in the global signal resulted from amplitude modulation of the spontaneous fluctuations. To confirm these findings obtained from normal, healthy, right-handed subjects in the resting-state, we had them perform 2 semantic processing tasks: synonym and numerical magnitude judgment and sentence comprehension. In addition to establishing a new technique for studying lateralization through functional imaging of the resting-state, our findings shed new light on the physiology of the global brain signal.

  17. Towards ultrahigh resting-state functional connectivity in the mouse brain using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza

    2016-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.

  18. Reliability of graph metrics derived from resting-state human EEG.

    PubMed

    Kuntzelman, Karl; Miskovic, Vladimir

    2017-01-01

    It is increasingly appreciated that a complete description of brain functioning will necessarily involve the characterization of large-scale interregional temporal synchronization of neuronal assemblies. The need to capture the dynamic formation of such large-scale networks has yielded a renewed interest in the human EEG in combination with a suite of methods for estimating functional connectivity along with the graph theoretical approaches for characterizing network structure. While initial work has established generally good reproducibility for a limited selection of these graph theoretical measures, there remains an obvious need to document the reproducibility of a more extensive array of commonly used graph metrics. We sought to evaluate the test-retest reliability of a much richer suite of graph theoretic measures as applied to weighted networks derived from high-density resting-state human EEG. Our findings were promising overall, with some important qualifications when considering the frequency bands of interest and the method used to calculate functional connectivity as well as some substantial variance between individual graph metrics. In general, the reliability of networks in the α and β frequency bands was improved when functional connectivity was defined solely on the basis of relative phase distributions. In the δ and θ bands, reliability was substantially better when functional connectivity was based on coherence, which incorporates both phase and amplitude information.

  19. Individual Differences in Brain Structure and Resting Brain Function Underlie Cognitive Styles: Evidence from the Embedded Figures Test

    PubMed Central

    Hao, Xin; Wang, Kangcheng; Li, Wenfu; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Qinglin

    2013-01-01

    Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)] / functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style. PMID:24348991

  20. Brain regions responsible for tinnitus distress and loudness: a resting-state FMRI study.

    PubMed

    Ueyama, Takashi; Donishi, Tomohiro; Ukai, Satoshi; Ikeda, Yorihiko; Hotomi, Muneki; Yamanaka, Noboru; Shinosaki, Kazuhiro; Terada, Masaki; Kaneoke, Yoshiki

    2013-01-01

    Subjective tinnitus is characterized by the perception of phantom sound without an external auditory stimulus. We hypothesized that abnormal functionally connected regions in the central nervous system might underlie the pathophysiology of chronic subjective tinnitus. Statistical significance of functional connectivity (FC) strength is affected by the regional autocorrelation coefficient (AC). In this study, we used resting-state functional MRI (fMRI) and measured regional mean FC strength (mean cross-correlation coefficient between a region and all other regions without taking into account the effect of AC (rGC) and with taking into account the effect of AC (rGCa) to elucidate brain regions related to tinnitus symptoms such as distress, depression and loudness. Consistent with previous studies, tinnitus loudness was not related to tinnitus-related distress and depressive state. Although both rGC and rGCa revealed similar brain regions where the values showed a statistically significant relationship with tinnitus-related symptoms, the regions for rGCa were more localized and more clearly delineated the regions related specifically to each symptom. The rGCa values in the bilateral rectus gyri were positively correlated and those in the bilateral anterior and middle cingulate gyri were negatively correlated with distress and depressive state. The rGCa values in the bilateral thalamus, the bilateral hippocampus, and the left caudate were positively correlated and those in the left medial superior frontal gyrus and the left posterior cingulate gyrus were negatively correlated with tinnitus loudness. These results suggest that distinct brain regions are responsible for tinnitus symptoms. The regions for distress and depressive state are known to be related to depression, while the regions for tinnitus loudness are known to be related to the default mode network and integration of multi-sensory information.

  1. Increased Intraregional Synchronized Neural Activity in Adult Brain After Prolonged Adaptation to High-Altitude Hypoxia: A Resting-State fMRI Study.

    PubMed

    Chen, Ji; Fan, Cunxiu; Li, Jinqiang; Han, Qiaoqing; Lin, Jianzhong; Yang, Tianhe; Zhang, Jiaxing

    2016-03-01

    The human brain is intrinsically plastic such that its functional architecture can be reorganized in response to environmental pressures and physiological changes. However, it remains unclear whether a compensatory modification of spontaneous neural activity occurs in adult brain during prolonged high-altitude (HA) adaptation. In this study, we obtained resting-state functional magnetic resonance (MR) images in 16 adults who have immigrated to Qinghai-Tibet Plateau (2300-4400 m) for 2 years and in 16 age-matched sea level (SL) controls. A validated regional homogeneity (Reho) method was employed to investigate the local synchronization of resting-state functional magnetic resonance imaging (fMRI) signals. Seed connectivity analysis was carried out subsequently. Cognitive and physiological assessments were made and correlated with the image metrics. Compared with SL controls, global mean Reho was significantly increased in HA immigrants as well as a regional increase in the right inferolateral sensorimotor cortex. Furthermore, mean z-Reho value extracted within the inferolateral sensorimotor area showed trend-level significant inverse correlation with memory search reaction time in HA immigrants. These observations, for the first time, provide evidence of adult brain resilience of spontaneous neural activity after long-term HA exposure without inherited and developmental effects. Resting-state fMRI could yield valuable information for central mechanisms underlying respiratory and cognitive compensations in adults during prolonged environmentally hypoxic adaptation, paving the way for future HA-adaptive training.

  2. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression

    PubMed Central

    Goyal, Manu S.; Hawrylycz, Michael; Miller, Jeremy A.; Snyder, Abraham Z.; Raichle, Marcus E.

    2015-01-01

    SUMMARY Aerobic glycolysis (AG), i.e., non-oxidative metabolism of glucose despite the presence of abundant oxygen, accounts for 10–12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938

  3. The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks

    NASA Astrophysics Data System (ADS)

    Hartman, D.; Hlinka, J.; Paluš, M.; Mantini, D.; Corbetta, M.

    2011-03-01

    In recent years, there has been an increasing interest in the study of large-scale brain activity interaction structure from the perspective of complex networks, based on functional magnetic resonance imaging (fMRI) measurements. To assess the strength of interaction (functional connectivity, FC) between two brain regions, the linear (Pearson) correlation coefficient of the respective time series is most commonly used. Since a potential use of nonlinear FC measures has recently been discussed in this and other fields, the question arises whether particular nonlinear FC measures would be more informative for the graph analysis than linear ones. We present a comparison of network analysis results obtained from the brain connectivity graphs capturing either full (both linear and nonlinear) or only linear connectivity using 24 sessions of human resting-state fMRI. For each session, a matrix of full connectivity between 90 anatomical parcel time series is computed using mutual information. For comparison, connectivity matrices obtained for multivariate linear Gaussian surrogate data that preserve the correlations, but remove any nonlinearity are generated. Binarizing these matrices using multiple thresholds, we generate graphs corresponding to linear and full nonlinear interaction structures. The effect of neglecting nonlinearity is then assessed by comparing the values of a range of graph-theoretical measures evaluated for both types of graphs. Statistical comparisons suggest a potential effect of nonlinearity on the local measures—clustering coefficient and betweenness centrality. Nevertheless, subsequent quantitative comparison shows that the nonlinearity effect is practically negligible when compared to the intersubject variability of the graph measures. Further, on the group-average graph level, the nonlinearity effect is unnoticeable.

  4. Multimodal description of whole brain connectivity: A comparison of resting state MEG, fMRI, and DWI

    PubMed Central

    Garcés, Pilar; Pereda, Ernesto; Hernández‐Tamames, Juan A.; Del‐Pozo, Francisco; Maestú, Fernando

    2015-01-01

    Abstract Structural and functional connectivity (SC and FC) have received much attention over the last decade, as they offer unique insight into the coordination of brain functioning. They are often assessed independently with three imaging modalities: SC using diffusion‐weighted imaging (DWI), FC using functional magnetic resonance imaging (fMRI), and magnetoencephalography/electroencephalography (MEG/EEG). DWI provides information about white matter organization, allowing the reconstruction of fiber bundles. fMRI uses blood‐oxygenation level‐dependent (BOLD) contrast to indirectly map neuronal activation. MEG and EEG are direct measures of neuronal activity, as they are sensitive to the synchronous inputs in pyramidal neurons. Seminal studies have targeted either the electrophysiological substrate of BOLD or the anatomical basis of FC. However, multimodal comparisons have been scarcely performed, and the relation between SC, fMRI‐FC, and MEG‐FC is still unclear. Here we present a systematic comparison of SC, resting state fMRI‐FC, and MEG‐FC between cortical regions, by evaluating their similarities at three different scales: global network, node, and hub distribution. We obtained strong similarities between the three modalities, especially for the following pairwise combinations: SC and fMRI‐FC; SC and MEG‐FC at theta, alpha, beta and gamma bands; and fMRI‐FC and MEG‐FC in alpha and beta. Furthermore, highest node similarity was found for regions of the default mode network and primary motor cortex, which also presented the highest hubness score. Distance was partially responsible for these similarities since it biased all three connectivity estimates, but not the unique contributor, since similarities remained after controlling for distance. Hum Brain Mapp 37:20–34, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26503502

  5. The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks.

    PubMed

    Hartman, D; Hlinka, J; Palus, M; Mantini, D; Corbetta, M

    2011-03-01

    In recent years, there has been an increasing interest in the study of large-scale brain activity interaction structure from the perspective of complex networks, based on functional magnetic resonance imaging (fMRI) measurements. To assess the strength of interaction (functional connectivity, FC) between two brain regions, the linear (Pearson) correlation coefficient of the respective time series is most commonly used. Since a potential use of nonlinear FC measures has recently been discussed in this and other fields, the question arises whether particular nonlinear FC measures would be more informative for the graph analysis than linear ones. We present a comparison of network analysis results obtained from the brain connectivity graphs capturing either full (both linear and nonlinear) or only linear connectivity using 24 sessions of human resting-state fMRI. For each session, a matrix of full connectivity between 90 anatomical parcel time series is computed using mutual information. For comparison, connectivity matrices obtained for multivariate linear Gaussian surrogate data that preserve the correlations, but remove any nonlinearity are generated. Binarizing these matrices using multiple thresholds, we generate graphs corresponding to linear and full nonlinear interaction structures. The effect of neglecting nonlinearity is then assessed by comparing the values of a range of graph-theoretical measures evaluated for both types of graphs. Statistical comparisons suggest a potential effect of nonlinearity on the local measures-clustering coefficient and betweenness centrality. Nevertheless, subsequent quantitative comparison shows that the nonlinearity effect is practically negligible when compared to the intersubject variability of the graph measures. Further, on the group-average graph level, the nonlinearity effect is unnoticeable.

  6. Association between resting-state brain functional connectivity and muscle sympathetic burst incidence

    PubMed Central

    Kucyi, Aaron; Millar, Philip J.; Murai, Hisayoshi; Kimmerly, Derek S.; Morris, Beverley L.; Bradley, T. Douglas; Floras, John S.

    2015-01-01

    The insula (IC) and cingulate are key components of the central autonomic network and central nodes of the salience network (SN), a set of spatially distinct but temporally correlated brain regions identified with resting-state (task free) functional MRI (rsMRI). To examine the SN's involvement in sympathetic outflow, we tested the hypothesis that individual differences in intrinsic connectivity of the SN correlate positively with resting postganglionic muscle sympathetic nerve activity (MSNA) burst incidence (BI) in subjects without and with obstructive sleep apnea (OSA). Overnight polysomnography, 5-min rsMRI, and fibular MSNA recording were performed in 36 subjects (mean age 57 yr; 10 women, 26 men). Independent component analysis (ICA) of the entire cohort identified the SN as including bilateral IC, pregenual anterior cingulate cortex (pgACC), midcingulate cortex (MCC), and the temporoparietal junction (TPJ). There was a positive correlation between BI and the apnea-hypopnea index (AHI) (P < 0.001), but dual-regression analysis identified no differences in SN functional connectivity between subjects with no or mild OSA (n = 17) and moderate or severe (n = 19) OSA. Correlation analysis relating BI to the strength of connectivity within the SN revealed large (i.e., spatial extent) and strong correlations for the left IC (P < 0.001), right pgACC/MCC (P < 0.006), left TPJ (P < 0.004), thalamus (P < 0.035), and cerebellum (P < 0.013). Indexes of sleep apnea were unrelated to BI and the strength of SN connectivity. There were no relationships between BI and default or sensorimotor network connectivity. This study links connectivity within the SN to MSNA, demonstrating several of its nodes to be key sympathoexcitatory regions. PMID:26538607

  7. Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales.

    PubMed

    Wehrl, Hans F; Hossain, Mosaddek; Lankes, Konrad; Liu, Chih-Chieh; Bezrukov, Ilja; Martirosian, Petros; Schick, Fritz; Reischl, Gerald; Pichler, Bernd J

    2013-09-01

    Combined positron emission tomography (PET) and magnetic resonance imaging (MRI) is a new tool to study functional processes in the brain. Here we study brain function in response to a barrel-field stimulus simultaneously using PET, which traces changes in glucose metabolism on a slow time scale, and functional MRI (fMRI), which assesses fast vascular and oxygenation changes during activation. We found spatial and quantitative discrepancies between the PET and the fMRI activation data. The functional connectivity of the rat brain was assessed by both modalities: the fMRI approach determined a total of nine known neural networks, whereas the PET method identified seven glucose metabolism-related networks. These results demonstrate the feasibility of combined PET-MRI for the simultaneous study of the brain at activation and rest, revealing comprehensive and complementary information to further decode brain function and brain networks.

  8. Asymmetry in functional connectivity of the human habenula revealed by high‐resolution cardiac‐gated resting state imaging

    PubMed Central

    Hétu, Sébastien; Luo, Yi; Saez, Ignacio; D'Ardenne, Kimberlee; Lohrenz, Terry

    2016-01-01

    Abstract The habenula is a hub for cognitive and emotional signals that are relayed to the aminergic centers in the midbrain and, thus, plays an important role in goal‐oriented behaviors. Although it is well described in rodents and non‐human primates, the habenula functional network remains relatively uncharacterized in humans, partly because of the methodological challenges associated with the functional magnetic resonance imaging of small structures in the brain. Using high‐resolution cardiac‐gated resting state imaging in healthy humans and precisely identifying each participants' habenula, we show that the habenula is functionally coupled with the insula, parahippocampus, thalamus, periaqueductal grey, pons, striatum and substantia nigra/ventral tegmental area complex. Furthermore, by separately examining and comparing the functional maps from the left and right habenula, we provide the first evidence of an asymmetry in the functional connectivity of the habenula in humans. Hum Brain Mapp 37:2602–2615, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27038008

  9. Normative development of ventral striatal resting state connectivity in humans

    PubMed Central

    Fareri, Dominic S.; Gabard-Durnam, Laurel; Goff, Bonnie; Flannery, Jessica; Gee, Dylan G.; Lumian, Daniel S.; Caldera, Christina; Tottenham, Nim

    2017-01-01

    Incentives play a crucial role in guiding behavior throughout our lives, but perhaps no more so than during the early years of life. The ventral striatum is a critical piece of an incentive-based learning circuit, sharing robust anatomical connections with subcortical (e.g., amygdala, hippocampus) and cortical structures (e.g., medial prefrontal cortex (mPFC), insula) that collectively support incentive valuation and learning. Resting-state functional connectivity (rsFC) is a powerful method that provides insight into the development of the functional architecture of these connections involved in incentive-based learning. We employed a seed-based correlation approach to investigate ventral striatal rsFC in a cross-sectional sample of typically developing individuals between the ages of 4.5 and 23-years old (n=66). Ventral striatal rsFC with the mPFC showed regionally specific linear age-related changes in connectivity that were associated with age-related increases in circulating testosterone levels. Further, ventral striatal connectivity with the posterior hippocampus and posterior insula demonstrated quadratic age-related changes characterized by negative connectivity in adolescence. Finally, across this age range, the ventral striatum demonstrated positive coupling with the amygdala beginning during childhood and remaining consistently positive across age. In sum, our findings suggest normative ventral striatal rsFC development is dynamic and characterized by early establishment of connectivity with medial prefrontal and limbic structures supporting incentive-based learning, as well as substantial functional reorganization with later developing regions during transitions into and out of adolescence. PMID:26087377

  10. Normative development of ventral striatal resting state connectivity in humans.

    PubMed

    Fareri, Dominic S; Gabard-Durnam, Laurel; Goff, Bonnie; Flannery, Jessica; Gee, Dylan G; Lumian, Daniel S; Caldera, Christina; Tottenham, Nim

    2015-09-01

    Incentives play a crucial role in guiding behavior throughout our lives, but perhaps no more so than during the early years of life. The ventral striatum is a critical piece of an incentive-based learning circuit, sharing robust anatomical connections with subcortical (e.g., amygdala, hippocampus) and cortical structures (e.g., medial prefrontal cortex (mPFC), insula) that collectively support incentive valuation and learning. Resting-state functional connectivity (rsFC) is a powerful method that provides insight into the development of the functional architecture of these connections involved in incentive-based learning. We employed a seed-based correlation approach to investigate ventral striatal rsFC in a cross-sectional sample of typically developing individuals between the ages of 4.5 and 23-years old (n=66). Ventral striatal rsFC with the mPFC showed regionally specific linear age-related changes in connectivity that were associated with age-related increases in circulating testosterone levels. Further, ventral striatal connectivity with the posterior hippocampus and posterior insula demonstrated quadratic age-related changes characterized by negative connectivity in adolescence. Finally, across this age range, the ventral striatum demonstrated positive coupling with the amygdala beginning during childhood and remaining consistently positive across age. In sum, our findings suggest that normative ventral striatal rsFC development is dynamic and characterized by early establishment of connectivity with medial prefrontal and limbic structures supporting incentive-based learning, as well as substantial functional reorganization with later developing regions during transitions into and out of adolescence.

  11. A Direct Brain-to-Brain Interface in Humans

    PubMed Central

    Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.

    2014-01-01

    We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285

  12. A direct brain-to-brain interface in humans.

    PubMed

    Rao, Rajesh P N; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M; Wu, Joseph; Prat, Chantel S

    2014-01-01

    We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the "sender") and transmits this information over the internet to the motor cortex region of a second subject (the "receiver"). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender's signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means.

  13. Bottom up modeling of the connectome: linking structure and function in the resting brain and their changes in aging.

    PubMed

    Nakagawa, Tristan T; Jirsa, Viktor K; Spiegler, Andreas; McIntosh, Anthony R; Deco, Gustavo

    2013-10-15

    With the increasing availability of advanced imaging technologies, we are entering a new era of neuroscience. Detailed descriptions of the complex brain network enable us to map out a structural connectome, characterize it with graph theoretical methods, and compare it to the functional networks with increasing detail. To link these two aspects and understand how dynamics and structure interact to form functional brain networks in task and in the resting state, we use theoretical models. The advantage of using theoretical models is that by recreating functional connectivity and time series explicitly from structure and pre-defined dynamics, we can extract critical mechanisms by linking structure and function in ways not directly accessible in the real brain. Recently, resting-state models with varying local dynamics have reproduced empirical functional connectivity patterns, and given support to the view that the brain works at a critical point at the edge of a bifurcation of the system. Here, we present an overview of a modeling approach of the resting brain network and give an application of a neural mass model in the study of complexity changes in aging. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging.

    PubMed

    Zhang, Shao-Qun; Wang, Yan-Jie; Zhang, Ji-Ping; Chen, Jun-Qi; Wu, Chun-Xiao; Li, Zhi-Peng; Chen, Jia-Rong; Ouyang, Huai-Liang; Huang, Yong; Tang, Chun-Zhi

    2015-02-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3) and Taixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferior frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  15. Brain resting state functional magnetic resonance imaging in patients with takotsubo cardiomyopathy an inseparable pair of brain and heart.

    PubMed

    Sabisz, A; Treder, N; Fijałkowska, M; Sieminski, M; Fijałkowska, J; Naumczyk, P; Nowak, R; Jaguszewski, M; Cwalina, N; Gruchała, M; Szurowska, E; Fijałkowski, M

    2016-12-01

    Takotsubo cardiomyopathy (TTC) is often triggered by emotional or physical stress factors. Psychological variables can have an impact on the physical manifestations of heart disease. TTC may reflect stunned myocardium from a neurogenic source. Anatomical connections between different parts of the brain can be visualized by diffusion tensor imaging (DTI) and thus, expressed by diffusion coefficient - fractional anisotropy (FA). A novel tool used to evaluate brain function in the absence of task is resting state functional magnetic resonance imaging (RS-fMRI). The study included both psychological tests and RS-fMRI examination, and was performed uniformly, in patients with takotsubo and healthy controls. The final group of patients consisted of 13 women, each who underwent a typical pattern of TTC triggered by emotionally stressful factors. The control group included thirteen healthy, age-matched women. Psychological tests revealed that the Type D personality was not more likely to appear among studied patients with takotsubo cardiomyopathy than amongst the healthy population. However, the level of anxiety seen in patients with TTC was increased. There were no differences in FA values between patients and healthy controls. RS-fMRI showed that TTC patients had increased connectivity areas in the precuneus. The healthy controls, when compared to TTC patients had increased connectivity in the ventromedial prefrontal cortex. Taking into account the RS-fMRI results, psychological testing may suggest that TTC patients place a greater focus on themselves (increased tendency to experience negative affectivity, greater conscientiousness) and might have problems with emotional control. Our findings lead to the hypothesis that there is a personality profile for TTC patients' reactions to stressful triggers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Disruptions in Resting State Functional Connectivity and Cerebral Blood Flow in Mild Traumatic Brain Injury Patients

    PubMed Central

    Sours, Chandler; Zhuo, Jiachen; Roys, Steven; Shanmuganathan, Kathirkamanthan; Gullapalli, Rao P.

    2015-01-01

    Mild traumatic brain injury (mTBI) is often occult to conventional imaging techniques. However, there is growing evidence that mTBI patients who lack evidence of structural intracranial injury may develop post-concussive syndrome (PCS). We investigated longitudinal alterations in resting state functional connectivity (rs-FC) in brain networks in a population of 28 patients compared to 28 matched control participants. Rs-FC and cerebral blood flow (CBF) within the nodes of the Default Mode Network (DMN) and Task Positive Network (TPN) were assessed at three time points including acute, sub-acute, and chronic stages following mTBI. Participants received the Automated Neuropsychological Assessment Metrics (ANAM) to assess cognitive performance. Main findings indicate that despite normalized cognitive performance, chronic mTBI patients demonstrate increased rs-FC between the DMN and regions associated with the salience network (SN) and TPN compared to the control populations, as well as reduced strength of rs-FC within the DMN at the acute stage of injury. In addition, chronic mTBI patients demonstrate an imbalance in the ratio of CBF between nodes of the DMN and TPN. Furthermore, preliminary exploratory analysis suggests that compared to those without chronic PCS, patients with chronic PCS reveal an imbalance in the ratio of CBF between the DMN nodes and TPN nodes across multiple stages of recovery. Findings suggest that the altered network perfusion with the associated changes in rs-FC may be a possible predictor of which mTBI patients will develop chronic PCS. PMID:26241476

  17. Resting-state functional MR imaging: a new window to the brain.

    PubMed

    Barkhof, Frederik; Haller, Sven; Rombouts, Serge A R B

    2014-07-01

    Resting-state (RS) functional magnetic resonance (MR) imaging constitutes a novel paradigm that examines spontaneous brain function by using blood oxygen level-dependent contrast in the absence of a task. Spatially distributed networks of temporal synchronization can be detected that can characterize RS networks (RSNs). With a short acquisition time of less than 10 minutes, RS functional MR imaging can be applied in special populations such as children and patients with dementia. Some RSNs are already present in utero, while others mature in childhood. Around 10 major RSNs are consistently found in adults, but their exact spatial extent and strength of coherence are affected by physiologic parameters and drugs. Though the acquisition and analysis methods are still evolving, new disease insights are emerging in a variety of neurologic and psychiatric disorders. The default mode network is affected in Alzheimer disease and various other diseases of cognitive impairment. Alterations in RSNs have been identified in many diseases, in the absence of evident structural modifications, indicating a high sensitivity of the method. Moreover, there is evidence of correlation between RSN alterations and disease progression and severity. However, different diseases often affect the same RSN, illustrating the limited specificity of the findings. This suggests that neurologic and psychiatric diseases are characterized by altered interactions between RSNs and therefore the whole brain should be examined as an integral network (with subnetworks), for example, using graph analysis. A challenge for clinical applications of RS functional MR imaging is the potentially confounding effect of aging, concomitant vascular diseases, or medication on the neurovascular coupling and consequently the functional MR imaging response. Current investigation combines RS functional MR imaging and other methods such as electroencephalography or magnetoencephalography to better understand the vascular

  18. Altered Resting-State Brain Activity and Connectivity in Depressed Parkinson's Disease.

    PubMed

    Hu, Xiao; Song, Xiaopeng; Li, Erfeng; Liu, Jiajia; Yuan, Yonggui; Liu, Weiguo; Liu, Yijun

    2015-01-01

    Depressive symptoms are common in Parkinson's disease (PD), but the neurophysiological mechanisms of depression in PD are poorly understood. The current study attempted to examine disrupted spontaneous local brain activities and functional connectivities that underlie the depression in PD. We recruited a total of 20 depressed PD patients (DPD), 40 non-depressed PD patients (NDPD) and 43 matched healthy controls (HC). All the subjects underwent neuropsychological tests and resting-state fMRI scanning. The between-group differences in the amplitude of low frequency fluctuations (ALFF) of BOLD signals were examined using post-hoc tests after the analysis of covariance. Compared with the NDPD and HC, the DPD group showed significantly increased ALFF in the left median cingulated cortex (MCC). The functional connectivity (FC) between left MCC and all the other voxels in the brain were then calculated. Compared with the HC and NDPD group, the DPD patients showed stronger FC between the left MCC and some of the major nodes of the default mode network (DMN), including the post cingulated cortex/precuneus, medial prefrontal cortex, inferior frontal gyrus, and cerebellum. Correlation analysis revealed that both the ALFF values in the left MCC and the FC between the left MCC and the nodes of DMN were significantly correlated with the Hamilton Depression Rating Scale score. Moreover, higher local activities in the left MCC were associated with increased functional connections between the MCC and the nodes of DMN in PD. These abnormal activities and connectivities of the limbic-cortical circuit may indicate impaired high-order cortical control or uncontrol of negative mood in DPD, which suggested a possible neural mechanism of the depression in PD.

  19. Resting-state brain networks in patients with Parkinson's disease and impulse control disorders.

    PubMed

    Tessitore, Alessandro; Santangelo, Gabriella; De Micco, Rosa; Giordano, Alfonso; Raimo, Simona; Amboni, Marianna; Esposito, Fabrizio; Barone, Paolo; Tedeschi, Gioacchino; Vitale, Carmine

    2017-09-01

    To investigate intrinsic neural networks connectivity changes in Parkinson's disease (PD) patients with and without impulse control disorders (ICD). Fifteen patients with PD with ICD (ICD+), 15 patients with PD without ICD (ICD-) and 24 age and sex-matched healthy controls (HC) were enrolled in the study. To identify patients with and without ICD and/or punding, we used the Minnesota Impulsive Disorders Interview (MIDI) and a clinical interview based on diagnostic criteria for each symptom. All patients underwent a detailed neuropsychological evaluation. Whole brain structural and functional imaging was performed on a 3T GE MR scanner. Statistical analysis of functional data was completed using BrainVoyager QX software. Voxel-based morphometry (VBM) was used to test whether between-group differences in resting-state connectivity were related to structural abnormalities. The presence of ICD symptoms was associated with an increased connectivity within the salience and default-mode networks, as well as with a decreased connectivity within the central executive network (p < .05 corrected). ICD severity was correlated with both salience and default mode networks connectivity changes only in the ICD+ group. VBM analysis did not reveal any statistically significant differences in local grey matter volume between ICD+ and ICD- patients and between all patients and HC (p < .05. FWE). The presence of a disrupted connectivity within the three core neurocognitive networks may be considered as a potential neural correlate of ICD presence in patients with PD. Our findings provide additional insights into the mechanisms underlying ICD in PD, confirming the crucial role of an abnormal prefrontal-limbic-striatal homeostasis in their development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Objective. Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. Approach. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. Main results. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. Significance. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  1. Brain complex network analysis by means of resting state fMRI and graph analysis: will it be helpful in clinical epilepsy?

    PubMed

    Onias, Heloisa; Viol, Aline; Palhano-Fontes, Fernanda; Andrade, Katia C; Sturzbecher, Marcio; Viswanathan, Gandhimohan; de Araujo, Draulio B

    2014-09-01

    Functional magnetic resonance imaging (fMRI) has just completed 20 years of existence. It currently serves as a research tool in a broad range of human brain studies in normal and pathological conditions, as is the case of epilepsy. To date, most fMRI studies aimed at characterizing brain activity in response to various active paradigms. More recently, a number of strategies have been used to characterize the low-frequency oscillations of the ongoing fMRI signals when individuals are at rest. These datasets have been largely analyzed in the context of functional connectivity, which inspects the covariance of fMRI signals from different areas of the brain. In addition, resting state fMRI is progressively being used to evaluate complex network features of the brain. These strategies have been applied to a number of different problems in neuroscience, which include diseases such as Alzheimer's, schizophrenia, and epilepsy. Hence, we herein aimed at introducing the subject of complex network and how to use it for the analysis of fMRI data. This appears to be a promising strategy to be used in clinical epilepsy. Therefore, we also review the recent literature that has applied these ideas to the analysis of fMRI data in patients with epilepsy.

  2. Single pulse TMS-induced modulations of resting brain neurodynamics encoded in EEG phase.

    PubMed

    Stamoulis, Catherine; Oberman, Lindsay M; Praeg, Elke; Bashir, Shahid; Pascual-Leone, Alvaro

    2011-06-01

    Integration of electroencephalographic (EEG) recordings and transcranial magnetic stimulation (TMS) provides a useful framework for quantifying stimulation-induced modulations of neural dynamics. Amplitude and frequency modulations by different TMS protocols have been previously investigated, but the study of stimulation-induced effects on EEG phase has been more limited. We examined changes in resting brain dynamics following single TMS pulses, focusing on measures in the phase domain, to assess their sensitivity to stimulation effects. We observed a significant, approximately global increase in EEG relative phase following prolonged (>20 min) single-pulse TMS. In addition, we estimated higher rates of phase fluctuation from the slope of estimated phase curves, and higher numbers of phase resetting intervals following TMS over motor cortex, particularly in frontal and centro-parietal/parietal channels. Phase changes were only significantly different from their pre-TMS values at the end of the stimulation session, which suggests that prolonged single-pulse TMS may result in cumulative changes in neural activity reflected in the phase of the EEG. This is a novel result, as prior studies have reported only transient stimulation-related effects in the amplitude and frequency domains following single-pulse TMS.

  3. Spontaneous brain activity following fear reminder of fear conditioning by using resting-state functional MRI

    PubMed Central

    Feng, Pan; Zheng, Yong; Feng, Tingyong

    2015-01-01

    Although disrupting reconsolidation may be a promising approach to attenuate or erase the expression of fear memory, it is not clear how the neural state following fear reminder contribute to the following fear extinction. To address this question, we used resting-state functional magnetic resonance imaging (rs-fMRI) to measure spontaneous neuronal activity and functional connectivity (RSFC) following fear reminder. Some brain regions such as dorsal anterior cingulate (dACC) and ventromedial prefrontal cortex (vmPFC) showed increased amplitude of LFF (ALFF) in the fear reminder group than the no reminder group following fear reminder. More importantly, there was much stronger functional connectivity between the amygdala and vmPFC in the fear reminder group than those in the no reminder group. These findings suggest that the strong functional connectivity between vmPFC and amygdala following a fear reminder could serve as a key role in the followed-up fear extinction stages, which may contribute to the erasing of fear memory. PMID:26576733

  4. Resting and dobutamine stress test induced serum concentrations of brain natriuretic peptide in German Shepherd dogs.

    PubMed

    Spasojević Kosić, Ljubica; Trailović, Dragiša R; Matunović, Radomir

    2012-12-01

    Studies of clinical uses of brain natriuretic peptide (BNP) represent one of the most important advances in cardiology since the introduction of echocardiography as a clinical diagnostic procedure. Defining the clinical potential of BNP in canine cardiology has not been completed yet. The aim of this study is to measure BNP concentrations in healthy German Shepherd dogs of different ages as a baseline in resting and when conventional protocol of the dobutamine stress test (DST) is applied to dogs. Concentrations of BNP were measured in blood serum by the radioimmunoassay method. The values of BNP concentrations were compared to cardiac parameters obtained by standard cardiac diagnostic procedures (radiology, electrocardiography and echocardiography). No significant differences in serum BNP concentrations existed in dogs of different ages. A statistically significant increase in BNP concentrations was registered after DST. These changes in BNP concentrations were related to ST/T electrocardiographic changes, and correlated to changes in the left ventricular internal diameter in systole (LVESD). These data suggest that BNP is not increased in aged dogs with normal cardiac systolic function and renal function, and that myocardial ischemia leads to a significant increase in BNP concentrations even in dogs with normal left ventricular function.

  5. Frequency of Maternal Touch Predicts Resting Activity and Connectivity of the Developing Social Brain

    PubMed Central

    Brauer, Jens; Xiao, Yaqiong; Poulain, Tanja; Friederici, Angela D.; Schirmer, Annett

    2016-01-01

    Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing “social brain” with a particular emphasis on a network involved in mentalizing. PMID:27230216

  6. Resting-state fMRI correlations: From link-wise unreliability to whole brain stability.

    PubMed

    Pannunzi, Mario; Hindriks, Rikkert; Bettinardi, Ruggero G; Wenger, Elisabeth; Lisofsky, Nina; Martensson, Johan; Butler, Oisin; Filevich, Elisa; Becker, Maxi; Lochstet, Martyna; Kühn, Simone; Deco, Gustavo

    2017-06-12

    The functional architecture of spontaneous BOLD fluctuations has been characterized in detail by numerous studies, demonstrating its potential relevance as a biomarker. However, the systematic investigation of its consistency is still in its infancy. Here, we analyze within- and between-subject variability and test-retest reliability of resting-state functional connectivity (FC) in a unique data set comprising multiple fMRI scans (42) from 5 subjects, and 50 single scans from 50 subjects. We adopt a statistical framework that enables us to identify different sources of variability in FC. We show that the low reliability of single links can be significantly improved by using multiple scans per subject. Moreover, in contrast to earlier studies, we show that spatial heterogeneity in FC reliability is not significant. Finally, we demonstrate that despite the low reliability of individual links, the information carried by the whole-brain FC matrix is robust and can be used as a functional fingerprint to identify individual subjects from the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Single Pulse TMS-Induced Modulations of Resting Brain Neurodynamics Encoded in EEG Phase

    PubMed Central

    Oberman, Lindsay M.; Praeg, Elke; Bashir, Shahid; Pascual-Leone, Alvaro

    2012-01-01

    Integration of electroencephalographic (EEG) recordings and transcranial magnetic stimulation (TMS) provides a useful framework for quantifying stimulation-induced modulations of neural dynamics. Amplitude and frequency modulations by different TMS protocols have been previously investigated, but the study of stimulation-induced effects on EEG phase has been more limited. We examined changes in resting brain dynamics following single TMS pulses, focusing on measures in the phase domain, to assess their sensitivity to stimulation effects. We observed a significant, approximately global increase in EEG relative phase following prolonged (>20 min) single-pulse TMS. In addition, we estimated higher rates of phase fluctuation from the slope of estimated phase curves, and higher numbers of phase resetting intervals following TMS over motor cortex, particularly in frontal and centro-parietal/parietal channels. Phase changes were only significantly different from their pre-TMS values at the end of the stimulation session, which suggests that prolonged single-pulse TMS may result in cumulative changes in neural activity reflected in the phase of the EEG. This is a novel result, as prior studies have reported only transient stimulation-related effects in the amplitude and frequency domains following single-pulse TMS. PMID:21203817

  8. Resting-state connectivity and functional specialization in human medial parieto-occipital cortex.

    PubMed

    Tosoni, Annalisa; Pitzalis, Sabrina; Committeri, Giorgia; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2015-11-01

    According to recent models of visuo-spatial processing, the medial parieto-occipital cortex is a crucial node of the dorsal visual stream. Evidence from neurophysiological studies in monkeys has indicated that the parieto-occipital sulcus (POS) contains three functionally and cytoarchitectonically distinct areas: the visual area V6 in the fundus of the POS, and the visuo-motor areas V6Av and V6Ad in a progressively dorsal and anterior location with respect to V6. Besides different topographical organization, cytoarchitectonics, and functional properties, these three monkey areas can also be distinguished based on their patterns of cortico-cortical connections. Thanks to wide-field retinotopic mapping, areas V6 and V6Av have been also mapped in the human brain. Here, using a combined approach of resting-state functional connectivity and task-evoked activity by fMRI, we identified a new region in the anterior POS showing a pattern of functional properties and cortical connections that suggests a homology with the monkey area V6Ad. In addition, we observed distinct patterns of cortical connections associated with the human V6 and V6Av which are remarkably consistent with those showed by the anatomical tracing studies in the corresponding monkey areas. Consistent with recent models on visuo-spatial processing, our findings demonstrate a gradient of functional specialization and cortical connections within the human POS, with more posterior regions primarily dedicated to the analysis of visual attributes useful for spatial navigation and more anterior regions primarily dedicated to analyses of spatial information relevant for goal-directed action.

  9. Science and Ecological Economics: Integrating of the Study of Humans and the Rest of Nature

    ERIC Educational Resources Information Center

    Costanza, Robert

    2009-01-01

    Ecological economics is a transdisciplinary field that seeks to integrate the study of humans and the rest of nature as the basis for the creation of a sustainable and desirable future. It seeks to dissolve the barriers between the traditional disciplines and achieve a true "consilience" of all the sciences and humanities. This consilient,…

  10. Science and Ecological Economics: Integrating of the Study of Humans and the Rest of Nature

    ERIC Educational Resources Information Center

    Costanza, Robert

    2009-01-01

    Ecological economics is a transdisciplinary field that seeks to integrate the study of humans and the rest of nature as the basis for the creation of a sustainable and desirable future. It seeks to dissolve the barriers between the traditional disciplines and achieve a true "consilience" of all the sciences and humanities. This consilient,…

  11. Brain mechanisms underlying human communication.

    PubMed

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  12. Brain Mechanisms Underlying Human Communication

    PubMed Central

    Noordzij, Matthijs L.; Newman-Norlund, Sarah E.; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C.; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities. PMID:19668699

  13. Human infancy…and the rest of the lifespan.

    PubMed

    Bornstein, Marc H

    2014-01-01

    Human infancy has been studied as a platform for hypothesis and theory testing, as a major physiological and psychological adjustment, as an object of adults' effects as well as a source of effects on adults, for its comparative value, as a stage of life, and as a setting point for the life course. Following an orientation to infancy studies, including previous reviews and a discussion of the special challenges infants pose to research, this article focuses on infancy as a foundation and catalyst of human development in the balance of the life course. Studies of stability and prediction from infancy illustrate the depth and complexity of modern research on infants and provide a long-awaited reply to key philosophical and practical questions about the meaningfulness and significance of infancy.

  14. Human Brain Reacts to Transcranial Extraocular Light.

    PubMed

    Sun, Lihua; Peräkylä, Jari; Kovalainen, Anselmi; Ogawa, Keith H; Karhunen, Pekka J; Hartikainen, Kaisa M

    2016-01-01

    Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear canals abolished normal emotional modulation of attention related brain responses. With no extraocular light delivered, emotional distractors reduced centro-parietal P300 amplitude compared to neutral distractors. This phenomenon disappeared with extraocular light delivery. Extraocular light delivered through the ear canals was shown to penetrate at the base of the scull of a cadaver. Thus, we have shown that extraocular light impacts human brain functioning calling for further research on the mechanisms of action of light on the human brain.

  15. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    PubMed Central

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  16. Brain evolution and human neuropsychology: the inferential brain hypothesis.

    PubMed

    Koscik, Timothy R; Tranel, Daniel

    2012-05-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. (JINS, 2012, 18, 394-401).

  17. The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation.

    PubMed

    Stevens, Michael C

    2016-11-01

    This review summarizes functional magnetic resonance imaging (fMRI) research done over the past decade that examined changes in the function and organization of brain networks across human adolescence. Its over-arching goal is to highlight how both resting state functional connectivity (rs-fcMRI) and task-based functional connectivity (t-fcMRI) have jointly contributed - albeit in different ways - to our understanding of the scope and types of network organization changes that occur from puberty until young adulthood. These two approaches generally have tested different types of hypotheses using different analysis techniques. This has hampered the convergence of findings. Although much has been learned about system-wide changes to adolescents' neural network organization, if both rs-fcMRI and t-fcMRI approaches draw upon each other's methodology and ask broader questions, it will produce a more detailed connectome-informed theory of adolescent neurodevelopment to guide physiological, clinical, and other lines of research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Bone metabolism in human space flight and bed rest study].

    PubMed

    Ohshima, Hiroshi; Mukai, Chiaki

    2008-09-01

    Japanese Experiment Module "KIBO" is Japan's first manned space facility and will be operated as part of the international space station (ISS) . KIBO operations will be monitored and controlled from Tsukuba Space Center. In Japan, after the KIBO element components are fully assembled and activated aboard the ISS, Japanese astronauts will stay on the ISS for three or more months, and full-scale experiment operations will begin. Bone loss and renal stone are significant medical concerns for long duration human space flight. This paper will summarize the results of bone loss, calcium balance obtained from the American and Russian space programs, and ground-base analog bedrest studies. Current in-flight training program, nutritional recommendations and future countermeasure plans for station astronauts are also described.

  19. Specific and Evolving Resting-State Network Alterations in Post-Concussion Syndrome Following Mild Traumatic Brain Injury

    PubMed Central

    Messé, Arnaud; Caplain, Sophie; Pélégrini-Issac, Mélanie; Blancho, Sophie; Lévy, Richard; Aghakhani, Nozar; Montreuil, Michèle; Benali, Habib; Lehéricy, Stéphane

    2013-01-01

    Post-concussion syndrome has been related to axonal damage in patients with mild traumatic brain injury, but little is known about the consequences of injury on brain networks. In the present study, our aim was to characterize changes in functional brain networks following mild traumatic brain injury in patients with post-concussion syndrome using resting-state functional magnetic resonance imaging data. We investigated 17 injured patients with persistent post-concussion syndrome (under the DSM-IV criteria) at 6 months post-injury compared with 38 mild traumatic brain injury patients with no post-concussion syndrome and 34 healthy controls. All patients underwent magnetic resonance imaging examinations at the subacute (1–3 weeks) and late (6 months) phases after injury. Group-wise differences in functional brain networks were analyzed using graph theory measures. Patterns of long-range functional networks alterations were found in all mild traumatic brain injury patients. Mild traumatic brain injury patients with post-concussion syndrome had greater alterations than patients without post-concussion syndrome. In patients with post-concussion syndrome, changes specifically affected temporal and thalamic regions predominantly at the subacute stage and frontal regions at the late phase. Our results suggest that the post-concussion syndrome is associated with specific abnormalities in functional brain network that may contribute to explain deficits typically observed in PCS patients. PMID:23755237

  20. Effect of Resting-State fNIRS Scanning Duration on Functional Brain Connectivity and Graph Theory Metrics of Brain Network

    PubMed Central

    Geng, Shujie; Liu, Xiangyu; Biswal, Bharat B.; Niu, Haijing

    2017-01-01

    As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS) has attracted widespread attention for advancing resting-state functional connectivity (FC) and graph theoretical analyses of brain networks. However, it remains largely unknown how the duration of the fNIRS signal scanning is related to stable and reproducible functional brain network features. To answer this question, we collected resting-state fNIRS signals (10-min duration, two runs) from 18 participants and then truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10 min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global efficiency, and clustering coefficient were computed for each subject at each fNIRS signal acquisition duration. Analyses of the stability and between-run reproducibility were performed to identify optimal time length for each measure. We found that the FC, nodal efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS signal acquisition, whereas network clustering coefficient, local and global efficiencies stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only local and global efficiencies. These quantitative results provide direct evidence regarding the choice of the resting-state fNIRS scanning duration for functional brain connectivity and topological metric stability of brain network connectivity. PMID:28775676

  1. Effect of Resting-State fNIRS Scanning Duration on Functional Brain Connectivity and Graph Theory Metrics of Brain Network.

    PubMed

    Geng, Shujie; Liu, Xiangyu; Biswal, Bharat B; Niu, Haijing

    2017-01-01

    As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS) has attracted widespread attention for advancing resting-state functional connectivity (FC) and graph theoretical analyses of brain networks. However, it remains largely unknown how the duration of the fNIRS signal scanning is related to stable and reproducible functional brain network features. To answer this question, we collected resting-state fNIRS signals (10-min duration, two runs) from 18 participants and then truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10 min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global efficiency, and clustering coefficient were computed for each subject at each fNIRS signal acquisition duration. Analyses of the stability and between-run reproducibility were performed to identify optimal time length for each measure. We found that the FC, nodal efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS signal acquisition, whereas network clustering coefficient, local and global efficiencies stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only local and global efficiencies. These quantitative results provide direct evidence regarding the choice of the resting-state fNIRS scanning duration for functional brain connectivity and topological metric stability of brain network connectivity.

  2. Lipid transport and human brain development.

    PubMed

    Betsholtz, Christer

    2015-07-01

    How the human brain rapidly builds up its lipid content during brain growth and maintains its lipids in adulthood has remained elusive. Two new studies show that inactivating mutations in MFSD2A, known to be expressed specifically at the blood-brain barrier, lead to microcephaly, thereby offering a simple and surprising solution to an old enigma.

  3. Individual-specific features of brain systems identified with resting state functional correlations.

    PubMed

    Gordon, Evan M; Laumann, Timothy O; Adeyemo, Babatunde; Gilmore, Adrian W; Nelson, Steven M; Dosenbach, Nico U F; Petersen, Steven E

    2017-02-01

    Recent work has made important advances in describing the large-scale systems-level organization of human cortex by analyzing functional magnetic resonance imaging (fMRI) data averaged across groups of subjects. However, new findings have emerged suggesting that individuals' cortical systems are topologically complex, containing small but reliable features that cannot be observed in group-averaged datasets, due in part to variability in the position of such features along the cortical sheet. This previous work has reported only specific examples of these individual-specific system features; to date, such features have not been comprehensively described. Here we used fMRI to identify cortical system features in individual subjects within three large cross-subject datasets and one highly sampled within-subject dataset. We observed system features that have not been previously characterized, but 1) were reliably detected across many scanning sessions within a single individual, and 2) could be matched across many individuals. In total, we identified forty-three system features that did not match group-average systems, but that replicated across three independent datasets. We described the size and spatial distribution of each non-group feature. We further observed that some individuals were missing specific system features, suggesting individual differences in the system membership of cortical regions. Finally, we found that individual-specific system features could be used to increase subject-to-subject similarity. Together, this work identifies individual-specific features of human brain systems, thus providing a catalog of previously unobserved brain system features and laying the foundation for detailed examinations of brain connectivity in individuals.

  4. Towards multimodal atlases of the human brain

    PubMed Central

    Toga, Arthur W.; Thompson, Paul M.; Mori, Susumu; Amunts, Katrin; Zilles, Karl

    2010-01-01

    Atlases of the human brain have an important impact on neuroscience. The emergence of ever more sophisticated imaging techniques, brain mapping methods and analytical strategies has the potential to revolutionize the concept of the brain atlas. Atlases can now combine data describing multiple aspects of brain structure or function at different scales from different subjects, yielding a truly integrative and comprehensive description of this organ. These integrative approaches have provided significant impetus for the human brain mapping initiatives, and have important applications in health and disease. PMID:17115077

  5. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    PubMed Central

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  6. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI

    PubMed Central

    Peña-Gómez, Cleofé; Sala-Lonch, Roser; Junqué, Carme; Clemente, Immaculada C.; Vidal, Dídac; Bargalló, Núria; Falcón, Carles; Valls-Solé, Josep; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2013-01-01

    Background Brain areas interact mutually to perform particular complex brain functions such as memory or language. Furthermore, under resting-state conditions several spatial patterns have been identified that resemble functional systems involved in cognitive functions. Among these, the default-mode network (DMN), which is consistently deactivated during task periods and is related to a variety of cognitive functions, has attracted most attention. In addition, in resting-state conditions some brain areas engaged in focused attention (such as the anticorrelated network, AN) show a strong negative correlation with DMN; as task demand increases, AN activity rises, and DMN activity falls. Objective We combined transcranial direct current stimulation (tDCS) with functional magnetic resonance imaging (fMRI) to investigate these brain network dynamics. Methods Ten healthy young volunteers underwent four blocks of resting-state fMRI (10-minutes), each of them immediately after 20 minutes of sham or active tDCS (2 mA), on two different days. On the first day the anodal electrode was placed over the left dorsolateral prefrontal cortex (DLPFC) (part of the AN) with the cathode over the contralateral supraorbital area, and on the second day, the electrode arrangement was reversed (anode right-DLPFC, cathode left-supraorbital). Results After active stimulation, functional network connectivity revealed increased synchrony within the AN components and reduced synchrony in the DMN components. Conclusions Our study reveals a reconfiguration of intrinsic brain activity networks after active tDCS. These effects may help to explain earlier reports of improvements in cognitive functions after anodal-tDCS, where increasing cortical excitability may have facilitated reconfiguration of functional brain networks to address upcoming cognitive demands. PMID:21962981

  7. Dreaming, waking conscious experience, and the resting brain: report of subjective experience as a tool in the cognitive neurosciences

    PubMed Central

    Wamsley, Erin J.

    2013-01-01

    Even when we are ostensibly doing “nothing”—as during states of rest, sleep, and reverie—the brain continues to process information. In resting wakefulness, the mind generates thoughts, plans for the future, and imagines fictitious scenarios. In sleep, when the demands of sensory input are reduced, our experience turns to the thoughts and images we call “dreaming.” Far from being a meaningless distraction, the content of these subjective experiences provides an important and unique source of information about the activities of the resting mind and brain. In both wakefulness and sleep, spontaneous experience combines recent and remote memory fragments into novel scenarios. These conscious experiences may reflect the consolidation of recent memory into long-term storage, an adaptive process that functions to extract general knowledge about the world and adaptively respond to future events. Recent examples from psychology and neuroscience demonstrate that the use of subjective report can provide clues to the function(s) of rest and sleep. PMID:24065940

  8. Changes of Functional Brain Networks in Major Depressive Disorder: A Graph Theoretical Analysis of Resting-State fMRI.

    PubMed

    Ye, Ming; Yang, Tianliang; Qing, Peng; Lei, Xu; Qiu, Jiang; Liu, Guangyuan

    2015-01-01

    Recent developments in graph theory have heightened the need for investigating the disruptions in the topological structure of functional brain network in major depressive disorder (MDD). In this study, we employed resting-state functional magnetic resonance imaging (fMRI) and graph theory to examine the whole-brain functional networks among 42 MDD patients and 42 healthy controls. Our results showed that compared with healthy controls, MDD patients showed higher local efficiency and modularity. Furthermore, MDD patients showed altered nodal centralities of many brain regions, including hippocampus, temporal cortex, anterior cingulate gyrus and dorsolateral prefrontal gyrus, mainly located in default mode network and cognitive control network. Together, our results suggested that MDD was associated with disruptions in the topological structure of functional brain networks, and provided new insights concerning the pathophysiological mechanisms of MDD.

  9. Increased Heart Rate Variability but Normal Resting Metabolic Rate in Hypocretin/Orexin-Deficient Human Narcolepsy

    PubMed Central

    Fronczek, Rolf; Overeem, Sebastiaan; Reijntjes, Robert; Lammers, Gert Jan; van Dijk, J. Gert; Pijl, Hanno

    2008-01-01

    Study Objectives: We investigated autonomic balance and resting metabolic rate to explore their possible involvement in obesity in hypocretin/orexin-deficient narcoleptic subjects. Methods: Resting metabolic rate (using indirect calorimetry) and variability in heart rate and blood pressure were determined in the fasted resting state. Subjects included 15 untreated, hypocretin-deficient male narcoleptics and 15 male controls matched for age and body mass index. Results: Spectral power analysis revealed greater heart rate and blood pressure variability in hypocretin-deficient male narcoleptic patients (heart rate: p = 0.01; systolic blood pressure: p = 0.02; diastolic: p < 0.01). The low to high frequency ratio of heart rate power did not differ between groups (p = 0.48), nor did resting metabolic rate (controls: 1767 ± 226 kcal/24 h; patients: 1766 ± 227 kcal/24h; p = 0.99). Conclusions: Resting metabolic rate was not reduced in hypocretin-deficient narcoleptic men and therefore does not explain obesity in this group. Whether the increased heart rate and blood pressure variability—suggesting reduced sympathetic tone—is involved in this regard remains to be elucidated. Citation: Fronczek R; Overeem S; Reijntjes R; Lammers GJ; van Dijk JG; Pijl H. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy. J Clin Sleep Med 2008;4(3):248–254. PMID:18595438

  10. Brain Activity and Human Unilateral Chewing

    PubMed Central

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  11. Resting Cerebral Blood Flow Alterations in Chronic Traumatic Brain Injury: An Arterial Spin Labeling Perfusion fMRI Study

    PubMed Central

    Whyte, John; Patel, Sunil; Avants, Brian; Europa, Eduardo; Wang, Jiongjiong; Slattery, John; Gee, James C.; Coslett, H. Branch; Detre, John A.

    2010-01-01

    Abstract Non-invasive measurement of resting state cerebral blood flow (CBF) may reflect alterations of brain structure and function after traumatic brain injury (TBI). However, previous imaging studies of resting state brain in chronic TBI have been limited by several factors, including measurement in relative rather than absolute units, use of crude spatial registration methods, exclusion of subjects with substantial focal lesions, and exposure to ionizing radiation, which limits repeated assessments. This study aimed to overcome those obstacles by measuring absolute CBF with an arterial spin labeling perfusion fMRI technique, and using an image preprocessing protocol that is optimized for brains with mixed diffuse and focal injuries characteristic of moderate and severe TBI. Resting state CBF was quantified in 27 individuals with moderate to severe TBI in the chronic stage, and 22 demographically matched healthy controls. In addition to global CBF reductions in the TBI subjects, more prominent regional hypoperfusion was found in the posterior cingulate cortices, the thalami, and multiple locations in the frontal cortices. Diffuse injury, as assessed by tensor-based morphometry, was mainly associated with reduced CBF in the posterior cingulate cortices and the thalami, where the greatest volume losses were detected. Hypoperfusion in superior and middle frontal cortices, in contrast, was associated with focal lesions. These results suggest that structural lesions, both focal and diffuse, are the main contributors to the absolute CBF alterations seen in chronic TBI, and that CBF may serve as a tool to assess functioning neuronal volume. We also speculate that resting reductions in posterior cingulate perfusion may reflect alterations in the default-mode network, and may contribute to the attentional deficits common in TBI. PMID:20528163

  12. The hypnotic zolpidem increases the synchrony of BOLD signal fluctuations in widespread brain networks during a resting paradigm

    PubMed Central

    Licata, Stephanie C.; Nickerson, Lisa D.; Lowen, Steven B.; Trksak, George H.; MacLean, Robert R.; Lukas, Scott E.

    2013-01-01

    Networks of brain regions having synchronized fluctuations of the blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) time-series at rest, or “resting state networks” (RSNs), are emerging as a basis for understanding intrinsic brain activity. RSNs are topographically consistent with activity-related networks subserving sensory, motor, and cognitive processes, and studying their spontaneous fluctuations following acute drug challenge may provide a way to understand better the neuroanatomical substrates of drug action. The present within-subject double-blind study used BOLD fMRI at 3T to investigate the functional networks influenced by the non-benzodiazepine hypnotic zolpidem (Ambien®). Zolpidem is a positive modulator of γ-aminobutyric acidA (GABAA) receptors, and engenders sedative effects that may be explained in part by how it modulates intrinsic brain activity. Healthy participants (n= 12) underwent fMRI scanning 45 min after acute oral administration of zolpidem (0, 5, 10, or 20 mg), and changes in BOLD signal were measured while participants gazed at a static fixation point (i.e., at rest). Data were analyzed using group independent component analysis (ICA) with dual regression and results indicated that compared to placebo, the highest dose of zolpidem increased functional connectivity within a number of sensory, motor, and limbic networks. These results are consistent with previous studies showing an increase in functional connectivity at rest following administration of the positive GABAA receptor modulators midazolam and alcohol, and suggest that investigating how zolpidem modulates intrinsic brain activity may have implications for understanding the etiology of its powerful sedative effects. PMID:23296183

  13. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study.

    PubMed

    Kim, Junghoon; Whyte, John; Patel, Sunil; Avants, Brian; Europa, Eduardo; Wang, Jiongjiong; Slattery, John; Gee, James C; Coslett, H Branch; Detre, John A

    2010-08-01

    Non-invasive measurement of resting state cerebral blood flow (CBF) may reflect alterations of brain structure and function after traumatic brain injury (TBI). However, previous imaging studies of resting state brain in chronic TBI have been limited by several factors, including measurement in relative rather than absolute units, use of crude spatial registration methods, exclusion of subjects with substantial focal lesions, and exposure to ionizing radiation, which limits repeated assessments. This study aimed to overcome those obstacles by measuring absolute CBF with an arterial spin labeling perfusion fMRI technique, and using an image preprocessing protocol that is optimized for brains with mixed diffuse and focal injuries characteristic of moderate and severe TBI. Resting state CBF was quantified in 27 individuals with moderate to severe TBI in the chronic stage, and 22 demographically matched healthy controls. In addition to global CBF reductions in the TBI subjects, more prominent regional hypoperfusion was found in the posterior cingulate cortices, the thalami, and multiple locations in the frontal cortices. Diffuse injury, as assessed by tensor-based morphometry, was mainly associated with reduced CBF in the posterior cingulate cortices and the thalami, where the greatest volume losses were detected. Hypoperfusion in superior and middle frontal cortices, in contrast, was associated with focal lesions. These results suggest that structural lesions, both focal and diffuse, are the main contributors to the absolute CBF alterations seen in chronic TBI, and that CBF may serve as a tool to assess functioning neuronal volume. We also speculate that resting reductions in posterior cingulate perfusion may reflect alterations in the default-mode network, and may contribute to the attentional deficits common in TBI.

  14. EEG Bands of Wakeful Rest, Slow-Wave and Rapid-Eye-Movement Sleep at Different Brain Areas in Rats.

    PubMed

    Jing, Wei; Wang, Yanran; Fang, Guangzhan; Chen, Mingming; Xue, Miaomiao; Guo, Daqing; Yao, Dezhong; Xia, Yang

    2016-01-01

    Accumulating evidence reveals that neuronal oscillations with various frequency bands in the brain have different physiological functions. However, the frequency band divisions in rats were typically based on empirical spectral distribution from limited channels information. In the present study, functionally relevant frequency bands across vigilance states and brain regions were identified using factor analysis based on 9 channels EEG signals recorded from multiple brain areas in rats. We found that frequency band divisions varied both across vigilance states and brain regions. In particular, theta oscillations during REM sleep were subdivided into two bands, 5-7 and 8-11 Hz corresponding to the tonic and phasic stages, respectively. The spindle activities of SWS were different along the anterior-posterior axis, lower oscillations (~16 Hz) in frontal regions and higher in parietal (~21 Hz). The delta and theta activities co-varied in the visual and auditory cortex during wakeful rest. In addition, power spectra of beta oscillations were significantly decreased in association cortex during REM sleep compared with wakeful rest. These results provide us some new insights into understand the brain oscillations across vigilance states, and also indicate that the spatial factor should not be ignored when considering the frequency band divisions in rats.

  15. Acupuncture treatment modulates the resting-state functional connectivity of brain regions in migraine patients without aura.

    PubMed

    Zhang, Yong; Li, Kuang-shi; Liu, Hong-wei; Fu, Cai-hong; Chen, Sheng; Tan, Zhong-jian; Ren, Yi

    2016-04-01

    To investigate the modulatory effect of acupuncture treatment on the resting-state functional connectivity of brain regions in migraine without aura (MWoA) patients. Twelve MWoA patients were treated with standard acupuncture treatment for 4 weeks. All MWoA patients received resting-state functional magnetic resonance imaging (fMRI) scanning before and after acupuncture treatment. Another 12 normal subjects matched in age and gender were recruited to serve as healthy controls. The changes of restingstate functional connectivity in MWoA patients before and after the acupuncture treatment and those with the healthy controls were compared. Before acupuncture treatment, the MWoA patients had significantly decreased functional connectivity in certain brain regions within the frontal and temporal lobe when compared with the healthy controls. After acupuncture treatment, brain regions showing decreased functional connectivity revealed significant reduction in MWoA patients compared with before acupuncture treatment. Acupuncture treatment could increase the functional connectivity of brain regions in the intrinsic decreased brain networks in MWoA patients. The results provided further insights into the interpretation of neural mechanisms of acupuncture treatment for migraine.

  16. EEG Bands of Wakeful Rest, Slow-Wave and Rapid-Eye-Movement Sleep at Different Brain Areas in Rats

    PubMed Central

    Jing, Wei; Wang, Yanran; Fang, Guangzhan; Chen, Mingming; Xue, Miaomiao; Guo, Daqing; Yao, Dezhong; Xia, Yang

    2016-01-01

    Accumulating evidence reveals that neuronal oscillations with various frequency bands in the brain have different physiological functions. However, the frequency band divisions in rats were typically based on empirical spectral distribution from limited channels information. In the present study, functionally relevant frequency bands across vigilance states and brain regions were identified using factor analysis based on 9 channels EEG signals recorded from multiple brain areas in rats. We found that frequency band divisions varied both across vigilance states and brain regions. In particular, theta oscillations during REM sleep were subdivided into two bands, 5–7 and 8–11 Hz corresponding to the tonic and phasic stages, respectively. The spindle activities of SWS were different along the anterior-posterior axis, lower oscillations (~16 Hz) in frontal regions and higher in parietal (~21 Hz). The delta and theta activities co-varied in the visual and auditory cortex during wakeful rest. In addition, power spectra of beta oscillations were significantly decreased in association cortex during REM sleep compared with wakeful rest. These results provide us some new insights into understand the brain oscillations across vigilance states, and also indicate that the spatial factor should not be ignored when considering the frequency band divisions in rats. PMID:27536231

  17. Slow fluctuations in eye position and resting-state functional magnetic resonance imaging brain activity during visual fixation.

    PubMed

    Fransson, Peter; Flodin, Pär; Seimyr, Gustaf Öqvist; Pansell, Tony

    2014-12-01

    The neuronal circuitry that supports voluntary changes in eye position in tasks that require attention-driven oculo-motor control is well known. However, less is known about the neuronal basis for eye control during visual fixation. This, together with the fact that visual fixation is one of the most commonly used baseline conditions in resting-state functional magnetic resonance imaging (fMRI) studies, prompted us to conduct a study in which we employed resting-state fMRI and concurrent recordings of eye gaze to investigate the relationship between spontaneous changes in eye position during passive visual fixation and intrinsic brain activity. As a control experiment, we recorded fMRI brain activity related to cued voluntary vertical and horizontal changes in eye position in a block-related task-evoked fMRI experiment. Our results for the voluntarily performed changes in eye position elicited brain activity in the bilateral occipitotemporal cortex, supplementary motor cortex and frontal eye fields. In contrast, we show that slow fluctuations in eye position during passive visual fixation are linked to intrinsic brain activity, foremost in midline cortical brain regions located in the posteromedial parietal cortex and the medial prefrontal cortex, brain regions that act as core cortical hubs in the brain's default mode network. Our results suggest that subconscious and sustained changes in behavior are tied to intrinsic brain activity on a moment-by-moment basis. © 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  19. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks

    PubMed Central

    Karahanoğlu, Fikret Işik; Van De Ville, Dimitri

    2015-01-01

    Dynamics of resting-state functional magnetic resonance imaging (fMRI) provide a new window onto the organizational principles of brain function. Using state-of-the-art signal processing techniques, we extract innovation-driven co-activation patterns (iCAPs) from resting-state fMRI. The iCAPs' maps are spatially overlapping and their sustained-activity signals temporally overlapping. Decomposing resting-state fMRI using iCAPs reveals the rich spatiotemporal structure of functional components that dynamically assemble known resting-state networks. The temporal overlap between iCAPs is substantial; typically, three to four iCAPs occur simultaneously in combinations that are consistent with their behaviour profiles. In contrast to conventional connectivity analysis, which suggests a negative correlation between fluctuations in the default-mode network (DMN) and task-positive networks, we instead find evidence for two DMN-related iCAPs consisting the posterior cingulate cortex that differentially interact with the attention network. These findings demonstrate how the fMRI resting state can be functionally decomposed into spatially and temporally overlapping building blocks using iCAPs. PMID:26178017

  20. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    PubMed Central

    Jeong, Bumseok; Kim, Ji-Woong

    2012-01-01

    Objective Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). Materials and Methods This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. Results We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). Conclusion RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network. PMID:22563263

  1. Regional Homogeneity of Resting-State Brain Activity Suppresses the Effect of Dopamine-Related Genes on Sensory Processing Sensitivity

    PubMed Central

    Chen, Chuansheng; Moyzis, Robert; Xia, Mingrui; He, Yong; Xue, Gui; Li, Jin; He, Qinghua; Lei, Xuemei; Wang, Yunxin; Liu, Bin; Chen, Wen; Zhu, Bi; Dong, Qi

    2015-01-01

    Sensory processing sensitivity (SPS) is an intrinsic personality trait whose genetic and neural bases have recently been studied. The current study used a neural mediation model to explore whether resting-state brain functions mediated the effects of dopamine-related genes on SPS. 298 healthy Chinese college students (96 males, mean age = 20.42 years, SD = 0.89) were scanned with magnetic resonance imaging during resting state, genotyped for 98 loci within the dopamine system, and administered the Highly Sensitive Person Scale. We extracted a “gene score” that summarized the genetic variations representing the 10 loci that were significantly linked to SPS, and then used path analysis to search for brain regions whose resting-state data would help explain the gene-behavior association. Mediation analysis revealed that temporal homogeneity of regional spontaneous activity (ReHo) in the precuneus actually suppressed the effect of dopamine-related genes on SPS. The path model explained 16% of the variance of SPS. This study represents the first attempt at using a multi-gene voxel-based neural mediation model to explore the complex relations among genes, brain, and personality. PMID:26308205

  2. The impact of hyperoxia on brain activity: A resting-state and task-evoked electroencephalography (EEG) study.

    PubMed

    Sheng, Min; Liu, Peiying; Mao, Deng; Ge, Yulin; Lu, Hanzhang

    2017-01-01

    A better understanding of the effect of oxygen on brain electrophysiological activity may provide a more mechanistic insight into clinical studies that use oxygen treatment in pathological conditions, as well as in studies that use oxygen to calibrate functional magnetic resonance imaging (fMRI) signals. This study applied electroencephalography (EEG) in healthy subjects and investigated how high a concentration of oxygen in inhaled air (i.e., normobaric hyperoxia) alters brain activity under resting-state and task-evoked conditions. Study 1 investigated its impact on resting EEG and revealed that hyperoxia suppressed α (8-13Hz) and β (14-35Hz) band power (by 15.6±2.3% and 14.1±3.1%, respectively), but did not change the δ (1-3Hz), θ (4-7Hz), and γ (36-75Hz) bands. Sham control experiments did not result in such changes. Study 2 reproduced these findings, and, furthermore, examined the effect of hyperoxia on visual stimulation event-related potentials (ERP). It was found that the main peaks of visual ERP, specifically N1 and P2, were both delayed during hyperoxia compared to normoxia (P = 0.04 and 0.02, respectively). In contrast, the amplitude of the peaks did not show a change. Our results suggest that hyperoxia has a pronounced effect on brain neural activity, for both resting-state and task-evoked potentials.

  3. Regional Homogeneity of Resting-State Brain Activity Suppresses the Effect of Dopamine-Related Genes on Sensory Processing Sensitivity.

    PubMed

    Chen, Chunhui; Xiu, Daiming; Chen, Chuansheng; Moyzis, Robert; Xia, Mingrui; He, Yong; Xue, Gui; Li, Jin; He, Qinghua; Lei, Xuemei; Wang, Yunxin; Liu, Bin; Chen, Wen; Zhu, Bi; Dong, Qi

    2015-01-01

    Sensory processing sensitivity (SPS) is an intrinsic personality trait whose genetic and neural bases have recently been studied. The current study used a neural mediation model to explore whether resting-state brain functions mediated the effects of dopamine-related genes on SPS. 298 healthy Chinese college students (96 males, mean age = 20.42 years, SD = 0.89) were scanned with magnetic resonance imaging during resting state, genotyped for 98 loci within the dopamine system, and administered the Highly Sensitive Person Scale. We extracted a "gene score" that summarized the genetic variations representing the 10 loci that were significantly linked to SPS, and then used path analysis to search for brain regions whose resting-state data would help explain the gene-behavior association. Mediation analysis revealed that temporal homogeneity of regional spontaneous activity (ReHo) in the precuneus actually suppressed the effect of dopamine-related genes on SPS. The path model explained 16% of the variance of SPS. This study represents the first attempt at using a multi-gene voxel-based neural mediation model to explore the complex relations among genes, brain, and personality.

  4. Challenges in Determining the Role of Rest and Exercise in the Management of Mild Traumatic Brain Injury.

    PubMed

    Wells, Elizabeth M; Goodkin, Howard P; Griesbach, Grace S

    2016-01-01

    Current consensus guidelines recommending physical and cognitive rest until a patient is asymptomatic after a sports concussion (ie, a mild traumatic brain injury) are being called into question, particularly for patients who are slower to recover and in light of preclinical and clinical research demonstrating that exercise aids neurorehabilitation. The pathophysiological response to mild traumatic brain injury includes a complex neurometabolic cascade of events resulting in a neurologic energy deficit. It has been proposed that this energy deficit leads to a period of vulnerability during which the brain is at risk for additional injury, explains why early postconcussive symptoms are exacerbated by cognitive and physical exertion, and is used to rationalize absolute rest until all symptoms have resolved. However, at some point, rest might no longer be beneficial and exercise might need to be introduced. At both extremes, excessive exertion and prolonged avoidance of exercise (physical and mental) have negative consequences. Individuals who have experienced a concussion need guidance for avoidance of triggers of severe symptoms and a plan for graduated exercise to promote recovery as well as optimal functioning (physical, educational, and social) during the postconcussion period.

  5. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction.

    PubMed

    Narici, M V; Binzoni, T; Hiltbrand, E; Fasel, J; Terrier, F; Cerretelli, P

    1996-10-01

    1. Human gastrocnemius medialis architecture was analysed in vivo, by ultrasonography, as a function of joint angle at rest and during voluntary isometric contractions up to the maximum force (MCV). maximum force (MVC). 2. At rest, as ankle joint angle increased from 90 to 150 deg, pennation increased from 15.8 to 27.7 deg, fibre length decreased from 57.0 to 34.0 mm and the physiological cross-sectional area (PCSA) increased from 42.1 to 63.5 cm2. 3. From rest to MVC, at a fixed ankle joint angle of 110 deg, pennation angle increased from 15.5 to 33.6 deg and fibre length decreased from 50.8 to 32.9 mm, with no significant change in the distance between the aponeuroses. As a result of these changes the PCSA increased by 34.8%. 4. Measurements of pennation angle, fibre length and distance between the aponeuroses of the gastrocnemius medialis were also performed by ultrasound on a cadaver leg and found to be in good agreement with direct anatomical measurements. 5. It is concluded that human gastrocnemius medialis architecture is significantly affected both by changes of joint angle at rest and by isometric contraction intensity. The remarkable shortening observed during isometric contraction suggests that, at rest, the gastrocnemius muscle and tendon are considerably slack. The extrapolation of muscle architectural data obtained from cadavers to in vivo conditions should be made only for matching muscle lengths.

  6. Physiological responses to prolonged bed rest in humans: A compendium of research, 1981-1988

    NASA Technical Reports Server (NTRS)

    Luu, Phuong B.; Ortiz, Vanessa; Barnes, Paul R.; Greenleaf, John E.

    1990-01-01

    Clinical observations and results form more basic studies that help to elucidate the physiological mechanisms of the adaptation of humans to prolonged bed rest. If the authors' abstract or summary was appropriate, it was included. In some cases a more detailed synopsis was provided under the subheadings of purpose, methods, results, and conclusions.

  7. Brain graphs: graphical models of the human brain connectome.

    PubMed

    Bullmore, Edward T; Bassett, Danielle S

    2011-01-01

    Brain graphs provide a relatively simple and increasingly popular way of modeling the human brain connectome, using graph theory to abstractly define a nervous system as a set of nodes (denoting anatomical regions or recording electrodes) and interconnecting edges (denoting structural or functional connections). Topological and geometrical properties of these graphs can be measured and compared to random graphs and to graphs derived from other neuroscience data or other (nonneural) complex systems. Both structural and functional human brain graphs have consistently demonstrated key topological properties such as small-worldness, modularity, and heterogeneous degree distributions. Brain graphs are also physically embedded so as to nearly minimize wiring cost, a key geometric property. Here we offer a conceptual review and methodological guide to graphical analysis of human neuroimaging data, with an emphasis on some of the key assumptions, issues, and trade-offs facing the investigator.

  8. Brain functional plasticity at rest and during action in multiple sclerosis patients.

    PubMed

    Faivre, Anthony; Rico, Audrey; Zaaraoui, Wafaa; Reuter, Françoise; Confort-Gouny, Sylviane; Guye, Maxime; Pelletier, Jean; Ranjeva, Jean-Philippe; Audoin, Bertrand

    2015-09-01

    We aimed to demonstrate that basal functional connectivity reorganization observed in a specific network at rest using resting state functional MRI (rs-fMRI) could be associated with functional cortical reorganization in such network during action (ta-fMRI) in a population of early multiple sclerosis (MS) patients. Altered basal functional connectivity has been previously reported in patients with MS but relationships with cortical reorganization during action have not been explored. Thirteen patients with early relapsing-remitting MS and 14 matched healthy controls were explored on a 3T MRI scanner at rest and during a motor task (conjugate finger flexion and extension movements of each hand). Hand motor networks were extracted from rs-fMRI data using group spatial independent component analysis. For the non-dominant motor network, patients presented a higher basal functional connectivity at rest and recruited a supplementary prefrontal cortical area during action compared to the controls. The levels of hyperconnectivity at rest and of activation in the recruited area during action were significantly correlated. No differences were demonstrated for the dominant motor network at rest and during action. The present study, combining rs-fMRI and ta-fMRI in non-disabled patients with early MS, revealed for the first time a direct association between functional reorganization depicted at rest and during action within the same system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Differential effects of L-tryptophan and L-leucine administration on brain resting state functional networks and plasma hormone levels

    PubMed Central

    Zanchi, Davide; Meyer-Gerspach, Anne Christin; Suenderhauf, Claudia; Janach, Katharina; le Roux, Carel W.; Haller, Sven; Drewe, Jürgen; Beglinger, Christoph; Wölnerhanssen, Bettina K.; Borgwardt, Stefan

    2016-01-01

    Depending on their protein content, single meals can rapidly influence the uptake of amino acids into the brain and thereby modify brain functions. The current study investigates the effects of two different amino acids on the human gut-brain system, using a multimodal approach, integrating physiological and neuroimaging data. In a randomized, placebo-controlled trial, L-tryptophan, L-leucine, glucose and water were administered directly into the gut of 20 healthy subjects. Functional MRI (fMRI) in a resting state paradigm (RS), combined with the assessment of insulin and glucose blood concentration, was performed before and after treatment. Independent component analysis with dual regression technique was applied to RS-fMRI data. Results were corrected for multiple comparisons. In comparison to glucose and water, L-tryptophan consistently modifies the connectivity of the cingulate cortex in the default mode network, of the insula in the saliency network and of the sensory cortex in the somatosensory network. L-leucine has lesser effects on these functional networks. L-tryptophan and L-leucine also modified plasma insulin concentration. Finally, significant correlations were found between brain modifications after L-tryptophan administration and insulin plasma levels. This study shows that acute L-tryptophan and L-leucine intake directly influence the brain networks underpinning the food-reward system and appetite regulation. PMID:27760995

  10. Human Genomic Signatures of Brain Oscillations During Memory Encoding.

    PubMed

    Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve

    2017-04-05

    Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.

  11. Modeling human brain development with cerebral organoids.

    PubMed

    Muzio, Luca; Consalez, G Giacomo

    2013-01-01

    The recent discovery of a new three-dimensional culture system for the derivation of cerebral organoids from human induced pluripotent stem cells provides developmental neurobiologists with the first example of a three-dimensional framework for the study of human brain development. This innovative approach permits the in vitro assembly of a human embryonic brain rudiment that recapitulates the developing human cerebrum. Organoids contain progenitor populations that develop to yield mature cortical neuron subtypes, potentially allowing investigators to study complex brain diseases that lack appropriate animal models.

  12. Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project

    PubMed Central

    McDonough, Ian M.; Nashiro, Kaoru

    2014-01-01

    An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity. PMID:24959130

  13. Behavioral, Brain Imaging and Genomic Measures to Predict Functional Outcomes Post-Bed Rest and Space Flight

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B.; De Dios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Batson, C. D.; Goel, R.; Oddsson, L.; Kreutzberg, G.; Zanello, S.; Clark, T. K.; Oman, C. M.; Cohen, H. S.; Wood, S.; Seidler, R. D.; Reschke, M. F.; Bloomberg, J. J.

    2017-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may disrupt crewmembers' ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts are affected will improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual spaceflight, which crewmembers are likely to experience greater challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures. Our approach includes: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features, using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; and 3) assessment of genetic polymorphisms in the catechol-O-methyl transferase, dopamine receptor D2, and brain-derived neurotrophic factor genes and genetic polymorphisms of alpha2-adrenergic receptors that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate that these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration spaceflight and exposure to an analog bed rest environment. We will be conducting a retrospective study, leveraging

  14. MRI Magnet for Human Brain

    NASA Astrophysics Data System (ADS)

    Urayama, Shin-Ichi

    Recent rapid demand increase and supply decrease for helium has raised the price in these years. Superconducting magnetic resonance imaging (MRI) magnets, which consume 20% of global production of helium as the cryogen, are therefore expected to be helium-free and high-temperature superconducting (HTS) materials are potent candidates to realize this. Because of the reason, we developed a cryogen-free 3T-MRI scanner for human brain research using Bi-2223 tapes. For scanning a subject in sitting position, a vertical bore was adopted. The magnet was designed for operating temperature of 20 K and for driven mode. Both target homogeneity and stability of the magnetic field in field of view (FOV) region were within 1 ppm. Not only the magnet but also the other important hard/softwares were produced by us. After the assembly, adjustments and imaging experiments with the scanner were carried out at 1.5 T successfully. Although ramp-up to 3 T succeeded three times, successive abnormal events happened for longer than ten minutes during the third ramp-down time, and finally the magnet got fatal damages. Here, we introduce the system and discuss on problems and potentials of HTS-MRI magnets.

  15. The modular and integrative functional architecture of the human brain

    PubMed Central

    Bertolero, Maxwell A.; Yeo, B. T. Thomas; D’Esposito, Mark

    2015-01-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules’ processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author–topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network’s modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules’ functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain’s modular yet integrated implementation of cognitive functions. PMID:26598686

  16. Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks.

    PubMed

    Vukelić, Mathias; Gharabaghi, Alireza

    2015-01-01

    The mechanisms of learning involved in brain self-regulation have still to be unveiled to exploit the full potential of this methodology for therapeutic interventions. This skill of volitionally changing brain activity presumably resembles motor skill learning which in turn is accompanied by plastic changes modulating resting state networks. Along these lines, we hypothesized that brain regulation and neurofeedback would similarly modify intrinsic networks at rest while presenting a distinct spatio-temporal pattern. High-resolution electroencephalography preceded and followed a single neurofeedback training intervention of modulating circumscribed sensorimotor low β-activity by kinesthetic motor imagery in eleven healthy participants. The participants were kept in the deliberative phase of skill acquisition with high demands for learning self-regulation through stepwise increases of task difficulty. By applying the corrected imaginary part of the coherency function, we observed increased functional connectivity of both the primary motor and the primary somatosensory cortex with their respective contralateral homologous cortices in the low β-frequency band which was self-regulated during feedback. At the same time, the primary motor cortex-but none of the surrounding cortical areas-showed connectivity to contralateral supplementary motor and dorsal premotor areas in the high β-band. Simultaneously, the neurofeedback target displayed a specific increase of functional connectivity with an ipsilateral fronto-parietal network in the α-band while presenting a de-coupling with contralateral primary and secondary sensorimotor areas in the very same frequency band. Brain self-regulation modifies resting state connections spatially selective to the neurofeedback target of the dominant hemisphere. These are anatomically distinct with regard to the cortico-cortical connectivity pattern and are functionally specific with regard to the time domain of coherent activity

  17. Large-scale functional brain network changes in taxi drivers: evidence from resting-state fMRI.

    PubMed

    Wang, Lubin; Liu, Qiang; Shen, Hui; Li, Hong; Hu, Dewen

    2015-03-01

    Driving a car in the environment is a complex behavior that involves cognitive processing of visual information to generate the proper motor outputs and action controls. Previous neuroimaging studies have used virtual simulation to identify the brain areas that are associated with various driving-related tasks. Few studies, however, have focused on the specific patterns of functional organization in the driver's brain. The aim of this study was to assess differences in the resting-state networks (RSNs) of the brains of drivers and nondrivers. Forty healthy subjects (20 licensed taxi drivers, 20 nondrivers) underwent an 8-min resting-state functional MRI acquisition. Using independent component analysis, three sensory (primary and extrastriate visual, sensorimotor) RSNs and four cognitive (anterior and posterior default mode, left and right frontoparietal) RSNs were retrieved from the data. We then examined the group differences in the intrinsic brain activity of each RSN and in the functional network connectivity (FNC) between the RSNs. We found that the drivers had reduced intrinsic brain activity in the visual RSNs and reduced FNC between the sensory RSNs compared with the nondrivers. The major finding of this study, however, was that the FNC between the cognitive and sensory RSNs became more positively or less negatively correlated in the drivers relative to that in the nondrivers. Notably, the strength of the FNC between the left frontoparietal and primary visual RSNs was positively correlated with the number of taxi-driving years. Our findings may provide new insight into how the brain supports driving behavior. © 2014 Wiley Periodicals, Inc.

  18. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI.

    PubMed

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.

  19. Methylene blue modulates functional connectivity in the human brain.

    PubMed

    Rodriguez, Pavel; Singh, Amar P; Malloy, Kristen E; Zhou, Wei; Barrett, Douglas W; Franklin, Crystal G; Altmeyer, Wilson B; Gutierrez, Juan E; Li, Jinqi; Heyl, Betty L; Lancaster, Jack L; Gonzalez-Lima, F; Duong, Timothy Q

    2016-03-10

    Methylene blue USP (MB) is a FDA-grandfathered drug used in clinics to treat methemoglobinemia, carbon monoxide poisoning and cyanide poisoning that has been shown to increase fMRI evoked blood oxygenation level dependent (BOLD) response in rodents. Low dose MB also has memory enhancing effect in rodents and humans. However, the neural correlates of the effects of MB in the human brain are unknown. We tested the hypothesis that a single low oral dose of MB modulates the functional connectivity of neural networks in healthy adults. Task-based and task-free fMRI were performed before and one hour after MB or placebo administration utilizing a randomized, double-blinded, placebo-controlled design. MB administration was associated with a reduction in cerebral blood flow in a task-related network during a visuomotor task, and with stronger resting-state functional connectivity in multiple regions linking perception and memory functions. These findings demonstrate for the first time that low-dose MB can modulate task-related and resting-state neural networks in the human brain. These neuroimaging findings support further investigations in healthy and disease populations.

  20. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis

    PubMed Central

    Dinoff, Adam; Herrmann, Nathan; Swardfager, Walter; Liu, Celina S.; Sherman, Chelsea; Chan, Sarah; Lanctôt, Krista L.

    2016-01-01

    Background The mechanisms through which physical activity supports healthy brain function remain to be elucidated. One hypothesis suggests that increased brain-derived neurotrophic factor (BDNF) mediates some cognitive and mood benefits. This meta-analysis sought to determine the effect of exercise training on resting concentrations of BDNF in peripheral blood. Methods MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after exercise interventions ≥ 2 weeks. Risk of bias was assessed using standardized criteria. Standardized mean differences (SMDs) were generated from random effects models. Risk of publication bias was assessed using funnel plots and Egger’s test. Potential sources of heterogeneity were explored in subgroup analyses. Results In 29 studies that met inclusion criteria, resting concentrations of peripheral blood BDNF were higher after intervention (SMD = 0.39, 95% CI: 0.17–0.60, p < 0.001). Subgroup analyses suggested a significant effect in aerobic (SMD = 0.66, 95% CI: 0.33–0.99, p < 0.001) but not resistance training (SMD = 0.07, 95% CI: -0.15–0.30, p = 0.52) interventions. No significant difference in effect was observed between males and females, nor in serum vs plasma. Conclusion Aerobic but not resistance training interventions increased resting BDNF concentrations in peripheral blood. PMID:27658238

  1. Computerized cognitive training and brain derived neurotrophic factor during bed rest: mechanisms to protect individual during acute stress

    PubMed Central

    Passaro, Angelina; Soavi, Cecilia; Sanz, Juana M.; Morieri, Mario L.; Dalla Nora, Edoardo; Kavcic, Voyko; Narici, Marco V.; Reggiani, Carlo; Biolo, Gianni; Zuliani, Giovanni; Lazzer, Stefano; Pišot, Rado

    2017-01-01

    Acute stress, as bed rest, was shown to increase plasma level of the neurotrophin brain-derived neurotrophic factor (BDNF) in older, but not in young adults. This increase might represent a protective mechanism towards acute insults in aging subjects. Since computerized cognitive training (CCT) is known to protect brain, herein we evaluated the effect of CCT during bed rest on BDNF, muscle mass, neuromuscular function and metabolic parameters. The subjects that underwent CCT did not show an increase of BDNF after bed rest, and showed an anti-insular modification pattern in metabolism. Neuromuscular function parameters, already shown to beneficiate from CCT, negatively correlated with BDNF in research participants undergoing CCT, while positively correlated in the control group. In conclusion, BDNF increase can be interpreted as a standardized protective mechanism taking place whenever an insult occurs; it gives low, but consistent preservation of neuromuscular function. CCT, acting as an external protective mechanism, seems to modify this standardized response, avoiding BDNF increase or possibly modifying its time course. Our results suggest the possibility of differential neuroprotective mechanisms among ill and healthy individuals, and the importance of timing in determining the effects of protective mechanisms. PMID:28161695

  2. Cross-hemispheric functional connectivity in the human fetal brain

    PubMed Central

    Thomason, ME; Dassanayake, MT; Shen, S; Katkuri, Y; Alexis, M; Anderson, AL; Yeo, L; Mody, S; Hernandez-Andrade, E; Hassan, SS; Studholme, C; Jeong, JW; Romero, R

    2013-01-01

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC. PMID:23427244

  3. Cross-hemispheric functional connectivity in the human fetal brain.

    PubMed

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  4. The nicotinic cholinergic system function in the human brain.

    PubMed

    Nees, Frauke

    2015-09-01

    Research on the nicotinic cholinergic system function in the brain was previously mainly derived from animal studies, yet, research in humans is growing. Up to date, findings allow significant advances on the understanding of nicotinic cholinergic effects on human cognition, emotion and behavior using a range of functional brain imaging approaches such as pharmacological functional magnetic resonance imaging or positron emission tomography. Studies provided insights across various mechanistic psychological domains using different tasks as well as at rest in both healthy individuals and patient populations, with so far partly mixed results reporting both enhancements and decrements of neural activity related to the nicotinic cholinergic system. Moreover, studies on the relation between brain structure and the nicotinic cholinergic system add important information in this context. The present review summarizes the current status of human brain imaging studies and presents the findings within a theoretical and clinical perspective as they may be useful not only for an advancement of the understanding of basic nicotinic cholinergic-related mechanisms, but also for the development and integration of psychological and pharmacological treatment approaches. Patterns of functional neuroanatomy and neural circuitry across various cognitive and emotional domains may be used as neuropsychological markers of mental disorders such as addiction, Alzheimer's disease, Parkinson disease or schizophrenia, where nicotinic cholinergic system changes are characteristic. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Altered baseline brain activity in children with bipolar disorder during mania state: a resting-state study

    PubMed Central

    Lu, Dali; Jiao, Qing; Zhong, Yuan; Gao, Weijia; Xiao, Qian; Liu, Xiaoqun; Lin, Xiaoling; Cheng, Wentao; Luo, Lanzhu; Xu, Chuanjian; Lu, Guangming; Su, Linyan

    2014-01-01

    Background Previous functional magnetic resonance imaging (fMRI) studies have shown abnormal functional connectivity in regions involved in emotion processing and regulation in pediatric bipolar disorder (PBD). Recent studies indicate, however, that task-dependent neural changes only represent a small fraction of the brain’s total activity. How the brain allocates the majority of its resources at resting state is still unknown. We used the amplitude of low-frequency fluctuation (ALFF) method of fMRI to explore the spontaneous neuronal activity in resting state in PBD patients. Methods Eighteen PBD patients during the mania phase and 18 sex-, age- and education-matched healthy subjects were enrolled in this study and all patients underwent fMRI scanning. The ALFF method was used to compare the resting-state spontaneous neuronal activity between groups. Correlation analysis was performed between the ALFF values and Young Mania Rating Scale scores. Results Compared with healthy controls, PBD patients presented increased ALFF in bilateral caudate and left pallidum as well as decreased ALFF in left precuneus, left superior parietal lobule, and bilateral inferior occipital gyrus. Additionally, ALFF values in left pallidum were positively correlated with Young Mania Rating Scale score in PBD. Conclusion The abnormal resting-state neuronal activities of the basal ganglia, parietal cortex, and occipital cortex may play an important role in the pathophysiology in PBD patients. PMID:24570585

  6. Cognition-Activated Low-Frequency Modulation of Light Absorption in Human Brain

    NASA Astrophysics Data System (ADS)

    Chance, B.; Zhuang, Z.; Unah, C.; Alter, C.; Lipton, L.

    1993-04-01

    Animal model studies indicate light-absorption changes of the exposed animal brain in response to visual stimulation. Here we report observations of red-light absorbancy changes, attributable to repetitive blood concentration changes in response to stimulation in the human brain frontal region by a cognitive process. These responses are observed as low-frequency recurrence of changes by Fourier transform analysis and are attributed to blood concentration change stimulated by the increased metabolic rate of brain tissue in cognitive function. A simple, portable dual wavelength spectrophotometer was attached noninvasively to the human forehead to measure the low frequency and power spectra of fluctuations of absorbancies attributed to variations of brain blood concentration in the frontal region. The responses are associated with brain activity in responses to problem solving of analogies presented visually that require an associative function in the frontal region. The method of subtraction of test - rest Fourier transforms minimizes the arterial pulse frequency contributions and identifies specific frequencies-for example, 0.8, 1.6, 1.8 Hz in 24 of 28 tests of nine individuals (85%). Tests in which no increased brain activity was elicited (rest - rest) showed small differences. It is concluded that low-frequency recurrences of brain activity linked to blood concentration increases can be detected in human subjects with an optical device of potentiality for simplified tests of cognitive function in the 0- to 3-Hz region and with modifications for wider band recordings in localized tissue volumes by time-resolved spectroscopy.

  7. Functional connectivity in amygdalar-sensory/(pre)motor networks at rest: new evidence from the Human Connectome Project.

    PubMed

    Toschi, Nicola; Duggento, Andrea; Passamonti, Luca

    2017-02-23

    The word 'e-motion' derives from the Latin word 'ex-moveo' which literally means 'moving away from something/somebody'. Emotions are thus fundamental to prime action and goal-directed behavior with obvious implications for individual's survival. However, the brain mechanisms underlying the interactions between emotional and motor cortical systems remain poorly understood. A recent diffusion tensor imaging study in humans has reported the existence of direct anatomical connections between the amygdala and sensory/(pre)motor cortices, corroborating an initial observation in animal research. Nevertheless, the functional significance of these amygdala-sensory/(pre)motor pathways remain uncertain. More specifically, it is currently unclear whether a distinct amygdala-sensory/(pre)motor circuit can be identified with resting-state functional magnetic resonance imaging (rs-fMRI). This is a key issue, as rs-fMRI offers an opportunity to simultaneously examine distinct neural circuits that underpin different cognitive, emotional and motor functions, while minimizing task-related performance confounds. We therefore tested the hypothesis that the amygdala and sensory/(pre)motor cortices could be identified as part of the same resting-state functional connectivity network. To this end, we examined independent component analysis results in a very large rs-fMRI data-set drawn from the Human Connectome Project (n = 820 participants, mean age: 28.5 years). To our knowledge, we report for the first time the existence of a distinct amygdala-sensory/(pre)motor functional network at rest. rs-fMRI studies are now warranted to examine potential abnormalities in this circuit in psychiatric and neurological diseases that may be associated with alterations in the amygdala-sensory/(pre)motor pathways (e.g. conversion disorders, impulse control disorders, amyotrophic lateral sclerosis and multiple sclerosis).

  8. Transcranial magnetic stimulation and the human brain

    NASA Astrophysics Data System (ADS)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  9. Functional network organization of the human brain

    PubMed Central

    Power, Jonathan D; Cohen, Alexander L; Nelson, Steven M; Wig, Gagan S; Barnes, Kelly Anne; Church, Jessica A; Vogel, Alecia C; Laumann, Timothy O; Miezin, Fran M; Schlaggar, Bradley L; Petersen, Steven E

    2011-01-01

    Summary Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. PMID:22099467

  10. Identifying major depressive disorder using Hurst exponent of resting-state brain networks.

    PubMed

    Wei, Maobin; Qin, Jiaolong; Yan, Rui; Li, Haoran; Yao, Zhijian; Lu, Qing

    2013-12-30

    Resting-state functional magnetic resonance imaging (fMRI) studies of major depressive disorder (MDD) have revealed abnormalities of functional connectivity within or among the resting-state networks. They provide valuable insight into the pathological mechanisms of depression. However, few reports were involved in the "long-term memory" of fMRI signals. This study was to investigate the "long-term memory" of resting-state networks by calculating their Hurst exponents for identifying depressed patients from healthy controls. Resting-state networks were extracted from fMRI data of 20 MDD and 20 matched healthy control subjects. The Hurst exponent of each network was estimated by Range Scale analysis for further discriminant analysis. 95% of depressed patients and 85% of healthy controls were correctly classified by Support Vector Machine with an accuracy of 90%. The right fronto-parietal and default mode network constructed a deficit network (lower memory and more irregularity in MDD), while the left fronto-parietal, ventromedial prefrontal and salience network belonged to an excess network (longer memory in MDD), suggesting these dysfunctional networks may be related to a portion of the complex of emotional and cognitive disturbances. The abnormal "long-term memory" of resting-state networks associated with depression may provide a new possibility towards the exploration of the pathophysiological mechanisms of MDD.

  11. Joint Spectral Decomposition for the Parcellation of the Human Cerebral Cortex Using Resting-State fMRI.

    PubMed

    Arslan, Salim; Parisot, Sarah; Rueckert, Daniel

    2015-01-01

    Identification of functional connections within the human brain has gained a lot of attention due to its potential to reveal neural mechanisms. In a whole-brain connectivity analysis, a critical stage is the computation of a set of network nodes that can effectively represent cortical regions. To address this problem, we present a robust cerebral cortex parcellation method based on spectral graph theory and resting-state fMRI correlations that generates reliable parcellations at the single-subject level and across multiple subjects. Our method models the cortical surface in each hemisphere as a mesh graph represented in the spectral domain with its eigenvectors. We connect cortices of different subjects with each other based on the similarity of their connectivity profiles and construct a multi-layer graph, which effectively captures the fundamental properties of the whole group as well as preserves individual subject characteristics. Spectral decomposition of this joint graph is used to cluster each cortical vertex into a subregion in order to obtain whole-brain parcellations. Using rs-fMRI data collected from 40 healthy subjects, we show that our proposed algorithm computes highly reproducible parcellations across different groups of subjects and at varying levels of detail with an average Dice score of 0.78, achieving up to 9% better reproducibility compared to existing approaches. We also report that our group-wise parcellations are functionally more consistent, thus, can be reliably used to represent the population in network analyses.

  12. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research.

    PubMed

    van Diessen, E; Numan, T; van Dellen, E; van der Kooi, A W; Boersma, M; Hofman, D; van Lutterveld, R; van Dijk, B W; van Straaten, E C W; Hillebrand, A; Stam, C J

    2015-08-01

    Electroencephalogram (EEG) and magnetoencephalogram (MEG) recordings during resting state are increasingly used to study functional connectivity and network topology. Moreover, the number of different analysis approaches is expanding along with the rising interest in this research area. The comparison between studies can therefore be challenging and discussion is needed to underscore methodological opportunities and pitfalls in functional connectivity and network studies. In this overview we discuss methodological considerations throughout the analysis pipeline of recording and analyzing resting state EEG and MEG data, with a focus on functional connectivity and network analysis. We summarize current common practices with their advantages and disadvantages; provide practical tips, and suggestions for future research. Finally, we discuss how methodological choices in resting state research can affect the construction of functional networks. When taking advantage of current best practices and avoid the most obvious pitfalls, functional connectivity and network studies can be improved and enable a more accurate interpretation and comparison between studies.

  13. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.

    PubMed

    Mark, Clarisse I; Mazerolle, Erin L; Chen, J Jean

    2015-08-01

    The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. © 2015 Wiley Periodicals, Inc.

  14. Low-frequency hippocampal–cortical activity drives brain-wide resting-state functional MRI connectivity

    PubMed Central

    Chan, Russell W.; Leong, Alex T. L.; Ho, Leon C.; Gao, Patrick P.; Wong, Eddie C.; Dong, Celia M.; Wang, Xunda; He, Jufang; Chan, Ying-Shing; Lim, Lee Wei; Wu, Ed X.

    2017-01-01

    The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal–cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal–cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal–cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing. PMID:28760982

  15. Interoperable atlases of the human brain.