Bellofiore, Alessandro; Dinges, Eric; Naeije, Robert; Mkrdichian, Hamorabi; Beussink-Nelson, Lauren; Bailey, Melissa; Cuttica, Michael J; Sweis, Ranya; Runo, James R; Keevil, Jon G; Francois, Christopher J; Shah, Sanjiv J; Chesler, Naomi C
2017-03-01
Inadequate right ventricular (RV) and pulmonary arterial (PA) functional responses to exercise are important yet poorly understood features of pulmonary arterial hypertension (PAH). This study combined invasive catheterisation with echocardiography to assess RV afterload, RV function and ventricular-vascular coupling in subjects with PAH. Twenty-six subjects with PAH were prospectively recruited to undergo right heart catheterisation and Doppler echocardiography at rest and during incremental exercise, and cardiac MRI at rest. Measurements at rest included basic haemodynamics, RV function and coupling efficiency (η). Measurements during incremental exercise included pulmonary vascular resistance (Z 0 ), characteristic impedance (Z C , a measure of proximal PA stiffness) and proximal and distal PA compliance (C PA ). In patients with PAH, the proximal PAs were significantly stiffer at maximum exercise (Z C =2.31±0.38 vs 1.33±0.15 WU×m 2 at rest; p=0.003) and PA compliance was decreased (C PA =0.88±0.10 vs 1.32±0.17 mL/mm Hg/m 2 at rest; p=0.0002). Z 0 did not change with exercise. As a result, the resistance-compliance (RC) time decreased with exercise (0.67±0.05 vs 1.00±0.07 s at rest; p<10 -6 ). When patients were grouped according to resting coupling efficiency, those with poorer η exhibited stiffer proximal PAs at rest, a lower maximum exercise level, and more limited C PA reduction at maximum exercise. In PAH, exercise causes proximal and distal PA stiffening, which combined with preserved Z 0 results in decreased RC time with exercise. Stiff PAs at rest may also contribute to poor haemodynamic coupling, reflecting reduced pulmonary vascular reserve that contributes to limit the maximum exercise level tolerated. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Effect of furosemide on pulmonary blood flow distribution in resting and exercising horses
NASA Technical Reports Server (NTRS)
Erickson, H. H.; Bernard, S. L.; Glenny, R. W.; Fedde, M. R.; Polissar, N. L.; Basaraba, R. J.; Walther, S. M.; Gaughan, E. M.; McMurphy, R.; Hlastala, M. P.
1999-01-01
We determined the spatial distribution of pulmonary blood flow (PBF) with 15-micron fluorescent-labeled microspheres during rest and exercise in five Thoroughbred horses before and 4 h after furosemide administration (0.5 mg/kg iv). The primary finding of this study was that PBF redistribution occurred from rest to exercise, both with and without furosemide. However, there was less blood flow to the dorsal portion of the lung during exercise postfurosemide compared with prefurosemide. Furosemide did alter the resting perfusion distribution by increasing the flow to the ventral regions of the lung; however, that increase in flow was abated with exercise. Other findings included 1) unchanged gas exchange and cardiac output during rest and exercise after vs. before furosemide, 2) a decrease in pulmonary arterial pressure after furosemide, 3) an increase in the slope of the relationship of PBF vs. vertical height up the lung during exercise, both with and without furosemide, and 4) a decrease in blood flow to the dorsal region of the lung at rest after furosemide. Pulmonary perfusion variability within the lung may be a function of the anatomy of the pulmonary vessels that results in a predominantly fixed spatial pattern of flow distribution.
Do patients with mild to moderate psoriasis really have a sedentary lifestyle?
Demirel, Reha; Genc, Abdurrahman; Ucok, Kagan; Kacar, Seval Dogruk; Ozuguz, Pinar; Toktas, Muhsin; Sener, Umit; Karabacak, Hatice; Karaca, Semsettin
2013-09-01
The aim of this study was to compare aerobic exercise capacity, daily physical activity, pulmonary functions, resting metabolic rate, and body composition parameters in patients with psoriasis and healthy controls. A total of 60 participants (30 [15 men, 15 women] patients with psoriasis, and 30 [15 men, 15 women] healthy controls) ranging in age from 22-57 were included in the study. Maximal aerobic capacity was determined by Astrand exercise protocol. Daily physical activity was measured with an accelerometer. Resting metabolic rate was determined with an indirect calorimeter. Pulmonary function tests were performed with a portable spirometer. Body composition was established with a bioelectric impedance analysis system. Skinfold thicknesses and body circumference measurements were carried out. Short Form 36 quality of life questionnaire was applied to all participants. In both genders, daily physical activity parameters were found to be higher in the psoriasis group compared to the control. Maximal aerobic capacity, resting metabolic rate, pulmonary function tests, body fatness, body fat distributions, and quality of life were not statistically different between patients with psoriasis and controls in males and females. We suggest that patients with psoriasis who do not have psoriatic arthritis or severe psoriasis are well in performing daily physical activities. In addition, we suggest that this lifestyle helped to prevent impairments of body fatness, body fat distributions, resting metabolic rate, pulmonary functions, and quality of life in patients with mild to moderate psoriasis. © 2013 The International Society of Dermatology.
Resting right ventricular function is associated with exercise performance in PAH, but not in CTEPH.
Rehman, Michaela Beatrice; Howard, Luke S; Christiaens, Luc P; Gill, Dipender; Gibbs, J Simon R; Nihoyannopoulos, Petros
2018-02-01
To assess whether resting right ventricular (RV) function assessed by Global RV longitudinal strain (RVLS) and RV fractional area change (FAC) is associated with exercise performance in pulmonary arterial hypertension (PAH) and in chronic thromboembolic pulmonary hypertension (CTEPH). We prospectively recruited 46 consecutive patients with PAH and 42 patients with CTEPH who were referred for cardio-pulmonary exercise testing (CPET) and transthoracic echocardiography. Resting RV systolic function was assessed with RVLS and FAC. CPET parameters analyzed were percentage of predicted maximal oxygen consumption (VO2max) and the slope of ventilation against carbon dioxide production (VE/VCO2). Spearman correlation was performed between echocardiographic measurements and CPET measurements. In PAH, spearman correlation found an association between RVLS and VE/VCO2 (coefficient = 0.556, P < 0.001) and percentage predicted VO2max (coefficient = -0.393, P = 0.007), while FAC was associated with VE/VCO2 (coefficient = -0.481, P = 0.001) and percentage of predicted VO2max (coefficient = 0.356, P = 0.015). Conversely, in CTEPH, resting RV function was neither associated with percentage of predicted VO2max nor with VE/VCO2, whether assessed by RVLS or FAC. In PAH, resting RV function as assessed by FAC or RVLS is associated with exercise performance and could therefore make a significant contribution to non-invasive assessment in PAH patients. This association is not found in CTEPH, suggesting a disconnection between resting RV function and exercise performance, with implications for the use of exercise measurements as a prognostic marker and clinical/research endpoint in CTEPH. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Computer-Based Techniques for Collection of Pulmonary Function Variables during Rest and Exercise.
1991-03-01
routinely Included in experimental protocols involving hyper- and hypobaric excursions. Unfortunately, the full potential of those tests Is often not...for a Pulmonary Function data acquisition system that has proven useful in the hyperbaric research laboratory. It illustrates how computers can
Right heart function during simulated altitude in patients with pulmonary arterial hypertension
Seccombe, Leigh M; Chow, Vincent; Zhao, Wei; Lau, Edmund M T; Rogers, Peter G; Ng, Austin C C; Veitch, Elizabeth M; Peters, Matthew J; Kritharides, Leonard
2017-01-01
Objective Patients with pulmonary arterial hypertension (PAH) are often recommended supplemental oxygen for altitude travel due to the possible deleterious effects of hypoxia on pulmonary haemodynamics and right heart function. This includes commercial aircraft travel; however, the direct effects and potential risks are unknown. Methods Doppler echocardiography and gas exchange measures were investigated in group 1 patients with PAH and healthy patients at rest breathing room air and while breathing 15.1% oxygen, at rest for 20 min and during mild exertion. Results The 14 patients with PAH studied were clinically stable on PAH-specific therapy, with functional class II (n=11) and III (n=3) symptoms when tested. Measures of right ventricular size and function were significantly different in the PAH group at baseline as compared to 7 healthy patients (p<0.04). There was no evidence of progressive right ventricular deterioration during hypoxia at rest or under exertion. Pulmonary arterial systolic pressure (PASP) increased in both groups during hypoxia (p<0.01). PASP in hypoxia correlated strongly with baseline PASP (p<0.01). Pressure of arterial oxygen correlated with PASP in hypoxia (p<0.03) but not at baseline, with three patients with PAH experiencing significant desaturation. The duration and extent of hypoxia in this study was tolerated well despite a mild increase in symptoms of breathlessness (p<0.01). Conclusions Non-invasive measures of right heart function in group 1 patients with PAH on vasodilator treatment demonstrated a predictable rise in PASP during short-term simulated hypoxia that was not associated with a deterioration in right heart function. PMID:28123765
Breathing pattern and breathlessness in idiopathic pulmonary fibrosis: An observational study.
Olukogbon, Kasope L; Thomas, Paul; Colasanti, Ricardo; Hope-Gill, Ben; Williams, Edgar Mark
2016-02-01
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive decline in lung function and increasing dyspnoea. The aim of this study was to investigate the relationship among IPF, pulmonary function, resting tidal breathing patterns and level of breathlessness. Thirty-one participants with IPF and 17 matched healthy controls underwent lung function testing, followed by a 2-min period of resting tidal breathing. The IPF cohort was stratified according to disease severity, based on their forced vital capacity and diffusion capacity for carbon monoxide. In comparison to the healthy controls, the IPF cohort showed a higher tidal volume, VT , of 0.22 L (P = 0.026) and a raised minute ventilation in the severest IPF group, while no differences in the timing of inspiration or expiration were observed. In the IPF cohort, the ratio of VT to forced vital capacity was around 15% higher. These changes corresponded with an increase in the self-reported sensation of breathlessness. Those with IPF increased their depth of breathing with worsening disease severity, with IPF-induced changes in pulmonary function and breathlessness associated with an altered tidal breathing pattern. © 2015 Asian Pacific Society of Respirology.
Respiratory clearance of 99mTc-DTPA and pulmonary involvement in sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dusser, D.J.; Collignon, M.A.; Stanislas-Leguern, G.
1986-09-01
To investigate the relationships between the respiratory epithelial clearance of micronic aerosolized /sup 99m/Tc-DTPA (RC-DTPA) and pulmonary function, serum angiotensin-converting enzyme (SACE), and lymphocytic alveolitis in patients with sarcoidosis, RC-DTPA was measured in 49 nonsmokers with pulmonary sarcoidosis and 38 normal nonsmokers. Pulmonary involvement was evaluated on chest roentgenograms (type O = normal, type I = hilar adenopathies, type II = hilar adenopathies associated with parenchymal shadows, type III = parenchymal shadows without adenopathy) and by pulmonary function tests. Serum angiotensin-converting enzyme was determined, and a bronchoalveolar lavage was performed for alveolar lymphocyte differential counting (Ly%). RC-DTPA was increased (greatermore » than or equal to 1.96%/min) in 12 of 31 patients with type II or III involvement but was normal in all 18 patients with type O or I involvement (p = 0.002). Patients with increased RC-DTPA had low FVC, TLC, FEV1, and resting Pao2 (p less than 0.05); resting and exercise AaPo2 were increased (p less than 0.05), but RC-DTPA correlated negatively with FEV1 (p less than 0.01), Pao2 at rest (p less than 0.005), and DLCO (p less than 0.05) and positively with resting and exercise AaPO2 (p less than 0.01). In patients with increased RC-DTPA (42 +/- 17%), Ly% did not differ from Ly% in patients with normal RC-DTPA (34 +/- 16%). SACE was increased in patients with increased RC-DTPA (56 +/- 26 U/ml versus 38 +/- 16 U/ml; p = 0.007) and correlated positively with RC-DTPA (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)« less
Prognostic value of exercise pulmonary haemodynamics in pulmonary arterial hypertension.
Chaouat, Ari; Sitbon, Olivier; Mercy, Magalie; Ponçot-Mongars, Raphaëlle; Provencher, Steeve; Guillaumot, Anne; Gomez, Emmanuel; Selton-Suty, Christine; Malvestio, Pascale; Regent, Denis; Paris, Christophe; Hervé, Philippe; Chabot, François
2014-09-01
The aim of the study was to investigate the prognostic value of right heart catheterisation variables measured during exercise. 55 incident patients with idiopathic, familial or anorexigen-associated pulmonary arterial hypertension (PAH) underwent right heart catheterisation at rest and during exercise and 6-min walk testing before PAH treatment initiation. Patients were treated according to recommendations within the next 2 weeks. Right heart catheterisation was repeated 3-5 months into the PAH treatment in 20 patients. Exercise cardiac index decreased gradually as New York Heart Association (NYHA) functional class increased whereas cardiac index at rest was not significantly different across NYHA groups. Baseline 6-min walk distance correlated significantly with exercise and change in cardiac index from rest to exercise (r=0.414 and r=0.481, respectively; p<0.01). Change in 6-min walk distance from baseline to 3-5 months under PAH treatment was highly correlated with change in exercise cardiac index (r=0.746, p<0.001). The most significant baseline covariates associated with survival were change in systolic pulmonary artery pressure from rest to exercise and exercise cardiac index (hazard ratio 0.56 (95% CI 0.37-0.86) and 0.14 (95% CI 0.05-0.43), respectively). Change in pulmonary haemodynamics during exercise is an important tool for assessing disease severity and may help devise optimal treat-to-target strategies. ©ERS 2014.
Domingo, Enric; Aguilar, Rio; López-Meseguer, Manuel; Teixidó, Gisela; Vazquez, Manuel; Roman, Antonio
2009-01-01
Pulmonary arterial hypertension (PAH) is a rare fatal disease defined as a sustained elevation of pulmonary arterial pressure to more than 25 mmHg at rest, with a mean pulmonary-capillary wedge pressure and left ventricular enddiastolic pressure of less than 15 mmHg at rest. Histopathology of PAH is founded on structural modifications on the vascular wall of small pulmonary arteries characterized by thickening of all its layers. These changes, named as vascular remodelling, include vascular proliferation, fibrosis, and vessel obstruction. In clinical practice the diagnosis of PAH relies on measurements of pulmonary vascular pressure and cardiac output, and calculation of pulmonary vascular resistances. Direct evaluation of pulmonary vascular structure is not routinely performed in pulmonary hypertension since current imaging techniques are limited and since little is known about the relationship between structural changes and functional characteristics of the pulmonary vasculature. Intravascular ultrasound studies in patients with pulmonary hypertension have shown a thicker middle layer, increased wall-thickness ratio and diminished pulsatility than in control patients. Optical Coherence Tomography, a new high resolution imaging modality that has proven its superiority over intravascular ultrasound (IVUS) for the detection and characterization of coronary atherosclerotic plaque composition, may potentially be a useful technique for the in vivo study of the pulmonary arterial wall. In addition current progress in Echo Doppler technique will quantify right ventricular function with parameters independent of loading conditions and not requiring volumetric approximations of the complex geometry of the right ventricle. This would allow the in vivo study of right ventricular and pulmonary artery remodelling in PAH. PMID:19452037
Effect of lung volume reduction surgery on resting pulmonary hemodynamics in severe emphysema.
Criner, Gerard J; Scharf, Steven M; Falk, Jeremy A; Gaughan, John P; Sternberg, Alice L; Patel, Namrata B; Fessler, Henry E; Minai, Omar A; Fishman, Alfred P
2007-08-01
To determine the effect of medical treatment versus lung volume reduction surgery (LVRS) on pulmonary hemodynamics. Three clinical centers of the National Emphysema Treatment Trial (NETT) screened patients for additional inclusion into a cardiovascular (CV) substudy. Demographics were determined, and lung function testing, six-minute-walk distance, and maximum cardiopulmonary exercise testing were done at baseline and 6 months after medical therapy or LVRS. CV substudy patients underwent right heart catheterization at rest prerandomization (baseline) and 6 months after treatment. A total of 110 of the 163 patients evaluated for the CV substudy were randomized in NETT (53 were ineligible), 54 to medical treatment and 56 to LVRS. Fifty-five of these patients had both baseline and repeat right heart catheterization 6 months postrandomization. Baseline demographics and lung function data revealed CV substudy patients to be similar to the remaining 1,163 randomized NETT patients in terms of age, sex, FEV(1), residual volume, diffusion capacity of carbon monoxide, Pa(O(2)), Pa(CO(2)), and six-minute-walk distance. CV substudy patients had moderate pulmonary hypertension at rest (Ppa, 24.8 +/- 4.9 mm Hg); baseline hemodynamic measurements were similar across groups. Changes from baseline pressures to 6 months post-treatment were similar across treatment groups, except for a smaller change in pulmonary capillary wedge pressure at end-expiration post-LVRS compared with medical treatment (-1.8 vs. 3.5 mm Hg, p = 0.04). In comparison to medical therapy, LVRS was not associated with an increase in pulmonary artery pressures.
Ehlken, Nicola; Lichtblau, Mona; Klose, Hans; Weidenhammer, Johannes; Fischer, Christine; Nechwatal, Robert; Uiker, Sören; Halank, Michael; Olsson, Karen; Seeger, Werner; Gall, Henning; Rosenkranz, Stephan; Wilkens, Heinrike; Mertens, Dirk; Seyfarth, Hans-Jürgen; Opitz, Christian; Ulrich, Silvia; Egenlauf, Benjamin; Grünig, Ekkehard
2016-01-01
Abstract Aims The impact of exercise training on the right heart and pulmonary circulation has not yet been invasively assessed in patients with pulmonary hypertension (PH) and right heart failure. This prospective randomized controlled study investigates the effects of exercise training on peak VO2/kg, haemodynamics, and further clinically relevant parameters in PH patients. Methods and results Eighty-seven patients with pulmonary arterial hypertension and inoperable chronic thrombo-embolic PH (54% female, 56 ± 15 years, 84% World Health Organization functional class III/IV, 53% combination therapy) on stable disease-targeted medication were randomly assigned to a control and training group. Medication remained unchanged during the study period. Non-invasive assessments and right heart catheterization at rest and during exercise were performed at baseline and after 15 weeks. Primary endpoint was the change in peak VO2/kg. Secondary endpoints included changes in haemodynamics. For missing data, multiple imputation and responder analyses were performed. The study results showed a significant improvement of peak VO2/kg in the training group (difference from baseline to 15 weeks: training +3.1 ± 2.7 mL/min/kg equals +24.3% vs. control −0.2 ± 2.3 mL/min/kg equals +0.9%, P < 0.001). Cardiac index (CI) at rest and during exercise, mean pulmonary arterial pressure, pulmonary vascular resistance, 6 min walking distance, quality of life, and exercise capacity significantly improved by exercise training. Conclusion Low-dose exercise training at 4–7 days/week significantly improved peak VO2/kg, haemodynamics, and further clinically relevant parameters. The improvements of CI at rest and during exercise indicate that exercise training may improve the right ventricular function. Further, large multicentre trials are necessary to confirm these results. PMID:26231884
Cardiovascular function in pulmonary emphysema.
Visca, Dina; Aiello, Marina; Chetta, Alfredo
2013-01-01
Chronic obstructive pulmonary disease (COPD) and chronic cardiovascular disease, such as coronary artery disease, congestive heart failure, and cardiac arrhythmias, have a strong influence on each other, and systemic inflammation has been considered as the main linkage between them. On the other hand, airflow limitation may markedly affect lung mechanics in terms of static and dynamic hyperinflation, especially in pulmonary emphysema, and they can in turn influence cardiac performance as well. Skeletal mass depletion, which is a common feature in COPD especially in pulmonary emphysema patients, may have also a role in cardiovascular function of these patients, irrespective of lung damage. We reviewed the emerging evidence that highlights the role of lung mechanics and muscle mass impairment on ventricular volumes, stroke volume, and stroke work at rest and on exercise in the presence of pulmonary emphysema. Patients with emphysema may differ among COPD population even in terms of cardiovascular function.
Andersen, Mads J; Hwang, Seok-Jae; Kane, Garvan C; Melenovsky, Vojtech; Olson, Thomas P; Fetterly, Kenneth; Borlaug, Barry A
2015-05-01
Pulmonary hypertension and right ventricular (RV) dysfunction are common in patients with advanced heart failure with preserved ejection fraction (HFpEF), yet their underlying mechanisms remain poorly understood. We sought to examine RV-pulmonary artery (PA) functional reserve responses and RV-PA coupling at rest and during β-adrenergic stimulation in subjects with earlier stage HFpEF. In a prospective trial, subjects with HFpEF (n=39) and controls (n=18) underwent comprehensive invasive and noninvasive hemodynamic assessment using high fidelity micromanometer catheters, echocardiography, and expired gas analysis at rest and during dobutamine infusion. HFpEF subjects displayed similar RV structure but significantly impaired RV systolic (lower RV dP/dtmax/IP and s') and diastolic function (higher RV τ) coupled with more severe pulmonary vascular disease, manifest by higher PA pressures, higher PA resistance, and lower PA compliance compared with controls. Dobutamine infusion caused greater pulmonary vasodilation in HFpEF compared with controls, with enhanced reductions in PA resistance, greater increase in PA compliance, and a more negative slope in the PA pressure-flow relationship when compared with controls (all P<0.001). RV-PA coupling analysis revealed that dobutamine improved RV ejection in HFpEF subjects through afterload reduction alone, rather than through enhanced contractility, indicating RV systolic reserve dysfunction. Pulmonary hypertension in early stage HFpEF is related to partially reversible pulmonary vasoconstriction coupled with RV systolic and diastolic dysfunction, even in the absence of RV structural remodeling. Pulmonary vascular tone is more favorably responsive to β-adrenergic stimulation in HFpEF than controls, suggesting a potential role for β-agonists in the treatment of patients with HFpEF and pulmonary hypertension. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01418248. © 2015 American Heart Association, Inc.
No effect of artificial gravity on lung function with exercise training during head-down bed rest
NASA Astrophysics Data System (ADS)
Su, Longxiang; Guo, Yinghua; Wang, Yajuan; Wang, Delong; Liu, Changting
2016-04-01
The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.
Maor, Elad; Grossman, Yoni; Balmor, Ronen Gingy; Segel, Michael; Fefer, Paul; Ben-Zekry, Sagit; Buber, Jonathan; DiSegni, Elio; Guetta, Victor; Ben-Dov, Issahar; Segev, Amit
2015-02-01
Heart failure with preserved ejection fraction can lead to pulmonary hypertension. The aim of the present study was to evaluate the role of exercise during right heart catheterization in the unmasking of diastolic dysfunction. Between 2004 and 2012, 200 symptomatic patients with exertional dyspnoea, preserved left ventricular systolic function and suspected pulmonary hypertension, underwent right heart catheterization. Included in the study were 63 patients with resting pulmonary arterial wedge pressure (PAWP) ≤15 mmHg. Patients were divided to three tertiles based on their peak exercise PAWP. Mean age was 60 ± 20 years and 29% were males. Mean pulmonary arterial pressure was 31 ± 14 mmHg at rest and 42 ± 18 mmHg upon exercise. Mean change in PAWP between rest and exercise was 0.0 ± 4.3, 4.6 ± 2.4, and 16.6 ± 7.1 mmHg in the lower, middle, and upper tertiles, respectively (P < 0.001). Higher exercise PAWP tertiles were associated with reduced pulmonary vascular resistance (8.3 ± 6.7, 2.9 ± 2.7, and 5.8 ± 4.6 Woods units, respectively; P = 0.004). A multivariate linear regression model demonstrated that each 5 kg/m(2) increase in body mass index was associated with 2.5 ± 1.0 mmHg increase in exercise PAWP (P = 0.017). A multivariate binary logistic model showed that subjects with borderline PAWP at rest (12-15 mmHg) were 4.5 times more likely to be in the upper tertile of exercise PAWP (P = 0.011). In symptomatic patients with pulmonary hypertension, preserved left ventricular ejection fraction and PAWP ≤15 mmHg, exercise during right heart catheterization may unmask diastolic dysfunction. This is especially true for obese patients and patients with borderline resting PAWP. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
Lewis, Gregory D; Ngo, Debby; Hemnes, Anna R; Farrell, Laurie; Domos, Carly; Pappagianopoulos, Paul P; Dhakal, Bishnu P; Souza, Amanda; Shi, Xu; Pugh, Meredith E; Beloiartsev, Arkadi; Sinha, Sumita; Clish, Clary B; Gerszten, Robert E
2016-01-19
Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements. This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction. We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30). In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension. Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Kamijima, Ryo; Suzuki, Kengo; Izumo, Masaki; Kuwata, Shingo; Mizukoshi, Kei; Takai, Manabu; Kou, Seisyou; Hayashi, Akio; Kida, Keisuke; Harada, Tomoo; Akashi, Yoshihiro J.
2017-01-01
Presence of exercise-induced pulmonary hypertension (EIPH) in asymptomatic degenerative mitral regurgitation (DMR) determines prognosis. This study aimed to elucidate the mechanism and predictors of EIPH in asymptomatic DMR. Ninety-one consecutive asymptomatic patients with DMR who underwent exercise stress echocardiography were prospectively included. We obtained various conventional echocardiographic parameters at rest and during peak exercise, as well as left atrial (LA) function at rest using 2-dimensional speckle-tracking analysis. The 25 patients (33.3%) with EIPH were significantly older and had a greater ratio of mitral peak velocity of early filling to early diastolic mitral annular velocity during peak exercise than those without EIPH. LA strain (LAS)-s and LAS-e, indices of LA reservoir and conduit function, respectively, were significantly lower in those with EIPH than in those without EIPH. Multivariate analysis indicated that LAS-s was the only resting echocardiographic parameter that independently predicted EIPH, with a cut-off value of 26.9%. Furthermore, Kaplan-Meier curve analysis showed that symptom-free survival was markedly lower among those with reduced LAS-s. In conclusion, decreased LA reservoir function contributes to EIPH, and LAS-s at rest is a useful indicator for predicting EIPH in asymptomatic patients with DMR. PMID:28071674
Flow-related Right Ventricular - Pulmonary Arterial Pressure Gradients during Exercise.
Wright, Stephen P; Opotowsky, Alexander R; Buchan, Tayler A; Esfandiari, Sam; Granton, John T; Goodman, Jack M; Mak, Susanna
2018-06-06
The assumption of equivalence between right ventricular and pulmonary arterial systolic pressure is fundamental to several assessments of right ventricular or pulmonary vascular hemodynamic function. Our aims were to 1) determine whether systolic pressure gradients develop across the right ventricular outflow tract in healthy adults during exercise, 2) examine the potential correlates of such gradients, and 3) consider the effect of such gradients on calculated indices of right ventricular function. Healthy untrained and endurance-trained adult volunteers were studied using right-heart catheterization at rest and during submaximal cycle ergometry. Right ventricular and pulmonary artery pressures were simultaneously transduced, and cardiac output was determined by thermodilution. Systolic pressures, peak and mean gradients, and indices of chamber, vascular, and valve function were analyzed offline. Summary data are reported as mean ± standard deviation or median [interquartile range]. No significant right ventricular outflow tract gradients were observed at rest (mean gradient = 4 [3-5] mmHg), and calculated effective orifice area was 3.6±1.0 cm2. Right ventricular systolic pressure increases during exercise were greater than that of pulmonary artery systolic pressure. Accordingly, mean gradients developed during light exercise (8 [7-9] mmHg) and increased during moderate exercise (12 [9-14] mmHg, p < 0.001). The magnitude of the mean gradient was linearly related to cardiac output (r2 = 0.70, p < 0.001). In healthy adults without pulmonic stenosis, systolic pressure gradients develop during exercise, and the magnitude is related to blood flow rate.
Pulmonary function in men after short-term exposure to ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazucha, M.; Silverman, F.; Parent, C.
1973-01-01
Volunteers were exposed to 0.37 or 0.75 ppm ozone for 2 hr in environmental chamber while doing light exercise and resting intermittently. Slight discomfort resulted: dry throat, cough, chest tightness. Reduction in flow rates, FVC, and FEV at 1 and 2 hr was noted. Thus, ozone reached terminal bronchioles and impaired their function. Reduction in pulmonary measurements of maximum flow results were probably due to decreased lung elastic recoil, increased airway resistence, and small airway obstruction.
Mohsenifar, Z; Tashkin, D P; Levy, S E; Bjerke, R D; Clements, P J; Furst, D
1981-05-01
Wasted ventilation fraction (Vd/Vt) normally declines substantially during exercise in persons without lung disease. Failure of Vd/Vt to decrease during exercise has been reported to be one of the earliest abnormalities in patients with dyspnea caused by pulmonary vaso-occlusive disease, suggesting that measurement of Vd/Vt at rest and during exercise are useful in the diagnosis of pulmonary vascular disorders. We studied pulmonary hemodynamic and Vd/Vt responses to exercise in 11 patients in the supine position with suspected pulmonary vascular involvement caused by progressive systemic sclerosis, systemic lupus erythematosus, or recurrent pulmonary emboli, 10 of whom had dyspnea at rest and/or on exertion. In contrast to previous reports of no change or an increase in Vd/Vt during exercise in patients with pulmonary vascular disease, we found Vd/Vt to decrease significantly during exercise in 8 of 9 patients in whom mean pulmonary artery pressures were abnormally elevated at rest and/or during exercise. Our findings suggest that normal responses of Vd/Vt to exercise do not exclude hemodynamically significant pulmonary vaso-occlusive disease.
NASA Technical Reports Server (NTRS)
Clark, J. M.; Gelfand, R.; Flores, N. D.; Lambertsen, C. J.; Pisarello, J. B.
1987-01-01
Oxygen effects on pulmonary function were measured in normal, resting men who breathed oxygen continuously at 3.0, 2.5, 2.0, and 1.5 ATA to predefined limits of CNS, cardiac, or pulmonary tolerance. Rates of pulmonary symptom intensification and decrease in vital capacity (VC) increased progressively with elevation of inspired oxygen pressure. Although VC decrements occurred concurrently with symptoms, the lung volume changes became prominent when symptoms were still mild. The observed effects were consistent with the interpretation that small airway function is impaired more selectively by oxygen exposure at 3.0 and 2.5 ATA than by exposure at 2.0 and 1.5 ATA. Despite similar VC changes after oxygen exposure at 2.0 ATA for nearly 10 hr and exposure at 1.5 ATA for almost 18 hr, the 2.0 ATA exposure caused greater impairment of pulmonary function and required a longer recovery period.
Koubaa, Abdessalem; Triki, Moez; Trabelsi, Hajer; Masmoudi, Liwa; Zeghal, Khaled N; Sahnoun, Zouhair; Hakim, Ahmed
2015-01-01
Introduction Pulmonary function is compromised in most smokers. Yet it is unknown whether exercise training improves pulmonary function and aerobic capacity in cigarette and hookah smokers and whether these smokers respond in a similar way as do non-smokers. Aim To evaluate the effects of an interval exercise training program on pulmonary function and aerobic capacity in cigarette and hookah smokers. Methods Twelve cigarette smokers, 10 hookah smokers, and 11 non-smokers participated in our exercise program. All subjects performed 30 min of interval exercise (2 min of work followed by 1 min of rest) three times a week for 12 weeks at an intensity estimated at 70% of the subject's maximum aerobic capacity ([Formula: see text]). Pulmonary function was measured using spirometry, and maximum aerobic capacity was assessed by maximal exercise testing on a treadmill before the beginning and at the end of the exercise training program. Results As expected, prior to the exercise intervention, the cigarette and hookah smokers had significantly lower pulmonary function than the non-smokers. The 12-week exercise training program did not significantly affect lung function as assessed by spirometry in the non-smoker group. However, it significantly increased both forced expiratory volume in 1 second and peak expiratory flow (PEF) in the cigarette smoker group, and PEF in the hookah smoker group. Our training program had its most notable impact on the cardiopulmonary system of smokers. In the non-smoker and cigarette smoker groups, the training program significantly improved [Formula: see text] (4.4 and 4.7%, respectively), v [Formula: see text] (6.7 and 5.6%, respectively), and the recovery index (7.9 and 10.5%, respectively). Conclusions After 12 weeks of interval training program, the increase of [Formula: see text] and the decrease of recovery index and resting heart rate in the smoking subjects indicated better exercise tolerance. Although the intermittent training program altered pulmonary function only partially, both aerobic capacity and life quality were improved. Intermittent training should be advised in the clinical setting for subjects with adverse health behaviors.
Koubaa, Abdessalem; Triki, Moez; Trabelsi, Hajer; Masmoudi, Liwa; Zeghal, Khaled N; Sahnoun, Zouhair; Hakim, Ahmed
2015-01-01
Pulmonary function is compromised in most smokers. Yet it is unknown whether exercise training improves pulmonary function and aerobic capacity in cigarette and hookah smokers and whether these smokers respond in a similar way as do non-smokers. To evaluate the effects of an interval exercise training program on pulmonary function and aerobic capacity in cigarette and hookah smokers. Twelve cigarette smokers, 10 hookah smokers, and 11 non-smokers participated in our exercise program. All subjects performed 30 min of interval exercise (2 min of work followed by 1 min of rest) three times a week for 12 weeks at an intensity estimated at 70% of the subject's maximum aerobic capacity (VO2max). Pulmonary function was measured using spirometry, and maximum aerobic capacity was assessed by maximal exercise testing on a treadmill before the beginning and at the end of the exercise training program. As expected, prior to the exercise intervention, the cigarette and hookah smokers had significantly lower pulmonary function than the non-smokers. The 12-week exercise training program did not significantly affect lung function as assessed by spirometry in the non-smoker group. However, it significantly increased both forced expiratory volume in 1 second and peak expiratory flow (PEF) in the cigarette smoker group, and PEF in the hookah smoker group. Our training program had its most notable impact on the cardiopulmonary system of smokers. In the non-smoker and cigarette smoker groups, the training program significantly improved VO2max (4.4 and 4.7%, respectively), v VO2max (6.7 and 5.6%, respectively), and the recovery index (7.9 and 10.5%, respectively). After 12 weeks of interval training program, the increase of VO2max and the decrease of recovery index and resting heart rate in the smoking subjects indicated better exercise tolerance. Although the intermittent training program altered pulmonary function only partially, both aerobic capacity and life quality were improved. Intermittent training should be advised in the clinical setting for subjects with adverse health behaviors.
Romer, L. M.
2017-01-01
Local airway water loss is the main physiological trigger for exercise-induced bronchoconstriction (EIB). Our aim was to investigate the effects of whole body water loss on airway responsiveness and pulmonary function in athletes with mild asthma and/or EIB. Ten recreational athletes with a medical diagnosis of mild asthma and/or EIB completed a randomized, crossover study. Pulmonary function tests, including spirometry, whole body plethysmography, and diffusing capacity of the lung for carbon monoxide (DlCO), were conducted before and after three conditions: 1) 2 h of exercise in the heat with no fluid intake (dehydration), 2) 2 h of exercise with ad libitum fluid intake (control), and 3) a time-matched rest period (rest). Airway responsiveness was assessed 2 h postexercise/rest via eucapnic voluntary hyperpnea (EVH) to dry air. Exercise in the heat with no fluid intake induced a state of mild dehydration, with a body mass loss of 2.3 ± 0.8% (SD). After EVH, airway narrowing was not different between conditions: median (interquartile range) maximum fall in forced expiratory volume in 1 s was 13 (7–15)%, 11 (9–24)%, and 12 (7–20)% in dehydration, control, and rest conditions, respectively. Dehydration caused a significant reduction in forced vital capacity (300 ± 190 ml, P = 0.001) and concomitant increases in residual volume (260 ± 180 ml, P = 0.001) and functional residual capacity (260 ± 250 ml, P = 0.011), with no change in DlCO. Mild exercise-induced dehydration does not exaggerate airway responsiveness to dry air in athletes with mild asthma/EIB but may affect small airway function. NEW & NOTEWORTHY This study is the first to investigate the effect of whole body dehydration on airway responsiveness. Our data suggest that the airway response to dry air hyperpnea in athletes with mild asthma and/or exercise-induced bronchoconstriction is not exacerbated in a state of mild dehydration. On the basis of alterations in lung volumes, however, exercise-induced dehydration appears to compromise small airway function. PMID:28280109
Simpson, A J; Romer, L M; Kippelen, P
2017-05-01
Local airway water loss is the main physiological trigger for exercise-induced bronchoconstriction (EIB). Our aim was to investigate the effects of whole body water loss on airway responsiveness and pulmonary function in athletes with mild asthma and/or EIB. Ten recreational athletes with a medical diagnosis of mild asthma and/or EIB completed a randomized, crossover study. Pulmonary function tests, including spirometry, whole body plethysmography, and diffusing capacity of the lung for carbon monoxide (Dl CO ), were conducted before and after three conditions: 1 ) 2 h of exercise in the heat with no fluid intake (dehydration), 2 ) 2 h of exercise with ad libitum fluid intake (control), and 3 ) a time-matched rest period (rest). Airway responsiveness was assessed 2 h postexercise/rest via eucapnic voluntary hyperpnea (EVH) to dry air. Exercise in the heat with no fluid intake induced a state of mild dehydration, with a body mass loss of 2.3 ± 0.8% (SD). After EVH, airway narrowing was not different between conditions: median (interquartile range) maximum fall in forced expiratory volume in 1 s was 13 (7-15)%, 11 (9-24)%, and 12 (7-20)% in dehydration, control, and rest conditions, respectively. Dehydration caused a significant reduction in forced vital capacity (300 ± 190 ml, P = 0.001) and concomitant increases in residual volume (260 ± 180 ml, P = 0.001) and functional residual capacity (260 ± 250 ml, P = 0.011), with no change in Dl CO Mild exercise-induced dehydration does not exaggerate airway responsiveness to dry air in athletes with mild asthma/EIB but may affect small airway function. NEW & NOTEWORTHY This study is the first to investigate the effect of whole body dehydration on airway responsiveness. Our data suggest that the airway response to dry air hyperpnea in athletes with mild asthma and/or exercise-induced bronchoconstriction is not exacerbated in a state of mild dehydration. On the basis of alterations in lung volumes, however, exercise-induced dehydration appears to compromise small airway function. Copyright © 2017 the American Physiological Society.
Samiei, Niloufar; Tajmirriahi, Marzieh; Rafati, Ali; Pasebani, Yeganeh; Rezaei, Yousef; Hosseini, Saeid
2018-02-01
The restrictive mitral valve annuloplasty (RMA) is the treatment of choice for degenerative mitral regurgitation (MR), but postoperative functional mitral stenosis remains a matter of debate. In this study, we sought to determine the impact of mitral stenosis on the functional capacity of patients. In a cross-sectional study, 32 patients with degenerative MR who underwent RMA using a complete ring were evaluated. All participants performed treadmill exercise test and underwent echocardiographic examinations before and after exercise. The patients' mean age was 50.1 ± 12.5 years. After a mean follow-up of 14.1 ± 5.9 months (6-32 months), the number of patients with a mitral valve peak gradient >7.5 mm Hg, a mitral valve mean gradient >3 mm Hg, and a pulmonary arterial pressure (PAP) ≥25 mm Hg at rest were 50%, 40.6%, and 62.5%, respectively. 13 patients (40.6%) had incomplete treadmill exercise test. All hemodynamic parameters were higher at peak exercise compared with at rest levels (all P < .05). The PAP at rest and at peak exercise as well as peak transmitral gradient at peak exercise were higher in patients with incomplete exercise compared with complete exercise test (all P < .05). The PAP at rest (a sensitivity and a specificity of 84.6% and 52.6%, respectively; area under the curve [AUC] = .755) and at peak exercise (a sensitivity and a specificity of 100% and 47.4%, respectively; AUC = .755) discriminated incomplete exercise test. The RMA for degenerative MR was associated with a functional stenosis and the PAP at rest and at peak exercise discriminated low exercise capacity. © 2017, Wiley Periodicals, Inc.
Rehman, Michaela B; Garcia, Rodrigue; Christiaens, Luc; Larrieu-Ardilouze, Elisa; Howard, Luke S; Nihoyannopoulos, Petros
2018-04-15
Right ventricular function is the major determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). The ESC risk assessment strategy for PAH is based on clinical status, exercise testing, NTproBNP, imaging and haemodynamics but does not include right ventricular function. Our aims were to test the power of resting echocardiographic measurements to classify PAH patients according to ESC exercise testing risk stratification cut-offs and to determine if the classification power of echocardiographic parameters varied in chronic thrombo-embolic pulmonary hypertension (CTEPH). We prospectively and consecutively recruited 46 PAH patients and 42 CTEPH patients referred for cardio-pulmonary exercise testing and comprehensive transthoracic echocardiography. Exercise testing parameters analyzed were peak oxygen consumption, percentage of predicted maximal oxygen consumption and the slope of ventilation against carbon dioxide production. Receiver operator characteristic curves were used to determine the optimal diagnostic cut-off values of echocardiographic parameters for classifying the patients in intermediate or high risk category according to exercise testing. Measurements of right ventricular systolic function were the best for classifying in PAH (area under the curve 0.815 to 0.935). Measurements of right ventricular pressure overload (0.810 to 0.909) were optimal for classifying according to exercise testing in CTEPH. Measurements of left ventricular function were of no use in either group. Measurements of right ventricular systolic function can classify according to exercise testing risk stratification cut-offs in PAH. However, this is not the case in CTEPH where pressure overload, rather than right ventricular function seems to be linked to exercise performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Guo, Jian; Shi, Xue; Yang, Wenlan; Gong, Sugang; Zhao, Qinhua; Wang, Lan; He, Jing; Shi, Xiaofang; Sun, Xingguo; Liu, Jinming
2014-01-01
To identify the pulmonary hypertension (PH) patients who develop an exercise induced venous-to-systemic shunt (EIS) by performing the cardiopulmonary exercise test (CPET), analyse the changes of CPET measurements during exercise and compare the exercise physiology and resting pulmonary hemodynamics between shunt-PH and no-shunt-PH patients. Retrospectively, resting pulmonary function test (PFT), right heart catheterization (RHC), and CPET for clinical evaluation of 104 PH patients were studied. Considering all 104 PH patients by three investigators, 37 were early EIS+, 61 were EIS-, 3 were late EIS+, and 3 others were placed in the discordant group. PeakVO2, AT and OUES were all reduced in the shunt-PH patients compared with the no-shunt-PH subjects, whereas VE/VCO2 slope and the lowest VE/VCO2 increased. Besides, the changes and the response characteristics of the key CPET parameters at the beginning of exercise in the shunt group were notably different from those of the no shunt one. At cardiac catheterization, the shunt patients had significantly increased mean pulmonary artery pressure (mPAP), mean right atrial pressure (mRAP) and pulmonary vascular resistance (PVR), reduced cardiac output (CO) and cardiac index (CI) compared with the no shunt ones (P<0.05). Resting CO was significantly correlated with exercise parameters of AT (r = 0.527, P<0.001), OUES (r = 0.410, P<0.001) and Peak VO2 (r = 0.405, P<0.001). PVR was significantly, but weakly, correlated with the above mentioned CPET parameters. CPET may allow a non-invasive method for detecting an EIS and assessing the severity of the disease in PH patients.
Airway and Pulmonary β2-Adrenergic Vasodilatory Function in Current Smokers and Never Smokers.
Hurwitz, Barry E; Mendes, Eliana S; Schmid, Andreas; Parker, Meela; Arana, Johana; Gonzalez, Alex; Wanner, Adam
2017-03-01
Cigarette smoking has been associated with diminished vasodilatory function in the airway circulation. It is possible that cigarette smoking similarly affects the pulmonary circulation before resting pulmonary circulatory abnormalities become manifested. The aim of this study was to compare the acute effect of inhaled albuterol on airway and pulmonary hemodynamic function as an index of β 2 -adrenoceptor-mediated vasodilation in smokers and never smokers. In 30 adults, airway and pulmonary vascular function was assessed before and 15 min after albuterol inhalation (270 μg). From mean systemic arterial pressure, cardiac output, airway blood flow, and mean pulmonary arterial pressure, airway vascular resistance (AVR) and pulmonary vascular resistance (PVR) were derived. Albuterol induced a substantial drop in mean (± SE) PVR (-67.2% ± 5%), with no difference between groups. In contrast, the albuterol-induced decrease in AVR was significantly greater in never smokers than in smokers (-28.6% ± 3% vs -3.1% ± 6%; P < .02). These results are consistent with a dysfunction in a β 2 -adrenergic signaling pathway mediating vasorelaxation in the airway circulation of current smokers. The vasodilatory deficit in the airway circulation but not in the pulmonary circulation could be related to local differences in the impact of cigarette smoke on the vascular endothelium. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
[System analytical approach of lung function and hemodynamics].
Naszlady, Attila; Kiss, Lajos
2009-02-15
The authors critically analyse the traditional views in physiology and complete them with new statements based on computer model simulations of lung function and of hemodynamics. Conclusions are derived for the clinical practice as follows: the four-dimensional function curves are similar in both systems; there is a "waterfall" zone in the pulmonary blood perfusion; the various time constants of pulmonary regions can modify the blood gas values; pulmonary capillary pressure is equal to pulmonary arterial diastole pressure; heart is not a pressure pump, but a flow source; ventricles are loaded by the input impedance of the arterial systems and not by the total vascular (ohmlike) resistance; optimum heart rate in rest depends on the length of the aorta; this law of heart rate, based on the principle of resonance is valid along the mammalian allometric line; tachycardia decreases the input impedance; using positive end expiratory pressure respirators the blood gas of pulmonary artery should be followed; coronary circulation should be assessed in beat per milliliter, the milliliter per minute may be false. These statements are compared to related references.
Nakahara, Yoshio; Taniguchi, Hiroyuki; Kimura, Tomoki; Kondoh, Yasuhiro; Arizono, Shinichi; Nishimura, Koichi; Sakamoto, Koji; Ito, Satoru; Ando, Masahiko; Hasegawa, Yoshinori
2017-01-01
Pulmonary hypertension (PH) in COPD is associated with morbidity and mortality. Previous studies showed a relationship between resting hypoxaemia and PH, but little is known about the relationship between exercise hypoxaemia and PH in COPD without resting hypoxaemia. A retrospective observational study of COPD patients without resting hypoxaemia was conducted to evaluate the relationships between exercise hypoxaemia and pulmonary haemodynamics. Clinical characteristics, pulmonary function, blood gas analysis, 6-min walk distance (6MWD) and oxygen saturation of peripheral artery (SpO 2 ) at the end of the 6-min walk test (6MWT) were reviewed. Correlation analysis and stepwise regression analysis were performed to identify the predictor of mean pulmonary artery pressure (mPAP). Eighty-four consecutive patients with a mean predicted forced expiratory volume in 1 s (FEV 1 ) of 47 ± 21% were evaluated. In univariate analysis, mPAP had negative correlations with age (r = -0.27, P < 0.05), arterial partial pressure of oxygen (PaO 2 , r = -0.24, P < 0.05), % predicted forced vital capacity (FVC, r = -0.28, P < 0.05), % predicted FEV 1 (r = -0.40, P < 0.001), FEV 1 /FVC ratio (r = -0.33, P < 0.005), % predicted diffusion capacity for carbon monoxide (DL CO , r = -0.40, P < 0.001), 6MWD (r = -0.40, P < 0.001) and SpO 2 at the end of the 6MWT (r = -0.74, P < 0.001). In stepwise regression analysis, SpO 2 at the end of the 6MWT and 6MWD remained as independent predictors of mPAP (R 2 = 0.60). In receiver operating characteristic (ROC) analysis, SpO 2 at the end of the 6MWT presented an area under the curve of 0.896 for the prediction of PH, with a sensitivity of 0.86 and specificity of 0.84 for the cut-off point of 81%. In addition to 6MWD, exercise hypoxaemia indicates PH in patients with COPD without resting hypoxaemia. © 2016 Asian Pacific Society of Respirology.
Hassan, Megahed M; Hussein, Mona T; Emam, Ahmed Mamdouh; Rashad, Usama M; Rezk, Ibrahim; Awad, Al Hussein
2018-08-01
Optimal pulmonary air support is essential pre-requisite for efficient phonation. The objective is to correlate pulmonary and vocal functions in chronic obstructive pulmonary disease (COPD) to find out whether the reduced pulmonary function per se could induce dysphonia. In this prospective case-control study, sixty subjects with stable COPD underwent evaluation of pulmonary and vocal functions. The pulmonary functions measured include {Forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), FEV1/FVC ratio, peak expiratory flow (PEF), maximum mid-expiratory flow (MMEF)}. The vocal functions were {jitter, shimmer, noise-to-harmonic ratio, pitch perturbation quotient, amplitude perturbation quotient, maximum phonation time (MPT), sound pressure level, phonatory efficiency, resistance and power. A control group (n=35) underwent the same measurements. These functions were compared between subjects and controls. Also, correlation of the vocal and pulmonary functions was conducted. Thirty five (58.3%) of COPD subjects have dysphonia. The pulmonary functions were lower in all COPD group than in the control group (P<0.001 for all parameters). Also, the FVC, FEV1, PEF and MMEF % of predicted values were significantly lower in subjects with dysphonia (n=35) than those without dysphonia (n=25) with P values 0.0018, <0.001, 0.0011 and 0.0026 respectively. In addition, the MPT in all subjects showed positive correlations to the 5 pulmonary functions (P=0.004 for FEV1/FVC ratio and P<0.001 for the rest). Also, the phonatory efficiency showed significant positive correlations with the pulmonary functions FVC, FEV1, PEF and MMEF (P=0.001, 0.001, 0.002 and 0.001 respectively). Unlike efficiency, the phonatory resistance revealed significant negative correlations with these pulmonary functions in the same order (P=0.001, 0.003, 0.002, 0.001 respectively). Dysphonia is a common comorbidity with COPD which attributed to multifactorial etiologies. The lower the pulmonary function in COPD patients is the more likely to have dysphonia. Decreased pulmonary function was associated with reduced MPT and phonatory efficiency but with increased phonatory resistance. The reduced pulmonary functions in COPD can be the underlying cause of the altered vocal function and dysphonia. Great part of this dysphonia is functional, and hence, can be corrected by voice therapy in compensated subjects. Further researches are needed to evaluate the efficacy of voice therapy in these patients. Copyright © 2017 Elsevier B.V. All rights reserved.
COPD and exercise: does it make a difference?
Burtin, Chris; De Boever, Patrick; Langer, Daniël; Vogiatzis, Ioannis; Wouters, Emiel F.M.; Franssen, Frits M.E.
2016-01-01
Key points Physiological changes are observed following a structured exercise training programme in patients with COPD, without changes in resting lung function. Exercise training is the cornerstone of a comprehensive pulmonary rehabilitation programme in patients with COPD. Most comorbidities in patients referred for pulmonary rehabilitation remain undiagnosed and untreated. After careful screening, it is safe for COPD patients with comorbidities to obtain significant and clinically relevant improvements in functional exercise capacity and health status after an exercise-based pulmonary rehabilitation programme. Educational aims To inform readers of the positive effects of exercise-based pulmonary rehabilitation in patients with COPD, even with comorbid conditions. To inform readers of the importance of physical activity in patients with COPD. Exercise training is widely regarded as the cornerstone of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease (COPD). Indeed, exercise training has been identified as the best available means of improving muscle function and exercise tolerance in patients with COPD. So, exercise training truly makes a difference in the life of patients with COPD. In this review, an overview is provided on the history of exercise training (as standalone intervention or as part of a comprehensive pulmonary rehabilitation programme), exercise training in comorbid patients with COPD, and the impact of physical activity counselling in a clean air environment. PMID:27408645
Kanazawa, H; Okamoto, T; Hirata, K; Yoshikawa, J
2000-10-01
Angiotensin converting enzyme (ACE) plays an important role in the pathogenesis of pulmonary hypertension. In this study we determined whether the deletion (D)/insertion (I) polymorphism in the ACE gene may be associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease (COPD). ACE genotypes were determined in 19 patients with COPD. All patients underwent right heart catheterization followed by a constant-load exercise test while breathing room air or oxygen. Subgroups were created of seven patients with the II genotype, six with the ID genotype, and six with the DD genotype who were well-matched with respect to age, blood gas data at rest or after exercise, baseline lung function, results of incremental exercise testing, and hemodynamic data at rest. The mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (Rpv) at rest in the three subgrpoups did not differ significantly during breathing of either room air or oxygen. However, the Ppa after exercise challenge in patients with the DD genotype (55.7 +/- 4.9 mm Hg [mean +/- SD]) was significantly higher than in patients with the II genotype (42.6 +/- 7.1 mm Hg, p = 0.008). The Rpv after exercise in patients with the DD genotype was also significantly higher than in patients with the ID and II genotypes. During breathing of oxygen to diminish acute hypoxic pulmonary vasoconstriction, the Ppa in patients with the DD genotype (52.3 +/- 3.1 mm Hg) was higher than in patients with the ID genotype (40.5 +/- 5.9 mm Hg, p = 0.0049) or the II genotype (37.7 +/- 5.9 mm Hg, p = 0.0027). In addition, the Rpv in patients with the DD genotype was higher than in patients with the ID and II genotypes. These results suggest that D-I polymorphism in the ACE gene may be associated with pulmonary hypertension evoked by exercise challenge in patients with COPD. However, the number of patients in this study was very small for a genetic association study, and our results should be examined in larger studies.
Preoperative gender differences in pulmonary gas exchange in morbidly obese subjects.
Zavorsky, Gerald S; Christou, Nicolas V; Kim, Do Jun; Carli, Franco; Mayo, Nancy E
2008-12-01
Morbidly obese men may have poorer pulmonary gas exchange compared to morbidly obese women (see Zavorsky et al., Chest 131:362-367, 2007). The purpose was to compare pulmonary gas exchange in morbidly obese men and women at rest and throughout exercise. Twenty-five women (age=38+/-10 years, 164+/-7 cm, body mass index or BMI = 51+/-7 kg/m(2), peak oxygen consumption or VO(2peak)=2.0+/-0.4 l/min) and 17 men (age=43+/-9 years, 178+/-7 cm, BMI=50+/-10 kg/m(2), VO(2peak)=2.6+/-0.8 l/min) were recruited to perform a graded exercise test on a cycle ergometer with temperature-corrected arterial blood-gas samples taken at rest and every minute of exercise, including peak exercise. At rest, women were 98% predicted for pulmonary diffusion compared to 88% predicted in men. At rest, women had better pulmonary gas exchange compared to the men which was related to women having a lower waist-to-hip ratio (WHR; p<0.01). Only 20% of the subjects had an excessive alveolar-to-arterial oxygen partial pressure difference (>or=25 mmHg) at peak exercise, but 75% of the subjects showed inadequate compensatory hyperventilation at peak exercise (arterial carbon dioxide pressure >35 mmHg), and both were not different between genders. At rest, morbidly obese men have poorer pulmonary gas exchange and pulmonary diffusion compared to morbidly obese women. The better gas exchange in women is related to the lower WHR in the women. During exercise, few subjects showed disturbances in pulmonary gas exchange despite demonstrating poor compensatory hyperventilation at peak exercise.
Pugh, Meredith E.; Newman, Alexander L.; Robbins, Ivan M.; Tolle, James; Austin, Eric D.; Newman, John H.
2011-01-01
Background: CO2 excretion is impaired in pulmonary arterial hypertension (PAH) due to underlying vascular obstruction and increased dead space. Our aim was to determine whether resting end tidal CO2 (Etco2) could differentiate patients with PAH from those with pulmonary venous hypertension (PVH) or patients without pulmonary hypertension (PH) and whether successful treatment of PAH resulted in higher Etco2 values. Methods: We performed Etco2 measurements for five breaths at rest and after a 6-min walk test (6MWT) in patients seen at our pulmonary vascular center. Mean Etco2 values were correlated with 6-min walk distance and right-sided heart catheterization data. Results: We enrolled 84 patients with PAH, 17 with PVH without left ventricular systolic dysfunction, and seven with no PH and no severe alterations in pulmonary function testing. Etco2 was significantly lower in patients with PAH than in those with no PH and PVH (P < .0001 PAH vs both groups). Etco2 correlated with the pulmonary artery diastolic pressure-to-pulmonary artery occlusion pressure gradient (r = −0.50, P = .0002) and pulmonary vascular resistance (r = −0.44, P = .002). Etco2 after 6MWT correlated with walk distance (r = 0.34, P = .003). In patients with prostaglandin therapy escalation, Etco2 increased in those who had clinical improvement, whereas in patients who did not improve clinically, Etco2 failed to rise (P = .04). Conclusions: Etco2 is a promising tool to differentiate patients with PAH from those with PVH or no PH, correlates with diagnostic and prognostic hemodynamic indicators, and may increase with successful treatment of PAH. PMID:21622547
Lundgren, Jakob; Rådegran, Göran
2015-01-01
Background Little is known about the hemodynamic response to exercise in heart failure patients at various ages before and after heart transplantation (HT). This information is important because postoperative hemodynamics may be a predictor of survival. To investigate the hemodynamic response to HT and exercise, we grouped our patients based on preoperative age and examined their hemodynamics at rest and during exercise before and after HT. Methods and Results Ninety-four patients were evaluated at rest prior to HT with right heart catheterization at our laboratory. Of these patients, 32 were evaluated during slight supine exercise before and 1 year after HT. Postoperative evaluations were performed at rest 1 week after HT and at rest and during exercise at 4 weeks, 3 months, 6 months, and 1 year after HT. The exercise patients were divided into 2 groups based on preoperative age of ≤50 or >50 years. There were no age-dependent differences in the preoperative hemodynamic exercise responses. Hemodynamics markedly improved at rest and during exercise at 1 and 4 weeks, respectively, after HT; however, pulmonary and, in particular, ventricular filling pressures remained high during exercise at 1 year after HT, resulting in normalized pulmonary vascular resistance response but deranged total pulmonary vascular resistance response. Conclusions Our findings suggest that, (1) in patients with heart failure age ≤50 or >50 years may not affect the hemodynamic response to exercise to the same extent as in healthy persons, and (2) total pulmonary vascular resistance may be more adequate than pulmonary vascular resistance for evaluating the exercise response after HT. PMID:26199230
Proceedings of the First Joint NASA Cardiopulmonary Workshop
NASA Technical Reports Server (NTRS)
Fortney, Suzanne M. (Editor); Hargens, Alan R. (Editor)
1991-01-01
The topics covered include the following: flight echocardiography, pulmonary function, central hemodynamics, glycerol hyperhydration, spectral analysis, lower body negative pressure countermeasures, orthostatic tolerance, autonomic function, cardiac deconditioning, fluid and renal responses to head-down tilt, local fluid regulation, endocrine regulation during bed rest, autogenic feedback, and chronic cardiovascular measurements. The program ended with a general discussion of weightlessness models and countermeasures.
The respiratory system under weightlessness
NASA Technical Reports Server (NTRS)
Paiva, M.; Engel, L. A.; Hughes, J. M. B.; Guy, H. J.; Prisk, G. K.; West, J. B.
1987-01-01
Studies of pulmonary functions at rest to be studied on Spacelab mission D-2 are introduced. Gravity dependence of the distribution of ventilation (single breath washout, multibreath washout-washin); chest wall shape and motion; and the vascular compartment (lung blood flow, capillary volume, liquid content, diffusive capacity) are discussed.
Ghofrani, Hossein A; Reichenberger, Frank; Kohstall, Markus G; Mrosek, Eike H; Seeger, Timon; Olschewski, Horst; Seeger, Werner; Grimminger, Friedrich
2004-08-03
Alveolar hypoxia causes pulmonary hypertension and enhanced right ventricular afterload, which may impair exercise tolerance. The phosphodiesterase-5 inhibitor sildenafil has been reported to cause pulmonary vasodilatation. To investigate the effects of sildenafil on exercise capacity under conditions of hypoxic pulmonary hypertension. Randomized, double-blind, placebo-controlled crossover study. University Hospital Giessen, Giessen, Germany, and the base camp on Mount Everest. 14 healthy mountaineers and trekkers. Systolic pulmonary artery pressure, cardiac output, and peripheral arterial oxygen saturation at rest and during assessment of maximum exercise capacity on cycle ergometry 1) while breathing a hypoxic gas mixture with 10% fraction of inspired oxygen at low altitude (Giessen) and 2) at high altitude (the Mount Everest base camp). Oral sildenafil, 50 mg, or placebo. At low altitude, acute hypoxia reduced arterial oxygen saturation to 72.0% (95% CI, 66.5% to 77.5%) at rest and 60.8% (CI, 56.0% to 64.5%) at maximum exercise capacity. Systolic pulmonary artery pressure increased from 30.5 mm Hg (CI, 26.0 to 35.0 mm Hg) at rest to 42.9 mm Hg (CI, 35.6 to 53.5 mm Hg) during exercise in participants taking placebo. Sildenafil, 50 mg, significantly increased arterial oxygen saturation during exercise (P = 0.005) and reduced systolic pulmonary artery pressure at rest (P < 0.001) and during exercise (P = 0.031). Of note, sildenafil increased maximum workload (172.5 W [CI, 147.5 to 200.0 W]) vs. 130.6 W [CI, 108.8 to 150.0 W]); P < 0.001) and maximum cardiac output (P < 0.001) compared with placebo. At high altitude, sildenafil had no effect on arterial oxygen saturation at rest and during exercise compared with placebo. However, sildenafil reduced systolic pulmonary artery pressure at rest (P = 0.003) and during exercise (P = 0.021) and increased maximum workload (P = 0.002) and cardiac output (P = 0.015). At high altitude, sildenafil exacerbated existing headache in 2 participants. The study did not examine the effects of sildenafil on normoxic exercise tolerance. Sildenafil reduces hypoxic pulmonary hypertension at rest and during exercise while maintaining gas exchange and systemic blood pressure. To the authors' knowledge, sildenafil is the first drug shown to increase exercise capacity during severe hypoxia both at sea level and at high altitude.
Pulmonary hypertension in chronic obstructive pulmonary disease.
Weitzenblum, Emmanuel; Chaouat, Ari; Kessler, Romain
2013-01-01
Pulmonary hypertension (PH) is a common complication of advanced chronic obstructive pulmonary disease (COPD) and is defined by a mean pulmonary artery pressure (PAP) ≥ 25 mm Hg at rest in the supine position. Owing to its frequency, COPD is a common cause of PH; in fact, it is the second most frequent cause of PH, just after left heart diseases. PH is due to the elevation of pulmonary vascular resistance, which is caused by functional and morphological factors, chronic alveolar hypoxia being the most important. In COPD PH is generally mild to moderate, PAP usually ranging between 25 and 35 mm Hg in a stable state of the disease. A small proportion of COPD patients may present a severe or "disproportionate" PH with a resting PAP > 35-40 mm Hg. The prognosis is particularly poor in these patients. In COPD PH worsens during exercise, sleep and severe exacerbations of the disease, and these acute increases in afterload may favour the development of right heart failure. The diagnosis of PH relies on Doppler echocardiography, and right heart catheterization is needed in a minority of patients. Treatment of PH in COPD relies on long-term oxygen therapy (≥ 16h/day) which generally stabilizes or at least attenuates the progression of PH. Vasodilator drugs, which are commonly used in idiopathic pulmonary arterial hypertension, have rarely been used in COPD, and we lack studies in this field. Patients with severe PH should be referred to a specialist PH centre where the possibility of inclusion in a controlled clinical trial should be considered.
Pulmonary function and health-related quality of life 1-year follow up after cardiac surgery.
Westerdahl, Elisabeth; Jonsson, Marcus; Emtner, Margareta
2016-07-08
Pulmonary function is severely reduced in the early period after cardiac surgery, and impairments have been described up to 4-6 months after surgery. Evaluation of pulmonary function in a longer perspective is lacking. In this prospective study pulmonary function and health-related quality of life were investigated 1 year after cardiac surgery. Pulmonary function measurements, health-related quality of life (SF-36), dyspnoea, subjective breathing and coughing ability and pain were evaluated before and 1 year after surgery in 150 patients undergoing coronary artery bypass grafting, valve surgery or combined surgery. One year after surgery the forced vital capacity and forced expiratory volume in 1 s were significantly decreased (by 4-5 %) compared to preoperative values (p < 0.05). Saturation of peripheral oxygen was unchanged 1 year postoperatively compared to baseline. A significantly improved health-related quality of life was found 1 year after surgery, with improvements in all eight aspects of SF-36 (p < 0.001). Sternotomy-related pain was low 1 year postoperatively at rest (median 0 [min-max; 0-7]), while taking a deep breath (0 [0-4]) and while coughing (0 [0-8]). A more pronounced decrease in pulmonary function was associated with dyspnoea limitations and impaired subjective breathing and coughing ability. One year after cardiac surgery static and dynamic lung function measurements were slightly decreased, while health-related quality of life was improved in comparison to preoperative values. Measured levels of pain were low and saturation of peripheral oxygen was same as preoperatively.
United in prevention-electrocardiographic screening for chronic obstructive pulmonary disease.
Lazovic, Biljana; Mazic, Sanja; Stajic, Zoran; Djelic, Marina; Zlatkovic-Svenda, Mirjana; Putnikovic, Biljana
2013-01-01
NONE DECLARED. P-wave abnormalities on the resting electrocardiogram have been associated with cardiovascular or pulmonary disease. So far, "Gothic" P wave and verticalization of the frontal plane axis is related to lung disease, particularly obstructive lung disease. We tested if inverted P wave in AVl as a lone criteria of P wave axis >70° could be screening tool for emphysema. 1095 routine electrocardiograms (ECGs) were reviewed which yielded 478 (82,1%) ECGs with vertical P-axis in sinus rhythm. Charts were reviewed for the diagnosis of COPD and emphysema based on medical history and pulmonary function tests. Electrocardiogram is very effective screening tool not only in cardiovascular field but in chronic obstructive pulmonary disease. The verticality of the P axis is usually immediately apparent, making electrocardiogram rapid screening test for emphysema.
Rest and exercise echocardiography for early detection of pulmonary hypertension.
Kusunose, Kenya; Yamada, Hirotsugu
2016-03-01
Early detection of pulmonary hypertension (PH) is essential to ensure that patients receive timely and appropriate treatment for this progressive disease. Rest and exercise echocardiography has been used to screen patients in an attempt to identify early stage PH. However, current PH guidelines recommend against exercise tests because of the lack of evidence. We reviewed previous studies to discuss the current standpoint concerning rest and exercise echocardiography in PH. Around 20 exercise echocardiography studies were included to assess the cutoff value for exercise-induced pulmonary hypertension (EIPH). Approximately 40 exercise echocardiography studies were also included to evaluate the pulmonary artery pressure-flow relationship as assessed by the slope of the mean pulmonary artery pressure and cardiac output (ΔmPAP/ΔQ). There were several EIPH and ΔmPAP/ΔQ reference values in individuals with pulmonary vascular disease. We believed that assessing the ΔmPAP/ΔQ makes sense from a physiological standpoint, and the clinical value should be confirmed in future studies. Exercise echocardiography is an appealing alternative in PH. Further studies are needed to assess the prognostic value of the pulmonary artery pressure-flow relationship in high-risk subjects.
Kubesch, Nadine Janet; de Nazelle, Audrey; Westerdahl, Dane; Martinez, David; Carrasco-Turigas, Gloria; Bouso, Laura; Guerra, Stefano; Nieuwenhuijsen, Mark J
2015-04-01
Exposure to traffic-related air pollution (TRAP) has been associated with adverse respiratory and systemic outcomes. Physical activity (PA) in polluted air may increase pollutant uptake and thereby health effects. The authors aimed to determine the short-term health effects of TRAP in healthy participants and any possible modifying effect of PA. Crossover real-world exposure study comparing in 28 healthy participants pulmonary and inflammatory responses to four different exposure scenarios: 2 h exposure in a high and low TRAP environment, each at rest and in combination with intermittent moderate PA, consisting of four 15 min rest and cycling intervals. Data were analysed using mixed effect models for repeated measures. Intermittent PA compared to rest, irrespective of the TRAP exposure status, increased statistically significant (p≤0.05) pulmonary function (forced expiratory volume in 1 s (34 mL), forced vital capacity (29 mL), forced expiratory flow (FEF25-75%) (91 mL)), lung inflammation (fraction of exhaled nitric oxide, FeNO, (0.89 ppb)), and systemic inflammation markers interleukin-6 (52.3%), leucocytes (9.7%) and neutrophils count (18.8%). Interquartile increases in coarse particulate matter were statistically significantly associated with increased FeNO (0.80 ppb) and neutrophil count (5.7%), while PM2.5 and PM10 (particulate matter smaller than 2.5 and 10 µm in diameter, respectively) increased leucocytes (5.1% and 4.0%, respectively). We found no consistent evidence for an interaction between TRAP and PA for any of the outcomes of interest. In a healthy population, intermittent moderate PA has beneficial effects on pulmonary function even when performed in a highly polluted environment. This study also suggests that particulate air pollution is inducing pulmonary and systemic inflammatory responses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Howard, Luke S.G.E.; Watson, Geoffrey M.J.; Wharton, John; Rhodes, Christopher J.; Chan, Kakit; Khengar, Rajeshree; Robbins, Peter A.; Kiely, David G.; Condliffe, Robin; Elliott, Charlie A.; Pepke-Zaba, Joanna; Sheares, Karen; Morrell, Nicholas W.; Davies, Rachel; Ashby, Deborah; Gibbs, J. Simon R.; Wilkins, Martin R.
2013-01-01
Our aim is to assess the safety and potential clinical benefit of intravenous iron (Ferinject) infusion in iron deficient patients with idiopathic pulmonary arterial hypertension (IPAH). Iron deficiency in the absence of anemia (1) is common in patients with IPAH; (2) is associated with inappropriately raised levels of hepcidin, the key regulator of iron homeostasis; and (3) correlates with disease severity and worse clinical outcomes. Oral iron absorption may be impeded by reduced absorption due to elevated hepcidin levels. The safety and benefits of parenteral iron replacement in IPAH are unknown. Supplementation of Iron in Pulmonary Hypertension (SIPHON) is a Phase II, multicenter, double-blind, randomized, placebo-controlled, crossover clinical trial of iron in IPAH. At least 60 patients will be randomized to intravenous ferric carboxymaltose (Ferinject) or saline placebo with a crossover point after 12 weeks of treatment. The primary outcome will be the change in resting pulmonary vascular resistance from baseline at 12 weeks, measured by cardiac catheterization. Secondary measures include resting and exercise hemodynamics and exercise performance from serial bicycle incremental and endurance cardiopulmonary exercise tests. Other secondary measurements include serum iron indices, 6-Minute Walk Distance, WHO functional class, quality of life score, N-terminal pro-brain natriuretic peptide (NT-proBNP), and cardiac anatomy and function from cardiac magnetic resonance. We propose that intravenous iron replacement will improve hemodynamics and clinical outcomes in IPAH. If the data supports a potentially useful therapeutic effect and suggest this drug is safe, the study will be used to power a Phase III study to address efficacy. PMID:23662181
Effect of gravity on lung exhaled nitric oxide at rest and during exercise
NASA Technical Reports Server (NTRS)
Pogliaghi, S.; Krasney, J. A.; Pendergast, D. R.
1997-01-01
Exhaled nitric oxide (NO) from the lungs (VNO) in nose-clipped subjects increases during exercise. This may be due to endothelial shear stress secondary to changes in pulmonary blood flow. We measured VNO after modifying pulmonary blood flow with head-out water immersion (WI) or increased gravity (2 Gz) at rest and during exercise. Ten sedentary males were studied during exercise performed in air and WI. Nine subjects were studied at 1 and 2 Gz. Resting NO concentrations in exhaled air ([NO]) were 16.3 +/- 8.2 ppb (air). 15 +/- 8.2 ppb (WI) and 17.4 +/- 5 ppb (2 Gz). VNO (ppb/min) was calculated as [NO]VE and was unchanged at rest by either WI or 2 Gz. VNO increased linearly with Vo2, VE and fii during exercise in air, WI and at 2 Gz. These relationships did not differ among the experimental conditions. Therefore, changes in pulmonary blood flow failed to alter the output of NO exhaled from the lungs at rest or during exercise.
BACKGROUND: Increased susceptibility of smokers to ambient PM may potentially promote development of COPD and accelerate already present disease. OBJECTIVES: To characterize the acute and subacute lung function response and inflammatory effects of controlled chamber exposure t...
Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M; Stickland, Michael K
2017-02-20
Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease.
Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M.; Stickland, Michael K.
2017-01-01
Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease. PMID:28287506
Monachini, Maristela C; Lage, Silvia G; Ran, Miguel A N; Cardoso, Rita H A; Medeiros, Caio; Caramelli, Bruno; Sposito, Andrei C; Ramires, José A F
2004-07-01
Exercise-induced dyspnea is a frequent feature in patients with hyperthyroidism. Data from clinical studies to elucidate the origin of this symptom are lacking. In the current study, we examined the hemodynamic and oxygenation responses to exercise and beta-adrenergic blockade in patients with hyperthyroidism and their relationship with dyspnea. Hemodynamic studies were performed under resting conditions and after isotonic exercise in 15 patients with hyperthyroidism and 11 control subjects. Exercise was applied using a bicycle ergometer, with progressive loads. In the hyperthyroid group, measurements were repeated at rest and during supine exercise after administering 15 mg of intravenous metoprolol. End-diastolic pulmonary artery pressure and cardiac index were higher in the hyperthyroid group than in controls (18.6 +/- 5.3 vs. 11.2 +/- 4.9 mmHg; p = 0.02, and 6.0 +/- 1.7 vs. 2.8 +/- 0.5 l/min/m2; p = 0.0001, respectively). After exercise, there was an increase in end-diastolic pulmonary artery pressure in the hyperthyroid group (18.6 +/- 5.3 to 25.5 +/- 9.9 mmHg; p = 0.02), revealing impaired cardiocirculatory reserve. Pulmonary arteriolar resistance increased significantly in parallel with end-diastolic pulmonary artery pressure after drug administration, suggesting an inadequate cardiovascular response after beta blockade in patients with hyperthyroidism. We observed that functional left ventricular reserve is impaired in patients with hyperthyroidism, suggesting an explanation for the frequent symptom of dyspnea and impaired exercise tolerance. Moreover, we also suggest that beta-adrenergic blockade may adversely affect cardiovascular function in patients with hyperthyroidism.
Effect of exercise test on pulmonary function of obese adolescents.
Faria, Alethéa Guimarães; Ribeiro, Maria Angela G O; Marson, Fernando Augusto Lima; Schivinski, Camila Isabel S; Severino, Silvana Dalge; Ribeiro, José Dirceu; Barros Filho, Antônio A
2014-01-01
to investigate the pulmonary response to exercise of non-morbidly obese adolescents, considering the gender. a prospective cross-sectional study was conducted with 92 adolescents (47 obese and 45 eutrophic), divided in four groups according to obesity and gender. Anthropometric parameters, pulmonary function (spirometry and oxygen saturation [SatO2]), heart rate (HR), blood pressure (BP), respiratory rate (RR), and respiratory muscle strength were measured. Pulmonary function parameters were measured before, during, and after the exercise test. BP and HR were higher in obese individuals during the exercise test (p = 0.0001). SatO2 values decreased during exercise in obese adolescents (p = 0.0001). Obese males had higher levels of maximum inspiratory and expiratory pressures (p = 0.0002) when compared to obese and eutrophic females. Obese males showed lower values of maximum voluntary ventilation, forced vital capacity, and forced expiratory volume in the first second when compared to eutrophic males, before and after exercise (p = 0.0005). Obese females had greater inspiratory capacity compared to eutrophic females (p = 0.0001). Expiratory reserve volume was lower in obese subjects when compared to controls (p ≤ 0,05). obese adolescents presented changes in pulmonary function at rest and these changes remained present during exercise. The spirometric and cardiorespiratory values were different in the four study groups. The present data demonstrated that, in spite of differences in lung growth, the model of fat distribution alters pulmonary function differently in obese female and male adolescents. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Jensen, Annette S; Broberg, Craig S; Rydman, Riikka; Diller, Gerhard-Paul; Li, Wei; Dimopoulos, Konstantinos; Wort, Stephen J; Pennell, Dudley J; Gatzoulis, Michael A; Babu-Narayan, Sonya V
2015-12-01
Patients with Eisenmenger syndrome (ES) have better survival, despite similar pulmonary vascular pathology, compared with other patients with pulmonary arterial hypertension. Cardiovascular magnetic resonance (CMR) is useful for risk stratification in idiopathic pulmonary arterial hypertension, whereas it has not been evaluated in ES. We studied CMR together with other noninvasive measurements in ES to evaluate its potential role as a noninvasive risk stratification test. Between 2003 and 2005, 48 patients with ES, all with a post-tricuspid shunt, were enrolled in a prospective, longitudinal, single-center study. All patients underwent a standardized baseline assessment with CMR, blood test, echocardiography, and 6-minute walk test and were followed up for mortality until the end of December 2013. Twelve patients (25%) died during follow-up, mostly from heart failure (50%). Impaired ventricular function (right or left ventricular ejection fraction) was associated with increased risk of mortality (lowest quartile: right ventricular ejection fraction, <40%; hazard ratio, 4.4 [95% confidence interval, 1.4-13.5]; P=0.01 and left ventricular ejection fraction, <50%; hazard ratio, 6.6 [95% confidence interval, 2.1-20.8]; P=0.001). Biventricular impairment (lowest quartile left ventricular ejection fraction, <50% and right ventricular ejection fraction, <40%) conveyed an even higher risk of mortality (hazard ratio, 8.0 [95% confidence interval, 2.5-25.1]; P=0.0004). No other CMR or noninvasive measurement besides resting oxygen saturation (hazard ratio, 0.90 [0.83-0.97]/%; P=0.007) was associated with mortality. Impaired right, left, or biventricular systolic function derived from baseline CMR and resting oxygen saturation are associated with mortality in adult patients with ES. CMR is a useful noninvasive tool, which may be incorporated in the risk stratification assessment of ES during lifelong follow-up. © 2015 American Heart Association, Inc.
Sima, Carmen A; Lau, Benny C; Taylor, Carolyn M; van Eeden, Stephan F; Reid, W Darlene; Sheel, Andrew W; Kirkham, Ashley R; Camp, Pat G
2018-03-14
Myocardial infarction (MI) remains under-recognized in chronic lung disease (CLD) patients. Rehabilitation health professionals need accessible clinical measurements to identify the presence of prior MI in order to determine appropriate training prescription. To estimate prior MI in CLD patients entering a pulmonary rehabilitation program, as well as its association with heart rate parameters such as resting heart rate and chronotropic response index. Retrospective cohort design. Pulmonary rehabilitation outpatient clinic in a tertiary care university-affiliated hospital. Eighty-five CLD patients were studied. Electrocardiograms at rest and peak cardiopulmonary exercise testing, performed before pulmonary rehabilitation, were analyzed. Electrocardiographic evidence of prior MI, quantified by the Cardiac Infarction Injury Score (CIIS), was contrasted with reported myocardial events and then correlated with resting heart rate and chronotropic response index parameters. CIIS, resting heart rate, and chronotropic response index. Sixteen CLD patients (19%) demonstrated electrocardiographic evidence of prior MI, but less than half (8%) had a reported MI history (P < .05). The Cohen's kappa test revealed poor level of agreement between CIIS and medical records (kappa = 0.165), indicating that prior MI diagnosis was under-reported in the medical records. Simple and multiple regression analyses showed that resting heart rate but not chronotropic response index was positively associated with CIIS in our population (R 2 = 0.29, P < .001). CLD patients with a resting heart rate higher than 80 beats/min had approximately 5 times higher odds of having prior MI, as evidenced by a CIIS ≥20. CLD patients entering pulmonary rehabilitation are at risk of unreported prior MI. Elevated resting heart rate seems to be an indicator of prior MI in CLD patients; therefore, careful adjustment of training intensity such as intermittent training is recommended under these circumstances. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension.
Jernigan, Nikki L; Resta, Thomas C; Gonzalez Bosc, Laura V
2017-01-01
Normally, the pulmonary circulation is maintained in a low-pressure, low-resistance state with little resting tone. Pulmonary arteries are thin-walled and rely heavily on pulmonary arterial distension and recruitment for reducing pulmonary vascular resistance when cardiac output is elevated. Under pathophysiological conditions, however, active vasoconstriction and vascular remodeling lead to enhanced pulmonary vascular resistance and subsequent pulmonary hypertension (PH). Chronic hypoxia is a critical pathological factor associated with the development of PH resulting from airway obstruction (COPD, sleep apnea), diffusion impairment (interstitial lung disease), developmental lung abnormalities, or high altitude exposure (World Health Organization [WHO]; Group III). The rise in pulmonary vascular resistance increases right heart afterload causing right ventricular hypertrophy that can ultimately lead to right heart failure in patients with chronic lung disease. PH is typically characterized by diminished paracrine release of vasodilators, antimitogenic factors, and antithrombotic factors (e.g., nitric oxide and protacyclin) and enhanced production of vasoconstrictors and mitogenic factors (e.g., reactive oxygen species and endothelin-1) from the endothelium and lung parenchyma. In addition, phenotypic changes to pulmonary arterial smooth muscle cells (PASMC), including alterations in Ca 2+ homeostasis, Ca 2+ sensitivity, and activation of transcription factors are thought to play prominent roles in the development of both vasoconstrictor and arterial remodeling components of hypoxia-associated PH. These changes in PASMC function are briefly reviewed in Sect. 1 and the influence of altered reactive oxygen species homeostasis on PASMC function discussed in Sects. 2-4.
Vallecilla, Carolina; Khiabani, Reza H; Trusty, Phillip; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P
2015-07-16
In Bi-directional Glenn (BDG) physiology, the superior systemic circulation and pulmonary circulation are in series. Consequently, only blood from the superior vena cava is oxygenated in the lungs. Oxygenated blood then travels to the ventricle where it is mixed with blood returning from the lower body. Therefore, incremental changes in oxygen extraction ratio (OER) could compromise exercise tolerance. In this study, the effect of exercise on the hemodynamic and ventricular performance of BDG physiology was investigated using clinical patient data as inputs for a lumped parameter model coupled with oxygenation equations. Changes in cardiac index, Qp/Qs, systemic pressure, oxygen extraction ratio and ventricular/vascular coupling ratio were calculated for three different exercise levels. The patient cohort (n=29) was sub-grouped by age and pulmonary vascular resistance (PVR) at rest. It was observed that the changes in exercise tolerance are significant in both comparisons, but most significant when sub-grouped by PVR at rest. Results showed that patients over 2 years old with high PVR are above or close to the upper tolerable limit of OER (0.32) at baseline. Patients with high PVR at rest had very poor exercise tolerance while patients with low PVR at rest could tolerate low exercise conditions. In general, ventricular function of SV patients is too poor to increase CI and fulfill exercise requirements. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different exercise levels according to patient specific data. Published by Elsevier Ltd.
Ventilatory responses to exercise training in obese adolescents.
Mendelson, Monique; Michallet, Anne-Sophie; Estève, François; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice
2012-10-15
The aim of this study was to examine ventilatory responses to training in obese adolescents. We assessed body composition, pulmonary function and ventilatory responses (among which expiratory flow limitation and operational lung volumes) during progressive cycling exercise in 16 obese adolescents (OB) before and after 12 weeks of exercise training and in 16 normal-weight volunteers. As expected, obese adolescents' resting expiratory reserve volume was lower and inversely correlated with thoraco-abdominal fat mass (r = -0.74, p<0.0001). OB presented lower end expiratory (EELV) and end inspiratory lung volumes (EILV) at rest and during submaximal exercise, and modest expiratory flow limitation. After training, OB increased maximal aerobic performance (+19%) and maximal inspiratory pressure (93.7±31.4 vs. 81.9±28.2 cm H2O, +14%) despite lack of decrease in trunk fat and body weight. Furthermore, EELV and EILV were greater during submaximal exercise (+11% and +9% in EELV and EILV, respectively), expiratory flow limitation delayed but was not accompanied by increased V(T). However, submaximal exertional symptoms (dyspnea and leg discomfort) were significantly decreased (-71.3% and -70.7%, respectively). Our results suggest that exercise training can improve pulmonary function at rest (static inspiratory muscle strength) and exercise (greater operating lung volumes and delayed expiratory flow limitation) but these modifications did not entirely account for improved dyspnea and exercise performance in obese adolescents. Copyright © 2012 Elsevier B.V. All rights reserved.
Pulmonary vascular function and exercise capacity in black sub-Saharan Africans.
Simaga, Bamodi; Vicenzi, Marco; Faoro, Vitalie; Caravita, Sergio; Di Marco, Giovanni; Forton, Kevin; Deboeck, Gael; Lalande, Sophie; Naeije, Robert
2015-09-01
Sex and age affect the pulmonary circulation. Whether there may be racial differences in pulmonary vascular function is unknown. Thirty white European Caucasian subjects (15 women) and age and body-size matched 30 black sub-Saharan African subjects (15 women) underwent a cardiopulmonary exercise test and exercise stress echocardiography with measurements of pulmonary artery pressure (PAP) and cardiac output (CO). A pulmonary vascular distensibility coefficient α was mathematically determined from the natural curvilinearity of multipoint mean PAP (mPAP)-CO plots. Maximum oxygen uptake (V̇o2max) and workload were higher in the whites, while maximum respiratory exchange ratio and ventilatory equivalents for CO2 were the same. Pulmonary hemodynamics were not different at rest. Exercise was associated with a higher maximum total pulmonary vascular resistance, steeper mPAP-CO relationships, and lower α-coefficients in the blacks. These differences were entirely driven by higher slopes of mPAP-CO relationships (2.5 ± 0.7 vs. 1.4 ± 0.7 mmHg·l(-1)·min; P < 0.001) and lower α-coefficients (0.85 ± 0.33 vs. 1.35 ± 0.51%/mmHg; P < 0.01) in black men compared with white men. There were no differences in any of the hemodynamic variables between black and white women. In men only, the slopes of mPAP-CO relationships were inversely correlated to V̇o2max (P < 0.01). Thus the pulmonary circulation is intrinsically less distensible in black sub-Saharan African men compared with white Caucasian Europeans men, and this is associated with a lower exercise capacity. This study did not identify racial differences in pulmonary vascular function in women. Copyright © 2015 the American Physiological Society.
Exercise pulmonary hypertension in asymptomatic degenerative mitral regurgitation.
Magne, Julien; Lancellotti, Patrizio; Piérard, Luc A
2010-07-06
Current guidelines recommend mitral valve surgery for asymptomatic patients with severe degenerative mitral regurgitation and preserved left ventricular systolic function when exercise pulmonary hypertension (PHT) is present. However, the determinants of exercise PHT have not been evaluated. The aim of this study was to identify the echocardiographic predictors of exercise PHT and the impact on symptoms. Comprehensive resting and exercise transthoracic echocardiography was performed in 78 consecutive patients (age, 61+/-13 years; 56% men) with at least moderate degenerative mitral regurgitation (effective regurgitant orifice area =43+/-20 mm(2); regurgitant volume =71+/-27 mL). Exercise PHT was defined as a systolic pulmonary arterial pressure (SPAP) >60 mm Hg. Exercise PHT was present in 46% patients. In multivariable analysis, exercise effective regurgitant orifice was an independent determinant of exercise SPAP (P<0.0001) and exercise PHT (P=0.002). Resting PHT and exercise PHT were associated with markedly reduced 2-year symptom-free survival (36+/-14% versus 59+/-7%, P=0.04; 35+/-8% versus 75+/-7%, P<0.0001). After adjustment, although the impact of resting PHT was no longer significant, exercise PHT was identified as an independent predictor of the occurrence of symptoms (hazard ratio=3.4; P=0.002). Receiver-operating characteristics curves revealed that exercise PHT (SPAP >56 mm Hg) was more accurate than resting PHT (SPAP >36 mm Hg) in predicting the occurrence of symptoms during follow-up (P=0.032). Exercise PHT is frequent in patients with asymptomatic degenerative mitral regurgitation. Exercise mitral regurgitation severity is a strong independent predictor of both exercise SPAP and exercise PHT. Exercise PHT is associated with markedly low 2-year symptom-free survival, emphasizing the use of exercise echocardiography. An exercise SPAP >56 mm Hg accurately predicts the occurrence of symptoms.
Warnier, Miriam J; Rutten, Frans H; de Boer, Anthonius; Hoes, Arno W; De Bruin, Marie L
2014-01-01
Although it is known that patients with chronic obstructive pulmonary disease (COPD) generally do have an increased heart rate, the effects on both mortality and non-fatal pulmonary complications are unclear. We assessed whether heart rate is associated with all-cause mortality, and non-fatal pulmonary endpoints. A prospective cohort study of 405 elderly patients with COPD was performed. All patients underwent extensive investigations, including electrocardiography. Follow-up data on mortality were obtained by linking the cohort to the Dutch National Cause of Death Register and information on complications (exacerbation of COPD or pneumonia) by scrutinizing patient files of general practitioners. Multivariable cox regression analysis was performed. During the follow-up 132 (33%) patients died. The overall mortality rate was 50/1000 py (42-59). The major causes of death were cardiovascular and respiratory. The relative risk of all-cause mortality increased with 21% for every 10 beats/minute increase in heart rate (adjusted HR: 1.21 [1.07-1.36], p = 0.002). The incidence of major non-fatal pulmonary events was 145/1000 py (120-168). The risk of a non-fatal pulmonary complication increased non-significantly with 7% for every 10 beats/minute increase in resting heart rate (adjusted HR: 1.07 [0.96-1.18], p = 0.208). Increased resting heart rate is a strong and independent risk factor for all-cause mortality in elderly patients with COPD. An increased resting heart rate did not result in an increased risk of exacerbations or pneumonia. This may indicate that the increased mortality risk of COPD is related to non-pulmonary causes. Future randomized controlled trials are needed to investigate whether heart-rate lowering agents are worthwhile for COPD patients.
The effects of inhaled sulfuric acid on pulmonary function in adolescent asthmatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenig, J.Q.; Pierson, W.E.; Horike, M.
Ten adolescent subjects with extrinsic asthma and exercise-induced bronchospasm were studied. The subjects were exposed for 30 min at rest followed by 10 min during moderate exercise on a treadmill to either 100 micrograms/m3 sodium chloride (NaCl) or 100 micrograms/m3 sulfuric acid (H/sub 2/SO/sub 4/) droplet aerosols. All exposures were at approximately 75% relative humidity and 22 degrees C. Pulmonary functional measurements were recorded before, during, and after exposure while the subject was seated in a body plethysmograph. Exposure to the NaCl aerosol during exercise produced a small (12%) but significant drop in maximal expiratory flow (V/sub max/75) (p lessmore » than 0.05). However, exposure to the H/sub 2/SO/sub 4/ aerosol produced larger reductions in V/sub max/75 (29%; p less than 0.01) and also significant changes in 3 other parameters of pulmonary function: V/sub max/50, FEV1, and total respiratory resistance (RT). The changes were similar to those reported for exposure to 0.5 ppm of sulfur dioxide in a similar group of adolescents with extrinsic asthma. Our results are the first report of reversible pulmonary functional changes after H/sub 2/SO/sub 4/ exposure in a group of adolescent asthmatic subjects.« less
United in Prevention–Electrocardiographic Screening for Chronic Obstructive Pulmonary Disease
Mazic, Sanja; Stajic, Zoran; Djelic, Marina; Zlatkovic-Svenda, Mirjana; Putnikovic, Biljana
2013-01-01
CONFLICT OF INTEREST: NONE DECLARED Introduction P-wave abnormalities on the resting electrocardiogram have been associated with cardiovascular or pulmonary disease. So far, “Gothic” P wave and verticalization of the frontal plane axis is related to lung disease, particularly obstructive lung disease. Aim We tested if inverted P wave in AVl as a lone criteria of P wave axis >70° could be screening tool for emphysema. Material and method 1095 routine electrocardiograms (ECGs) were reviewed which yielded 478 (82,1%) ECGs with vertical P-axis in sinus rhythm. Charts were reviewed for the diagnosis of COPD and emphysema based on medical history and pulmonary function tests. Conclusion Electrocardiogram is very effective screening tool not only in cardiovascular field but in chronic obstructive pulmonary disease. The verticality of the P axis is usually immediately apparent, making electrocardiogram rapid screening test for emphysema. PMID:24058253
Reversal of reflex pulmonary vasoconstriction induced by main pulmonary arterial distension.
Juratsch, C E; Grover, R F; Rose, C E; Reeves, J T; Walby, W F; Laks, M M
1985-04-01
Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.
Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R; Klein, Isabelle; Mal, Hervé; Courbage, Maurice; Mangin, Laurence
2016-08-01
Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736-2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Apostolo, Anna; Giusti, Giuliano; Gargiulo, Paola; Bussotti, Maurizio; Agostoni, Piergiuseppe
2012-01-01
Lung function abnormalities both at rest and during exercise are frequently observed in patients with chronic heart failure, also in the absence of respiratory disease. Alterations of respiratory mechanics and of gas exchange capacity are strictly related to heart failure. Severe heart failure patients often show a restrictive respiratory pattern, secondary to heart enlargement and increased lung fluids, and impairment of alveolar-capillary gas diffusion, mainly due to an increased resistance to molecular diffusion across the alveolar capillary membrane. Reduced gas diffusion contributes to exercise intolerance and to a worse prognosis. Cardiopulmonary exercise test is considered the “gold standard” when studying the cardiovascular, pulmonary, and metabolic adaptations to exercise in cardiac patients. During exercise, hyperventilation and consequent reduction of ventilation efficiency are often observed in heart failure patients, resulting in an increased slope of ventilation/carbon dioxide (VE/VCO2) relationship. Ventilatory efficiency is as strong prognostic and an important stratification marker. This paper describes the pulmonary abnormalities at rest and during exercise in the patients with heart failure, highlighting the principal diagnostic tools for evaluation of lungs function, the possible pharmacological interventions, and the parameters that could be useful in prognostic assessment of heart failure patients. PMID:23365739
Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction.
Obokata, Masaru; Olson, Thomas P; Reddy, Yogesh N V; Melenovsky, Vojtech; Kane, Garvan C; Borlaug, Barry A
2018-05-19
Increases in left ventricular filling pressure are a fundamental haemodynamic abnormality in heart failure with preserved ejection fraction (HFpEF). However, very little is known regarding how elevated filling pressures cause pulmonary abnormalities or symptoms of dyspnoea. We sought to determine the relationships between simultaneously measured central haemodynamics, symptoms, and lung ventilatory and gas exchange abnormalities during exercise in HFpEF. Subjects with invasively-proven HFpEF (n = 50) and non-cardiac causes of dyspnoea (controls, n = 24) underwent cardiac catheterization at rest and during exercise with simultaneous expired gas analysis. During submaximal (20 W) exercise, subjects with HFpEF displayed higher pulmonary capillary wedge pressures (PCWP) and pulmonary artery pressures, higher Borg perceived dyspnoea scores, and increased ventilatory drive and respiratory rate. At peak exercise, ventilation reserve was reduced in HFpEF compared with controls, with greater dead space ventilation (higher VD/VT). Increasing exercise PCWP was directly correlated with higher perceived dyspnoea scores, lower peak exercise capacity, greater ventilatory drive, worse New York Heart Association (NYHA) functional class, and impaired pulmonary ventilation reserve. This study provides the first evidence linking altered exercise haemodynamics to pulmonary abnormalities and symptoms of dyspnoea in patients with HFpEF. Further study is required to identify the mechanisms by which haemodynamic derangements affect lung function and symptoms and to test novel therapies targeting exercise haemodynamics in HFpEF.
Washko, George R; Criner, Gerald J; Mohsenifar, Zab; Sciurba, Frank C; Sharafkhaneh, Amir; Make, Barry J; Hoffman, Eric A; Reilly, John J
2008-06-01
Computed tomographic based indices of emphysematous lung destruction may highlight differences in disease pathogenesis and further enable the classification of subjects with Chronic Obstructive Pulmonary Disease. While there are multiple techniques that can be utilized for such radiographic analysis, there is very little published information comparing the performance of these methods in a clinical case series. Our objective was to examine several quantitative and semi-quantitative methods for the assessment of the burden of emphysema apparent on computed tomographic scans and compare their ability to predict lung mechanics and function. Automated densitometric analysis was performed on 1094 computed tomographic scans collected upon enrollment into the National Emphysema Treatment Trial. Trained radiologists performed an additional visual grading of emphysema on high resolution CT scans. Full pulmonary function test results were available for correlation, with a subset of subjects having additional measurements of lung static recoil. There was a wide range of emphysematous lung destruction apparent on the CT scans and univariate correlations to measures of lung function were of modest strength. No single method of CT scan analysis clearly outperformed the rest of the group. Quantification of the burden of emphysematous lung destruction apparent on CT scan is a weak predictor of lung function and mechanics in severe COPD with no uniformly superior method found to perform this analysis. The CT based quantification of emphysema may augment pulmonary function testing in the characterization of COPD by providing complementary phenotypic information.
Hatch, Gary E.; McKee, John; Brown, James; McDonnell, William; Seal, Elston; Soukup, Joleen; Slade, Ralph; Crissman, Kay; Devlin, Robert
2013-01-01
To determine the influence of exercise on pulmonary dose of inhaled pollutants, we compared biomarkers of inhaled ozone (O3) dose and toxic effect between exercise levels in humans, and between humans and rats. Resting human subjects were exposed to labeled O3 (18O3, 0.4 ppm, for 2 hours) and alveolar O3 dose measured as the concentration of excess 18O in cells and extracellular material of nasal, bronchial, and bronchoalveolar lavage fluid (BALF). We related O3 dose to effects (changes in BALF protein, LDH, IL-6, and antioxidant substances) measurable in the BALF. A parallel study of resting subjects examined lung function (FEV1) changes following O3. Subjects exposed while resting had 18O concentrations in BALF cells that were 1/5th of those of exercising subjects and directly proportional to the amount of O3 breathed during exposure. Quantitative measures of alveolar O3 dose and toxicity that were observed previously in exercising subjects were greatly reduced or non-observable in O3 exposed resting subjects. Resting rats and resting humans were found to have a similar alveolar O3 dose. PMID:23761957
Non-invasive pulmonary function test on Morquio Patients
Kubaski, Francyne; Tomatsu, Shunji; Patel, Pravin; Shimada, Tsutomu; Xie, Li; Yasuda, Eriko; Mason, Robert; Mackenzie, William G.; Theroux, Mary; Bober, Michael B.; Oldham, Helen M.; Orii, Tadao; Shaffer, Thomas H.
2015-01-01
In clinical practice, respiratory function tests are difficult to perform in Morquio syndrome patients due to their characteristic skeletal dysplasia, small body size and lack of cooperation of young patients, where in some cases, conventional spirometry for pulmonary function is too challenging. To establish feasible clinical pulmonary endpoints and determine whether age impacts lung function in Morquio patients non-invasive pulmonary tests and conventional spirometry were evaluated. The non-invasive pulmonary tests: impulse oscillometry system, pneumotachography, and respiratory inductance plethysmography in conjunction with conventional spirometry were evaluated in twenty-two Morquio patients (18 Morquio A and 4 Morquio B) (7 males), ranging from 3 and 40 years of age. Twenty-two patients were compliant with non-invasive tests (100%) with exception of IOS (81.8%–18 patients). Seventeen patients (77.3%) were compliant with spirometry testing. All subjects had normal vital signs at rest including > 95% oxygen saturation, end tidal CO2 (38–44 mmHg), and age-appropriate heart rate (mean=98.3, standard deviation=19) (two patients were deviated). All patients preserved normal values in impulse oscillometry system, pneumotachography, and respiratory inductance plethysmography, although predicted forced expiratory volume total (72.8 ± 6.9 SE%) decreased with age and was below normal; phase angle (35.5 ± 16.5 Degrees), %Rib Cage (41.6 ± 12.7%), resonant frequency, and forced expiratory volume in one second/forced expiratory volume total (110.0 ± 3.2 SE%) were normal and not significantly impacted by age. The proposed non-invasive pulmonary function tests are able to cover a greater number of patients (young patients and/or wheel-chair bound), thus providing a new diagnostic approach for the assessment of lung function in Morquio syndrome which in many cases may be difficult to evaluate. Morquio patients studied herein demonstrated no clinical or functional signs of restrictive and/or obstructive lung disease. PMID:26116954
Coffman, Kirsten E; Carlson, Alex R; Miller, Andrew D; Johnson, Bruce D; Taylor, Bryan J
2017-06-01
Aging is associated with deterioration in the structure and function of the pulmonary circulation. We characterized the lung diffusing capacity for carbon monoxide (DL CO ), alveolar-capillary membrane conductance (Dm CO ), and pulmonary-capillary blood volume (Vc) response to discontinuous incremental exercise at 25, 50, 75, and 90% of peak work (W peak ) in four groups: 1 ) Young [27 ± 3 yr, maximal oxygen consumption (V̇o 2max ): 110 ± 18% age predicted]; 2) Young Highly Fit (27 ± 3 yr, V̇o 2max : 147 ± 8% age predicted); 3 ) Old (69 ± 5 yr, V̇o 2max : 116 ± 13% age predicted); and 4 ) Old Highly Fit (65 ± 5 yr, V̇o 2max : 162 ± 18% age predicted). At rest and at 90% W peak , DL CO , Dm CO , and Vc were decreased with age. At 90% W peak , DL CO , Dm CO , and Vc were greater in Old Highly Fit vs. Old adults. The slope of the DL CO -cardiac output (Q̇) relationship from rest to end exercise at 90% W peak was not different between Young, Young Highly Fit, Old, and Old Highly Fit (1.35 vs. 1.44 vs. 1.10 vs. 1.35 ml CO ·mmHg -1 ·liter blood -1 , P = 0.388), with no evidence of a plateau in this relationship during exercise; this was also true for Dm CO -Q̇ and Vc-Q̇. V̇o 2max was positively correlated with 1 ) DL CO , Dm CO , and Vc at rest; and 2 ) the rest to end exercise change in DL CO , Dm CO , and Vc. In conclusion, these data suggest that despite the age-associated deterioration in the structure and function of the pulmonary circulation, expansion of the pulmonary capillary network does not become limited during exercise in healthy individuals regardless of age or cardiorespiratory fitness level. NEW & NOTEWORTHY Healthy aging is a crucial area of research. This article details how differences in age and cardiorespiratory fitness level affect lung diffusing capacity, particularly during high-intensity exercise. We conclude that highly fit older adults do not experience a limit in lung diffusing capacity during high-intensity exercise. Interestingly, however, we found that highly fit older individuals demonstrate greater values of lung diffusing capacity during high-intensity exercise than their less fit age-matched counterparts. Copyright © 2017 the American Physiological Society.
Kelly, Robert E; Mellins, Robert B; Shamberger, Robert C; Mitchell, Karen K; Lawson, M Louise; Oldham, Keith T; Azizkhan, Richard G; Hebra, Andre V; Nuss, Donald; Goretsky, Michael J; Sharp, Ronald J; Holcomb, George W; Shim, Walton K T; Megison, Stephen M; Moss, R Lawrence; Fecteau, Annie H; Colombani, Paul M; Cooper, Dan; Bagley, Traci; Quinn, Amy; Moskowitz, Alan B; Paulson, James F
2013-12-01
A multicenter study of pectus excavatum was described previously. This report presents our final results. Patients treated surgically at 11 centers were followed prospectively. Each underwent a preoperative evaluation with CT scan, pulmonary function tests, and body image survey. Data were collected about associated conditions, complications, and perioperative pain. One year after treatment, patients underwent repeat chest CT scan, pulmonary function tests, and body image survey. A subset of 50 underwent exercise pulmonary function testing. Of 327 patients, 284 underwent Nuss procedure and 43 underwent open procedure without mortality. Of 182 patients with complete follow-up (56%), 18% had late complications, similarly distributed, including substernal bar displacement in 7% and wound infection in 2%. Mean initial CT scan index of 4.4 improved to 3.0 post operation (severe >3.2, normal = 2.5). Computed tomography index improved at the deepest point (xiphoid) and also upper and middle sternum. Pulmonary function tests improved (forced vital capacity from 88% to 93%, forced expiratory volume in 1 second from 87% to 90%, and total lung capacity from 94% to 100% of predicted (p < 0.001 for each). VO2 max during peak exercise increased by 10.1% (p = 0.015) and O2 pulse by 19% (p = 0.007) in 20 subjects who completed both pre- and postoperative exercise tests. There is significant improvement in lung function at rest and in VO2 max and O2 pulse after surgical correction of pectus excavatum, with CT index >3.2. Operative correction significantly reduces CT index and markedly improves the shape of the entire chest, and can be performed safely in a variety of centers. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Liu, Hai-Jian; Guo, Jian; Zhao, Qin-Hua; Wang, Lan; Yang, Wen-Lan; He, Jing; Gong, Su-Gang; Liu, Jin-Ming
2017-03-01
To study the relationship between chronotropic incompetence (CI) and disease severity and to assess the effect of CI on exercise capacity in patients with chronic obstructive pulmonary disease (COPD). Arterial blood gas analysis, pulmonary function test and cardiopulmonary exercise testing were conducted in 60 patients with stable COPD and 45 healthy volunteers. CI was defined using the chronotropic response index (CRI = (peak heart rate-resting heart rate) / (220-age-resting heart rate). Based on CRI, patients with COPD were divided into the normal chronotropic group (n = 23) and CI group (n = 37). CI was present in 61.7% of the patients with COPD. Exercise capacity (peak oxygen uptake as percentage of predicted value, peak VO 2 %pred), peak heart rate and CRI were significantly lower in patients with COPD than in controls. However, resting heart rate was significantly higher than in controls. FEV 1 %pred and exercise capacity were significantly decreased in the CI group when compared with those in the normotropic group. There was significant association between CRI with FEV 1 %pred and peak VO 2 %pred. Multivariate regression analysis showed that CRI and FEV 1 %pred were independent predictors of exercise capacity in patients with COPD. A cutoff of 0.74 for the CRI showed a specificity of 94.1% in predicting patients with a peak VO 2 %pred < 60%. CRI was associated with disease severity in patients with COPD. CI may be an important parameter to reflect exercise capacity in patients with COPD. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.
1984-01-19
To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thalliummore » defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury.« less
Günay, Ersin; Kaymaz, Dicle; Selçuk, Nursel Türkoglu; Ergün, Pinar; Sengül, Fatma; Demir, Nese
2013-11-01
Chronic obstructive pulmonary disease (COPD) is considered a worldwide major public health problem. Weight loss, muscle and fat mass depletion are common nutritional problems in COPD patients and are determinant factors in pulmonary function, health status, disability and mortality. We aimed to assess the relationships between nutritional status and perception of dyspnoea, pulmonary function tests (PFT), exercise capacity and health-related quality of life (HRQoL) using the subjective global assessment (SGA) in COPD patients who were referred for pulmonary rehabilitation programme. A total of 163 patients with stable COPD who are candidates for outpatient pulmonary rehabilitation programme were included in this study. Nutritional status for all patients was assessed by SGA. Association of SGA scores (A, B and C) and anthropometric measurements, PFT, dyspnoea scales (Medical Research Council and resting BORG scale), HRQoL (St. George Respiratory Questionnaire and Chronic Respiratory Diseases Questionnaire) and exercise testing (shuttle walking test) were studied for statistical significance. Based on SGA, 9.2% of patients were severely malnourished (SGA-C). There were significant decreases in forced expiratory volume in the first second (FEV1 ) (P = 0.009), Medical Research Council scales (P < 0.001) and exercise capacity (incremental shuttle walking test (P = 0.001) and endurance shuttle walking test (P = 0.009)) in SGA-C. Deterioration in anthropometric measurements and HRQoL measures were observed in malnourished patients. Identifying the nutritional status and determining any requirement for nutritional supplement is an important component of comprehensive pulmonary rehabilitation programme. SGA is an easy and practical method to assess nutritional status in pulmonary rehabilitation candidate patients with stable COPD. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
O'Donnell, Denis E; Elbehairy, Amany F; Webb, Katherine A; Neder, J Alberto
2017-07-01
Low inspiratory capacity (IC), chronic dyspnea, and reduced exercise capacity are inextricably linked and are independent predictors of increased mortality in chronic obstructive pulmonary disease. It is no surprise, therefore, that a major goal of management is to improve IC by reducing lung hyperinflation to improve respiratory symptoms and health-related quality of life. The negative effects of lung hyperinflation on respiratory muscle and cardiocirculatory function during exercise are now well established. Moreover, there is growing appreciation that a key mechanism of exertional dyspnea in chronic obstructive pulmonary disease is critical mechanical constraints on tidal volume expansion during exercise when resting IC is reduced. Further evidence for the importance of lung hyperinflation comes from multiple studies, which have reported the clinical benefits of therapeutic interventions that reduce lung hyperinflation and increase IC. A reduced IC in obstructive pulmonary disease is further eroded by exercise and contributes to ventilatory limitation and dyspnea. It is an important outcome for both clinical and research studies.
Prediction of pulmonary hypertension in idiopathic pulmonary fibrosis☆
Zisman, David A.; Ross, David J.; Belperio, John A.; Saggar, Rajan; Lynch, Joseph P.; Ardehali, Abbas; Karlamangla, Arun S.
2007-01-01
Summary Background Reliable, noninvasive approaches to the diagnosis of pulmonary hypertension in idiopathic pulmonary fibrosis are needed. We tested the hypothesis that the forced vital capacity to diffusing capacity ratio and room air resting pulse oximetry may be combined to predict mean pulmonary artery pressure (MPAP) in idiopathic pulmonary fibrosis. Methods Sixty-one idiopathic pulmonary fibrosis patients with available right-heart catheterization were studied. We regressed measured MPAP as a continuous variable on pulse oximetry (SpO2) and percent predicted forced vital capacity (FVC) to percent-predicted diffusing capacity ratio (% FVC/% DLco) in a multivariable linear regression model. Results Linear regression generated the following equation: MPAP = −11.9+0.272 × SpO2+0.0659 × (100−SpO2)2+3.06 × (% FVC/% DLco); adjusted R2 = 0.55, p<0.0001. The sensitivity, specificity, positive predictive and negative predictive value of model-predicted pulmonary hypertension were 71% (95% confidence interval (CI): 50–89%), 81% (95% CI: 68–92%), 71% (95% CI: 51–87%) and 81% (95% CI: 68–94%). Conclusions A pulmonary hypertension predictor based on room air resting pulse oximetry and FVC to diffusing capacity ratio has a relatively high negative predictive value. However, this model will require external validation before it can be used in clinical practice. PMID:17604151
Regulation of muscle sympathetic nerve activity after bed rest deconditioning
NASA Technical Reports Server (NTRS)
Pawelczyk, J. A.; Zuckerman, J. H.; Blomqvist, C. G.; Levine, B. D.
2001-01-01
Cardiovascular deconditioning reduces orthostatic tolerance. To determine whether changes in autonomic function might produce this effect, we developed stimulus-response curves relating limb vascular resistance, muscle sympathetic nerve activity (MSNA), and pulmonary capillary wedge pressure (PCWP) with seven subjects before and after 18 days of -6 degrees head-down bed rest. Both lower body negative pressure (LBNP; -15 and -30 mmHg) and rapid saline infusion (15 and 30 ml/kg body wt) were used to produce a wide variation in PCWP. Orthostatic tolerance was assessed with graded LBNP to presyncope. Bed rest reduced LBNP tolerance from 23.9 +/- 2.1 to 21.2 +/- 1.5 min, respectively (means +/- SE, P = 0.02). The MSNA-PCWP relationship was unchanged after bed rest, though at any stage of the LBNP protocol PCWP was lower, and MSNA was greater. Thus bed rest deconditioning produced hypovolemia, causing a shift in operating point on the stimulus-response curve. The relationship between limb vascular resistance and MSNA was not significantly altered after bed rest. We conclude that bed rest deconditioning does not alter reflex control of MSNA, but may produce orthostatic intolerance through a combination of hypovolemia and cardiac atrophy.
Hall, E. T.; Sá, R. C.; Holverda, S.; Arai, T. J.; Dubowitz, D. J.; Theilmann, R. J.; Prisk, G. K.
2013-01-01
The Zone model of pulmonary perfusion predicts that exercise reduces perfusion heterogeneity because increased vascular pressure redistributes flow to gravitationally nondependent lung, and causes dilation and recruitment of blood vessels. However, during exercise in animals, perfusion heterogeneity as measured by the relative dispersion (RD, SD/mean) is not significantly decreased. We evaluated the effect of exercise on pulmonary perfusion in six healthy supine humans using magnetic resonance imaging (MRI). Data were acquired at rest, while exercising (∼27% of maximal oxygen consumption) using a MRI-compatible ergometer, and in recovery. Images were acquired in most of the right lung in the sagittal plane at functional residual capacity, using a 1.5-T MR scanner equipped with a torso coil. Perfusion was measured using arterial spin labeling (ASL-FAIRER) and regional proton density using a fast multiecho gradient-echo sequence. Perfusion images were corrected for coil-based signal heterogeneity, large conduit vessels removed and quantified (in ml·min−1·ml−1) (perfusion), and also normalized for density and quantified (in ml·min−1·g−1) (density-normalized perfusion, DNP) accounting for tissue redistribution. DNP increased during exercise (11.1 ± 3.5 rest, 18.8 ± 2.3 exercise, 13.2 ± 2.2 recovery, ml·min−1·g−1, P < 0.0001), and the increase was largest in nondependent lung (110 ± 61% increase in nondependent, 63 ± 35% in mid, 70 ± 33% in dependent, P < 0.005). The RD of perfusion decreased with exercise (0.93 ± 0.21 rest, 0.73 ± 0.13 exercise, 0.94 ± 0.18 recovery, P < 0.005). The RD of DNP showed a similar trend (0.82 ± 0.14 rest, 0.75 ± 0.09 exercise, 0.81 ± 0.10 recovery, P = 0.13). In conclusion, in contrast to animal studies, in supine humans, mild exercise decreased perfusion heterogeneity, consistent with Zone model predictions. PMID:24356515
Van Laethem, Christophe; Goethals, Marc; Verstreken, Sofie; Walravens, Maarten; Wellens, Francis; De Proft, Margot; Bartunek, Jozef; Vanderheyden, Marc
2007-09-01
Recently, a new linear measure of ventilatory response to exercise, the oxygen uptake efficiency slope (OUES), was proposed in the evaluation of heart failure patients. No data are available on the response of the OUES after orthotopic heart transplantation (HTx). Thirty patients who underwent HTx between 1999 and 2003 were included in the study. Data from maximal cardiopulmonary exercise test, resting pulmonary function and hemodynamic assessment were collected before the transplant at time of screening and 1 year after HTx. During the first year after HTx, OUES and normalized OUES for body weight (OUES/kg) increased significantly from 15.6 +/- 4.9 to 19.7 +/- 4.8 (p < 0.05). Changes in OUES/kg were significantly correlated with changes in peak VO2, VAT and peak VE, and inversely to changes in peak VD/VT, but not to changes in VE/VCO2 slope (all p < 0.05). Changes in OUES or OUES/kg did not correlate with any changes in measures of resting lung volumes or capacities and measures of central hemodynamic function after HTx. OUES improved significantly after HTx, but, similar to other exercise parameters, remained considerably impaired. The changes in OUES were highly correlated with the improvements in other exercise variables, but did not correlate with marked improvements in central hemodynamics or resting lung function.
Shults, Jill A.; Curtis, Brenda J.; Chen, Michael M.; O'Halloran, Eileen B.; Ramirez, Luis; Kovacs, Elizabeth J.
2015-01-01
Clinical data indicate that cutaneous burn injuries covering greater than ten percent total body surface area are associated with significant morbidity and mortality, where pulmonary complications, including acute respiratory distress syndrome (ARDS), contribute to nearly half of all patient deaths. Approximately 50% of burn patients are intoxicated at the time of hospital admission, which increases days on ventilators by three-fold, and doubles length of hospital admittance, compared to non-intoxicated burn patients. The most common drinking pattern in the United States is binge drinking, where one rapidly consumes alcoholic beverages (4 for women, 5 for men) in 2 hours and an estimated 38 million Americans binge drink, often several times per month. Experimental data demonstrate a single binge ethanol exposure prior to scald injury, impairs innate and adaptive immune responses, thereby enhancing infection susceptibility and amplifying pulmonary inflammation, neutrophil infiltration, and edema, and is associated with increased mortality. Since these characteristics are similar to those observed in ARDS burn patients, our study objective was to determine whether ethanol intoxication and burn injury and the subsequent pulmonary congestion affects physiological parameters of lung function using non-invasive and unrestrained plethysmography in a murine model system. Furthermore, to mirror young adult binge drinking patterns, and to determine the effect of multiple ethanol exposures on pulmonary inflammation, we utilized an episodic binge ethanol exposure regimen, where mice were exposed to ethanol for a total of 6 days (3 days ethanol, 4 days rest, 3 days ethanol) prior to burn injury. Our analyses demonstrate mice exposed to episodic binge ethanol and burn injury have higher mortality, increased pulmonary congestion and neutrophil infiltration, elevated neutrophil chemoattractants, and respiratory dysfunction, compared to burn or ethanol intoxication alone. Overall, our study identifies plethysmography as a useful tool for characterizing respiratory function in a murine burn model and for future identification of therapeutic compounds capable of restoring pulmonary functionality. PMID:26364264
Non-invasive imaging of global and regional cardiac function in pulmonary hypertension
Crowe, Tim; Jayasekera, Geeshath
2017-01-01
Pulmonary hypertension (PH) is a progressive illness characterized by elevated pulmonary artery pressure; however, the main cause of mortality in PH patients is right ventricular (RV) failure. Historically, improving the hemodynamics of pulmonary circulation was the focus of treatment; however, it is now evident that cardiac response to a given level of pulmonary hemodynamic overload is variable but plays an important role in the subsequent prognosis. Non-invasive tests of RV function to determine prognosis and response to treatment in patients with PH is essential. Although the right ventricle is the focus of attention, it is clear that cardiac interaction can cause left ventricular dysfunction, thus biventricular assessment is paramount. There is also focus on the atrial chambers in their contribution to cardiac function in PH. Furthermore, there is evidence of regional dysfunction of the two ventricles in PH, so it would be useful to understand both global and regional components of dysfunction. In order to understand global and regional cardiac function in PH, the most obvious non-invasive imaging techniques are echocardiography and cardiac magnetic resonance imaging (CMRI). Both techniques have their advantages and disadvantages. Echocardiography is widely available, relatively inexpensive, provides information regarding RV function, and can be used to estimate RV pressures. CMRI, although expensive and less accessible, is the gold standard of biventricular functional measurements. The advent of 3D echocardiography and techniques including strain analysis and stress echocardiography have improved the usefulness of echocardiography while new CMRI technology allows the measurement of strain and measuring cardiac function during stress including exercise. In this review, we have analyzed the advantages and disadvantages of the two techniques and discuss pre-existing and novel forms of analysis where echocardiography and CMRI can be used to examine atrial, ventricular, and interventricular function in patients with PH at rest and under stress. PMID:29064323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, C.A.; Wilson, R.A.; Kanarek, D.J.
Exercise radionuclide angiography is being used to evaluate left ventricular function in patients with aortic regurgitation. Ejection fraction is the most common variable analyzed. To better understand the rest and exercise ejection fraction in this setting, 20 patients with asymptomatic or minimally symptomatic severe aortic regurgitation were studied. All underwent simultaneous supine exercise radionuclide angiography and pulmonary gas exchange measurement and underwent rest and exercise measurement of pulmonary artery wedge pressure (PAWP) during cardiac catheterization. Eight patients had a peak exercise PAWP less than 15 mm Hg (group 1) and 12 had a peak exercise PAWP greater than or equalmore » to 15 mm Hg (group 2). Group 1 patients were younger and more were in New York Heart Association class I. The two groups had similar cardiothoracic ratios, changes in ejection fractions with exercise, and rest and exercise regurgitant indexes. Using multiple regression analysis, the best correlate of the exercise PAWP was peak oxygen uptake (r . -0.78, p less than 0.01). No other measurement added significantly to the regression. When peak oxygen uptake was excluded, rest and exercise ejection fraction also correlated significantly (r . -0.62 and r . -0.60, respectively, p less than 0.01). Patients with asymptomatic or minimally symptomatic severe aortic regurgitation have a wide spectrum of cardiac performance in terms of the PAWP during exercise. The absolute rest and exercise ejection fraction and the level of exercise achieved are noninvasive variables that correlate with exercise PAWP in aortic regurgitation, but the change in ejection fraction with exercise by itself is not.« less
Pressure-Flow During Exercise Catheterization Predicts Survival in Pulmonary Hypertension.
Hasler, Elisabeth D; Müller-Mottet, Séverine; Furian, Michael; Saxer, Stéphanie; Huber, Lars C; Maggiorini, Marco; Speich, Rudolf; Bloch, Konrad E; Ulrich, Silvia
2016-07-01
Pulmonary hypertension manifests with impaired exercise capacity. Our aim was to investigate whether the mean pulmonary arterial pressure to cardiac output relationship (mPAP/CO) predicts transplant-free survival in patients with pulmonary arterial hypertension (PAH) and inoperable chronic thromboembolic pulmonary hypertension (CTEPH). Hemodynamic data according to right heart catheterization in patients with PAH and CTEPH at rest and during supine incremental cycle exercise were analyzed. Transplant-free survival and predictive value of hemodynamics were assessed by using Kaplan-Meier and Cox regression analyses. Seventy patients (43 female; 54 with PAH, 16 with CTEPH; median (quartiles) age, 65 [50; 73] years; mPAP, 34 [29; 44] mm Hg; cardiac index, 2.8 [2.3; 3.5] [L/min]/m(2)) were followed up for 610 (251; 1256) days. Survival at 1, 3, 5, and 7 years was 89%, 81%, 71%, and 59%. Age, World Health Organization-functional class, 6-min walk test, and mixed-venous oxygen saturation (but not resting hemodynamics) predicted transplant-free survival. Maximal workload (hazard ratio [HR], 0.94 [95% CI, 0.89-0.99]; P = .027), peak cardiac index (HR, 0.51 [95% CI, 0.27-0.95]; P = .034), change in cardiac index, 0.25 [95% CI, 0.06-0.94]; P = .040), and mPAP/CO (HR, 1.02 [95% CI, 1.01-1.03]; P = .003) during exercise predicted survival. Values for mPAP/CO predicted 3-year transplant-free survival with an area under the curve of 0.802 (95% CI, 0.66-0.95; P = .004). In this collective of patients with PAH or CTEPH, the pressure-flow relationship during exercise predicted transplant-free survival and correlated with established markers of disease severity and outcome. Right heart catheterization during exercise may provide important complementary prognostic information in the management of pulmonary hypertension. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Pulmonary hypertension in chronic obstructive pulmonary disease and interstitial lung diseases.
Weitzenblum, Emmanuel; Chaouat, Ari; Canuet, Matthieu; Kessler, Romain
2009-08-01
Pulmonary hypertension (PH) is a common complication of chronic respiratory diseases and particularly of chronic obstructive pulmonary disease (COPD) and interstitial lung diseases (ILD). Owing to its frequency COPD is by far the most common cause of PH. It is generally a mild to moderate PH, pulmonary artery mean pressure (PAP) usually ranging between 20 and 25 mm Hg, but PH may worsen during exercise, sleep, and particularly during exacerbations of the disease. These acute increases in PAP may lead to the development of right heart failure. A small proportion of COPD patients may present "disproportionate" PH defined by a resting PAP >35 to 40 mm Hg. The prognosis is particularly poor in these patients. PH is relatively frequent in advanced ILD and particularly in idiopathic pulmonary fibrosis. As in COPD the diagnosis is suggested by Doppler echocardiography, but the confirmation still requires right heart catheterization. As in COPD, functional (alveolar hypoxia) and morphological factors (vascular remodeling, destruction of the pulmonary parenchyma) explain the elevation of pulmonary vascular resistance that leads to PH. Also as in COPD PH is most often mild to moderate. In ILD the presence of PH predicts a poor prognosis. The treatment of PH relies on long-term oxygen therapy. "New" vasodilator drugs have rarely been used in COPD and ILD patients exhibiting severe PH. In advanced ILD the presence of PH is a supplemental argument for considering lung transplantation.
Long-Term Health Outcomes in High-Altitude Pulmonary Hypertension
Abbott, Cheryl; Meadows, Christina A.; Roach, Robert C.; Honigman, Benjamin; Bull, Todd M.
2017-01-01
Abstract Robinson, Jeffrey C., Cheryl Abbott, Christina A. Meadows, Robert C. Roach, Benjamin Honigman, and Todd M. Bull. Long-term health outcomes in high-altitude pulmonary hypertension. High Alt Med Biol. 18:61–66, 2017. Background: High-altitude pulmonary hypertension (HAPH) is one of several known comorbidities that effect populations living at high altitude, but there have been no studies looking at long-term health consequences of HAPH. We aimed to determine whether HAPH during adolescence predisposes to significant pulmonary hypertension (PH) later in life, as well as identify how altitude exposure and HAPH correlate with functional class and medical comorbidities. Methods: We utilized a previously published cohort of 28 adolescents from Leadville, Colorado, that underwent right heart catheterization at 10,150 ft (3094 m) in 1962, with many demonstrating PH as defined by resting mean pulmonary arterial pressure ≥25 mmHg. We located participants of the original study and had living subjects complete demographic and health surveys to assess for the presence of PH and other medical comorbidities, along with current functional status. Results: Seventy-five percent of the individuals who participated in the original study were located. Those with HAPH in the past were more prone to have exertional limitation corresponding to WHO functional class >1. Fifty-five years following the original study, we found no significant differences in prevalence of medical comorbidities, including PH, among those with and without HAPH in their youth. Conclusions: Surveyed individuals did not report significant PH, but those with HAPH in their youth were more likely to report functional limitation. With a significant worldwide population living at moderate and high altitudes, further study of long-term health consequences is warranted. PMID:28061144
Bokov, P; Delclaux, C
2016-02-01
Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
De Meester, Pieter; Van De Bruaene, Alexander; Herijgers, Paul; Voigt, Jens-Uwe; Vanhees, Luc; Budts, Werner
2013-08-01
Although closure of an atrial septal defect type secundum often normalizes right heart dimensions and pressures, mild tricuspid insufficiency might persist. This study aimed at (1) identification of determinants explaining the persistence of tricuspid insufficiency after atrial septal defect closure, and (2) evaluation of functional capacity of patients with persistent mild tricuspid insufficiency. Twenty-five consecutive patients (age 42+17 y) were included from the outpatient clinic of congenital heart disease at the University Hospitals of Leuven. All underwent transthoracic echocardiography, semi-supine bicycle stress echocardiography and cardio-pulmonary exercise testing. Six patients (24%) had mild tricuspid insufficiency (2/4) compared to 19 patients (76%) with no or minimal tricuspid insufficiency ( 1/4) as assessed by semi-quantitative colour Doppler echocardiography. Mann-Whitney U and Fisher's exact tests were performed where applicable. Patients with persistent mild tricuspid insufficiency were significantly older than those with no or minimal tricuspid insufficiency (P = 0.042). At rest, no differences in right heart configuration, mean pulmonary artery pressure or right ventricular function were found. At peak exercise, mean pulmonary artery pressure was significantly higher in patients with mild persistent tricuspid insufficiency (P = 0.026). Peak oxygen uptake was significantly lower in patients with mild persistent tricuspid insufficiency (P = 0.019). Mild tricuspid insufficiency after atrial septal defect repair occurs more frequently in older patients and in patients with higher mean pulmonary artery pressure at peak exercise. In patients with mild tricuspid insufficiency, functional capacity was more reduced. Mild tricuspid insufficiency could be a marker of subclinical persistent pressure load on the right ventricle.
Stam, Kelly; van Duin, Richard W B; Uitterdijk, André; Cai, Zongye; Duncker, Dirk J; Merkus, Daphne
2018-03-01
Chronic thromboembolic pulmonary hypertension (CTEPH) develops in 4% of patients after pulmonary embolism and is accompanied by an impaired exercise tolerance, which is ascribed to the increased right ventricular (RV) afterload in combination with a ventilation/perfusion (V/Q) mismatch in the lungs. The present study aimed to investigate changes in arterial Po 2 and hemodynamics in response to graded treadmill exercise during development and progression of CTEPH in a novel swine model. Swine were chronically instrumented and received multiple pulmonary embolisms by 1) microsphere infusion (Spheres) over 5 wk, 2) endothelial dysfunction by administration of the endothelial nitric oxide synthase inhibitor N ω -nitro-l-arginine methyl ester (L-NAME) for 7 wk, 3) combined pulmonary embolisms and endothelial dysfunction (L-NAME + Spheres), or 4) served as sham-operated controls (sham). After a 9 wk followup, embolization combined with endothelial dysfunction resulted in CTEPH, as evidenced by mean pulmonary artery pressures of 39.5 ± 5.1 vs. 19.1 ± 1.5 mmHg (Spheres, P < 0.001), 22.7 ± 2.0 mmHg (L-NAME, P < 0.001), and 20.1 ± 1.5 mmHg (sham, P < 0.001), and a decrease in arterial Po 2 that was exacerbated during exercise, indicating V/Q mismatch. RV dysfunction was present after 5 wk of embolization, both at rest (trend toward increased RV end-systolic lumen area, P = 0.085, and decreased stroke volume index, P = 0.042) and during exercise (decreased stroke volume index vs. control, P = 0.040). With sustained pulmonary hypertension, RV hypertrophy (Fulton index P = 0.022) improved RV function at rest and during exercise, but this improvement was insufficient in CTEPH swine to result in an exercise-induced increase in cardiac index. In conclusion, embolization in combination with endothelial dysfunction results in CTEPH in swine. Exercise increased RV afterload, exacerbated the V/Q mismatch, and unmasked RV dysfunction. NEW & NOTEWORTHY Here, we present the first double-hit chronic thromboembolic pulmonary hypertension swine model. We show that embolization as well as endothelial dysfunction is required to induce sustained pulmonary hypertension, which is accompanied by altered exercise hemodynamics and an exacerbated ventilation/perfusion mismatch during exercise.
Joint US/USSR study: Comparison of effects of horizontal and head-down bed rest
NASA Technical Reports Server (NTRS)
Sandler, Harold; Grigoriev, Anatoli I.
1990-01-01
An account is given of the results of the first joint U.S./U.S.S.R. bed rest study. The study was accomplished in two parts: A soviet part (May to June 1979) and an American part (July to August 1979). Both studies were conducted under identical conditions and provided a basis for comparison of physiologic reactions and standardizing procedures and methods. Each experiment consisted of three periods: 14 days of pre-bed rest control, 7 days of bed rest, and a 10 to 14 day recovery period. Ten males participated in each study, with five subjects experiencing horizontal bed rest and five subjects a -6 deg head-down body position. Biochemical and hormonal measurements were made of blood and urine, with particular attention to electrolyte metabolism and kidney function; cardio-pulmonary changes at rest and exercise; influence of Lower Body Negative Pressure (LBNP); and incremental exercise using a bicyle ergometer while supine and sitting. Expected moderate changes were noted to occur for various physiologic parameters. Clinical evidence pointed to the fact that head-down bed rest when compared to horizontal conditions more closely matched the conditions seen after manned spaceflight. For the most part, statistically significant differences between the two body positions were not observed.
Makhabah, Dewi Nurul; Martino, Federica; Ambrosino, Nicolino
2013-01-23
Postoperative pulmonary complications (PPC) are a major cause of morbidity, mortality, prolonged hospital stay, and increased cost of care. Physiotherapy (PT) programs in post-surgical and critical area patients are aimed to reduce the risks of PPC due to long-term bed-rest, to improve the patient's quality of life and residual function, and to avoid new hospitalizations. At this purpose, PT programs apply advanced cost-effective therapeutic modalities to decrease complications and patient's ventilator-dependency. Strategies to reduce PPC include monitoring and reduction of risk factors, improving preoperative status, patient education, smoking cessation, intra-operative and postoperative pulmonary care. Different PT techniques, as a part of the comprehensive management of patients undergoing cardiac, upper abdominal, and thoracic surgery, may prevent and treat PPC such as secretion retention, atelectasis, and pneumonia.
van Gestel, A J R; Clarenbach, C F; Stöwhas, A C; Teschler, S; Russi, E W; Teschler, H; Kohler, M
2012-01-01
Previous studies with small sample sizes reported contradicting findings as to whether pulmonary function tests can predict exercise-induced oxygen desaturation (EID). To evaluate whether forced expiratory volume in one second (FEV(1)), resting oxygen saturation (SpO(2)) and diffusion capacity for carbon monoxide (DLCO) are predictors of EID in chronic obstructive pulmonary disease (COPD). We measured FEV(1), DLCO, SpO(2) at rest and during a 6-min walking test as well as physical activity by an accelerometer. A drop in SpO(2) of >4 to <90% was defined as EID. To evaluate associations between measures of lung function and EID univariate and multivariate analyses were used and positive/negative predictive values were calculated. Receiver operating characteristic curve analysis was performed to determine the most useful threshold in order to predict/exclude EID. We included 154 patients with COPD (87 females). The mean FEV(1) was 43.0% (19.2) predicted and the prevalence of EID was 61.7%. The only independent predictor of EID was FEV(1) and the optimal cutoff value of FEV(1) was at 50% predicted (area under ROC curve, 0.85; p < 0.001). The positive predictive value of a threshold of FEV(1) <50% was 0.83 with a likelihood ratio of 3.03 and the negative predicting value of a threshold of FEV(1) ≥80% was 1.0. The severity of EID was correlated with daily physical activity (r = -0.31, p = 0.008). EID is highly prevalent among patients with COPD and can be predicted by FEV(1). EID seems to be associated with impaired daily physical activity which supports its clinical importance. Copyright © 2012 S. Karger AG, Basel.
2013-01-01
Background Increased susceptibility of smokers to ambient PM may potentially promote development of COPD and accelerate already present disease. Objectives To characterize the acute and subacute lung function response and inflammatory effects of controlled chamber exposure to concentrated ambient fine particles (CAFP) with MMAD ≤ 2.5 microns in ex-smokers and lifetime smokers. Methods Eleven subjects, aged 35–74 years, came to the laboratory 5 times; a training day and two exposure days separated by at least 3 weeks, each with a post-exposure visit 22 h later. Double-blind and counterbalanced exposures to “clean air” (mean 1.5 ± 0.6 μg/m3) or CAFP (mean 108.7 ± 24.8 μg/m3 ) lasted 2 h with subjects at rest. Results At 3 h post-exposure subjects’ DTPA clearance half-time significantly increased by 6.3 min per 100 μg/m3 of CAFP relative to “clean air”. At 22 h post-exposure they showed significant reduction of 4.3% per 100 μg/m3 in FEV1 and a significant DLCO decrease by 11.1% per 100 μg/m3 of CAFP relative to “clean air”. At both 3 h and 22 h the HDL cholesterol level significantly decreased by 4.5% and 4.1%, respectively. Other blood chemistries and markers of lung injury, inflammation and procoagulant activity were within the normal range of values at any condition. Conclusions The results suggest that an acute 2 h resting exposure of smokers and ex-smokers to fine ambient particulate matter may transiently affect pulmonary function (spirometry and DLCO) and increase DTPA clearance half-time. Except for a post exposure decrease in HDL no other markers of pulmonary inflammation, prothrombotic activity and lung injury were significantly affected under the conditions of exposure. PMID:24245863
Determinants of exercise-induced pulmonary arterial hypertension in systemic sclerosis.
Voilliot, Damien; Magne, Julien; Dulgheru, Raluca; Kou, Seisyou; Henri, Christine; Laaraibi, Saloua; Sprynger, Muriel; Andre, Béatrice; Pierard, Luc A; Lancellotti, Patrizio
2014-05-15
Exercise-induced pulmonary arterial hypertension (EIPH) in systemic sclerosis (SSc) has already been observed but its determinants remain unclear. The aim of this study was to determine the incidence and the determinants of EIPH in SSc. We prospectively enrolled 63 patients with SSc (age 54±3years, 76% female) followed in CHU Sart-Tilman in Liège. All patients underwent graded semi-supine exercise echocardiography. Systolic pulmonary arterial pressure (sPAP) was derived from the peak velocity of the tricuspid regurgitation jet and adding the estimation of right atrial pressure, both at rest and during exercise. Resting pulmonary arterial hypertension (PH) was defined as sPAP > 35 mmHg and EIPH as sPAP > 50 mmHg during exercise. The following formulas were used: mean PAP (mPAP) = 0.61 × sPAP + 2, left atrial pressure (LAP)=1.9+1.24 × left ventricular (LV) E/e' and pulmonary vascular resistance (PVR)=(mPAP-LAP)/LV cardiac output (CO) and slope of mPAP-LVCO relationship=changes in mPAP/changes in LVCO. Resting PH was present in 3 patients (7%) and 21 patients developed EIPH (47%). Patients with EIPH had higher resting LAP (10.3 ± 2.2 versus 8.8 ± 2.3 mmHg; p = 0.03), resting PVR (2.6 ± 0.8 vs. 1.4 ± 1.1 Woods units; p=0.004), exercise LAP (13.3 ± 2.3 vs. 9 ± 1.7 mmHg; p < 0.0001), exercise PVR (3.6 ± 0.7 vs. 2.1 ± 0.9 Woods units; p = 0.02) and slope of mPAP-LVCO (5.8 ± 2.4 vs. 2.9 ± 2.1 mmHg/L/min; p < 0.0001). After adjustment for age and gender, exercise LAP (β=3.1 ± 0.8; p=0.001) and exercise PVR (β=7.9 ± 1.7; p=0.0001) were independent determinants of exercise sPAP. EIPH is frequent in SSc patients and is mainly related to both increased exercise LV filling pressure and exercise PVR. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Gaffurini, P; Bissolotti, L; Calza, S; Calabretto, C; Orizio, C; Gobbo, M
2013-02-01
Activity promoting video game (APVG) practice significantly affects energy metabolism through energy expenditure (EE) increase and has been recently included in strategies for health promotion. It is not known if the APVG practice provides similar outcomes in subjects with spinal cord injury (SCI). Aim of the study was to evaluate cardio-pulmonary and metabolic adaptations during APVG practice and to find whether EE increase above resting condition could suggest the inclusion of this exercise in a more general strategy for health promotion and body weight control in subjects with SCI. Repeated measures study. Rehabilitation Institute. Ten male subjects with SCI (lesion levels from C7 to L1) age 26 to 55 years. We recorded pulmonary ventilation (VE), oxygen consumption (VO2) for EE esteem and heart rate (HR) at rest and while playing virtual bowling, tennis and boxing games using a portable metabolimeter equipped with ECG electrodes. The standard metabolic equivalent of task (METs) was calculated offline. The metabolic and functional parameters were referred to the 10th minute of each activity. Metabolic and functional parameters increased significantly from rest to bowling, tennis and boxing. METs exceeded in average 3 during boxing. One hour of APVG can increase daily EE by about 6% (bowling), 10% (tennis) and 15% (boxing). These considerable results suggest that physical exertion during APVG practice in subjects with SCI could contribute to health promotion as well as caloric balance control, especially when boxing is considered. This can be safely achieved at home with regular activity. These findings substantiate the potential for novel exercise modalities to counteract deconditioning due to inactivity in subjects with SCI by promoting physical activity through implementation of APVG exercise programs.
Continuous intercostal nerve blockade for rib fractures: ready for primetime?
Truitt, Michael S; Murry, Jason; Amos, Joseph; Lorenzo, Manuel; Mangram, Alicia; Dunn, Ernest; Moore, Ernest E
2011-12-01
Providing analgesia for patients with rib fractures continues to be a management challenge. The objective of this study was to examine our experience with the use of a continuous intercostal nerve block (CINB). Although this technique is being used, little data have been published documenting its use and efficacy. We hypothesized that a CINB would provide excellent analgesia, improve pulmonary function, and decrease length of stay (LOS). Consecutive adult blunt trauma patients with three or more unilateral rib fractures were prospectively studied over 24 months. The catheters were placed at the bedside in the extrathoracic, paravertebral location, and 0.2% ropivacaine was infused. Respiratory rate, preplacement (PRE) numeric pain scale (NPS) scores, and sustained maximal inspiration (SMI) lung volumes were determined at rest and after coughing. Parameters were repeated 60 minutes after catheter placement (POST). Hospital LOS comparison was made with historical controls using epidural analgesia. Over the study period, 102 patients met inclusion criteria. Mean age was 69 (21-96) years, mean injury severity score was 14 (9-16), and the mean number of rib fractures was 5.8 (3-10). Mean NPS improved significantly (PRE NPS at rest = 7.5 vs. POST NPS at rest = 2.6, p < 0.05, PRE NPS after cough = 9.4, POST after cough = 3.6, p < 0.05) which was associated with an increase in the SMI (PRE SMI = 0.4 L and POST SMI = 1.3 L, p < 0.05). Respiratory rate decreased significantly (p < 0.05) and only 2 of 102 required mechanical ventilation. Average LOS for the study population was 2.9 days compared with 5.9 days in the historical control. No procedural or drug-related complications occurred. Utilization of CINB significantly improved pulmonary function, pain control, and shortens LOS in patients with rib fractures.
Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D
2017-10-15
Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants also increased, while the diastolic time constant decreased. The forward compression wave energy decreased by ∼8% in controls and ∼6% in PAH patients during expiration compared to inspiration, while the wave speed remained unchanged throughout the respiratory cycle. Wave energy decreased during Valsalva manoeuvre (by ∼45%) and handgrip exercise (by ∼27%) with unaffected wave speed. Moreover, the reservoir and excess pressures decreased during Valsalva manoeuvre but remained unaltered during handgrip exercise. In conclusion, reservoir-excess pressure analysis applied to the pulmonary artery revealed distinctive differences between controls and PAH patients. Variations in the ventricular preload and afterload influence pulmonary arterial wave propagation as demonstrated by changes in wave energy during spontaneous respiration and dynamic stress tests. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Haemodynamic dose-response effects of intravenous nisoldipine in coronary artery disease.
Silke, B; Frais, M A; Muller, P; Verma, S P; Reynolds, G; Taylor, S H
1985-01-01
The circulatory consequences of slow-calcium channel blockade with a new dihydropyridine nisoldipine were evaluated at rest and during exercise-induced angina in 16 patients with angiographically proven coronary artery disease. In 10 patients resting cardiac stroke output (thermodilution) and pulmonary artery occluded pressure were determined following four intravenous nisoldipine injections (cumulative dosage of 1, 2, 4 and 8 micrograms kg-1). The exercise effects of nisoldipine were evaluated by comparing the effects of the 8 micrograms kg-1 cumulative dosage with a control exercise period at the same workload. At rest nisoldipine reduced systemic vascular resistance and mean arterial pressure, and increased heart rate, cardiac and stroke volume indices. During 4 min supine-bicycle exercise nisoldipine reduced systemic mean arterial pressure and vascular resistance; this resulted in augmented cardiac and stroke volume indices at an unchanged pulmonary artery occluded pressure. In six additional patients rest and exercise ejection fractions were measured using a nonimaging nuclear probe. Nisoldipine (4 micrograms kg-1) resulted in a small trend to increase left ventricular rest and exercise ejection fraction. These data demonstrated improved rest and exercise cardiac performance following nisoldipine in patients with severe coronary artery disease. PMID:4091998
Surgical Placement of Catheters for Long-term Cardiovascular Exercise Testing in Swine
van Duin, Richard W B; Verzijl, Annemarie; Reiss, Irwin K; Duncker, Dirk J; Merkus, Daphne
2016-01-01
This protocol describes the surgical procedure to chronically instrument swine and the procedure to exercise swine on a motor-driven treadmill. Early cardiopulmonary dysfunction is difficult to diagnose, particularly in animal models, as cardiopulmonary function is often measured invasively, requiring anesthesia. As many anesthetic agents are cardiodepressive, subtle changes in cardiovascular function may be masked. In contrast, chronic instrumentation allows for measurement of cardiopulmonary function in the awake state, so that measurements can be obtained under quiet resting conditions, without the effects of anesthesia and acute surgical trauma. Furthermore, when animals are properly trained, measurements can also be obtained during graded treadmill exercise. Flow probes are placed around the aorta or pulmonary artery for measurement of cardiac output and around the left anterior descending coronary artery for measurement of coronary blood flow. Fluid-filled catheters are implanted in the aorta, pulmonary artery, left atrium, left ventricle and right ventricle for pressure measurement and blood sampling. In addition, a 20 G catheter is positioned in the anterior interventricular vein to allow coronary venous blood sampling. After a week of recovery, swine are placed on a motor-driven treadmill, the catheters are connected to pressure and flow meters, and swine are subjected to a five-stage progressive exercise protocol, with each stage lasting 3 min. Hemodynamic signals are continuously recorded and blood samples are taken during the last 30 sec of each exercise stage. The major advantage of studying chronically instrumented animals is that it allows serial assessment of cardiopulmonary function, not only at rest but also during physical stress such as exercise. Moreover, cardiopulmonary function can be assessed repeatedly during disease development and during chronic treatment, thereby increasing statistical power and hence limiting the number of animals required for a study. PMID:26889804
Exposure to wood smoke particles produces inflammation in healthy volunteers.
Ghio, Andrew J; Soukup, Joleen M; Case, Martin; Dailey, Lisa A; Richards, Judy; Berntsen, Jon; Devlin, Robert B; Stone, Susan; Rappold, Ana
2012-03-01
Human exposure to wood smoke particles (WSP) impacts on human health through changes in indoor air quality, exposures from wild fires, burning of biomass and air pollution. This investigation tested the postulate that healthy volunteers exposed to WSP would demonstrate evidence of both pulmonary and systemic inflammation. Ten volunteers were exposed to filtered air and, 3 weeks or more later, WSP. Each exposure included alternating 15 min of exercise and 15 min of rest for a total duration of 2 h. Wood smoke was generated by heating an oak log on an electric element and then delivered to the exposure chamber. Endpoints measured in the volunteers included symptoms, pulmonary function tests, measures of heart rate variability and repolarisation, blood indices and analysis of cells and fluid obtained during bronchoalveolar lavage. Mean particle mass for the 10 exposures to air and WSP was measured using the mass of particles collected on filters and found to be below the detectable limit and 485±84 μg/m(3), respectively (mean±SD). There was no change in either symptom prevalence or pulmonary function with exposure to WSP. At 20 h after wood smoke exposure, blood tests demonstrated an increased percentage of neutrophils, and bronchial and bronchoalveolar lavage revealed a neutrophilic influx. We conclude that exposure of healthy volunteers to WSP may be associated with evidence of both systemic and pulmonary inflammation.
Reduced Exercise Tolerance and Pulmonary Capillary Recruitment with Remote Secondhand Smoke Exposure
Arjomandi, Mehrdad; Haight, Thaddeus; Sadeghi, Nasrat; Redberg, Rita; Gold, Warren M.
2012-01-01
Rationale Flight attendants who worked on commercial aircraft before the smoking ban in flights (pre-ban FAs) were exposed to high levels of secondhand smoke (SHS). We previously showed never-smoking pre-ban FAs to have reduced diffusing capacity (Dco) at rest. Methods To determine whether pre-ban FAs increase their Dco and pulmonary blood flow () during exercise, we administered a symptom-limited supine-posture progressively increasing cycle exercise test to determine the maximum work (watts) and oxygen uptake () achieved by FAs. After 30 min rest, we then measured Dco and at 20, 40, 60, and 80 percent of maximum observed work. Results The FAs with abnormal resting Dco achieved a lower level of maximum predicted work and compared to those with normal resting Dco (mean±SEM; 88.7±2.9 vs. 102.5±3.1%predicted ; p = 0.001). Exercise limitation was associated with the FAs' FEV1 (r = 0.33; p = 0.003). The Dco increased less with exercise in those with abnormal resting Dco (mean±SEM: 1.36±0.16 vs. 1.90±0.16 ml/min/mmHg per 20% increase in predicted watts; p = 0.020), and amongst all FAs, the increase with exercise seemed to be incrementally lower in those with lower resting Dco. Exercise-induced increase in was not different in the two groups. However, the FAs with abnormal resting Dco had less augmentation of their Dco with increase in during exercise (mean±SEM: 0.93±0.06 vs. 1.47±0.09 ml/min/mmHg per L/min; p<0.0001). The Dco during exercise was inversely associated with years of exposure to SHS in those FAs with ≥10 years of pre-ban experience (r = −0.32; p = 0.032). Conclusions This cohort of never-smoking FAs with SHS exposure showed exercise limitation based on their resting Dco. Those with lower resting Dco had reduced pulmonary capillary recruitment. Exposure to SHS in the aircraft cabin seemed to be a predictor for lower Dco during exercise. PMID:22493689
Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.
Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H
2004-12-01
To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.
Maron, Bradley A
2014-12-01
Despite the importance of preserved right ventricular structure and function with respect to outcome across the spectrum of lung, cardiac, and pulmonary vascular diseases, only recently have organized efforts developed to consider the pulmonary vascular-right ventricular apparatus as a specific unit within the larger context of cardiopulmonary pathophysiology. The Third International Right Heart Failure Summit (Boston, MA) was a multidisciplinary event dedicated to promoting a dialogue about the scientific and clinical basis of right heart disease. The current review provides a synopsis of key discussions presented during the section of the summit titled "Emerging Hemodynamic Signatures of the Right Heart." Specifically, topics emphasized in this element of the symposium included (1) the effects of pulmonary vascular dysfunction at rest or provoked by exercise on the right ventricular pressure-volume relationship, (2) the role of pressure-volume loop analysis as a method to characterize right ventricular inefficiency and predict right heart failure, and (3) the importance of a systems biology approach to identifying novel factors that contribute to pathophenotypes associated with pulmonary arterial hypertension and/or right ventricular dysfunction. Collectively, these concepts frame a forward-thinking paradigm shift in the approach to right heart disease by emphasizing factors that regulate the transition from adaptive to maladaptive right ventricular-pulmonary vascular (patho)physiology.
Cardiopulmonary and Metabolic Effects of Yoga in Healthy Volunteers
Divya, T Satheesh; Vijayalakshmi, MT; Mini, K; Asish, K; Pushpalatha, M; Suresh, Varun
2017-01-01
Background: Yoga the spiritual union of mind with the divine intelligence of the universe aims to liberate a human being from conflicts of body–mind duality. Beneficial cardiovascular and pulmonary effects of yoga are in par with aerobic exercise, even amounting to replace the exercise model. We conducted an interventional study in healthy volunteers, to analyze the impact of short-term yoga training on cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests. Materials and Methods: A sample of fifty new recruits attending the district yoga center was subject to 75 min yoga practice a day for 41 days. Basal values of cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests were recorded before yoga training and were reassessed for postyoga changes after 41 days. Results: After yoga practice there was a significant reduction in the resting heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure of the participants. Effects on autonomic function tests were variable and inconclusive. There was a significant increase in forced vital capacity, forced expiratory volume in 1 s, and peak expiratory flow rate after yoga. A significant reduction in body mass index was observed. Effects on metabolic parameters were promising with a significant reduction in fasting blood sugar level, serum total cholesterol, serum triglycerides serum low-density lipoprotein levels, and significant increase in high-density lipoprotein. There was no significant change in thyroid function tests after yoga. Conclusion: Short-term yoga practice has no effect on thyroid functions. Yoga practice was found beneficial in maintaining physiological milieu pertaining to cardiovascular and other metabolic parameters. PMID:29422741
Cardiopulmonary and Metabolic Effects of Yoga in Healthy Volunteers.
Divya, T Satheesh; Vijayalakshmi, M T; Mini, K; Asish, K; Pushpalatha, M; Suresh, Varun
2017-01-01
Yoga the spiritual union of mind with the divine intelligence of the universe aims to liberate a human being from conflicts of body-mind duality. Beneficial cardiovascular and pulmonary effects of yoga are in par with aerobic exercise, even amounting to replace the exercise model. We conducted an interventional study in healthy volunteers, to analyze the impact of short-term yoga training on cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests. A sample of fifty new recruits attending the district yoga center was subject to 75 min yoga practice a day for 41 days. Basal values of cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests were recorded before yoga training and were reassessed for postyoga changes after 41 days. After yoga practice there was a significant reduction in the resting heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure of the participants. Effects on autonomic function tests were variable and inconclusive. There was a significant increase in forced vital capacity, forced expiratory volume in 1 s, and peak expiratory flow rate after yoga. A significant reduction in body mass index was observed. Effects on metabolic parameters were promising with a significant reduction in fasting blood sugar level, serum total cholesterol, serum triglycerides serum low-density lipoprotein levels, and significant increase in high-density lipoprotein. There was no significant change in thyroid function tests after yoga. Short-term yoga practice has no effect on thyroid functions. Yoga practice was found beneficial in maintaining physiological milieu pertaining to cardiovascular and other metabolic parameters.
Korff, Susanne; Enders-Gier, Patricia; Uhlmann, Lorenz; Aurich, Matthias; Greiner, Sebastian; Hirschberg, Kristof; Katus, Hugo A; Mereles, Derliz
2018-03-19
Pulmonary hypertension is a marker of disease severity. Exercise Doppler echocardiography (EDE) has proven to be feasible and reliable to assess pulmonary pressure. Increase in systolic pulmonary artery pressure (sPAP) has diagnostic and prognostic value in controlled studies. However, its value when assessed during routine examination in patients with cardiopulmonary diseases and resting sPAP > 35 mmHg is not clearly defined. Clinical documentation and offline reevaluation of digitally stored EDE examinations of patients with appropriate clinical indications for EDE were analyzed. N = 278 patients with sPAP at rest > 35 mmHg met inclusion criteria. One patient was lost to follow-up. Mean age of patients was 72 ± 10 years, 178 (64%) of the study population were men. There were no relevant differences among survivors and non-survivors concerning comorbidities. Exercise performance (3.6 ± 1.2 vs. 4.9 ± 1.4 MET, p < 0.001) was lower, whereas sPAP during exercise was higher (67.3 ± 14.7 vs. 62.1 ± 13.2 mmHg, p = 0.027) in non-survivors. Univariate predictors of all-cause mortality were NYHA functional class III (HR = 2.56, p < 0.001), ≥ 2-vessels coronary artery disease (CAD) (HR = 1.93, p = 0.04), left atrial diameter > 45 mm (HR = 2.58, p < 0.001), rest sPAP > 42 mmHg (HR = 1.94, p = 0.010) and ΔsPAP increase ≥ 0.23 mmHg/Watt (HF = 1.92, p = 0.010). After multivariate analysis, NYHA functional class III (HR = 2.35, p < 0.001), LA diameter (HR = 2.28, p = 0.003) and sPAP increase ≥ 0.23 mmHg/Watt (HF = 2.19, p = 0.002) remained significant predictors of mortality, whereas a double product (HR = 0.42, p = 0.005) was associated with better prognosis. sPAP assessment during routine EDE provides relevant prognostic information comparable to findings in studies in selected populations. A higher sPAP increase at lower exercise performance shows significant association with increased of mortality.
Bandera, Francesco; Generati, Greta; Pellegrino, Marta; Donghi, Valeria; Alfonzetti, Eleonora; Gaeta, Maddalena; Villani, Simona; Guazzi, Marco
2014-09-01
Several cardiovascular diseases are characterized by an impaired O2 kinetic during exercise. The lack of a linear increase of Δoxygen consumption (VO2)/ΔWork Rate (WR) relationship, as assessed by expired gas analysis, is considered an indicator of abnormal cardiovascular efficiency. We aimed at describing the frequency of ΔVO2/ΔWR flattening in a symptomatic population of cardiac patients, characterizing its functional profile, and testing the hypothesis that dynamic pulmonary hypertension and right ventricular contractile reserve play a major role as cardiac determinants. We studied 136 patients, with different cardiovascular diseases, referred for exertional dyspnoea. Cardiopulmonary exercise test combined with simultaneous exercise echocardiography was performed using a symptom-limited protocol. ΔVO2/ΔWR flattening was observed in 36 patients (group A, 26.5% of population) and was associated with a globally worse functional profile (reduced peak VO2, anaerobic threshold, O2 pulse, impaired VE/VCO2). At univariate analysis, exercise ejection fraction, exercise mitral regurgitation, rest and exercise tricuspid annular plane systolic excursion, exercise systolic pulmonary artery pressure, and exercise cardiac output were all significantly (P<0.05) impaired in group A. The multivariate analysis identified exercise systolic pulmonary artery pressure (odds ratio, 1.06; confidence interval, 1.01-1.11; P=0.01) and exercise tricuspid annular plane systolic excursion (odds ratio, 0.88; confidence interval, 0.80-0.97; P=0.01) as main cardiac determinants of ΔVO2/ΔWR flattening; female sex was strongly associated (odds ratio, 6.10; confidence interval, 2.11-17.7; P<0.01). In patients symptomatic for dyspnea, the occurrence of ΔVO2/ΔWR flattening reflects a significantly impaired functional phenotype whose main cardiac determinants are the excessive systolic pulmonary artery pressure increase and the reduced peak right ventricular longitudinal systolic function. © 2014 American Heart Association, Inc.
Pulmonary function in microgravity
NASA Technical Reports Server (NTRS)
Guy, H. J.; Prisk, G. K.; West, J. B.
1992-01-01
We report the successful collection of a large quantity of human resting pulmonary function data on the SLS-1 mission. Preliminary analysis suggests that cardiac stroke volumes are high on orbit, and that an adaptive reduction takes at least several days, and in fact may still be in progress after 9 days on orbit. It also suggests that pulmonary capillary blood volumes are high, and remain high on orbit, but that the pulmonary interstitium is not significantly impacted. The data further suggest that the known large gravitational gradients of lung function have only a modest influence on single breath tests such as the SBN washout. They account for only approximately 25% of the phase III slope of nitrogen, on vital capacity SBN washouts. These gradients are only a moderate source of the cardiogenic oscillations seen in argon (bolus gas) and nitrogen (resident gas), on such tests. They may have a greater role in generating the normal CO2 oscillations, as here the phase relationship to argon and nitrogen reverses in microgravity, at least at mid exhalation in those subjects studied to date. Microgravity may become a useful tool in establishing the nature of the non-gravitational mechanisms that can now be seen to play such a large part in the generation of intra-breath gradients and oscillations of expired gas concentration. Analysis of microgravity multibreath nitrogen washouts, single breath washouts from more physiological pre-inspiratory volumes, both using our existing SLS-1 data, and data from the upcoming D-2 and SLS-2 missions, should be very fruitful in this regard.(ABSTRACT TRUNCATED AT 250 WORDS).
Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension.
Chemla, Denis; Castelain, Vincent; Zhu, Kaixian; Papelier, Yves; Creuzé, Nicolas; Hoette, Susana; Parent, Florence; Simonneau, Gérald; Humbert, Marc; Herve, Philippe
2013-05-01
The mean pulmonary artery pressure (mPAP) replaces mean systolic ejection pressure (msePAP) in the classic formula of right ventricular stroke work (RVSW) = (mPAP - RAP) × stroke volume, where RAP is mean right atrial pressure. Only the steady work is thus taken into account, not the pulsatile work, whereas pulmonary circulation is highly pulsatile. Our retrospective, high-fidelity pressure study tested the hypothesis that msePAP was proportional to mPAP, and looked at the implications for RVSW. Eleven patients with severe, precapillary pulmonary hypertension (PH) (six patients with idiopathic pulmonary arterial hypertension and five with chronic thromboembolic PH; mPAP = 57 ± 10 mm Hg) were studied at rest and during mild to moderate exercise. Eight non-PH control subjects were also studied at rest (mPAP = 16 ± 2 mm Hg). The msePAP was averaged from end diastole to dicrotic notch. In the full data set (53 pressure-flow points), mPAP ranged from 14 to 99.5 mm Hg, cardiac output from 2.38 to 11.1 L/min, and heart rate from 53 to 163 beats/min. There was a linear relationship between msePAP and mPAP (r² = 0.99). The msePAP matched 1.25 mPAP (bias, -0.5 ± 2.6 mm Hg). Results were similar in the resting non-PH group and in resting and the exercising PH group. This implies that the classic formula markedly underestimates RVSW and that the pulsatile work may be a variable 20% to 55% fraction of RVSW, depending on RAP and mPAP. At rest, RVSW in patients with PH was twice as high as that of the non-PH group (P < .05), but pulsatile work fraction was similar between the two groups (26 ± 4% vs 24 ± 1%) because of the counterbalancing effects of high RAP (11 ± 5 mm Hg vs 4 ± 2 mm Hg), which increases the fraction, and high mPAP, which decreases the fraction. Our study favored the use of an improved formula that takes into account the variable pulsatile work fraction: RVSW = (1.25 mPAP - RAP) × stroke volume. Increased RAP and increased mPAP have opposite effects on the pulsatile work fraction.
Moller, Thomas; Lindberg, Harald; Lund, May Brit; Holmstrom, Henrik; Dohlen, Gaute; Thaulow, Erik
2018-06-01
We previously demonstrated an abnormally high right ventricular systolic pressure response to exercise in 50% of adolescents operated on for isolated ventricular septal defect. The present study investigated the prevalence of abnormal right ventricular systolic pressure response in 20 adult (age 30-45 years) patients who underwent surgery for early ventricular septal defect closure and its association with impaired ventricular function, pulmonary function, or exercise capacity. The patients underwent cardiopulmonary tests, including exercise stress echocardiography. Five of 19 patients (26%) presented an abnormal right ventricular systolic pressure response to exercise ⩾ 52 mmHg. Right ventricular systolic function was mixed, with normal tricuspid annular plane systolic excursion and fractional area change, but abnormal tricuspid annular systolic motion velocity (median 6.7 cm/second) and isovolumetric acceleration (median 0.8 m/second2). Left ventricular systolic and diastolic function was normal at rest as measured by the peak systolic velocity of the lateral wall and isovolumic acceleration, early diastolic velocity, and ratio of early diastolic flow to tissue velocity, except for ejection fraction (median 53%). The myocardial performance index was abnormal for both the left and right ventricle. Peak oxygen uptake was normal (mean z score -0.4, 95% CI -2.8-0.3). There was no association between an abnormal right ventricular systolic pressure response during exercise and right or left ventricular function, pulmonary function, or exercise capacity. Abnormal right ventricular pressure response is not more frequent in adult patients compared with adolescents. This does not support the theory of progressive pulmonary vascular disease following closure of left-to-right shunts.
Grachtrup, Sabine; Brügel, Mathias; Pankau, Hans; Halank, Michael; Wirtz, Hubert; Seyfarth, Hans-Jürgen
2012-01-01
N-terminal pro-brain natriuretic peptide (NT-proBNP) is secreted by cardiac ventricular myocytes upon pressure and volume overload and is a prognostic marker to monitor the severity of precapillary pulmonary hypertension and the extent of right heart failure. The impact of physical exercise on NT-proBNP levels in patients with left heart disease was demonstrated previously. No data regarding patients with isolated right heart failure and the influence of acute exercise on NT-proBNP serum levels exist. Twenty patients with precapillary pulmonary hypertension were examined. Hemodynamic parameters were measured during right heart catheterization. Serum NT-proBNP of patients was measured at rest, after a 6-min walking test, during ergospirometry and during recovery, all within 7 h. Significant differences in sequential NT-proBNP values, relative changes compared to values at rest and the correlation between NT-proBNP and obtained parameters were assessed. At rest, the mean serum level of NT-proBNP was 1,278 ± 998 pg/ml. The mean level of NT-proBNP at maximal exercise was increased (1,592 ± 1,219 pg/ml), whereas serum levels decreased slightly during recovery (1,518 ± 1,170 pg/ml). The relative increase of serum NT-proBNP during exercise correlated with pulmonary vascular resistance (r = 0.45; p = 0.026) and cardiac output (r = -0.5; p = 0.015). In this study, we demonstrated acute changes in NT-proBNP levels due to physical exercise in a small group of patients with precapillary pulmonary hypertension. Our results also confirm the predominant usefulness of NT-proBNP as an intraindividual parameter of right heart load. Copyright © 2012 S. Karger AG, Basel.
Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation.
Lancellotti, Patrizio; Magne, Julien; Dulgheru, Raluca; Ancion, Arnaud; Martinez, Christophe; Piérard, Luc A
2015-05-15
In patients with heart failure, exercise echocardiography can help in risk stratification and decision making. The prognostic significance of exercise pulmonary hypertension (PH) in patients with secondary mitral regurgitation (MR) remains unknown. The aim of the present study was to assess the prognostic value of exercise PH in patients with secondary MR and narrow QRS intervals. From 2005 to 2012, 159 consecutive patients with secondary MR, narrow QRS intervals, left ventricular dysfunction (mean ejection fraction 36 ± 7%), and measurable systolic pulmonary arterial pressure (SPAP) during exercise echocardiography were included. Resting and exercise PH were defined as SPAP >50 and >60 mm Hg, respectively. Exercise PH was more frequent than resting PH (40% vs 13%, p <0.0001). On multivariate logistic regression, the independent determinants of exercise PH were resting SPAP (p <0.0001), exercise MR severity (p <0.0001), and e'-wave velocity (p = 0.004). The incidence of cardiac events during follow-up was significantly higher in patients with exercise PH compared with those without exercise PH (4 years: 40 ± 7% vs 20 ± 5%, p <0.0001). Patients with exercise PH exhibited higher rates of cardiac events and death than those with resting PH. In a multivariate Cox proportional hazards model, exercise PH was independently associated with the occurrence of cardiac events (p <0.0001). In conclusion, in patients with secondary MR, exercise PH is determined mainly by resting SPAP, left ventricular diastolic burden, and exercise MR severity. Exercise PH is a powerful predictor of poor outcomes, with a 5.3-fold increased risk for cardiac-related death during follow-up. These results highlight the added value of exercise echocardiography in secondary MR. Copyright © 2015 Elsevier Inc. All rights reserved.
Computed tomography in pulmonary sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, D.A.; Webb, W.R.; Gamsu, G.
1989-05-01
We studied the high resolution CT (HRCT) scans of 15 patients with biopsy-proven sarcoidosis and correlated the findings with pulmonary function tests (12 patients), 67Ga scans (10 patients), bronchoalveolar lavage (five patients), recent transbronchial biopsy (six patients), and recent open lung biopsy (three patients). The HRCT features included small nodules, thickened interlobular septa, patchy focal increase in lung density, honeycombing, and central conglomeration of vessels and bronchi. Active alveolitis was present by gallium scanning criteria in 5 of 10 cases. By bronchoalveolar lavage criteria, activity was present in three of five cases. Patchy increase in density may correlate with activemore » alveolitis as seen on /sup 67/Ga scanning. High resolution CT was better than chest X-radiography for demonstration of patchy increase in density and for distinguishing nodules from septal thickening. Both nodules and patchy density were partly reversible following therapy. Nodular densities seen on CT correlated with the presence of granulomata on histology. Resting pulmonary function tests correlated poorly with presence and extent of lung disease on HRCT. The presence on HRCT of focal fine nodules, patchy focal increase in lung density, and central crowding of bronchi and vessels should suggest the diagnosis of sarcoidosis. In some patients, HRCT can identify unsuspected parenchymal lung disease and document the reversible components of sarcoid lung disease.« less
Stoller, James K; Aboussouan, Loutfi S; Kanner, Richard E; Wilson, Laura A; Diaz, Phil; Wise, Robert
2015-12-01
Alpha-1 antitrypsin deficiency (AATD) predisposes to chronic obstructive pulmonary disease, but is underrecognized. Oxygenation and exercise desaturation in individuals with AATD-associated chronic obstructive pulmonary disease has been sparsely studied. The Long-term Oxygen Treatment Trial (LOTT) permits comparing these features of individuals with AATD with alpha-1 antitrypsin-replete (called "usual chronic obstructive pulmonary disease") LOTT participants. Compare demographic, clinical, baseline oxygenation, and exercise desaturation features in participating AATD subjects with those of other LOTT subjects. LOTT is a multicenter randomized controlled trial comparing use of supplemental oxygen versus not in subjects with chronic obstructive pulmonary disease and moderate hypoxemia (resting oxygen saturation as measured by pulse oximetry, 89-93%) or normal oxygen saturation at rest and significant exercise desaturation. Among the 597 LOTT participants with nonmissing alpha-1 antitrypsin levels, 11 (1.8%) had severe AATD and 44 (7.4%) had mild/moderate AATD. Comparison of the 11 severely AAT-deficient individuals with the 542 LOTT participants with usual chronic obstructive pulmonary disease showed that the AATD subjects were younger and despite less smoking, had lower FEV1/FVC (mean post-bronchodilator FEV1/FVC, 0.38 ± 0.06 vs. 0.46 ± 0.13; P = 0.002). Comparison with 27 age-, sex-, and FEV1-matched alpha-1 antitrypsin-normal LOTT participants showed no baseline difference in resting room air pulse oximetry saturation (AATD, 93.6% ± 2.3% vs. 92.7% ± 2.2%; P = 0.64). Exercise-related desaturation was more severe in the individuals with AATD based on desaturation to 88% or less sooner during a 6-minute-walk test, having a higher percentage of desaturation points (e.g., <90%) during exercise, and having a higher distance-saturation product (defined as the distance walked in 6 min multiplied by the nadir saturation achieved during the 6-minute-walk test). These data suggest that individuals with AATD experience more profound desaturation with exercise than age-, sex-, race-, and FEV1-matched control subjects with usual chronic obstructive pulmonary disease. Clinical trial registered with www.clinicaltrials.gov (NCT 00692198).
Hager, W David; Collins, Irina; Tate, Janet P; Azrin, Michael; Foley, Raymond; Lakshminarayanan, Santha; Rothfield, Naomi F
2013-07-01
The cause for shortness of breath among systemic sclerosis (SSc) patients is often lacking. We sought to characterize the hemodynamics of these patients by using simple isotonic arm exercise during cardiac catheterization. Catheterization was performed in 173 SSc patients when resting echocardiographic pulmonary systolic pressures were <40 but >40 mmHg post stress. Patients with resting mean pulmonary arterial pressures (mPAP) ≤ 25 and pulmonary arterial wedge pressures (PAWP) ≤ 15 mmHg exercised with 1-pound hand weights. Normal exercise was defined as a change in mPAP divided by the change in cardiac output (CO) (ΔmPAP/ΔCO) ratio ≤ 2 for patients <50 years (≤3 for >50). An abnormal ΔmPAP/ΔCO ratio, an exercise transpulmonary gradient (TPG) ≥ 15, a PAWP < 20, a ΔTPG > ΔPAWP and a pulmonary vascular resistance (PVR) which increased defined exercise-induced pulmonary arterial hypertension (EIPAH). An abnormal ΔmPAP/ΔCO ratio, an exercise TPG < 15, a PAWP ≥ 20, a ΔTPG < ΔPAWP and a drop in PVR defined left ventricular diastolic dysfunction (DD). Twelve patients without SSc served as controls. Pulmonary pressures increased with exercise in 53 patients. Six had EIPAH and 47 had DD. With exercise, mPAP and PAWP were 20 ± 4 and 13 ± 2 in controls, 36 ± 3 and 12 ± 4 in EIPAH and 34 ± 6 and 26 ± 4 in DD. Control ΔmPAP/ΔCO was 0.8 ± 0.7, 7.5 ± 3.9 in EIPAH and 9.1 ± 7.2 in DD. Rest and exercise TPG was normal for control and DD patients but increased (12 ± 4 to 23 ± 4) in EIPAH (P < 0.0001). PVR decreased in DD but increased in EIPAH with exercise. Exercise during catheterization elucidates the pathophysiology of dyspnea and distinguishes EIPAH from the more common DD in SSc patients. © 2012 John Wiley & Sons Ltd.
Exercise-induced Pulmonary Hypertension
Vanderpool, Rebecca; Dhakal, Bishnu P.; Saggar, Rajeev; Saggar, Rajan; Vachiery, Jean-Luc; Lewis, Gregory D.
2013-01-01
Exercise stresses the pulmonary circulation through increases in cardiac output (Q.) and left atrial pressure. Invasive as well as noninvasive studies in healthy volunteers show that the slope of mean pulmonary artery pressure (mPAP)–flow relationships ranges from 0.5 to 3 mm Hg⋅min⋅L−1. The upper limit of normal mPAP at exercise thus approximates 30 mm Hg at a Q. of less than 10 L⋅min−1 or a total pulmonary vascular resistance at exercise of less than 3 Wood units. Left atrial pressure increases at exercise with an average upstream transmission to PAP in a close to one-for-one mm Hg fashion. Multipoint PAP–flow relationships are usually described by a linear approximation, but present with a slight curvilinearity, which is explained by resistive vessel distensibility. When mPAP is expressed as a function of oxygen uptake or workload, plateau patterns may be observed in patients with systolic heart failure who cannot further increase Q. at the highest levels of exercise. Exercise has to be dynamic to avoid the increase in systemic vascular resistance and abrupt changes in intrathoracic pressure that occur with resistive exercise and can lead to unpredictable effects on the pulmonary circulation. Postexercise measurements are unreliable because of the rapid return of pulmonary vascular pressures and flows to the baseline resting state. Recent studies suggest that exercise-induced increase in PAP to a mean higher than 30 mm Hg may be associated with dyspnea-fatigue symptomatology. PMID:23348976
CO2-O2 interactions in extension of tolerance to acute hypoxia
NASA Technical Reports Server (NTRS)
Lambertsen, C. J.
1995-01-01
Objectives and results of experimental projects a re summarized. The scope of information desired included (1) physiological and performance consequences of exposures to simulated microgravity, in rest and graded physical activity, (2) separate influences of graded degrees of atmospheric hypercapnia and hypoxia, and (3) composite effects of hypoxia and hypercapnia. The research objectives were selected for close relevance to existing quantitative information concerning interactions of hypercapnia and hypoxia on respiratory and brain circulatory control. They include: (1) to determine influences of normoxic immersion on interrelations of pulmonary ventilation, arterial PCO2 and PO2, and brain blood flow, in rest and physical work; (2) to determine influence of normoxic immersion on respiratory reactivity to atmospheric hypercapnia at rest; (3) to determine influence of atmospheric hypoxia on respiratory reactivity to hypercapnia at rest and in work; and (4) to provide physiological baselines of data concerning adaptations in acute exposures to aid in investigation of rates of adaptation or deteriorations in physiological or performance capability during subsequent multi-day exposures. A list of publications related to the present grant period is included along with an appendix describing the Performance Measurement System (human perceptual, cognitive and psychomotor functions).
Hsu, Chih-Hsin; Ho, Wan-Jing; Huang, Wei-Chun; Chiu, Yu-Wei; Hsu, Tsu-Shiu; Kuo, Ping-Hung; Hsu, Hsao-Hsun; Chang, Jia-Kan; Cheng, Chin-Chang; Lai, Chao-Lun; Liang, Kae-Woei; Lin, Shoa-Lin; Sung, Hsao-Hsun; Tsai, Wei-Chuan; Weng, Ken-Pen; Hsieh, Kai-Sheng; Yin, Wei-Hsian; Lin, Shing-Jong; Wang, Kuo-Yang
2014-01-01
Pulmonary hypertension (PH) is a hemodynamic and pathophysiologic condition, defined as a mean pulmonary arterial pressure exceeding 25 mmHg at rest. According to the recent classifications, it is grouped into pulmonary arterial hypertension (PAH), heart-related, lung-related, thromboembolic, and miscellaneous PH. In the past two decades, tremendous advances have occurred in the field of PH. These include (1) development of clinical diagnostic algorithm and a monitoring strategy dedicated to PAH, (2) defining strong rationales for screening at-risk populations, (3) advent of pulmonary specific drugs which makes PAH manageable, (4) recognition of needs of having proper strategy of combining existing pulmonary specific drugs, and/or potential novel drugs, (5) pursuit of clinical trials with optimal surrogate endpoints and study durations, (6) recognition of critical roles of PH/right ventricular function, as well as interdependence of ventricles in different conditions, especially those with various phenotypes of heart failure, and (7) for rare diseases, putting equal importance on carefully designed observation studies, various registries, etc., besides double blind randomized studies. In addition, ongoing basic and clinical research has led to further understanding of relevant physiology, pathophysiology, epidemiology and genetics of PH/PAH. This guidelines from the working group of Pulmonary Hypertension of the Taiwan Society of Cardiology is to provide updated guidelines based on the most recent international guidelines as well as Taiwan’s domestic research on PH. The guidelines are mainly for the management of PAH (Group 1) ; however the majority of content can be helpful for managing other types of PH. PMID:27122817
Pulmonary atelectasis during low stretch ventilation: "open lung" versus "lung rest" strategy.
Fanelli, Vito; Mascia, Luciana; Puntorieri, Valeria; Assenzio, Barbara; Elia, Vincenzo; Fornaro, Giancarlo; Martin, Erica L; Bosco, Martino; Delsedime, Luisa; Fiore, Tommaso; Grasso, Salvatore; Ranieri, V Marco
2009-03-01
Limiting tidal volume (VT) may minimize ventilator-induced lung injury (VILI). However, atelectasis induced by low VT ventilation may cause ultrastructural evidence of cell disruption. Apoptosis seems to be involved as protective mechanisms from VILI through the involvement of mitogen-activated protein kinases (MAPKs). We examined the hypothesis that atelectasis may influence the response to protective ventilation through MAPKs. Prospective randomized study. University animal laboratory. Adult male 129/Sv mice. Isolated, nonperfused lungs were randomized to VILI: VT of 20 mL/kg and positive end-expiratory pressure (PEEP) zero; low stretch/lung rest: VT of 6 mL/kg and 8-10 cm H2O of PEEP; low stretch/open lung: VT of 6 mL/kg, two recruitment maneuvers and 14-16 cm H2O of PEEP. Ventilator settings were adjusted using the stress index. Both low stretch strategies equally blunted the VILI-induced derangement of respiratory mechanics (static volume-pressure curve), lung histology (hematoxylin and eosin), and inflammatory mediators (interleukin-6, macrophage inflammatory protein-2 [enzyme-linked immunosorbent assay], and inhibitor of nuclear factor-kB[Western blot]). VILI caused nuclear swelling and membrane disruption of pulmonary cells (electron microscopy). Few pulmonary cells with chromatin condensation and fragmentation were seen during both low stretch strategies. However, although cell thickness during low stretch/open lung was uniform, low stretch/lung rest demonstrated thickening of epithelial cells and plasma membrane bleb formation. Compared with the low stretch/open lung, low stretch/lung rest caused a significant decrease in apoptotic cells (terminal deoxynucleotidyl transferase mediated deoxyuridine-triphosphatase nick end-labeling) and tissue expression of caspase-3 (Western blot). Both low stretch strategies attenuated the activation of MAPKs. Such reduction was larger during low stretch/open lung than during low stretch/lung rest (p < 0.001). Low stretch strategies provide similar attenuation of VILI. However, low stretch/lung rest strategy is associated to less apoptosis and more ultrastructural evidence of cell damage possibly through MAPKs-mediated pathway.
Effects of prolonged head-down bed rest on physiological responses to moderate hypoxia
NASA Technical Reports Server (NTRS)
Loeppky, J. A.; Roach, R. C.; Selland, M. A.; Scotto, P.; Greene, E. R.; Luft, U. C.
1993-01-01
To determine the effects of hypoxia on physiological responses to simulated zero-gravity cardiopulmonary and fluid balance measurements were made in 6 subjects before and during 5-degree head-down bed rest (HDBR) over 8 d at 10,678 ft and a second time at this altitude as controls (CON). The V-dot(O2)(max) increased by 9 percent after CON, but fell 3 percent after HDBR. This reduction in work capacity during HDBR could be accounted for by inactivity. The heart rate response to a head-up tilt was greatly enhanced following HDBR, while mean blood pressure was lower. No significant negative impact of HDBR was noted on the ability to acclimatize to hypoxia in terms of pulmonary mechanics, gas exchange, circulatory or mental function measurements. No evidence of pulmonary interstitial edema or congestion was noted during HDBR at the lower PIO2 and blood rheology properties were not negatively altered. Symptoms of altitude illness were more prevalent, but not marked, during HDBR and arterial blood gases and oxygenation were not seriously effected by simulated microgravity. Declines in base excess with altitude were similar in both conditions. The study demonstrated a minimal effect of HDBR on the ability to adjust to this level of hypoxia.
Choi, Eui-Young; Shim, Jaemin; Kim, Sung-Ai; Shim, Chi Young; Yoon, Se-Jung; Kang, Seok-Min; Choi, Donghoon; Ha, Jong-Won; Rim, Se-Joong; Jang, Yangsoo; Chung, Namsik
2007-11-01
The present study sought to determine if echo-Doppler-derived pulmonary vascular resistance (PVR echo), net-atrioventricular compliance (Cn) and tricuspid peak systolic annular velocity (Sa), as parameters of right ventricular function, have value in predicting exercise capacity in patients with mitral stenosis (MS). Thirty-two patients with moderate or severe MS without left ventricular systolic dysfunction were studied. After comprehensive echo-Doppler measurements, including PVR echo, tricuspid Sa and left-sided Cn, supine bicycle exercise echo and concomitant respiratory gas analysis were performed. Measurements during 5 cardiac cycles representing the mean heart rate were averaged. Increment of resting PVR(echo) (r=-0.416, p=0.018) and decrement of resting Sa (r=0.433, p=0.013) and Cn (r=0.469, p=0.007) were significantly associated with decrease in %VO(2) peak. The predictive accuracy for %VO2 peak could increase by combining these parameters as Sa/PVR echo (r=0.500, p=0.004) or Cn. (Sa/PVR echo) (r=0.572, p=0.001) independent of mitral valve area, mean diastolic pressure gradients or presence of atrial fibrillation. Measurement of PVR echo, Cn and Sa might provide important information about the exercise capacity of patients with MS.
Kuppusamy, Maheshkumar; Dilara, K; Ravishankar, P; Julius, A
2017-01-01
Prāṇāyāma , the fourth limb of ancient aṣṭāṅga yoga consists of breathing techniques which produce various physiological and psychological effects. Though various types of prāṇāyāma and their effects have been scientifically established, Bhrāmarī prāṇāyāma (Bhr.P) is the one whose effects still remain understated. The present study was conducted to find the effects of Bhrāmarī prāṇāyāma practice on pulmonary function in healthy adolescents. Randomized control trial. 90 healthy adolescents including 32 females and 58 males participated in the study. They were randomly divided into Bhr.P group ( n = 45) and Control group ( n = 45) by a simple lottery method. Pulmonary function test was done at baseline and at end of 12 th week using RMS Helios spirometry. Prāṇāyāma group students were trained to do Bhr.P as 3 to 4 breaths/min for 5 min followed by 2 min rest. This was one cycle and in this way, they were instructed to do five cycles each time for 45 minutes five days in a week. Control group students were not allowed to practice any kind of exercise throughout the study period. Student paired and unpaired T tests were used to analyse the intra group and intergroup differences using R statistical software. A significant ( P < 0.05) improvement in all pulmonary function parameters; FVC, FEV1, FEV1/FVC ratio, FEF 25%-75% and PEFR was seen in the Bhr.P group than the control group adolescents. Slow vital capacity (SVC) and Maximum Voluntary Volume (MVV) also showed significant improvement in the prāṇāyāma group. Bhrāmarī Prāṇāyāma practice is effective in improving the pulmonary function among the adolescents which could be utilized for further clinical studies.
Mocelin, Helena; Bueno, Gilberto; Irion, Klaus; Marchiori, Edson; Sarria, Edgar; Watte, Guilherme; Hochhegger, Bruno
2013-01-01
OBJECTIVE: To determine whether air trapping (expressed as the percentage of air trapping relative to total lung volume [AT%]) correlates with clinical and functional parameters in children with obliterative bronchiolitis (OB). METHODS: CT scans of 19 children with OB were post-processed for AT% quantification with the use of a fixed threshold of −950 HU (AT%950) and of thresholds selected with the aid of density masks (AT%DM). Patients were divided into three groups by AT% severity. We examined AT% correlations with oxygen saturation (SO2) at rest, six-minute walk distance (6MWD), minimum SO2 during the six-minute walk test (6MWT_SO2), FVC, FEV1, FEV1/FVC, and clinical parameters. RESULTS: The 6MWD was longer in the patients with larger normal lung volumes (r = 0.53). We found that AT%950 showed significant correlations (before and after the exclusion of outliers, respectively) with the clinical score (r = 0.72; 0.80), FVC (r = 0.24; 0.59), FEV1 (r = −0.58; −0.67), and FEV1/FVC (r = −0.53; r = −0.62), as did AT%DM with the clinical score (r = 0.58; r = 0.63), SO2 at rest (r = −0.40; r = −0.61), 6MWT_SO2 (r = −0.24; r = −0.55), FVC (r = −0.44; r = −0.80), FEV1 (r = −0.65; r = −0.71), and FEV1/FVC (r = −0.41; r = −0.52). CONCLUSIONS: Our results show that AT% correlates significantly with clinical scores and pulmonary function test results in children with OB. PMID:24473764
Chen, Rui; Lin, Lin; Tian, Jing-Wei; Zeng, Bin; Zhang, Lei
2015-01-01
Background Dynamic hyperinflation (DH) is a major contributor to exercise limitation in chronic obstructive pulmonary disease (COPD). Therefore, we aimed to elucidate the physiological factors responsible for DH development during the 6-minute walk test (6MWT) in COPD patients and compare ventilatory response to the 6MWT in hyperinflators and non-hyperinflators. Methods A total of 105 consecutive subjects with stable COPD underwent a 6MWT, and the Borg dyspnea scale, oxygen saturation (SpO2), breathing pattern, and inspiratory capacity (IC) were recorded before and immediately after walking. The change in IC was measured, and subjects were divided into hyperinflators (ΔIC >0.0 L) and non-hyperinflators (ΔIC ≤0.0 L). Spirometry, the Modified Medical Research Council (MMRC) dyspnea scale and St George’s Respiratory Questionnaire (SGRQ) were also assessed. Results DH was present in 66.67% of subjects. ΔIC/IC was significantly and negatively correlated with the small airway function. On multiple stepwise regression analysis forced expiratory flow after exhaling 50% of the forced vital capacity (FEF50%) was the only predictor of ΔIC/IC. Non-hyperinflators had a higher post-walking VT (t=2.419, P=0.017) and post-walking VE (t=2.599, P=0.011) than the hyperinflators did. Age and resting IC were independent predictors of the 6-minute walk distance (6MWD) in hyperinflators. Conclusions DH was considerably common in subjects with COPD. Small airway function may partly contribute to the DH severity during walking. The ventilator response to the 6MWT differed between hyperinflators and non-hyperinflators. Resting hyperinflation is an important predictor of functional exercise capacity in hyperinflators. PMID:26380729
Effects of dynamic hyperinflation on exercise capacity and quality of life in stable COPD patients.
Zhao, Li; Peng, Liyue; Wu, Baomei; Bu, Xiaoning; Wang, Chen
2016-09-01
Dynamic hyperinflation (DH) is an important pathophysiological characteristic of chronic obstructive pulmonary disease (COPD). There is increasing evidence that DH has negative effects on exercise performance and quality of life. The objective of this study was to explore effects of DH on exercise capacity and quality of life in stable COPD patients. Fifty-eight COPD patients and 20 matched healthy individuals underwent pulmonary function test, 6-min walk test and symptom-limited cardiopulmonary exercise test (CPET). End-expiratory lung volume/total lung capacity ratio (EELVmax/TLC) at peak exercise of CPET was evaluated, and EELVmax/TLC ≥ 75% was defined as 'severe dynamic hyperinflation (SDH)'. Of the 58 patients studied, 29 (50.0%) presented with SDH (SDH+ group, EELVmax/TLC 79.60 ± 3.60%), having worse maximal exercise capacity reflected by lower peakload, maximal oxygen uptake (VO2 max), maximal carbon dioxide output (VCO2 max) and maximal minute ventilation (VEmax) than did those without SDH (SDH- group, EELVmax/TLC 67.44 ± 6.53%). The EELVmax/TLC ratio at peak exercise had no association with variables of pulmonary function and 6-min walk distance (6MWD), but correlated inversely with peakload, VO2 max, VCO2 max and VEmax (r = -0.300~-0.351, P < 0.05). Although no significant differences were observed, patients with EELVmax/TLC ≥ 75% tended to have higher COPD assessment test score (15.07 ± 6.55 vs 13.28 ± 6.59, P = 0.303). DH develops variably during exercise and has a greater impact on maximal exercise capacity than 6MWD, even in those with the same extent of pulmonary function impairment at rest. © 2015 John Wiley & Sons Ltd.
Left ventricular diastolic function in patients with treated haemochromatosis.
Davidsen, Einar Skulstad; Omvik, Per; Hervig, Tor; Gerdts, Eva
2009-02-01
We recently demonstrated reduced exercise capacity in phlebotomy treated genetic haemochromatosis in spite of normal systolic function. The present objective was to investigate diastolic function at rest. Diastolic function was echocardiographically assessed in 132 phlebotomy treated genetic haemochromatosis patients and 50 controls. Patients had higher body mass index and heart rate, higher transmitral early (E) (11.2+/-2.6 versus 10.4+/-2.2 cm) and atrial (A) (5.7+/-1.6 versus 5.0+/-1.6) velocity time integrals, pulmonary venous systolic peak velocity (0.58+/-0.12 versus 0.54+/-0.13 m/s) and ratio of E to spectral tissue Doppler E' velocity (6.3+/-1.6 versus 5.6+/-1.4, all p <0.05). Independently of age, heart rate, systolic blood pressure and body weight, having haemochromatosis remained statistically significantly associated with higher E (beta=0.27) and A (beta =0.18) velocity time integrals, pulmonary venous systolic peak velocity (beta =0.21), and E/E'-ratio (beta=0.25) in separate multivariate analyses (all p <0.05). In the youngest age tertile, patients had longer isovolumic relaxation time and lower E' than controls. Our findings are compatible with mildly impaired diastolic function in treated haemochromatosis, with delayed relaxation in the younger tertile, and an elevated filling pressure and pseudonormalisation with increasing age.
Mahmoud, Kareem; Kassem, Hussien Heshmat; Baligh, Essam; ElGameel, Usama; Akl, Yosri; Kandil, Hossam
2016-10-01
Increased sympathetic tone and use of bronchodilators increase heart rate and this may worsen functional capacity in patients with chronic obstructive pulmonary disease (COPD). The aim of this study was to look at the short-term effect of the heart rate lowering drug ivabradine on clinical status in COPD patients.We randomised 80 COPD patients with sinus heart rate ≥90 bpm into either taking ivabradine 7.5 mg twice per day or placebo for two weeks. We assessed all patients using the modified Borg scale and 6-minute walk test at baseline and then again 2 weeks after randomisation.There were no significant differences in age, sex, severity of airway obstruction (measured using forceful exhalation), severity of diastolic dysfunction or pulmonary artery systolic pressure between the two groups. The ivabradine group showed significant improvement in 6-minute walk distance (from 192.6±108.8 m at baseline to 285.1±88.9 m at the end of the study) compared with the control group (230.6±68.4 at baseline and 250.4±65.8 m at the end of study) (p<0.001). This improvement in the drug group was associated with significant improvement of dyspnea on modified Borg scale (p=0.007).Lowering heart rate with ivabradine can improve exercise capacity and functional class in COPD patients with resting heart rate >90 bpm. © Royal College of Physicians 2016. All rights reserved.
Clinical, Bronchographic, Radiological, and Physiological Observations in Ten Cases of Asbestosis
Leathart, G. L.
1960-01-01
Ten cases of asbestosis (eight male, two female), aged 45-65 years have been kept under observation for periods of up to eight years. Bronchiectasis was demonstrated bronchographically in six cases. Clubbing of the fingers and coarse crepitations appeared to be signs of bronchiectasis rather than of uncomplicated asbestosis. It is suggested that the prevalence of bronchiectasis is higher than has been reported previously because the patients survived longer. The radiological findings are tabulated and compared with previous descriptions. In these subjects there was no relationship between radiological and clinical state. Nine patients eventually showed clinical deterioration and it often proceeded rapidly. The radiograph however, usually remained unaltered. Pulmonary function tests, including diffusing capacity, arterial blood analysis and estimation of mechanical properties of the lung, were carried out in these 10 cases, and in 11 asbestos workers (aged 35-64 years) without radiological abnormality. The steady state diffusing capacity for carbon monoxide (Dco) at rest was lower in asbestosis than in the control subjects. The pulmonary compliance was remarkably low in asbestosis and related fairly closely to the vital capacity. The maximum voluntary ventilation was also low and was related to increased pulmonary resistance but it cannot be said whether this is in the airways or in the lung tissue. Indirect evidence of inequalities of ventilation/perfusion ratio was obtained in most cases. There is no convincing evidence that pulmonary fibrosis occurs without radiological abnormality, but a defect of diffusion may occur. There is no test of pulmonary function which is diagnostic, but a low pulmonary compliance, especially if combined with a low diffusing capacity, is confirmatory. It is suggested that the demonstration of a progressive decline in vital capacity, or in diffusing capacity, may enable a diagnosis of asbestosis to be made before radiological abnormality has appeared, but this point has not been proved.
Prognostic role of cardiac power index in ambulatory patients with advanced heart failure.
Grodin, Justin L; Mullens, Wilfried; Dupont, Matthias; Wu, Yuping; Taylor, David O; Starling, Randall C; Tang, W H Wilson
2015-07-01
Cardiac pump function is often quantified by left ventricular ejection fraction by various imaging modalities. As the heart is commonly conceptualized as a hydraulic pump, cardiac power describes the hydraulic function of the heart. We aim to describe the prognostic value of resting cardiac power index (CPI) in ambulatory patients with advanced heart failure. We calculated CPI in 495 sequential ambulatory patients with advanced heart failure who underwent invasive haemodynamic assessment with longitudinal follow-up of adverse outcomes (all-cause mortality, cardiac transplantation, or ventricular assist device placement). The median CPI was 0.44 W/m(2) (interquartile range 0.37, 0.52). Over a median of 3.3 years, there were 117 deaths, 104 transplants, and 20 ventricular assist device placements in our cohort. Diminished CPI (<0.44 W/m(2) ) was associated with increased adverse outcomes [hazard ratio (HR) 2.4, 95% confidence interval (CI) 1.8-3.1, P < 0.0001). The prognostic value of CPI remained significant after adjustment for age, gender, pulmonary capillary wedge pressure, cardiac index, pulmonary vascular resistance, left ventricular ejection fraction, and creatinine [HR 1.5, 95% CI 1.03-2.3, P = 0.04). Furthermore, CPI can risk stratify independently of peak oxygen consumption (HR 2.2, 95% CI 1.4-3.4, P = 0.0003). Resting cardiac power index provides independent and incremental prediction in adverse outcomes beyond traditional haemodynamic and cardio-renal risk factors. © 2015 The Authors. European Journal of Heart Failure © 2015 European Society of Cardiology.
Effects of ozone and nitrogen dioxide on pulmonary function in healthy and in asthmatic adolescents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenig, J.Q.; Covert, D.S.; Marshall, S.G.
The aim of this project was to investigate whether well-characterized asthmatic adolescent subjects were more sensitive to the inhaled effects of oxidant pollutants than were well-characterized healthy adolescent subjects. Ten healthy and 10 asthmatic subjects inhaled via a mouth-piece 0.12 or 0.18 ppm of ozone (O/sub 3/) or nitrogen dioxide (NO/sub 2/) or clean air for 30 min at rest followed by 10 min during moderate exercise (32.5 L/min) on a treadmill. The following pulmonary functional values were measured before and after exposure: peak flow, total respiratory resistance (RT), maximal flow at 50 and 75% of expired VC, and FEV1.more » After exercise exposure to 0.18 ppm O3, statistically significant increases were seen in RT in asthmatic and healthy adolescent subjects. No consistent changes were seen in either group after NO/sub 2/ exposure. Also, no significant differences in response to oxidant pollutants between the 2 groups could be demonstrated. It was concluded that neither group was consistently sensitive to these pollutants.« less
Lovering, Andrew T; Lozo, Mislav; Barak, Otto; Davis, James T; Lojpur, Mihajlo; Lozo, Petar; Čaljkušić, Krešimir; Dujić, Željko
2016-05-01
What is the central question of this study? Does a patent foramen ovale contribute to resting arterial hypoxaemia, defined as arterial oxygen saturation <95%, in subjects with chronic heart failure with or without pulmonary arterial hypertension? What is the main finding and its importance? The presence of a patent foramen ovale contributed to resting arterial hypoxaemia only in subjects with chronic heart failure with pulmonary arterial hypertension. These data suggest that the presence of a patent foramen ovale should be considered in chronic heart failure patients with arterial hypoxaemia and pulmonary hypertension. The roles of intrapulmonary and intracardiac shunt in contributing to arterial hypoxaemia at rest in subjects with chronic heart failure (CHF) have not been well investigated. We hypothesized that blood flow through intrapulmonary arteriovenous anastomoses (Q̇ IPAVA ) and/or patent foramen ovale (Q̇ PFO ) could potentially contribute to arterial hypoxaemia and, with pulmonary hypertension (PH) secondary to CHF, this contribution may be exacerbated. Fifty-six subjects with CHF (New York Heart Association Classes I-III), with (+) or without (-) PH [defined as peak tricuspid regurgitation velocity ≥2.9 m s(-1) (CHF PH+, n = 32) and peak tricuspid regurgitation velocity ≤2.8 m s(-1) (CHF PH-, n = 24)], underwent arterial blood gas analysis and transthoracic saline contrast echocardiography concomitant with transcranial Doppler to detect Q̇ IPAVA and Q̇ PFO . Seventeen of 56 subjects with CHF (30%) had Q̇ PFO , but only four of 56 subjects with CHF had Q̇ IPAVA (7%), both similar to age- and sex-matched control subjects. Mean arterial oxygen saturation (SaO2) was lower in subjects with Q̇ PFO . Only CHF PH+ subjects with Q̇ PFO had arterial hypoxaemia (mean SaO2 <95%). Bubble scores assessed using transthoracic saline contrast echocardiography were correlated with microembolic signals detected with transcranial Doppler in subjects with Q̇ PFO . Significant Q̇ IPAVA was not present in either CHF PH+ or PH- subjects, suggesting that Q̇ IPAVA is not dependent on increased pulmonary pressure and does not contribute significantly to arterial hypoxaemia in older subjects with CHF. Given that SaO2 was lower in all subjects with CHF who had Q̇ PFO compared with those without Q̇ PFO , a patent foramen ovale should be considered when determining potential causes of arterial hypoxaemia, because Q̇ PFO was present in 30% of these subjects. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Boulet, Lindsey M; Lovering, Andrew T; Tymko, Michael M; Day, Trevor A; Stembridge, Mike; Nguyen, Trang Anh; Ainslie, Philip N; Foster, Glen E
2017-06-01
What is the central question of this study? The aim was to determine, using the technique of agitated saline contrast echocardiography, whether exercise after 4-7 days at 5050 m would affect blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) compared with exercise at sea level. What is the main finding and its importance? Despite a significant increase in both cardiac output and pulmonary pressure during exercise at high altitude, there is very little Q̇IPAVA at rest or during exercise after 4-7 days of acclimatization. Mathematical modelling suggests that bubble instability at high altitude is an unlikely explanation for the reduced Q̇IPAVA. Blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) is elevated during exercise at sea level (SL) and at rest in acute normobaric hypoxia. After high altitude (HA) acclimatization, resting Q̇IPAVA is similar to that at SL, but it is unknown whether this is true during exercise at HA. We reasoned that exercise at HA (5050 m) would exacerbate Q̇IPAVA as a result of heightened pulmonary arterial pressure. Using a supine cycle ergometer, seven healthy adults free from intracardiac shunts underwent an incremental exercise test at SL [25, 50 and 75% of SL peak oxygen consumption (V̇O2 peak )] and at HA (25 and 50% of SL V̇O2 peak ). Echocardiography was used to determine cardiac output (Q̇) and pulmonary artery systolic pressure (PASP), and agitated saline contrast was used to determine Q̇IPAVA (bubble score; 0-5). The principal findings were as follows: (i) Q̇ was similar at SL rest (3.9 ± 0.47 l min -1 ) compared with HA rest (4.5 ± 0.49 l min -1 ; P = 0.382), but increased from rest during both SL and HA exercise (P < 0.001); (ii) PASP increased from SL rest (19.2 ± 0.7 mmHg) to HA rest (33.7 ± 2.8 mmHg; P = 0.001) and, compared with SL, PASP was further elevated during HA exercise (P = 0.003); (iii) Q̇IPAVA was increased from SL rest (0) to HA rest (median = 1; P = 0.04) and increased from resting values during SL exercise (P < 0.05), but was unchanged during HA exercise (P = 0.91), despite significant increases in Q̇ and PASP. Theoretical modelling of microbubble dissolution suggests that the lack of Q̇IPAVA in response to exercise at HA is unlikely to be caused by saline contrast instability. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Alveolar-Membrane Diffusing Capacity Limits Performance in Boston Marathon Qualifiers
Lavin, Kaleen M.; Straub, Allison M.; Uhranowsky, Kathleen A.; Smoliga, James M.; Zavorsky, Gerald S.
2012-01-01
Purpose (1) to examine the relation between pulmonary diffusing capacity and marathon finishing time, and (2), to evaluate the accuracy of pulmonary diffusing capacity for nitric oxide (DLNO) in predicting marathon finishing time relative to that of pulmonary diffusing capacity for carbon monoxide (DLCO). Methods 28 runners [18 males, age = 37 (SD 9) years, body mass = 70 (13) kg, height = 173 (9) cm, percent body fat = 17 (7) %] completed a test battery consisting of measurement of DLNO and DLCO at rest, and a graded exercise test to determine running economy and aerobic capacity prior to the 2011 Steamtown Marathon (Scranton, PA). One to three weeks later, all runners completed the marathon (range: 2∶22:38 to 4∶48:55). Linear regressions determined the relation between finishing time and a variety of anthropometric characteristics, resting lung function variables, and exercise parameters. Results In runners meeting Boston Marathon qualification standards, 74% of the variance in marathon finishing time was accounted for by differences in DLNO relative to body surface area (BSA) (SEE = 11.8 min, p<0.01); however, the relation between DLNO or DLCO to finishing time was non-significant in the non-qualifiers (p = 0.14 to 0.46). Whereas both DLCO and DLNO were predictive of finishing time for all finishers, DLNO showed a stronger relation (r2 = 0.30, SEE = 33.4 min, p<0.01) compared to DLCO when considering BSA. Conclusion DLNO is a performance-limiting factor in only Boston qualifiers. This suggests that alveolar-capillary membrane conductance is a limitation to performance in faster marathoners. Additionally, DLNO/BSA predicts marathon finishing time and aerobic capacity more accurately than DLCO. PMID:22984520
Bourdillon, Nicolas; Fan, Jui-Lin; Uva, Barbara; Müller, Hajo; Meyer, Philippe; Kayser, Bengt
2015-01-01
Background: Hypoxia-induced pulmonary vasoconstriction increases pulmonary arterial pressure (PAP) and may impede right heart function and exercise performance. This study examined the effects of oral nitrate supplementation on right heart function and performance during exercise in normoxia and hypoxia. We tested the hypothesis that nitrate supplementation would attenuate the increase in PAP at rest and during exercise in hypoxia, thereby improving exercise performance. Methods: Twelve trained male cyclists [age: 31 ± 7 year (mean ± SD)] performed 15 km time-trial cycling (TT) and steady-state submaximal cycling (50, 100, and 150 W) in normoxia and hypoxia (11% inspired O2) following 3-day oral supplementation with either placebo or sodium nitrate (0.1 mmol/kg/day). We measured TT time-to-completion, muscle tissue oxygenation during TT and systolic right ventricle to right atrium pressure gradient (RV-RA gradient: index of PAP) during steady state cycling. Results: During steady state exercise, hypoxia elevated RV-RA gradient (p > 0.05), while oral nitrate supplementation did not alter RV-RA gradient (p > 0.05). During 15 km TT, hypoxia lowered muscle tissue oxygenation (p < 0.05). Nitrate supplementation further decreased muscle tissue oxygenation during 15 km TT in hypoxia (p < 0.05). Hypoxia impaired time-to-completion during TT (p < 0.05), while no improvements were observed with nitrate supplementation in normoxia or hypoxia (p > 0.05). Conclusion: Our findings indicate that oral nitrate supplementation does not attenuate acute hypoxic pulmonary vasoconstriction nor improve performance during time trial cycling in normoxia and hypoxia. PMID:26528189
Verbrugge, Frederik H; Dupont, Matthias; Bertrand, Philippe B; Nijst, Petra; Grieten, Lars; Dens, Joseph; Verhaert, David; Janssens, Stefan; Tang, W H Wilson; Mullens, Wilfried
2015-03-01
To study pulmonary vascular response patterns to exercise in heart failure with reduced ejection fraction (HFrEF) and pulmonary hypertension (PH). In this prospective single-centre cohort study, consecutive symptomatic HFrEF patients (n = 40) with mean pulmonary arterial pressure (MPAP) ≥25 mmHg, pulmonary artery wedge pressure (PAWP) >15 mmHg, and cardiac index <2.5 L/min.m(2) , received protocol-driven titrated sodium nitroprusside (SNP) and diuretics to reach mean arterial blood pressure 65-75 mmHg and PAWP ≤15 mmHg. Patients performed symptom-limited supine bicycle testing under continued SNP administration. Afterwards, SNP was gradually withdrawn, renin-angiotensin system blockers uptitrated, and hydralazine added to maintain haemodynamic targets. Subsequently, bicycle testing was repeated. Patients presented with pulmonary vascular resistance (PVR) = 3.8 ± 1.4 Wood Units at rest, decreasing to 2.9 ± 0.9 Wood Units after decongestion, with PH was completely reversed (MPAP <25 mmHg) in 22%. From rest to maximal exercise, the cardiac index did not change significantly (P = 0.334 under SNP; P-value = 0.552 under oral therapy). A dynamic exercise-induced PVR increase >3.5 Wood Units was noted in 19 patients (48%) under oral therapy vs. five (13%) under SNP. Such exercise-induced PVR increase was associated with a 33% relative decrease in right ventricular stroke work index (P = 0.037). Even after thorough decongestion and under continuous afterload reduction, PH secondary to HFrEF is completely reversible in only a minority of patients. Others demonstrate an exercise-induced PVR increase, associated with impaired right ventricular stroke work, which might be ameliorated by nitric oxide donor support. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
Seccombe, L; Kelly, P; Wong, C; Rogers, P; Lim, S; Peters, M
2004-01-01
Background: Commercial aircraft cabins provide a hostile environment for patients with underlying respiratory disease. Although there are algorithms and guidelines for predicting in-flight hypoxaemia, these relate to chronic obstructive pulmonary disease (COPD) and data for interstitial lung disease (ILD) are lacking. The purpose of this study was to evaluate the effect of simulated cabin altitude on subjects with ILD at rest and during a limited walking task. Methods: Fifteen subjects with ILD and 10 subjects with COPD were recruited. All subjects had resting arterial oxygen pressure (PaO2) of >9.3 kPa. Subjects breathed a hypoxic gas mixture containing 15% oxygen with balance nitrogen for 20 minutes at rest followed by a 50 metre walking task. Pulse oximetry (SpO2) was monitored continuously with testing terminated if levels fell below 80%. Arterial blood gas tensions were taken on room air at rest and after the resting and exercise phases of breathing the gas mixture. Results: In both groups there was a statistically significant decrease in arterial oxygen saturation (SaO2) and PaO2 from room air to 15% oxygen at rest and from 15% oxygen at rest to the completion of the walking task. The ILD group differed significantly from the COPD group in resting 15% oxygen SaO2, PaO2, and room air pH. Means for both groups fell below recommended levels at both resting and when walking on 15% oxygen. Conclusion: Even in the presence of acceptable arterial blood gas tensions at sea level, subjects with both ILD and COPD fall below recommended levels of oxygenation when cabin altitude is simulated. This is exacerbated by minimal exercise. Resting sea level arterial blood gas tensions are similarly poor in both COPD and ILD for predicting the response to simulated cabin altitude. PMID:15516473
Functional morphology and patterns of blood flow in the heart of Python regius.
Starck, J Matthias
2009-06-01
Brightness-modulated ultrasonography, continuous-wave Doppler, and pulsed-wave Doppler-echocardiography were used to analyze the functional morphology of the undisturbed heart of ball pythons. In particular, the action of the muscular ridge and the atrio-ventricular valves are key features to understand how patterns of blood flow emerge from structures directing blood into the various chambers of the heart. A step-by-step image analysis of echocardiographs shows that during ventricular diastole, the atrio-ventricular valves block the interventricular canals so that blood from the right atrium first fills the cavum venosum, and blood from the left atrium fills the cavum arteriosum. During diastole, blood from the cavum venosum crosses the muscular ridge into the cavum pulmonale. During middle to late systole the muscular ridge closes, thus prohibiting further blood flow into the cavum pulmonale. At the same time, the atrio-ventricular valves open the interventricular canal and allow blood from the cavum arteriosum to flow into the cavum venosum. In the late phase of ventricular systole, all blood from the cavum pulmonale is pressed into the pulmonary trunk; all blood from the cavum venosum is pressed into both aortas. Quantitative measures of blood flow volume showed that resting snakes bypass the pulmonary circulation and shunt about twice the blood volume into the systemic circulation as into the pulmonary circulation. When digesting, the oxygen demand of snakes increased tremendously. This is associated with shunting more blood into the pulmonary circulation. The results of this study allow the presentation of a detailed functional model of the python heart. They are also the basis for a functional hypothesis of how shunting is achieved. Further, it was shown that shunting is an active regulation process in response to changing demands of the organism (here, oxygen demand). Finally, the results of this study support earlier reports about a dual pressure circulation in Python regius.
Chicotka, Scott; Burkhoff, Daniel; Dickstein, Marc L; Bacchetta, Matthew
Interstitial lung disease (ILD) represents a collection of lung disorders with a lethal trajectory with few therapeutic options with the exception of lung transplantation. Various extracorporeal membrane oxygenation (ECMO) configurations have been used for bridge to transplant (BTT), yet no optimal configuration has been clearly demonstrated. Using a cardiopulmonary simulation, we assessed different ECMO configurations for patients with end-stage ILD to assess the physiologic deficits and help guide the development of new long-term pulmonary support devices. A cardiopulmonary ECMO simulation was created, and changes in hemodynamics and blood gases were compared for different inflow and outflow anatomic locations and for different sweep gas and blood pump flow rates. The system simulated the physiologic response of patients with severe ILD at rest and during exercise with central ECMO, peripheral ECMO, and with no ECMO. The output parameters were total cardiac output (CO), mixed venous oxygen (O2) saturation, arterial pH, and O2 delivery (DO2)/O2 utilization (VO2) at different levels of exercise. The model described the physiologic state of progressive ILD and showed the relative effects of using various ECMO configurations to support them. It elucidated the optimal device configurations and required physiologic pump performance and provided insight into the physiologic demands of exercise in ILD patients. The simulation program was able to model the pathophysiologic state of progressive ILD with PH and demonstrate how mechanical support devices can be implemented to improve cardiopulmonary function at rest and during exercise. The information generated from simulation can be used to optimize ECMO configuration selection for BTT patients and provide design guidance for new devices to better meet the physiologic demands of exercise associated with normal activities of daily living.
Campbell, Andrew; Minniti, Caterina P.; Nouraie, Mehdi; Arteta, Manuel; Rana, Sohail; Onyekwere, Onyinye; Sable, Craig; Ensing, Gregory; Dham, Niti; Luchtman-Jones, Lori; Kato, Gregory J.; Gladwin, Mark T.; Castro, Oswaldo L.; Gordeuk, Victor R.
2009-01-01
Summary Low steady state haemoglobin oxygen saturation in patients with sickle cell anaemia has been associated with the degree of anaemia and haemolysis. How much pulmonary dysfunction contributes to low saturation is not clear. In a prospective study of children and adolescents with sickle cell disease aged 3–20 years at steady state and matched controls, 52% of 391 patients versus 24% of 63 controls had steady state oxygen saturation <99% (P < 0·0001), 9% of patients versus no controls had saturation <95% (P = 0·008) and 8% of patients versus no controls had exercise-induced reduction in saturation ≥3%. Decreasing haemoglobin concentration (P ≤ 0·001) and increasing haemolysis (P ≤ 0·003) but not pulmonary function tests were independent predictors of both lower steady-state saturation and exercise-induced reduction in saturation. Neither history of stroke nor history of acute chest syndrome was significantly associated with lower steady-state oxygen saturation or exercise-induced reduction in saturation. Tricuspid regurgitation velocity was higher in patients with lower steady state haemoglobin oxygen saturation (P = 0·003) and with greater decline in oxygen saturation during the six-minute walk (P = 0·022). In conclusion, lower haemoglobin oxygen saturation is independently associated with increasing degrees of anaemia and haemolysis but not pulmonary function abnormalities among children and adolescents with sickle cell disease. PMID:19694721
Barberà, Joan Albert; Blanco, Isabel
2009-06-18
Pulmonary hypertension (PH) is an important complication in the natural history of chronic obstructive pulmonary disease (COPD). Its presence is associated with reduced survival and greater use of healthcare resources. The prevalence of PH is high in patients with advanced COPD, whereas in milder forms it might not be present at rest but may develop during exercise. In COPD, PH is usually of moderate severity and progresses slowly, without altering right ventricular function in the majority of patients. Nevertheless, a small subgroup of patients (1-3%) may present with out-of-proportion PH, that is, with pulmonary arterial pressure largely exceeding the severity of airway impairment. These patients depict a clinical picture similar to more severe forms of PH and have higher mortality rates. PH in COPD is caused by the remodelling of pulmonary arteries, which is characterized by the intimal proliferation of poorly differentiated smooth muscle cells and the deposition of elastic and collagen fibres. The sequence of changes that lead to PH in COPD begins at early disease stages by the impairment of endothelial function, which is associated with impaired release of endothelium-derived vasodilating agents (nitric oxide, prostacyclin) and increased expression of growth factors. Products contained in cigarette smoke play a critical role in the initiation of pulmonary endothelial cell alterations. Recognition of PH can be difficult because symptoms due to PH are not easy to differentiate from the clinical picture of COPD. Suspicion of PH should be high if clinical deterioration is not matched by the decline in pulmonary function, and in the presence of profound hypoxaemia or markedly reduced carbon monoxide diffusing capacity. Patients with suspected PH should be evaluated by Doppler echocardiography and, if confirmed, undergo right-heart catheterization in those circumstances where the result of the procedure can determine clinical management. To date, long-term oxygen therapy is the treatment of choice in COPD patients with PH and hypoxaemia because it slows or reverses its progression. Conventional vasodilators are not recommended because of their potential detrimental effects on gas exchange, produced by the inhibition of hypoxic pulmonary vasoconstriction and their lack of effectiveness after long-term treatment. In the subgroup of patients with out-of-proportion PH, new specific therapy available for pulmonary arterial hypertension (PAH) [prostanoids, endothelin-1 receptor antagonists and phosphodiesterase-5 inhibitors] may be considered in the setting of clinical trials. The use of specific PAH therapy in COPD patients with moderate PH is discouraged because of the potential detrimental effect of some of these drugs on gas exchange and there are no data demonstrating their efficacy.
Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude.
Faoro, Vitalie; Huez, Sandrine; Vanderpool, Rebecca; Groepenhoff, Herman; de Bisschop, Claire; Martinot, Jean-Benot; Lamotte, Michel; Pavelescu, Adriana; Guénard, Hervé; Naeije, Robert
2014-04-01
Tibetans have been reported to present with a unique phenotypic adaptation to high altitude characterized by higher resting ventilation and arterial oxygen saturation, no excessive polycythemia, and lower pulmonary arterial pressures (Ppa) compared with other high-altitude populations. How this affects exercise capacity is not exactly known. We measured aerobic exercise capacity during an incremental cardiopulmonary exercise test, lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) at rest, and mean Ppa (mPpa) and cardiac output by echocardiography at rest and at exercise in 13 Sherpas and in 13 acclimatized lowlander controls at the altitude of 5,050 m in Nepal. In Sherpas vs. lowlanders, arterial oxygen saturation was 86 ± 1 vs. 83 ± 2% (mean ± SE; P = nonsignificant), mPpa at rest 19 ± 1 vs. 23 ± 1 mmHg (P < 0.05), DL(CO) corrected for hemoglobin 61 ± 4 vs. 37 ± 2 ml · min(-1) · mmHg(-1) (P < 0.001), DL(NO) 226 ± 18 vs. 153 ± 9 ml · min(-1) · mmHg(-1) (P < 0.001), maximum oxygen uptake 32 ± 3 vs. 28 ± 1 ml · kg(-1) · min(-1) (P = nonsignificant), and ventilatory equivalent for carbon dioxide at anaerobic threshold 40 ± 2 vs. 48 ± 2 (P < 0.001). Maximum oxygen uptake was correlated directly to DL(CO) and inversely to the slope of mPpa-cardiac index relationships in both Sherpas and acclimatized lowlanders. We conclude that Sherpas compared with acclimatized lowlanders have an unremarkable aerobic exercise capacity, but with less pronounced pulmonary hypertension, lower ventilatory responses, and higher lung diffusing capacity.
Saggar, Rajeev; Khanna, D; Shapiro, S; Furst, D E; Maranian, P; Clements, P; Abtin, F; Dua, Shiv; Belperio, J; Saggar, Rajan
2012-12-01
Exercise-induced pulmonary hypertension (ePH) may represent an early, clinically relevant phase in the spectrum of pulmonary vascular disease. The purpose of this pilot study was to describe the changes in hemodynamics and exercise capacity in patients with systemic sclerosis (SSc) spectrum-associated ePH treated with open-label daily ambrisentan. Patients were treated with ambrisentan, 5 mg or 10 mg once daily, for 24 weeks. At baseline and 24 weeks, patients with SSc spectrum disorders exercised in a supine position, on a lower extremity cycle ergometer. All patients had normal hemodynamics at rest. We defined baseline ePH as a mean pulmonary artery pressure of >30 mm Hg with maximum exercise and a transpulmonary gradient (TPG) of >15 mm Hg. The primary end point was change in pulmonary vascular resistance (PVR) with exercise. Secondary end points included an improvement from baseline in 6-minute walking distance, health-related quality of life assessments, and cardiopulmonary hemodynamics. Of the 12 enrolled patients, 11 completed the study. At 24 weeks there were improvements in mean exercise PVR (85.8 dynes × second/cm(5) ; P = 0.003) and mean distance covered during 6-minute walk (44.5 meters; P = 0.0007). Improvements were also observed in mean exercise cardiac output (1.4 liters/minute; P = 0.006), mean pulmonary artery pressure (-4.1 mm Hg; P = 0.02), and total pulmonary resistance (-93.0 dynes × seconds/cm(5) ; P = 0.0008). Three patients developed resting pulmonary arterial hypertension during the 24 weeks. Exercise hemodynamics and exercise capacity in patients with SSc spectrum-associated ePH improved over 24 weeks with exposure to ambrisentan. Placebo-controlled studies are needed to confirm whether this is a drug-related effect and to determine optimal therapeutic regimens for patients with ePH. Copyright © 2012 by the American College of Rheumatology.
Development of Mitral Stenosis After Mitral Valve Repair: Importance of Mitral Valve Area.
Chan, Kwan Leung; Chen, Shin-Yee; Mesana, Thierry; Lam, Buu Khanh
2017-12-01
The development of mitral stenosis (MS) is not uncommon after mitral valve (MV) repair for degenerative mitral regurgitation (MR), but the significance of MS in this setting has not been defined. We prospectively studied 110 such patients who underwent supine bicycle exercise testing to assess intracardiac hemodynamics at rest and at peak exercise. B-type natriuretic peptide (BNP) levels were measured at rest and after the exercise test. The patients also performed the 6-minute walk test and completed the 36-Item Short Form Survey (SF-36). Follow-up was performed by a review of the medical record and telephone interview. Of 110 patients, 22 had MS defined by a mitral valve area (MVA) ≤ 1.5 cm 2 . The resting and peak exercise mitral gradients and pulmonary artery systolic pressure were significantly higher in patients with MS compared with patients with an MVA > 1.5 cm 2 . BNP levels at rest and after exercise were also higher in the patients with MS, who also had lower exercise capacity and worse perception of well-being in 3 domains (physical function, vitality, and social function) on the SF-36. MVA had higher specificity and positive predictive value in predicting outcome events compared with a mean gradient of 3 or 5 mm Hg. In patients who had MV repair for degenerative MR, an MVA ≤ 1.5 cm 2 occurs in about one-fifth of patients and is associated with adverse intracardiac hemodynamics, lower exercise capacity, and adverse outcomes. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Dasatinib-induced pulmonary arterial hypertension - A rare late complication.
Ibrahim, Uroosa; Saqib, Amina; Dhar, Vidhya; Odaimi, Marcel
2018-01-01
Dasatinib is a dual Src/Abl tyrosine kinase inhibitor approved for frontline and second line treatment of chronic phase chronic myelogenous leukemia. Pulmonary arterial hypertension is defined by an increase in mean pulmonary arterial pressure >25 mmHg at rest. Dasatinib-induced pulmonary hypertension has been reported in less than 1% of patients on chronic dasatinib treatment for chronic myelogenous leukemia. The pulmonary arterial hypertension from dasatinib may be categorized as either group 1 (drug-induced) or group 5 based on various mechanisms that may be involved including the pathogenesis of the disease process of chronic myelogenous leukemia. There have been reports of dasatinib-induced pulmonary arterial hypertension being reversible. We report a case of pulmonary arterial hypertension in a 46-year-old female patient with chronic phase chronic myelogenous leukemia on dasatinib treatment for over 10 years. She had significant improvement in symptoms after discontinuation of dasatinib and initiation of vasodilators. Several clinical questions arise once patients experience significant adverse effects as discussed in our case.
Taguchi, Yoshio; Ebina, Masahito; Hashimoto, Seishu; Ogura, Takashi; Azuma, Arata; Taniguchi, Hiroyuki; Kondoh, Yasuhiro; Suga, Moritaka; Takahashi, Hiroki; Nakata, Koichiro; Sugiyama, Yukihiko; Kudoh, Shoji; Nukiwa, Toshihiro
2015-11-01
A phase III clinical trial of pirfenidone in patients with idiopathic pulmonary fibrosis (IPF) in Japan has revealed that pirfenidone attenuated the decline in vital capacity (VC) and improved progression-free survival (PFS). We conducted an extended analysis of the pirfenidone trial to investigate its efficacy with respect to IPF severity in the trial population. Patients in the phase III trial were stratified by baseline pulmonary functions including %VC predicted, %diffusion capacity for carbon monoxide predicted, and oxygen saturation by pulse oximetry on exertion and were categorized into mild, moderate, and severe groups of functional impairment. The efficacy of pirfenidone for VC and PFS over 52 weeks was compared among the three sub-populations. Of 264 patients, 102 (39%), 90 (34%), and 72 patients (27%) were classified as having mild, moderate, and severe grades of functional impairment, respectively. This classification was associated with arterial oxygen partial pressure at rest and degree of dyspnea at baseline. While pirfenidone attenuated VC decline at all grades of severity, covariance analysis revealed pirfenidone to have better efficacy in the sub-population with mild-grade IPF. Mixed model repeated measures analysis confirmed that pirfenidone markedly attenuated VC decline in patients with mild-grade IPF compared to its effects in patients with moderate or severe IPF. Pirfenidone also improved PFS markedly in patients with mild-grade IPF. This extended analysis suggested that pirfenidone exerted better therapeutic effects in patients with milder IPF. Further analysis with a larger population is needed to confirm these results. Copyright © 2015. Published by Elsevier B.V.
Pulmonary outcome of esophageal atresia patients and its potential causes in early childhood.
Dittrich, René; Stock, Philippe; Rothe, Karin; Degenhardt, Petra
2017-08-01
The aim of this study was to illustrate the pulmonary long term outcome of patients with repaired esophageal atresia and to further examine causes and correlations that might have led to this outcome. Twenty-seven of 62 possible patients (43%) aged 5-20years, with repaired esophageal atresia were recruited. Body plethysmography and spirometry were performed to evaluate lung function, and the Bruce protocol treadmill exercise test to assess physical fitness. Results were correlated to conditions such as interpouch distance, gastroesophageal reflux or duration of post-operative mechanical ventilation. Seventeen participants (63%) showed abnormal lung function at rest or after exercise. Restrictive ventilatory defects (solely restrictive or combined) were found in 11 participants (41%), and obstructive ventilatory defects (solely obstructive or combined) in 13 subjects (48%). Twenty-two participants (81%) performed the Bruce protocol treadmill exercise test to standard. The treadmill exercise results were expressed in z-score and revealed to be significantly below the standard population mean (z-score=-1.40). Moreover, significant correlations between restrictive ventilatory defects and the interpouch distance; duration of post-operative ventilation; gastroesophageal reflux disease; plus recurrent aspiration pneumonia during infancy; were described. It was shown that esophageal atresia and associated early complications have significant impact on pulmonary long term outcomes such as abnormal lung function and, in particular restrictive ventilatory defects. Long-running and regular follow-ups of patients with congenital esophageal atresia are necessary in order to detect and react to the development and progression of associated complications such as ventilation disorders or gastroesophageal reflux disease. Prognosis study, Level II. Copyright © 2016 Elsevier Inc. All rights reserved.
Franssen, Frits M E; Wouters, Emiel F M; Baarends, Erica M; Akkermans, Marco A; Schols, Annemie M W J
2002-10-01
Previous studies indicate that energy expenditure related to physical activity is enhanced and that mechanical efficiency of leg exercise is reduced in patients with chronic obstructive pulmonary disease (COPD). However, it is yet unclear whether an inefficient energy expenditure is also present during other activities in COPD. This study was carried out to examine arm efficiency and peak arm exercise performance relative to leg exercise in 33 (23 male) patients with COPD ((mean +/- SEM) age: 61 +/- 2 yr; FEV : 40 +/- 2% of predicted) and 20 sex- and age-matched healthy controls. Body composition, pulmonary function, resting energy expenditure (REE), and peak leg and arm exercise performance were determined. To calculate mechanical efficiency, subjects performed submaximal leg and arm ergometry at 50% of achieved peak loads. During exercise testing, metabolic and ventilatory parameters were measured. In contrast to a reduced leg mechanical efficiency in patients compared with controls (15.6 +/- 0.6% and 22.5 +/- 0.6%, respectively; < 0.001), arm mechanical efficiency was comparable in both groups (COPD: 18.3 +/- 0.9%, controls: 21.0 +/- 1.2%; NS). Arm efficiency was not related to leg efficiency, pulmonary function, work of breathing, or REE. Also, arm exercise capacity was relatively preserved in patients with COPD (ratio arm peak work rate/leg peak work rate in patients: 89% vs 53% in controls; < 0.001). Mechanical efficiency and exercise capacity of the upper and lower limbs are not homogeneously affected in COPD, with a relative preservation of the upper limbs. This may have implications for screening of exercise tolerance and prescription of training interventions in patients with COPD. Future studies need to elucidate the mechanism behind this observation.
Oral N-acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease.
Hirai, Daniel M; Jones, Joshua H; Zelt, Joel T; da Silva, Marianne L; Bentley, Robert F; Edgett, Brittany A; Gurd, Brendon J; Tschakovsky, Michael E; O'Donnell, Denis E; Neder, J Alberto
2017-05-01
Heightened oxidative stress is implicated in the progressive impairment of skeletal muscle vascular and mitochondrial function in chronic obstructive pulmonary disease (COPD). Whether accumulation of reactive oxygen species contributes to exercise intolerance in the early stages of COPD is unknown. The purpose of the present study was to determine the effects of oral antioxidant treatment with N -acetylcysteine (NAC) on respiratory, cardiovascular, and locomotor muscle function and exercise tolerance in patients with mild COPD. Thirteen patients [forced expiratory volume in 1 s (FEV 1 )-to-forced vital capacity ratio < lower limit of normal (LLN) and FEV 1 ≥ LLN) were enrolled in a double-blind, randomized crossover study to receive NAC (1,800 mg/day) or placebo for 4 days. Severe-intensity constant-load exercise tests were performed with noninvasive measurements of central hemodynamics (stroke volume, heart rate, and cardiac output via impedance cardiography), arterial blood pressure, pulmonary ventilation and gas exchange, quadriceps muscle oxygenation (near-infrared spectroscopy), and estimated capillary blood flow. Nine patients completed the study with no major adverse clinical effects. Although NAC elevated plasma glutathione by ~27% compared with placebo ( P < 0.05), there were no differences in exercise tolerance (placebo: 325 ± 47 s, NAC: 336 ± 51 s), central hemodynamics, arterial blood pressure, pulmonary ventilation or gas exchange, locomotor muscle oxygenation, or capillary blood flow from rest to exercise between conditions ( P > 0.05 for all). In conclusion, modulation of plasma redox status with oral NAC treatment was not translated into beneficial effects on central or peripheral components of the oxygen transport pathway, thereby failing to improve exercise tolerance in nonhypoxemic patients with mild COPD. NEW & NOTEWORTHY Acute antioxidant treatment with N -acetylcysteine (NAC) elevated plasma glutathione but did not modulate central or peripheral components of the O 2 transport pathway, thereby failing to improve exercise tolerance in patients with mild chronic obstructive pulmonary disease (COPD). Copyright © 2017 the American Physiological Society.
Ghofrani, Hossein-Ardeschir; Simonneau, Gérald; D'Armini, Andrea M; Fedullo, Peter; Howard, Luke S; Jaïs, Xavier; Jenkins, David P; Jing, Zhi-Cheng; Madani, Michael M; Martin, Nicolas; Mayer, Eckhard; Papadakis, Kelly; Richard, Dominik; Kim, Nick H
2017-10-01
Macitentan is beneficial for long-term treatment of pulmonary arterial hypertension. The microvasculopathy of chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary arterial hypertension are similar. The phase 2, double-blind, randomised, placebo-controlled MERIT-1 trial assessed macitentan in 80 patients with CTEPH adjudicated as inoperable. Patients identified as WHO functional class II-IV with a pulmonary vascular resistance (PVR) of at least 400 dyn·s/cm 5 and a walk distance of 150-450 m in 6 min were randomly assigned (1:1), via an interactive voice/web response system, to receive oral macitentan (10 mg once a day) or placebo. Treatment with phosphodiesterase type-5 inhibitors and oral or inhaled prostanoids was permitted for WHO functional class III/IV patients. The primary endpoint was resting PVR at week 16, expressed as percentage of PVR measured at baseline. Analyses were done in all patients who were randomly assigned to treatment; safety analyses were done in all patients who received at least one dose of the study drug. This study is registered with ClinicalTrials.gov, number NCT02021292. Between April 3, 2014, and March 17, 2016, we screened 186 patients for eligibility at 48 hospitals across 20 countries. Of these, 80 patients in 36 hospitals were randomly assigned to treatment (40 patients to macitentan, 40 patients to placebo). At week 16, geometric mean PVR decreased to 73·0% of baseline in the macitentan group and to 87·2% in the placebo group (geometric means ratio 0·84, 95% CI 0·70-0·99, p=0·041). The most common adverse events in the macitentan group were peripheral oedema (9 [23%] of 40 patients) and decreased haemoglobin (6 [15%]). In MERIT-1, macitentan significantly improved PVR in patients with inoperable CTEPH and was well tolerated. Actelion Pharmaceuticals Ltd. Copyright © 2017 Elsevier Ltd. All rights reserved.
Relation between lung function, exercise capacity, and exposure to asbestos cement.
Wollmer, P; Eriksson, L; Jonson, B; Jakobsson, K; Albin, M; Skerfving, S; Welinder, H
1987-01-01
A group of 137 male workers with known exposure (mean 20 fibre years per millilitre) to asbestos cement who had symptoms or signs of pulmonary disease was studied together with a reference group of 49 healthy industrial workers with no exposure to asbestos. Lung function measurements were made at rest and during exercise. Evidence of lung fibrosis was found as well as of obstructive airways disease in the exposed group compared with the reference group. Asbestos cement exposure was related to variables reflecting lung fibrosis but not to variables reflecting airflow obstruction. Smoking was related to variables reflecting obstructive lung disease. Exercise capacity was reduced in the exposed workers and was related to smoking and to lung function variables, reflecting obstructive airways disease. There was no significant correlation between exercise capacity and exposure to asbestos cement. PMID:3651353
2012-01-01
Background Elderly patients with chronic obstructive pulmonary disease (COPD) usually have a compromised nutritional status which is an independent predictor of morbidity and mortality. To know the Resting Energy Expenditure (REE) and the substrate oxidation measurement is essential to prevent these complications. This study aimed to compare the REE, respiratory quotient (RQ) and body composition between patients with and without COPD. Methods This case–control study assessed 20 patients with chronic obstructive pulmonary disease attending a pulmonary rehabilitation program. The group of subjects without COPD (control group) consisted of 20 elderly patients attending a university gym, patients of a private service and a public healthy care. Consumption of oxygen (O2) and carbon dioxide (CO2) was determined by indirect calorimetry and used for calculating the resting energy expenditure and respiratory quotient. Body mass index (BMI) and waist circumference (WC) were also measured. Percentage of body fat (%BF), lean mass (kg) and muscle mass (kg) were determined by bioimpedance. The fat free mass index (FFMI) and muscle mass index (MMI) were then calculated. Results The COPD group had lower BMI than control (p = 0.02). However, WC, % BF, FFMI and MM-I did not differ between the groups. The COPD group had greater RQ (p = 0.01), REE (p = 0.009) and carbohydrate oxidation (p = 0.002). Conclusions Elderly patients with COPD had higher REE, RQ and carbohydrate oxidation than controls. PMID:22672689
Di Marco, Fabiano; Terraneo, Silvia; Job, Sara; Rinaldo, Rocco Francesco; Sferrazza Papa, Giuseppe Francesco; Roggi, Maria Adelaide; Santus, Pierachille; Centanni, Stefano
2017-06-01
The need for additional research on symptomatic smokers with normal spirometry has been recently emphasized. Albeit not meeting criteria for Chronic obstructive pulmonary disease (COPD) diagnosis, symptomatic smokers may experience activity limitation, evidence of airway disease, and exacerbations. We, therefore, evaluated whether symptomatic smokers with borderline spirometry (post-bronchodilator FEV 1 /FVC ratio between 5th to 20th percentile of predicted values) have pulmonary function abnormalities at rest and ventilatory constraints during exercise. 48 subjects (aged 60 ± 8 years, mean ± SD, 73% males, 16 healthy, and 17 symptomatic smokers) underwent cardiopulmonary exercise testing (CPET), body plethysmography, nitrogen single-breath washout test (N 2 SBW), lung diffusion for carbon monoxide (DLCO), and forced oscillation technique (FOT). Compared to healthy subjects, symptomatic smokers showed: 1) reduced breathing reserve (36 ± 17 vs. 49 ± 12%, P = 0.050); 2) exercise induced dynamic hyperinflation (-0.20 ± 0.17 vs. -0.03 ± 0.21 L, P = 0.043); 3) higher residual volume (158 ± 22 vs. 112 ± 22%, P < 0.001); 4) phase 3 slope at N 2 SBW (4.7 ± 2.1 vs. 1.4 ± 0.6%, P < 0.001); 5) no significant differences in DLCO and FOT results. In smokers with borderline spirometry, CPET and second-line pulmonary function tests may detect obstructive pattern. These subjects should be referred for second line testing, to obtain a diagnosis, or at least to clarify the mechanisms underlying symptoms. Whether the natural history of these patients is similar to COPD, and they deserve a similar therapeutic approach is worth investigating. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of breathing exercises on lung capacity and muscle activities of elderly smokers.
Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon
2016-06-01
[Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength.
Effects of breathing exercises on lung capacity and muscle activities of elderly smokers
Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon
2016-01-01
[Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength. PMID:27390394
Yeying, Ge; Liyong, Yuan; Yuebo, Chen; Yu, Zhang; Guangao, Ye; Weihu, Ma; Liujun, Zhao
2017-12-01
Objectives To assess the effect of thoracic paravertebral block (PVB) on pain management and preservation of pulmonary function compared with intravenous, patient-controlled analgesia (IVPCA) in patients with multiple rib fractures (MRFs). Methods Ninety patients with unilateral MRFs were included in this prospective study and randomly assigned to the TPVB or IVPCA group. The visual analogue scale (VAS) pain score, blood gas analysis, and bedside spirometry were measured and recorded at different time points after analgesia. Results TPVB and IVPCA provided good pain relief. VAS scores were significantly lower in the TPVB group than in the IVPCA group at rest and during coughing ( P < 0.05). Patients in the TPVB group had a higher PaO 2 and PaO 2 /FiO 2 and lower P (A-a) O 2 compared with the IVPCA group ( P < 0.05). Moreover, patients in the TPVB group showed higher FVC, FEV1/FVC, and PEFR, and fewer complications than did the IVPCA group ( P < 0.05). Conclusion TPVB is superior to IVPCA in pain relief and preservation of pulmonary function in patients with MRFs.
Yang, Lu; Zhang, Xue-mei; Hu, Xiu-ying; Zhang, Yan-ling
2016-01-01
To investigate the correlation of serum leptin and to energy consumption and metabolization in the patients with chronic obstructive pulmonary disease (COPD). We included 92 outpatients with stable COPD in West China Hospital of Sichuan University as trail group (COPD group) and 80 healthy elderly people in community as control group. All patients and healthy control received the measurements of body mass index (BMI), fat mass, resting energy expenditure (REE), lung function, serum leptin and tumor necrosis factor-α (TNF-α). The concentrations of serum leptin, BMI and lung function were lower in COPD group than those in control group (P < 0.01). The concentrations of serum leptin between two groups were not difference after the adjusted results of BMI and fat mass.. There was no difference of REE and TNF-α concentrations in these two groups. The serum leptin had positive correlation with BMI and fat mass, but there were no correlation between of TNF-α and serum leptin. In elderly people with stable COPD, the decline on the serum leptin is related to the decrease of BMI and fat mass, but barely related to the level of TNF-α.
Leduc, D; Fally, S; De Vuyst, P; Wollast, R; Yernault, J C
1995-11-01
Naturally occurring fogs in industrialized cities are contaminated by acidic air pollutants. In Brussels, Belgium, the pH of polluted fogwater may be as low as 3 with osmolarity as low as 30 mOsm. In order to explore short-term respiratory effects of a realistic acid-polluted fog, we collected samples of acid fog in Brussels, Belgium, which is a densely populated and industrialized city, we defined characteristics of this fog and exposed asthmatic volunteers at rest through a face mask to fogs with physical and chemical characteristics similar to those of natural fogs assessed in this urban area. Fogwater was sampled using a screen collector where droplets are collected by inertial impaction and chemical content of fogwater was assessed by measurement of conductivity, pH, visible colorimetry, high pressure liquid chromatography, and atomic absorption spectrophotometry over a period of one year. The fogwater composition was dominated by NH4+ and SO4- ions. First we evaluated the possible effect of fog acidity alone. For this purpose 14 subjects with asthma were exposed at rest for 1 hr [mass median aerodynamic diameter to a large-particle (MMAD), 9 microns] aerosol with H2SO4 concentration of 500 micrograms/m3 (pH 2.5) and osmolarity of 300 mOsm. We did not observe significant change in pulmonary function or bronchial responsiveness to metacholine. In the second part of the work, 10 asthmatic subjects were exposed to acid fog (MMAD, 7 microns) containing sulfate and ammonium ions (major ions recovered in naturally occurring fogs) with pH 3.5 and osmolarity 30 mOsm. Again, pulmonary function and bronchial reactivity were not modified after inhalation of this fog. It was concluded that short-term exposure to acid fog reproducing acidity and hypoosmolarity of natural polluted fogs does not induce bronchoconstriction and does not change bronchial responsiveness in asthmatics.
Bender, Shawn B; de Beer, Vincent J; Tharp, Darla L; van Deel, Elza D; Bowles, Douglas K; Duncker, Dirk J; Laughlin, M Harold; Merkus, Daphne
2014-01-01
Vascular dysfunction has been associated with familial hypercholesterolaemia (FH), a severe form of hyperlipidaemia. We recently demonstrated that swine with FH exhibit reduced exercise-induced systemic, but not pulmonary, vasodilatation involving reduced nitric oxide (NO) bioavailability. Since NO normally limits endothelin (ET) action, we examined the hypothesis that reduced systemic vasodilatation during exercise in FH swine results from increased ET-mediated vasoconstriction. Systemic and pulmonary vascular responses to exercise were examined in chronically instrumented normal and FH swine in the absence and presence of the ETA/B receptor antagonist tezosentan. Intrinsic reactivity to ET was further assessed in skeletal muscle arterioles. FH swine exhibited ∼9-fold elevation in total plasma cholesterol versus normal swine. Similar to our recent findings, systemic, not pulmonary, vasodilatation during exercise was reduced in FH swine. Blockade of ET receptors caused marked systemic vasodilatation at rest and during exercise in normal swine that was significantly reduced in FH swine. The reduced role of ET in FH swine in vivo was not the result of decreased arteriolar ET responsiveness, as responsiveness was increased in isolated arterioles. Smooth muscle ET receptor protein content was unaltered by FH. However, circulating plasma ET levels were reduced in FH swine. ET receptor antagonism caused pulmonary vasodilatation at rest and during exercise in normal, but not FH, swine. Therefore, contrary to our hypothesis, FH swine exhibit a generalised reduction in the role of ET in regulating vascular tone in vivo probably resulting from reduced ET production. This may represent a unique vascular consequence of severe familial hypercholesterolaemia. PMID:24421352
Evidence for minimal oxygen heterogeneity in the healthy human pulmonary acinus
Tawhai, Merryn H.
2011-01-01
It has been suggested that the human pulmonary acinus operates at submaximal efficiency at rest due to substantial spatial heterogeneity in the oxygen partial pressure (Po2) in alveolar air within the acinus. Indirect measurements of alveolar air Po2 could theoretically mask significant heterogeneity if intra-acinar perfusion is well matched to Po2. To investigate the extent of intra-acinar heterogeneity, we developed a computational model with anatomically based structure and biophysically based equations for gas exchange. This model yields a quantitative prediction of the intra-acinar O2 distribution that cannot be measured directly. Temporal and spatial variations in Po2 in the intra-acinar air and blood are predicted with the model. The model, representative of a single average acinus, has an asymmetric multibranching respiratory airways geometry coupled to a symmetric branching conducting airways geometry. Advective and diffusive O2 transport through the airways and gas exchange into the capillary blood are incorporated. The gas exchange component of the model includes diffusion across the alveolar air-blood membrane and O2-hemoglobin binding. Contrary to previous modeling studies, simulations show that the acinus functions extremely effectively at rest, with only a small degree of intra-acinar Po2 heterogeneity. All regions of the model acinus, including the peripheral generations, maintain a Po2 >100 mmHg. Heterogeneity increases slightly when the acinus is stressed by exercise. However, even during exercise the acinus retains a reasonably homogeneous gas phase. PMID:21071589
Lundgren, Jakob; Sandqvist, Anna; Hedeland, Mikael; Bondesson, Ulf; Wikström, Gerhard; Rådegran, Göran
2018-04-12
Endothelial function, including the nitric oxide (NO)-pathway, has previously been extensively investigated in heart failure (HF). In contrast, studies are lacking on the NO pathway after heart transplantation (HT). We therefore investigated substances in the NO pathway prior to and after HT in relation to hemodynamic parameters. 12 patients (median age 50.0 yrs, 2 females), heart transplanted between June 2012 and February 2014, evaluated at our hemodynamic lab, at rest, prior to HT, as well as four weeks and six months after HT were included. All patients had normal left ventricular function post-operatively and none had post-operative pulmonary hypertension or acute cellular rejection requiring therapy at the evaluations. Plasma concentrations of ADMA, SDMA, L-Arginine, L-Ornithine and L-Citrulline were analyzed at each evaluation. In comparison to controls, the plasma L-Arginine concentration was low and ADMA high in HF patients, resulting in low L-Arginine/ADMA-ratio pre-HT. Already four weeks after HT L-Arginine was normalized whereas ADMA remained high. Consequently the L-Arginine/ADMA-ratio improved, but did not normalize. The biomarkers remained unchanged at the six-month evaluation and the L-Arginine/ADMA-ratio correlated inversely to pulmonary vascular resistance (PVR) six months post-HT. Plasma L-Arginine concentrations normalize after HT. However, as ADMA is unchanged, the L-Arginine/ADMA-ratio remained low and correlated inversely to PVR. Together these findings suggest that (i) the L-Arginine/ADMA-ratio may be an indicator of pulmonary vascular tone after HT, and that (ii) NO-dependent endothelial function is partly restored after HT. Considering the good postoperative outcome, the biomarker levels may be considered "normal" after HT.
The pulmonary response of white and black adults to six concentrations of ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, E. Jr.; McDonnell, W.F.; House, D.E.
1993-04-01
Many early studies of respiratory responsiveness to ozone (O3) were done on healthy, young, white males. The purpose of this study was to determine whether gender or race differences in O3 response exist among white and black, males and females, and to develop concentration-response curves for each of the gender-race groups. Three hundred seventy-two subjects (n > 90 in each gender-race group), ages 18 to 35 yr, were exposed once for 2.33 h to 0.0 (purified air), 0.12, 0.18, 0.24, 0.30, or 0.40 ppm O3. Each exposure was preceded by baseline pulmonary function tests and a symptom questionnaire. The firstmore » 2 h of exposure included alternating 15-min periods of rest and exercise on a motorized treadmill producing a minute ventilation (VE) of 25 L/min/m2 body surface area (BSA). After exposure, subjects completed a set of pulmonary function tests and a symptom questionnaire. Lung function and symptom responses were expressed as percent change from baseline and analyzed using a nonparametric two factor analysis of variance. Three primary variables were analyzed: FEV1, specific airway resistance (SRaw), and cough. Statistical analysis demonstrated no significant differences in response to O3 among the individual gender-race groups. For the group as a whole, changes in the variables FEV1, SRaw, and cough were first noted at 0.12, 0.18, and 0.18 ppm O3, respectively. Adjusted for exercise difference, concentration-response curves for FEV1 and cough among white males were consistent with previous reports (1).« less
Effects of inhalation of acidic compounds on pulmonary function in allergic adolescent subjects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenig, J.Q.; Covert, D.S.; Pierson, W.E.
There is concern about the human health effects of inhalation of acid compounds found in urban air pollution. It was the purpose of this study to investigate three of these acid compounds, sulfur dioxide (SO/sub 2/), sulfuric acid (H/sub 2/SO/sub 4/), and nitric acid (HNO/sub 3/) in a group of allergic adolescent subjects. Subjects were exposed during rest and moderate exercise to 0.7 mumole/m/sup 3/ (68 micrograms/m/sup 3/) H/sub 2/SO/sub 4/, 4.0 mumole/m/sup 3/ (0.1 ppm) SO/sub 2/, or 2.0 mumole/m/sup 3/ (0.05 ppm) HNO/sub 3/. Pulmonary functions (FEV1, total respiratory resistance, and maximal flow) were measured before and aftermore » exposure. Preliminary analysis based on nine subjects indicates that exposure to 0.7 mumole/m/sup 3/ H/sub 2/SO/sub 4/ alone and in combination with SO/sub 2/ caused significant changes in pulmonary function, whereas exposure to air or SO/sub 2/ alone did not. FEV1 decreased an average of 6% after exposure to H/sub 2/SO/sub 4/ alone and 4% when the aerosol was combined with SO/sub 2/. The FEV1 decrease was 2% after both air and SO/sub 2/ exposures. Total respiratory resistance (RT) increased 15% after the combined H/sub 2/SO/sub 4/ exposures, 12% after H/sub 2/SO/sub 4/ alone, and 7% after exposure to air. After exposures to HNO3 alone, FEV1 decreased by 4%, and RT increased by 23%. These results are preliminary; final conclusions must wait for completion of the study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.
1984-09-01
Myocardial function and perfusion were evaluated in 22 patients with progressive systemic sclerosis with the CREST syndrome using exercise and radionuclide techniques, pulmonary function testing, and chest roentgenography. The results were compared with a similar study of 26 patients with progressive systemic sclerosis with diffuse scleroderma. The prevalence of thallium perfusion abnormalities was similar in the groups with CREST syndrome and diffuse scleroderma, (64 percent versus 77 percent), but the defects were significantly smaller in the CREST syndrome (p less than 0.01). Reperfusion thallium defects in the absence of extramural coronary artery disease were seen in 38 percent of patientsmore » with diffuse scleroderma. This finding was not seen in any of the patients with the CREST syndrome. In diffuse scleroderma, abnormalities of both right and left ventricular function were related to larger thallium perfusion defects. In the CREST syndrome, abnormalities of left ventricular function were minor, were seen only during exercise, and were unrelated to thallium perfusion defects. Abnormal resting right ventricular function was seen in 36 percent of the patients with the CREST syndrome and was associated with an isolated decrease in diffusing capacity of carbon monoxide. It is concluded that the cardiac manifestations of the CREST syndrome are distinct from those found in diffuse scleroderma. Unlike diffuse scleroderma, abnormalities of left ventricular function in the CREST syndrome are minor and are unrelated to abnormalities of coronary perfusion. Right ventricular dysfunction in the CREST syndrome appears to be primarily related to pulmonary vascular disease.« less
Acute radiation syndrome (ARS) - treatment of the reduced host defense.
Heslet, Lars; Bay, Christiane; Nepper-Christensen, Steen
2012-01-01
The current radiation threat from the Fukushima power plant accident has prompted rethinking of the contingency plan for prophylaxis and treatment of the acute radiation syndrome (ARS). The well-documented effect of the growth factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF]) in acute radiation injury has become standard treatment for ARS in the United States, based on the fact that growth factors increase number and functions of both macrophages and granulocytes. Review of the current literature. The lungs have their own host defense system, based on alveolar macrophages. After radiation exposure to the lungs, resting macrophages can no longer be transformed, not even during systemic administration of growth factors because G-CSF/GM-CSF does not penetrate the alveoli. Under normal circumstances, locally-produced GM-CSF receptors transform resting macrophages into fully immunocompetent dendritic cells in the sealed-off pulmonary compartment. However, GM-CSF is not expressed in radiation injured tissue due to defervescence of the macrophages. In order to maintain the macrophage's important role in host defense after radiation exposure, it is hypothesized that it is necessary to administer the drug exogenously in order to uphold the barrier against exogenous and endogenous infections and possibly prevent the potentially lethal systemic infection, which is the main cause of death in ARS. Preemptive treatment should be initiated after suspected exposure of a radiation dose of at least <2 Gy by prompt dosing of 250-400 μg GM-CSF/m(2) or 5 μg/kg G-CSF administered systemically and concomitant inhalation of GM-CSF < 300 mcg per day for at least 14-21 days. The present United States standard for prevention and treatment of ARS standard intervention should consequently be modified into the combined systemic administration of growth factors and inhaled GM-CSF to ensure the sustained systemic and pulmonary host defense and thus prevent pulmonary dysfunction.
Strewe, C; Zeller, R; Feuerecker, M; Hoerl, M; Kumprej, I; Crispin, A; Johannes, B; Debevec, T; Mekjavic, I; Schelling, G; Choukèr, A
2017-03-01
Immobilization and hypoxemia are conditions often seen in patients suffering from severe heart insufficiency or primary pulmonary diseases (e.g. fibrosis, emphysema). In future planned long-duration and exploration class space missions (including habitats on the moon and Mars), healthy individuals will encounter such a combination of reduced physical activity and oxygen tension by way of technical reasons and the reduced gravitational forces. These overall unconventional extraterrestrial conditions can result in yet unknown consequences for the regulation of stress-permissive, psycho-neuroendocrine responses, which warrant appropriate measures in order to mitigate foreseeable risks. The Planetary Habitat Simulation Study (PlanHab) investigated these two space-related conditions: bed rest as model of reduced gravity and normobaric hypoxia, with the aim of examining their influence on psycho-neuroendocrine responses. We hypothesized that both conditions independently increase measures of psychological stress and enhance neuroendocrine markers of stress, and that these effects would be exacerbated by combined treatment. The cross-over study composed of three interventions (NBR, normobaric normoxic horizontal bed rest; HBR, normobaric hypoxic horizontal bed rest; HAMB, normobaric hypoxic ambulatory confinement) with 14 male subjects during three sequential campaigns separated by 4 months. The psychological state was determined through three questionnaires and principal neuroendocrine responses were evaluated by measuring cortisol in saliva, catecholamine in urine, and endocannabinoids in blood. The results revealed no effects after 3 weeks of normobaric hypoxia on psycho-neuroendocrine responses. Conversely, bed rest induced neuroendocrine alterations that were not influenced by hypoxia.
Schoene, R B; Roach, R C; Hackett, P H; Harrison, G; Mills, W J
1985-03-01
Breathing against positive expiratory pressure has been used to improve gas exchange in many forms of pulmonary edema, and forced expiration against resistance during exercise has been advocated for climbing at high altitude as a method to optimize performance. To evaluate the effect of expiratory positive airway pressure (EPAP) on climbers with high altitude pulmonary edema (HAPE) and on exercise at high altitude, we studied four climbers with HAPE at rest and 13 healthy climbers during exercise on a bicycle ergometer at 4400 m. We measured minute ventilation (VI, L/min), arterial oxygen saturation (SaO2 percent), end-tidal carbon dioxide (PACO2, mm Hg), respiratory rate (RR), and heart rate (HR) during the last minute of a five minute interval at rest in the climbers with HAPE, and at rest, 300, and 600 kpm/minute workloads on a bicycle ergometer in the healthy subjects. The HAPE subjects demonstrated an increased SaO2 percent, no change in HR or VI, and a decrease in RR on EPAP as compared to control. In normal subjects, SaO2 percent, VI, and heart rate were significantly higher on EPAP 10 cm H2O than 0 cm H2O control (p less than 0.01, 0.01, and 0.05, respectively). The RR and PaCO2 were not significantly different. In summary, EPAP improves gas exchange in HAPE subjects at rest. The EPAP in normal subjects at high altitude resulted in a higher SaO2 percent at the expense of a higher VI and higher HR. These results suggest that the work of breathing is higher and the stroke volume lower on EPAP. The positive pressure mask may be an effective temporizing measure for victims of HAPE who cannot immediately go to a lower altitude.
Cannon, Daniel T.; Howe, Franklyn A.; Whipp, Brian J.; Ward, Susan A.; McIntyre, Dominick J.; Ladroue, Christophe; Griffiths, John R.; Kemp, Graham J.
2013-01-01
The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance. Six men completed incremental tests for the following: 1) unlocalized 31P magnetic resonance spectroscopy; and 2) spatial determination of 31P metabolism and activation. The relationship of pulmonary oxygen uptake to whole quadriceps phosphocreatine concentration ([PCr]) was inversely linear, and three of four knee-extensor muscles showed activation as assessed by change in T2. The largest changes in [PCr], [inorganic phosphate] ([Pi]) and pH occurred in rectus femoris, but no voxel (72 cm3) showed complete PCr depletion at exercise cessation. The most metabolically active voxel reached 11 ± 9 mM [PCr] (resting, 29 ± 1 mM), 23 ± 11 mM [Pi] (resting, 7 ± 1 mM), and a pH of 6.64 ± 0.29 (resting, 7.08 ± 0.03). However, the distribution of 31P metabolites and pH varied widely between voxels, and the intervoxel coefficient of variation increased between rest (∼10%) and exercise intolerance (∼30–60%). Therefore, the limit of tolerance was attained with wide heterogeneity in substrate depletion and fatigue-related metabolite accumulation, with extreme metabolic perturbation isolated to only a small volume of active muscle (<5%). Regional intramuscular disturbances are thus likely an important requisite for exercise intolerance. How these signals integrate to limit muscle power production, while regional “recruitable muscle” energy stores are presumably still available, remains uncertain. PMID:23813534
Elliott, Jonathan E; Laurie, Steven S; Kern, Julia P; Beasley, Kara M; Goodman, Randall D; Kayser, Bengt; Subudhi, Andrew W; Roach, Robert C; Lovering, Andrew T
2015-05-01
A patent foramen ovale (PFO), present in ∼40% of the general population, is a potential source of right-to-left shunt that can impair pulmonary gas exchange efficiency [i.e., increase the alveolar-to-arterial Po2 difference (A-aDO2)]. Prior studies investigating human acclimatization to high-altitude with A-aDO2 as a key parameter have not investigated differences between subjects with (PFO+) or without a PFO (PFO-). We hypothesized that in PFO+ subjects A-aDO2 would not improve (i.e., decrease) after acclimatization to high altitude compared with PFO- subjects. Twenty-one (11 PFO+) healthy sea-level residents were studied at rest and during cycle ergometer exercise at the highest iso-workload achieved at sea level (SL), after acute transport to 5,260 m (ALT1), and again at 5,260 m after 16 days of high-altitude acclimatization (ALT16). In contrast to PFO- subjects, PFO+ subjects had 1) no improvement in A-aDO2 at rest and during exercise at ALT16 compared with ALT1, 2) no significant increase in resting alveolar ventilation, or alveolar Po2, at ALT16 compared with ALT1, and consequently had 3) an increased arterial Pco2 and decreased arterial Po2 and arterial O2 saturation at rest at ALT16. Furthermore, PFO+ subjects had an increased incidence of acute mountain sickness (AMS) at ALT1 concomitant with significantly lower peripheral O2 saturation (SpO2). These data suggest that PFO+ subjects have increased susceptibility to AMS when not taking prophylactic treatments, that right-to-left shunt through a PFO impairs pulmonary gas exchange efficiency even after acclimatization to high altitude, and that PFO+ subjects have blunted ventilatory acclimatization after 16 days at altitude compared with PFO- subjects. Copyright © 2015 the American Physiological Society.
[Effects of anxiety on cardiorespiratory function].
Dimitriev, D A; Saperova, E V; Dimitriev, A D; Karpenko, Iu D
2014-01-01
The present study was undertaken to investigate the effect of anxiety on pulmonary function parameters and respiratory sinus arrhythmia (RSA) in healthy people under real-life conditions. This study consisted of two interrelated parts. During the first stage, eighty healthy students were examined in the following sequence: recording of heart rate variability (HRV) and respiration parameters at rest and shortly before real life stress. In a longitudinal study (the second stage), we assessed the profile of cardiorespiratory activity over 50 days in ten healthy women. Pulmonary function parameters like breath rate, tidal volume, forced expiratory volume in ones (FEV1), peak expiratory flow (PEF), forced expired flow at 25%, 50%, 75% of FVC, forced expired flow from 25-75% of FVC (FEF25-75%) and HRV measures (SDNN, RMSSD, pNN50, LF, HF, HFnorm, LF/HF ratio) of all subjects were tested. State anxiety was measured by Spielberger state anxiety inventory. Higher levels of state anxiety were associated with higher levels of breath rate, tidal volume and reduced HRV parameters, especially indicators of the RSA (HF and HFnorm) at baseline. These changes depend on the category of state anxiety: the group of students with a qualitative increase in state anxiety before examination has increased level of FEV1, PEF, forced expired flow at 25%, 50%, 75% of FVC, FEF25-75%. Less reactive students have no difference in respiratory parameters. We found a strong negative correlation between the level of HF at rest and state anxiety scores before examination. Longitudinal study found a negative correlation between RSA parameters and PEF, positive correlation between state anxiety and PEF of the majority those surveyed, except for two women with low levels of state anxiety and RSA indicators were in a narrow range. The variations of cardiorespiratory parameters during a longitudinal study depend on the changes of state anxiety. The higher level of state anxiety was associated with significant changes in RSA and the respiratory parameters. These results lend strong support to the notion that parasympathetic function is a critical physiological component of emotional processes.
["Plastic lung". Broncho-pulmonary pathology related to plastics (author's transl)].
Anthoine, D; Martinet, Y; Zuck, P; Peiffer, G; Dangelzer, J; Lamy, P
1980-01-01
Plastics can induce three main groups of respiratory accidents.--Acute and subacute intoxications related to the inhalation of volatil substances from decomposing plastics (mostly during burning and pyrolysis) or on the contrary during synthesis. They are accidental chemical broncho-pneumopathies (acute tracheo-bronchitis and pulmonary edema).--Chronic broncho-pneumopathies following repeated inhalation of dusts or suspension of plastics: pneumoconioses and thesaurismoses leading to pulmonary fibrosis.--Broncho-pneumopathies related to the irritant and sensitizing action of some components of plastics: professional asthma and sensitization pneumopathies. Diagnosis of such diseases therefore imposes a careful study of working conditions. Proof rests on two arguments:--curing by risk eviction;--analysis of the products in order to reveal their toxicity.
Pulmonary hypertension due to acute respiratory distress syndrome
Ñamendys-Silva, S.A.; Santos-Martínez, L.E.; Pulido, T.; Rivero-Sigarroa, E.; Baltazar-Torres, J.A.; Domínguez-Cherit, G.; Sandoval, J.
2014-01-01
Our aims were to describe the prevalence of pulmonary hypertension in patients with acute respiratory distress syndrome (ARDS), to characterize their hemodynamic cardiopulmonary profiles, and to correlate these parameters with outcome. All consecutive patients over 16 years of age who were in the intensive care unit with a diagnosis of ARDS and an in situ pulmonary artery catheter for hemodynamic monitoring were studied. Pulmonary hypertension was diagnosed when the mean pulmonary artery pressure was >25 mmHg at rest with a pulmonary artery occlusion pressure or left atrial pressure <15 mmHg. During the study period, 30 of 402 critically ill patients (7.46%) who were admitted to the ICU fulfilled the criteria for ARDS. Of the 30 patients with ARDS, 14 met the criteria for pulmonary hypertension, a prevalence of 46.6% (95% CI; 28-66%). The most common cause of ARDS was pneumonia (56.3%). The overall mortality was 36.6% and was similar in patients with and without pulmonary hypertension. Differences in patients' hemodynamic profiles were influenced by the presence of pulmonary hypertension. The levels of positive end-expiratory pressure and peak pressure were higher in patients with pulmonary hypertension, and the PaCO2 was higher in those who died. The level of airway pressure seemed to influence the onset of pulmonary hypertension. Survival was determined by the severity of organ failure at admission to the intensive care unit. PMID:25118626
A respiratory mask for resting and exercising dogs.
Stavert, D M; Reischl, P; O'Loughlin, B J
1982-02-01
A respiratory face mask has been developed for use with unsedated beagles trained to run on a treadmill. The latex rubber mask, shaped to fit the animal's muzzle, incorporates two modified, commercially available, pulmonary valves for separating inspiratory and expiratory flows. The mask has a dead space of 30 cm3 and a flow resistance below 1 cmH2O . 1(-1) . s. The flexible mask is used to measure breath-by-breath respiratory variables over extended periods of time during rest and exercise.
Impaired pulmonary function after treatment for tuberculosis: the end of the disease?
Chushkin, Mikhail Ivanovich; Ots, Oleg Nikolayevich
2017-01-01
ABSTRACT Objective: To evaluate the prevalence of pulmonary function abnormalities and to investigate the factors affecting lung function in patients treated for pulmonary tuberculosis. Methods: A total of 214 consecutive patients (132 men and 82 women; 20-82 years of age), treated for pulmonary tuberculosis and followed at a local dispensary, underwent spirometry and plethysmography at least one year after treatment. Results: Pulmonary impairment was present in 102 (47.7%) of the 214 patients evaluated. The most common functional alteration was obstructive lung disease (seen in 34.6%). Of the 214 patients, 60 (28.0%) showed reduced pulmonary function (FEV1 below the lower limit of normal). Risk factors for reduced pulmonary function were having had culture-positive pulmonary tuberculosis in the past, being over 50 years of age, having recurrent tuberculosis, and having a lower level of education. Conclusions: Nearly half of all tuberculosis patients evolve to impaired pulmonary function. That underscores the need for pulmonary function testing after the end of treatment. PMID:28380187
Estépar, Raúl San José; Kinney, Gregory L.; Black-Shinn, Jennifer L.; Bowler, Russell P.; Kindlmann, Gordon L.; Ross, James C.; Kikinis, Ron; Han, MeiLan K.; Come, Carolyn E.; Diaz, Alejandro A.; Cho, Michael H.; Hersh, Craig P.; Schroeder, Joyce D.; Reilly, John J.; Lynch, David A.; Crapo, James D.; Wells, J. Michael; Dransfield, Mark T.; Hokanson, John E.
2013-01-01
Rationale: Angiographic investigation suggests that pulmonary vascular remodeling in smokers is characterized by distal pruning of the blood vessels. Objectives: Using volumetric computed tomography scans of the chest we sought to quantitatively evaluate this process and assess its clinical associations. Methods: Pulmonary vessels were automatically identified, segmented, and measured. Total blood vessel volume (TBV) and the aggregate vessel volume for vessels less than 5 mm2 (BV5) were calculated for all lobes. The lobe-specific BV5 measures were normalized to the TBV of that lobe and the nonvascular tissue volume (BV5/TissueV) to calculate lobe-specific BV5/TBV and BV5/TissueV ratios. Densitometric measures of emphysema were obtained using a Hounsfield unit threshold of −950 (%LAA-950). Measures of chronic obstructive pulmonary disease severity included single breath measures of diffusing capacity of carbon monoxide, oxygen saturation, the 6-minute-walk distance, St George’s Respiratory Questionnaire total score (SGRQ), and the body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index. Measurements and Main Results: The %LAA-950 was inversely related to all calculated vascular ratios. In multivariate models including age, sex, and %LAA-950, lobe-specific measurements of BV5/TBV were directly related to resting oxygen saturation and inversely associated with both the SGRQ and BODE scores. In similar multivariate adjustment lobe-specific BV5/TissueV ratios were inversely related to resting oxygen saturation, diffusing capacity of carbon monoxide, 6-minute-walk distance, and directly related to the SGRQ and BODE. Conclusions: Smoking-related chronic obstructive pulmonary disease is characterized by distal pruning of the small blood vessels (<5 mm2) and loss of tissue in excess of the vasculature. The magnitude of these changes predicts the clinical severity of disease. PMID:23656466
Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił
High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.
Duţu, S; Jienescu, Z; Bîscă, N; Bistriceanu, G
1989-01-01
Of the patients with chronic obstructive pulmonary disease (COLD) and severe obstructive syndrome, 39 whose age was under 40 were selected. In 23 of them, the anamnesis revealed bronchopulmonary affections in childhood, that required admission into the hospital (19 were non-smokers). Of the rest of 16 patients, 14 were hard smokers that started to smoke before the age of 14. The functional picture was severely modified, similarly to that of the COLD patients in the 6th decade of life. This suggests that the degradation process started in the childhood, and that the chronic respiratory diseases and/or smoking at an early age had an important role.
High altitude pulmonary edema-clinical features, pathophysiology, prevention and treatment
Paralikar, Swapnil J.
2012-01-01
High altitude pulmonary edema (HAPE) is a noncardiogenic pulmonary edema which typically occurs in lowlanders who ascend rapidly to altitudes greater than 2500-3000 m. Early symptoms of HAPE include a nonproductive cough, dyspnoea on exertion and reduced exercise performance. Later, dyspnoea occurs at rest. Clinical features are cyanosis, tachycardia, tachypnoea and elevated body temperature generally not exceeding 38.5°C. Rales are discrete initially and located over the middle lung fields. HAPE mainly occurs due to exaggerated hypoxic pulmonary vasoconstriction and elevated pulmonary artery pressure. It has been observed that HAPE is a high permeability type of edema occurring also due to leaks in the capillary wall (‘stress failure’). Slow descent is the most effective method for prevention; in addition, graded ascent and time for acclimatization, low sleeping altitudes, avoidance of alcohol and sleeping pills, and avoidance of exercise are the key to preventing HAPE. Treatment of HAPE consists of immediate improvement of oxygenation either by supplemental oxygen, hyperbaric treatment, or by rapid descent. PMID:23580834
Burnheim, K; Hughes, K J; Evans, D L; Raidal, S L
2016-11-28
Respiratory problems are common in horses, and are often diagnosed as a cause of poor athletic performance. Reliable, accurate and sensitive spirometric tests of airway function in resting horses would assist with the diagnosis of limitations to breathing and facilitate investigations of the effects of various treatments on breathing capacity. The evaluation of respiratory function in horses is challenging and suitable procedures are not widely available to equine practitioners. The determination of relative flow or flow-time measures is used in paediatric patients where compliance may limit conventional pulmonary function techniques. The aim of the current study was to characterise absolute and relative indices of respiratory function in healthy horses during eupnoea (tidal breathing) and carbon dioxide (CO 2 )-induced hyperpnoea (rebreathing) using a modified mask pneumotrachographic technique well suited to equine practice, and to evaluate the reliability of this technique over three consecutive days. Coefficients of variation, intra-class correlations, mean differences and 95% confidence intervals across all days of testing were established for each parameter. The technique provided absolute measures of respiratory function (respiratory rate, tidal volume, peak inspiratory and expiratory flows, time to peak flow) consistent with previous studies and there was no significant effect of day on any measure of respiratory function. Variability of measurements was decreased during hyperpnea caused by rebreathing CO 2 , but a number of relative flow-time variables demonstrated good agreement during eupnoeic respiration. The technique was well tolerated by horses and study findings suggest the technique is suitable for evaluation of respiratory function in horses. The use of relative flow-time variables provided reproducible (consistent) results, suggesting the technique may be of use for repeated measures studies in horses during tidal breathing or rebreathing.
Altintas, Engin; Akkus, Necdet; Gen, Ramazan; Helvaci, M. Rami; Sezgin, Orhan; Oguz, Dilek
2004-01-01
AIM: Portopulmonary hypertension is a serious complication of chronic liver disease. Our aim was to search into the effect of terlipressin on systolic pulmonary artery pressure among cirrhotic patients. METHODS: Twelve patients (6 males and 6 females) with liver cirrhosis were recruited in the study. Arterial blood gas samples were obtained in sitting position at rest. Contrast enhanced echocardiography and measurements of systolic pulmonary artery pressure were performed before and after the intravenous injection of 2 mg terlipressin. RESULTS: Of 12 patients studied, the contrast enhanced echocardiography was positive in 5, and the positive findings in contrast enhanced echocardiography were reversed to normal in two after terlipressin injection. The mean systolic pulmonary artery pressure was 25.5 ± 3.6 mmHg before terlipressin injection, and was 22.5 ± 2.5 mmHg after terlipressin (P = 0.003). The systolic pulmonary artery pressure was above 25 mmHg in seven of these 12 patients. After the terlipressin injection, systolic pulmonary artery pressure was < 25 mmHg in four of these cases (58.3% vs 25%, P = 0.04). CONCLUSION: Terlipressin can decrease the systolic pulmonary artery pressure in patients with liver cirrhosis. PMID:15259082
The influence of kyphosis correction surgery on pulmonary function and thoracic volume.
Zeng, Yan; Chen, Zhongqiang; Ma, Desi; Guo, Zhaoqing; Qi, Qiang; Li, Weishi; Sun, Chuiguo; Liu, Ning; White, Andrew P
2014-10-01
A clinical study. To measure the changes in pulmonary function and thoracic volume associated with surgical correction of kyphotic deformities. No prior study has focused on the pulmonary function and thoracic cavity volume before and after corrective surgery for kyphosis. Thirty-four patients with kyphosis underwent posterior deformity correction with instrumented fusion. Preoperative and postoperative pulmonary function was measured, and pulmonary function grade was evaluated as mild, significant, or severe. The change in preoperative to postoperative pulmonary function was analyzed, using 6 comparative subgroupings of patients on the basis of age, severity of kyphosis, location of kyphosis apex, length of follow-up time after surgery, degree of kyphosis correction, and number of segments fused. A second group of 19 patients also underwent posterior surgical correction of kyphosis, which had thoracic volume measured preoperatively and postoperatively with computed tomographic scanning. All of the pulmonary impairments were found to be restrictive. After surgery, most of the patients had improvement of the pulmonary function. Before surgery, the pulmonary function differences were found to be significant based on both severity of preoperative kyphosis (<60° vs. >60°) and location of the kyphosis apex (above T10 vs. below T10). Younger patients (younger than 35 yr) were more likely to exhibit statistically significant improvements in pulmonary function after surgery. However, thoracic volume was not significantly related to pulmonary function parameters. After surgery, average thoracic volume had no significant change. The major pulmonary impairment caused by kyphosis was found to be restrictive. Patients with kyphosis angle of 60° or greater or with kyphosis apex above T10 had more severe pulmonary dysfunction. Patients' age was significantly related to change in pulmonary function after surgery. However, the average thoracic volume had no significant change after surgery. 3.
Guo, Jian; Zheng, Cong; Xiao, Qiang; Gong, Sugang; Zhao, Qinhua; Wang, Lan; He, Jing; Yang, Wenlan; Shi, Xue; Sun, Xingguo; Liu, Jinming
2015-10-08
This study intended to search for potential correlations between anaemia in patients with severe chronic obstructive pulmonary disease (COPD; GOLD stage III) and pulmonary function at rest, exercise capacity as well as ventilatory efficiency, using pulmonary function test (PFT) and cardiopulmonary exercise testing (CPET). The study was undertaken at Shanghai Pulmonary Hospital, a tertiary-level centre affiliated to Tongji University. It caters to a large population base within Shanghai and referrals from centres in other cities as well. 157 Chinese patients with stable severe COPD were divided into 2 groups: the anaemia group (haemoglobin (Hb) <12.0 g/dL for males, and <11 g/dL for females (n=48)) and the non-anaemia group (n=109). Arterial blood gas, PFT and CPET were tested in all patients. (1) Diffusing capacity for carbon monoxide (DLCO) corrected by Hb was significantly lower in the anaemia group ((15.3±1.9) mL/min/mm Hg) than in the non-anaemia group ((17.1±2.1) mL/min/mm Hg) (p<0.05). A significant difference did not exist in the level of forced expiratory volume in 1 s (FEV1), FEV1%pred, FEV1/forced vital capacity (FVC), inspiratory capacity (IC), residual volume (RV), total lung capacity (TLC) and RV/TLC (p>0.05). (2) Peak Load, Peak oxygen uptake (VO2), Peak VO2%pred, Peak VO2/kg, Peak O2 pulse and the ratio of VO2 increase to WR increase (ΔVO2/ΔWR) were significantly lower in the anaemia group (p<0.05); however, Peak minute ventilation (VE), Lowest VE/carbon dioxide output (VCO2) and Peak dead space/tidal volume ratio (VD/VT) were similar between the 2 groups (p>0.05). (3) A strong positive correlation was found between Hb concentration and Peak VO2 in patients with anaemia (r=0.702, p<0.01). Anaemia has a negative impact on gas exchange and exercise tolerance during exercise in patients with severe COPD. The decrease in amplitude of Hb levels is related to the quantity of oxygen uptake. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Tawara, Yuichi; Senjyu, Hideaki; Tanaka, Kenichiro; Tanaka, Takako; Asai, Masaharu; Kozu, Ryo; Tabusadani, Mitsuru; Honda, Sumihisa; Sawai, Terumitsu
2015-01-01
We established a COPD taskforce for early detection, diagnosis, treatment, and intervention. We implemented a pilot intervention with a prospective and longitudinal design in a regional city. This study evaluates the usefulness of the COPD taskforce and intervention based on COPD case detection rate and per capita medical costs. We distributed a questionnaire to all 8,878 inhabitants aged 50-89 years, resident in Matsuura, Nagasaki Prefecture in 2006. Potentially COPD-positive persons received a pulmonary function test and diagnosis. We implemented ongoing detection, examination, education, and treatment interventions, performed follow-up examinations or respiratory lessons yearly, and supported the health maintenance of each patient. We compared COPD medical costs in Matsuura and in the rest of Nagasaki Prefecture using data from 2004 to 2013 recorded by the association of Nagasaki National Health Insurance Organization, assessing 10-year means and annual change. As of 2014, 256 people have received a definitive diagnosis of COPD; representing 31% of the estimated total number of COPD patients. Of the cases detected, 87.5% were mild or moderate in severity. COPD medical costs per patient in Matsuura were significantly lower than the rest of Nagasaki Prefecture, as was rate of increase in cost over time. The COPD program in Matsuura enabled early detection and treatment of COPD patients and helped to lower the associated burden of medical costs. The success of this program suggests that a similar program could reduce the economic and human costs of COPD morbidity throughout Japan.
Residual oxygen time model for oxygen partial pressure near 130 kPa (1.3 atm).
Shykoff, Barbara E
2015-01-01
A two-part residual oxygen time model predicts the probability of detectible pulmonary oxygen toxicity P(P[O2tox]) after dives with oxygen partial pressure (PO2) approximately 130 kPa, and provides a tool to plan dive series with selected risk of P[O2tox]. Data suggest that pulmonary oxygen injury at this PO2 is additive between dives. Recovery begins after a delay and continues during any following dive. A logistic relation expresses P(P[O2tox]) as a function of dive duration (T(dur)) [hours]: P(P[O2tox]) = 100/[1+exp (3.586-0.49 x T(dur))] This expression maps T(dur) to P(P[O2tox]) or, in the linear mid-portion of the curve, P(P[O2tox]) usefully to T(dur). For multiple dives or during recovery, it maps to an equivalent dive duration, T(eq). T(eq) was found after second dives of duration T(dur 2). Residual time from the first dive t(r) = T(eq) - T(dur2). With known t(r), t and T(dur) a recovery model was fitted. t(r) = T(dur) x exp [-k x((t-5)/T(dur)2], where t = t - 5 hours, k = 0.149 for resting, and 0.047 for exercising divers, and t represents time after surfacing. The fits were assessed for 1,352 man-dives. Standard deviations of the residuals were 8.5% and 18.3% probability for resting or exercise dives, respectively.
Bronchodilator effects of prostacyclin (PGI2) in dogs and guinea pigs.
Wasserman, M A; Ducharme, D W; Wendling, M G; Griffin, R L; Degraaf, G L
1980-08-22
prostacyclin (PGI2), a recently discovered unstable product in the biosynthetic conversion of prostaglandin endoperoxides, was examined for bronchopulmonary actions. in anesthetized dogs, PGI2 given i.v. (0.3-30.0 microgram/kg) and by aerosol (0.002-0.2%) inhibited significantly PGF2 alpha-induced increases in pulmonary resistance and decreases in dynamic lung compliance in a dose-related fashion. Intrinsically, PGI2 affected resting bronchopulmonary and cardiac functions minimally, but decreased peripheral and pulmonary vascular pressures. PGI2 (0.1-10 mg/kg, i.p.) afforded protection against histamine-induced asphyxial collapse in normal guinea pigs and ovalbumin-induced anaphylaxis in sensitized animals. Cumulative concentrations of PGI2 (1.0 x 10(-9)--3.0 x 10(-4) M) relaxed contractions of the isolated guine pig trachea produced by carbachol. These bronchodilator and hemodynamic effects could not be ascribed to the stable metabolic product of PGI2, because 6-keto-PGF1 alpha was inactive or markedly less active than PGI2 in these test systems. The results of this investigation suggest that PGI2 possesses considerable bronchodilator and vasodilator activity in experimental animal systems.
Spirolit-2 instrument used to test pulmonary ventilation
NASA Astrophysics Data System (ADS)
Zhuravlev, V. V.
1985-02-01
At the present time, the Spirolit-2 automatic analyzer of main respiratory gases, of the Junkalor Dessau firm, is used to examine parameters of gas exchange, levels of energy expended by man and animals with different degrees of activity. However, the capabilities of this model of the instrument are limited. A method of determining pulmonary ventilation with use of the Spirolit-2 is described. An additional exhalation valve is built into a valve box to which an anesthesia machine rubber bag is attached. Samples are collected into another bag concurrently with the usual tests on the Spirolit-2 instrument. Four to five minutes are sufficient to obtain stable parameters at relative rest of oxygen uptake, determine carbon dioxide output per minute and collect samples in for analysis of exhaled air. The proposed method can furnish information about the dynamics of development of respiratory function of the lungs at virtually any moment with a constant physical load. For this, there must be spare bags to collect samples. Stage-by-stage data can be obtained analogously as to ventilation volume during a step test while determining maximum oxygen uptake.
Human respiration at rest in rapid compression and at high pressures and gas densities
NASA Technical Reports Server (NTRS)
Gelfand, R.; Lambertsen, C. J.; Strauss, R.; Clark, J. M.; Puglia, C. D.
1983-01-01
The ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were determined in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5000 feet of seawater was found to produce a complex pattern of change in PACO2. It was found that as both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is concluded that this pattern of PACO2 change results from the interaction on ventilation of the increase in pulmonary resistance due to the elevation of gas density with the increase in respiratory drive postulated as due to generalized central nervous system excitation associated with exposure to high hydrostatic pressure. It is suggested that a similar interaction exists between increased gas flow resistance and the increase in respiratory drive related to nitrogen partial pressure and the resulting narcosis.
Obstructive lung disease as a complication in post pulmonary TB
NASA Astrophysics Data System (ADS)
Tarigan, A. P.; Pandia, P.; Eyanoer, P.; Tina, D.; Pratama, R.; Fresia, A.; Tamara; Silvanna
2018-03-01
The case of post TB is a problem that arises in the community. Pulmonary tuberculosis (TB) can affect lung function. Therefore, we evaluated impaired pulmonary function in subjects with diagnosed prior pulmonary TB. A Case Series study, pulmonary function test was performed in subjects with a history of pulmonary tuberculosis; aged ≥18 years were included. Exclusion criteria was a subject who had asthma, obesity, abnormal thorax and smoking history. We measured FEV1 and FVC to evaluate pulmonary function. Airflow obstruction was FEV1/FVC%<75 and restriction was FVC<80% according to Indonesia’s pneumomobile project. This study was obtained from 23 patients with post pulmonary TB, 5 subjects (23%) had airflow obstruction with FEV1/FVC% value <75%, 15 subjects (71.4%) had abnormalities restriction with FVC value <80% and 3 subjects (5.6%) had normal lung function. Obstructive lung disease is one of the complications of impaired lung function in post pulmonary TB.
Malin, Steven K.; Barnes, Jarrod W.; Tian, Liping; Kirwan, John P.; Dweik, Raed A.
2017-01-01
Rationale: Insulin resistance has emerged as a potential mechanism related to the pathogenesis of idiopathic pulmonary arterial hypertension (IPAH). However, direct measurements of insulin and glucose metabolism have not been performed in patients with IPAH to date. Objectives: To perform comprehensive metabolic phenotyping of humans with IPAH. Methods: We assessed plasma insulin and glucose, using an oral glucose tolerance test and estimated insulin resistance, and β-cell function in 14 patients with IPAH and 14 control subjects matched for age, sex, blood pressure, and body mass index. Body composition (dual-energy X-ray absorptiometry), inflammation (CXC chemokine ligand 10, endothelin-1), physical fitness (6-min walk test), and energy expenditure (indirect calorimetry) were also assessed. Measurements and Main Results: Patients with IPAH had a higher rate of impaired glucose tolerance (57 vs. 14%; P < 0.05) and reduced glucose-stimulated insulin secretion compared with matched control subjects (IPAH: 1.31 ± 0.76 μU/ml⋅mg/dl vs. control subjects: 2.21 ± 1.27 μU/ml⋅mg/dl; P < 0.05). Pancreatic β-cell function was associated with circulating endothelin-1 (r = –0.71, P < 0.01) and CXC chemokine ligand 10 (r = –0.56, P < 0.05). Resting energy expenditure was elevated in IPAH (IPAH: 32 ± 3.4 vs. control subjects: 28.8 ± 2.9 kcal/d/kg fat-free mass; P < 0.05) and correlated with the plasma glucose response (r = 0.51, P < 0.01). Greater insulin resistance was associated with reduced 6-minute walk distance (r = 0.55, P < 0.05). Conclusions: Independent of age, sex, blood pressure, and body mass index, patients with IPAH have glucose intolerance, decreased insulin secretion in response to glucose, and elevated resting energy expenditure. These abnormalities are associated with circulating markers of inflammation and vascular dysfunction. PMID:27922752
Bernheim, Alain M; Kiencke, Stephanie; Fischler, Manuel; Dorschner, Lorenz; Debrunner, Johann; Mairbäurl, Heimo; Maggiorini, Marco; Brunner-La Rocca, Hans Peter
2007-08-01
Altitude-induced pulmonary hypertension has been suggested to cause left ventricular (LV) diastolic dysfunction due to ventricular interaction. In this study, we evaluate the effects of exercise- and altitude-induced increase in pulmonary artery pressures on LV diastolic function in an interventional setting investigating high-altitude pulmonary edema (HAPE) prophylaxis. Among 39 subjects, 29 were HAPE susceptible (HAPE-S) and 10 served as control subjects. HAPE-S subjects were randomly assigned to prophylactic tadalafil (10 mg), dexamethasone (8 mg), or placebo bid, starting 1 day before ascent. Doppler echocardiography at rest and during submaximal exercise was performed at low altitude (490 m) and high altitude (4,559 m). The ratio of early transmitral inflow peak velocity (E) to atrial transmitral inflow peak velocity (A), pulmonary venous flow parameters, and tissue velocity within the septal mitral annulus during early diastole (E') were used to assess LV diastolic properties. LV filling pressures were estimated by E/E'. Systolic right ventricular to atrial pressure gradients (RVPGs) were measured in order to estimate pulmonary artery pressures. At 490 m, E/A decreased similarly with exercise in HAPE-S and control subjects (HAPE-S, 1.5 +/- 0.3 to 1.3 +/- 0.3; control, 1.7 +/- 0.4 to 1.3 +/- 0.3; p = 0.12 between groups) [mean +/- SD], whereas RVPG increased significantly more in HAPE-S subjects (20 +/- 5 to 43 +/- 9 mm Hg vs 18 +/- 3 to 28 +/- 3 mm Hg, p < 0.001). Changes in RVPG levels during exercise did not correlate with changes in E/A (p > 0.1). From 490 to 4,559 m, no correlations between changes in RVPG and changes in E/A or atrial reversal (both p > 0.1) were observed. Neither of the groups showed an increase in E/E' from 490 to 4,559 m. Increased pulmonary artery pressure associated with exercise and acute exposure to 4,559 m appears not to cause LV diastolic dysfunction in healthy subjects. Therefore, ventricular interaction seems not to be of hemodynamic relevance in this setting.
21 CFR 868.1890 - Predictive pulmonary-function value calculator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... pulmonary-function value calculator. (a) Identification. A predictive pulmonary-function value calculator is...
21 CFR 868.1890 - Predictive pulmonary-function value calculator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... pulmonary-function value calculator. (a) Identification. A predictive pulmonary-function value calculator is...
Lung Transplantation in a Patient with Fibrosing Alveolitis
Hugh-Jones, P.; Macarthur, A. M.; Cullum, P. A.; Mason, S. A.; Crosbie, W. A.; Hutchison, D. C. S.; Winterton, M. C.; Smith, A. P.; Mason, B.; Smith, L. A.
1971-01-01
The transplantation of the right lung into a man aged 40 who was suffering from cryptogenic fibrosing alveolitis is described. Before transplantation he had been dependent on oxygen, even at rest, for 24 hours a day for almost two years. The donor was a boy of 16 years who had had a fatal cerebral haemorrhage. The transplanted lung functioned perfectly from the time of operation until the patient's sudden death two months later from an overwhelming haemoptysis apparently from a small peribronchial abscess rupturing into the pulmonary artery. By the third postoperative week the patient had been able to walk unaided and without distress outdoors. The problem of differentiating infection from incipient rejection is discussed. We conclude that clinically successful lung transplantation can be achieved, but only if the problems of lung function, infection, and immunosuppression can all be overcome. ImagesFIG 1FIG. 3FIG. 4FIG. 5FIG. 6 PMID:4105315
Petrassi, Frank A; Davis, James T; Beasley, Kara M; Evero, Oghenero; Elliott, Jonathan E; Goodman, Randall D; Futral, Joel E; Subudhi, Andrew; Solano-Altamirano, J Manuel; Goldman, Saul; Roach, Robert C; Lovering, Andrew T
2018-05-01
Blood flow through intrapulmonary arteriovenous anastomoses (Q IPAVA ) occurs in healthy humans at rest and during exercise when breathing hypoxic gas mixtures at sea level and may be a source of right-to-left shunt. However, at high altitudes, Q IPAVA is reduced compared with sea level, as detected using transthoracic saline contrast echocardiography (TTSCE). It remains unknown whether the reduction in Q IPAVA (i.e., lower bubble scores) at high altitude is due to a reduction in bubble stability resulting from the lower barometric pressure (P B ) or represents an actual reduction in Q IPAVA . To this end, Q IPAVA , pulmonary artery systolic pressure (PASP), cardiac output (Q T ), and the alveolar-to-arterial oxygen difference (AaDO 2 ) were assessed at rest and during exercise (70-190 W) in the field (5,260 m) and in the laboratory (1,668 m) during four conditions: normobaric normoxia (NN; [Formula: see text] = 121 mmHg, P B = 625 mmHg; n = 8), normobaric hypoxia (NH; [Formula: see text] = 76 mmHg, P B = 625 mmHg; n = 7), hypobaric normoxia (HN; [Formula: see text] = 121 mmHg, P B = 410 mmHg; n = 8), and hypobaric hypoxia (HH; [Formula: see text] = 75 mmHg, P B = 410 mmHg; n = 7). We hypothesized Q IPAVA would be reduced during exercise in isooxic hypobaria compared with normobaria and that the AaDO 2 would be reduced in isooxic hypobaria compared with normobaria. Bubble scores were greater in normobaric conditions, but the AaDO 2 was similar in both isooxic hypobaria and normobaria. Total pulmonary resistance (PASP/Q T ) was elevated in HN and HH. Using mathematical modeling, we found no effect of hypobaria on bubble dissolution time within the pulmonary transit times under consideration (<5 s). Consequently, our data suggest an effect of hypobaria alone on pulmonary blood flow. NEW & NOTEWORTHY Blood flow through intrapulmonary arteriovenous anastomoses, detected by transthoracic saline contrast echocardiography, was reduced during exercise in acute hypobaria compared with normobaria, independent of oxygen tension, whereas pulmonary gas exchange efficiency was unaffected. Modeling the effect(s) of reduced air density on contrast bubble lifetime did not result in a significantly reduced contrast stability. Interestingly, total pulmonary resistance was increased by hypobaria, independent of oxygen tension, suggesting that pulmonary blood flow may be changed by hypobaria.
Naeije, Robert; Saggar, Rajeev; Badesch, David; Rajagopalan, Sanjay; Gargani, Luna; Rischard, Franz; Ferrara, Francesco; Marra, Alberto M; D' Alto, Michele; Bull, Todd M; Saggar, Rajan; Grünig, Ekkehard; Bossone, Eduardo
2018-01-31
Exercise stress testing of the pulmonary circulation for the diagnosis of latent or early-stage pulmonary hypertension (PH) is gaining acceptance. There is emerging consensus to define exercise-induced PH by a mean pulmonary artery pressure > 30 mm Hg at a cardiac output < 10 L/min and a total pulmonary vascular resistance> 3 Wood units at maximum exercise, in the absence of PH at rest. Exercise-induced PH has been reported in association with a bone morphogenetic receptor-2 gene mutation, in systemic sclerosis, in left heart conditions, in chronic lung diseases, and in chronic pulmonary thromboembolism. Exercise-induced PH is a cause of decreased exercise capacity, may precede the development of manifest PH in a proportion of patients, and is associated with a decreased life expectancy. Exercise stress testing of the pulmonary circulation has to be dynamic and rely on measurements of the components of the pulmonary vascular equation during, not after exercise. Noninvasive imaging measurements may be sufficiently accurate in experienced hands, but suffer from lack of precision, so that invasive measurements are required for individual decision-making. Exercise-induced PH is caused either by pulmonary vasoconstriction, pulmonary vascular remodeling, or by increased upstream transmission of pulmonary venous pressure. This differential diagnosis is clinical. Left heart disease as a cause of exercise-induced PH can be further ascertained by a pulmonary artery wedge pressure above or below 20 mm Hg at a cardiac output < 10 L/min or a pulmonary artery wedge pressure-flow relationship above or below 2 mm Hg/L/min during exercise. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Otsuka, K; Norboo, T; Otsuka, Y; Higuchi, H; Hayajiri, M; Narushima, C; Sato, Y; Tsugoshi, T; Murakami, S; Wada, T; Ishine, M; Okumiya, K; Matsubayashi, K; Yano, S; Chogyal, T; Angchuk, D; Ichihara, K; Cornélissen, G; Halberg, F
2005-10-01
Effects of high altitude on arterial stiffness and neuro-cardio-pulmonary function were studied. Blood pressure (BP) and heart rate (HR) were measured in a sitting position on resting Ladakhis, living at an altitude of 3250-4647 m (Phey village, 3250 m: 17 men and 55 women; Chumathang village, 4193 m: 29 men and 47 women; Sumdo village, 4540 m: 38 men and 57 women; and Korzok village, 4647 m: 84 men and 70 women). The neuro-cardio-pulmonary function, including the Kohs block design test, the Up and Go, the Functional Reach and the Button tests, was examined in 40 elderly subjects (19 men and 21 women, mean age: 74.7 +/- 3.3 years) in Leh, Ladakh (altitude: 3524 m), for comparison with 324 elderly citizens (97 men and 227 women, mean age: 80.7 +/- 4.7 years) of Tosa, Japan (altitude: 250 m). Cardio-Ankle Vascular Index (CAVI) was measured as the heart-ankle pulse wave velocity (PWV) in these subjects using a VaSera CAVI instrument (Fukuda Denshi, Tokyo). SpO(2) decreased while Hb and diastolic BP increased with increasing altitude. At higher altitude, residents were younger and leaner. Women in Leh vs. Tosa had a poorer cognitive function, estimated by the Kohs block design test (3.7 +/- 3.6 vs. 16.4 +/- 9.6 points, P < 0.0001) and poorer ADL functions (Functional Reach: 13.7 +/- 7.0 cm vs. 25.3 +/- 8.7 cm, P < 0.0001; Button test: 22.5 +/- 4.8 vs. 14.8 +/- 5.7 s, P < 0.0001). Time estimation was shorter at high altitude (60-s estimation with counting: 41.1% shorter in men and 23.0% shorter in women). A higher voltage of the QRS complex was observed in the ECG of Leh residents, but two times measurement of CAVI showed no statistically significant differences between Leh and Tosa (two times of CAVI measures; 9.49 vs. 10.01 m/s and 9.41 vs. 10.05 m/s, respectively), suggesting that most residents succeed to adapt sufficiently to the high-altitude environment. However, correlation of CAVI with age shows several cases who show an extreme increase in CAVI. Thus, for the prevention of stroke and other adverse cardiovascular outcomes, including dementia, CAVI may be very useful, especially at high altitude. In conclusion, elderly people living at high altitude have a higher risk of cardiovascular disease than low-latitude peers. To determine how these indices are associated with maintained cognitive function deserves further study by the longitudinal follow-up of these communities in terms of longevity and aging in relation to their neuro-cardio-pulmonary function.
NASA Astrophysics Data System (ADS)
Krupinski, Elizabeth A.; Berbaum, Kevin S.; Caldwell, Robert; Schartz, Kevin M.
2012-02-01
Radiologists are reading more cases with more images, especially in CT and MRI and thus working longer hours than ever before. There have been concerns raised regarding fatigue and whether it impacts diagnostic accuracy. This study measured the impact of reader visual fatigue by assessing symptoms, visual strain via dark focus of accommodation, and diagnostic accuracy. Twenty radiologists and 20 radiology residents were given two diagnostic performance tests searching CT chest sequences for a solitary pulmonary nodule before (rested) and after (tired) a day of clinical reading. 10 cases used free search and navigation, and the other 100 cases used preset scrolling speed and duration. Subjects filled out the Swedish Occupational Fatigue Inventory (SOFI) and the oculomotor strain subscale of the Simulator Sickness Questionnaire (SSQ) before each session. Accuracy was measured using ROC techniques. Using Swensson's technique yields an ROC area = 0.86 rested vs. 0.83 tired, p (one-tailed) = 0.09. Using Swensson's LROC technique yields an area = 0.73 rested vs. 0.66 tired, p (one-tailed) = 0.09. Using Swensson's Loc Accuracy technique yields an area = 0.77 rested vs. 0.72 tired, p (one-tailed) = 0.13). Subjective measures of fatigue increased significantly from early to late reading. To date, the results support our findings with static images and detection of bone fractures. Radiologists at the end of a long work day experience greater levels of measurable visual fatigue or strain, contributing to a decrease in diagnostic accuracy. The decrease in accuracy was not as great however as with static images.
Coakley, F V; Cohen, M D; Waters, D J; Davis, M M; Karmazyn, B; Gonin, R; Hanna, M P
1997-07-01
CT of the chest for suspected pulmonary metastases in adults is generally performed using a breath-hold technique. The results may not be applicable to young children in whom breath-holding may be impossible. Determine the effect of breathing on the accuracy of pulmonary metastasis detection by spiral CT (SCT). Prior to euthanasia four anesthetized dogs with metastatic osteosarcoma underwent SCT with a collimation of 5 mm and a pitch of 2, during both induced breath-hold and normal quiet breathing. Images were reconstructed as contiguous 5-mm slices. Macroscopically evident metastases were noted at postmortem. Hard-copy SCT images were reviewed by ten radiologists, each of whom circled all suspected metastases. SCT images were compared with postmortem results to determine true and false positives. The pathologist identified 132 macroscopically evident pulmonary metastases. For metastasis detection, there was no significant difference between breath-hold SCT and breathing SCT. In our animal model, SCT can be performed during normal resting breathing without significant loss of accuracy in the detection of pulmonary metastases.
Hemodynamic effects of calcium antagonists in cardiac patients.
Pozenel, H
1982-01-01
Hemodynamic studies were carried out after cardiac catheterization with a floatation catheter in the pulmonary artery and cannulation of the brachial artery for the calculation of cardiac output by means of the Fick principle. Continuous pressure recordings were carried out at rest and under submaximal treadmill exercise in the supine body position in 5 homogeneous groups of 12 patients, all with disorders due to coronary disease. In a control test, hemodynamic investigations were carried out at rest before medication, under stress and after recovery. Similar tests were performed after intravenous administration of either isotonic saline as placebo, tiapamil (1.1 and 1.6 mg/kg) or verapamil (0.07 and 0.14 mg/kg). It was shown that there was a marked dose-related reduction in peripheral vascular resistance with a maximum effect occurring at 2-5 min after the intravenous administration of tiapamil (1.1 and 1.6 mg/kg) reaching 23 and 39%, respectively, or verapamil (0.07 and 0.14 mg/kg) attaining 28 and 39%, respectively, at rest and, to a similar extent, under stress conditions. In patients with sinus rhythm, the mean arterial pressure was reduced. Cardiac outputs and stroke volumes were increased at rest as well as under stress. There was no evidence of a depressant action of the drug on hemodynamic variables. An interplay of simultaneous changes in preload and afterload seems to be responsible for the effects obtained. The doses used were those commonly employed in the termination of supraventricular tachyarrhythmias. However, a potential depressant effect of tiapamil in patients with markedly reduced ventricular function is not excluded by this study.
Long-Term Oxygen Therapy in COPD Patients Who Do Not Meet the Actual Recommendations.
Ergan, Begum; Nava, Stefano
2017-06-01
Chronic respiratory failure due to chronic obstructive pulmonary disease (COPD) is an increasing problem worldwide. Many patients with severe COPD develop hypoxemic respiratory failure during the natural progression of disease. Long-term oxygen therapy (LTOT) is a well-established supportive treatment for COPD and has been shown to improve survival in patients who develop chronic hypoxemic respiratory failure. The degree of hypoxemia is severe when partial pressure of oxygen in arterial blood (PaO 2 ) is ≤55 mmHg and moderate if PaO 2 is between 56 and 69 mmHg. Although current guidelines consider LTOT only in patients with severe resting hypoxemia, many COPD patients with moderate to severe disease experience moderate hypoxemia at rest or during special circumstances, such as while sleeping or exercising. The efficacy of LTOT in these patients who do not meet the actual recommendations is still a matter of debate, and extensive research is still ongoing to understand the possible benefits of LTOT for survival and/or functional outcomes such as the sensation of dyspnea, exacerbation frequency, hospitalizations, exercise capacity, and quality of life. Despite its frequent use, the administration of "palliative" oxygen does not seem to improve dyspnea except for delivery with high-flow humidified oxygen. This narrative review will focus on current evidence for the effects of LTOT in the presence of moderate hypoxemia at rest, during sleep, or during exercise in COPD.
Usefulness of inspiratory capacity measurement in COPD patients in the primary care setting
Madueño, Antonio; Martín, Antonio; Péculo, Juan-Antonio; Antón, Esther; Paravisini, Alejandra; León, Antonio
2009-01-01
Objective: To determine if inspiratory capacity (IC) assessment could be useful for chronic obstructive pulmonary disease (COPD) patient management in the primary care setting. Methods: A descriptive cross-sectional study was conducted in 93 patients diagnosed with COPD according to Spanish Thoracic Society (SEPAR) criteria. Patients were recruited in eight primary care centers in Andalusia, Spain. Anthropometric, sociodemographic, resting lung function (forced expiratory volume in one second [FEV1], forced vital capacity, synchronized vital capacity, IC), and quality of life data based on the Spanish version of Saint George’s Respiratory Questionnaire (SGRQ) were obtained. Results: Lung function results expressed as percentages of the predicted values were as follows: FEV1, 49.04 (standard deviation [SD]: 16.23); IC, 61.73 (SD: 15.42). The SGRQ mean total score was 47.5 (SD 17.98). The Spearman’s Rho correlation between FEV1 and SGRQ was r = −0.36 (95% confidence interval [CI]: −0.529 to −0.166), between IC and SGRQ was r = −0.329 (95% CI −0.502 to −0.131), and between FEV1 and IC was r = −0.561. Conclusions: Measurement of IC at rest could be used as a complementary functional exploration to forced spirometry in the monitorization of patients with COPD in the primary care setting. We found a poor correlation between IC and quality of life at the same level as in FEV1. PMID:20360907
Role of Anemia in Home Oxygen Therapy in Chronic Obstructive Pulmonary Disease Patients.
Copur, Ahmet Sinan; Fulambarker, Ashok; Molnar, Janos; Nadeem, Rashid; McCormack, Charles; Ganesh, Aarthi; Kheir, Fayez; Hamon, Sara
2015-01-01
Anemia is a known comorbidity found in chronic obstructive pulmonary disease (COPD) patients. Hypoxemia is common and basically due to ventilation/perfusion (V/Q) mismatch in COPD. Anemia, by decreasing arterial oxygen content, may be a contributing factor for decreased delivery of oxygen to tissues. The objective of this study is to determine if anemia is a factor in qualifying COPD patients for home oxygen therapy. The study was designed as a retrospective, cross-sectional, observational chart review. Patients who were referred for home oxygen therapy evaluation were selected from the computerized patient record system. Demographic data, oxygen saturation at rest and during exercise, pulmonary function test results, hemoglobin level, medications, reason for anemia, comorbid diseases, and smoking status were recorded. The χ tests, independent sample t tests, and logistic regression were used for statistical analysis. Only 356 of total 478 patient referrals had a diagnosis of COPD over a 2-year period. Although 39 of them were excluded, 317 patients were included in the study. The overall rate of anemia was 38% in all COPD patients. Anemia was found significantly more frequent in COPD patients on home oxygen therapy (46%) than those not on home oxygen therapy (18.5%) (P < 0.0001). Mean saturation of peripheral oxygen values were significantly lower in anemic COPD patients both at rest and during exercise (P < 0.0001). Also, in COPD patients, age, Global Initiative for Chronic Obstructive Lung Disease class, smoking status, hemoglobin level, hematocrit, percent of forced expiratory volume in first second, forced expiratory volume in first second/forced vital capacity, residual volume/total lung volume, percent of carbon monoxide diffusion capacity were significantly different between home oxygen therapy and those not on home oxygen therapy (P < 0.05). Multivariate logistic regression showed that anemia remained a strong predictor for long-term oxygen therapy use in COPD patients after adjusting for other significant parameters. Anemic COPD patients are more hypoxic especially during exercise than those who are not anemic. We conclude that anemia is a contributing factor in qualifying COPD patients for home oxygen therapy.
Effects of sulfur dioxide exposure on African-American and Caucasian asthmatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, S.K.; Koenig, J.Q.; Morgan, M.S.
1994-07-01
There is concern that air pollution may be causing increases in asthma morbidity and mortality, especially among African-Americans. It is possible that there may be ethnic differences in susceptibility. To evaluate this speculation, a comparative pilot study of respiratory function in 10 African American and 12 Caucasian methacholine positive asthmatic males was conducted. Subjects were exposed to pure air or 1 ppm SO[sub 2] while breathing inside a polycarbonate head dome, for 10 min of rest and 10 min of exercise. Baseline and postexposure pulmonary function measurements were recorded, and nasal lavage fluid samples were collected and processed for epithelialmore » and white blood counts. Although significant increases were seen in total respiratory resistance following SO[sub 2] exposure in both groups (P = 0.04), no ethnic-based difference in response was seen. No significant differences were found in pulmonary or nasal measurements after exposure to SO[sub 2] between African-American and Caucasian subjects. No significant changes in epithelial or white blood cell count were found either when data were analyzed from the entire group or separately from the two subject groups. Even though there were no significant group changes, some individuals were particularly responsive to SO[sub 2]. Three Caucasian and 5 African-American subjects showed greater than 20% increases in respiratory resistance. 26 refs., 2 figs., 3 tabs.« less
Nakayama, Kazuhiko; Emoto, Noriaki; Tamada, Naoki; Okano, Mitsumasa; Shinkura, Yuto; Yanaka, Kenichi; Onishi, Hiroyuki; Hiraishi, Mana; Yamada, Shinichiro; Tanaka, Hidekazu; Shinke, Toshiro; Hirata, Ken-Ichi
2018-01-01
Inhaled iloprost efficiently improves pulmonary hemodynamics, exercise capacity, and quality of life in patients with pulmonary arterial hypertension (PAH). However, the process of inhalation is laborious for patients suffering from resting dyspnea. We describe a 75-year-old man with idiopathic PAH and a low gas transfer. Investigations excluded significant parenchymal lung disease and airflow obstruction (presuming FEV1/FVC ration > 70%). The patient struggled to complete iloprost inhalation due to severe dyspnea and hypoxemia. As such, we optimized the methods of oxygen supply from the nasal cannula to the trans-inhalator during the inhalation. We successfully shortened the inhalation duration that effectively reduced the laborious efforts required of patients. We also recorded pulmonary hemodynamics during inhalation of nebulized iloprost. This revealed significant hemodynamic improvement immediately following inhalation but hemodynamics returned to baseline within 2 hours. We hope that this optimization will enable patients with severe PAH to undergo iloprost inhalation.
Roman, Antonio; Barbera, Joan Albert; Castillo, Maria Jesús; Muñoz, Rocío; Escribano, Pilar
2013-05-01
Patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) experience impaired health-related quality of life (HRQL). The objective of this study was to evaluate HRQL in a nation-wide sample. This is a prospective, multicenter, non-interventional study of HRQL including 139 (89%) PAH and 17 (11%) CTEPH patients (women 70.5%; mean age, 52.2) recruited from 21 Spanish hospitals. 55% had idiopathic PAH, 34% other PAH and 11% CTEPH. HRQL was measured using the Short Form 36 Health Survey (SF-36) and EuroQoL-5D (baseline and after 6 months). HRQL in the patients with PAH or CTEPH was impaired. The physical component of SF-36 and the EuroQol-5D correlated with the functional class (FC). Mean EuroQol-5D visual analogical scale (EQ-5D VAS) scores were 73.5±18.4, 62.9±20.7 and 51.3±16.0 (P<.0001) in patients with FC I, II and III, respectively. Every increase of one FC represented a loss of 4.0 on the PCS SF-36 and a loss of 9.5 on the EQ-5D VAS. Eight patients who died or received a transplant during the study period presented poorer initial HRQL compared with the rest of the population. No significant changes in HRQL were observed in survivors after 6 months of follow-up. HRQL is impaired in this population, especially in PAH/CTEPH patients near death. HRQL measurements could help predict the prognosis in PAH and CTPH and provide additional information in these patients. Copyright © 2012 SEPAR. Published by Elsevier Espana. All rights reserved.
Ramos, R P; Ferreira, E V M; Valois, F M; Cepeda, A; Messina, C M S; Oliveira, R K; Araújo, A T V; Teles, C A; Neder, J A; Nery, L E; Ota-Arakaki, J S
2016-11-01
Great ventilation to carbon dioxide output (ΔV˙E/ΔV˙CO 2 ) and reduced end-tidal partial pressures for CO 2 (PetCO 2 ) during incremental exercise are hallmarks of chronic thromboembolic pulmonary hypertension (CTEPH) and idiopathic pulmonary arterial hypertension (IPAH). However, CTEPH is more likely to involve proximal arteries, which may lead to poorer right ventricle-pulmonary vascular coupling and worse gas exchange abnormalities. Therefore, abnormal PetCO 2 profiles during exercise may be more prominent in patients with CTEPH and could be helpful to indicate disease severity. Seventy patients with CTEPH and 34 with IPAH underwent right heart catheterization and cardiopulmonary exercise testing. According to PetCO 2 pattern during exercise, patients were classified as having an increase or stabilization in PetCO 2 up to the gas exchange threshold (GET), an abrupt decrease in the rest-exercise transition or a progressive and slow decrease throughout exercise. A subgroup of patients with CTEPH underwent a constant work rate exercise test to obtain arterial blood samples during steady-state exercise. Multivariate logistic regression analyses showed that progressive decreases in PetCO 2 and SpO 2 were better discriminative parameters than ΔV˙E/ΔV˙CO 2 to distinguish CTEPH from IPAH. This pattern of PetCO 2 was associated with worse functional impairment and greater reduction in PaCO 2 during exercise. Compared to patients with IPAH, patients with CTEPH present more impaired gas exchange during exercise, and PetCO 2 abnormalities may be used to identify more clinically and hemodynamically severe cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shannon, Oliver M.; Duckworth, Lauren; Barlow, Matthew J.; Deighton, Kevin; Matu, Jamie; Williams, Emily L.; Woods, David; Xie, Long; Stephan, Blossom C. M.; Siervo, Mario; O'Hara, John P.
2017-01-01
Purpose: Nitric oxide (NO) bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate (NO3−) supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude. Methods:Ten males (mean (SD): V˙O2max: 60.9 (10.1) ml·kg−1·min−1) rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m) and twice at very-high (~11.7% O2; ~4,300 m) simulated altitude. Participants ingested either 140 ml concentrated NO3−-rich (BRJ; ~12.5 mmol NO3−) or NO3−-deplete (PLA; 0.01 mmol NO3−) beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% V˙O2max and a 3 km time-trial (TT), both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([NO2−]), peripheral oxygen saturation (SpO2), pulmonary oxygen uptake (V˙O2), muscle and cerebral oxygenation, and cognitive function were measured throughout. Results: Pre-exercise plasma [NO2−] was significantly elevated in BRJ compared with PLA (p = 0.001). Pulmonary V˙O2 was reduced (p = 0.020), and SpO2 was elevated (p = 0.005) during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3) vs. 1718.7 (213.0) s] and 4.2% [1,809.8 (262.0) vs. 1,889.1 (203.9) s] at 3,000 and 4,300 m, respectively (p = 0.019). Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011). The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056). Performance in all other cognitive tasks did not differ significantly between BRJ and PLA at any measurement point (p ≥ 0.141). Conclusion: This study suggests that BRJ improves physiological function and exercise performance, but not cognitive function, at simulated moderate and very-high altitude. PMID:28649204
Doutreleau, Stéphane; Enache, Irina; Pistea, Cristina; Geny, Bernard; Charloux, Anne
2018-03-03
In this study, we hypothesized that adding CO 2 to an inhaled hypoxic gas mixture will limit the rise of pulmonary artery pressure (PAP) induced by a moderate exercise. Eight 20-year-old males performed four constant-load exercise tests on cycle at 40% of maximal oxygen consumption in four conditions: ambient air, normobaric hypoxia (12.5% O 2 ), inhaled CO 2 (4.5% CO 2 ), and combination of hypoxia and inhaled CO 2 . Doppler echocardiography was used to measure systolic (s)PAP, cardiac output (CO). Total pulmonary resistance (TPR) was calculated. Arterialized blood pH was 7.40 at exercise in ambient and hypoxia conditions, whereas CO 2 inhalation and combined conditions showed acidosis. sPAP increases from rest in ambient air to exercise ranged as follows: ambient + 110%, CO 2 inhalation + 135%, combined + 184%, hypoxia + 217% (p < 0.001). CO was higher when inhaling O 2 -poor gas mixtures with or without CO 2 (~ 17 L min -1 ) than in the other conditions (~ 14 L min -1 , p < 0.001). Exercise induced a significant decrease in TPR in the four conditions (p < 0.05) but less marked in hypoxia (- 19% of the resting value in ambient air) than in ambient (- 33%) and in both CO 2 inhalation and combined condition (- 29%). We conclude that (1) acute CO 2 inhalation did not significantly modify pulmonary hemodynamics during moderate exercise. (2) CO 2 adjunction to hypoxic gas mixture did not modify CO, despite a higher CaO 2 in combined condition than in hypoxia. (3) TPR was lower in combined than in hypoxia condition, limiting sPAP increase in combined condition.
Saito, Hajime; Hatakeyama, Kazutoshi; Konno, Hayato; Matsunaga, Toshiki; Shimada, Yoichi; Minamiya, Yoshihiro
2017-09-01
Given the extent of the surgical indications for pulmonary lobectomy in breathless patients, preoperative care and evaluation of pulmonary function are increasingly necessary. The aim of this study was to assess the contribution of preoperative pulmonary rehabilitation (PR) for reducing the incidence of postoperative pulmonary complications in non-small cell lung cancer (NSCLC) patients with chronic obstructive pulmonary disease (COPD). The records of 116 patients with COPD, including 51 patients who received PR, were retrospectively analyzed. Pulmonary function testing, including slow vital capacity (VC) and forced expiratory volume in one second (FEV 1 ), was obtained preoperatively, after PR, and at one and six months postoperatively. The recovery rate of postoperative pulmonary function was standardized for functional loss associated with the different resected lung volumes. Propensity score analysis generated matched pairs of 31 patients divided into PR and non-PR groups. The PR period was 18.7 ± 12.7 days in COPD patients. Preoperative pulmonary function was significantly improved after PR (VC 5.3%, FEV 1 5.5%; P < 0.05). The FEV 1 recovery rate one month after surgery was significantly better in the PR (101.6%; P < 0.001) than in the non-PR group (93.9%). In logistic regression analysis, predicted postoperative FEV 1 , predicted postoperative %FEV 1 , and PR were independent factors related to postoperative pulmonary complications after pulmonary lobectomy (odds ratio 18.9, 16.1, and 13.9, respectively; P < 0.05). PR improved the recovery rate of pulmonary function after lobectomy in the early period, and may decrease postoperative pulmonary complications. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Puledda, Francesca; Toscano, Massimiliano; Pieroni, Alessio; Veneroso, Gabriele; Di Piero, Vittorio; Vicenzini, Edoardo
2016-02-01
Air-saline transcranial Doppler is nowadays the first-choice examination to identify right-to-left shunt. To increase right-to-left shunt detection in echocardiography, cardiologists also use air-gelatin mixtures, which are more stable, more echogenic, and easier to be prepared. We assessed the sensitivity of air-gelatin compared with air-saline for transcranial Doppler right-to-left shunt detection. Air-saline transcranial Doppler, during unilateral middle cerebral artery monitoring at rest and after Valsalva maneuver, was performed in patients referred to our neurosonology laboratory for right-to-left shunt detection. The same transcranial Doppler protocol was repeated with air-gelatin. To consider transcranial Doppler positive for cardiac right-to-left shunt, at least one embolic signal had to be detected within 20″ from contrast injection. Later signals were interpreted of pulmonary origin. Trans-thoracic echocardiography was repeated with both air-saline and air-gelatin. A total of 97 patients were enrolled; 46 had negative transcranial Doppler for cardiac right-to-left shunt with both air-saline and air-gelatin; out of these, four patients with air-saline plus two more patients with air-gelatin presented late, isolated microemboli, slightly more numerous with air-gelatin: these were interpreted as pulmonary shunts and confirmed with trans-thoracic echocardiography. In 28 patients with already early positive air-saline transcranial Doppler at rest, air-gelatin induced a marked right-to-left shunt increase, facilitating its visualization at trans-thoracic echocardiography. In 23 patients in whom air-saline transcranial Doppler was negative at rest and positive for cardiac right-to-left shunt only after Valsalva maneuver, air-gelatin was able to reveal shunt also at rest. Air-gelatin increases right-to-left shunt detection sensitivity with transcranial Doppler in particular at rest, even in patients in whom air-saline mixture fails to identify the shunt. The choice of air-gelatin mixture should be considered for multicentric, clinical, and research trials. © 2016 World Stroke Organization.
Kindvall, Simon Sven Ivan; Diaz, Sandra; Svensson, Jonas; Wollmer, Per; Olsson, Lars E
2017-01-01
Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO) in patients with lung disease. In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH) was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds. In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003) and BMI (p = 0.0004), but not DL,CO (p = 0.33). Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term. In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.
The value of initial cavitation to predict re-treatment with pulmonary tuberculosis.
Huang, Qiusheng; Yin, Yongmei; Kuai, Shougang; Yan, Yan; Liu, Jun; Zhang, YingYing; Shan, Zhongbao; Gu, Lan; Pei, Hao; Wang, Jun
2016-05-06
Pulmonary cavitation is the classic hallmark of pulmonary tuberculosis (PTB) and is the site of very high mycobacterial burden associated with antimycobacterial drug resistance and treatment failure. The objective of this study was to investigate the relationship between re-treatment PTB and initial pulmonary cavitation coordinated with other clinical factors. We conducted a case-control study of 291 newly diagnosed cases of pulmonary TB in The Infectious Hospital of Wuxi from Dec 2009 to Dec 2011 with complete follow-up information until December 31st of 2014. 68 patients were followed-up with PTB re-treatment; the rest of the PTB patients (n = 223) had completed anti-TB treatment, and cured without re-treatment were selected as controls. The univariate analysis [hazard ratio (HR) 1.885, 95 % CI 1.170-3.035, P = 0.009] and the multivariable analysis (HR 2.242, 95 % CI 1.294-3.882, P = 0.004) demonstrated that the initial pulmonary cavitation was a prognostic predictor for TB re-treatment. Additionally, the re-treatment rates in PTB patients with cavitation and no-cavitation were 27.1 and 15.5 %, respectively, with significant difference (log-rank test; P = 0.010). Other factors, age of ≥60 and history of smoking, were also prognostic variables. Initial pulmonary cavitation of chest X-ray was a significant predictor for PTB re-treatment.
DNA Damage and Pulmonary Hypertension
Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien
2016-01-01
Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373
[Morphine in the treatment of acute pulmonary oedema].
Ellingsrud, Christoffer; Agewall, Stefan
2014-12-09
Morphine is still used in Norway and the rest of Europe as part of the treatment for pulmonary oedema, but the scientific basis for this is tenuous. In this article we assess the literature that supports and challenges the use of morphine in cases of pulmonary oedema. The article is based on a literature search in Medline and EMBASE and on the articles which form the basis of Norwegian and international guidelines. Morphine has been used for several decades in cases of pulmonary oedema due to the anxiolytic and vasodilatory properties of the drug. Vasodilation caused by morphine has been described in other patient groups, but there is little evidence in the literature to suggest that morphine causes vasodilation in patients with pulmonary oedema. Non-specific depression of the central nervous system is probably the most significant factor for the changes in haemodynamics in pulmonary oedema. Retrospective studies have shown both negative and neutral effects in acute decompensated heart failure. There are no reliable clinical studies that document better prognosis from the use of morphine. Based on the available studies, the possibility cannot be excluded that the use of morphine results in increased mortality among patients with acute pulmonary oedema. In addition, there is little evidence that the vasodilatory properties of morphine are of any significance for this condition. The benefits and risks of using morphine in cases of acute pulmonary oedema are still unclear, but so far there is little evidence to support the beneficial use of the drug.
NASA Technical Reports Server (NTRS)
Perhonen, M. A.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)
2001-01-01
BACKGROUND: Orthostatic intolerance after bed rest is characterized by hypovolemia and an excessive reduction in stroke volume (SV) in the upright position. We studied whether the reduction in SV is due to a specific adaptation of the heart to head-down tilt bed rest (HDTBR) or acute hypovolemia alone. METHODS AND RESULTS: We constructed left ventricular (LV) pressure-volume curves from pulmonary capillary wedge pressure and LV end-diastolic volume and Starling curves from pulmonary capillary wedge pressure and SV during lower body negative pressure and saline loading in 7 men (25+/-2 years) before and after 2 weeks of -6 degrees HDTBR and after the acute administration of intravenous furosemide. Both HDTBR and hypovolemia led to a similar reduction in plasma volume. However, baseline LV end-diastolic volume decreased by 20+/-4% after HDTBR and by 7+/-2% after hypovolemia (interaction P<0.001). Moreover, SV was reduced more and the Starling curve was steeper during orthostatic stress after HDTBR than after hypovolemia. The pressure-volume curve showed a leftward shift and the equilibrium volume of the left ventricle was decreased after HDTBR; however, after hypovolemia alone, the curve was identical, with no change in equilibrium volume. Lower body negative pressure tolerance was reduced after both conditions; it decreased by 27+/-7% (P<0.05) after HDTBR and by 18+/-8% (P<0.05) after hypovolemia. CONCLUSIONS: Chronic HDTBR leads to ventricular remodeling, which is not seen with equivalent degrees of acute hypovolemia. This remodeling leads to a greater decrease in SV during orthostatic stress after bed rest than hypovolemia alone, potentially contributing to orthostatic intolerance.
Pulmonary functions in tannery workers--a cross sectional study.
Chandrasekaran, Vasanthi; Dilara, K; Padmavathi, R
2014-01-01
Tannery workers are at potential exposure to detrimental agents rendering them vulnerable to respiratory and dermal problems. Thus by performing pulmonary functions among leather tannery workers, we can decipher the effect of chromium and leather dust on lung functions and also the decline of respiratory functions with increasing years of exposure to leather dust. Pulmonary functions were assessed for 130 tannery workers and compared with the 130 unexposed office workers. Pulmonary function measurements namely FVC, FEV1, FEF25-75% and PEFR were measured using portable data logging Spirometer (KOKO Spirometer). The observed pulmonary functions of Tannery-workers in this study showed a reduction in FEV1, FVC, FEV1/FVC ratio, FEF25-75 and PEFR in relation to their predicted values and also compared to the unexposed. Smokers showed a decline in pulmonary functions compared to the non smokers because smoking acts as an additional risk factor in the development of respiratory illnesses. It is worthy to mention that the pulmonary function values correlate negatively with the duration of exposure to leather dust. So this study could provide base line information based upon which legal implementation of preventive measures could be undertaken.
Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan
2017-08-01
The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.
[Healthy lifestyle formation and lower dependence on atmosphere oxygen in working].
Usti'yantsev, S L
2016-01-01
Studies covered 38 males in laboratory and 81 males in industrial conditions of 13 metallurgic enterprises and revealed some reliable phenomena caused by dry voluntary apnea of 10-60 seconds. At muscular rest and during physical exertion, evidences are that voluntary apnea forms transitory hypercapnic portion of blood in pulmonary arterial flow. First finding is that this portion in other blood behaves as an anabolic wave carrying increased concentration of low-molecular CO2 material and releasing additional (wave, according to authors) O2 from its depot in the body. This oxygen, in conditions of increased blood pressure due to apnea, is used for synthesis of additional ATP. These phenomena characterize formation and development a new beneficial physiologic system in workers--a functional system of motivation to healthy lifestyle.
[Hypersensitivity pneumonitis. A series of nine cases with surgical lung biopsy].
Gómez Tejada, Ricardo A; Legarreta, Cora G; Enghelmayer, Juan Ignacio; Dianti, Milagros; Acuña, Silvana; Olmedo, Gloria
2017-01-01
In a series of nine patients with histopathological diagnosis of hypersensitivity pneumonitis, we retrospectively evaluated clinical data, exposure related factors, pulmonary function tests and chest computed tomography scans. A restrictive abnormality with reduction of diffusion capacity for carbon monoxide was mainly found. Chest scans showed fibrotic patterns in most cases; ground glass attenuation areas with mosaic pattern and consolidation in the rest. Exposure to avian antigens, cereal grains and air conditioners contaminated with fungi yeasts and bacteria, were suspected from clinical data in two-thirds of the cases. Since there are no unique features that allow differentiation from other interstitial lung diseases, a high clinical suspicion is required and a careful search of environmental exposure to possible antigens is needed that, together with clinical, radiological and pathological data, may lead to diagnosis.
Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis.
Ledonio, Charles Gerald T; Rosenstein, Benjamin E; Johnston, Charles E; Regelmann, Warren E; Nuckley, David J; Polly, David W
2017-01-01
Scoliosis deformity has been linked with deleterious changes in the thoracic cavity that affect pulmonary function. The causal relationship between spinal deformity and pulmonary function has yet to be fully defined. It has been hypothesized that deformity correction improves pulmonary function by restoring both respiratory muscle efficiency and increasing the space available to the lungs. This research aims to correlate pulmonary function and thoracic volume before and after scoliosis correction. Retrospective correlational analysis between thoracic volume modeling from plain x-rays and pulmonary function tests was conducted. Adolescent idiopathic scoliosis patients enrolled in a multicenter database were sorted by pre-operative Total Lung Capacities (TLC) % predicted values from their Pulmonary Function Tests (PFT). Ten patients with the best and ten patients with the worst TLC values were included. Modeled thoracic volume and TLC values were compared before and 2 years after surgery. Scoliosis correction resulted in an increase in the thoracic volume for patients with the worst initial TLCs (11.7%) and those with the best initial TLCs (12.5%). The adolescents with the most severe pulmonary restriction prior to surgery strongly correlated with post-operative change in total lung capacity and thoracic volume (r 2 = 0.839; p < 0.001). The mean increase in thoracic volume in this group was 373.1 cm 3 (11.7%) which correlated with a 21.2% improvement in TLC. Scoliosis correction in adolescents was found to increase thoracic volume and is strongly correlated with improved TLC in cases with severe restrictive pulmonary function, but no correlation was found in cases with normal pulmonary function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:175-182, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Structural basis for pulmonary functional imaging.
Itoh, H; Nakatsu, M; Yoxtheimer, L M; Uematsu, H; Ohno, Y; Hatabu, H
2001-03-01
An understanding of fine normal lung morphology is important for effective pulmonary functional imaging. The lung specimens must be inflated. These include (a) unfixed, inflated lung specimen, (b) formaldehyde fixed lung specimen, (c) fixed, inflated dry lung specimen, and (d) histology specimen. Photography, magnified view, radiograph, computed tomography, and histology of these specimens are demonstrated. From a standpoint of diagnostic imaging, the main normal lung structures consist of airways (bronchi and bronchioles), alveoli, pulmonary vessels, secondary pulmonary lobules, and subpleural pulmonary lymphatic channels. This review summarizes fine radiologic normal lung morphology as an aid to effective pulmonary functional imaging.
Forouzan, Omid; Warczytowa, Jared; Wieben, Oliver; François, Christopher J; Chesler, Naomi C
2015-12-13
Exercise stress tests are commonly used in clinical settings to monitor the functional state of the heart and vasculature. Large artery stiffness is one measure of arterial function that can be quantified noninvasively during exercise stress. Changes in proximal pulmonary artery stiffness are especially relevant to the progression of pulmonary hypertension (PH), since pulmonary artery (PA) stiffness is the best current predictor of mortality from right ventricular failure. Cardiovascular magnetic resonance (CMR) was used to investigate the effect of exercise stress on PA pulse wave velocity (PWV) and relative area change (RAC), which are both non-invasive measures of PA stiffness, in healthy subjects. All 21 subjects (average age 26 ± 4 years; 13 female and 8 male) used a custom-made MR-compatible stepping device to exercise (two stages of mild-to-moderate exercise of 3-4 min duration each) in a supine position within the confines of the scanner. To measure the cross-sectional area and blood flow velocity in the main PA (MPA), two-dimensional phase-contrast (2D-PC) CMR images were acquired. To measure the reproducibility of metrics, CMR images were analyzed by two independent observers. Inter-observer agreements were calculated using the intraclass correlation and Bland-Altman analysis. From rest to the highest level of exercise, cardiac output increased from 5.9 ± 1.4 L/min to 8.2 ± 1.9 L/min (p < 0.05), MPA PWV increased from 1.6 ± 0.5 m/s to 3.6 ± 1.4 m/s (p < 0.05), and MPA RAC decreased from 0.34 ± 0.11 to 0.24 ± 0.1 (p < 0.05). While PWV also increased from the first to second exercise stage (from 2.7 ± 1.0 m/s to 3.6 ± 1.4 m/s, p < 0.05), there was no significant change in RAC between the two exercise stages. We found good inter-observer agreement for quantification of MPA flow, RAC and PWV. These results demonstrate that metrics of MPA stiffness increase in response to acute moderate exercise in healthy subjects and that CMR exercise stress offers great potential in clinical practice to noninvasively assess vascular function.
Singh, Urvashi B.; Pandey, Pooja; Mehta, Girija; Bhatnagar, Anuj K.; Mohan, Anant; Goyal, Vinay; Ahuja, Vineet; Ramachandran, Ranjani; Sachdeva, Kuldeep S.; Samantaray, Jyotish C.
2016-01-01
Background Newer molecular diagnostics have brought paradigm shift in early diagnosis of tuberculosis [TB]. WHO recommended use of GeneXpert MTB/RIF [Xpert] for Extra-pulmonary [EP] TB; critics have since questioned its efficiency. Methods The present study was designed to assess the performance of GeneXpert in 761 extra-pulmonary and 384 pulmonary specimens from patients clinically suspected of TB and compare with Phenotypic, Genotypic and Composite reference standards [CRS]. Results Comparison of GeneXpert results to CRS, demonstrated sensitivity of 100% and 90.68%, specificity of 100% and 99.62% for pulmonary and extra-pulmonary samples. On comparison with culture, sensitivity for Rifampicin [Rif] resistance detection was 87.5% and 81.82% respectively, while specificity was 100% for both pulmonary and extra-pulmonary TB. On comparison to sequencing of rpoB gene [Rif resistance determining region, RRDR], sensitivity was respectively 93.33% and 90% while specificity was 100% in both pulmonary and extra-pulmonary TB. GeneXpert assay missed 533CCG mutation in one sputum and dual mutation [517 & 519] in one pus sample, detected by sequencing. Sequencing picked dual mutation [529, 530] in a sputum sample sensitive to Rif, demonstrating, not all RRDR mutations lead to resistance. Conclusions Current study reports observations in a patient care setting in a high burden region, from a large collection of pulmonary and extra-pulmonary samples and puts to rest questions regarding sensitivity, specificity, detection of infrequent mutations and mutations responsible for low-level Rif resistance by GeneXpert. Improvements in the assay could offer further improvement in sensitivity of detection in different patient samples; nevertheless it may be difficult to improve sensitivity of Rif resistance detection if only one gene is targeted. Assay specificity was high both for TB detection and Rif resistance detection. Despite a few misses, the assay offers major boost to early diagnosis of TB and MDR-TB, in difficult to diagnose pauci-bacillary TB. PMID:26894283
The overloaded right heart and ventricular interdependence.
Naeije, Robert; Badagliacca, Roberto
2017-10-01
The right and the left ventricle are interdependent as both structures are nested within the pericardium, have the septum in common and are encircled with common myocardial fibres. Therefore, right ventricular volume or pressure overloading affects left ventricular function, and this in turn may affect the right ventricle. In normal subjects at rest, right ventricular function has negligible interaction with left ventricular function. However, the right ventricle contributes significantly to the normal cardiac output response to exercise. In patients with right ventricular volume overload without pulmonary hypertension, left ventricular diastolic compliance is decreased and ejection fraction depressed but without intrinsic alteration in contractility. In patients with right ventricular pressure overload, left ventricular compliance is decreased with initial preservation of left ventricular ejection fraction, but with eventual left ventricular atrophic remodelling and altered systolic function. Breathing affects ventricular interdependence, in healthy subjects during exercise and in patients with lung diseases and altered respiratory system mechanics. Inspiration increases right ventricular volumes and decreases left ventricular volumes. Expiration decreases both right and left ventricular volumes. The presence of an intact pericardium enhances ventricular diastolic interdependence but has negligible effect on ventricular systolic interdependence. On the other hand, systolic interdependence is enhanced by a stiff right ventricular free wall, and decreased by a stiff septum. Recent imaging studies have shown that both diastolic and systolic ventricular interactions are negatively affected by right ventricular regional inhomogeneity and prolongation of contraction, which occur along with an increase in pulmonary artery pressure. The clinical relevance of these observations is being explored. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Carone, Mauro; Antoniu, Sabina; Baiardi, Paola; Digilio, Vincenzo S; Jones, Paul W; Bertolotti, Giorgio
2016-01-01
Previous studies sought to identify survival or outcome predictors in patients with COPD and chronic respiratory failure, but their findings are inconsistent. We identified mortality-associated factors in a prospective study in 21 centers in 7 countries. Follow-up data were available in 221 patients on home mechanical ventilation and/or long-term oxygen therapy. diagnosis, co-morbidities, medication, oxygen therapy, mechanical ventilation, pulmonary function, arterial blood gases, exercise performance were recorded. Health status was assessed using the COPD-specific SGRQ and the respiratory-failure-specific MRF26 questionnaires. Date and cause of death were recorded in those who died. Overall mortality was 19.5%. The commonest causes of death were related to the underlying respiratory diseases. At baseline, patients who subsequently died were older than survivors (p = 0.03), had a lower forced vital capacity (p = 0.03), a higher use of oxygen at rest (p = 0.003) and a worse health status (SGRQ and MRF26, both p = 0.02). Longitudinal analyses over a follow-up period of 3 years showed higher median survival times in patients with use of oxygen at rest less than 1.75 l/min and with a better health status. In contrast, an increase from baseline levels of 1 liter in O2 flow at rest, 1 unit in SGRQ or MRF26, or 1 year increase in age resulted in an increase of mortality of 68%, 2.4%, 1.3%, and 6%, respectively. In conclusion, the need for oxygen at rest, and health status assessment seems to be the strongest predictors of mortality in COPD patients with chronic respiratory failure.
21 CFR 868.1880 - Pulmonary-function data calculator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pulmonary-function data calculator. 868.1880 Section 868.1880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-function values based on actual physical data obtained during pulmonary-function testing. (b...
21 CFR 868.1880 - Pulmonary-function data calculator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pulmonary-function data calculator. 868.1880 Section 868.1880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-function values based on actual physical data obtained during pulmonary-function testing. (b...
Otsuka, K.; Norboo, T.; Otsuka, Y.; Higuchi, H.; Hayajiri, M.; Narushima, C.; Sato, Y.; Tsugoshi, T.; Murakami, S.; Wada, T.; Ishine, M.; Okumiya, K.; Matsubayashi, K.; Yano, S.; Chogyal, T.; Angchuk, D.; Ichihara, K.; Cornélissen, G.; Halberg, F.
2008-01-01
Effects of high altitude on arterial stiffness and neuro-cardio-pulmonary function were studied. Blood pressure (BP) and heart rate (HR) were measured in a sitting position on resting Ladakhis, living at an altitude of 3250–4647 m (Phey village, 3250 m: 17 men and 55 women; Chumathang village, 4193 m: 29 men and 47 women; Sumdo village, 4540 m: 38 men and 57 women; and Korzok village, 4647 m: 84 men and 70 women). The neuro-cardio-pulmonary function, including the Kohs block design test, the Up and Go, the Functional Reach and the Button tests, was examined in 40 elderly subjects (19 men and 21 women, mean age: 74.7 ± 3.3 years) in Leh, Ladakh (altitude: 3524 m), for comparison with 324 elderly citizens (97 men and 227 women, mean age: 80.7 ± 4.7 years) of Tosa, Japan (altitude: 250 m). Cardio-Ankle Vascular Index (CAVI) was measured as the heart-ankle pulse wave velocity (PWV) in these subjects using a VaSera CAVI instrument (Fukuda Denshi, Tokyo). SpO2 decreased while Hb and diastolic BP increased with increasing altitude. At higher altitude, residents were younger and leaner. Women in Leh vs. Tosa had a poorer cognitive function, estimated by the Kohs block design test (3.7 ± 3.6 vs. 16.4 ± 9.6 points, P < 0.0001) and poorer ADL functions (Functional Reach: 13.7 ± 7.0 cm vs. 25.3 ± 8.7 cm, P < 0.0001; Button test: 22.5 ± 4.8 vs. 14.8 ± 5.7 s, P < 0.0001). Time estimation was shorter at high altitude (60-s estimation with counting: 41.1% shorter in men and 23.0% shorter in women). A higher voltage of the QRS complex was observed in the ECG of Leh residents, but two times measurement of CAVI showed no statistically significant differences between Leh and Tosa (two times of CAVI measures; 9.49 vs. 10.01 rn/s and 9.41 vs. 10.05 m/s, respectively), suggesting that most residents succeed to adapt sufficiently to the high-altitude environment. However, correlation of CAVI with age shows several cases who show an extreme increase in CAVI. Thus, for the prevention of stroke and other adverse cardiovascular outcomes, including dementia, CAVI may be very useful, especially at high altitude. In conclusion, elderly people living at high altitude have a higher risk of cardiovascular disease than low-latitude peers. To determine how these indices are associated with maintained cognitive function deserves further study by the longitudinal follow-up of these communities in terms of longevity and aging in relation to their neuro-cardio-pulmonary function. PMID:16275510
Ng, Boon C; Smith, Peter A; Nestler, Frank; Timms, Daniel; Cohn, William E; Lim, Einly
2017-03-01
The successful clinical applicability of rotary left ventricular assist devices (LVADs) has led to research interest in devising a total artificial heart (TAH) using two rotary blood pumps (RBPs). The major challenge when using two separately controlled LVADs for TAH support is the difficulty in maintaining the balance between pulmonary and systemic blood flows. In this study, a starling-like controller (SLC) hybridized with an adaptive mechanism was developed for a dual rotary LVAD TAH. The incorporation of the adaptive mechanism was intended not only to minimize the risk of pulmonary congestion and atrial suction but also to match cardiac demand. A comparative assessment was performed between the proposed adaptive starling-like controller (A-SLC) and a conventional SLC as well as a constant speed controller. The performance of all controllers was evaluated by subjecting them to three simulated scenarios [rest, exercise, head up tilt (HUT)] using a mock circulation loop. The overall results showed that A-SLC was superior in matching pump flow to cardiac demand without causing hemodynamic instabilities. In contrast, improper flow regulation by the SLC resulted in pulmonary congestion during exercise. From resting supine to HUT, overpumping of the RBPs at fixed speed (FS) caused atrial suction, whereas implementation of SLC resulted in insufficient flow. The comparative study signified the potential of the proposed A-SLC for future TAH implementation particularly among outpatients, who are susceptible to variety of clinical scenarios.
Kobayashi, Keisuke; Saeki, Yusuke; Kitazawa, Shinsuke; Kobayashi, Naohiro; Kikuchi, Shinji; Goto, Yukinobu; Sakai, Mitsuaki; Sato, Yukio
2017-11-01
It is important to accurately predict the patient's postoperative pulmonary function. The aim of this study was to compare the accuracy of predictions of the postoperative residual pulmonary function obtained with three-dimensional computed tomographic (3D-CT) volumetry with that of predictions obtained with the conventional segment-counting method. Fifty-three patients scheduled to undergo lung cancer resection, pulmonary function tests, and computed tomography were enrolled in this study. The postoperative residual pulmonary function was predicted based on the segment-counting and 3D-CT volumetry methods. The predicted postoperative values were compared with the results of postoperative pulmonary function tests. Regarding the linear correlation coefficients between the predicted postoperative values and the measured values, those obtained using the 3D-CT volumetry method tended to be higher than those acquired using the segment-counting method. In addition, the variations between the predicted and measured values were smaller with the 3D-CT volumetry method than with the segment-counting method. These results were more obvious in COPD patients than in non-COPD patients. Our findings suggested that the 3D-CT volumetry was able to predict the residual pulmonary function more accurately than the segment-counting method, especially in patients with COPD. This method might lead to the selection of appropriate candidates for surgery among patients with a marginal pulmonary function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massie, B.; Kramer, B.L.; Topic, N.
Although the resting hemodynamic effects of captopril in congestive heart failure are known, little information is available about the hemodynamic response to captopril during exercise or about changes in noninvasive measurements of the size and function of both ventricles. In this study, 14 stable New York Heart Association class III patients were given 25 mg of oral captopril. Rest and exercise hemodynamic measurements and blood pool scintigrams were performed simultaneously before and 90 minutes after captopril. The radionuclide studies were analyzed for left and right ventricular end-diastolic volumes, end-systolic volumes, ejection fractions and pulmonary blood volume. The primary beneficial responsesmore » at rest were decreases in left and right ventricular end-diastolic volumes from 388 +/- 81 to 350 +/- 77 ml and from 52 +/- 26 to 43 +/- 20 volume units, respectively, and in their corresponding filling pressures, from 24 +/- 10 to 17 +/- 9 mm Hg and 10 +/- 5 to 6 +/- 5 mm Hg. Although stroke volume did not increase significantly, both left and right ventricular ejection fractions increased slightly, from 19 +/- 6% to 22+/- 5% and from 25 +/- 9% to 29 +/- 11%, respectively. During exercise, similar changes were noted in both hemodynamic and radionuclide indexes. This, in patients with moderate symptomatic limitation from chronic heart failure, captopril predominantly reduces ventricular volume and filling pressure, with a less significant effect on cardiac output. These effects persist during exercise, when systemic vascular resistance is already very low. Radionuclide techniques are valuable in assessing the drug effect in these subjects, particularly when ventricular volumes are also measured.« less
Olfert, S M; Pahwa, P; Dosman, J A
2005-11-01
The negative health effects of exposure to grain dust have previously been examined, but few studies have observed the effects on newly hired employees. Young grain workers are of interest because changes in pulmonary function may occur after a short duration of employment, and because older grain workers may represent a survivor population. The New Grain Workers Study (NGWS), a longitudinal study of 299 newly hired male grain industry workers, was conducted between 1980 and 1985. The objectives were to determine the effects of employment in the grain industry on pulmonary function. Pre-employment physical examinations and pulmonary function tests were conducted on subjects at the Division of Respiratory Medicine, Department of Medicine, Royal University Hospital, University of Saskatchewan. The Grain Dust Medical Surveillance Program (GDMSP) was a Labour Canada program that began in 1978. All subjects were grain workers employed in the grain industry in Saskatchewan. All subjects completed a respiratory symptoms questionnaire and underwent pulmonary function testing. Baseline observations were recorded every three years between 1978 and 1993. Data were available on 2184 grain workers. Generalized estimating equations were used to fit marginal and transitional multivariable regression models to determine the effects of grain dust exposure on pulmonary function. Marginal and transitional models were then compared. Height, exposure weeks, and previous FVC were predictive of FVC in the NGWS, while exposure weeks and previous FEV1 were predictive of FEV1. These models, as well as a transitional regression model built using the GDMSP data, were used to compute predicted mean annual decline inpulmonary function. Non-smoking grain workers in the NGWS had the highest pulmonary function test values, but also had the greatest predicted annual decline in pulmonary function. Ever-smoking grain workers in the GDMSP had the lowest pulmonary function test values. Non-smoking grain workers in the GDMSP had the least predicted annual decline in pulmonary function.
Ueda, Kazuhiro; Tanaka, Toshiki; Li, Tao-Sheng; Tanaka, Nobuyuki; Hamano, Kimikazu
2009-03-01
The prediction of pulmonary functional reserve is mandatory in therapeutic decision-making for patients with resectable lung cancer, especially those with underlying lung disease. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative computed tomography (CT) helps to identify residual pulmonary function, although the utility of this modality needs investigation. The subjects of this prospective study were 30 patients with resectable lung cancer. A three-dimensional CT lung model was created with voxels representing normal lung attenuation (-600 to -910 Hounsfield units). Residual pulmonary function was predicted by drawing a boundary line between the lung to be preserved and that to be resected, directly on the lung model. The predicted values were correlated with the postoperative measured values. The predicted and measured values corresponded well (r=0.89, p<0.001). Although the predicted values corresponded with values predicted by simple calculation using a segment-counting method (r=0.98), there were two outliers whose pulmonary functional reserves were predicted more accurately by CT than by segment counting. The measured pulmonary functional reserves were significantly higher than the predicted values in patients with extensive emphysematous areas (<-910 Hounsfield units), but not in patients with chronic obstructive pulmonary disease. Quantitative CT yielded accurate prediction of functional reserve after lung cancer surgery and helped to identify patients whose functional reserves are likely to be underestimated. Hence, this modality should be utilized for patients with marginal pulmonary function.
Yang, Xiaotian; Zhou, Yujing; Wang, Pu; He, Chengqi; He, Hongchen
2016-05-01
To examine the effect of whole-body vibration in enhancing pulmonary function, functional exercise capacity and quality of life in people with chronic obstructive pulmonary disease and examine its safety. Randomized controlled trials examining the effects of whole body vibration among people with chronic obstructive pulmonary disease were identified by two independent researchers. Articles were excluded if they were studies on people with other primary diagnosis, abstracts published in the conferences or books. PEDro scale was used to assess the methodological quality of the selected studies. We evaluated the level of evidence by using the GRADE approach. The results were extracted by two researchers and confirmed by the third researcher if disagreement existed. Sources included Cochrane Central Register of Controlled Trials, PubMed, CINAHL, EMBASE, PEDro, AMED, PsycINFO, ClinicalTrials.gov, Current Controlled Trials and reference lists of all relevant articles. Four studies involving 206 participants were included in this systematic review. Methodological quality was rated as good for two studies. No great benefits on pulmonary function were found in whole body vibration treatment group. Two studies showed that quality of life was improved in people with chronic obstructive pulmonary disease. Whole body vibration led to significant improvements in functional exercise capacity measured with six minutes walking test. Nearly no adverse events were observed. Whole body vibration may improve functional exercise capacity and quality of life in people with chronic obstructive pulmonary disease. There was insufficient evidence to prove the effects of whole body vibration on pulmonary function. © The Author(s) 2015.
Noll, Donald R; Johnson, Jane C; Baer, Robert W; Snider, Eric J
2009-01-01
Background The use of manipulation has long been advocated in the treatment of chronic obstructive pulmonary disease (COPD), but few randomized controlled clinical trials have measured the effect of manipulation on pulmonary function. In addition, the effects of individual manipulative techniques on the pulmonary system are poorly understood. Therefore, the purpose of this study was to determine the immediate effects of four osteopathic techniques on pulmonary function measures in persons with COPD relative to a minimal-touch control protocol. Methods Persons with COPD aged 50 and over were recruited for the study. Subjects received five, single-technique treatment sessions: minimal-touch control, thoracic lymphatic pump (TLP) with activation, TLP without activation, rib raising, and myofascial release. There was a 4-week washout period between sessions. Protocols were given in random order until all five techniques had been administered. Pulmonary function measures were obtained at baseline and 30-minutes posttreatment. For the actual pulmonary function measures and percent predicted values, Wilcoxon signed rank tests were used to test within-technique changes from baseline. For the percent change from baseline, Friedman tests were used to test for between-technique differences. Results Twenty-five subjects were enrolled in the study. All four tested osteopathic techniques were associated with adverse posttreatment changes in pulmonary function measures; however, different techniques changed different measures. TLP with activation increased posttreatment residual volume compared to baseline, while TLP without activation did not. Side effects were mild, mostly posttreatment chest wall soreness. Surprisingly, the majority of subjects believed they could breathe better after receiving osteopathic manipulation. Conclusion In persons with COPD, TLP with activation, TLP without activation, rib raising, and myofascial release mildly worsened pulmonary function measures immediately posttreatment relative to baseline measurements. The activation component of the TLP technique appears to increase posttreatment residual volume. Despite adverse changes in pulmonary function measures, persons with COPD subjectively reported they benefited from osteopathic manipulation. PMID:19814829
Noll, Donald R; Johnson, Jane C; Baer, Robert W; Snider, Eric J
2009-10-08
The use of manipulation has long been advocated in the treatment of chronic obstructive pulmonary disease (COPD), but few randomized controlled clinical trials have measured the effect of manipulation on pulmonary function. In addition, the effects of individual manipulative techniques on the pulmonary system are poorly understood. Therefore, the purpose of this study was to determine the immediate effects of four osteopathic techniques on pulmonary function measures in persons with COPD relative to a minimal-touch control protocol. Persons with COPD aged 50 and over were recruited for the study. Subjects received five, single-technique treatment sessions: minimal-touch control, thoracic lymphatic pump (TLP) with activation, TLP without activation, rib raising, and myofascial release. There was a 4-week washout period between sessions. Protocols were given in random order until all five techniques had been administered. Pulmonary function measures were obtained at baseline and 30-minutes posttreatment. For the actual pulmonary function measures and percent predicted values, Wilcoxon signed rank tests were used to test within-technique changes from baseline. For the percent change from baseline, Friedman tests were used to test for between-technique differences. Twenty-five subjects were enrolled in the study. All four tested osteopathic techniques were associated with adverse posttreatment changes in pulmonary function measures; however, different techniques changed different measures. TLP with activation increased posttreatment residual volume compared to baseline, while TLP without activation did not. Side effects were mild, mostly posttreatment chest wall soreness. Surprisingly, the majority of subjects believed they could breathe better after receiving osteopathic manipulation. In persons with COPD, TLP with activation, TLP without activation, rib raising, and myofascial release mildly worsened pulmonary function measures immediately posttreatment relative to baseline measurements. The activation component of the TLP technique appears to increase posttreatment residual volume. Despite adverse changes in pulmonary function measures, persons with COPD subjectively reported they benefited from osteopathic manipulation.
Exercise after SCUBA diving increases the incidence of arterial gas embolism.
Madden, Dennis; Lozo, Mislav; Dujic, Zeljko; Ljubkovic, Marko
2013-09-01
Arterialization of gas bubbles after decompression from scuba diving has traditionally been associated with pulmonary barotraumas or cardiac defects, such as the patent foramen ovale. Recent studies have demonstrated the right-to-left passage of bubbles through intrapulmonary arterial-venous anastamoses (IPAVA) that allow blood to bypass the pulmonary microcirculation. These passages open up during exercise, and the aim of this study is to see if exercise in a postdiving period increases the incidence of arterialization. After completing a dive to 18 m for 47 min, patent foramen ovale-negative subjects were monitored via transthoracic echocardiography, within 10 min after surfacing, for bubble score at rest. Subjects then completed an incremental cycle ergometry test to exhaustion under continuous transthoracic echocardiography observation. Exercise was suspended if arterialization was observed and resumed when the arterialization cleared. If arterialization was observed a second time, exercise was terminated, and oxygen was administered. Out of 23 subjects, 3 arterialized at rest, 12 arterialized with exercise, and 8 did not arterialize at all even during maximal exercise. The time for arterialization to clear with oxygen was significantly shorter than without. Exercise after diving increased the incidence of arterialization from 13% at rest to 52%. This study shows that individuals are capable of arterializing through IPAVA, and that the intensity at which these open varies by individual. Basic activities associated with SCUBA diving, such as surface swimming or walking with heavy equipment, may be enough to allow the passage of venous gas emboli through IPAVA.
21 CFR 868.1900 - Diagnostic pulmonary-function interpretation calculator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic pulmonary-function interpretation calculator. 868.1900 Section 868.1900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... pulmonary-function values. (b) Classification. Class II (performance standards). ...
21 CFR 868.1900 - Diagnostic pulmonary-function interpretation calculator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic pulmonary-function interpretation calculator. 868.1900 Section 868.1900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... pulmonary-function values. (b) Classification. Class II (performance standards). ...
Pulmonary functions in patients with subclinical hypothyroidism.
Cakmak, Gulfidan; Saler, Tayyibe; Saglam, Zuhal Aydan; Yenigun, Mustafa; Ataoglu, Esra; Demir, Tuncalp; Temiz, Levent Umit
2011-10-01
To determine whether alterations in pulmonary function takes place in subclinical hypothyroidism by examining the diffusion lung capacity and muscle strength of such patients. This is a descriptive study conducted in 2009 at Haseki Training and Research Hospital, Istanbul, Turkey. Hundred and twenty-six patients with subclinical hypothyroidism and 58 age and sex matched individuals were recruited. Simple spirometry tests were performed, and pulmonary diffusion capacity (DLco) and muscle strength were measured. ScH patients showed a significant reduciton of the following pulmonary function tests (% predicted value) as compared with control subjects: FVC, FEV1, FEV1%, FEF25-75, FEF25-75%, DLco, DLco/VA, Pimax, Pimax% and Pemax%. These data indicate that pulmonary functions are effected in subclinical hypothyrodism. Therefore patients with or who are at high risk of having subclinical hypothyroidism, should be subjected to evaluation of pulmonary functions with simple spirometry.
Pulmonary function and the risk of functional limitation in chronic obstructive pulmonary disease.
Eisner, Mark D; Iribarren, Carlos; Yelin, Edward H; Sidney, Stephen; Katz, Patricia P; Ackerson, Lynn; Lathon, Phenius; Tolstykh, Irina; Omachi, Theodore; Byl, Nancy; Blanc, Paul D
2008-05-01
The authors' objective was to analyze the impact of respiratory impairment on the risk of physical functional limitations among adults with chronic obstructive pulmonary disease (COPD). They hypothesized that greater pulmonary function decrement would result in a broad array of physical functional limitations involving organ systems remote from the lung, a key step in the pathway leading to overall disability. The authors used baseline data from the Function, Living, Outcomes, and Work (FLOW) study, a prospective cohort study of adults with COPD recruited from northern California in 2005-2007. They studied the impact of pulmonary function impairment on the risk of functional limitations using validated measures: lower extremity function (Short Physical Performance Battery), submaximal exercise performance (6-Minute Walk Test), standing balance (Functional Reach Test), skeletal muscle strength (manual muscle testing with dynamometry), and self-reported functional limitation (standardized item battery). Multiple variable analysis was used to control for confounding by age, sex, race, height, educational attainment, and cigarette smoking. Greater pulmonary function impairment, as evidenced by lower forced expiratory volume in 1 second (FEV(1)), was associated with poorer Short Physical Performance Battery scores and less distance walked during the 6-Minute Walk Test. Lower forced expiratory volume in 1 second was also associated with weaker muscle strength and with a greater risk of self-reported functional limitation (p < 0.05). In conclusion, pulmonary function impairment is associated with multiple manifestations of physical functional limitation among COPD patients. Longitudinal follow-up can delineate the impact of these functional limitations on the prospective risk of disability, guiding preventive strategies that could attenuate the disablement process.
Shaffer, J; Simbartl, L; Render, M L; Snow, E; Chaney, C; Nishiyama, H; Rauf, G C; Wexler, L F
1998-08-01
Patients with chronic obstructive pulmonary disease are usually excluded from intravenous dipyridamole thallium-201 testing. We developed a nurse-administered protocol to screen and pretreat patients so they could be safely tested. We prospectively screened patients referred for intravenous dipyridamole thallium testing and retrospectively reviewed a comparison group of patients who had undergone intravenous dipyridamole testing before our bronchospasm protocol. We studied 492 consecutive patients referred for intravenous dipyridamole thallium testing, separating those with complete data (n = 451) into two groups: group A (n = 72), patients assessed to be at risk for intravenous dipyridamole-induced bronchospasm who received our bronchospasm treatment protocol; and group B (n = 379), patients assessed to be free of risk, who did not receive our bronchospasm protocol. Group C (n = 89) was a retrospective comparison group of patients who had undergone intravenous dipyridamole testing before initiation of the protocol. Patients were considered at risk for an adverse event if any of the following were present: peak flow < or =400 ml at the time of the test (spirometry by nurse) that increased to >400 ml after bronchodilator treatment, wheezing audible with stethoscope, history of chronic obstructive pulmonary disease or asthma or dyspnea on exertion at less than four blocks, or resting respiratory rate >18 breaths/min. The test was considered contraindicated if resting oxygen saturation was <85%, respiratory rate < or =36 breaths/min, or peak flow measured by peak flowmeter <400 ml after bronchodilator inhalant (albuterol or metaproterenol sulfate by spacer) at a dose of up to six puffs. One minute after injections of thallium-201, patients at risk were given 50 mg aminophylline by slow intravenous injection. We looked for major and minor adverse effects and divided them into three categories: (1) minor events (transient headache, abdominal discomfort, or nausea), wheezing (audible by stethoscope but without marked respiratory distress), (2) marked events (severe bronchospasm or severe ischemia defined as wheezing audible with or without stethoscope, respiratory rate >20 breaths/min or increased by 10 from pretest evaluation, oxygen desaturation to <90%, hypoventilation [reduced respiratory rate with decreased mental status], respiratory arrest, chest pain, horizontal ST-segment depression > or =1 mm on the electrocardiogram in any lead, symptomatic hypotension), or (3) other intravenous dipyridamole-induced side effects (persistent headache, dizziness, flushing, nausea, dyspnea, and ischemic chest pain) or anginal equivalent. The protocol properly identified patients with impaired pulmonary function. There was no difference in the frequency of adverse marked events among groups A, B, or C (1 % vs 4% vs 2%, p = 0.25). Patients in group A had more minor side effects than those in group B (53% vs 35%, p = 0.004). Specifically, patients in group A were more likely to wheeze (39% vs 1 %, p = <0.001), but wheezing in group A was self-limited or responded to treatment as described in the protocol. The prevalence of positive thallium-201 scans in group A (44%) compared with group C (49%) was not different (p = 0.15). A nurse-administered risk assessment and pretreatment protocol (1) properly identified patients with impaired pulmonary function, (2) permitted completion of intravenous dipyridamole testing in patients at risk for bronchospasm without an increased incidence of marked adverse events, and (3) did not appear to influence the interpretation of the thallium test.
Aydemir, Koray; Tok, Fatih; Peker, Fatma; Safaz, Ismail; Taskaynatan, Mehmet Ali; Ozgul, Ahmet
2010-01-01
This study aimed to determine the effects of balneotherapy on disease activity, functional status, metrology index, pulmonary function and quality of life in patients with ankylosing spondylitis (AS). The study included 28 patients (27 male and 1 female) diagnosed with AS according to modified New York criteria. The patients were treated with balneotherapy for 3 weeks (30 min/day, 5 days/week). The patients were evaluated using the global index, Bath ankylosing spondylitis disease activity index (BASDAI), disease functional index (BASFI), metrology index (BASMI), chest expansion measures, pulmonary function testing, and the medical outcomes study-short form-36 Health Survey (SF-36) (measure of quality of life) before balneotherapy and 1 month after treatment. Post balneotherapy BASDAI and global index decreased, BASMI parameters improved, chest expansion increased, and some SF-36 parameters improved; however, none of these changes were statistically significant (P > 0.05), except for the decrease in BASMI total score (P < 0.05). Before balneotherapy 6 patients had restrictive pulmonary disorder, according to pulmonary function test results. Pulmonary function test results in 3 (50%) patients were normalized following balneotherapy; however, as for the other index, balneotherapy did not significantly affect pulmonary function test results. The AS patients' symptoms, clinical findings, pulmonary function test results, and quality of life showed a trend to improve following balneotherapy, although without reaching significant differences. Comprehensive randomized controlled spa intervention studies with longer follow-up periods may be helpful in further delineating the therapeutic efficacy of balneotherapy in AS patients.
Richter, Manuel J.; Grimminger, Jan; Krüger, Britta; Ghofrani, Hossein A.; Mooren, Frank C.; Gall, Henning; Pilat, Christian; Krüger, Karsten
2017-01-01
Pulmonary hypertension (PH) is characterized by severe exercise limitation mainly attributed to the impairment of right ventricular function resulting from a concomitant elevation of pulmonary vascular resistance and pressure. The unquestioned cornerstone in the management of patients with pulmonary arterial hypertension (PAH) is specific vasoactive medical therapy to improve pulmonary hemodynamics and strengthen right ventricular function. Nevertheless, evidence for a beneficial effect of exercise training (ET) on pulmonary hemodynamics and functional capacity in patients with PH has been growing during the past decade. Beneficial effects of ET on regulating factors, inflammation, and metabolism have also been described. Small case-control studies and randomized clinical trials in larger populations of patients with PH demonstrated substantial improvements in functional capacity after ET. These findings were accompanied by several studies that suggested an effect of ET on inflammation, although a direct link between this effect and the therapeutic benefit of ET in PH has not yet been demonstrated. On this background, the aim of the present review is to describe current concepts regarding the effects of exercise on the pulmonary circulation and pathophysiological limitations, as well as the clinical and mechanistic effects of exercise in patients with PH. PMID:28680563
Pulmonary function and fuel use: a population survey.
Saha, Asim; Rao, N Mohan; Kulkarni, P K; Majumdar, P K; Saiyed, H N
2005-10-31
In the backdrop of conflicting reports (some studies reported adverse outcomes of biomass fuel use whereas few studies reported absence of any association between adverse health effect and fuel use, may be due to presence of large number of confounding variables) on the respiratory health effects of biomass fuel use, this cross sectional survey was undertaken to understand the role of fuel use on pulmonary function. This study was conducted in a village of western India involving 369 randomly selected adult subjects (165 male and 204 female). All the subjects were interviewed and were subjected to pulmonary function test. Analysis of covariance was performed to compare the levels of different pulmonary function test parameters in relation to different fuel use taking care of the role of possible confounding factors. This study showed that biomass fuel use (especially wood) is an important factor for deterioration of pulmonary function (particularly in female). FEV1 (p < .05), FEV1% (p < .01), PEFR (p < .05) and FEF(25-75) (p < .01) values were significantly lower in biomass fuel using females than nonusers. Comparison of only biomass fuel use vs. only LPG (Liquefied Petroleum Gas) use and only wood vs. only LPG use has showed that LPG is a safer fuel so far as deterioration of pulmonary function is concerned. This study observes some deterioration of pulmonary function in the male subjects also, who came from biomass fuel using families. This study concluded that traditional biomass fuels like wood have adverse effects on pulmonary function.
Stembridge, Mike; Ainslie, Philip N; Shave, Rob
2015-11-01
What is the topic of this review? At high altitude, the cardiovascular system must adapt in order to meet the metabolic demand for oxygen. This review summarizes recent findings relating to short-term and life-long cardiac adaptation to high altitude in the context of exercise capacity. What advances does it highlight? Both Sherpa and lowlanders exhibit smaller left ventricular volumes at high altitude; however, myocardial relaxation, as evidenced by diastolic untwist, is reduced only in Sherpa, indicating that short-term hypoxia does not impair diastolic relaxation. Potential remodelling of systolic function, as evidenced by lower left ventricular systolic twist in Sherpa, may facilitate the requisite sea-level mechanical reserve required during exercise, although this remains to be confirmed. Both short-term and life-long high-altitude exposure challenge the cardiovascular system to meet the metabolic demand for O2 in a hypoxic environment. As the demand for O2 delivery increases during exercise, the circulatory component of oxygen transport is placed under additional stress. Acute adaptation and chronic remodelling of cardiac structure and function may occur to facilitate O2 delivery in lowlanders during sojourn to high altitude and in permanent highland residents. However, our understanding of cardiac structural and functional adaption in Sherpa remains confined to a higher maximal heart rate, lower pulmonary vascular resistance and no differences in resting cardiac output. Ventricular form and function are intrinsically linked through the left ventricular (LV) mechanics that facilitate efficient ejection, minimize myofibre stress during contraction and aid diastolic recoil. Recent examination of LV mechanics has allowed detailed insight into fundamental cardiac adaptation in high-altitude Sherpa. In this symposium report, we review recent advances in our understanding of LV function in both lowlanders and Sherpa at rest and discuss the potential consequences for exercise capacity. Collectively, data indicate chronic structural ventricular adaptation, with adult Sherpa having smaller absolute and relative LV size. Consistent with structural remodelling, cardiac mechanics also differ in Sherpa when compared with lowlanders at high altitude. These differences are characterized by a reduction in resting systolic deformation and slower diastolic untwisting, a surrogate of relaxation. These changes may reflect a functional cardiac adaptation that affords Sherpa the same mechanical reserve seen in lowlanders at sea level, which is absent when they ascend to high altitude. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Axell, Richard G; Messer, Simon J; White, Paul A; McCabe, Colm; Priest, Andrew; Statopoulou, Thaleia; Drozdzynska, Maja; Viscasillas, Jamie; Hinchy, Elizabeth C; Hampton-Till, James; Alibhai, Hatim I; Morrell, Nicholas; Pepke-Zaba, Joanna; Large, Stephen R; Hoole, Stephen P
2017-04-01
Chronic thromboembolic disease (CTED) is suboptimally defined by a mean pulmonary artery pressure (mPAP) <25 mmHg at rest in patients that remain symptomatic from chronic pulmonary artery thrombi. To improve identification of right ventricular (RV) pathology in patients with thromboembolic obstruction, we hypothesized that the RV ventriculo-arterial (Ees/Ea) coupling ratio at maximal stroke work (Ees/Ea max sw ) derived from an animal model of pulmonary obstruction may be used to identify occult RV dysfunction (low Ees/Ea) or residual RV energetic reserve (high Ees/Ea). Eighteen open chested pigs had conductance catheter RV pressure-volume (PV)-loops recorded during PA snare to determine Ees/Ea max sw This was then applied to 10 patients with chronic thromboembolic pulmonary hypertension (CTEPH) and ten patients with CTED, also assessed by RV conductance catheter and cardiopulmonary exercise testing. All patients were then restratified by Ees/Ea. The animal model determined an Ees/Ea max sw = 0.68 ± 0.23 threshold, either side of which cardiac output and RV stroke work fell. Two patients with CTED were identified with an Ees/Ea well below 0.68 suggesting occult RV dysfunction whilst three patients with CTEPH demonstrated Ees/Ea ≥ 0.68 suggesting residual RV energetic reserve. Ees/Ea > 0.68 and Ees/Ea < 0.68 subgroups demonstrated constant RV stroke work but lower stroke volume (87.7 ± 22.1 vs. 60.1 ± 16.3 mL respectively, P = 0.006) and higher end-systolic pressure (36.7 ± 11.6 vs. 68.1 ± 16.7 mmHg respectively, P < 0.001). Lower Ees/Ea in CTED also correlated with reduced exercise ventilatory efficiency. Low Ees/Ea aligns with features of RV maladaptation in CTED both at rest and on exercise. Characterization of Ees/Ea in CTED may allow for better identification of occult RV dysfunction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Bellofiore, Alessandro; Chesler, Naomi C
2013-07-01
The right ventricle (RV) is a pulsatile pump, the efficiency of which depends on proper hemodynamic coupling with the compliant pulmonary circulation. The RV and pulmonary circulation exhibit structural and functional differences with the more extensively investigated left ventricle (LV) and systemic circulation. In light of these differences, metrics of LV function and efficiency of coupling to the systemic circulation cannot be used without modification to characterize RV function and efficiency of coupling to the pulmonary circulation. In this article, we review RV physiology and mechanics, established and novel methods for measuring RV function and hemodynamic coupling, and findings from application of these methods to RV function and coupling changes with pulmonary hypertension. We especially focus on non-invasive measurements, as these may represent the future for clinical monitoring of disease progression and the effect of drug therapies.
Salisbury, Margaret L; Xia, Meng; Zhou, Yueren; Murray, Susan; Tayob, Nabihah; Brown, Kevin K; Wells, Athol U; Schmidt, Shelley L; Martinez, Fernando J; Flaherty, Kevin R
2016-02-01
Idiopathic pulmonary fibrosis is a progressive lung disease with variable course. The Gender-Age-Physiology (GAP) Index and staging system uses clinical variables to stage mortality risk. It is unknown whether clinical staging predicts future decline in pulmonary function. We assessed whether the GAP stage predicts future pulmonary function decline and whether interval pulmonary function change predicts mortality after accounting for stage. Patients with idiopathic pulmonary fibrosis (N = 657) were identified retrospectively at three tertiary referral centers, and baseline GAP stages were assessed. Mixed models were used to describe average trajectories of FVC and diffusing capacity of the lung for carbon monoxide (Dlco). Multivariable Cox proportional hazards models were used to assess whether declines in pulmonary function ≥ 10% in 6 months predict mortality after accounting for GAP stage. Over a 2-year period, GAP stage was not associated with differences in yearly lung function decline. After accounting for stage, a 10% decrease in FVC or Dlco over 6 months independently predicted death or transplantation (FVC hazard ratio, 1.37; Dlco hazard ratio, 1.30; both, P ≤ .03). Patients with GAP stage 2 with declining pulmonary function experienced a survival profile similar to patients with GAP stage 3, with 1-year event-free survival of 59.3% (95% CI, 49.4-67.8) vs 56.9% (95% CI, 42.2-69.1). Baseline GAP stage predicted death or lung transplantation but not the rate of future pulmonary function decline. After accounting for GAP stage, a decline of ≥ 10% over 6 months independently predicted death or lung transplantation. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Pulmonary Function in Children with Development Coordination Disorder
ERIC Educational Resources Information Center
Wu, Sheng K.; Cairney, John; Lin, Hsiao-Hui; Li, Yao-Chuen; Song, Tai-Fen
2011-01-01
The purpose of this study was to compare pulmonary function in children with developmental coordination disorder (DCD) with children who are typically developing (TD), and also analyze possible gender differences in pulmonary function between these groups. The Movement ABC test was used to identify the movement coordination ability of children.…
Benefits of pulmonary rehabilitation in patients with COPD and normal exercise capacity.
Lan, Chou-Chin; Chu, Wen-Hua; Yang, Mei-Chen; Lee, Chih-Hsin; Wu, Yao-Kuang; Wu, Chin-Pyng
2013-09-01
Pulmonary rehabilitation (PR) is beneficial for patients with COPD, with improvement in exercise capacity and health-related quality of life. Despite these overall benefits, the responses to PR vary significantly among different individuals. It is not clear if PR is beneficial for patients with COPD and normal exercise capacity. We aimed to investigate the effects of PR in patients with normal exercise capacity on health-related quality of life and exercise capacity. Twenty-six subjects with COPD and normal exercise capacity were studied. All subjects participated in 12-week, 2 sessions per week, hospital-based, out-patient PR. Baseline and post-PR status were evaluated by spirometry, the St George's Respiratory Questionnaire, cardiopulmonary exercise test, respiratory muscle strength, and dyspnea scores. The mean FEV1 in the subjects was 1.29 ± 0.47 L/min, 64.8 ± 23.0% of predicted. After PR there was significant improvement in maximal oxygen uptake and work rate. Improvements in St George's Respiratory Questionnaire scores of total, symptoms, activity, and impact were accompanied by improvements of exercise capacity, respiratory muscle strength, maximum oxygen pulse, and exertional dyspnea scores (all P < .05). There were no significant changes in pulmonary function test results (FEV1, FVC, and FEV1/FVC), minute ventilation, breathing frequency, or tidal volume at rest or exercise after PR. Exercise training can result in significant improvement in health-related quality of life, exercise capacity, respiratory muscle strength, and exertional dyspnea in subjects with COPD and normal exercise capacity. Exercise training is still indicated for patients with normal exercise capacity.
Baroi, Sidney; McNamara, Renae J; McKenzie, David K; Gandevia, Simon; Brodie, Matthew A
2018-06-01
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality. Advances in remote technologies and telemedicine provide new ways to monitor respiratory function and improve chronic disease management. However, telemedicine does not always include remote respiratory assessments, and the current state of knowledge for people with COPD has not been evaluated. Systematically review the use of remote respiratory assessments in people with COPD, including the following questions: What devices have been used? Can acute exacerbations of chronic obstructive pulmonary disease (AECOPD) be predicted by using remote devices? Do remote respiratory assessments improve health-related outcomes? The review protocol was registered (PROSPERO 2016:CRD42016049333). MEDLINE, EMBASE, and COMPENDEX databases were searched for studies that included remote respiratory assessments in people with COPD. A narrative synthesis was then conducted by two reviewers according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Fifteen studies met the inclusion criteria. Forced expiratory volume assessed daily by using a spirometer was the most common modality. Other measurements included resting respiratory rate, respiratory sounds, and end-tidal carbon dioxide level. Remote assessments had high user satisfaction. Benefits included early detection of AECOPD, improved health-related outcomes, and the ability to replace hospital care with a virtual ward. Remote respiratory assessments are feasible and when combined with sufficient organizational backup can improve health-related outcomes in some but not all cohorts. Future research should focus on the early detection, intervention, and rehabilitation for AECOPD in high-risk people who have limited access to best care and investigate continuous as well as intermittent monitoring.
Fair, Damien A.; Schlaggar, Bradley L.; Cohen B.A., Alexander L.; Miezin, Francis M.; Dosenbach, Nico U.F.; Wenger, Kristin K.; Fox, Michael D.; Snyder, Abraham Z.; Raichle, Marcus E.; Petersen, Steven E.
2007-01-01
Resting state functional connectivity MRI (fcMRI) has become a particularly useful tool for studying regional relationships in typical and atypical populations. Because many investigators have already obtained large datasets of task related fMRI, the ability to use this existing task data for resting state fcMRI is of considerable interest. Two classes of datasets could potentially be modified to emulate resting state data. These datasets include: 1) “interleaved” resting blocks from blocked or mixed blocked/event-related sets, and 2) residual timecourses from event-related sets that lack rest blocks. Using correlation analysis, we compared the functional connectivity of resting epochs taken from a mixed blocked/event-related design fMRI data set and the residuals derived from event-related data with standard continuous resting state data to determine which class of data can best emulate resting state data. We show that despite some differences, the functional connectivity for the interleaved resting periods taken from blocked designs is both qualitatively and quantitatively very similar to that of “continuous” resting state data. In contrast, despite being qualitatively similar to “continuous” resting state data, residuals derived from event-related design data had several distinct quantitative differences. These results suggest that the interleaved resting state data such as those taken from blocked or mixed blocked/event-related fMRI designs are well-suited for resting state functional connectivity analyses. Although using event-related data residuals for resting state functional connectivity may still be useful, results should be interpreted with care. PMID:17239622
Zhang, Xiaolei; Wang, Chen; Dai, Huaping; Lin, Yingxiang; Zhang, Jun
2008-09-01
Recent studies have shown that polymorphisms of the angiotensin-converting enzyme (ACE) gene are closely associated with pulmonary disorders. The ACE gene is involved in the regulation of inflammatory reactions to lung injury, respiratory drive, erythropoiesis and tissue oxygenation. The hypothesis for this study was that the ACE gene may be associated with the ventilatory response to exercise and the aerobic work efficiency of skeletal muscle in patients with COPD. Sixty-one Chinese Han COPD patients and 57 healthy control subjects performed incremental cardiopulmonary exercise testing on a cycle ergometer. ACE genotypes were determined using PCR amplification. Resting lung function and blood gas index were not significantly different among the three ACE genotype COPD groups. Similarly, there were no significant differences in AT, maximal O(2) uptake, maximal O(2) pulse, maximal dyspnoea index, ventilatory response (DeltaVE/DeltaVCO(2)), O(2) cost of ventilation (VO(2)/W/VE), end-tidal partial pressure of carbon dioxide at maximal exercise and maximal SaO(2) among the three ACE genotype COPD patients. Maximal work load and aerobic work efficiency were higher in the COPD group with the II genotype than in those with the ID or DD genotype. There were no significant differences in resting lung function and cardiopulmonary exercise testing parameters among the three ACE genotype control groups. The ACE gene may be involved in the regulation of skeletal muscle aerobic work efficiency, but is not associated with the ventilatory responses to exercise in COPD patients.
Burgos, Carmen Mesas; Davey, Marcus G; Riley, John S; Jia, Huimin; Flake, Alan W; Peranteau, William H
2017-12-19
Lung and pulmonary vascular maldevelopment in congenital diaphragmatic hernia (CDH) results in significant morbidity and mortality. Retinoic acid (RA) and imatinib have been shown to improve pulmonary morphology following prenatal administration in the rat nitrofen-induced CDH model. It remains unclear if these changes translate into improved function. We evaluated the effect of prenatal RA and imatinib on postnatal lung function, structure, and pulmonary artery (PA) blood flow in the rat CDH model. Olive oil or nitrofen was administered alone or in combination with RA or imatinib to pregnant rats. Pups were assessed for PA blood flow by ultrasound and pulmonary function/morphology following delivery, intubation, and short-term ventilation. Neither RA nor imatinib had a negative effect on lung and body growth. RA accelerated lung maturation indicated by increased alveoli number and thinner interalveolar septa and was associated with decreased PA resistance and improved oxygenation. With the exception of a decreased PA pulsatility index, no significant changes in morphology and pulmonary function were noted following imatinib. Prenatal treatment with RA but not imatinib was associated with improved pulmonary morphology and function, and decreased pulmonary vascular resistance. This study highlights the potential of prenatal pharmacologic therapies, such as RA, for management of CDH. Copyright © 2017 Elsevier Inc. All rights reserved.
Nakade, Taisuke; Adachi, Hitoshi; Murata, Makoto; Oshima, Shigeru
2018-05-14
Cardiopulmonary exercise testing (CPX) is used to evaluate functional capacity and assess prognosis in cardiac patients. Ventilatory efficiency (VE/VCO 2 ) reflects ventilation-perfusion mismatch; the minimum VE/VCO 2 value (minVE/VCO 2 ) is representative of pulmonary arterial blood flow in individuals without pulmonary disease. Usually, minVE/VCO 2 has a strong relationship with the peak oxygen uptake (VO 2 ), but dissociation can occur. Therefore, we investigated the relationship between minVE/VCO 2 and predicted peak VO 2 (peak VO 2 %) and evaluated the parameters associated with a discrepancy between these two parameters. A total of 289 Japanese patients underwent CPX using a cycle ergometer with ramp protocols between 2013 and 2014. Among these, 174 patients with a peak VO 2 % lower than 70% were enrolled. Patients were divided into groups based on their minVE/VCO 2 [Low group: minVE/VCO 2 < mean - SD (38.8-5.6); High group: minVE/VCO 2 > mean + SD (38.8 + 5.6)]. The characteristics and cardiac function at rest, evaluated using echocardiography, were compared between groups. The High group had a significantly lower ejection fraction, stroke volume, and cardiac output, and higher brain natriuretic peptide, tricuspid regurgitation pressure gradient, right ventricular systolic pressure, and peak early diastolic LV filling velocity/peak atrial filling velocity ratio compared with the Low group (p's < 0.01). In addition, the Low group had a significantly higher prevalence of pleural effusion than did the High group (26 vs 11%, p < 0.01). Patients with a relatively greater minVE/VCO 2 in comparison with peak VO 2 had impaired cardiac output as well as restricted pulmonary blood flow increase during exercise, partly due to accumulated pleural effusion.
Gastroenterological surgery for patients with chronic respiratory insufficiency.
Shimada, M; Kano, T; Matsuzaki, Y; Miyazaki, N; Ninomiya, K
1998-01-01
The aim of this study was to clarify the surgical indications for patients with chronic respiratory insufficiency. Fourteen patients with chronic respiratory insufficiency who underwent abdominal surgical procedures, were retrospectively studied. The surgical indications were carefully determined based primarily on the performance status (PS) of each patient and cardiopulmonary function tests. A PS of equal to or less than 3, which meant the patient's status required bed rest > 50% of the time, and the need for assistance in performing normal activities were all factors considered for surgical indications. During the period studied, two patients were excluded from the surgical indications due to the fact that one was at a terminal stage of pulmonary disease and was completely bedridden (PS = 4), while the other demonstrated active pneumonia with a considerable amount of purulent sputa. Regarding the pulmonary function tests for patients who underwent surgery, the lowest limits of those examinations were as follows: 810 ml of vital capacity (VC), 23.8% of predicted VC, 610 ml of forced expiratory volume in one second (FEV1.0), 38.6% of predicted FEV1.0, 50.5 mmHg of PaO2 while inhaling 4 liters of oxygen and 73.8 mmHg of PaCO2. No surgery related mortality or hospital death within 30 days after operation was observed. Only two patients had cardiopulmonary complications (consisting of pulmonary edema with atrial fibrillation in one patient, and acute myocardial infarction in another patient). However, neither pneumonia, prolonged ventilatory support for more than 2 days, nor the need for a tracheostomy after surgery was observed. Gastroenterological surgery is thus considered to be indicated even for patients with chronic respiratory insufficiency, as long as the PS can be maintained (PS of equal to or less than 3) and no active pneumonia with a considerable amount of purulent sputa is present.
Classification Models for Pulmonary Function using Motion Analysis from Phone Sensors.
Cheng, Qian; Juen, Joshua; Bellam, Shashi; Fulara, Nicholas; Close, Deanna; Silverstein, Jonathan C; Schatz, Bruce
2016-01-01
Smartphones are ubiquitous, but it is unknown what physiological functions can be monitored at clinical quality. Pulmonary function is a standard measure of health status for cardiopulmonary patients. We have shown phone sensors can accurately measure walking patterns. Here we show that improved classification models can accurately measure pulmonary function, with sole inputs being sensor data from carried phones. Twenty-four cardiopulmonary patients performed six minute walk tests in pulmonary rehabilitation at a regional hospital. They carried smartphones running custom software recording phone motion. For every patient, every ten-second interval was correctly computed. The trained model perfectly computed the GOLD level 1/2/3, which is a standard categorization of pulmonary function as measured by spirometry. These results are encouraging towards field trials with passive monitors always running in the background. We expect patients can simply carry their phones during daily living, while supporting automatic computation ofpulmonary function for health monitoring.
Pulmonary function and fuel use: A population survey
Saha, Asim; Mohan Rao, N; Kulkarni, PK; Majumdar, PK; Saiyed, HN
2005-01-01
Background In the backdrop of conflicting reports (some studies reported adverse outcomes of biomass fuel use whereas few studies reported absence of any association between adverse health effect and fuel use, may be due to presence of large number of confounding variables) on the respiratory health effects of biomass fuel use, this cross sectional survey was undertaken to understand the role of fuel use on pulmonary function. Method This study was conducted in a village of western India involving 369 randomly selected adult subjects (165 male and 204 female). All the subjects were interviewed and were subjected to pulmonary function test. Analysis of covariance was performed to compare the levels of different pulmonary function test parameters in relation to different fuel use taking care of the role of possible confounding factors. Results This study showed that biomass fuel use (especially wood) is an important factor for deterioration of pulmonary function (particularly in female). FEV1 (p < .05), FEV1 % (p < .01), PEFR (p < .05) and FEF25–75 (p < .01) values were significantly lower in biomass fuel using females than nonusers. Comparison of only biomass fuel use vs. only LPG (Liquefied Petroleum Gas) use and only wood vs. only LPG use has showed that LPG is a safer fuel so far as deterioration of pulmonary function is concerned. This study observes some deterioration of pulmonary function in the male subjects also, who came from biomass fuel using families. Conclusion This study concluded that traditional biomass fuels like wood have adverse effects on pulmonary function. PMID:16255784
Identification of Resting State Networks Involved in Executive Function.
Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W
2016-06-01
The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function.
Respiratory muscles stretching acutely increases expansion in hemiparetic chest wall.
Rattes, Catarina; Campos, Shirley Lima; Morais, Caio; Gonçalves, Thiago; Sayão, Larissa Bouwman; Galindo-Filho, Valdecir Castor; Parreira, Verônica; Aliverti, Andrea; Dornelas de Andrade, Armèle
2018-08-01
Individuals post-stroke may present restrictive ventilatory pattern generated from changes in the functionality of respiratory system due to muscle spasticity and contractures. Objective was to assess the acute effects after respiratory muscle stretching on the ventilatory pattern and volume distribution of the chest wall in stroke subjects. Ten volunteers with right hemiparesis after stroke and a mean age of 60 ± 5.7 years were randomised into the following interventions: respiratory muscle stretching and at rest (control). The ventilatory pattern and chest wall volume distribution were evaluated through optoelectronic plethysmography before and immediately after each intervention. Respiratory muscle stretching promoted a significant acute increase of 120 mL in tidal volume, with an increase in minute ventilation, mean inspiratory flow and mean expiratory flow compared with the control group. Pulmonary ribcage increased 50 mL after stretching, with 30 mL of contribution to the right pulmonary rib cage (hemiparetic side) in comparison to the control group. Respiratory muscle stretching in patients with right hemiparesis post-stroke demonstrated that acute effects improve the expansion of the respiratory system during tidal breathing. NCT02416349 (URL: https://clinicaltrials.gov/ct2/show/ NCT02416349). Copyright © 2018 Elsevier B.V. All rights reserved.
Respiratory and psychiatric abnormalities in chronic symptomatic hyperventilation.
Bass, C; Gardner, W N
1985-01-01
Many physicians believe that the hyperventilation syndrome is invariably associated with anxiety or undiagnosed organic disease such as asthma and pulmonary embolus, or both. Twenty one patients referred by specialist physicians with unexplained somatic symptoms and unequivocal chronic hypocapnia (resting end tidal Pco2 less than or equal to 4 kPa (30 mm Hg) on repeated occasions during prolonged measurement) were investigated. All but one complained of inability to take a satisfying breath. Standard lung function test results and chest radiographs were normal in all patients, but histamine challenge showed bronchial hyper-reactivity in two of 20 patients tested, and skin tests to common allergens were positive in three of 18. Ventilation-perfusion scanning was abnormal in a further three of 15 patients studied, with unmatched perfusion defects in two and isolated ventilation defects in one. None of the 21 had thyrotoxicosis, severe coronary heart disease, or other relevant cardiovascular abnormalities. Ten of the 21 patients were neurotic and suffered from chronic psychiatric disturbance characterised by anxiety, panic, and phobic symptoms. The remainder had no detectable psychiatric disorders but reported proportionately more somatic than anxiety symptoms. Severe hyperventilation can occur in the absence of formal psychiatric or detectable respiratory or other organic abnormalities. Asthma and pulmonary embolus must be specifically excluded. PMID:3922504
NASA Technical Reports Server (NTRS)
Harrison, D. C.; Kates, R.
1982-01-01
The effect of bed rest on drug disposition and physiological function was investigated as part of a project to determine the cardiovascular effects of space flight. One group of subjects was given doses of lidocane, penicillin-G, and ICG during a control period and following seven days of bed rest. Cardiac function was evaluated by echo-cardiography. Renal function was evaluated in a second group before and after several days of bed rest. Inulin, para-aminohippurate, and dextran clearances were studied. In the first group, the post-bed rest parameters were not statistically different from the pre-bed rest valves. In the second study, renal function did not change significantly after seven days of bed rest. Plans for future research are reviewed.
VA/Q distribution during heavy exercise and recovery in humans: implications for pulmonary edema
NASA Technical Reports Server (NTRS)
Schaffartzik, W.; Poole, D. C.; Derion, T.; Tsukimoto, K.; Hogan, M. C.; Arcos, J. P.; Bebout, D. E.; Wagner, P. D.
1992-01-01
Ventilation-perfusion (VA/Q) inequality has been shown to increase with exercise. Potential mechanisms for this increase include nonuniform pulmonary vasoconstriction, ventilatory time constant inequality, reduced large airway gas mixing, and development of interstitial pulmonary edema. We hypothesized that persistence of VA/Q mismatch after ventilation and cardiac output subside during recovery would be consistent with edema; however, rapid resolution would suggest mechanisms related to changes in ventilation and blood flow per se. Thirteen healthy males performed near-maximal cycle ergometry at an inspiratory PO2 of 91 Torr (because hypoxia accentuates VA/Q mismatch on exercise). Cardiorespiratory variables and inert gas elimination patterns were measured at rest, during exercise, and between 2 and 30 min of recovery. Two profiles of VA/Q distribution behavior emerged during heavy exercise: in group 1 an increase in VA/Q mismatch (log SDQ of 0.35 +/- 0.02 at rest and 0.44 +/- 0.02 at exercise; P less than 0.05, n = 7) and in group 2 no change in VA/Q mismatch (n = 6). There were no differences in anthropometric data, work rate, O2 uptake, or ventilation during heavy exercise between groups. Group 1 demonstrated significantly greater VA/Q inequality, lower vital capacity, and higher forced expiratory flow at 25-75% of forced vital capacity for the first 20 min during recovery than group 2. Cardiac index was higher in group 1 both during heavy exercise and 4 and 6 min postexercise. However, both ventilation and cardiac output returned toward baseline values more rapidly than did VA/Q relationships. Arterial pH was lower in group 1 during exercise and recovery. We conclude that greater VA/Q inequality in group 1 and its persistence during recovery are consistent with the hypothesis that edema occurs and contributes to the increase in VA/Q inequality during exercise. This is supported by observation of greater blood flows and acidosis and, presumably therefore, higher pulmonary vascular pressures in such subjects.
Luke, Trevor; Shimoda, Larissa A.
2016-01-01
Abstract In the lung, exposure to chronic hypoxia (CH) causes pulmonary hypertension, a debilitating disease. Development of this condition arises from increased muscularity and contraction of pulmonary vessels, associated with increases in pulmonary arterial smooth muscle cell (PASMC) intracellular pH (pHi) and Ca2+ concentration ([Ca2+]i). In this study, we explored the interaction between pHi and [Ca2+]i in PASMCs from rats exposed to normoxia or CH (3 weeks, 10% O2). PASMC pHi and [Ca2+]i were measured with fluorescent microscopy and the dyes BCECF and Fura-2. Both pHi and [Ca2+]i levels were elevated in PASMCs from hypoxic rats. Exposure to KCl increased [Ca2+]i and pHi to a similar extent in normoxic and hypoxic PASMCs. Conversely, removal of extracellular Ca2+ or blockade of Ca2+ entry with NiCl2 or SKF 96365 decreased [Ca2+]i and pHi only in hypoxic cells. Neither increasing pHi with NH4Cl nor decreasing pHi by removal of bicarbonate impacted PASMC [Ca2+]i. We also examined the roles of Na+/Ca2+ exchange (NCX) and Na+/H+ exchange (NHE) in mediating the elevated basal [Ca2+]i and Ca2+-dependent changes in PASMC pHi. Bepridil, dichlorobenzamil, and KB-R7943, which are NCX inhibitors, decreased resting [Ca2+]i and pHi only in hypoxic PASMCs and blocked the changes in pHi induced by altering [Ca2+]i. Exposure to ethyl isopropyl amiloride, an NHE inhibitor, decreased resting pHi and prevented changes in pHi due to changing [Ca2+]i. Our findings indicate that, during CH, the elevation in basal [Ca2+]i may contribute to the alkaline shift in pHi in PASMCs, likely via mechanisms involving reverse-mode NCX and NHE. PMID:27076907
Pulmonary function and respiratory symptoms in potash workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, B.L.; Dosman, J.A.; Cotton, D.J.
1984-03-01
Over 94% of the workers in each of four Saskatchewan potash mines participated in a respiratory health surveillance program that included a questionnaire and pulmonary function tests. Compared with a nonexposed control group, potash workers had higher prevalences of cough, dyspnea, and chronic bronchitis but better pulmonary function. Prevalences of symptoms and pulmonary function abnormalities were similar among workers at the four mines tested and at the various job locations. Potash dust, diesel fumes, and other air contaminants may have an irritant effect that leads to the increased prevalences of cough and chronic bronchitis. Although no adverse effects of themore » potash mine environment on pulmonary function were found, these findings reflect a healthy worker effect or some selection process that makes the potash workers appear healthier in a cross-sectional study.« less
Pulmonary function and respiratory symptoms in potash workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, B.L.; Dosman, J.A.; Cotton, D.J.
1984-03-01
Over 94% of the workers in each of four Saskatchewan potash mines participated in a respiratory health surveillance program that included a questionnaire and pulmonary function tests. Compared with a nonexposed control group, potash workers had higher prevalences of cough, dyspnea, and chronic bronchitis but better pulmonary function. Prevalences of symptoms and pulmonary function abnormalities were similar among workers at the four mines tested and at the various job locations. Potash dust, diesel fumes, and other air contaminants may have an irritant effect that leads to the increased prevalences of cough and chronic bronchitis. Although we found no adverse effectsmore » of the potash mine environment on pulmonary function, these findings reflect a healthy worker effect or some selection process that makes the potash workers appear healthier in a cross-sectional study.« less
Reychler, Gregory; Uribe Rodriguez, Valeska; Hickmann, Cheryl Elizabeth; Tombal, Bertrand; Laterre, Pierre-François; Feyaerts, Axel; Roeseler, Jean
2018-02-27
Impairment of global and regional pulmonary ventilations is a well-known consequence of general anesthesia. Positive expiratory pressure (PEP) or incentive spirometry (IS) is commonly prescribed, albeit their efficacy is poorly demonstrated. The aim of this study was to assess the effects of PEP and IS on lung ventilation and recruitment in patients after surgery involving anesthesia using electrical impedance tomography (EIT). Ten male subjects (age = 61.2 ± 16.3 years; BMI = 25.3 ± 3.8 kg/m 2 ), free of pulmonary disease before being anesthetized, were recruited. Two series of manoeuvers (PEP and volume-oriented IS) were randomly performed with quiet breathing interposed between these phases. Pulmonary ventilation (ΔEELVVT (i - e)) and recruitment (ΔEELI) were evaluated continuously in a semi-seated position during all phases by EIT. Comparisons between rest and treatment were performed by Wilcoxon signed rank test. Rest phases were compared by a mixed ANOVA. Bonferroni method was used for post-hoc comparisons. ΔEELVVT (i - e) and ΔEELI were significantly increased by both techniques (+422% [p < 0.001]; +138% [p = 0.040] and +296% [p < 0.001]; +638% [p < 0.001] for PEP and IS, respectively). No difference was observed between both manoeuvers neither on ventilation nor on recruitment. This positive effect disappeared during the quiet breathing phases. IS and PEP improved ventilation and recruitment instantaneously without remnant effect after stopping the exercise.
Andrianopoulos, Vasileios; Celli, Bartolome R; Franssen, Frits M E; Pinto-Plata, Victor M; Calverley, Peter M A; Vanfleteren, Lowie E G W; Vogiatzis, Ioannis; Vestbo, Jørgen; Agusti, Alvar; Bakke, Per S; Rennard, Stephen I; MacNee, William; Tal-Singer, Ruth; Yates, Julie C; Wouters, Emiel F M; Spruit, Martijn A
2016-10-01
Exercise-induced oxygen desaturation (EID) is related to mortality in patients with chronic obstructive pulmonary disease (COPD). We investigated: (1) the prevalence of EID; (2) the relative-weight of several physiological determinants of EID including pulmonary emphysema, and (3) the relationship of EID with certain patients' clinical characteristics. Data from 2050 COPD patients (age: 63.3 ± 7.1years; FEV 1 : 48.7 ± 15.7%pred.) were analyzed. The occurrence of EID (SpO 2 post ≤88%) at the six-minute walking test (6MWT) was investigated in association with emphysema quantified by computed-tomography (QCT), and several clinical characteristics. 435 patients (21%) exhibited EID. Subjects with EID had more QCT-emphysema, lower exercise capacity and worse health-status (BODE, ADO indexes) compared to non-EID. Determinant of EID were obesity (BMI≥30 kg/m 2 ), impaired FEV 1 (≤44%pred.), moderate or worse emphysema, and low SpO 2 at rest (≤93%). Linear regression indicated that each 1-point increase on the ADO-score independently elevates odds ratio (≤1.5fold) for EID. About one in five COPD patients in the ECLIPSE cohort present EID. Advanced emphysema is associated with EID. In addition, obesity, severe airflow limitation, and low resting oxygen saturation increase the risk for EID. Patients with EID in GOLD stage II have higher odds to have moderate or worse emphysema compared those with EID in GOLD stage III-IV. Emphysematous patients with high ADO-score should be monitored for EID. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dowman, Leona M; McDonald, Christine F; Bozinovski, Steven; Vlahos, Ross; Gillies, Rebecca; Pouniotis, Dodie; Hill, Catherine J; Goh, Nicole S L; Holland, Anne E
2017-07-01
Supplemental oxygen is commonly prescribed in patients with idiopathic pulmonary fibrosis (IPF), although its benefits have not been proven. The aims of this study were to investigate the effect of oxygen on oxidative stress, cytokine production, skeletal muscle metabolism and physiological response to exercise in IPF. Eleven participants with IPF received either oxygen, at an FiO 2 of 0.50, or compressed air for 1 h at rest and during a cycle endurance test at 85% of peak work rate. Blood samples collected at rest and during exercise were analysed for markers of oxidative stress, skeletal muscle metabolism and cytokines. The protocol was repeated a week later with the alternate intervention. Compared with air, oxygen did not adversely affect biomarker concentrations at rest and significantly improved endurance time (mean difference = 99 ± 81s, P = 0.002), dyspnoea (-1 ± 1 U, P = 0.02), systolic blood pressure (BP; -11 ± 11 mm Hg, P = 0.006), nadir oxyhaemoglobin saturation (SpO 2 ; 8 ± 6%, P = 0.001), SpO 2 at 2-min (7 ± 6%, P = 0.003) and 5-min isotimes (5 ± 3, P < 0.001) and peak exercise xanthine concentrations (-42 ± 73 µmol/L, P = 0.03). Air significantly increased IL-10 (5 ± 5 pg/mL, P = 0.04) at 2-min isotime. Thiobarbituric acid-reactive substances (TBARs), IL-6, TNF-α, creatine kinase, lactate, heart rate and fatigue did not differ between the two interventions at any time point. In patients with IPF, breathing oxygen at FiO 2 of 0.50 at rest seems safe. During exercise, oxygen improves exercise tolerance, alleviates exercise-induced hypoxaemia and reduces dyspnoea. A potential relationship between oxygen administration and improved skeletal muscle metabolism should be explored in future studies. © 2017 Asian Pacific Society of Respirology.
Rosa Salazar, V; Bernal Martínez, L; García Pino, M J; Hernández Contreras, M E; García Méndez, M M; García Pérez, B; Marras Fernández-Cid, C
2016-01-01
To determine the mean stay (MS) of patients with pulmonary embolism (PE) in a thrombosis unit (TU) with a short stay unit (SSU) in a tertiary hospital. To compare the data collected with those of other hospitals in the same region, of other regions (Autonomous Communities [AACC]), and within the same hospital in the year before the SSU opened. A descriptive retrospective observational study that included patients with a diagnosis of PE in the University Hospital Virgen de la Arrixaca (HCUVA) in 2012. These data were classified by hospital department, and used for calculating the mean stay. This was then compared with that of other hospitals in our region, with the rest of the regions, and with the data in 2007 (the last year without a TU). A total of 113patients with PE were included, 60 (53%) in the TU with an MS of 4.39, in Oncology, 7.45, and Internal Medicine (IM), 15.38days. There were no deaths in the TU and only 3 (5%) readmissions. Published data showed that the MS in all hospitals in our region was 8.25, 5.18 in our hospital, and higher in the rest of hospitals. The best AACC was the Basque Country with an MS of 6.85days. In 2007, there were 70patients with PE in the HCUVA, 34 (49%) in IM, with an MS of 8.50, Oncology 11 (31%) with an MS 9.64, and Chest Diseases 3 (4.3%) with an MS 19days, and with an overall mortality of 11% and a rate of readmissions in IM of 6%. The mean stay for a PE in the SSU of a TU was lower than in the rest of the hospital departments, lower than the rest hospitals of our region, lower than the rest of the regions, and lower than any department of our hospital before the SSU existed, without increasing the readmission or mortality rate. Copyright © 2015 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.
Widjaja, E; Zamyadi, M; Raybaud, C; Snead, O C; Smith, M L
2013-12-01
Epilepsy is considered a disorder of neural networks. The aims of this study were to assess functional connectivity within resting-state networks and functional network connectivity across resting-state networks by use of resting-state fMRI in children with frontal lobe epilepsy and to relate changes in resting-state networks with neuropsychological function. Fifteen patients with frontal lobe epilepsy and normal MR imaging and 14 healthy control subjects were recruited. Spatial independent component analysis was used to identify the resting-state networks, including frontal, attention, default mode network, sensorimotor, visual, and auditory networks. The Z-maps of resting-state networks were compared between patients and control subjects. The relation between abnormal connectivity and neuropsychological function was assessed. Correlations from all pair-wise combinations of independent components were performed for each group and compared between groups. The frontal network was the only network that showed reduced connectivity in patients relative to control subjects. The remaining 5 networks demonstrated both reduced and increased functional connectivity within resting-state networks in patients. There was a weak association between connectivity in frontal network and executive function (P = .029) and a significant association between sensorimotor network and fine motor function (P = .004). Control subjects had 79 pair-wise independent components that showed significant temporal coherence across all resting-state networks except for default mode network-auditory network. Patients had 66 pairs of independent components that showed significant temporal coherence across all resting-state networks. Group comparison showed reduced functional network connectivity between default mode network-attention, frontal-sensorimotor, and frontal-visual networks and increased functional network connectivity between frontal-attention, default mode network-sensorimotor, and frontal-visual networks in patients relative to control subjects. We found abnormal functional connectivity within and across resting-state networks in children with frontal lobe epilepsy. Impairment in functional connectivity was associated with impaired neuropsychological function.
Lechtzin, N; West, N; Allgood, S; Wilhelm, E; Khan, U; Mayer-Hamblett, N; Aitken, M L; Ramsey, B W; Boyle, M P; Mogayzel, P J; Goss, C H
2013-11-01
Acute pulmonary exacerbations are central events in the lives of individuals with cystic fibrosis (CF). Pulmonary exacerbations lead to impaired lung function, worse quality of life, and shorter survival. We hypothesized that aggressive early treatment of acute pulmonary exacerbation may improve clinical outcomes. Describe the rationale of an ongoing trial designed to determine the efficacy of home monitoring of both lung function measurements and symptoms for early detection and subsequent early treatment of acute CF pulmonary exacerbations. A randomized, non-blinded, multi-center trial in 320 individuals with CF aged 14 years and older. The study compares usual care to a twice a week assessment of home spirometry and CF respiratory symptoms using an electronic device with data transmission to the research personnel to identify and trigger early treatment of CF pulmonary exacerbation. Participants will be enrolled in the study for 12 months. The primary endpoint is change in FEV1 (L) from baseline to 12 months determined by a linear mixed effects model incorporating all quarterly FEV1 measurements. Secondary endpoints include time to first acute protocol-defined pulmonary exacerbation, number of acute pulmonary exacerbations, number of hospitalization days for acute pulmonary exacerbation, time from the end of acute pulmonary exacerbation to onset of subsequent pulmonary exacerbation, change in health related quality of life, change in treatment burden, change in CF respiratory symptoms, and adherence to the study protocol. This study is a first step in establishing alternative approaches to the care of CF pulmonary exacerbations. We hypothesize that early treatment of pulmonary exacerbations has the potential to slow lung function decline, reduce respiratory symptoms and improve the quality of life for individuals with CF. © 2013.
The effect of scoliosis surgery on pulmonary function in spinal muscular atrophy type II patients.
Chou, Shih-Hsiang; Lin, Gau-Tyan; Shen, Po-Chih; Lue, Yi-Jing; Lu, Cheng-Chang; Tien, Yin-Chun; Lu, Yen-Mou
2017-06-01
Various results of the previous literature related to surgical effect on pulmonary function of spinal muscular atrophy (SMA) patients might be due to different SMA type, different fusion level and technique. The aim of this study was to determine the value of scoliosis surgery for SMA type II patients with regard to pulmonary function, under the same fusion level, fusion technique and average long-term follow-up. Ten SMA II patients who underwent spinal correction procedures from 1993 to 2010 were identified. Data on clinical features and pulmonary function, including forced vital capacity (FVC) and forced expiratory volume in 1st second (FEV 1 ), were collected. The data on pulmonary function were divided into preoperative, postoperative short-term (0-5 years), mid-term (5-10 years), and long-term (>10 years). Statistical comparisons were made using the Wilcoxon test for pulmonary function and body weight analysis. Questions were answered by parents on how surgery influenced the frequency of respiratory infection and the ability to sit at school. The average length of postoperative pulmonary function follow-up was 12.3 years (range 4.9-15.9 years). There was no significant difference in FVC or FEV 1 between preoperative and each postoperative period. However, a significant decline from mid-term to long-term was observed (p = 0.028). Body weight increased significantly in all postoperative periods and was moderately correlated to pulmonary function (r = 0.526 for FVC). The answers to the questionnaire revealed that 80% of the patients had obvious improvement in the frequency of respiratory infection and 100% were tolerable sitting at school. Surgical correction for scoliosis in SMA II patients results in pulmonary function being maintained during long-term follow-up. In addition, the advantages of surgery also include body weight gain, better sitting tolerance, and reduced frequency of respiratory infection.
The Relationship of Welding Fume Exposure, Smoking, and Pulmonary Function in Welders.
Roach, Laura L
2018-01-01
The purpose of this study was to explore the relationship between occupational exposure to welding fumes and pulmonary function in an effort to add supportive evidence and clarity to the current body of research. This study utilized a retrospective chart review of pulmonary function testing and pulmonary questionnaires already available in charts from preplacement physicals to the most recent test. When comparing smokers to nonsmokers, utilizing multiple regression and controlling for age and percentage of time using a respirator, years welding was statistically significant at p = .04. Data support that smoking has a synergistic effect when combined with welding fume exposure on pulmonary decline.
A comparative study of slow and fast suryanamaskar on physiological function
Bhavanani, Ananda Balayogi; Udupa, Kaviraja; Madanmohan; Ravindra, PN
2011-01-01
Background: Numerous scientific studies have reported beneficial physiological changes after short- and long-term yoga training. Suryanamaskar (SN) is an integral part of modern yoga training and may be performed either in a slow or rapid manner. As there are few studies on SN, we conducted this study to determine the differential effect of 6 months training in the fast and slow versions. Materials and Methods: 42 school children in the age group of 12–16 years were randomly divided into two groups of 21 each. Group I and Group II received 6 months training in performance of slow suryanamaskar (SSN) and fast suryanamaskar (FSN), respectively. Results: Training in SSN produced a significant decrease in diastolic pressure. In contrast, training in FSN produced a significant increase in systolic pressure. Although there was a highly significant increase in isometric hand grip (IHG) strength and hand grip endurance (HGE) in both the groups, the increase in HGE in FSN group was significantly more than in SSN group. Pulmonary function tests showed improvements in both the groups though intergroup comparison showed no significance difference. Maximum inspiratory pressure (MIP) and maximum expiratory pressure increased significantly in both the groups with increase of MIP in FSN group being more significant than in SSN. Conclusion: The present study reports that SN has positive physiological benefits as evidenced by improvement of pulmonary function, respiratory pressures, hand grip strength and endurance, and resting cardiovascular parameters. It also demonstrates the differences between SN training when performed in a slow and fast manner, concluding that the effects of FSN are similar to physical aerobic exercises, whereas the effects of SSN are similar to those of yoga training. PMID:22022125
Non-suppressive regulatory T cell subset expansion in pulmonary arterial hypertension.
Sada, Yoshiharu; Dohi, Yoshihiro; Uga, Sayuri; Higashi, Akifumi; Kinoshita, Hiroki; Kihara, Yasuki
2016-08-01
Regulatory T cells (Tregs) have been reported to play a pivotal role in the vascular remodeling of pulmonary arterial hypertension (PAH). Recent studies have revealed that Tregs are heterogeneous and can be characterized by three phenotypically and functionally different subsets. In this study, we investigated the roles of Treg subsets in the pathogenesis of PAH in eight patients with PAH and 14 healthy controls. Tregs and their subsets in peripheral blood samples were analyzed by flow cytometry. Treg subsets were defined as CD4(+)CD45RA(+)FoxP3(low) resting Tregs (rTregs), CD4(+)CD45RA(-)FoxP3(high) activated Tregs (aTregs), and CD4(+)CD45RA(-)FoxP3(low) non-suppressive Tregs (non-Tregs). The proportion of Tregs among CD4(+) T cells was significantly higher in PAH patients than in controls (6.54 ± 1.10 vs. 3.81 ± 0.28 %, p < 0.05). Of the three subsets, the proportion of non-Tregs was significantly elevated in PAH patients compared with controls (4.06 ± 0.40 vs. 2.79 ± 0.14 %, p < 0.01), whereas those of rTregs and aTregs were not different between the two groups. Moreover, the expression levels of cytotoxic T lymphocyte antigen 4, a functional cell surface molecule, in aTregs (p < 0.05) and non-Tregs (p < 0.05) were significantly higher in PAH patients compared with controls. These results suggested the non-Treg subset was expanded and functionally activated in peripheral lymphocytes obtained from IPAH patients. We hypothesize that immunoreactions involving the specific activation of the non-Treg subset might play a role in the vascular remodeling of PAH.
Wibmer, Thomas; Rüdiger, Stefan; Kropf-Sanchen, Cornelia; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian
2014-11-01
There is growing evidence that exercise-induced variation in lung volumes is an important source of ventilatory limitation and is linked to exercise intolerance in COPD. The aim of this study was to compare the correlations of walk distance and lung volumes measured before and after a 6-min walk test (6MWT) in subjects with COPD. Forty-five subjects with stable COPD (mean pre-bronchodilator FEV1: 47 ± 18% predicted) underwent a 6MWT. Body plethysmography was performed immediately pre- and post-6MWT. Correlations were generally stronger between 6-min walk distance and post-6MWT lung volumes than between 6-min walk distance and pre-6MWT lung volumes, except for FEV1. These differences in Pearson correlation coefficients were significant for residual volume expressed as percent of total lung capacity (-0.67 vs -0.58, P = .043), percent of predicted residual volume expressed as percent of total lung capacity (-0.68 vs -0.59, P = .026), inspiratory vital capacity (0.65 vs 0.54, P = .019), percent of predicted inspiratory vital capacity (0.49 vs 0.38, P = .037), and percent of predicted functional residual capacity (-0.62 vs -0.47, P = .023). In subjects with stable COPD, lung volumes measured immediately after 6MWT are more closely related to exercise limitation than baseline lung volumes measured before 6MWT, except for FEV1. Therefore, pulmonary function testing immediately after exercise should be included in future studies on COPD for the assessment of exercise-induced ventilatory constraints to physical performance that cannot be adequately assessed from baseline pulmonary function testing at rest. Copyright © 2014 by Daedalus Enterprises.
Taylor, Bryan J; Smetana, Michael R; Frantz, Robert P; Johnson, Bruce D
2015-08-01
We determined whether pulmonary gas exchange indices during submaximal exercise are different in heart failure (HF) patients with combined post- and pre-capillary pulmonary hypertension (PPC-PH) versus HF patients with isolated post-capillary PH (IPC-PH) or no PH. Pulmonary hemodynamics and pulmonary gas exchange were assessed during rest and submaximal exercise in 39 HF patients undergoing right heart catheterization. After hemodynamic evaluation, patients were classified as having no PH (n = 11), IPC-PH (n = 12), or PPC-PH (n = 16). At an equivalent oxygen consumption, end-tidal CO2 (PETCO2) and arterial oxygen saturation (SaO2) were greater in no-PH and IPC-PH versus PPC-PH patients (36.1 ± 3.2 vs. 31.7 ± 4.5 vs. 26.2 ± 4.7 mm Hg and 97 ± 2 vs. 96 ± 3 vs. 91 ± 1%, respectively). Conversely, dead-space ventilation (VD/VT) and the ventilatory equivalent for carbon dioxide (V˙(E)/V˙CO2 ratio) were lower in no-PH and IPC-PH versus PPC-PH patients (0.37 ± 0.05 vs. 0.38 ± 0.04 vs. 0.47 ± 0.03 and 38 ± 5 vs. 42 ± 8 vs. 51 ± 8, respectively). The exercise-induced change in V(D)/V(T), V˙(E)/V˙CO2 ratio, and PETCO2 correlated significantly with the change in mean pulmonary arterial pressure, diastolic pressure difference, and transpulmonary pressure gradient in PPC-PH patients only. Noninvasive pulmonary gas exchange indices during submaximal exercise are different in HF patients with combined post- and pre-capillary PH compared with patients with isolated post-capillary PH or no PH. Copyright © 2015 Elsevier Inc. All rights reserved.
Ergün, Recai; Evcik, Ender; Ergün, Dilek; Ergan, Begüm; Özkan, Esin; Gündüz, Özge
2017-05-05
The number of studies where non-malignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Retrospective cross-sectional study. In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography.
Kumar, Amaravadi Sampath; Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Pazhyaottayil, Zulfeequer Chundaanveetil; Ramakrishna, Anand; Krishnakumar, Shyam Krishnan
2016-01-01
Surgical procedures in abdominal area lead to changes in pulmonary function, respiratory mechanics and impaired physical capacity leading to postoperative pulmonary complications, which can affect up to 80% of upper abdominal surgery. To evaluate the effects of flow and volume incentive spirometry on pulmonary function and exercise tolerance in patients undergoing open abdominal surgery. A randomized clinical trial was conducted in a hospital of Mangalore city in Southern India. Thirty-seven males and thirteen females who were undergoing abdominal surgeries were included and allocated into flow and volume incentive spirometry groups by block randomization. All subjects underwent evaluations of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow (PEF). Preoperative and postoperative measurements were taken up to day 5 for both groups. Exercise tolerance measured by Six- Minute Walk Test during preoperative period and measured again at the time of discharge for both groups. Pulmonary function was analysed by post-hoc analysis and carried out using Bonferroni's 't'-test. Exercise tolerance was analysed by Paired 'T'-test. Pulmonary function (FVC, FEV1, and PEFR) was found to be significantly decreased in 1(st), 2(nd) and 3(rd) postoperative day when compared with preoperative day. On 4(th) and 5(th) postoperative day the pulmonary function (FVC, FEV1, and PEFR) was found to be better preserved in both flow and volume incentive spirometry groups. The Six-Minute Walk Test showed a statistically significant improvement in pulmonary function on the day of discharge than in the preoperative period. In terms of distance covered, the volume- incentive spirometry group showed a greater statistically significant improvement from the preoperative period to the time of discharge than was exhibited by the flow incentive spirometry group. Flow and volume incentive spirometry can be safely recommended to patients undergoing open abdominal surgery as there have been no adverse events recorded. Also, these led to a demonstrable improvement in pulmonary function and exercise tolerance.
Kumar, Amaravadi Sampath; Augustine, Alfred Joseph; Pazhyaottayil, Zulfeequer Chundaanveetil; Ramakrishna, Anand; Krishnakumar, Shyam Krishnan
2016-01-01
Introduction Surgical procedures in abdominal area lead to changes in pulmonary function, respiratory mechanics and impaired physical capacity leading to postoperative pulmonary complications, which can affect up to 80% of upper abdominal surgery. Aim To evaluate the effects of flow and volume incentive spirometry on pulmonary function and exercise tolerance in patients undergoing open abdominal surgery. Materials and Methods A randomized clinical trial was conducted in a hospital of Mangalore city in Southern India. Thirty-seven males and thirteen females who were undergoing abdominal surgeries were included and allocated into flow and volume incentive spirometry groups by block randomization. All subjects underwent evaluations of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow (PEF). Preoperative and postoperative measurements were taken up to day 5 for both groups. Exercise tolerance measured by Six- Minute Walk Test during preoperative period and measured again at the time of discharge for both groups. Pulmonary function was analysed by post-hoc analysis and carried out using Bonferroni’s ‘t’-test. Exercise tolerance was analysed by Paired ‘T’-test. Results Pulmonary function (FVC, FEV1, and PEFR) was found to be significantly decreased in 1st, 2nd and 3rd postoperative day when compared with preoperative day. On 4th and 5th postoperative day the pulmonary function (FVC, FEV1, and PEFR) was found to be better preserved in both flow and volume incentive spirometry groups. The Six-Minute Walk Test showed a statistically significant improvement in pulmonary function on the day of discharge than in the preoperative period. In terms of distance covered, the volume- incentive spirometry group showed a greater statistically significant improvement from the preoperative period to the time of discharge than was exhibited by the flow incentive spirometry group. Conclusion Flow and volume incentive spirometry can be safely recommended to patients undergoing open abdominal surgery as there have been no adverse events recorded. Also, these led to a demonstrable improvement in pulmonary function and exercise tolerance. PMID:26894090
Decrease in pulmonary function and oxygenation after lung resection
Westerdahl, Elisabeth; Langer, Daniel; Souza, Domingos S.R.; Andreasen, Jan Jesper
2018-01-01
Respiratory deficits are common following curative intent lung cancer surgery and may reduce the patient's ability to be physically active. We evaluated the influence of surgery on pulmonary function, respiratory muscle strength and physical performance after lung resection. Pulmonary function, respiratory muscle strength (maximal inspiratory/expiratory pressure) and 6-min walk test (6MWT) were assessed pre-operatively, 2 weeks post-operatively and 6 months post-operatively in 80 patients (age 68±9 years). Video-assisted thoracoscopic surgery was performed in 58% of cases. Two weeks post-operatively, we found a significant decline in pulmonary function (forced vital capacity −0.6±0.6 L and forced expiratory volume in 1 s −0.43±0.4 L; both p<0.0001), 6MWT (−37.6±74.8 m; p<0.0001) and oxygenation (−2.9±4.7 units; p<0.001), while maximal inspiratory and maximal expiratory pressure were unaffected. At 6 months post-operatively, pulmonary function and oxygenation remained significantly decreased (p<0.001), whereas 6MWT was recovered. We conclude that lung resection has a significant short- and long-term impact on pulmonary function and oxygenation, but not on respiratory muscle strength. Future research should focus on mechanisms negatively influencing post-operative pulmonary function other than impaired respiratory muscle strength. PMID:29362707
Decrease in pulmonary function and oxygenation after lung resection.
Brocki, Barbara Cristina; Westerdahl, Elisabeth; Langer, Daniel; Souza, Domingos S R; Andreasen, Jan Jesper
2018-01-01
Respiratory deficits are common following curative intent lung cancer surgery and may reduce the patient's ability to be physically active. We evaluated the influence of surgery on pulmonary function, respiratory muscle strength and physical performance after lung resection. Pulmonary function, respiratory muscle strength (maximal inspiratory/expiratory pressure) and 6-min walk test (6MWT) were assessed pre-operatively, 2 weeks post-operatively and 6 months post-operatively in 80 patients (age 68±9 years). Video-assisted thoracoscopic surgery was performed in 58% of cases. Two weeks post-operatively, we found a significant decline in pulmonary function (forced vital capacity -0.6±0.6 L and forced expiratory volume in 1 s -0.43±0.4 L; both p<0.0001), 6MWT (-37.6±74.8 m; p<0.0001) and oxygenation (-2.9±4.7 units; p<0.001), while maximal inspiratory and maximal expiratory pressure were unaffected. At 6 months post-operatively, pulmonary function and oxygenation remained significantly decreased (p<0.001), whereas 6MWT was recovered. We conclude that lung resection has a significant short- and long-term impact on pulmonary function and oxygenation, but not on respiratory muscle strength. Future research should focus on mechanisms negatively influencing post-operative pulmonary function other than impaired respiratory muscle strength.
Schubauer-Berigan, Mary K; Dahm, Matthew M; Erdely, Aaron; Beard, John D; Eileen Birch, M; Evans, Douglas E; Fernback, Joseph E; Mercer, Robert R; Bertke, Stephen J; Eye, Tracy; de Perio, Marie A
2018-05-16
Commercial use of carbon nanotubes and nanofibers (CNT/F) in composites and electronics is increasing; however, little is known about health effects among workers. We conducted a cross-sectional study among 108 workers at 12 U.S. CNT/F facilities. We evaluated chest symptoms or respiratory allergies since starting work with CNT/F, lung function, resting blood pressure (BP), resting heart rate (RHR), and complete blood count (CBC) components. We conducted multi-day, full-shift sampling to measure background-corrected elemental carbon (EC) and CNT/F structure count concentrations, and collected induced sputum to measure CNT/F in the respiratory tract. We measured (nonspecific) fine and ultrafine particulate matter mass and count concentrations. Concurrently, we conducted physical examinations, BP measurement, and spirometry, and collected whole blood. We evaluated associations between exposures and health measures, adjusting for confounders related to lifestyle and other occupational exposures. CNT/F air concentrations were generally low, while 18% of participants had evidence of CNT/F in sputum. Respiratory allergy development was positively associated with inhalable EC (p=0.040) and number of years worked with CNT/F (p=0.008). No exposures were associated with spirometry-based metrics or pulmonary symptoms, nor were CNT/F-specific metrics related to BP or most CBC components. Systolic BP was positively associated with fine particulate matter (p-values: 0.015-0.054). RHR was positively associated with EC, at both the respirable (p=0.0074) and inhalable (p=0.0026) size fractions. Hematocrit was positively associated with the log of CNT/F structure counts (p=0.043). Most health measures were not associated with CNT/F. The positive associations between CNT/F exposure and respiratory allergies, RHR, and hematocrit counts may not be causal and require examination in other studies.
Barakzai, S Z; Dixon, P M
2011-01-01
To correlate resting and exercising endoscopic grades of laryngeal function in horses undergoing high-speed treadmill endoscopy (HSTE) using the Havemeyer grading system. To correlate dorsal displacement of the soft palate (DDSP) seen at rest with palatal function during exercise. Records of horses that underwent HSTE examination (1999-2009) were reviewed. Resting laryngeal function score and other abnormalities noted on resting endoscopy were recorded as were results of HSTE. Results of resting and exercising endoscopic findings were correlated. 281 horses underwent HSTE. There was significant correlation between grade of laryngeal function at rest (grades 1-4) and exercise (ρ=0.53, P<0.001) and between resting subgrades 3.1, 3.2 and 3.3 and exercising grades of laryngeal function (ρ=0.43, P=0.0017). DDSP was observed at rest significantly more often in horses that developed DDSP during HSTE than those without DDSP during HSTE (RR=4.1, P<0.001). The sensitivity and specificity of DDSP seen during resting endoscopy as a test for DDSP occurring during exercise were 25.5 and 95.1% respectively (positive predictive value 0.57, negative predictive value 0.83). The results of the current study support the use of the Havemeyer system for grading laryngeal function in the resting horse, and corroborate findings of previous studies correlating resting and exercising palatal abnormalities. Studies that use the presence of spontaneous DDSP during resting endoscopic examination as an inclusion criterion for investigating efficacy of treatments for DDSP are likely to have a low proportion of horses with false positive diagnoses. © 2010 EVJ Ltd.
Prins, Kurt W; Tian, Lian; Wu, Danchen; Thenappan, Thenappan; Metzger, Joseph M; Archer, Stephen L
2017-05-31
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by obstructive pulmonary vascular remodeling and right ventricular (RV) dysfunction. Although RV function predicts outcomes in PAH, mechanisms of RV dysfunction are poorly understood, and RV-targeted therapies are lacking. We hypothesized that in PAH, abnormal microtubular structure in RV cardiomyocytes impairs RV function by reducing junctophilin-2 (JPH2) expression, resulting in t-tubule derangements. Conversely, we assessed whether colchicine, a microtubule-depolymerizing agent, could increase JPH2 expression and enhance RV function in monocrotaline-induced PAH. Immunoblots, confocal microscopy, echocardiography, cardiac catheterization, and treadmill testing were used to examine colchicine's (0.5 mg/kg 3 times/week) effects on pulmonary hemodynamics, RV function, and functional capacity. Rats were treated with saline (n=28) or colchicine (n=24) for 3 weeks, beginning 1 week after monocrotaline (60 mg/kg, subcutaneous). In the monocrotaline RV, but not the left ventricle, microtubule density is increased, and JPH2 expression is reduced, with loss of t-tubule localization and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves t-tubule morphology in RV cardiomyocytes. Colchicine therapy diminishes RV hypertrophy, improves RV function, and enhances RV-pulmonary artery coupling. Colchicine reduces small pulmonary arteriolar thickness and improves pulmonary hemodynamics. Finally, colchicine increases exercise capacity. Monocrotaline-induced PAH causes RV-specific derangement of microtubules marked by reduction in JPH2 and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves both t-tubule architecture and RV function. Colchicine also reduces adverse pulmonary vascular remodeling. These results provide biological plausibility for a clinical trial to repurpose colchicine as a RV-directed therapy for PAH. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Yabuuchi, Hidetake; Kawanami, Satoshi; Kamitani, Takeshi; Yonezawa, Masato; Yamasaki, Yuzo; Yamanouchi, Torahiko; Nagao, Michinobu; Okamoto, Tatsuro; Honda, Hiroshi
2016-11-01
To compare the predictabilities of postoperative pulmonary function after lobectomy for primary lung cancer among counting method, effective lobar volume, and lobar collapsibility. Forty-nine patients who underwent lobectomy for primary lung cancer were enrolled. All patients underwent inspiratory/expiratory CT and pulmonary function tests 2 weeks before surgery and postoperative pulmonary function tests 6-7 months after surgery. Pulmonary function losses (ΔFEV 1.0 and ΔVC) were calculated from the pulmonary function tests. Predictive postoperative pulmonary function losses (ppoΔFEV 1.0 and ppoΔVC) were calculated using counting method, effective volume, and lobar collapsibility. Correlations and agreements between ΔFEV 1.0 and ppoFEV 1.0 and those between ΔVC and ppoΔVC were tested among three methods using Spearman's correlation coefficient and Bland-Altman plots. ΔFEV 1.0 and ppoΔFEV 1.0insp-exp were strongly correlated (r=0.72), whereas ΔFEV 1.0 and ppoΔFEV 1.0count and ΔFEV 1.0 and Pred. ΔFEV 1.0eff.vol. were moderately correlated (r=0.50, 0.56). ΔVC and ppoΔVC eff.vol. (r=0.71) were strongly correlated, whereas ΔVC and ppoΔVC count , and ΔVC and ppoΔVC insp-exp were moderately correlated (r=0.55, 0.42). Volumetry from inspiratory/expiratory CT data could be useful to predict postoperative pulmonary function after lobectomy for primary lung cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massie, B.; Kramer, B.L.; Topic, N.
Although the resting hemodynamic effects of captopril in congestive heart failure are known, little information is available about the hemodynamic response to captopril during exercise or about changes in noninvasive measurements of the size and function of both ventricles. In this study, 14 stable New York Heart Association class III patients were given 25 mg of oral captopril. Rest and exercise hemodynamic measurements and blood pool scintigrams were performed simultaneously before and 90 minutes after captopril. The radionuclide studies were analyzed for left and right ventricular end-diastolic volumes, end-systolic volumes, ejection fractions and pulmonary blood volume. The primary beneficial responsesmore » at rest were decreases in left and right ventricular end-diastolic volumes from 388 + 81 to 350 + 77 ml (p < 0.01) and from 52 + 26 to 43 + 20 volume units (p < 0.01), respectively, and in their corresponding filling pressures, from 24 + 10 to 17 + 9 mm Hg and 10 + 5 to and + 5 mm Hg (both p < 0.01). Altough stroke volume did not increase significantly, both left and right ventricular ejection fractions increased slightly, from 19 + 6% to 22 + 5% and from 25 + 9% to 29 + 11%, respectively (both p < 0.01). During exercise, similar changes were noted in both hemodynamic and radionuclide indexes. Thus, in patients with moderate symptomatic limitation from chronic heart failure, captopril predominantly reduces ventricular volume and filling pressure, with a less significant effect on cardiac output. These effects persist during exercise, when systemic vascular resistance is already very low. Radionuclide techniques are valuable in assessing the drug effect in these subjects, particularly when ventricular volumes are also measured.« less
Computer Assisted Diagnosis of Chest Pain. Adjunctive Treatment Protocols
1984-07-30
or dyspnea is present. a. Musculöskeletal pain b. Pleurisy c. Pulmonary embolus d. Spontaneous mediastinal emphysema a) Musculoskeletal chest...analgesics, heat therapy, and, perhaps, rest. b) Pleurisy denotes inflammation of the pleura. It is seen in the setting of bronchitis or pneumonia...the symptoms of both assist in differentiating pleurisy from pneumothorax. Chest discomfort is pleuritic. unless there are signs of pneumonia, lung
Respiration, respiratory metabolism and energy consumption under weightless conditions
NASA Technical Reports Server (NTRS)
Kasyan, I. I.; Makarov, G. F.
1975-01-01
Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.
A review of imaging modalities in pulmonary hypertension
Ascha, Mona; Renapurkar, Rahul D.; Tonelli, Adriano R.
2017-01-01
Pulmonary hypertension (PH) is defined as resting mean pulmonary artery pressure ≥25 mmHg measured by right heart catheterization. PH is a progressive, life-threatening disease with a variety of etiologies. Swift and accurate diagnosis of PH and appropriate classification in etiologic group will allow for earlier treatment and improved outcomes. A number of imaging tools are utilized in the evaluation of PH, such as chest X-ray, computed tomography (CT), ventilation/perfusion (V/Q) scan, and cardiac magnetic resonance imaging. Newer imaging tools such as dual-energy CT and single-photon emission computed tomography/computed tomography V/Q scanning have also emerged; however, their place in the diagnostic evaluation of PH remains to be determined. In general, each imaging technique provides incremental information, with varying degrees of sensitivity and specificity, which helps suspect the presence and identify the etiology of PH. The present study aims to provide a comprehensive review of the utility, advantages, and shortcomings of the imaging modalities that may be used to evaluate patients with PH. PMID:28469715
Impact of Pulmonary Artery Pressure on Exercise Function in Severe COPD
Sims, Michael W.; Margolis, David J.; Localio, A. Russell; Panettieri, Reynold A.; Kawut, Steven M.; Christie, Jason D.
2009-01-01
Background: Although pulmonary hypertension commonly complicates COPD, the functional consequences of increased pulmonary artery pressures in patients with this condition remain poorly defined. Methods: We conducted a cross-sectional analysis of a cohort of 362 patients with severe COPD who were evaluated for lung transplantation. Patients with pulmonary hemodynamics measured by cardiac catheterization and available 6-min walk test results were included. The association of mean pulmonary artery pressure (mPAP) with pulmonary function, echocardiographic variables, and 6-min walk distance was assessed. Results: The prevalence of pulmonary hypertension (mPAP, > 25 mm Hg; pulmonary artery occlusion pressure [PAOP], < 16 mm Hg) was 23% (95% confidence interval, 19 to 27%). In bivariate analysis, higher mPAP was associated with lower FVC and FEV1, higher Pco2 and lower Po2 in arterial blood, and more right heart dysfunction. Multivariate analysis demonstrated that higher mPAP was associated with shorter distance walked in 6 min, even after adjustment for age, gender, race, height, weight, FEV1, and PAOP (−11 m for every 5 mm Hg rise in mPAP; 95% confidence interval, −21 to −0.7; p = 0.04). Conclusions: Higher pulmonary artery pressures are associated with reduced exercise function in patients with severe COPD, even after controlling for demographics, anthropomorphics, severity of airflow obstruction, and PAOP. Whether treatments aimed at lowering pulmonary artery pressures may improve clinical outcomes in COPD, however, remains unknown. PMID:19318664
Foster, Gary P; Westerdahl, Daniel E; Foster, Laura A; Hsu, Jeffrey V; Anholm, James D
2011-12-15
Ischemic pre-condition of an extremity (IPC) induces effects on local and remote tissues that are protective against ischemic injury. To test the effects of IPC on the normal hypoxic increase in pulmonary pressures and exercise performance, 8 amateur cyclists were evaluated under normoxia and hypoxia (13% F(I)O(2)) in a randomized cross-over trial. IPC was induced using an arterial occlusive cuff to one thigh for 5 min followed by deflation for 5 min for 4 cycles. In the control condition, the resting pulmonary artery systolic pressure (PASP) increased from a normoxic value of 25.6±2.3 mmHg to 41.8±7.2 mmHg following 90 min of hypoxia. In the IPC condition, the PASP increased to only 32.4±3.1 mmHg following hypoxia, representing a 72.8% attenuation (p=0.003). No significant difference was detected in cycle ergometer time trial duration between control and IPC conditions with either normoxia or hypoxia. IPC administered prior to hypoxic exposure was associated with profound attenuation of the normal hypoxic increase of pulmonary artery systolic pressure. Published by Elsevier B.V.
Parvathy, Usha T; Rajan, Rajesh; Faybushevich, Alexander Georgevich
2014-06-01
It is well known that mitral stenosis (MS) is complicated by pulmonary hypertension (PH) of varying degrees. The hemodynamic derangement is associated with structural changes in the pulmonary vessels and parenchyma and also functional derangements. This article analyzes the pulmonary function derangements in 25 patients with isolated/predominant mitral stenosis of varying severity. THE AIM OF THE STUDY WAS TO CORRELATE THE PULMONARY FUNCTION TEST (PFT) DERANGEMENTS (DONE BY SIMPLE METHODS) WITH: a) patient demographics and clinical profile, b) severity of the mitral stenosis, and c) severity of pulmonary artery hypertension (PAH) and d) to evaluate its significance in preoperative assessment. This cross-sectional study was conducted in 25 patients with mitral stenosis who were selected for mitral valve (MV) surgery. The patients were evaluated for clinical class, echocardiographic severity of mitral stenosis and pulmonary hypertension, and with simple methods of assessment of pulmonary function with spirometry and blood gas analysis. The diagnosis and classification were made on standardized criteria. The associations and correlations of parameters, and the difference in groups of severity were analyzed statistically with Statistical Package for Social Sciences (SPSS), using nonparametric measures. THE SPIROMETRIC PARAMETERS SHOWED SIGNIFICANT CORRELATION WITH INCREASING NEW YORK HEART ASSOCIATION (NYHA) FUNCTIONAL CLASS (FC): forced vital capacity (FVC, r = -0.4*, p = 0.04), forced expiratory volume in one second (FEV1, r = -0.5*, p = 0.01), FEV1/FVC (r = -0.44*, p = 0.02), and with pulmonary venous congestion (PVC): FVC (r = -0.41*, p = 0.04) and FEV1 (r = -0.41*, p = 0.04). Cardiothoracic ratio (CTR) correlated only with FEV1 (r = -0.461*, p = 0.02) and peripheral saturation of oxygen (SPO2, r = -0.401*, p = 0.04). There was no linear correlation to duration of symptoms, mitral valve orifice area, or pulmonary hypertension, except for MV gradient with PCO2 (r = 0.594**, p = 0.002). The decreased oxygenation status correlated significantly with FC, CTR, PVC, and with deranged spirometry (r = 0.495*, p = 0.02). PFT derangements are seen in all grades of severity of MS and correlate well with the functional class, though no significant linear correlation with grades of severity of stenosis or pulmonary hypertension. Even the early or mild derangements in pulmonary function such as small airway obstruction in the less severe cases of normal or mild PH can be detected by simple and inexpensive methods when the conventional parameters are normal. The supplementary data from baseline arterial blood gas analysis is informative and relevant. This reclassified pulmonary function status might be prognostically predictive.
Gorbunova, Elena E.; Dalrymple, Nadine A.; Gavrilovskaya, Irina N.
2013-01-01
Abstract Background Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. Results We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Conclusions Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease. PMID:24024573
Mackow, Erich R; Gorbunova, Elena E; Dalrymple, Nadine A; Gavrilovskaya, Irina N
2013-09-01
Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.
Impaired pulmonary function after treatment for tuberculosis: the end of the disease?
Chushkin, Mikhail Ivanovich; Ots, Oleg Nikolayevich
2017-01-01
To evaluate the prevalence of pulmonary function abnormalities and to investigate the factors affecting lung function in patients treated for pulmonary tuberculosis. A total of 214 consecutive patients (132 men and 82 women; 20-82 years of age), treated for pulmonary tuberculosis and followed at a local dispensary, underwent spirometry and plethysmography at least one year after treatment. Pulmonary impairment was present in 102 (47.7%) of the 214 patients evaluated. The most common functional alteration was obstructive lung disease (seen in 34.6%). Of the 214 patients, 60 (28.0%) showed reduced pulmonary function (FEV1 below the lower limit of normal). Risk factors for reduced pulmonary function were having had culture-positive pulmonary tuberculosis in the past, being over 50 years of age, having recurrent tuberculosis, and having a lower level of education. Nearly half of all tuberculosis patients evolve to impaired pulmonary function. That underscores the need for pulmonary function testing after the end of treatment. Avaliar a prevalência de alterações da função pulmonar e investigar os fatores que afetam a função pulmonar em pacientes tratados para tuberculose pulmonar. Um total de 214 pacientes consecutivos (132 homens e 82 mulheres; 20-82 anos de idade), tratados para tuberculose pulmonar e acompanhados em um dispensário local, foi submetido a espirometria e pletismografia pelo menos um ano após o tratamento. O comprometimento pulmonar estava presente em 102 (47,7%) dos 214 pacientes avaliados. A alteração funcional mais comum foi o distúrbio ventilatório obstrutivo (observado em 34,6%). Dos 214 pacientes, 60 (28,0%) apresentaram função pulmonar reduzida (VEF1 abaixo do limite inferior de normalidade). Os fatores de risco para função pulmonar reduzida foram tuberculose pulmonar com cultura positiva no passado, idade acima de 50 anos, recidiva de tuberculose e menor nível de escolaridade. Quase metade de todos os pacientes com tuberculose evolui com comprometimento da função pulmonar. Isso reforça a necessidade de testes de função pulmonar após o término do tratamento.
[Clinical, hemodynamic and angiographic results of total cavo-pulmonary connection].
Jimenez, A C; Neville, P; Chamboux, C; Crenn, R; Vaillant, M C; Marchand, M; Chantepie, A
1998-05-01
The aim of the study was to assess the short and medium term results of total cavo-pulmonary connection based on analysis of the functional status, the cavo-pulmonary circulation and the surgical techniques, and the hepatic consequences. Fifteen patients with congenital defects beyond repair were treated by total cavo-pulmonary connection at Tours between March 1st 1992 and July 30th 1996. There were 12 children (mean age: 6.3 years) and 3 adults aged 25 to 28. Results were assessed by clinical examination, hepatic function tests and cardiovascular investigations including right heart catheterisation with angiography in 14 patients. There were no fatalities. Seven patients were in functional Class I and 8 in Class II at medium term (average follow-up of 33 months). Hepatic function was mildly abnormal in all patients with an increase in serum bilirubin and gamma GT, and a decrease in the coagulation factors. The mean pressures in the atrial channel were 12 mmHg (9-16 mmHg), in the superior vena 13.2 mmHg (10-18 mmHg), in the right pulmonary artery 9.5 mmHg (7-15 mmHg) and 11.6 mmHg (8-16 mmHg) in the left pulmonary artery. Significant residual stenosis of a pulmonary branch was observed in 2 cases. The cavo-pulmonary anastomoses were out of line, one from the other, in all cases. The atrial channel was tubular in 9 cases and dilated with slight stagnation of the contrast medium in its inferior region in 5 cases. Total cavo-pulmonary connection transformed the clinical status of these patients but was associated with minor abnormalities of liver function. The quality of the cavo-pulmonary circulation and the surgical anastomoses was estimated to be satisfactory in the majority of cases.
Pulmonary Morbidity in Infancy after Exposure to Chorioamnionitis in Late Preterm Infants.
McDowell, Karen M; Jobe, Alan H; Fenchel, Matthew; Hardie, William D; Gisslen, Tate; Young, Lisa R; Chougnet, Claire A; Davis, Stephanie D; Kallapur, Suhas G
2016-06-01
Chorioamnionitis is an important cause of preterm birth, but its impact on postnatal outcomes is understudied. To evaluate whether fetal exposure to inflammation is associated with adverse pulmonary outcomes at 6 to 12 months' chronological age in infants born moderate to late preterm. Infants born between 32 and 36 weeks' gestational age were prospectively recruited (N = 184). Chorioamnionitis was diagnosed by placenta and umbilical cord histology. Select cytokines were measured in samples of cord blood. Validated pulmonary questionnaires were administered (n = 184), and infant pulmonary function testing was performed (n = 69) between 6 and 12 months' chronological age by the raised volume rapid thoracoabdominal compression technique. A total of 25% of participants had chorioamnionitis. Although infant pulmonary function testing variables were lower in infants born preterm compared with historical normative data for term infants, there were no differences between infants with chorioamnionitis (n = 20) and those without (n = 49). Boys and black infants had lower infant pulmonary function testing measurements than girls and white infants, respectively. Chorioamnionitis exposure was associated independently with wheeze (odds ratio [OR], 2.08) and respiratory-related physician visits (OR, 3.18) in the first year of life. Infants exposed to severe chorioamnionitis had increased levels of cord blood IL-6 and greater pulmonary morbidity at age 6 to 12 months than those exposed to mild chorioamnionitis. Elevated IL-6 was associated with significantly more respiratory problems (OR, 3.23). In infants born moderate or late preterm, elevated cord blood IL-6 and exposure to histologically identified chorioamnionitis was associated with respiratory morbidity during infancy without significant changes in infant pulmonary function testing measurements. Black compared with white and boy compared with girl infants had lower infant pulmonary function testing measurements and worse pulmonary outcomes.
Lee, Yoonje; Lee, Sang-Hyun; Kim, Changsun; Choi, Hyuk Joong
2018-05-01
In the treatment of patients with rib fractures (RFs), pain reduction is the most important consideration. Various studies have examined the effectiveness of treatments administered to RF patients, such as lidocaine patches, IV drugs, nerve blockers, and surgery. In this study, we evaluated the difference in the effectiveness in pain reduction between 2 groups of RF patients: 1 group who received a rib splint constructed in the ER (ER splint) and another group who received a Chrisofix Chest Orthosis (CCO) manufactured rib splint. A pilot study for a prospective randomized clinical trial was conducted to compare subjects using the CCO (Group A) with those using the ER splint (Group B) before and after the intervention. The primary outcome was difference in the level of pain based on the visual analogue scale (VAS) and the pulmonary function (PF) variables between before and after intervention in each group during forceful and resting respiration. A total of 24 subjects were enrolled in this study. The VAS results showed that the intervention was significantly effective in each group (before vs after: Group A resting: 8.50 ± 1.05 vs 4.17 ± 1.33, P < .001; Group A forceful: 9.83 ± 0.41 vs 7.17 ± 0.75, P < .001; Group B resting: 8.83 ± 1.60 vs 4.50 ± 1.38, P < .001; and Group B forceful: 9.67 ± 0.82 vs 7.33 ± 1.51, P = .003). The PF variables showed that the intervention was significantly effective in each group (before vs after: Group A, FVC: 2.74 ± 0.92 vs 3.35 ± 0.99, P < .001; FEV1: 2.16 ± 0.74 vs 2.57 ± 0.78, P = .001; PEF: 235.30 ± 43.06 vs 319.00 ± 51.58, P = .004; and Group B, FVC: 2.02 ± 0.49 vs 2.72 ± 0.62, P < .001; FEV1: 1.27 ± 0.25 vs 1.91 ± 0.37, P < .001; PEF: 216.67 ± 67.49 vs 300.33 ± 87.79, P = .003). Applying either the CCO or the ER splint to RF patients effectively reduced pain, and no significant differences in pain level were observed between these 2 techniques.
Pulmonary functions in plastic factory workers: a preliminary study.
Khaliq, Farah; Singh, Pawan; Chandra, Prakash; Gupta, Keshav; Vaney, Neelam
2011-01-01
Exposure to long term air pollution in the work environment may result in decreased lung functions and various other health problems. A significant occupational hazard to lung functions is experienced by plastic factory workers. The present study is planned to assess the pulmonary functions of workers in the plastic factory where recycling of pastic material was done. These workers were constantly exposed to fumes of various chemicals throughout the day. Thirty one workers of plastic factory were assessed for their pulmonary functions. Parameters were compared with 31 age and sex matched controls not exposed to the same environment. The pulmonary function tests were done using Sibelmed Datospir 120 B portable spirometer. A significant decrease in most of the flow rates (MEF 25%, MEF 50%, MEF 75% and FEF 25-75%) and most of the lung volumes and capacities (FVC, FEV1, VC, TV, ERV, MVV) were observed in the workers. Smoking and duration of exposure were not affecting the lung functions as the non smokers also showed a similar decrement in pulmonary functions. Similarly the workers working for less than 5 years also had decrement in pulmonary functions indicating that their lungs are being affected even if they have worked for one year. Exposure to the organic dust in the work environment should be controlled by adequate engineering measures, complemented by effective personal respiratory protection.
Cognitive Functioning in Long Duration Head-down Bed Rest
NASA Technical Reports Server (NTRS)
Seaton, Kimberly A.; Slack, Kelley J.; Sipes, Walter A.; Bowie, Kendra
2008-01-01
The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a self-administered battery of tests used on the International Space Station for evaluating cognitive functioning. Here, WinSCAT was used to assess cognitive functioning during extended head-down bed rest. Thirteen subjects who participated in 60 or 90 days of 6 deg head-down bed rest took WinSCAT during the pre-bed rest phase, the in-bed rest phase, and the post-bed rest (reconditioning) phase of study participation. After adjusting for individual baseline performance, 12 off-nominal scores were observed out of 351 total observations during bed rest and 7 of 180 during reconditioning. No evidence was found for systematic changes in off-nominal incidence as time in bed rest progressed, or during the reconditioning period. Cognitive functioning does not appear to be adversely affected by long duration head-down bed rest. Individual differences in underlying cognitive ability and motivation level are likely explanations for the current findings.
Effect of Exercise on Pulmonary Function Tests in Obese Malaysian Patients.
Christopher, L K S; Kosai, N R; Reynu, R; Levin, K B; Taher, M M; Sutton, P A; Sukor, N; Das, S
2015-01-01
Obesity has taken the 21st century by storm, posing negative effects on of the various facades of health, healthcare and global economy. With regards to pulmonary performance, numerous studies have proven the detrimental effects of obesity while reinstating the positive effects of weight loss on overall pulmonary function. However, effects of exercise on pulmonary function and correlation between changes in pulmonary function test with weight loss have yet to be described. We performed a prospective interventional study to determine the effects of regular exercise on Pulmonary Function Tests (PFT) and ascertain the relationship between weight loss and change in PFT in obese patients. Twenty-five obese patients were enrolled, giving an 80% power of study. Baseline weight and PFT consisting of FEV1, FVC, TLC, mean ERV and VC were recorded prior to commencement of the 8 week long Standard Exercise Regimen (SER). PFT and weight were recorded again at the end of 8 weeks. All parameters of the PFT studied improved significantly with exercise. The participants lost an average of 1kg of body weight post-exercise (p<0.0005). The correlations between mean changes in weight and PFT were negligible. A period of supervised regular exercise improves the pulmonary function of obese patients and this improvement is independent of the amount of weight loss. Hence, SER should be recommended to all obese patients, especially when bariatric surgery is desired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, Khadija; Capaldi, Dante PI; Parraga, Grace
Purpose: Functional lung avoidance radiotherapy promises optimized therapy planning by minimizing dose to well-functioning lung and maximizing dose to the rest of the lung. Patients with NSCLC commonly present with co-morbid COPD and heterogeneously distributed ventilation abnormalities stemming from emphysema, airways disease, and tumour burden. We hypothesized that pulmonary functional imaging methods may be used to optimize radiotherapy plans to avoid regions of well-functioning lung and significantly improve outcomes like quality-of-life and survival. To ascertain the utility of functional lung avoidance therapy in clinical practice, we measured COPD phenotypes in NSCLC patients enrolled in a randomized-controlled-clinical-trial prior to curative intentmore » therapy. Methods: Thirty stage IIIA/IIIB NSCLC patients provided written informed consent to a randomized-controlled-clinical-trial ( http://clinicaltrials.gov/ct2/show/NCT02002052 ) comparing outcomes in patients randomized to standard or image-guided radiotherapy. Hyperpolarized noble gas MRI ventilation-defect-percent (VDP) (Kirby et al, Acad Radiol, 2012) as well as CT-emphysema measurements were determined. Patients were stratified based on quantitative imaging evidence of ventilation-defects and emphysema into two subgroups: 1) tumour-specific ventilation defects only (TSD), and, 2) tumour-specific and other ventilation defects with and without emphysema (TSD{sub VE}). Receiver-operating-characteristic (ROC) curves were used to characterize the performance of clinical measures as predictors of the presence of non-tumour specific ventilation defects. Results: Twenty-one out of thirty subjects (70%) had non-tumour specific ventilation defects (TSD{sub VE}) and nine subjects had ONLY tumour-specific defects (TSD). Subjects in the TSD{sub VE} group had significantly greater smoking-history (p=.006) and airflow obstruction (FEV{sub 1}/FVC) (p=.001). ROC analysis demonstrated an 87% classification rate for smoking pack-years, 90% for FEV{sub 1}/FVC, and 56% for tumour RECIST measurements for identifying patients with non-tumour and tumour-specific ventilation abnormalities. Conclusion: 70% of NSCLC patients had ventilation abnormalities stemming from emphysema, airways disease and tumour burden. Smoking-history and airflow obstruction, but not RECIST, identified NSCLC patients with ventilation abnormalities appropriate for functional lung avoidance therapy.« less
Sleep and pulmonary outcomes for clinical trials of airway plexiform neurofibromas in NF1.
Plotkin, Scott R; Davis, Stephanie D; Robertson, Kent A; Akshintala, Srivandana; Allen, Julian; Fisher, Michael J; Blakeley, Jaishri O; Widemann, Brigitte C; Ferner, Rosalie E; Marcus, Carole L
2016-08-16
Plexiform neurofibromas (PNs) are complex, benign nerve sheath tumors that occur in approximately 25%-50% of individuals with neurofibromatosis type 1 (NF1). PNs that cause airway compromise or pulmonary dysfunction are uncommon but clinically important. Because improvement in sleep quality or airway function represents direct clinical benefit, measures of sleep and pulmonary function may be more meaningful than tumor size as endpoints in therapeutic clinical trials targeting airway PN. The Response Evaluation in Neurofibromatosis and Schwannomatosis functional outcomes group reviewed currently available endpoints for sleep and pulmonary outcomes and developed consensus recommendations for response evaluation in NF clinical trials. For patients with airway PNs, polysomnography, impulse oscillometry, and spirometry should be performed to identify abnormal function that will be targeted by the agent under clinical investigation. The functional group endorsed the use of the apnea hypopnea index (AHI) as the primary sleep endpoint, and pulmonary resistance at 10 Hz (R10) or forced expiratory volume in 1 or 0.75 seconds (FEV1 or FEV0.75) as primary pulmonary endpoints. The group defined minimum changes in AHI, R10, and FEV1 or FEV0.75 for response criteria. Secondary sleep outcomes include desaturation and hypercapnia during sleep and arousal index. Secondary pulmonary outcomes include pulmonary resistance and reactance measurements at 5, 10, and 20 Hz; forced vital capacity; peak expiratory flow; and forced expiratory flows. These recommended sleep and pulmonary evaluations are intended to provide researchers with a standardized set of clinically meaningful endpoints for response evaluation in trials of NF1-related airway PNs. © 2016 American Academy of Neurology.
Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Takenaka, Daisuke; Takahashi, Masaya; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Obara, Makoto; van Cauteren, Marc; Sugimura, Kazuro
2013-08-01
To evaluate the utility of pulmonary magnetic resonance (MR) imaging with ultra-short echo times (UTEs) at a 3.0 T MR system for pulmonary functional loss and disease severity assessments of connective tissue disease (CTD) patients with interstitial lung disease (ILD). This prospective study was approved by the institutional review board, and written informed consent was obtained from 18 CTD patients (eight men and ten women) and eight normal subjects with suspected chest disease (three men and five women). All subjects underwent thin-section MDCT, pulmonary MR imaging with UTEs, pulmonary function test and serum KL-6. Regional T2 maps were generated from each MR data set, and mean T2 values were determined from ROI measurements. From each thin-section MDCT data set, CT-based disease severity was evaluated with a visual scoring system. Mean T2 values for normal and CTD subjects were statistically compared by using Student's t-test. To assess capability for pulmonary functional loss and disease severity assessments, mean T2 values were statistically correlated with pulmonary functional parameters, serum KL-6 and CT-based disease severity. Mean T2 values for normal and CTD subjects were significantly different (p=0.0019) and showed significant correlations with %VC, %DLCO, serum KL-6 and CT-based disease severity of CTD patients (p<0.05). Pulmonary MR imaging with UTEs is useful for pulmonary functional loss and disease severity assessments of CTD patients with ILD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Correlation between pulmonary function and brain volume in healthy elderly subjects.
Taki, Yasuyuki; Kinomura, Shigeo; Ebihara, Satoru; Thyreau, Benjamin; Sato, Kazunori; Goto, Ryoi; Kakizaki, Masako; Tsuji, Ichiro; Kawashima, Ryuta; Fukuda, Hiroshi
2013-06-01
Cigarette smoking decreases brain regional gray matter volume and is related to chronic obstructive lung disease (COPD). COPD leads to decreased pulmonary function, which is represented by forced expiratory volume in one second percentage (FEV1.0 %); however, it is unclear if decreased pulmonary function is directly related to brain gray matter volume decline. Because there is a link between COPD and cognitive decline, revealing a direct relationship between pulmonary function and brain structure is important to better understand how pulmonary function affects brain structure and cognitive function. Therefore, the purpose of this study was to analyze whether there were significant correlations between FEV1.0 % and brain regional gray and white matter volumes using brain magnetic resonance (MR) image data from 109 community-dwelling healthy elderly individuals. Brain MR images were processed with voxel-based morphometry using a custom template by applying diffeomorphic anatomical registration using the exponentiated lie algebra procedure. We found a significant positive correlation between the regional white matter volume of the cerebellum and FEV1.0 % after adjusting for age, sex, and intracranial volume. Our results suggest that elderly individuals who have a lower FEV1.0 % have decreased regional white matter volume in the cerebellum. Therefore, preventing decreased pulmonary function is important for cerebellar white matter volume in the healthy elderly population.
The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning
NASA Technical Reports Server (NTRS)
Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.;
2016-01-01
Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural equilibrium with HDT bed rest. This suggests that neuroplastic processes may facilitate adaptation to the HDT bed rest environment. The findings from this study provide novel insights into the neurobiology and future risk assessments of long-duration spaceflight.
NASA Technical Reports Server (NTRS)
Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.;
2015-01-01
Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from pre bed rest to the last day in bed rest. In contrast, connectivity within the default mode network remained stable over the course of bed rest. We also utilized a battery of behavioral measures including spatial working memory tasks and measures of functional mobility and balance. These behavioral measurements were collected before, during, and after bed rest. We will report the preliminary findings of correlations observed between brain functional connectivity and behavioral performance changes. Our results suggest that sensorimotor brain networks exhibit decoupling with extended periods of reduced usage. The findings from this study could aid in the understanding and future design of targeted countermeasures to alleviate the detrimental health and neurocognitive effects of long-duration spaceflight.
Park, Ji Hye; Mun, Seyeon; Choi, Dong Phil; Lee, Joo Young; Kim, Hyeon Chang
2017-12-11
Accumulating evidence suggests that high-density lipoprotein (HDL) cholesterol is associated with pulmonary function and pulmonary disorders. The aim of this study was to evaluate the association between HDL cholesterol and pulmonary function in healthy adolescents. This cross-sectional study was based on data collected for the JS High School study. The analysis included 644 adolescents (318 male and 326 female) aged 15-16 years old and free from asthma or chronic obstructive pulmonary disease. Fasting blood samples were collected for hematologic and biochemical assessment. Forced vital capacity volume (FVC) and forced expiratory volume in the 1 s (FEV1) were measured using dry-rolling-seal spirometry. The associations between HDL cholesterol and pulmonary function were analyzed using multiple linear regression models. Among male adolescents, an increase of 1.0 mg/dL in HDL cholesterol was associated with 10 mL decrease in FVC (p = 0.013) and FEV1 (p = 0.013) after adjusting for age, height, weight, alcohol drinking, smoking, physical activity, systolic blood pressure, total cholesterol, triglyceride, and monthly household income. Percent predicted values of FVC (p = 0.036) and FEV1 (p = 0.017) were also inversely associated with HDL cholesterol. However, among female adolescents, HDL cholesterol level was not significantly associated with absolute or percent predictive value of FVC and FEV1. Higher HDL cholesterol level may be associated with decreased pulmonary function among healthy male adolescents. The sex differences observed in the association between HDL cholesterol and pulmonary function need further investigation.
Regulation of pulmonary inflammation by mesenchymal cells.
Alkhouri, Hatem; Poppinga, Wilfred Jelco; Tania, Navessa Padma; Ammit, Alaina; Schuliga, Michael
2014-12-01
Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue remodelling, but also have an important role in pulmonary inflammation. This review will describe the immunomodulatory functions of pulmonary mesenchymal cells, such as airway smooth muscle (ASM) cells and lung fibroblasts, in chronic respiratory disease. An important theme of the review is that pulmonary mesenchymal cells not only respond to inflammatory mediators, but also produce their own mediators, whether pro-inflammatory or pro-resolving, which influence the quantity and quality of the lung immune response. The notion that defective pro-inflammatory or pro-resolving signalling in these cells potentially contributes to disease progression is also discussed. Finally, the concept of specifically targeting pulmonary mesenchymal cell immunomodulatory function to improve therapeutic control of chronic respiratory disease is considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Takahashi, Tomohiko; Hayata, Satoru; Kobayashi, Akihiro; Onaka, Yuna; Ebihara, Takeshi; Hara, Terufumi
2018-03-01
Pulmonary arterial hypertension (PAH) is an intractable and rare disease and the accumulation of clinical evidence under real-world setting is needed. A post-marketing surveillance for the endothelin receptor antagonist ambrisentan (Volibris tablet) has been conducted by all-case investigation since September 2010. This paper is an interim report on the safety and efficacy of ambrisentan in 702 patients with PAH. PAH patients aged 15 years or older were subjected to the analysis. The safety analysis by overall cases or stratification of patient backgrounds and the efficacy analysis were investigated. Regarding patient characteristics, the 702 patients subjected to safety analysis included 543 (77.4%) women and 546 (77.8%) patients at WHO functional class II/III. The mean observational time was 392.7 days. A total of 324 adverse drug reaction (ADR) occurred in 204 (29.1%) patients. Common ADRs (≥ 2%) included anemia (4.6%), peripheral edema (4.1%), headache (3.6%), edema and face edema (2.6% each), abnormal hepatic function (2.3%), and epistaxis (2.1%). There were 82 serious ADRs occurring in 44 (6.3%) patients (385 serious adverse events in 184 (26.2%) patients). Although 11 (1.6%) interstitial lung disease (ILD) cases were reported, all were observed in patients with disease that may contribute to ILD and therefore it is difficult to assess if ambrisentan was associated with these events. There was no difference in safety in relation to the presence/absence of connective tissue disease-related PAH (CTD-PAH) or combination therapy. Among 677 patients subjected to efficacy analysis, those in whom hemodynamic status was determined before and after treatment showed improvement in the mean pulmonary arterial pressure and pulmonary vascular resistance after treatment. The interim results showed safety consistent with the known profile of ambrisentan in terms of the types and frequencies of ADRs in patients with PAH in real clinical practice, in comparison with previous clinical trials in Japan and the rest of the world. Thus, these results provided another corroboration of the tolerability of ambrisentan and we continue to monitor proper use information via the post-marketing surveillance to ensure any new safety signals are identified in a timely manner (ClinTrial.gov: NCT01406327).
Güvenç, Tolga Sinan; Erer, Hatice Betül; Kul, Seref; Perinçek, Gökhan; Ilhan, Sami; Sayar, Nurten; Yıldırım, Binnaz Zeynep; Doğan, Coşkun; Karabağ, Yavuz; Balcı, Bahattin; Eren, Mehmet
2013-01-01
Pulmonary vasculature is affected in patients with chronic pulmonary obstructive disease (COPD). As a result of increased pulmonary resistance, right ventricular morphology and function are altered in COPD patients. High altitude and related hypoxia causes pulmonary vasoconstriction, thereby affecting the right ventricle. We aimed to investigate the combined effects of COPD and altitude-related chronic hypoxia on right ventricular morphology and function. Forty COPD patients living at high altitude (1768 m) and 41 COPD patients living at sea level were enrolled in the study. All participants were diagnosed as COPD by a pulmonary diseases specialist depending on symptoms, radiologic findings and pulmonary function test results. Detailed two-dimensional echocardiography was performed by a cardiologist at both study locations. Oxygen saturation and mean pulmonary artery pressure were higher in the high altitude group. Right ventricular end diastolic diameter, end systolic diameter, height and end systolic area were significantly higher in the high altitude group compared to the sea level group. Parameters of systolic function, including tricuspid annular systolic excursion, systolic velocity of tricuspid annulus and right ventricular isovolumic acceleration were similar between groups, while fractional area change was significantly higher in the sea level groups compared to the high altitude group. Indices of diastolic function and myocardial performance index were similar between groups. An increase in mean pulmonary artery pressure and right ventricular dimensions are observed in COPD patients living at high altitude. Despite this increase, systolic and diastolic functions of the right ventricle, as well as global right ventricular performance are similar in COPD patients living at high altitude and sea level. Altitude-related adaptation to chronic hypoxia could explain these findings. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Correspondence of the brain's functional architecture during activation and rest.
Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F
2009-08-04
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."
Danielsson, Aina J; Ekerljung, Linda; Hallerman, Kerstin Lofdahl
2015-09-01
Consecutive patients with idiopathic scoliosis diagnosed before age 10 attended a clinical follow-up at least 10 years after treatment. To evaluate the pulmonary function in adulthood after treatment with brace or surgery before maturity. Long-term studies of these patients have not been published. One hundred twenty-four patients (69% of the original group) underwent radiography, spirometry, and answered symptom questionnaires. A total of 73 patients had spirometries before treatment enabling longitudinal evaluation. Overall, 68 braced only (BT) and 56 surgically treated (ST) were analyzed in detail. A population-based control group was used. At follow-up, the mean age was 41.5 years and the mean curve size 36 degrees (26% of the curves >45 degrees). The full patient group had a significantly reduced pulmonary function (as measured by the forced vital capacity [FVC], percentage of predicted) compared with the control group, mean 85% versus 102% (p < .0001). Both subgroups of BT and ST patients showed a significant reduction, more in the ST than the BT group (means 79% and 90%, respectively, p = .0003). The most important risk factor for a low lung function at follow-up was a low initial FVC value. Initial curve size correlated with pulmonary function both before treatment and at follow-up. Most surgically treated patients, who had larger curves before treatment, did not improve their pulmonary function after surgery. Both braced and surgically treated patients had reduced pulmonary function at the age of around 40 years. The pulmonary function did not worsen over time in most patients. There was no difference in terms of symptoms between patient groups and controls. Initial curve size was found to be of great importance for pulmonary function. Initial spirometry and follow-up in selected patients is important. III. Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Schoonbeek, Rosanne C; Takebayashi, Satoshi; Aoki, Chikashi; Shimaoka, Toru; Harris, Matthew A; Fu, Gregory L; Kim, Timothy S; Dori, Yoav; McGarvey, Jeremy; Litt, Harold; Bouma, Wobbe; Zsido, Gerald; Glatz, Andrew C; Rome, Jonathan J; Gorman, Robert C; Gorman, Joseph H; Gillespie, Matthew J
2016-10-01
Pulmonary insufficiency is the nexus of late morbidity and mortality after transannular patch repair of tetralogy of Fallot. This study aimed to establish the feasibility of implantation of the novel Medtronic Harmony transcatheter pulmonary valve (hTPV) and to assess its effect on pulmonary insufficiency and ventricular function in an ovine model of chronic postoperative pulmonary insufficiency. Thirteen sheep underwent baseline cardiac magnetic resonance imaging, surgical pulmonary valvectomy, and transannular patch repair. One month after transannular patch repair, the hTPV was implanted, followed by serial magnetic resonance imaging and computed tomography imaging at 1, 5, and 8 month(s). hTPV implantation was successful in 11 animals (85%). There were 2 procedural deaths related to ventricular fibrillation. Seven animals survived the entire follow-up protocol, 5 with functioning hTPV devices. Two animals had occlusion of hTPV with aneurysm of main pulmonary artery. A strong decline in pulmonary regurgitant fraction was observed after hTPV implantation (40.5% versus 8.3%; P=0.011). Right ventricular end diastolic volume increased by 49.4% after transannular patch repair (62.3-93.1 mL/m 2 ; P=0.028) but was reversed to baseline values after hTPV implantation (to 65.1 mL/m 2 at 8 months, P=0.045). Both right ventricular ejection fraction and left ventricular ejection fraction were preserved after hTPV implantation. hTPV implantation is feasible, significantly reduces pulmonary regurgitant fraction, facilitates right ventricular volume improvements, and preserves biventricular function in an ovine model of chronic pulmonary insufficiency. This percutaneous strategy could potentially offer an alternative for standard surgical pulmonary valve replacement in dilated right ventricular outflow tracts, permitting lower risk, nonsurgical pulmonary valve replacement in previously prohibitive anatomies. © 2016 American Heart Association, Inc.
Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.
Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J
2018-04-18
Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.
International spinal cord injury pulmonary function basic data set.
Biering-Sørensen, F; Krassioukov, A; Alexander, M S; Donovan, W; Karlsson, A-K; Mueller, G; Perkash, I; Sheel, A William; Wecht, J; Schilero, G J
2012-06-01
To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population. International. The SCI Pulmonary Function Data Set was developed by an international working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Pulmonary Function Data Set contains questions on the pulmonary conditions diagnosed before spinal cord lesion,if available, to be obtained only once; smoking history; pulmonary complications and conditions after the spinal cord lesion, which may be collected at any time. These data include information on pneumonia, asthma, chronic obstructive pulmonary disease and sleep apnea. Current utilization of ventilator assistance including mechanical ventilation, diaphragmatic pacing, phrenic nerve stimulation and Bi-level positive airway pressure can be reported, as well as results from pulmonary function testing includes: forced vital capacity, forced expiratory volume in one second and peak expiratory flow. The complete instructions for data collection and the data sheet itself are freely available on the website of ISCoS (http://www.iscos.org.uk).
Optical techniques in pulmonary medicine. SPIE photonics West.
Suter, Melissa J; Lam, Stephen; Brenner, Matthew
2012-04-01
There is ongoing interest in the emerging field of pulmonary photonic-based diagnostics. Potential clinical need areas that are being actively investigated at this time include airway and peripheral lung cancer diagnostics, pulmonary parenchymal and interstitial disorders, alveolar structure function, inhalation injury, ciliary function analysis, asthma and obstructive lung diseases.
Kogon, Brian; Mori, Makoto; Alsoufi, Bahaaldin; Kanter, Kirk; Oster, Matt
2015-06-01
Pulmonary valve disruption in patients with tetralogy of Fallot and congenital pulmonary stenosis often results in pulmonary insufficiency, right ventricular dilation, and tricuspid valve regurgitation. Management of functional tricuspid regurgitation at the time of subsequent pulmonary valve replacement remains controversial. Our aims were to (1) analyze tricuspid valve function after pulmonary valve replacement through midterm follow-up and (2) determine the benefits, if any, of concomitant tricuspid annuloplasty. Thirty-five patients with tetralogy of Fallot or congenital pulmonary stenosis were analyzed. All patients had been palliated in childhood by disrupting the pulmonary valve, and all patients had at least moderate tricuspid valve regurgitation at the time of subsequent pulmonary valve replacement. Preoperative and serial postoperative echocardiograms were analyzed. Pulmonary and tricuspid regurgitation, along with right ventricular dilation and dysfunction were scored as 0 (none), 1 (mild), 2 (moderate), and 3 (severe). Right ventricular volume and area were also calculated. Comparisons were made between patients who underwent pulmonary valve replacement alone and those who underwent concomitant tricuspid valve annuloplasty. At 1 month after pulmonary valve replacement, there were significant reductions in pulmonary valve regurgitation (mean 3 vs 0.39, p < 0.0001), tricuspid valve regurgitation (mean 2.33 vs 1.3, p < 0.0001), and in right ventricular dilation, volume, and area. There was no difference in the degree of tricuspid regurgitation 1 month postoperatively between patients who underwent concomitant tricuspid annuloplasty and those who underwent pulmonary valve replacement alone (mean 1.31 vs 1.29, p = 0.81). However, at latest follow-up (mean 7.0 ± 2.8 years), the degree of tricuspid regurgitation was significantly higher in the concomitant annuloplasty group (mean 1.87 vs 1.12, p = 0.005). In patients with at least moderate tricuspid valve regurgitation, significant improvement in tricuspid valve function and right ventricular size occurs in the first postoperative month after pulmonary valve replacement, irrespective of concomitant tricuspid valve annuloplasty. The tricuspid valve appears to function better over the midterm if annuloplasty is not performed. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Motoji, Yoshiki; Tanaka, Hidekazu; Fukuda, Yuko; Sano, Hiroyuki; Ryo, Keiko; Sawa, Takuma; Miyoshi, Tatsuya; Imanishi, Junichi; Mochizuki, Yasuhide; Tatsumi, Kazuhiro; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-ichi
2016-02-01
Current guidelines recommend the routine use of tricuspid annular plane systolic excursion (TAPSE) as a simple method for estimating right ventricular (RV) function. However, when ventricular apical longitudinal rotation (apical-LR) occurs in pulmonary hypertension (PH) patients, it may result in overestimated TAPSE. We studied 105 patients with PH defined as mean pulmonary artery pressure >25 mmHg at rest measured by right heart cardiac catheterization. TAPSE was defined as the maximum displacement during systole in the RV-focused apical four-chamber view. RV free-wall longitudinal speckle tracking strain (RV-free) was calculated by averaging 3 regional peak systolic strains. The apical-LR was measured at the peak rotation in the apical region including both left and right ventricle. The eccentricity index (EI) was defined as the ratio of the length of 2 perpendicular minor-axis diameters, one of which bisected and was perpendicular to the interventricular septum, and was obtained at end-systole (EI-sys) and end-diastole (EI-dia). Twenty age-, gender-, and left ventricular ejection fraction-matched normal controls were studied for comparison. The apical-LR in PH patients was significantly lower than that in normal controls (-3.4 ± 2.7° vs. -1.3 ± 1.9°, P = 0.001). Simple linear regression analysis showed that gender, TAPSE, EI-sys, and EI-dia/EI-sys were associated with apical-LR, but RV-free was not. Multiple regression analysis demonstrated that gender, EI-dia/EI-sys, and TAPSE were independent determinants of apical-LR. TAPSE may be overestimated in PH patients with clockwise rotation resulting from left ventricular compression. TAPSE should thus be evaluated carefully in PH patients with marked apical rotation. © 2015, Wiley Periodicals, Inc.
The effects of hypoxemia on myocardial blood flow during exercise.
Paridon, S M; Bricker, J T; Dreyer, W J; Reardon, M; Smith, E O; Porter, C B; Michael, L; Fisher, D J
1989-03-01
We evaluated the adequacy of regional and transmural blood flow during exercise and rapid pacing after 1 wk of hypoxemia. Seven mature mongrel dogs were made hypoxemic (mean O2 saturation = 72.4%) by anastomosis of left pulmonary artery to left atrial appendage. Catheters were placed in the left atrium, right atrium, pulmonary artery, and aorta. Atrial and ventricular pacing wires were placed. An aortic flow probe was placed to measure cardiac output. Ten nonshunted dogs, similarly instrumented, served as controls. Recovery time was approximately 1 wk. Cardiac output, mean aortic pressure, and oxygen saturation were measured at rest, with ventricular pacing, atrial pacing, and with treadmill exercise. Ventricular and atrial pace and exercise were at a heart rate of 200. Right ventricular free wall, left ventricular free wall, and septal blood flow were measured with radionuclide-labeled microspheres. Cardiac output, left atrial blood pressure, and aortic blood pressure were similar between the two groups of dogs in all testing states. Myocardial blood flow was significantly higher in the right and left ventricular free wall in the hypoxemic animals during resting and exercise testing states. Myocardial oxygen delivery was similar between the two groups of animals. Pacing resulted in an increase in myocardial blood flow in the control animals but not the hypoxemic animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Marin, Marie-France; Song, Huijin; VanElzakker, Michael B; Staples-Bradley, Lindsay K; Linnman, Clas; Pace-Schott, Edward F; Lasko, Natasha B; Shin, Lisa M; Milad, Mohammed R
2016-09-01
Exposure-based therapy, an effective treatment for posttraumatic stress disorder (PTSD), relies on extinction learning principles. In PTSD patients, dysfunctional patterns in the neural circuitry underlying fear extinction have been observed using resting-state or functional activation measures. It remains undetermined whether resting activity predicts activations during extinction recall or PTSD symptom severity. Moreover, it remains unclear whether trauma exposure per se affects resting activity in this circuitry. The authors employed a multimodal approach to examine the relationships among resting metabolism, clinical symptoms, and activations during extinction recall. Three cohorts were recruited: PTSD patients (N=24), trauma-exposed individuals with no PTSD (TENP) (N=20), and trauma-unexposed healthy comparison subjects (N=21). Participants underwent a resting positron emission tomography scan 4 days before a functional MRI fear conditioning and extinction paradigm. Amygdala resting metabolism negatively correlated with clinical functioning (as measured by the Global Assessment of Functioning Scale) in the TENP group, and hippocampal resting metabolism negatively correlated with clinical functioning in the PTSD group. In the PTSD group, dorsal anterior cingulate cortex (dACC) resting metabolism positively correlated with PTSD symptom severity, and it predicted increased dACC activations but decreased hippocampal and ventromedial prefrontal cortex activations during extinction recall. The TENP group had lower amygdala resting metabolism compared with the PTSD and healthy comparison groups, and it exhibited lower hippocampus resting metabolism relative to the healthy comparison group. Resting metabolism in the fear circuitry correlated with functioning, PTSD symptoms, and extinction recall activations, further supporting the relevance of this network to the pathophysiology of PTSD. The study findings also highlight the fact that chronic dysfunction in the amygdala and hippocampus is demonstrable in PTSD and other trauma-exposed individuals, even without exposure to an evocative stimulus.
GPCRs in pulmonary arterial hypertension: tipping the balance.
Iyinikkel, Jean; Murray, Fiona
2018-02-21
Pulmonary arterial hypertension (PAH) is a progressive, fatal disease characterised by increased pulmonary vascular resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMC). GPCRs, which are attractive pharmacological targets, are important regulators of pulmonary vascular tone and PASMC phenotype. PAH is associated with the altered expression and function of a number of GPCRs in the pulmonary circulation, which leads to the vasoconstriction and proliferation of PASMC and thereby contributes to the imbalance of pulmonary vascular tone associated with PAH; drugs targeting GPCRs are currently used clinically to treat PAH and extensive preclinical work supports the utility of a number of additional GPCRs. Here we review how GPCR expression and function changes with PAH and discuss why GPCRs continue to be relevant drug targets for the disease. © 2018 The British Pharmacological Society.
Pulmonary function and respiratory symptoms of school children exposed to ambient air pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yoon Shin; Ko, Ung Ring
1996-12-31
This study was undertaken to evaluate the health effect of air pollution on pulmonary function and respiratory symptoms of Korean school children between 7 and 10 years of age during November 1995-January 1996. A standard respiratory symptom questionnaire was administered and spirometry was performed to examine pulmonary function of 121 children in an urban polluted area, Seoul, and of 119 children in non-polluted area, Sokcho, respectively. There was significant difference in the level of pulmonary function [forced expiratory volume in second (FEV{sub 1.0}) and forced vital capacity (FVC)] between exposed groups to polluted area and non-polluted area. Parental smoking wasmore » significantly related to respiratory symptoms of cough, phlegm, and the level of pulmonary function. The observed changes in FEV{sub 1.0} and FVC seemed to relate to home cooking fuel, not to respiratory symptoms. The additional longitudinal work that carefully monitors ambient and indoor air pollution and health effects data should be conducted to confirm these results.« less
Pulmonary function outcomes for assessing cystic fibrosis care.
Wagener, Jeffrey S; Elkin, Eric P; Pasta, David J; Schechter, Michael S; Konstan, Michael W; Morgan, Wayne J
2015-05-01
Assessing cystic fibrosis (CF) patient quality of care requires the choice of an appropriate outcome measure. We looked systematically and in detail at pulmonary function outcomes that potentially reflect clinical practice patterns. Epidemiologic Study of Cystic Fibrosis data were used to evaluate six potential outcome variables (2002 best FVC, FEV(1), and FEF(25-75) and rate of decline for each from 2000 to 2002). We ranked CF care sites by outcome measure and then assessed any association with practice patterns and follow-up pulmonary function. Sites ranked in the top quartile had more frequent monitoring, treatment of exacerbations, and use of chronic therapies and oral corticosteroids. The follow-up rate of pulmonary function decline was not predicted by site ranking. Different pulmonary function outcomes associate slightly differently with practice patterns, although annual FEV(1) is at least as good as any other measure. Current site ranking only moderately predicts future ranking. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Hyperpolarized Gas MRI: Technique and Applications
McAdams, Holman P.; Kaushik, S. Sivaram; Driehuys, Bastiaan
2015-01-01
Synopsis Functional imaging today offers a rich world of information that is more sensitive to changes in lung structure and function than traditionally obtained pulmonary function tests. Hyperpolarized helium (3He) and xenon (129Xe) MR imaging of the lungs provided new sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure and gas exchange. With the recent scarcity in the supply of 3He the field of hyperpolarized gas imaging shifted to the use of cheaper and naturally available 129Xe. Xenon is well tolerated and recent technical advances have ensured that the 129Xe image quality is on par with that of 3He. The added advantage of 129Xe is its solubility in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. With a plethora of contrast mechanisms, hyperpolarized gases and 129Xe in particular, stands to be an excellent probe of pulmonary structure and function, and provide sensitive and non-invasive biomarkers for a wide variety of pulmonary diseases. PMID:25952516
Liao, Hua; Shen, Ying; Wang, Pengjun
2015-05-01
To study the pulmonary function and nasal resistance characteristics of patients with chronic nose-sinusitis and nasal polyps (CRSwNP), to explore the evaluation role of nasal resistance in nasal ventilation function and the effect of endoscopic sinus surgery on pulmonary function in patients with CRSwNP. Fifty CRSwNP patients that met the study criteria were selected . The patients were performed endoscopic surgeries according to Messerklinger surgical procedures under general anesthesia. Extent of surgery was based on preoperative CT showing the range of the lesion of disease and endoscopic findings. Perioperative treatments contained intranasal corticosteroids, cephalosporin or penicillin antibiotics, nasal irrigation and other treatments. Main outcome measures included visual analog scale (VAS), endoscopic Lind-Kennedy scores, nasal resistence, pulmonary function in patientsone week before and after surgery, three months and six months after surgery. Pulmonary function includes forced expiratory volume in one second (FEV1), forced vital capacity FEV1/FVC and peak expiratory flow (PEF). The study found that there were significantly positive correlations among VAS score, Lund-Kennedy score and nasal resistance (P < 0.05) in CRSwNP patients, but there is a significantly negative correlation between VAS score, Lund-Kennedy score, nasal resistance and pulmonary function indexes of FEV1, FVC and PEF (P < 0.05). The VAS score, Lund-Kennedy score and nasal resistance values of CRSwNP patients were decreased significantly after comprehensive treatments with nasal endoscopic operation as the major one, the difference was statistically different (P < 0.05). And the pulmonary function indexs (FEV1, FVC, PEF) were significantly increased after surgery in CRSwNP patients. The nasal resistance can objectively and reliably reflect the degree of nasal congestion and the recovery of nasal function in CRSwNP patients after endoscopic sinus surgery. The detection method of nasal resistance is simple. Functional endoscopic sinus surgery can effectively improve the pulmonary ventilation function in CRSwNP patients, providing some clinical references about the prevention and treatment of CRS related lower respiratory disease.
Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity
Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta
2011-01-01
Recently, much scientific attention has been focused on resting brain activity and its investigation through such methods as the analysis of functional connectivity during rest (the temporal correlation of brain activities in different regions). However, investigation of the magnitude of brain activity during rest has focused on the relative decrease of brain activity during a task, rather than on the absolute resting brain activity. It is thus necessary to investigate the association between cognitive factors and measures of absolute resting brain activity, such as cerebral blood flow (CBF), during rest (rest-CBF). In this study, we examined this association using multiple regression analyses. Rest-CBF was the dependent variable and the independent variables included two essential components of cognitive functions, psychometric general intelligence and creativity. CBF was measured using arterial spin labeling and there were three analyses for rest-CBF; namely mean gray matter rest-CBF, mean white matter rest-CBF, and regional rest-CBF. The results showed that mean gray and white matter rest-CBF were significantly and positively correlated with individual psychometric intelligence. Furthermore, mean white matter rest-CBF was significantly and positively correlated with creativity. After correcting the effect of mean gray matter rest-CBF the significant and positive correlation between regional rest-CBF in the perisylvian anatomical cluster that includes the left superior temporal gyrus and insula and individual psychometric intelligence was found. Also, regional rest-CBF in the precuneus was significantly and negatively correlated with individual creativity. Significance of these results of regional rest-CBF did not change when the effect of regional gray matter density was corrected. The findings showed mean and regional rest-CBF in healthy young subjects to be correlated with cognitive functions. The findings also suggest that, even in young cognitively intact subjects, resting brain activity (possibly underlain by default cognitive activity or metabolic demand from developed brain structures) is associated with cognitive functions. PMID:21980485
Spruit, Martijn A; Janssen, Paul P; Willemsen, Sonja C P; Hochstenbag, Monique M H; Wouters, Emiel F M
2006-05-01
Although lung cancer is a highly prevalent type of cancer, the effects of an inpatient multidisciplinary rehabilitation program on pulmonary function and exercise capacity have never been studied in these patients. Pulmonary function, 6-min walking distance and peak exercise capacity of 10 patients with a severely impaired pulmonary function following treatment of lung cancer were assessed in this pilot study before and after an 8-week inpatient multidisciplinary rehabilitation program. At baseline, patients had a restrictive pulmonary function and an apparent exercise intolerance (median 6-min walking distance: 63.6% predicted; median peak cycling load: 58.5% predicted). Despite the lack of change in median pulmonary function [FEV1: -0.01L, p = 0.5469], functional exercise capacity [145 m; 43.2% of the initial values, p=0.0020] and peak exercise capacity [26 W; 34.4% of the initial values, p = 0.0078] improved significantly compared to baseline. Future trials have to corroborate the present findings. Nevertheless, patients with lung cancer have a clear indication to start a comprehensive rehabilitation program following intensive treatment of their disease. In fact, based on the results of the present pilot study it appears that these patients are good candidates for pulmonary rehabilitation programs.
Mediating pathways from central obesity to childhood asthma: a population-based longitudinal study.
Chih, An-Hsuan; Chen, Yang-Ching; Tu, Yu-Kang; Huang, Kuo-Chin; Chiu, Tai-Yuan; Lee, Yungling Leo
2016-09-01
The mediating pathways linking obesity and asthma are largely unknown. We aimed to investigate the mediating pathways and to search for the most prominent pathological mechanism between central obesity and childhood asthma.In the Taiwan Children Health Study, we collected data on an open cohort of children aged 9-13 years. Children's respiratory outcomes, atopic conditions, obesity measures and pulmonary function were surveyed annually between 2010 and 2012. Exhaled nitric oxide fraction concentrations were recorded in 2012. Generalised estimating equations and general linear models were used to examine the associations between central obesity, possible mediators and asthma. Structural equation models were applied to investigate the pathways that mediate the link between central obesity and asthma.Central obesity (waist-to-hip ratio) most accurately predicted childhood asthma. In the active asthma model, the percentage of mediation was 28.6% for pulmonary function, 18.1% for atopy and 5.7% for airway inflammation. The percentage of mediation for pulmonary function was 40.2% in the lifetime wheeze model. Pulmonary function was responsible for the greatest percentage of mediation among the three mediators in both models.Decline in pulmonary function is the most important pathway in central obesity related asthma. Pulmonary function screening should be applied to obese children for asthma risk prediction. Copyright ©ERS 2016.
Severgnini, Paolo; Selmo, Gabriele; Lanza, Christian; Chiesa, Alessandro; Frigerio, Alice; Bacuzzi, Alessandro; Dionigi, Gianlorenzo; Novario, Raffaele; Gregoretti, Cesare; de Abreu, Marcelo Gama; Schultz, Marcus J; Jaber, Samir; Futier, Emmanuel; Chiaranda, Maurizio; Pelosi, Paolo
2013-06-01
The impact of intraoperative ventilation on postoperative pulmonary complications is not defined. The authors aimed at determining the effectiveness of protective mechanical ventilation during open abdominal surgery on a modified Clinical Pulmonary Infection Score as primary outcome and postoperative pulmonary function. Prospective randomized, open-label, clinical trial performed in 56 patients scheduled to undergo elective open abdominal surgery lasting more than 2 h. Patients were assigned by envelopes to mechanical ventilation with tidal volume of 9 ml/kg ideal body weight and zero-positive end-expiratory pressure (standard ventilation strategy) or tidal volumes of 7 ml/kg ideal body weight, 10 cm H2O positive end-expiratory pressure, and recruitment maneuvers (protective ventilation strategy). Modified Clinical Pulmonary Infection Score, gas exchange, and pulmonary functional tests were measured preoperatively, as well as at days 1, 3, and 5 after surgery. Patients ventilated protectively showed better pulmonary functional tests up to day 5, fewer alterations on chest x-ray up to day 3 and higher arterial oxygenation in air at days 1, 3, and 5 (mmHg; mean ± SD): 77.1 ± 13.0 versus 64.9 ± 11.3 (P = 0.0006), 80.5 ± 10.1 versus 69.7 ± 9.3 (P = 0.0002), and 82.1 ± 10.7 versus 78.5 ± 21.7 (P = 0.44) respectively. The modified Clinical Pulmonary Infection Score was lower in the protective ventilation strategy at days 1 and 3. The percentage of patients in hospital at day 28 after surgery was not different between groups (7 vs. 15% respectively, P = 0.42). A protective ventilation strategy during abdominal surgery lasting more than 2 h improved respiratory function and reduced the modified Clinical Pulmonary Infection Score without affecting length of hospital stay.
Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Seki, Shinichiro; Obara, Makoto; van Cauteren, Marc; Takahashi, Masaya; Sugimura, Kazuro
2014-04-01
To assess the influence of ultrashort TE (UTE) intervals on pulmonary magnetic resonance imaging (MRI) with UTEs (UTE-MRI) for pulmonary functional loss assessment and clinical stage classification of smokers. A total 60 consecutive smokers (43 men and 17 women; mean age 70 years) with and without COPD underwent thin-section multidetector row computed tomography (MDCT), UTE-MRI, and pulmonary functional measurements. For each smoker, UTE-MRI was performed with three different UTE intervals (UTE-MRI A: 0.5 msec, UTE-MRI B: 1.0 msec, UTE-MRI C: 1.5 msec). By using the GOLD guidelines, the subjects were classified as: "smokers without COPD," "mild COPD," "moderate COPD," and "severe or very severe COPD." Then the mean T2* value from each UTE-MRI and CT-based functional lung volume (FLV) were correlated with pulmonary function test. Finally, Fisher's PLSD test was used to evaluate differences in each index among the four clinical stages. Each index correlated significantly with pulmonary function test results (P < 0.05). CT-based FLV and mean T2* values obtained from UTE-MRI A and B showed significant differences among all groups except between "smokers without COPD" and "mild COPD" groups (P < 0.05). UTE-MRI has a potential for management of smokers and the UTE interval is suggested as an important parameter in this setting. Copyright © 2013 Wiley Periodicals, Inc.
Update on diagnosis and treatment of idiopathic pulmonary fibrosis
Baddini-Martinez, José; Baldi, Bruno Guedes; da Costa, Cláudia Henrique; Jezler, Sérgio; Lima, Mariana Silva; Rufino, Rogério
2015-01-01
Idiopathic pulmonary fibrosis is a type of chronic fibrosing interstitial pneumonia, of unknown etiology, which is associated with a progressive decrease in pulmonary function and with high mortality rates. Interest in and knowledge of this disorder have grown substantially in recent years. In this review article, we broadly discuss distinct aspects related to the diagnosis and treatment of idiopathic pulmonary fibrosis. We list the current diagnostic criteria and describe the therapeutic approaches currently available, symptomatic treatments, the action of new drugs that are effective in slowing the decline in pulmonary function, and indications for lung transplantation. PMID:26578138
Cukic, Vesna
2012-01-01
Introduction: Nowadays an increasing number of lung resections are being done because of the rising prevalence of lung cancer that occurs mainly in patients with limited lung function, what is caused by common etiologic factor - smoking cigarettes. Loss of lung tissue in such patients can worsen much the postoperative pulmonary function. So it is necessary to asses the postoperative pulmonary function especially after maximal resection, i.e. pneumonectomy. Objective: To check over the accuracy of preoperative prognosis of postoperative lung function after pneumonectomy using spirometry and lung perfusion scinigraphy. Material and methods: The study was done on 17 patients operated at the Clinic for thoracic surgery, who were treated previously at the Clinic for Pulmonary Diseases “Podhrastovi” in the period from 01. 12. 2008. to 01. 06. 2011. Postoperative pulmonary function expressed as ppoFEV1 (predicted postoperative forced expiratory volume in one second) was prognosticated preoperatively using spirometry, i.e.. simple calculation according to the number of the pulmonary segments to be removed and perfusion lung scintigraphy. Results: There is no significant deviation of postoperative achieved values of FEV1 from predicted ones obtained by both methods, and there is no significant differences between predicted values (ppoFEV1) obtained by spirometry and perfusion scintigraphy. Conclusion: It is necessary to asses the postoperative pulmonary function before lung resection to avoid postoperative respiratory failure and other cardiopulmonary complications. It is absolutely necessary for pneumonectomy, i.e.. maximal pulmonary resection. It can be done with great possibility using spirometry or perfusion lung scintigraphy. PMID:23378687
Pulmonary adverse effects of welding fume in automobile assembly welders.
Sharifian, Seyed Akbar; Loukzadeh, Ziba; Shojaoddiny-Ardekani, Ahmad; Aminian, Omid
2011-01-01
Welding is one of the key components of numerous manufacturing industries, which has potential physical and chemical health hazards. Many components of welding fumes can potentially affect the lung function. This study investigates the effects of welding fumes on lung function and respiratory symptoms among welders of an automobile manufacturing plant in Iran. This historical cohort study assesses 43 male welders and 129 office workers by a questionnaire to record demographic data, smoking habits, work history and respiratory symptoms as well as lung function status by spirometry. The average pulmonary function values of welders were lower relative to controls with dose-effect relationship between work duration and pulmonary function impairment. The prevalence of chronic bronchitis was higher in welders than controls. Our findings suggest that welders are at risk for pulmonary disease.
Neonatal brain resting-state functional connectivity imaging modalities.
Mohammadi-Nejad, Ali-Reza; Mahmoudzadeh, Mahdi; Hassanpour, Mahlegha S; Wallois, Fabrice; Muzik, Otto; Papadelis, Christos; Hansen, Anne; Soltanian-Zadeh, Hamid; Gelovani, Juri; Nasiriavanaki, Mohammadreza
2018-06-01
Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.
Li, X; Dai, W R; Li, L; Liu, W F; Yang, Z X; Xie, L
2017-11-20
Objective: To investigate the clinical features of pneumoconiosis complicated with pulmo-nary emphysema. Methods: selected 868 patients with pneumoconiosis were selected from December 2015 to December 2016 in Hunan occupational disease prevention and treatment hospital. Collected the results of high-resolution spiral CT, arterial blood gas, ECG, pulmonary function and MRC score. The subjects were divided into pneumoconiosis complicated with pulmonary emphysema group and simple pneumoconiosis group accord-ing to the results of HRCT. The smoking, MRC score, pulmonary function, blood gas and complications were compared. Results: A total of 868 patients were enrolled in the study. Emphysema 232 people, accounting for 26.73%. The incidence of emphysema in the first phase of pneumoconiosis was 12.69%, and the incidence rate of emphysema in pneumoconiosis was 17.03%, The incidence of three Stage pneumoconiosis was highest, up to 60.76%, the incidence of emphysema increased with the increase of stages of pneumoconiosis ( P =0.000) .The smoking index of pneumoconiosis combined with emphysema group was significantly higher than that of simple pneumoconiosis group ( P <0.01) . The MRC score of pneumoconiosis complicated with pulmonary em-physema group was higher than that of simple pneumoconiosis group ( P =0.000) . In pneumoconiosis complicat-ed with pulmonary emphysema group the FEV(1.0)%, FVC%, FEV(1.0)/FVC, DLCO%, oxygen partial pressure were significantly lower than that of simple pneumoconiosis group ( P ≤0.05) . The combined rate of Bullae of lung in pneumoconiosis complicated with pulmonary emphysema group was higher than that of simple pneumo-coniosis group ( P <0.01) . Conclusion: pneumoconiosis stage and smoking. Patients with pneumoconiosis com-plicated with pulmonary emphysema had heavier breathing difficulties, more serious pulmonary function and active endurance, the degree of hypoxia is more serious, and had a higher incidence of complications. The pul-monary function of pneumoconiosis complicated with pulmonary emphysema is not consistent with the typical CPFE.
A reservoir nasal cannula improves protection given by oxygen during muscular exercise in COPD.
Arlati, S; Rolo, J; Micallef, E; Sacerdoti, C; Brambilla, I
1988-06-01
We verified the utility of an oxygen economizer (Pendant Oxymizer) in assuring greater protection than nasal prongs against worsening of oxyhemoglobin resting desaturation (delta SaO2) induced by muscular exercise in 16 patients (ten with chronic obstructive pulmonary disease [COPD] and six with restrictive pulmonary disease). This worsening was quantified as desaturation surface accumulated within five minutes of exercise and was expressed in arbitrary units (au). Each patient carried out the same exercise three times, in a randomized fashion (breathing air or breathing supplemental oxygen [3 L/min] delivered by either nasal prongs or by oxygen economizer). In patients with obstructive disease, delta SaO2 was reduced from 38 +/- 12.0 au when they were breathing air to 18.1 +/- 11.7 au when breathing oxygen by nasal prongs (p less than 0.001) and to 10.1 +/- 9.5 au when breathing oxygen by economizer (p less than 0.001). In patients with restrictive disease, delta SaO2 was reduced from 35.6 +/- 9.9 au when breathing air to 14.9 +/- 10.2 au breathing oxygen by nasal prongs (p less than 0.01) and to 13.7 +/- 10.3 au breathing oxygen by economizer (p less than 0.01). The difference between breathing by economizer and nasal prongs was significant (paired t-test; p less than 0.01) only in patients with COPD. One explanation could lie in the different values of the respiratory rate, which was significantly greater in patients with restrictive disease (20.7 +/- 1.2 breaths per minute at rest and 25.8 +/- 1.5 with exercise) than in patients with obstructive disease (15.3 +/- 1.2 breaths per minute at rest and 20.8 +/- 1.4 with exercise).
Common Genetic Variants Associated with Resting Oxygenation in Chronic Obstructive Pulmonary Disease
Cho, Michael H.; Sørheim, Inga-Cecilie; Lutz, Sharon M.; Castaldi, Peter J.; Lomas, David A.; Coxson, Harvey O.; Edwards, Lisa D.; MacNee, William; Vestbo, Jørgen; Yates, Julie C.; Agusti, Alvar; Calverley, Peter M. A.; Celli, Bartolome; Crim, Courtney; Rennard, Stephen I.; Wouters, Emiel F. M.; Bakke, Per; Tal-Singer, Ruth; Miller, Bruce E.; Gulsvik, Amund; Casaburi, Richard; Wells, J. Michael; Regan, Elizabeth A.; Make, Barry J.; Hokanson, John E.; Lange, Christoph; Crapo, James D.; Beaty, Terri H.; Silverman, Edwin K.; Hersh, Craig P.
2014-01-01
Hypoxemia is a major complication of chronic obstructive pulmonary disease (COPD) that correlates with disease prognosis. Identifying genetic variants associated with oxygenation may provide clues for deciphering the heterogeneity in prognosis among patients with COPD. However, previous genetic studies have been restricted to investigating COPD candidate genes for association with hypoxemia. To report results from the first genome-wide association study (GWAS) of resting oxygen saturation (as measured by pulse oximetry [Spo2]) in subjects with COPD, we performed a GWAS of Spo2 in two large, well characterized COPD populations: COPDGene, including both the non-Hispanic white (NHW) and African American (AA) groups, and Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). We identified several suggestive loci (P < 1 × 10−5) associated with Spo2 in COPDGene in the NHW (n = 2810) and ECLIPSE (n = 1758) groups, and two loci on chromosomes 14 and 15 in the AA group (n = 820) from COPDGene achieving a level of genome-wide significance (P < 5 × 10−8). The chromosome 14 single-nucleotide polymorphism, rs6576132, located in an intergenic region, was nominally replicated (P < 0.05) in the NHW group from COPDGene. The chromosome 15 single-nucleotide polymorphisms were rare in subjects of European ancestry, so the results could not be replicated. The chromosome 15 region contains several genes, including TICRR and KIF7, and is proximal to RHCG (Rh family C glyocoprotein gene). We have identified two loci associated with resting oxygen saturation in AA subjects with COPD, and several suggestive regions in subjects of European descent with COPD. Our study highlights the importance of investigating the genetics of complex traits in different racial groups. PMID:24825563
McDonald, Merry-Lynn N; Cho, Michael H; Sørheim, Inga-Cecilie; Lutz, Sharon M; Castaldi, Peter J; Lomas, David A; Coxson, Harvey O; Edwards, Lisa D; MacNee, William; Vestbo, Jørgen; Yates, Julie C; Agusti, Alvar; Calverley, Peter M A; Celli, Bartolome; Crim, Courtney; Rennard, Stephen I; Wouters, Emiel F M; Bakke, Per; Tal-Singer, Ruth; Miller, Bruce E; Gulsvik, Amund; Casaburi, Richard; Wells, J Michael; Regan, Elizabeth A; Make, Barry J; Hokanson, John E; Lange, Christoph; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P
2014-11-01
Hypoxemia is a major complication of chronic obstructive pulmonary disease (COPD) that correlates with disease prognosis. Identifying genetic variants associated with oxygenation may provide clues for deciphering the heterogeneity in prognosis among patients with COPD. However, previous genetic studies have been restricted to investigating COPD candidate genes for association with hypoxemia. To report results from the first genome-wide association study (GWAS) of resting oxygen saturation (as measured by pulse oximetry [Spo2]) in subjects with COPD, we performed a GWAS of Spo2 in two large, well characterized COPD populations: COPDGene, including both the non-Hispanic white (NHW) and African American (AA) groups, and Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). We identified several suggestive loci (P < 1 × 10(-5)) associated with Spo2 in COPDGene in the NHW (n = 2810) and ECLIPSE (n = 1758) groups, and two loci on chromosomes 14 and 15 in the AA group (n = 820) from COPDGene achieving a level of genome-wide significance (P < 5 × 10(-8)). The chromosome 14 single-nucleotide polymorphism, rs6576132, located in an intergenic region, was nominally replicated (P < 0.05) in the NHW group from COPDGene. The chromosome 15 single-nucleotide polymorphisms were rare in subjects of European ancestry, so the results could not be replicated. The chromosome 15 region contains several genes, including TICRR and KIF7, and is proximal to RHCG (Rh family C glyocoprotein gene). We have identified two loci associated with resting oxygen saturation in AA subjects with COPD, and several suggestive regions in subjects of European descent with COPD. Our study highlights the importance of investigating the genetics of complex traits in different racial groups.
Le Roux, Pierre-Yves; Siva, Shankar; Steinfort, Daniel P; Callahan, Jason; Eu, Peter; Irving, Lou B; Hicks, Rodney J; Hofman, Michael S
2015-11-01
Pulmonary function tests (PFTs) are routinely used to assess lung function, but they do not provide information about regional pulmonary dysfunction. We aimed to assess correlation of quantitative ventilation-perfusion (V/Q) PET/CT with PFT indices. Thirty patients underwent V/Q PET/CT and PFT. Respiration-gated images were acquired after inhalation of (68)Ga-carbon nanoparticles and administration of (68)Ga-macroaggregated albumin. Functional volumes were calculated by dividing the volume of normal ventilated and perfused (%NVQ), unmatched and matched defects by the total lung volume. These functional volumes were correlated with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and diffusing capacity for carbon monoxide (DLCO). All functional volumes were significantly different in patients with chronic obstructive pulmonary disease (P < 0.05). FEV1/FVC and %NVQ had the highest correlation (r = 0.82). FEV1 was also best correlated with %NVQ (r = 0.64). DLCO was best correlated with the volume of unmatched defects (r = -0.55). Considering %NVQ only, a cutoff value of 90% correctly categorized 28 of 30 patients with or without significant pulmonary function impairment. Our study demonstrates strong correlations between V/Q PET/CT functional volumes and PFT parameters. Because V/Q PET/CT is able to assess regional lung function, these data support the feasibility of its use in radiation therapy and preoperative planning and assessing pulmonary dysfunction in a variety of respiratory diseases. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Clinical Applications of Resting State Functional Connectivity
Fox, Michael D.; Greicius, Michael
2010-01-01
During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm. PMID:20592951
[The repercussions of pulmonary congestion on ventilatory volumes, capacities and flows].
Carmo, M M; Ferreira, T; Lousada, N; Bárbara, C; Neves, P R; Correia, J M; Rendas, A B
1994-10-01
To evaluate the effects of pulmonary congestion on pulmonary function. Prospective study performed in patients with left ventricular failure or mitral stenosis. Forty-eight hospitalized patients were included suffering from pulmonary congestion either from left ventricular failure or mitral stenosis. While in hospital all patients were submitted to right heart catheterization by the Swan-Ganz method and also to an echocardiographic examination. Within 48 hours after the patients were submitted to the following lung function studies: lung volumes and capacities by the multi-breath helium dilution method and airway flows by pneumotachography. Respiratory symptoms were evaluated by the Medical Research Council Questionnaire and the functional class classified according to the NYHA. Correlations were made between the functional and clinical data. Regarding the cardiac evaluation patients presented with a mean pulmonary wedge pressure of 19.9 +/- 8.6 mmHg, a cardiac index of 2.5 +/- 0.8 l/min/m2, an end diastolic dimension of the left ventricle of 65.9 +/- 10.1 mm, and end systolic dimension of 51.2 +/- 12.2 mm, with a shortening fraction of 21.8 +/- 9.5%. The pulmonary evaluation showed a restrictive syndrome with a reduction in the mean values of the following parameters: total pulmonary capacity 71 +/- 14.4% of the predicted value (pv), forced vital capacity (FVC) 69.8 +/- 20.5% pv, and forced expiratory volume (FEV1) of 64 +/- 21.8% vp. The index FEV1/FVC was within the normal value of 72.7 +/- 9.7%. These lung function results did not correlate significantly with either the clinical, the hemodynamic or echocardiographic findings. In these group of patients pulmonary congestion led to the development of a restrictive syndrome which failed to correlate in severity with the duration of the disease, the pulmonary wedge pressure and the left ventricular function.
Pulmonary Morbidity in Infancy after Exposure to Chorioamnionitis in Late Preterm Infants
McDowell, Karen M.; Jobe, Alan H.; Fenchel, Matthew; Hardie, William D.; Gisslen, Tate; Young, Lisa R.; Chougnet, Claire A.; Davis, Stephanie D.
2016-01-01
Rationale: Chorioamnionitis is an important cause of preterm birth, but its impact on postnatal outcomes is understudied. Objectives: To evaluate whether fetal exposure to inflammation is associated with adverse pulmonary outcomes at 6 to 12 months’ chronological age in infants born moderate to late preterm. Methods: Infants born between 32 and 36 weeks’ gestational age were prospectively recruited (N = 184). Chorioamnionitis was diagnosed by placenta and umbilical cord histology. Select cytokines were measured in samples of cord blood. Validated pulmonary questionnaires were administered (n = 184), and infant pulmonary function testing was performed (n = 69) between 6 and 12 months’ chronological age by the raised volume rapid thoracoabdominal compression technique. Measurements and Main Results: A total of 25% of participants had chorioamnionitis. Although infant pulmonary function testing variables were lower in infants born preterm compared with historical normative data for term infants, there were no differences between infants with chorioamnionitis (n = 20) and those without (n = 49). Boys and black infants had lower infant pulmonary function testing measurements than girls and white infants, respectively. Chorioamnionitis exposure was associated independently with wheeze (odds ratio [OR], 2.08) and respiratory-related physician visits (OR, 3.18) in the first year of life. Infants exposed to severe chorioamnionitis had increased levels of cord blood IL-6 and greater pulmonary morbidity at age 6 to 12 months than those exposed to mild chorioamnionitis. Elevated IL-6 was associated with significantly more respiratory problems (OR, 3.23). Conclusions: In infants born moderate or late preterm, elevated cord blood IL-6 and exposure to histologically identified chorioamnionitis was associated with respiratory morbidity during infancy without significant changes in infant pulmonary function testing measurements. Black compared with white and boy compared with girl infants had lower infant pulmonary function testing measurements and worse pulmonary outcomes. PMID:27015030
Intrinsic and task-evoked network architectures of the human brain
Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.
2014-01-01
Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964
Correspondence of the brain's functional architecture during activation and rest
Smith, Stephen M.; Fox, Peter T.; Miller, Karla L.; Glahn, David C.; Fox, P. Mickle; Mackay, Clare E.; Filippini, Nicola; Watkins, Kate E.; Toro, Roberto; Laird, Angela R.; Beckmann, Christian F.
2009-01-01
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.” PMID:19620724
[Functional respiratory evolution in two patients with emphysema and pulmonary fibrosis].
Arce, Santiago C; Molinari, Luciana; De Vito, Eduardo L
2009-01-01
Combined pulmonary fibrosis and emphysema (CPFE) is a frequently under-diagnosed condition. Isolated pulmonary function tests (PFT) can give rise to misinterpretations. We have found no reports on these patients' spirometric progression. We describe two cases of CPFE, showing long-term functional evolution to have a more accurate understanding of current spirometric values. The most relevant findings are: 1) spirometry with discrete functional alterations in the presence of a marked dyspnea and the need, in one patient, for chronic oxygen therapy; and 2) functional evolution reflecting "pseudonormalisation" of the initial obstructive spirometric pattern, possibly as a result of fibrosis development. A mild obstructive defect in a patient with chronic airflow limitation and marked impairment of his/her clinical status and functional class should alert on the possibility of associated pulmonary fibrosis. A computed tomography (CT) and previous PFTs will allow a better understanding of this condition.
A resting state functional magnetic resonance imaging study of concussion in collegiate athletes.
Czerniak, Suzanne M; Sikoglu, Elif M; Liso Navarro, Ana A; McCafferty, Joseph; Eisenstock, Jordan; Stevenson, J Herbert; King, Jean A; Moore, Constance M
2015-06-01
Sports-related concussions are currently diagnosed through multi-domain assessment by a medical professional and may utilize neurocognitive testing as an aid. However, these tests have only been able to detect differences in the days to week post-concussion. Here, we investigate a measure of brain function, namely resting state functional connectivity, which may detect residual brain differences in the weeks to months after concussion. Twenty-one student athletes (9 concussed within 6 months of enrollment; 12 non-concussed; between ages 18 and 22 years) were recruited for this study. All participants completed the Wisconsin Card Sorting Task and the Color-Word Interference Test. Neuroimaging data, specifically resting state functional Magnetic Resonance Imaging data, were acquired to examine resting state functional connectivity. Two sample t-tests were used to compare the neurocognitive scores and resting state functional connectivity patterns among concussed and non-concussed participants. Correlations between neurocognitive scores and resting state functional connectivity measures were also determined across all subjects. There were no significant differences in neurocognitive performance between concussed and non-concussed groups. Concussed subjects had significantly increased connections between areas of the brain that underlie executive function. Across all subjects, better neurocognitive performance corresponded to stronger brain connectivity. Even at rest, brains of concussed athletes may have to 'work harder' than their healthy peers to achieve similar neurocognitive results. Resting state brain connectivity may be able to detect prolonged brain differences in concussed athletes in a more quantitative manner than neurocognitive test scores.
Ito, Hiroki; Murata, Masaya; Ide, Yujiro; Sugano, Mikio; Kanno, Kazuyoshi; Imai, Kenta; Ishido, Motonori; Fukuba, Ryohei; Sakamoto, Kisaburo
2016-01-01
OBJECTIVES Fontan candidates with mixed totally anomalous pulmonary venous connection often have postoperative pulmonary venous obstruction after cavopulmonary anastomosis. Because some pulmonary venous obstructions have no intimal hypertrophy at reoperation, we considered such pulmonary venous obstructions to be caused by 3D deformities arising from dissection or mobilization of the vessels, and hypothesized that keeping the pulmonary venous branches in a natural position could avoid such obstruction. Here, we evaluated a modified hemi-Fontan strategy consisting of minimal dissection with no division of vessels and patch separation between systemic and pulmonary venous flow. METHODS We retrospectively reviewed clinical records of infants with a functional single ventricle and supracardiac anomalous pulmonary venous connection who had undergone this procedure between 2002 and 2012. RESULTS Nine infants underwent this procedure (median age, 5.6 months; range 3.2–30), all with right atrial isomerism and several pulmonary venous branches directly and separately connecting to the superior vena cava. In 5 patients, all pulmonary veins drained into the superior vena cava; in 1, the right pulmonary veins drained into the superior vena cava and in 3, a pulmonary venous branch drained into the superior vena cava. The median follow-up was 6.9 years (0.8–13 years). Three patients underwent reoperation for postoperative pulmonary venous obstruction caused by intimal hypertrophy; however, we confirmed no pulmonary venous obstruction caused by 3D deformities on the pulmonary venous branches connecting separately to the superior vena cava. Although 2 patients were effectively relieved from pulmonary venous obstruction, 1 died due to recurrent pulmonary venous obstruction. There was no late death and no sinus-node dysfunction. Eight patients underwent successful Fontan operation and catheterization. The median interval from the Fontan operation to the latest catheterization was 3.7 years (0.9–3.7 years). The median arterial oxygen saturation was 94% (91–97%) and the central venous pressure was 12 mmHg (8–14 mmHg); no deficiency of pulmonary arteries and veins was noted. CONCLUSIONS For patients with functional single ventricle and anomalous pulmonary venous connections to the superior vena cava, our novel strategy of second-stage palliation could avoid postoperative pulmonary venous obstruction caused by 3D deformities, but may not eliminate pulmonary venous obstruction caused by intimal hypertrophy. PMID:26860898
Normal Physiological Values for Conscious Pigs Used in Biomedical Research
1989-05-01
6. Cardiovascular and Pulmonary Functions........... 18 TABLE 7. Bioenergetics..................................... 19 TABLE 8. Renal Function...procedure developed in our laboratory. Plasma concentrations of aldosterone, cortisol, total T3, total T4, free T4, insulin and glucagon were...pulmonary vascular resistance , alveolar ventilation, alveolar ventilation/perfusion ratio, arterial 02 transport, tissue 02 extraction ratio, pulmonary
Ofir, Dror; Yanir, Yoav; Eynan, Mirit; Aviner, Ben; Biram, Adi; Mullokandov, Michael; Bar, Ronen; Arieli, Yehuda
2017-01-01
Structural changes in the human body resulting from aging may affect the response to altered levels of O 2 and CO 2 . An abnormal ventilatory response to a buildup of CO 2 in the inspired air due to rebreathing may result in adverse effects, which will impair the individual's ability to function under stress. The purpose of this study was to evaluate the effect of age on the respiratory response to wearing an escape hood at rest and during mild exercise. Subjects were seven healthy, young adult males (20-30 years) and seven healthy, middle-aged males (45-65 years). Inspired CO 2 and O 2 , breathing pattern (tidal volume [V T ] and breathing frequency [F]), and mouth inspiratory and expiratory pressures, were measured at rest and during mild exercise (50 w) while wearing the CAPS 2000 escape hood (Shalon Chemical Industries and Supergum-Rubber and Plastic Technology, Tel Aviv, Israel). Resting inspired CO 2 was higher in the middle-aged group compared with the young group (2.25% ± 0.42% and 1.80% ± 0.34%, respectively; p < 0.05). Breathing pattern in the middle-aged group tended to be shallower and faster compared with the young group (V T : 0.69 ± 0.27 L and 0.79 ± 0.32 L, respectively; F: 14.7 ± 4.0 breaths/min and 12.4 ± 2.8 breaths/min, respectively). During exercise, there was a trend toward a high inspired CO 2 in the middle-aged group compared with the young group (2.18% ± 0.40% CO 2 and 1.94% ± 0.70% CO 2 , respectively). A correlation was found between age and inspired CO 2 when wearing the escape hood (r 2 = 0.375; p < 0.05). The age-related decrease in pulmonary function, together with the finding in this study of a higher inspired CO 2 in middle-aged subjects wearing the CAPS 2000, may represent a greater risk for persons of middle age wearing an escape hood. On the basis of this study, it would appear reasonable to recommend that new respirators be evaluated on subjects from different age groups, to ensure the safety of both young and old. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Pulmonary function studies in young healthy Malaysians of Kelantan, Malaysia.
Bandyopadhyay, Amit
2011-11-01
Pulmonary function tests have been evolved as clinical tools in diagnosis, management and follow up of respiratory diseases as it provides objective information about the status of an individual's respiratory system. The present study was aimed to evaluate pulmonary function among the male and female young Kelantanese Malaysians of Kota Bharu, Malaysia, and to compare the data with other populations. A total of 128 (64 males, 64 females) non-smoking healthy young subjects were randomly sampled for the study from the Kelantanese students' population of the University Sains Malaysia, Kota Bharu Campus, Kelantan, Malaysia. The study population (20-25 yr age group) had similar socio-economic background. Each subject filled up the ATS (1978) questionnaire to record their personal demographic data, health status and consent to participate in the study. Subjects with any history of pulmonary diseases were excluded from the study. The pulmonary function measurements exhibited significantly higher values among males than the females. FEV 1% did not show any significant inter-group variation probably because the parameter expresses FEV 1 as a percentage of FVC. FVC and FEV 1 exhibited significant correlations with body height and body mass among males whereas in the females exhibited significant correlation with body mass, body weight and also with age. FEV 1% exhibited significant correlation with body height and body mass among males and with body height in females. FEF 25-75% did not show any significant correlation except with body height among females. However, PEFR exhibited significant positive correlation with all the physical parameters except with age among the females. On the basis of the existence of significant correlation between different physical parameters and pulmonary function variables, simple and multiple regression norms have been computed. From the present investigation it can be concluded that Kelantanese Malaysian youths have normal range of pulmonary function in both the sexes and the computed regression norms may be used to predict the pulmonary function values in the studied population.
Pulmonary function studies in young healthy Malaysians of Kelantan, Malaysia
Bandyopadhyay, Amit
2011-01-01
Background & objectives: Pulmonary function tests have been evolved as clinical tools in diagnosis, management and follow up of respiratory diseases as it provides objective information about the status of an individual's respiratory system. The present study was aimed to evaluate pulmonary function among the male and female young Kelantanese Malaysians of Kota Bharu, Malaysia, and to compare the data with other populations. Methods: A total of 128 (64 males, 64 females) non-smoking healthy young subjects were randomly sampled for the study from the Kelantanese students’ population of the University Sains Malaysia, Kota Bharu Campus, Kelantan, Malaysia. The study population (20-25 yr age group) had similar socio-economic background. Each subject filled up the ATS (1978) questionnaire to record their personal demographic data, health status and consent to participate in the study. Subjects with any history of pulmonary diseases were excluded from the study. Results: The pulmonary function measurements exhibited significantly higher values among males than the females. FEV1% did not show any significant inter-group variation probably because the parameter expresses FEV1 as a percentage of FVC. FVC and FEV1 exhibited significant correlations with body height and body mass among males whereas in the females exhibited significant correlation with body mass, body weight and also with age. FEV1% exhibited significant correlation with body height and body mass among males and with body height in females. FEF25-75% did not show any significant correlation except with body height among females. However, PEFR exhibited significant positive correlation with all the physical parameters except with age among the females. On the basis of the existence of significant correlation between different physical parameters and pulmonary function variables, simple and multiple regression norms have been computed. Interpretation & conclusions: From the present investigation it can be concluded that Kelantanese Malaysian youths have normal range of pulmonary function in both the sexes and the computed regression norms may be used to predict the pulmonary function values in the studied population. PMID:22199104
Smith, Kelly J; Elidemir, Okan; Dishop, Megan K; Eldin, Karen W; Tatevian, Nina; Moore, Robert H
2006-09-01
Here we present the unusual case of an adolescent with cystic fibrosis presenting with declining pulmonary function and diffuse micronodular pulmonary disease. This case illustrates the radiographic and pathologic findings associated with the intravenous injection and pulmonary arterial embolization of insoluble pharmaceutical-tablet constituents. The number of first-time users reporting nonmedical use of prescription pain relievers is increasing dramatically, especially in adolescents. Recognition of both the diagnostic imaging features and histologic features on lung biopsy are critical steps for early diagnosis, intervention, and potential prevention of sudden death in these at-risk patients.
NASA Technical Reports Server (NTRS)
Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.
1988-02-25
chest pain and/or dyspnea are present. a. Musculoskeletal pain b. Pleurisy c. Pulmonary embolus d. Spontaneous mediastinal emphysema a...Treatment includes mild analgesics, heat therapy, and, perhaps, rest. b) Pleurisy denotes inflammation of the pleura. It is seen in the setting of...bronchitis or pneumonia; the symptoms of both assist in differentiating pleurisy from pneumothorax. Chest discomfort is pleuristic. Unless there are
Anand, R.
2016-01-01
Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery. PMID:27525116
Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Anand, R; Mahale, Ajith
2016-01-01
Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery.
Aoki, Hitomi; Hara, Akira; Kunisada, Takahiro
2015-05-01
Neural crest cells (NCCs) emerge from the dorsal region of the neural tube of vertebrate embryos and have the pluripotency to differentiate into both neuronal and non-neuronal lineages including melanocytes. Rest, also known as NRSF (neuro-restrictive silencer factor), is a regulator of neuronal development and function and suggested to be involved in the lineage specification of NCCs. However, further investigations of Rest gene functions in vivo have been hampered by the fact that Rest null mice show early embryonic lethality. To investigate the function of Rest in NCC development, we recently established NCC-specific Rest conditional knockout (CKO) mice and observed their neonatal death. Here, we have established viable heterozygous NCC-specific Rest CKO mice to analyze the function of Rest in an NCC-derived melanocyte cell lineage and found that the white spotting phenotype was associated with the reduction in the number of melanoblasts in the embryonic skin. The Rest deletion induced after the specification to melanocytes did not reduce the number of melanoblasts; therefore, the expression of REST during the early neural crest specification stage was necessary for the normal development of melanoblasts to cover all of the skin. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
Inapparent pulmonary vascular disease in an ex-heroin user
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonelli Incalzi, R.; Ludovico Maini, C.; Giuliano Bonetti, M.
1986-04-01
A severe pulmonary vascular derangement, usually reported in drug addicts, was diagnosed in a 28-year-old asymptomatic ex-heroin user by means of fortuitously performed pulmonary perfusion imaging. Neither physical findings nor pulmonary function tests, aroused suspicion of the diagnosis. A search for asymptomatic pulmonary vascular disease probably should be undertaken in drug addicts.
Liu, Jia-Ming; Shen, Jian-Xiong; Zhang, Jian-Guo; Zhao, Hong; Li, Shu-Gang; Zhao, Yu; Qiu, Giu-Xing
2012-01-01
It has been stated that preoperative pulmonary function tests are essential to assess the surgical risk in patients with scoliosis. Arterial blood gas tests have also been used to evaluate pulmonary function before scoliotic surgery. However, few studies have been reported. The aim of this study was to investigate the roles of preoperative arterial blood gas tests in the surgical treatment of scoliosis with moderate or severe pulmonary dysfunction. This study involved scoliotic patients with moderate or severe pulmonary dysfunction (forced vital capacity < 60%) who underwent surgical treatment between January 2002 and April 2010. A total of 73 scoliotic patients (23 males and 50 females) with moderate or severe pulmonary dysfunction were included. The average age of the patients was 16.53 years (ranged 10 - 44). The demographic distribution, medical records, and radiographs of all patients were collected. All patients received arterial blood gas tests and pulmonary function tests before surgery. The arterial blood gas tests included five parameters: partial pressure of arterial oxygen, partial pressure of arterial carbon dioxide, alveolar-arterial oxygen tension gradient, pH, and standard bases excess. The pulmonary function tests included three parameters: forced expiratory volume in 1 second ratio, forced vital capacity ratio, and peak expiratory flow ratio. All five parameters of the arterial blood gas tests were compared between the two groups with or without postoperative pulmonary complications by variance analysis. Similarly, all three parameters of the pulmonary function tests were compared. The average coronal Cobb angle before surgery was 97.42° (range, 50° - 180°). A total of 15 (20.5%) patients had postoperative pulmonary complications, including hypoxemia in 5 cases (33.3%), increased requirement for postoperative ventilatory support in 4 (26.7%), pneumonia in 2 (13.3%), atelectasis in 2 (13.3%), pneumothorax in 1 (6.7%), and hydrothorax in 1 (6.7%). No significant differences in demographic characteristics or perioperative factors (P > 0.05) existed between the two groups with or without postoperative pulmonary complications. According to the variance analysis, there were no statistically significant differences in any parameter of the arterial blood gas tests between the two groups. No significant correlation between the results of the preoperative arterial blood gas tests and postoperative pulmonary complications existed in scoliotic patients with moderate or severe pulmonary dysfunction. However, the postoperative complications tended to increase with the decrease of partial pressure of arterial oxygen in the arterial blood gas tests.
Huang, Yu-Sen; Hsu, Hsao-Hsun; Chen, Jo-Yu; Tai, Mei-Hwa; Jaw, Fu-Shan; Chang, Yeun-Chung
2014-01-01
This study strived to evaluate the relationship between degree of pulmonary emphysema and cardiac ventricular function in chronic obstructive pulmonary disease (COPD) patients with pulmonary hypertension (PH) using electrocardiographic-gated multidetector computed tomography (CT). Lung transplantation candidates with the diagnosis of COPD and PH were chosen for the study population, and a total of 15 patients were included. The extent of emphysema is defined as the percentage of voxels below -910 Hounsfield units in the lung windows in whole lung CT without intravenous contrast. Heart function parameters were measured by electrocardiographic-gated CT angiography. Linear regression analysis was conducted to examine the associations between percent emphysema and heart function indicators. Significant correlations were found between percent emphysema and right ventricular (RV) measurements, including RV end-diastolic volume (R(2) = 0.340, p = 0.023), RV stroke volume (R(2) = 0.406, p = 0.011), and RV cardiac output (R(2) = 0.382, p = 0.014); the correlations between percent emphysema and left ventricular function indicators were not observed. The study revealed that percent emphysema is correlated with RV dysfunction among COPD patients with PH. Based on our findings, percent emphysema can be considered for use as an indicator to predict the severity of right ventricular dysfunction among COPD patients.
Abolmaali, Nasreddin; Koch, Arne; Götzelt, Knut; Hahn, Gabriele; Fitze, Guido; Vogelberg, Christian
2010-07-01
To compare MRI-based functional pulmonary and cardiac measurements in the long-term follow-up of children operated on for left-sided congenital diaphragmatic hernia (CDH) with age- and body size-matched healthy controls. Twelve children who received immediate postnatal surgery for closure of isolated left-sided CDH were included and received basic medical examinations, pulmonary function testing and echocardiography. MRI included measurement of lung volume, ventricular function assessment and velocity-encoded imaging of the pulmonary arteries and was compared with the data for 12 healthy children matched for age and body size. While patients' clinical test results were not suspicious, comparison between the MRI data for patients and those for healthy controls revealed significant differences. In patients, the volumes of the left lungs were increased and the tidal volume was larger on the right side. While the stroke volumes of both ventricles were reduced, heart rate and ejection fraction were increased. Flow, acceleration time and cross-sectional area of the left pulmonary artery were reduced. Functional MRI detected pulmonary and cardiac findings in the late follow-up of CDH children which may be missed by standard clinical methods and might be relevant for decisions regarding late outcome and treatment.
Gabard-Durnam, Laurel Joy; Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim
2016-04-27
Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long-term phasic molding hypothesis that resting-state network development is influenced by recurring stimulus-elicited connectivity through prospective examination of the developing human amygdala-cortical functional connections. Our results provide critical insight into how early environmental events sculpt functional network architecture across development and highlight childhood as a potential developmental period of heightened malleability for the amygdala-medial prefrontal cortex circuit. These findings have implications for how both positive and adverse experiences influence the developing brain and motivate future investigations of whether this molding mechanism reflects a general phenomenon of brain development. Copyright © 2016 the authors 0270-6474/16/364772-14$15.00/0.
Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim
2016-01-01
Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. SIGNIFICANCE STATEMENT A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long-term phasic molding hypothesis that resting-state network development is influenced by recurring stimulus-elicited connectivity through prospective examination of the developing human amygdala-cortical functional connections. Our results provide critical insight into how early environmental events sculpt functional network architecture across development and highlight childhood as a potential developmental period of heightened malleability for the amygdala-medial prefrontal cortex circuit. These findings have implications for how both positive and adverse experiences influence the developing brain and motivate future investigations of whether this molding mechanism reflects a general phenomenon of brain development. PMID:27122035
Hassel, Erlend; Berre, Anne Marie; Skjulsvik, Anne Jarstein; Steinshamn, Sigurd
2014-09-28
Right ventricular dysfunction in COPD is common, even in the absence of pulmonary hypertension. The aim of the present study was to examine the effects of high intensity interval training (HIIT) on right ventricular (RV) function, as well as pulmonary blood vessel remodeling in a mouse model of COPD. 42 female A/JOlaHsd mice were randomized to exposure to either cigarette smoke or air for 6 hours/day, 5 days/week for 14 weeks. Mice from both groups were further randomized to sedentariness or HIIT for 4 weeks. Cardiac function was evaluated by echocardiography and muscularization of pulmonary vessel walls by immunohistochemistry. Smoke exposure induced RV systolic dysfunction demonstrated by reduced tricuspid annular plane systolic excursion. HIIT in smoke-exposed mice reversed RV dysfunction. There were no significant effects on the left ventricle of neither smoke exposure nor HIIT. Muscularization of the pulmonary vessels was reduced after exercise intervention, but no significant effects on muscularization were observed from smoke exposure. RV function was reduced in mice exposed to cigarette smoke. No Increase in pulmonary vessel muscularization was observed in these mice, implying that other mechanisms caused the RV dysfunction. HIIT attenuated the RV dysfunction in the smoke exposed mice. Reduced muscularization of the pulmonary vessels due to HIIT suggests that exercise training not only affects the heart muscle, but also has important effects on the pulmonary vasculature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krzyzanowski, M.; Sherrill, D.L.; Paoletti, P.
The data from consecutive surveys of the Tucson Epidemiologic Study (1981-1988) were used to evaluate the relationship in cigarette smokers of respiratory symptoms and pulmonary function to tar, nicotine, and carbon monoxide (CO) yields of the cigarette. There were 690 subjects who reported smoking regularly in at least one survey, over age 15. After adjustment for intensity and duration of smoking and for depth of inhalation, the risk of chronic phlegm, cough, and dyspnea were not related to the tar and nicotine yields. In 414 subjects with pulmonary function tested in at least one of the three surveys the spirometricmore » indices used were significantly related to the daily dose of tar, nicotine, and CO (product of the cigarette yield and daily number of cigarettes smoked). The effects were more pronounced for past than for current doses. However, the differentiation of pulmonary function due to various yields of cigarettes was small in comparison to the difference in pulmonary function between smokers and nonsmokers.« less
Cardiovascular Adaptations to Long Duration Head-Down Tilt Bed Rest
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Martin, David S.; Perez, Sondar A.; Ribeiro, Christine; Stenger, Michael B.; Summers, Richard; Meck, Janice V.
2008-01-01
INTRODUCTION: Orthostatic hypotension is a serious risk for crewmembers returning from spaceflight. Numerous cardiovascular mechanisms have been proposed to account for this problem, including vascular and cardiac dysfunction, which we studied during bed rest. METHODS: Thirteen subjects were studied before and during bed rest. Statistical analysis was limited to the first 49-60 days of bed rest, and compared to pre-bed rest data. Ultrasound data were collected on vascular and cardiac structure and function. Tilt testing was conducted for 30 minutes or until presyncopal symptoms intervened. RESULTS: Plasma volume was significantly reduced by day 7 of bed rest. Flow-mediated dilation in the leg was significantly increased at bed rest day 49. Arterial responses to nitroglycerin differed in the arm and leg, but did not change as a result of bed rest. Intimal-medial thickness markedly decreased at bed rest days 21, 35 and 49. Several cardiac functional parameters including isovolumic relaxation time, ejection time and myocardial performance index were significantly increased (indicating a decrease in cardiac function) during bed rest. There was a trend for decreased orthostatic tolerance following 60 days of bed rest. DISCUSSION: These data suggest that 6 head-down tilt bed rest alters cardiovascular structure and function in a pattern similar to short duration spaceflight. Additionally, the vascular alterations are primarily seen in the lower body, while vessels of the upper body are unaffected. KEY WORDS: spaceflight, orthostatic intolerance, hypotension, fluid-shift, plasma volume
Intrinsic Resting-State Functional Connectivity in the Human Spinal Cord at 3.0 T.
San Emeterio Nateras, Oscar; Yu, Fang; Muir, Eric R; Bazan, Carlos; Franklin, Crystal G; Li, Wei; Li, Jinqi; Lancaster, Jack L; Duong, Timothy Q
2016-04-01
To apply resting-state functional magnetic resonance (MR) imaging to map functional connectivity of the human spinal cord. Studies were performed in nine self-declared healthy volunteers with informed consent and institutional review board approval. Resting-state functional MR imaging was performed to map functional connectivity of the human cervical spinal cord from C1 to C4 at 1 × 1 × 3-mm resolution with a 3.0-T clinical MR imaging unit. Independent component analysis (ICA) was performed to derive resting-state functional MR imaging z-score maps rendered on two-dimensional and three-dimensional images. Seed-based analysis was performed for cross validation with ICA networks by using Pearson correlation. Reproducibility analysis of resting-state functional MR imaging maps from four repeated trials in a single participant yielded a mean z score of 6 ± 1 (P < .0001). The centroid coordinates across the four trials deviated by 2 in-plane voxels ± 2 mm (standard deviation) and up to one adjacent image section ± 3 mm. ICA of group resting-state functional MR imaging data revealed prominent functional connectivity patterns within the spinal cord gray matter. There were statistically significant (z score > 3, P < .001) bilateral, unilateral, and intersegmental correlations in the ventral horns, dorsal horns, and central spinal cord gray matter. Three-dimensional surface rendering provided visualization of these components along the length of the spinal cord. Seed-based analysis showed that many ICA components exhibited strong and significant (P < .05) correlations, corroborating the ICA results. Resting-state functional MR imaging connectivity networks are qualitatively consistent with known neuroanatomic and functional structures in the spinal cord. Resting-state functional MR imaging of the human cervical spinal cord with a 3.0-T clinical MR imaging unit and standard MR imaging protocols and hardware reveals prominent functional connectivity patterns within the spinal cord gray matter, consistent with known functional and anatomic layouts of the spinal cord.
IDENTIFICATION AND CHARACTERIZATION OF DISEASE USING PULMONARY FUNCTION TESTS
Abstract
Pulmonary function testing is used routinely in human medicine to objectively define functional deficits in individuals with respiratory disease. Despite the fact that respiratory disease is a common problem in veterinary medicine, evaluation of the small animal pa...
Taveira-DaSilva, Angelo M; Julien-Williams, Patricia; Jones, Amanda M; Moss, Joel
2016-07-01
Because pneumothorax is frequent in lymphangioleiomyomatosis, patients have expressed concerns regarding the risk of pneumothorax associated with pulmonary function or exercise testing. Indeed, pneumothorax has been reported in patients with lung disease after both of these tests. The aim of this study was to determine the incidence of pneumothorax in patients with lymphangioleiomyomatosis during admissions to the National Institutes of Health Clinical Research Center between 1995 and 2015. Medical records were reviewed to identify patients who had a pneumothorax during their stay at the National Institutes of Health. A total of 691 patients underwent 4,523 pulmonary function tests and 1,900 exercise tests. Three patients developed pneumothorax after pulmonary function tests and/or exercise tests. The incidence of pneumothorax associated with lung function testing was 0.14 to 0.29 of 100 patients or 0.02 to 0.04 of 100 tests. The incidence of pneumothorax in patients undergoing exercise testing was 0.14 to 0.28 of 100 patients or 0.05 to 0.10 of 100 tests. The risk of pneumothorax associated with pulmonary function or exercise testing in patients with lymphangioleiomyomatosis is low. Published by Elsevier Inc.
Use of a turbine in a breath-by-breath computer-based respiratory measurement system.
Venkateswaran, R S; Gallagher, R R
1997-01-01
The Computer-Based Respiratory Measurement System (CBRMS) is capable of analyzing individual breaths to monitor the kinetics of oxygen uptake, carbon dioxide production, tidal volumes, pulmonary ventilation, and other respiratory parameters during rest, exercise, and recovery. Respiratory gas volumes are measured by a calibrated turbine transducer while the respiratory gas concentrations are measured by a calibrated, fast-responding medical gas analyzer. To improve accuracy of the results, the inspiratory volumes and gas concentrations are measured and not assumed to be equal to expiratory volumes or ambient concentrations respectively. The respiratory gas volumes and concentration signals are digitized and stored in arrays. The gas volumes are converted to flow signals by software differentiation. These digitized data arrays are stored as files in a personal computer. Time alignment of the flow and gas concentration signals is performed at each breath for maximum accuracy in analysis. For system verification, data were obtained under resting conditions and under constant load exercises at 50 W, 100 W, and 150 W. These workloads were performed by a healthy, male subject on a bicycle ergometer. A strong correlation existed between the CBRMS steady-state results and the standard end-expirate bag collection technique. Thus, there is reason to believe that the CBRMS is capable of calculating respiratory transient responses accurately, a significant contribution to an understanding of total respiratory system function.
The rise in carboxyhemoglobin from repeated pulmonary diffusing capacity tests.
Zavorsky, Gerald S
2013-03-01
The purpose of this study determined the rise in carboxyhemoglobin percentage (COHb) from repeated pulmonary diffusing capacity tests using 5 or 10s single breath-hold maneuvers. Five male and four female non-smokers [baseline COHb=1.2 (SD 0.5%)] performed repeated pulmonary diffusing capacity testing on two separate days. The days were randomized to either repeated 10s (0.28% CO), or 5s (0.28% CO, 55ppm NO) breath-hold maneuvers. Twenty-two 5s breath-hold maneuvers, each separated by 4min rest, raised COHb to 11.1 (1.4)% and minimally raised the methemoglobin percentage (METHb) by 0.3 (0.2)% to a value of 0.8 (0.2)%. After the 22nd test, pulmonary diffusing capacity for carbon monoxide (DLCO) was reduced by about 4mL/min/mmHg, equating to a 0.44% increase in COHb per 5s breath-hold maneuver and a concomitant 0.35mL/min/mmHg decrease in DLCO. Pulmonary diffusing capacity for nitric oxide (DLNO) was not altered after 22 tests. On another day, the 10s single breath-hold maneuver increased COHb by 0.64% per test, and reduced DLCO by 0.44mL/min/mmHg per test. In conclusion, 5s breath-hold maneuvers do not appreciably raise METHb or DLNO, and DLCO is only significantly reduced when COHb is at least 6%. Copyright © 2013 Elsevier B.V. All rights reserved.
Rakshit, Raj; Khasnobish, Anwesha; Chowdhury, Arijit; Sinharay, Arijit; Pal, Arpan; Chakravarty, Tapas
2018-04-25
Smoking causes unalterable physiological abnormalities in the pulmonary system. This is emerging as a serious threat worldwide. Unlike spirometry, tidal breathing does not require subjects to undergo forceful breathing maneuvers and is progressing as a new direction towards pulmonary health assessment. The aim of the paper is to evaluate whether tidal breathing signatures can indicate deteriorating adult lung condition in an otherwise healthy person. If successful, such a system can be used as a pre-screening tool for all people before some of them need to undergo a thorough clinical checkup. This work presents a novel systematic approach to identify compromised pulmonary systems in smokers from acquired tidal breathing patterns. Tidal breathing patterns are acquired during restful breathing of adult participants. Thereafter, physiological attributes are extracted from the acquired tidal breathing signals. Finally, a unique classification approach of locally weighted learning with ridge regression (LWL-ridge) is implemented, which handles the subjective variations in tidal breathing data without performing feature normalization. The LWL-ridge classifier recognized compromised pulmonary systems in smokers with an average classification accuracy of 86.17% along with a sensitivity of 80% and a specificity of 92%. The implemented approach outperformed other variants of LWL as well as other standard classifiers and generated comparable results when applied on an external cohort. This end-to-end automated system is suitable for pre-screening people routinely for early detection of lung ailments as a preventive measure in an infrastructure-agnostic way.
INTERPRETATIONS AND LIMITATION OF PULMONARY FUNCTION TESTING IN SMALL LABORATORY ANIMALS
Pulmonary function tests are tools available to the researcher and clinician to evaluate the ability of the lung to perform its essential function of gas exchange. o meet this principal function, the lung needs to operate efficiently with minimal mechanical work as well as provid...
Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.
Tanaka, Rie
2016-07-01
Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.
Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.
2017-01-01
The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654
Pérez Aceves, Eva; Pérez Cristóbal, Mario; Espinola Reyna, Gerardo A; Ariza Andraca, Raul; Xibille Fridmann, Daniel; Barile Fabris, Leonor A
2013-01-01
Pulmonary hemorrhage (PH) occurs in 2-5% of SLE patients, and is associated with a high mortality rate (79-90%). Diagnostic criteria for this complication include: 1) Pulmonary infiltrates, with at least ¾ of lung tissue involved in a chest x ray, 2) Acute respiratory failure, 3) A decrease of 3g/dL or more in hemoglobin levels. PH might lead to organized pneumonia, collagen deposition, and pulmonary fibrosis which in time might cause changes in pulmonary function tests with either restrictive or obstructive patterns. To evaluate the existence of abnormalities in pulmonary function tests after a PH episode. We included patients with SLE and primary vasculitis that developed PH. During the acute episode, we measured SLEDAI in SLE patients, five factor score in microscopic polyangiitis (MPA) and Birmingham Vasculitis Activity Store (BVAS) in granulomatosis with polyangiitis (GPA) (Wegener). We determined the number of PH events, treatment, and ventilator assistance requirements and correlated its association with abnormal pulmonary function tests. We included 10 patients, 7 with SLE, 2 with MPA and 1 with GPA (Wegener). The mean activity measures were: SLEDAI 20.4 ± 7.5, FFS 2, and BVAS 36. Treatment consisted in methylprednisolone (MPD) in 3 patients, MPD plus cyclophosphamide (CY) in 6 patients, and MPD, CY, IV immunoglobulin, and plasmapheresis in one patient. Five patients required ventilatory support. We found abnormalities in pulmonary function tests in 8 patients, three had an obstructive pattern and five a restrictive pattern; 2 patients did not show any change. We did not find a significant association with any of the studied variables. PH might cause abnormalities in pulmonary function tests and prolonged immunosuppressive treatment could be required. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Sparse dictionary learning of resting state fMRI networks.
Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C
2012-07-02
Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.
The effect of pollutional haze on pulmonary function
Liu, Shao-Kun; Cai, Shan; Chen, Yan; Xiao, Bing; Chen, Ping
2016-01-01
Detrimental health effects of atmospheric exposure to ambient particulate matter (PM) have been investigated in numerous studies. Exposure to pollutional haze, the carrier of air pollutants such as PM and nitrogen dioxide (NO2) has been linked to lung and cardiovascular disease, resulting increases in both hospital admissions and mortality. This review focuses on the constituents of pollutional haze and its effects on pulmonary function. The article presents the available information and seeks to correlate pollutional haze and pulmonary function. PMID:26904252
Genome-wide association and large scale follow-up identifies 16 new loci influencing lung function
Artigas, María Soler; Loth, Daan W; Wain, Louise V; Gharib, Sina A; Obeidat, Ma’en; Tang, Wenbo; Zhai, Guangju; Zhao, Jing Hua; Smith, Albert Vernon; Huffman, Jennifer E; Albrecht, Eva; Jackson, Catherine M; Evans, David M; Cadby, Gemma; Fornage, Myriam; Manichaikul, Ani; Lopez, Lorna M; Johnson, Toby; Aldrich, Melinda C; Aspelund, Thor; Barroso, Inês; Campbell, Harry; Cassano, Patricia A; Couper, David J; Eiriksdottir, Gudny; Franceschini, Nora; Garcia, Melissa; Gieger, Christian; Gislason, Gauti Kjartan; Grkovic, Ivica; Hammond, Christopher J; Hancock, Dana B; Harris, Tamara B; Ramasamy, Adaikalavan; Heckbert, Susan R; Heliövaara, Markku; Homuth, Georg; Hysi, Pirro G; James, Alan L; Jankovic, Stipan; Joubert, Bonnie R; Karrasch, Stefan; Klopp, Norman; Koch, Beate; Kritchevsky, Stephen B; Launer, Lenore J; Liu, Yongmei; Loehr, Laura R; Lohman, Kurt; Loos, Ruth JF; Lumley, Thomas; Al Balushi, Khalid A; Ang, Wei Q; Barr, R Graham; Beilby, John; Blakey, John D; Boban, Mladen; Boraska, Vesna; Brisman, Jonas; Britton, John R; Brusselle, Guy G; Cooper, Cyrus; Curjuric, Ivan; Dahgam, Santosh; Deary, Ian J; Ebrahim, Shah; Eijgelsheim, Mark; Francks, Clyde; Gaysina, Darya; Granell, Raquel; Gu, Xiangjun; Hankinson, John L; Hardy, Rebecca; Harris, Sarah E; Henderson, John; Henry, Amanda; Hingorani, Aroon D; Hofman, Albert; Holt, Patrick G; Hui, Jennie; Hunter, Michael L; Imboden, Medea; Jameson, Karen A; Kerr, Shona M; Kolcic, Ivana; Kronenberg, Florian; Liu, Jason Z; Marchini, Jonathan; McKeever, Tricia; Morris, Andrew D; Olin, Anna-Carin; Porteous, David J; Postma, Dirkje S; Rich, Stephen S; Ring, Susan M; Rivadeneira, Fernando; Rochat, Thierry; Sayer, Avan Aihie; Sayers, Ian; Sly, Peter D; Smith, George Davey; Sood, Akshay; Starr, John M; Uitterlinden, André G; Vonk, Judith M; Wannamethee, S Goya; Whincup, Peter H; Wijmenga, Cisca; Williams, O Dale; Wong, Andrew; Mangino, Massimo; Marciante, Kristin D; McArdle, Wendy L; Meibohm, Bernd; Morrison, Alanna C; North, Kari E; Omenaas, Ernst; Palmer, Lyle J; Pietiläinen, Kirsi H; Pin, Isabelle; Polašek, Ozren; Pouta, Anneli; Psaty, Bruce M; Hartikainen, Anna-Liisa; Rantanen, Taina; Ripatti, Samuli; Rotter, Jerome I; Rudan, Igor; Rudnicka, Alicja R; Schulz, Holger; Shin, So-Youn; Spector, Tim D; Surakka, Ida; Vitart, Veronique; Völzke, Henry; Wareham, Nicholas J; Warrington, Nicole M; Wichmann, H-Erich; Wild, Sarah H; Wilk, Jemma B; Wjst, Matthias; Wright, Alan F; Zgaga, Lina; Zemunik, Tatijana; Pennell, Craig E; Nyberg, Fredrik; Kuh, Diana; Holloway, John W; Boezen, H Marike; Lawlor, Debbie A; Morris, Richard W; Probst-Hensch, Nicole; Kaprio, Jaakko; Wilson, James F; Hayward, Caroline; Kähönen, Mika; Heinrich, Joachim; Musk, Arthur W; Jarvis, Deborah L; Gläser, Sven; Järvelin, Marjo-Riitta; Stricker, Bruno H Ch; Elliott, Paul; O’Connor, George T; Strachan, David P; London, Stephanie J; Hall, Ian P; Gudnason, Vilmundur; Tobin, Martin D
2011-01-01
Pulmonary function measures reflect respiratory health and predict mortality, and are used in the diagnosis of chronic obstructive pulmonary disease (COPD). We tested genome-wide association with the forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in 48,201 individuals of European ancestry, with follow-up of top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P<5×10−8) with pulmonary function, in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1, and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function. PMID:21946350
Comparison of continuously acquired resting state and extracted analogues from active tasks.
Ganger, Sebastian; Hahn, Andreas; Küblböck, Martin; Kranz, Georg S; Spies, Marie; Vanicek, Thomas; Seiger, René; Sladky, Ronald; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert
2015-10-01
Functional connectivity analysis of brain networks has become an important tool for investigation of human brain function. Although functional connectivity computations are usually based on resting-state data, the application to task-specific fMRI has received growing attention. Three major methods for extraction of resting-state data from task-related signal have been proposed (1) usage of unmanipulated task data for functional connectivity; (2) regression against task effects, subsequently using the residuals; and (3) concatenation of baseline blocks located in-between task blocks. Despite widespread application in current research, consensus on which method best resembles resting-state seems to be missing. We, therefore, evaluated these techniques in a sample of 26 healthy controls measured at 7 Tesla. In addition to continuous resting-state, two different task paradigms were assessed (emotion discrimination and right finger-tapping) and five well-described networks were analyzed (default mode, thalamus, cuneus, sensorimotor, and auditory). Investigating the similarity to continuous resting-state (Dice, Intraclass correlation coefficient (ICC), R(2) ) showed that regression against task effects yields functional connectivity networks most alike to resting-state. However, all methods exhibited significant differences when compared to continuous resting-state and similarity metrics were lower than test-retest of two resting-state scans. Omitting global signal regression did not change these findings. Visually, the networks are highly similar, but through further investigation marked differences can be found. Therefore, our data does not support referring to resting-state when extracting signals from task designs, although functional connectivity computed from task-specific data may indeed yield interesting information. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Sade, Leyla Elif; Kozan, Hatice; Eroglu, Serpil; Pirat, Bahar; Aydinalp, Alp; Sezgin, Atilla; Muderrisoglu, Haldun
2017-02-01
Residual pulmonary hypertension challenges the right ventricular function and worsens the prognosis in heart transplant recipients. The complex geometry of the right ventricle complicates estimation of its function with conventional transthoracic echocardiography. We evaluated right ventricular function in heart transplant recipients with the use of 3-dimensional echocardiography in relation to systolic pulmonary artery pressure. We performed 32 studies in 26 heart transplant patients, with 6 patients having 2 studies at different time points with different pressures and thus included. Right atrial volume, tricuspid annular plane systolic excursion, peak systolic annular velocity, fractional area change, and 2-dimensional speckle tracking longitudinal strain were obtained by 2-dimensional and tissue Doppler imaging. Three-dimensional right ventricular volumes, ejection fraction, and 3-dimensional right ventricular strain were obtained from the 3-dimensional data set by echocardiographers. Systolic pulmonary artery pressure was obtained during right heart catheterization. Overall mean systolic pulmonary artery pressure was 26 ± 7 mm Hg (range, 14-44 mmHg). Three-dimensional end-diastolic (r = 0.75; P < .001) and end-systolic volumes (r = 0.55; P = .001)correlated well with systolic pulmonary artery pressure. Right ventricular ejection fraction and right atrium volume also significantly correlated with systolic pulmonary artery pressure (r = 0.49 and P = .01 for both). However, right ventricular 2- and 3-dimensional strain, tricuspid annular plane systolic excursion, and tricuspid annular velocity did not. The effects of pulmonary hemodynamic burden on right ventricular function are better estimated by a 3-dimensional volume evaluation than with 3-dimensional longitudinal strain and other 2-dimensional and tissue Doppler measurements. These results suggest that the peculiar anatomy of the right ventricle necessitates 3-dimensional volume quantification in heart transplant recipients in relation to residual pulmonary hypertension.
Single and Concurrent Effects of Endurance and Resistance Training on Pulmonary Function
Khosravi, Maryam; Tayebi, Seyed Morteza; Safari, Hamed
2013-01-01
Objective(s): As not only few evidences but also contradictory results exist with regard to the effects of resistance training (RT) and resistance plus endurance training (ERT) on respiratory system, so the purpose of this research was therefore to study single and concurrent effects of endurance and resistance training on pulmonary function. Materials and Methods: Thirty seven volunteer healthy inactive women were randomly divided into 4 groups: without training as control (C), Endurance Training (ET), RT, and ERT. A spirometry test was taken 24 hrs before and after the training course. The training period (8 weeks, 3 sessions/week) for ET was 20-26 min/session running with 60-80% maximum heart rate (HR max); for RT two circuits/session, 40-60s for each exercise with 60-80% one repetition maximum (1RM), and 1 and 3 minutes active rest between exercises and circuits respectively; and for ERT was in agreement with either ET or RT protocols, but the times of running and circuits were half of ET and RT. Results: ANCOVA showed that ET and ERT increased significantly (P< 0.05) vital capacity (VC), forced vital capacity (FVC), and forced expiratory flows to 25%-75%; ET, RT and ERT increased significantly (P< 0.05) maximum voluntary ventilation (MVV); and only ET increased significantly (P<0.05) peak expiratory flows (PEF); but ET, RT and ERT had no significant effect (P>0.05) on forced expiratory volume in one second (FEV1) and FEV1/FVC ratio. Conclusion: In conclusion, ET combined with RT (ERT) has greater effect on VC, FVC, FEF rating at25%-75%, and also on PEF except MVV, rather than RT, and just ET has greater effect rather than ERT. PMID:24250940
Exercise-associated Excessive Dynamic Airway Collapse in Military Personnel.
Weinstein, Daniel J; Hull, James E; Ritchie, Brittany L; Hayes, Jackie A; Morris, Michael J
2016-09-01
Evaluation of military personnel for exertional dyspnea can present a diagnostic challenge, given multiple unique factors that include wide variation in military deployment. Initial consideration is given to common disorders such as asthma, exercise-induced bronchospasm, and inducible laryngeal obstruction. Excessive dynamic airway collapse has not been reported previously as a cause of dyspnea in these individuals. To describe the clinical and imaging characteristics of military personnel with exertional dyspnea who were found to have excessive dynamic collapse of large airways during exercise. After deployment to Afghanistan or Iraq, 240 active U.S. military personnel underwent a standardized evaluation to determine the etiology of persistent dyspnea on exertion. Study procedures included full pulmonary function testing, impulse oscillometry, exhaled nitric oxide measurement, methacholine challenge testing, exercise laryngoscopy, cardiopulmonary exercise testing, and fiberoptic bronchoscopy. Imaging included high-resolution computed tomography with inspiratory and expiratory views. Selected individuals underwent further imaging with dynamic computed tomography. A total of five men and one woman were identified as having exercise-associated excessive dynamic airway collapse on the basis of the following criteria: (1) exertional dyspnea without resting symptoms, (2) focal expiratory wheezing during exercise, (3) functional collapse of the large airways during bronchoscopy, (4) expiratory computed tomographic imaging showing narrowing of a large airway, and (5) absence of underlying apparent pathology in small airways or pulmonary parenchyma. Identification of focal expiratory wheezing correlated with bronchoscopic and imaging findings. Among 240 military personnel evaluated after presenting with postdeployment exertional dyspnea, a combination of symptoms, auscultatory findings, imaging, and visualization of the airways by bronchoscopy identified six individuals with excessive dynamic central airway collapse as the sole apparent cause of dyspnea. Exercise-associated excessive dynamic airway collapse should be considered in the differential diagnosis of exertional dyspnea.
[MRI methods for pulmonary ventilation and perfusion imaging].
Sommer, G; Bauman, G
2016-02-01
Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.
Korgaonkar, Mayuresh S; Ram, Kaushik; Williams, Leanne M; Gatt, Justine M; Grieve, Stuart M
2014-08-01
The resting state default mode network (DMN) has been shown to characterize a number of neurological and psychiatric disorders. Evidence suggests an underlying genetic basis for this network and hence could serve as potential endophenotype for these disorders. Heritability is a defining criterion for endophenotypes. The DMN is measured either using a resting-state functional magnetic resonance imaging (fMRI) scan or by extracting resting state activity from task-based fMRI. The current study is the first to evaluate heritability of this task-derived resting activity. 250 healthy adult twins (79 monozygotic and 46 dizygotic same sex twin pairs) completed five cognitive and emotion processing fMRI tasks. Resting state DMN functional connectivity was derived from these five fMRI tasks. We validated this approach by comparing connectivity estimates from task-derived resting activity for all five fMRI tasks, with those obtained using a dedicated task-free resting state scan in an independent cohort of 27 healthy individuals. Structural equation modeling using the classic twin design was used to estimate the genetic and environmental contributions to variance for the resting-state DMN functional connectivity. About 9-41% of the variance in functional connectivity between the DMN nodes was attributed to genetic contribution with the greatest heritability found for functional connectivity between the posterior cingulate and right inferior parietal nodes (P<0.001). Our data provide new evidence that functional connectivity measures from the intrinsic DMN derived from task-based fMRI datasets are under genetic control and have the potential to serve as endophenotypes for genetically predisposed psychiatric and neurological disorders. Copyright © 2014 Wiley Periodicals, Inc.
Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis
Gildea, T.J.; Bell, C. William
1980-01-01
The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung compliance studies, small airways dysfunction studies and dead space to tidal volume ratios. Output includes tabular results of normal vs. observed values, clinical impressions and commentary and, where indicated, a diagnostic impression. A number of pulmonary physiological and state variables are entered or sampled (A to D) with periodic status reports generated for the test supervisor. Among the various physiological variables sampled are respiratory frequency, minute ventilation, oxygen consumption, carbon dioxide production, and arterial oxygen saturation.
Hsieh, Meng-Jer; Lee, Wei-Chun; Cho, Hsiu-Ying; Wu, Meng-Fang; Hu, Han-Chung; Kao, Kuo-Chin; Chen, Ning-Hung; Tsai, Ying-Huang; Huang, Chung-Chi
2018-04-20
Acute respiratory distress syndrome (ARDS) due to severe influenza A H1N1 pneumonitis would result in impaired pulmonary functions and health-related quality of life (HRQoL) after hospital discharge. The recovery of pulmonary functions, exercise capacity, and HRQoL in the survivors of ARDS due to 2009 pandemic influenza A H1N1 pneumonitis (H1N1-ARDS) was evaluated in a tertiary teaching hospital in northern Taiwan between May 2010 and June 2011. Data of spirometry, total lung capacity (TLC), diffusing capacity of carbon monoxide (DL CO ), and 6-minute walk distance (6MWD) in the patients survived from H1N1-ARDS were collected 1, 3, and 6 months post-hospital discharge. HRQoL was evaluated with St. George respiratory questionnaire (SGRQ). Nine survivors of H1N1-ARDS in the study period were included. All these patients received 2 months' pulmonary rehabilitation program. Pulmonary functions and exercise capacity included TLC, forced vital capacity (FVC), forced expiratory volume in the first second (FEV 1 ), DL CO , and 6MWD improved from 1 to 3 months post-hospital discharge. Only TLC had further significant improvement from 3 to 6 months. HRQoL represented as the total score of SGRQ had no significant improvement in the first 3 months but improved significantly from 3 to 6 months post-discharge. The impaired pulmonary functions and exercise capacity in the survivors of H1N1-ARDS improved soon at 3 months after hospital discharge. Their quality of life had keeping improved at 6 months even though there was no further improvement of their pulmonary functions and exercise capacity. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
Moullec, G; Ninot, G
2010-02-01
To assess whether a maintenance integrated health care programme is effective in improving functional and emotional dimensions of quality of life in patients with chronic obstructive pulmonary disease (COPD) after a first pulmonary rehabilitation. Prospective controlled trial. Three rehabilitation centres and three patient self-help associations within a health care network in France. Forty patients with moderate to severe COPD. After a first four-week inpatient pulmonary rehabilitation programme, patients took part in a maintenance integrated health care programme or usual care for 12 months. The primary outcomes were the change in functional and emotional dimensions of quality of life measured by the St George's Respiratory Questionnaire (SGRQ), the brief World Health Organization Quality of Life questionnaire (Brief-WHOQOL) and six specific questions using a 10-cm visual analogue scale. Secondary outcomes were change in exercise tolerance measured by six-minute walking test and cycle exercise. At one year, the maintenance intervention (n = 11) produced improvements in functional and emotional dimensions scores of quality of life and exercise tolerance. Patients in the usual aftercare group (n = 16) exhibited maintenance of functional dimension scores of quality of life, but a clinically relevant decline in emotional scores of quality of life and in six-minute walking distance one year after the pulmonary rehabilitation. Patient self-help association seems to be an innovative and efficient organizational structure to support patients with COPD after pulmonary rehabilitation in real-life settings. A distinction between emotional and functional dimensions of quality of life may improve the design and evaluation of integrated health care programmes in patients with COPD.
Astorga, Cristian R.; González-Candia, Alejandro; Candia, Alejandro A.; Figueroa, Esteban G.; Cañas, Daniel; Ebensperger, Germán; Reyes, Roberto V.; Llanos, Aníbal J.; Herrera, Emilio A.
2018-01-01
Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN), a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs. Methods: Twelve lambs (Ovis aries) gestated and born at highlands (3,600 m) were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle) and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1) during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations. Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05). This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05) and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05). Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05). Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05). Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia. PMID:29559926
Macke, Ryan A; Schuchert, Matthew J; Odell, David D; Wilson, David O; Luketich, James D; Landreneau, Rodney J
2015-04-01
A suggested benefit of sublobar resection for stage I non-small cell lung cancer (NSCLC) compared to lobectomy is a relative preservation of pulmonary function. Very little objective data exist, however, supporting this supposition. We sought to evaluate the relative impact of both anatomic segmental and lobar resection on pulmonary function in patients with resected clinical stage I NSCLC. The records of 159 disease-free patients who underwent anatomic segmentectomy (n = 89) and lobectomy (n = 70) for the treatment of stage I NSCLC with pre- and postoperative pulmonary function tests performed between 6 to 36 months after resection were retrospectively reviewed. Changes in forced expiratory volume in one second (FEV1) and diffusion capacity of carbon monoxide (DLCO) were analyzed based upon the number of anatomic pulmonary segments removed: 1-2 segments (n = 77) or 3-5 segments (n = 82). Preoperative pulmonary function was worse in the lesser resection cohort (1-2 segments) compared to the greater resection group (3-5 segments) (FEV1(%predicted): 79% vs. 85%, p = 0.038; DLCO(%predicted): 63% vs. 73%, p = 0.010). A greater decline in FEV1 was noted in patients undergoing resection of 3-5 segments (FEV1 (observed): 0.1 L vs. 0.3 L, p = 0.003; and FEV1 (% predicted): 4.3% vs. 8.2%, p = 0.055). Changes in DLCO followed this same trend (DLCO(observed): 1.3 vs. 2.4 mL/min/mmHg, p = 0.015; and DLCO(% predicted): 3.6% vs. 5.9%, p = 0.280). Parenchymal-sparing resections resulted in better preservation of pulmonary function at a median of one year, suggesting a long-term functional benefit with small anatomic segmental resections (1-2 segments). Prospective studies to evaluate measurable functional changes, as well as quality of life, between segmentectomy and lobectomy with a larger patient cohort appear justified.
Unal, Aydin; Tasdemir, Kutay; Oymak, Sema; Duran, Mustafa; Kocyigit, Ismail; Oguz, Fatih; Tokgoz, Bulent; Sipahioglu, Murat Hayri; Utas, Cengiz; Oymak, Oktay
2010-10-01
The aim of this prospective study was to evaluate long-term effects of arteriovenous fistula (AVF) on the development of pulmonary arterial hypertension (PAH) and the relationship between blood flow rate of AVF and pulmonary artery pressure (PAP) in the patients with end-stage renal disease (ESRD). This prospective study was performed in 20 patients with ESRD. Before an AVF was surgically created for hemodialysis, the patients were evaluated by echocardiography. Then, an AVF was surgically created in all patients. After mean 23.50 ± 2.25 months, the second evaluation was performed by echocardiography. Also, the blood flow rate of AVF was measured at the second echocardiographic evaluation. Pulmonary arterial hypertension was defined as a systolic PAP above 35 mmHg at rest. Mean age of 20 patients with ESRD was 55.05 ± 13.64 years; 11 of 20 patients were males. Pulmonary arterial hypertension was detected in 6 (30%) patients before AVF creation and in 4 (20%) patients after AVF creation. Systolic PAP value was meaningfully lower after AVF creation than before AVF creation (29.95 ± 10.26 mmHg vs. 35.35 ± 7.86 mmHg, respectively, P: 0.047). However, there was no significant difference between 2 time periods in terms of presence of PAH (P>0.05). Pulmonary artery pressure did not correlate with blood flow rate of AVF and duration after AVF creation (P>0.05). In hemodialysis patients, a surgically created AVF has no significant effect on the development of PAH within a long-term period. Similarly, blood flow rate of AVF also did not affect remarkably systolic PAP within the long-term period. © 2010 The Authors. Hemodialysis International © 2010 International Society for Hemodialysis.
Temporal reliability and lateralization of the resting-state language network.
Zhu, Linlin; Fan, Yang; Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.
Temporal Reliability and Lateralization of the Resting-State Language Network
Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability. PMID:24475058
Tawhai, M. H.; Clark, A. R.; Donovan, G. M.; Burrowes, K. S.
2011-01-01
Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction. PMID:22011236
The Mid-Term Changes of Pulmonary Function Tests After Phrenic Nerve Transfer.
Yavari, Masoud; Hassanpour, Seyed Esmail; Khodayari, Mohammad
2016-03-01
In the restoration of elbow flexion, the phrenic nerve has proven to be a good donor, but considering the role of the phrenic nerve in respiratory function, we cannot disregard the potential dangers of this method. In the current study, we reviewed the results of pulmonary function tests (PFT) in four patients who underwent phrenic nerve transfer. We reviewed the results of serial spirometry tests, which were performed before and after phrenic nerve transfer surgery. All patients regained Biceps power to M3 strength or above. None of our patients experienced pulmonary problems or respiratory complaints, but a significant reduction of spirometric parameters occurred after surgery. This study highlights the close link between the role of the phrenic nerve and pulmonary function, such that the use of this nerve as a transfer donor leads to spirometric impairments.
Liu, Yonggang
2015-07-01
To explore the correlation between the severity of patients with rhinitis-nasosinusitis and the bronchial asthma and the pulmonary function. Sixty-four cases of patients with rhinitis-nasosinusitis and 53 cases of patients with chronic sinusitis from June 2012 to September 2013 were randomly selected, and the patients were divided into group of rhinitis-nasosinusitis with nasal polyps and group of chronic sinusitis according to disease species, and analyzed the correlation between the severity of the deseases and the changes of the pulmonary function respectively for the patients of two groups by using Spearman method. The incidence of asthma for patients with different levels of sinusitis and nasal polyps seemed no significant difference (P > 0.05); the incidence of allergic rhinitis also seemed no significant difference (P > 0.05); the incidence of asthma for patients with different lesion range of sinusitis and nasal polyps seemed no significant difference (P > 0.05); the incidence of allergic rhinitis also seemed no significant different (P < 0.05). The conditions of the patients with different levels of sinusitis and nasal polyps were directly related to the reduction of pulmonary function (r = 2.431, P < 0.05); The conditions of the patients with different lesion range of sinusitis were directly related to the reduction of pulmonary function (r = 2.641, P < 0.05). There was some correlation between the severity of patients with rhinitis-nasosinusitis and the bronchial asthma and the condition of pulmonary function of patients.
Lee, Ji Hyun; Hong, A Ram; Kim, Jung Hee; Kim, Kyoung Min; Koo, Bo Kyung; Shin, Chan Soo; Kim, Sang Wan
2018-01-01
Smoking induces bone loss; however, data on the relationship between smoking history and bone mineral density (BMD) are lacking. Age and pulmonary function can affect BMD. We investigated the relationships among pack-years (PYs) of smoking, pulmonary function, and BMD in middle-aged Korean men (50-64 years old). This cross-sectional study used data from the Korean National Health and Nutrition Examination Survey, 2008-2011. All participants underwent BMD measurements using dual energy X-ray absorptiometry and pulmonary function tests using standardized spirometry. In total, 388 never-smokers and 1088 ever-smokers were analyzed. The number of PYs of smoking was negatively correlated with total hip BMD (r = -0.088; P = 0.004) after adjusting for age, height, and weight. Ever-smokers were classified into 3 groups according to PYs of smoking. The highest tertile (n = 482) exhibited significantly lower total hip bone mass than the lowest tertile (n = 214) after adjusting for confounding factors (age, height, weight, forced expiratory volume in 1 s (FEV 1 ), alcohol consumption, physical activity, and vitamin D levels) that could affect bone metabolism (P = 0.003). In conclusion, smoking for >30 PYs was significantly associated with low hip BMD after adjusting for pulmonary function in middle-aged Korean men. Long-term smoking may be a risk factor for bone loss in middle-aged men independent of age, height, weight, and pulmonary function.
[A rare form of obstructive pulmonary disease].
van Loenhout, C J; den Bakker, M A; van Wijsenbeek, M S; Hoek, R A S; van Hal, P Th W
2016-01-01
Lymphangioleiomyomatosis (LAM) is characterised by progressive dyspnoea, spontaneous pneumothorax and cystic pulmonary destruction. The disease may show similarities with emphysema clinically, radiologically and on lung function tests. A 44-year-old woman was referred for lung transplantation because of a 6-year history of dyspnoea and severe obstructive pulmonary function disorder with decreased diffusion capacity. Both her relatively young age and the fact that she had never smoked made us doubt the diagnosis 'COPD'. The pulmonary cysts seen on high-resolution CT (HRCT) suggested LAM. This was confirmed when we revised a pulmonary biopsy that had previously been performed. CT investigation should be carried out in patients with severe obstructive pulmonary disease without a risk profile appropriate for COPD. Diffuse, homogenous cysts on CT scan can indicate LAM, particularly in women. Conflict of interest and financial support: none declared.
Henno, Priscilla; Grassin-Delyle, Stanislas; Belle, Emeline; Brollo, Marion; Naline, Emmanuel; Sage, Edouard; Devillier, Philippe; Israël-Biet, Dominique
2017-05-23
Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10 -4 M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.
Kieran, S M; Cahill, R A; Browne, I; Sheehan, S J; Mehigan, D; Barry, M C
2006-09-01
Concern about the potential detrimental side-effects of beta-blockade on pulmonary function often dissuades against their perioperative use in patients undergoing major arterial surgery (especially in those with chronic obstructive pulmonary disease (COPD)). In this study we aimed to establish prospectively the clinical relevance of these concerns. After ethics committee approval and individual informed consent, the pulmonary function of twenty patients (mean age 68.7 years (range 43-82), 11 males) scheduled to undergo non-emergency major vascular surgery was studied by recording symptoms and spirometry before and after institution of effective beta-blockade. Fifteen patients (75%) had significant smoking histories (mean pack years/patient=50), while 12 (60%) had COPD. All patients tolerated effective beta-blockade satisfactorily without developing either subjective deterioration in symptoms or significant change on spirometry. The mean change in FEV1 following adequate beta-blockade was 0.05+/-0.24 liters (95% CI -0.06 to +1.61), p=0.35, giving a mean percentage change of 3.18%+/-11.66 (95% CI -2.26 to 8.62). Previously held concerns about worsening pulmonary function through the short-term use of beta-blockers should not dissuade their perioperative usage in patients with peripheral vascular disease. Furthermore, the accuracy of pulmonary function tests in preoperative assessment and risk stratification also appears unaffected by this therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinet, T.; Dusser, D.; Labrune, S.
1990-02-01
Respiratory epithelial clearance of {sup 99m}Tc-DTPA (RC-Tc-DTPA) and pulmonary function tests (PFT) were determined at intervals of 6 or 12 months in 37 untreated, nonsmoking patients with sarcoidosis over a period of 6 to 36 months. PFT included the measurements of total lung capacity (TLC), vital capacity (VC), FEV1, and diffusing capacity for carbon monoxide. No difference was found between the respiratory clearance of {sup 113m}In-DTPA (2.25 +/- 1.00%/min) and RC-Tc-DTPA (2.29 +/- 1.11%/min) in eight patients with pulmonary sarcoidosis. Pulmonary function decreased 15% or more in at least 2 function tests during 11 follow-up periods, but it remained stablemore » during 47 follow-up periods. In patients whose lung function deteriorated, RC-Tc-DTPA increased to 3.51 +/- 1.55%/min; in contrast, in patients whose lung function remained stable, regardless of the initial values, RC-Tc-DTPA was normal (1.00 +/- 0.50%/min; p less than 0.001). In eight patients who were treated with corticosteroids, RC-Tc-DTPA decreased from 3.48 +/- 1.31%/min to 1.56 +/- 0.64%/min (p less than 0.001), and PFT improved. We conclude that in nonsmokers with pulmonary sarcoidosis, increased RC-Tc-DTPA is not related to dissociation of 99mTc from DTPA, RC-Tc-DTPA is increased when pulmonary function decreases, and, when increased, RC-Tc-DTPA decreases with corticosteroid therapy.« less
Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging.
Vanderwal, Tamara; Kelly, Clare; Eilbott, Jeffrey; Mayes, Linda C; Castellanos, F Xavier
2015-11-15
The examination of functional connectivity in fMRI data collected during task-free "rest" has provided a powerful tool for studying functional brain organization. Limitations of this approach include susceptibility to head motion artifacts and participant drowsiness or sleep. These issues are especially relevant when studying young children or clinical populations. Here we introduce a movie paradigm, Inscapes, that features abstract shapes without a narrative or scene-cuts. The movie was designed to provide enough stimulation to improve compliance related to motion and wakefulness while minimizing cognitive load during the collection of functional imaging data. We compare Inscapes to eyes-open rest and to age-appropriate movie clips in healthy adults (Ocean's Eleven, n=22) and a pilot sample of typically developing children ages 3-7 (Fantasia, n=13). Head motion was significantly lower during both movies relative to rest for both groups. In adults, movies decreased the number of participants who self-reported sleep. Intersubject correlations, used to quantify synchronized, task-evoked activity across movie and rest conditions in adults, involved less cortex during Inscapes than Ocean's Eleven. To evaluate the effect of movie-watching on intrinsic functional connectivity networks, we examined mean functional connectivity using both whole-brain functional parcellation and network-based approaches. Both inter- and intra-network metrics were more similar between Inscapes and Rest than between Ocean's Eleven and Rest, particularly in comparisons involving the default network. When comparing movies to Rest, the mean functional connectivity of somatomotor, visual and ventral attention networks differed significantly across various analyses. We conclude that low-demand movies like Inscapes may represent a useful intermediate condition between task-free rest and typical narrative movies while still improving participant compliance. Inscapes is publicly available for download at headspacestudios.org/inscapes. Copyright © 2015 Elsevier Inc. All rights reserved.
Trajectories of change in cognitive function in people with chronic obstructive pulmonary disease.
Park, Soo Kyung
2018-04-01
To describe changes in cognitive function, as measured by the trail making test; to identify distinct patterns of change in cognitive function; and to examine predictors of change in cognitive function in people with severe chronic obstructive pulmonary disease. How cognitive function changes in people with chronic obstructive pulmonary disease and what factors influence those changes over time is not well known, despite the fact that it declines rapidly in this population and significantly impacts functional decline in healthy older adults. A secondary analysis and longitudinal study with a follow-up period of 3 years. A data set from the National Emphysema Treatment Trial provided participant data. Patients with severe chronic obstructive pulmonary disease (n = 307) were recruited at a clinical site. Several demographic and clinical measures were assessed at baseline. Trail making test scores were measured at baseline, 1, 2 and 3 years. Cognitive function was stable for 3 years in people with chronic obstructive pulmonary disease. However, four distinct patterns of change in cognitive function were identified. Age, education, 6-min walk distance and cognitive impairment scores at baseline on the trail making test Part B were significant predictors of worsening cognitive function and below-average cognitive function over 3 years. These findings suggest that increasing exercise capacity improves cognitive function and delays deterioration of cognitive function in people with COPD. Understanding the trajectories of change in cognitive function and predictors of change in cognitive function over 3 years may enable health care providers to identify patients at greatest risk of developing mental deterioration and those who might benefit from interventions to improve cognitive function. Health care providers should periodically assess and frequently screen people with COPD for cognitive function. © 2018 John Wiley & Sons Ltd.
Jung, Jae-Woo; Choi, Jae-Chol; Shin, Jong-Wook; Kim, Jae-Yeol; Choi, Byoung-Whui; Park, In-Won
2015-01-01
Pulmonary tuberculosis (TB) can affect lung function, but studies regarding long-term follow-up in patients with no sequelae on chest X-ray (CXR) have not been performed. We evaluated lung functional impairment and persistent respiratory symptoms in those with prior pulmonary TB and those with prior pulmonary TB with no residual sequelae on CXR, and determined risk factors for airflow obstruction. We used data from adults aged ≥ 40 years from the annual Korean National Health and Nutrition Examination Surveys conducted between 2008 and 2012. P values for comparisons were adjusted for age, sex, and smoking status. In total of 14,967 adults, 822 subjects (5.5%) had diagnosed and treated pulmonary TB (mean 29.0 years ago). The FVC% (84.9 vs. 92.6), FEV1% (83.4 vs. 92.4), and FEV1/FVC% (73.4 vs. 77.9) were significantly decreased in subjects with prior pulmonary TB compared to those without (p < 0.001, each). In 12,885 subjects with no sequalae on CXR, those with prior pulmonary TB (296, 2.3%) had significantly lower FEV1% (90.9 vs. 93.4, p = 0.001) and FEV1/FVC% (76.6 vs. 78.4, p < 0.001) than those without. Subjects with prior pulmonary TB as well as subjects with no sequalae on CXR were more likely to experience cough and physical activity limitations due to pulmonary symptoms than those without prior pulmonary TB (p < 0.001, each). In total subjects, prior pulmonary TB (OR, 2.314; 95% CI, 1.922-2.785), along with age, male, asthma, and smoking mount was risk factor for airflow obstruction. In subjects with prior pulmonary tuberculosis, inactive TB lesion on chest x-ray (OR, 2.300; 95% CI, 1.606-3.294) were risk factors of airflow obstruction. In addition to subjects with inactive TB lesion on CXR, subjects with no sequelae on CXR can show impaired pulmonary function and respiratory symptoms. Prior TB is a risk factor for airflow obstruction and that the risk is more important when they have inactive lesions on chest X-ray. Hence, the patients with treated TB should need to have regular follow-up of lung function and stop smoking for early detection and prevention of the chronic airway disease.
DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI.
Chao-Gan, Yan; Yu-Feng, Zang
2010-01-01
Resting-state functional magnetic resonance imaging (fMRI) has attracted more and more attention because of its effectiveness, simplicity and non-invasiveness in exploration of the intrinsic functional architecture of the human brain. However, user-friendly toolbox for "pipeline" data analysis of resting-state fMRI is still lacking. Based on some functions in Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST), we have developed a MATLAB toolbox called Data Processing Assistant for Resting-State fMRI (DPARSF) for "pipeline" data analysis of resting-state fMRI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), and fractional ALFF. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest.
REST and stress resistance in ageing and Alzheimer's disease
NASA Astrophysics Data System (ADS)
Lu, Tao; Aron, Liviu; Zullo, Joseph; Pan, Ying; Kim, Haeyoung; Chen, Yiwen; Yang, Tun-Hsiang; Kim, Hyun-Min; Drake, Derek; Liu, X. Shirley; Bennett, David A.; Colaiácovo, Monica P.; Yankner, Bruce A.
2014-03-01
Human neurons are functional over an entire lifetime, yet the mechanisms that preserve function and protect against neurodegeneration during ageing are unknown. Here we show that induction of the repressor element 1-silencing transcription factor (REST; also known as neuron-restrictive silencer factor, NRSF) is a universal feature of normal ageing in human cortical and hippocampal neurons. REST is lost, however, in mild cognitive impairment and Alzheimer's disease. Chromatin immunoprecipitation with deep sequencing and expression analysis show that REST represses genes that promote cell death and Alzheimer's disease pathology, and induces the expression of stress response genes. Moreover, REST potently protects neurons from oxidative stress and amyloid β-protein toxicity, and conditional deletion of REST in the mouse brain leads to age-related neurodegeneration. A functional orthologue of REST, Caenorhabditis elegans SPR-4, also protects against oxidative stress and amyloid β-protein toxicity. During normal ageing, REST is induced in part by cell non-autonomous Wnt signalling. However, in Alzheimer's disease, frontotemporal dementia and dementia with Lewy bodies, REST is lost from the nucleus and appears in autophagosomes together with pathological misfolded proteins. Finally, REST levels during ageing are closely correlated with cognitive preservation and longevity. Thus, the activation state of REST may distinguish neuroprotection from neurodegeneration in the ageing brain.
Pulmonary Function, Muscle Strength and Mortality in Old Age
Buchman, A. S.; Boyle, P. A.; Wilson, R.S.; Gu, Liping; Bienias, Julia L.; Bennett, D. A.
2009-01-01
Numerous reports have linked extremity muscle strength with mortality but the mechanism underlying this association is not known. We used data from 960 older persons without dementia participating in the Rush Memory and Aging Project to test two sequential hypotheses: first, that extremity muscle strength is a surrogate for respiratory muscle strength, and second, that the association of respiratory muscle strength with mortality is mediated by pulmonary function. In a series of proportional hazards models, we first demonstrated that the association of extremity muscle strength with mortality was no longer significant after including a term for respiratory muscle strength, controlling for age, sex, education, and body mass index. Next, the association of respiratory muscle strength with mortality was attenuated by more than 50% and no longer significant after including a term for pulmonary function. The findings were unchanged after controlling for cognitive function, parkinsonian signs, physical frailty, balance, physical activity, possible COPD, use of pulmonary medications, vascular risk factors including smoking, chronic vascular diseases, musculoskeletal joint pain, and history of falls. Overall, these findings suggest that pulmonary function may partially account for the association of muscle strength and mortality. PMID:18755207
Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle
Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Prakash, Y. S.
2015-01-01
Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy. PMID:26192455
Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity
Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu
2014-01-01
Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data
James, G. Andrew; Hazaroglu, Onder; Bush, Keith A.
2015-01-01
The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI’s translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants’ functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group’s mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI= 0.72–0.85) than with the Random atlases (JI=0.59–0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task (r=0.75–0.80) than the Random atlases (r=0.64–0.72), further validating their utility. We expected regions governing higher-order cognition (such as frontal and anterior temporal lobes) to show greatest difference between Task and Rest atlases; contrary to expectations, these areas had greatest similarity between atlases. Our findings indicate that atlases derived from parcellation of task-based and resting-state fMRI data are highly comparable, and existing resting-state atlases are suitable for task-based analyses. We introduce an anatomically labeled fMRI-derived whole-brain human atlas for future Cognitive Connectome analyses. PMID:26523655
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
James, George Andrew; Hazaroglu, Onder; Bush, Keith A
2016-02-01
The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task (r=0.75-0.80) than the Random atlases (r=0.64-0.72), further validating their utility. We expected regions governing higher-order cognition (such as frontal and anterior temporal lobes) to show greatest difference between Task and Rest atlases; contrary to expectations, these areas had greatest similarity between atlases. Our findings indicate that atlases derived from parcellation of task-based and resting-state fMRI data are highly comparable, and existing resting-state atlases are suitable for task-based analyses. We introduce an anatomically labeled fMRI-derived whole-brain human atlas for future Cognitive Connectome analyses. Copyright © 2015 Elsevier Inc. All rights reserved.
[Pulmonary function in patients with infiltrative pulmonary tuberculosis].
Nefedov, V B; Popova, L A; Shergina, E A
2007-01-01
Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/VC%, PEF, MEF25, MEF50, MEF75, TLC, TGV, pulmonary residual volume (PRV), R(aw), R(in),, R(ex), DLCO-SB, DLCO-SS, PaO2, and PaCO2 were determined in 103 patients with infiltrative pulmonary tuberculosis. Pulmonary dysfunction was detected in 83.5% of the patients. Changes were found in lung volumes and capacities in 63.1%, impaired bronchial patency and pulmonary gas exchange dysfunction were in 60.2 and 41.7%, respectively. The changes in pulmonary volumes and capacities appeared as increased PRV, decreased VC and FVC, and decreased and increased TGV and TLC; impaired bronchial patency presented as decreased PEF, MEF25, MEF50, MEF75, FEV1/VC% and increased R(aw) R(in), and R(ex); pulmonary gas exchange dysfunction manifested itself as reduced DLCO-SB, DLCO-SS, and PaO2 and decreased and increased PaCO2. The magnitude of the observed functional changes was generally slight. Significant disorders were observed rarely and very pronounced ones were exceptional.
[Pulmonary function in patients with disseminated pulmonary tuberculosis].
Nefedov, V B; Shergina, E A; Popova, L A
2007-01-01
Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/VC%, PEF, MEF25%, MEF50%, MEF75%, TLS, TGV, pulmonary residual volume (PRV), Raw, Rin, Rex, DLCO-SB, DLCO-SS, PaO2, and PaCO2 were determined in 29 patients with disseminated pulmonary tuberculosis. Pulmonary dysfunction was detected in 93.1% of the patients. Changes were found in lung volumes and capacities in 65.5%, impaired bronchial patency and pulmonary gas exchange dysfunction were in 79.3 and 37.9%, respectively. The changes in pulmonary volumes and capacities appeared as increased PRV, decreased VC, FVC, and TLS, decreased and increased TGV; impaired bronchial patency presented as decreased PEF, MEF25%, MEF50%, MEF75%, and FEV1/VC% and increased Raw, Rin, and Rex; pulmonary gas exchange dysfunction manifested itself as reduced DLCO-SS and PaO2 and decreased and increased PaCO2. The observed functional changes varied from slight to significant and pronounced with a preponderance of small disorders, a lower detection rate of significant disorders, and rare detection of very pronounced ones.
Culver, Bruce H; Graham, Brian L; Coates, Allan L; Wanger, Jack; Berry, Cristine E; Clarke, Patricia K; Hallstrand, Teal S; Hankinson, John L; Kaminsky, David A; MacIntyre, Neil R; McCormack, Meredith C; Rosenfeld, Margaret; Stanojevic, Sanja; Weiner, Daniel J
2017-12-01
The American Thoracic Society committee on Proficiency Standards for Pulmonary Function Laboratories has recognized the need for a standardized reporting format for pulmonary function tests. Although prior documents have offered guidance on the reporting of test data, there is considerable variability in how these results are presented to end users, leading to potential confusion and miscommunication. A project task force, consisting of the committee as a whole, was approved to develop a new Technical Standard on reporting pulmonary function test results. Three working groups addressed the presentation format, the reference data supporting interpretation of results, and a system for grading quality of test efforts. Each group reviewed relevant literature and wrote drafts that were merged into the final document. This document presents a reporting format in test-specific units for spirometry, lung volumes, and diffusing capacity that can be assembled into a report appropriate for a laboratory's practice. Recommended reference sources are updated with data for spirometry and diffusing capacity published since prior documents. A grading system is presented to encourage uniformity in the important function of test quality assessment. The committee believes that wide adoption of these formats and their underlying principles by equipment manufacturers and pulmonary function laboratories can improve the interpretation, communication, and understanding of test results.
Lammers, Astrid E; Adatia, Ian; Cerro, Maria Jesus Del; Diaz, Gabriel; Freudenthal, Alexandra Heath; Freudenthal, Franz; Harikrishnan, S; Ivy, Dunbar; Lopes, Antonio A; Raj, J Usha; Sandoval, Julio; Stenmark, Kurt; Haworth, Sheila G
2011-08-02
The members of the Pediatric Task Force of the Pulmonary Vascular Research Institute (PVRI) were aware of the need to develop a functional classification of pulmonary hypertension in children. The proposed classification follows the same pattern and uses the same criteria as the Dana Point pulmonary hypertension specific classification for adults. Modifications were necessary for children, since age, physical growth and maturation influences the way in which the functional effects of a disease are expressed. It is essential to encapsulate a child's clinical status, to make it possible to review progress with time as he/she grows up, as consistently and as objectively as possible. Particularly in younger children we sought to include objective indicators such as thriving, need for supplemental feeds and the record of school or nursery attendance. This helps monitor the clinical course of events and response to treatment over the years. It also facilitates the development of treatment algorithms for children. We present a consensus paper on a functional classification system for children with pulmonary hypertension, discussed at the Annual Meeting of the PVRI in Panama City, February 2011.
Secondary Pulmonary Hypertension and Right-Sided Heart Failure at Presentation in Grave's Disease.
Ganeshpure, Swapnil Panjabrao; Vaidya, Gaurang Nandkishor; Gattani, Vipul
2012-01-01
A young female presented with evidence of right-sided heart failure and was subsequently found to have significant pulmonary artery hypertension (PAH). Because of her normal left ventricular function and pulmonary capillary wedge pressure, the most probable site of etiology seemed to be the pulmonary vasculature. All the common possible secondary causes of PAH were ruled out, but during the investigations, she was found to have elevated thyroid function tests compatible with the diagnosis of Grave's disease. The treatment of Grave's disease, initially by medications and subsequently by radioiodine therapy, was associated with a significant reduction in the pulmonary artery systolic pressure. The purpose of this case report is to highlight one of the unusual and underdiagnosed presentations of Grave's disease.
Liu, Jie; Fei, Lei; Huang, Guang-Qing; Shang, Xiao-Ke; Liu, Mei; Pei, Zhi-Jun; Zhang, Yong-Xue
2018-05-01
Right heart catheterization is commonly used to measure right ventricle hemodynamic parameters and is the gold standard for pulmonary arterial hypertension diagnosis; however, it is not suitable for patients' long-term follow-up. Non-invasive echocardiography and nuclear medicine have been applied to measure right ventricle anatomy and function, but the guidelines for the usefulness of clinical parameters remain to be established. The goal of this study is to identify reliable clinical parameters of right ventricle function in pulmonary arterial hypertension patients and analyze the relationship of these clinical parameters with the disease severity of pulmonary arterial hypertension. In this study, 23 normal subjects and 23 pulmonary arterial hypertension patients were recruited from January 2015 to March 2016. Pulmonary arterial hypertension patients were classified into moderate and severe pulmonary arterial hypertension groups according to their mean pulmonary arterial pressure levels. All the subjects were subjected to physical examination, chest X-ray, 12-lead electrocardiogram, right heart catheterization, two-dimensional echocardiography, and technetium 99m ( 99m Tc) myocardial perfusion imaging. Compared to normal subjects, the right heart catheterization indexes including right ventricle systolic pressure, right ventricle end diastolic pressure, pulmonary artery systolic pressure, pulmonary artery diastolic pressure, pulmonary vascular resistance, and right ventricle end systolic pressure increased in pulmonary arterial hypertension patients and were correlated with mean pulmonary arterial pressure levels. Echocardiography parameters, including tricuspid regurgitation peak velocity, tricuspid regurgitation pressure gradient, tricuspid annular plane systolic excursion and fractional area, right ventricle-myocardial performance index, were significantly associated with the mean pulmonary arterial pressure levels in pulmonary arterial hypertension patients. Furthermore, myocardial perfusion imaging was not observed in the normal subjects but in pulmonary arterial hypertension patients, especially severe pulmonary arterial hypertension subgroup, and showed potential diagnostic properties for pulmonary arterial hypertension. In conclusion, mean pulmonary arterial pressure levels are correlated with several right heart catheterization and echocardiography markers in pulmonary arterial hypertension patients; echocardiography and 99m Tc myocardial perfusion can be used to evaluate right ventricle performance in pulmonary arterial hypertension patients. Impact statement In this study, we analyzed the clinical parameters for evaluating RV function, including right ventricle catheterization (RHC), echocardiography, and technetium 99m ( 99m Tc) myocardial perfusion imaging (MPI) in normal Asian subjects and PAH patients ( n = 23 for each group). Our results demonstrated that six RHC indexes, four echocardiography indexes and MPI index were significantly altered in PAH patients and correlated with the levels of mean pulmonary arterial pressure. Importantly, we evaluated the diagnostic performance of MPI and found that MPI has a strong diagnostic accuracy in PAH patients. The findings from this study will be of interest to clinical investigators who make diagnosis and therapeutic strategies for PAH patients.
Hantavirus pulmonary syndrome, Southern Chile, 1995-2012.
Riquelme, Raúl; Rioseco, María Luisa; Bastidas, Lorena; Trincado, Daniela; Riquelme, Mauricio; Loyola, Hugo; Valdivieso, Francisca
2015-04-01
Hantavirus is endemic to the Region de Los Lagos in southern Chile; its incidence is 8.5 times higher in the communes of the Andean area than in the rest of the region. We analyzed the epidemiologic aspects of the 103 cases diagnosed by serology and the clinical aspects of 80 hospitalized patients during 1995-2012. Cases in this region clearly predominated during winter, whereas in the rest of the country, they occur mostly during summer. Mild, moderate, and severe disease was observed, and the case-fatality rate was 32%. Shock caused death in 75% of those cases; high respiratory frequency and elevated creatinine plasma level were independent factors associated with death. Early clinical suspicion, especially in rural areas, should prompt urgent transfer to a hospital with an intensive care unit and might help decrease the high case-fatality rate.
Hantavirus Pulmonary Syndrome , Southern Chile, 1995–2012
Riquelme, Raúl; Rioseco, María Luisa; Bastidas, Lorena; Trincado, Daniela; Riquelme, Mauricio; Loyola, Hugo; Valdivieso, Francisca
2015-01-01
Hantavirus is endemic to the Region de Los Lagos in southern Chile; its incidence is 8.5 times higher in the communes of the Andean area than in the rest of the region. We analyzed the epidemiologic aspects of the 103 cases diagnosed by serology and the clinical aspects of 80 hospitalized patients during 1995–2012. Cases in this region clearly predominated during winter, whereas in the rest of the country, they occur mostly during summer. Mild, moderate, and severe disease was observed, and the case-fatality rate was 32%. Shock caused death in 75% of those cases; high respiratory frequency and elevated creatinine plasma level were independent factors associated with death. Early clinical suspicion, especially in rural areas, should prompt urgent transfer to a hospital with an intensive care unit and might help decrease the high case-fatality rate. PMID:25816116
Oxygen therapy in advanced COPD: in whom does it work?
Make, Barry; Krachman, Samuel; Panos, Ralph J; Doherty, Dennis E; Stoller, James K
2010-06-01
Supplemental oxygen therapy is commonly used in patients with advanced chronic obstructive pulmonary disease (COPD) and severe hypoxemia at rest. Use of oxygen in these patients is justified by studies showing a mortality benefit. However, the use of oxygen in other patients with advanced COPD has not clearly been established. Long-term studies assessing not only mortality but also other outcomes that are important to patients and physicians such as dyspnea, health status, and exercise capacity are lacking. This article reviews the available studies of the use of supplemental oxygen in patients with less severe hypoxemia at rest during the day, hypoxemia occurring only at night, and hypoxemia occurring only with exercise. With the knowledge that studies in patients with advanced COPD and less severe hypoxemia are limited, recommendations are provided on oxygen use in these groups of patients.
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.;
2014-01-01
The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. We are currently conducting studies on both International Space Station (ISS) astronauts experiencing up to 6 months of microgravity and subjects experiencing 70 days of 6??head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading somatosensory component on functional performance. Both ISS crewmembers and bed-rest subjects were tested using a protocol that evaluated functional performance along with tests of postural and locomotor control before and after space flight and bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Astronauts were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after re-ambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability showed less reduction in performance. Results indicate that body unloading resulting from prolonged bed-rest impacts functional performance particularly for tests with a greater requirement for postural equilibrium control. These changes in functional performance were paralleled by similar decrement in tests designed to specifically assess postural equilibrium and dynamic gait control. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions.
Pulmonary function in children with development coordination disorder.
Wu, Sheng K; Cairney, John; Lin, Hsiao-Hui; Li, Yao-Chuen; Song, Tai-Fen
2011-01-01
The purpose of this study was to compare pulmonary function in children with developmental coordination disorder (DCD) with children who are typically developing (TD), and also analyze possible gender differences in pulmonary function between these groups. The Movement ABC test was used to identify the movement coordination ability of children. Two hundred and fifty participants (90 children with DCD and 160 TD children) aged 9-10 years old completed this study. Using the KoKo spirometry, forced vital capacity (FVC) and forced expiratory volume in 1s (FEV(1.0)) were used to measure pulmonary function. The 800-m run was also conducted to assess cardiopulmonary fitness of children in the field. There was a significant difference in pulmonary function between TD children and those with DCD. The values of FVC and FEV(1.0) in TD children were significantly higher than in children with DCD. A significant, but low correlation (r = -0.220, p < .001) was found between total score on the MABC and FVC; similarly, a positive but low correlation (r = 0.252, p < .001) was found between total score on the MABC and the completion time of 800-m run. However, no significant correlation between FVC and the time of 800-m run was found (p > .05). Significant correlations between total score on the MABC and the completion time of the 800-m run (r = 0.352, p < .05) and between FVC and the time of 800-m run (r = -0.285, p < .05) were observed in girls with DCD but not boys with this condition. Based on the results of this study, pulmonary function in children with DCD was significantly lower than that of TD children. The field test, 800-m run, may not be a good indicator to distinguish aerobic ability between children with DCD and those who are TD. It is possible that poor pulmonary function in children with DCD is due to reduced physical activity in this population. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zar, Harvey A; Noe, Frances E; Szalados, James E; Goodrich, Michael D; Busby, Michael G
2002-01-01
A repetitive graphic display of the single breath pulmonary function can indicate changes in cardiac and pulmonary physiology brought on by clinical events. Parallel advances in computer technology and monitoring make real-time, single breath pulmonary function clinically practicable. We describe a system built from a commercially available airway gas monitor and off the shelf computer and data-acquisition hardware. Analog data for gas flow rate, O2, and CO2 concentrations are introduced into a computer through an analog-to-digital conversion board. Oxygen uptake (VO2) and carbon dioxide output (VCO2) are calculated for each breath. Inspired minus expired concentrations for O2 and CO2 are displayed simultaneously with the expired gas flow rate curve for each breath. Dead-space and alveolar ventilation are calculated for each breath and readily appreciated from the display. Graphs illustrating the function of the system are presented for the following clinical scenarios; upper airway obstruction, bronchospasm, bronchopleural fistula, pulmonary perfusion changes and inadequate oxygen delivery. This paper describes a real-time, single breath pulmonary monitoring system that displays three parameters graphed against time: expired flow rate, oxygen uptake and carbon dioxide production. This system allows for early and rapid recognition of treatable conditions that may lead to adverse events without any additional patient measurements or invasive procedures. Monitoring systems similar to the one described in this paper may lead to a higher level of patient safety without any additional patient risk.
Lung Function in Pregnancy in Langerhans Cell Histiocytosis.
Radzikowska, Elżbieta; Wiatr, Elżbieta; Franczuk, Monika; Bestry, Iwona; Roszkowski-Śliż, Kazimierz
2018-01-01
Pulmonary Langerhans cell histiocytosis (LCH) is a rare disease, affecting usually young people. The course of the disease is variable. In some pulmonary LCH patients a severe lung destruction and progression in spite of chemotherapy is observed, but in others just a cessation of smoking induces a regression of the disease. In the present study we seek to determine the influence of pregnancy on pulmonary function in LCH patients, an unchartered area of research. We addressed the issue by investigating eight pregnant women out of the 45 women hospitalized with the diagnosis of pulmonary LCH in the period from 2000 to 2015. For five of the eight pregnant women it was the second gestation. The median follow-up period was 120 months (range 72-175 months). Ten healthy children were born by a C-section. Two spontaneous miscarriages in the seventh week of gestation, and one tubal ectopic pregnancy were recorded. We found that pregnancy did not significantly influence pulmonary function assessed by the following indices: forced expiratory volume in 1 s (FEV1), lung vital capacity (VC), total lung capacity (TLC), residual volume (RV), diffusing capacity of the lungs for carbon monoxide (DLCO), and the distance and arterial oxygen saturation in 6-min walk test. Only one patient in the third trimester of pregnancy experienced bilateral pneumothorax, with persistent air leak. In all patients, delivery and postpartum period were uneventful. We conclude that pregnancy in pulmonary LCH patients is safe and not associated with deterioration of pulmonary function or blood oxygenation.
Influenza A virus-dependent remodeling of pulmonary clock function in a mouse model of COPD
Sundar, Isaac K.; Ahmad, Tanveer; Yao, Hongwei; Hwang, Jae-woong; Gerloff, Janice; Lawrence, B. Paige; Sellix, Michael T.; Rahman, Irfan
2015-01-01
Daily oscillations of pulmonary function depend on the rhythmic activity of the circadian timing system. Environmental tobacco/cigarette smoke (CS) disrupts circadian clock leading to enhanced inflammatory responses. Infection with influenza A virus (IAV) increases hospitalization rates and death in susceptible individuals, including patients with Chronic Obstructive Pulmonary Disease (COPD). We hypothesized that molecular clock disruption is enhanced by IAV infection, altering cellular and lung function, leading to severity in airway disease phenotypes. C57BL/6J mice exposed to chronic CS, BMAL1 knockout (KO) mice and wild-type littermates were infected with IAV. Following infection, we measured diurnal rhythms of clock gene expression in the lung, locomotor activity, pulmonary function, inflammatory, pro-fibrotic and emphysematous responses. Chronic CS exposure combined with IAV infection altered the timing of clock gene expression and reduced locomotor activity in parallel with increased lung inflammation, disrupted rhythms of pulmonary function, and emphysema. BMAL1 KO mice infected with IAV showed pronounced detriments in behavior and survival, and increased lung inflammatory and pro-fibrotic responses. This suggests that remodeling of lung clock function following IAV infection alters clock-dependent gene expression and normal rhythms of lung function, enhanced emphysematous and injurious responses. This may have implications for the pathobiology of respiratory virus-induced airway disease severity and exacerbations. PMID:25923474
Boos, Christopher John; O’Hara, John Paul; Mellor, Adrian; Hodkinson, Peter David; Tsakirides, Costas; Reeve, Nicola; Gallagher, Liam; Green, Nicholas Donald Charles; Woods, David Richard
2016-01-01
Background There has been considerable debate as to whether different modalities of simulated hypoxia induce similar cardiac responses. Materials and Methods This was a prospective observational study of 14 healthy subjects aged 22–35 years. Echocardiography was performed at rest and at 15 and 120 minutes following two hours exercise under normobaric normoxia (NN) and under similar PiO2 following genuine high altitude (GHA) at 3,375m, normobaric hypoxia (NH) and hypobaric hypoxia (HH) to simulate the equivalent hypoxic stimulus to GHA. Results All 14 subjects completed the experiment at GHA, 11 at NN, 12 under NH, and 6 under HH. The four groups were similar in age, sex and baseline demographics. At baseline rest right ventricular (RV) systolic pressure (RVSP, p = 0.0002), pulmonary vascular resistance (p = 0.0002) and acute mountain sickness (AMS) scores were higher and the SpO2 lower (p<0.0001) among all three hypoxic groups (GHA, NH and HH) compared with NN. At both 15 minutes and 120 minutes post exercise, AMS scores, Cardiac output, septal S’, lateral S’, tricuspid S’ and A’ velocities and RVSP were higher and SpO2 lower with all forms of hypoxia compared with NN. On post-test analysis, among the three hypoxia groups, SpO2 was lower at baseline and 15 minutes post exercise with GHA (89.3±3.4% and 89.3±2.2%) and HH (89.0±3.1 and (89.8±5.0) compared with NH (92.9±1.7 and 93.6±2.5%). The RV Myocardial Performance (Tei) Index and RVSP were significantly higher with HH than NH at 15 and 120 minutes post exercise respectively and tricuspid A’ was higher with GHA compared with NH at 15 minutes post exercise. Conclusions GHA, NH and HH produce similar cardiac adaptations over short duration rest despite lower SpO2 levels with GHA and HH compared with NH. Notable differences emerge following exercise in SpO2, RVSP and RV cardiac function. PMID:27100313
Pre-operative optimisation of lung function
Azhar, Naheed
2015-01-01
The anaesthetic management of patients with pre-existing pulmonary disease is a challenging task. It is associated with increased morbidity in the form of post-operative pulmonary complications. Pre-operative optimisation of lung function helps in reducing these complications. Patients are advised to stop smoking for a period of 4–6 weeks. This reduces airway reactivity, improves mucociliary function and decreases carboxy-haemoglobin. The widely used incentive spirometry may be useful only when combined with other respiratory muscle exercises. Volume-based inspiratory devices have the best results. Pharmacotherapy of asthma and chronic obstructive pulmonary disease must be optimised before considering the patient for elective surgery. Beta 2 agonists, inhaled corticosteroids and systemic corticosteroids, are the main drugs used for this and several drugs play an adjunctive role in medical therapy. A graded approach has been suggested to manage these patients for elective surgery with an aim to achieve optimal pulmonary function. PMID:26556913
Pulmonary function evaluation during and following Skylab space flights
NASA Technical Reports Server (NTRS)
Sawin, C. F.; Nicogossian, A. E.; Schachter, A. P.; Rummel, J. A.; Michel, E. L.
1974-01-01
Previous experience during the Apollo postflight exercise testing indicated no major changes in pulmonary function. Although pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic environments, few studies have dealt with normoxic environments at reduced total pressure as encountered during the Skylab missions. Forced vital capacity was measured during the preflight and postflight periods of the Skylab 2 mission. Initial in-flight measurements of vital capacity were obtained during the last two weeks of the second manned mission (Skylab 3). Comprehensive pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination, closing volume, vital capacity, and forced vital capacity and its derivatives. In addition, comprehensive in-flight vital capacity measurements were made during the Skylab 4 mission. Vital capacity was decreased slightly during flight in all Skylab 4 crewmen. No major preflight to postflight changes were observed in the other parameters.
Arjomandi, Mehrdad; Haight, Thaddeus; Redberg, Rita; Gold, Warren M
2009-06-01
To determine whether the flight attendants who were exposed to secondhand tobacco smoke in the aircraft cabin have abnormal pulmonary function. We administered questionnaires and performed pulmonary function testing in 61 never-smoking female flight attendants who worked in active air crews before the smoking ban on commercial aircraft (preban). Although the preban flight attendants had normal FVC, FEV1, and FEV1/FVC ratio, they had significantly decreased flow at mid- and low-lung volumes, curvilinear flow-volume curves, and evidence of air trapping. Furthermore, the flight attendants had significantly decreased diffusing capacity (77.5% +/- 11.2% predicted normal) with 51% having a diffusing capacity below their 95% normal prediction limit. This cohort of healthy never-smoking flight attendants who were exposed to secondhand tobacco smoke in the aircraft cabin showed pulmonary function abnormalities suggestive of airway obstruction and impaired diffusion.
The Critical Role of Pulmonary Arterial Compliance in Pulmonary Hypertension
Prins, Kurt W.; Pritzker, Marc R.; Scandurra, John; Volmers, Karl; Weir, E. Kenneth
2016-01-01
The normal pulmonary circulation is a low-pressure, high-compliance system. Pulmonary arterial compliance decreases in the presence of pulmonary hypertension because of increased extracellular matrix/collagen deposition in the pulmonary arteries. Loss of pulmonary arterial compliance has been consistently shown to be a predictor of increased mortality in patients with pulmonary hypertension, even more so than pulmonary vascular resistance in some studies. Decreased pulmonary arterial compliance causes premature reflection of waves from the distal pulmonary vasculature, leading to increased pulsatile right ventricular afterload and eventually right ventricular failure. Evidence suggests that decreased pulmonary arterial compliance is a cause rather than a consequence of distal small vessel proliferative vasculopathy. Pulmonary arterial compliance decreases early in the disease process even when pulmonary artery pressure and pulmonary vascular resistance are normal, potentially enabling early diagnosis of pulmonary vascular disease, especially in high-risk populations. With the recognition of the prognostic importance of pulmonary arterial compliance, its impact on right ventricular function, and its contributory role in the development and progression of distal small-vessel proliferative vasculopathy, pulmonary arterial compliance is an attractive target for the treatment of pulmonary hypertension. PMID:26848601
Diseases of Pulmonary Surfactant Homeostasis
Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.
2015-01-01
Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661
A pairwise maximum entropy model accurately describes resting-state human brain networks
Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki
2013-01-01
The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410
Schmitt, Todd L; Munns, Suzanne; Adams, Lance; Hicks, James
2013-09-01
This study utilized computed spirometry to compare the pulmonary function of two stranded olive ridley sea turtles (Lepidochelys olivacea) presenting with a positive buoyancy disorder with two healthy captive olive ridley sea turtles held in a large public aquarium. Pulmonary function test (PFT) measurements demonstrated that the metabolic cost of breathing was much greater for animals admitted with positive buoyancy than for the normal sea turtles. Positively buoyant turtles had higher tidal volumes and significantly lower breathing-frequency patterns with significantly higher expiration rates, typical of gasp-type breathing. The resulting higher energetic cost of breathing in the diseased turtles may have a significant impact on their long-term survival. The findings represent a method for clinical respiratory function analysis for an individual animal to assist with diagnosis, therapy, and prognosis. This is the first study, to our knowledge, to evaluate objectively sea turtles presenting with positive buoyancy and respiratory disease using pulmonary function tests.
Sleep deprivation compromises resting-state emotional regulatory processes: An EEG study.
Zhang, Jinxiao; Lau, Esther Yuet Ying; Hsiao, Janet H
2018-03-01
Resting-state spontaneous neural activities consume far more biological energy than stimulus-induced activities, suggesting their significance. However, existing studies of sleep loss and emotional functioning have focused on how sleep deprivation modulates stimulus-induced emotional neural activities. The current study aimed to investigate the impacts of sleep deprivation on the brain network of emotional functioning using electroencephalogram during a resting state. Two established resting-state electroencephalogram indexes (i.e. frontal alpha asymmetry and frontal theta/beta ratio) were used to reflect the functioning of the emotion regulatory neural network. Participants completed an 8-min resting-state electroencephalogram recording after a well-rested night or 24 hr sleep deprivation. The Sleep Deprivation group had a heightened ratio of the power density in theta band to beta band (theta/beta ratio) in the frontal area than the Sleep Control group, suggesting an effective approach with reduced frontal cortical regulation of subcortical drive after sleep deprivation. There was also marginally more left-lateralized frontal alpha power (left frontal alpha asymmetry) in the Sleep Deprivation group compared with the Sleep Control group. Besides, higher theta/beta ratio and more left alpha lateralization were correlated with higher sleepiness and lower vigilance. The results converged in suggesting compromised emotional regulatory processes during resting state after sleep deprivation. Our work provided the first resting-state neural evidence for compromised emotional functioning after sleep loss, highlighting the significance of examining resting-state neural activities within the affective brain network as a default functional mode in investigating the sleep-emotion relationship. © 2018 European Sleep Research Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, C.L.; Roy, T.M.; Dow, F.T.
1992-04-01
The Department of Labor has set guidelines for the use of resting arterial blood gas analysis in determination of total and permanent disability for coal workers' pneumoconiosis. To determine the prevalence with which bituminous coal miners fall below the arterial tensions of both oxygen and carbon dioxide published in the Federal Register, we studied 1012 miners who had both reproducible spirometry and arterial blood gas analysis as part of their disability evaluation. Eighty-seven percent of impaired miners could be identified by the spirometric criteria. Thirteen percent of impaired bituminous coal miners had acceptable pulmonary function but were eligible for blackmore » lung benefits by the blood gas guidelines. This population would have been missed if blood gas analysis were excluded from the evaluation process. On the other hand, approximately 25% of the blood gas analyses that were performed could be eliminated if a policy was adopted to do this test only on miners with spirometry that exceed the federal guidelines.« less
The effect of inspiratory and expiratory respiratory muscle training in rowers.
Forbes, S; Game, A; Syrotuik, D; Jones, R; Bell, G J
2011-10-01
This study examined inspiratory and expiratory resistive loading combined with strength and endurance training on pulmonary function and rowing performance. Twenty-one male (n = 9) and female (n = 12) rowers were matched on 2000 m simulated rowing race time and gender and randomly assigned to two groups. The experimental group trained respiratory muscles using a device that provided both an inspiratory and expiratory resistance while the control group used a SHAM device. Respiratory muscle training (RMT) or SHAM was performed 6 d/wk concurrent with strength (3 d/wk) and endurance (3 d/wk) training on alternate days for 10 weeks. Respiratory muscle training (RMT) enhanced maximum inspiratory (PI(max)) and expiratory (PE(max)) strength at rest and during recovery from exercise (P < 0.05). Both groups showed improvements in peak VO2, strength, and 2000 m performance time (P < 0.05). It was concluded that RMT is effective for improving respiratory strength but did not facilitate greater improvements to simulated 2000 m rowing performance.
Sex-related differences in amygdala functional connectivity during resting conditions.
Kilpatrick, L A; Zald, D H; Pardo, J V; Cahill, L F
2006-04-01
Recent neuroimaging studies have established a sex-related hemispheric lateralization of amygdala involvement in memory for emotionally arousing material. Here, we examine the possibility that sex-related differences in amygdala involvement in memory for emotional material develop from differential patterns of amygdala functional connectivity evident in the resting brain. Seed voxel partial least square analyses of regional cerebral blood flow data revealed significant sex-related differences in amygdala functional connectivity during resting conditions. The right amygdala was associated with greater functional connectivity in men than in women. In contrast, the left amygdala was associated with greater functional connectivity in women than in men. Furthermore, the regions displaying stronger functional connectivity with the right amygdala in males (sensorimotor cortex, striatum, pulvinar) differed from those displaying stronger functional connectivity with the left amygdala in females (subgenual cortex, hypothalamus). These differences in functional connectivity at rest may link to sex-related differences in medical and psychiatric disorders.
Ambient polycyclic aromatic hydrocarbons and pulmonary function in children
Padula, Amy M.; Balmes, John R.; Eisen, Ellen A.; Mann, Jennifer; Noth, Elizabeth M.; Lurmann, Frederick W.; Pratt, Boriana; Tager, Ira B.; Nadeau, Kari; Hammond, S. Katharine
2014-01-01
Few studies have examined the relationship between ambient polycyclic aromatic hydrocarbons (PAHs) and pulmonary function in children. Major sources include vehicular emissions, home heating, wildland fires, agricultural burning, and power plants. PAHs are an important component of fine particulate matter that has been linked to respiratory health. This cross-sectional study examines the relationship between estimated individual exposures to the sum of PAHs with 4, 5, or 6 rings (PAH456) and pulmonary function tests (forced expiratory volume in one second (FEV1) and forced expiratory flow between 25% and 75% of vital capacity) in asthmatic and non-asthmatic children. We applied land-use regression to estimate individual exposures to ambient PAHs for averaging periods ranging from 1 week to 1 year. We used linear regression to estimate the relationship between exposure to PAH456 with pre- and postbronchodilator pulmonary function tests in children in Fresno, California (N =297). Among non-asthmatics, there was a statistically significant association between PAH456 during the previous 3 months, 6 months, and 1 year and postbronchodilator FEV1. The magnitude of the association increased with the length of the averaging period ranging from 60 to 110 ml decrease in FEV1 for each 1 ng/m3 increase in PAH456. There were no associations with PAH456 observed among asthmatic children. We identified an association between annual PAHs and chronic pulmonary function in children without asthma. Additional studies are needed to further explore the association between exposure to PAHs and pulmonary function, especially with regard to differential effects between asthmatic and non-asthmatic children. PMID:24938508
Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou
2015-12-01
The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.
Evidence That Default Network Connectivity During Rest Consolidates Social Information.
Meyer, Meghan L; Davachi, Lila; Ochsner, Kevin N; Lieberman, Matthew D
2018-04-13
Brain regions engaged during social inference, medial prefrontal cortex (MPFC) and tempoparietal junction (TPJ), are also known to spontaneously engage during rest. While this overlap is well known, the social cognitive function of engaging these regions during rest remains unclear. Building on past research suggesting that new information is committed to memory during rest, we explored whether one function of MPFC and TPJ engagement during rest may be to consolidate new social information. MPFC and TPJ regions significantly increased connectivity during rest after encoding new social information (relative to baseline and post nonsocial encoding rest periods). Moreover, greater connectivity between rTPJ and MPFC, as well as other portions of the default network (vMPFC, anterior temporal lobe, and middle temporal gyrus) during post social encoding rest corresponded with superior social recognition and social associative memory. The tendency to engage MPFC and TPJ during rest may tune people towards social learning.
Modulation of Lung Function by Increased Nitric Oxide Production
Yadav, Ram Lochan; Yadav, Prakash Kumar
2017-01-01
Introduction Cigarette smoking reduces endogenous Nitric Oxide (NO) production by reducing Nitric Oxide Synthase (NOS) activity, which is one of the probable reason for increased rate of pulmonary diseases in smokers. Nitric oxide/oxygen blends are used in critical care to promote capillary and pulmonary dilation to treat several pulmonary vascular diseases. Among several supplements, the highest NOS activation has been proved for garlic with its unique mechanism of action. Aim To investigate the effect of dietary supplementation of NO producing garlic on pulmonary function of smokers. Materials and Methods The study was conducted on 40 healthy non-smoker (Group A) and 40 chronic smoker (Group B) males with matched age, height and weight. The pulmonary function tests- Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), FEV1/FVC ratio and Peak Expiratory Flow Rate (PEFR) were performed in non-smokers (Group A), smokers (Group B) and smokers after supplementation of approximately 4 gm of raw garlic (2 garlic cloves) per day for three months (Group C). Endogenous NO production was studied in smokers before and after garlic supplementation and in non-smokers without supplementation. The data obtained were compared between the groups using unpaired student’s t-test. The p-value considered significant at <0.05. Results Our results showed that FVC, FEV1, FEV1/FVC ratio and PEFR were reduced significantly along with a significant decreased NOS activity among smokers (Group B) when compared with non-smokers (Group A). Garlic supplementation significantly improved the pulmonary function tests in Group C in comparison to Group B by increasing NOS activity. Conclusion Dietary supplementation of garlic, which might be by increasing NOS activity, has significantly improved pulmonary functions in smokers. PMID:28764150
Doyle, Todd; Palmer, Scott; Johnson, Julie; Babyak, Michael A.; Smith, Patrick; Mabe, Stephanie; Welty-Wolf, Karen; Martinu, Tereza; Blumenthal, James A.
2014-01-01
Objectives To examine the association of anxiety and depression with pulmonary-specific symptoms of Chronic Obstructive Pulmonary Disease (COPD), and to determine the extent to which disease severity and functional capacity modify this association. Method Patients (N = 162) enrolled in the INSPIRE-II study, an ongoing randomized, clinical trial of COPD patients and their caregivers who received either telephone-based coping skills training or education and symptom monitoring. Patients completed a psychosocial test battery including: Brief Fatigue Inventory, St. George’s Respiratory Questionnaire, UCSD Shortness of Breath Questionnaire, State-Trait Anxiety Inventory, and Beck Depression Inventory. Measures of disease severity and functional capacity (i.e., FEV1 and six-minute walk test) were also obtained. Results After covariate adjustment, higher anxiety and depression levels were associated with greater fatigue levels (ps < .001, ΔR2 = 0.16 and 0.29, respectively), shortness of breath (ps < .001, ΔR2 = 0.12 and 0.10), and frequency of COPD symptoms (ps < .001, ΔR2 = 0.11 and 0.13). In addition, functional capacity was a moderator of anxiety and pulmonary-specific COPD symptoms. The association between anxiety and shortness of breath (p = 0.009) and frequency of COPD symptoms (p = 0.02) was greater among patients with lower functional capacity. Conclusions Anxiety and depression were associated with higher levels of fatigue, shortness of breath, and frequency of COPD symptoms. It is important for clinicians to be aware of the presence of anxiety and depression in COPD patients, which appears to correlate with pulmonary-specific COPD symptoms, especially in patients with lower functional capacity. Prospective design studies are needed to elucidate the causal relationships between anxiety and depression and pulmonary-specific symptoms in COPD patients. PMID:23977821
Amin, Reshma; Dupuis, Annie; Aaron, Shawn D; Ratjen, Felix
2010-01-01
The relevance of Aspergillus fumigatus in patients with cystic fibrosis (CF) not affected by allergic bronchopulmonary aspergillosis is unclear. Our aim was to determine the effect of persistent infection with A fumigatus on pulmonary exacerbations and lung function in children with CF. This was a retrospective cohort study of patients with CF followed at The Hospital for Sick Children from 1999 to 2006. Persistent A fumigatus infection was defined as the presence of two or more positive sputum or bronchoalveolar cultures for A fumigatus in a given year. The primary outcome measure was the annual number of hospitalizations for pulmonary exacerbations. Two hundred thirty patients with CF were included in the analysis. The FEV(1) of patients persistently infected with A fumigatus was 3.61% (P< or =.0001) lower during the study period compared with uninfected patients. There was a significant interaction between A fumigatus and Pseudomonas aeruginosa on lung function (P=.0006). Patients not infected with either organism had the highest pulmonary function. Persistent A fumigatus infection (relative risk [RR]=1.94, P=.0002) and CF-related diabetes (RR=1.64, P=.028) were associated with an increased risk of pulmonary exacerbations requiring hospitalization, whereas there was no increased risk of pulmonary exacerbations among patients with allergic bronchopulmonary aspergillosis (RR=1.02, P=.94). When adjusted for baseline pulmonary function, none of these variables were associated with a significantly increased risk of pulmonary exacerbations, with only chronic A fumigatus infection trending toward significance (RR=1.40, P=.065). Persistent A fumigatus infection is an independent risk factor for hospital admissions in patients with CF.
Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi
2016-09-07
Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.
Chowdhury, Shahryar M.; Hijazi, Ziyad M.; Rhodes, John F.; Kar, Saibal; Makkar, Raj; Mullen, Michael; Cao, Qi-Ling; Mandinov, Lazar; Buckley, Jason; Pietris, Nicholas P.; Shirali, Girish S.
2015-01-01
Background Patients with free pulmonary regurgitation or mixed pulmonary stenosis and regurgitation and severely dilated right ventricles (RV) show little improvement in ventricular function after pulmonary valve replacement when assessed by traditional echocardiographic markers. We evaluated changes in right and left ventricular (LV) function using speckle tracking echocardiography in patients after SAPIEN transcatheter pulmonary valve (TPV) placement. Methods Echocardiograms were evaluated at baseline, discharge, 1 and 6 months after TPV placement in 24 patients from 4 centers. Speckle tracking measures of function included peak longitudinal strain, strain rate, and early diastolic strain rate. RV fractional area change, tricuspid annular plane systolic excursion, and left ventricular LV ejection fraction were assessed. Routine Doppler and tissue Doppler velocities were measured. Results At baseline, all patients demonstrated moderate to severe pulmonary regurgitation; this improved following TPV placement. No significant changes were detected in conventional measures of RV or LV function at 6 months. RV longitudinal strain (−16.9% vs. −19.6%, P < 0.01), strain rate (−0.87 s−1 vs. −1.16 s−1, P = 0.01), and LV longitudinal strain (−16.2% vs. −18.2%, P = 0.01) improved between baseline and 6 month follow-up. RV early diastolic strain rate, LV longitudinal strain rate and early diastolic strain rate showed no change. Conclusion Improvements in RV longitudinal strain, strain rate, and LV longitudinal strain are seen at 6 months post-TPV. Diastolic function does not appear to change at 6 months. Speckle tracking echocardiography may be more sensitive than traditional measures in detecting changes in systolic function after TPV implantation. (Echocardiography 2015;32:461–469) PMID:25047063
Isolated Human Pulmonary Artery Structure and Function Pre- and Post-Cardiopulmonary Bypass Surgery.
Dora, Kim A; Stanley, Christopher P; Al Jaaly, Emad; Fiorentino, Francesca; Ascione, Raimondo; Reeves, Barnaby C; Angelini, Gianni D
2016-02-23
Pulmonary dysfunction is a known complication after cardiac surgery using cardiopulmonary bypass, ranging from subclinical functional changes to prolonged postoperative ventilation, acute lung injury, and acute respiratory distress syndrome. Whether human pulmonary arterial function is compromised is unknown. The aim of the present study was to compare the structure and function of isolated and cannulated human pulmonary arteries obtained from lung biopsies after the chest was opened (pre-cardiopulmonary bypass) to those obtained at the end of cardiopulmonary bypass (post-cardiopulmonary bypass) from patients undergoing coronary artery bypass graft surgery. Pre- and post-cardiopulmonary bypass lung biopsies were received from 12 patients undergoing elective surgery. Intralobular small arteries were dissected, cannulated, pressurized, and imaged using confocal microscopy. Functionally, the thromboxane mimetic U46619 produced concentration-dependent vasoconstriction in 100% and 75% of pre- and post-cardiopulmonary bypass arteries, respectively. The endothelium-dependent agonist bradykinin stimulated vasodilation in 45% and 33% of arteries pre- and post-cardiopulmonary bypass, respectively. Structurally, in most arteries smooth muscle cells aligned circumferentially; live cell viability revealed that although 100% of smooth muscle and 90% of endothelial cells from pre-cardiopulmonary bypass biopsies had intact membranes and were considered viable, only 60% and 58%, respectively, were viable from post-cardiopulmonary bypass biopsies. We successfully investigated isolated pulmonary artery structure and function in fresh lung biopsies from patients undergoing heart surgery. Pulmonary artery contractile tone and endothelium-dependent dilation were significantly reduced in post-cardiopulmonary bypass biopsies. The decreased functional responses were associated with reduced cell viability. URL: http://www.isrctn.com/ISRCTN34428459. Unique identifier: ISRCTN 34428459. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Effect of prolonged bed rest on lung volume in normal individuals
NASA Technical Reports Server (NTRS)
Beckett, W. S.; Vroman, N. B.; Nigro, D.; Thompson-Gorman, S.; Wilkerson, J. E.
1986-01-01
The effect of prolonged bed rest on the lung function was studied by measuring forced vital capacity (FVC) and total lung capacity (TLC) in normal subjects before, during, and after 11- to 12-day rest periods. It was found that both FVC and TLC increased during bed rest (compared with the ambulatory controls), while residual volume and functional residual capacity of the respiratory system did not change. It is concluded that the increase in TLC by prolonged bed rest is not dependent on alterations in plasma volume.
1989-10-05
musculoskeletal chest pain; b) pleurisy ; c) pulmonary erbolus; d) mediastinal emphysema a) Musculoskeletal chest pain and the pain of costochondritis denote muscle...includes mild A-22 analgesics/anti-inflammatory drugs, heat therapy, and rest. b) Pleurisy denotes inflammation of the pleura. It may be seen in the...setting of bronchitis or pneumonia. The symptoms of both assist in differentiating pleurisy fru pneumothorax. In the absence of signs of pneumonia or
Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D
2011-01-01
We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.
2016-01-01
Influenza vaccination is an effective strategy to reduce morbidity and mortality, particularly for those who have decreased lung functions. This study was to identify the factors that affect vaccination coverage according to the results of pulmonary function tests depending on the age. In this cross-sectional study, data were obtained from 3,224 adults over the age of 40 who participated in the fifth National Health and Nutrition Examination Survey and underwent pulmonary function testing in 2012. To identify the factors that affect vaccination rate, logistic regression analysis was conducted after dividing the subjects into two groups based on the age of 65. Influenza vaccination coverage of the entire subjects was 45.2%, and 76.8% for those aged 65 and over. The group with abnormal pulmonary function had a higher vaccination rate than the normal group, but any pulmonary dysfunction or history of COPD did not affect the vaccination coverage in the multivariate analysis. The subjects who were 40-64 years-old had higher vaccination coverage when they were less educated or with restricted activity level, received health screenings, and had chronic diseases. Those aged 65 and over had significantly higher vaccination coverage only when they received regular health screenings. Any pulmonary dysfunction or having COPD showed no significant correlation with the vaccination coverage in the Korean adult population. PMID:27134491
Complex network analysis of resting-state fMRI of the brain.
Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman
2016-08-01
Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.
Salvadego, Desy; Lazzer, Stefano; Marzorati, Mauro; Porcelli, Simone; Rejc, Enrico; Simunic, Bostjan; Pisot, Rado; di Prampero, Pietro Enrico; Grassi, Bruno
2011-12-01
A functional evaluation of skeletal muscle oxidative metabolism during dynamic knee extension (KE) incremental exercises was carried out following a 35-day bed rest (BR) (Valdoltra 2008 BR campaign). Nine young male volunteers (age: 23.5 ± 2.2 yr; mean ± SD) were evaluated. Pulmonary gas exchange, heart rate and cardiac output (by impedance cardiography), skeletal muscle (vastus lateralis) fractional O(2) extraction, and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined during incremental KE. Values at exhaustion were considered "peak". Peak heart rate (147 ± 18 beats/min before vs. 146 ± 17 beats/min after BR) and peak cardiac output (17.8 ± 3.3 l/min before vs. 16.1 ± 1.8 l/min after BR) were unaffected by BR. As expected, brain oxygenation did not decrease during KE. Peak O(2) uptake was lower after vs. before BR, both when expressed as liters per minute (0.99 ± 0.17 vs. 1.26 ± 0.27) and when normalized per unit of quadriceps muscle mass (46.5 ± 6.4 vs. 56.9 ± 11.0 ml·min(-1)·100 g(-1)). Skeletal muscle peak fractional O(2) extraction, expressed as a percentage of the maximal values obtained during a transient limb ischemia, was lower after (46.3 ± 12.1%) vs. before BR (66.5 ± 11.2%). After elimination, by the adopted exercise protocol, of constraints related to cardiovascular O(2) delivery, a decrease in peak O(2) uptake and muscle peak capacity of fractional O(2) extraction was found after 35 days of BR. These findings suggest a substantial impairment of oxidative function at the muscle level, "downstream" with respect to bulk blood flow to the exercising muscles, that is possibly at the level of blood flow distribution/O(2) utilization inside the muscle, peripheral O(2) diffusion, and intracellular oxidative metabolism.
Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. Bed-rest results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data point to the importance of providing axial body loading as a central component of an inflight training system that will integrate cardiovascular, resistance and sensorimotor adaptability training modalities into a single interdisciplinary countermeasure system.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Ueda, Yasuto; Mikami, Masaaki; Yamamoto, Hiroyuki; Tokuyasu, Hirokazu; Kato, Kazuhiro; Konishi, Tatsuya; Tatsukawa, Toshiyuki; Shimizu, Eiji; Kitano, Hiroya
2016-01-01
Background Asian dust (AD) exposure exacerbates pulmonary dysfunction in patients with asthma. Asthma–chronic obstructive pulmonary disease overlap syndrome (ACOS), characterized by coexisting symptoms of asthma and chronic obstructive pulmonary disease, is considered a separate disease entity. Previously, we investigated the effects of AD on pulmonary function in adult patients with asthma. Here, we present the findings of our further research on the differences in the effects of AD exposure on pulmonary function between patients with asthma alone and those with ACOS. Methods Between March and May 2012, we conducted a panel study wherein we monitored daily peak expiratory flow (PEF) values in 231 adult patients with asthma. These patients were divided into 190 patients with asthma alone and 41 patients with ACOS in this study. Daily AD particle levels were measured using light detection and ranging systems. Two heavy AD days (April 23 and 24) were determined according to the Japan Meteorological Agency definition. A linear mixed model was used to estimate the association between PEF and AD exposure. Results Increments in the interquartile range of AD particles (0.018 km−1) led to PEF changes of −0.50 L/min (95% confidence interval, −0.98 to −0.02) in patients with asthma alone and −0.11 L/min (−0.11 to 0.85) in patients with ACOS. The PEF changes after exposure to heavy AD were −2.21 L/min (−4.28 to −0.15) in patients with asthma alone and −2.76 L/min (−6.86 to 1.35) in patients with ACOS. In patients with asthma alone, the highest decrease in PEF values was observed on the heavy AD day, with a subsequent gradual increase over time. Conclusion Our results suggest that the effects of AD exposure on pulmonary function differ between patients with asthma alone and ACOS, with the former exhibiting a greater likelihood of decreased pulmonary function after AD exposure. PMID:26869784
Zhang, Chen; Li, Qiangqiang; Zhu, Yan; Gu, Hong
2014-06-10
To explore the risk and protective factors for pulmonary hypertensive crisis (PHC) in patients with idiopathic pulmonary arterial hypertension (IPAH). A retrospective study was performed for 65 patients with a diagnosis of IPAH between January 2010 and December 2013. According to clinical manifestations, they were divided into two groups of susceptibility and non-susceptibility to PHC. Clinical and hemodynamic parameters were analyzed in univariate and multivariate manners. Among them, there were 32 males and 33 females with a mean age of (14.4 ± 12.3) (10/12-47.3) years. Twenty-three patients had typical manifestations of PHC and 18 of them were induced by exercises.Univariate analysis revealed that the proportion of patients with World Health Organization (WHO) functional class III-IV in PHC-susceptible group was significantly higher than PHC-nonsusceptible group (60.9% vs 23.8%, P = 0.003) while the percentage of patent foramen ovale in PHC-susceptible group was significantly lower than PHC-nonsusceptible group (8.7% vs 45.2%, P = 0.003).In patients with WHO functional classI-II, hemodynamic variables including the decline of pulmonary arterial pressure and positive rate in vasoreactivity testing in PHC-susceptible group were significantly higher than PHC-nonsusceptible group.In patients with WHO functional class III-IV, baseline pulmonary arterial pressure and mean right atrial pressure in PHC-susceptible group were significantly higher than those in PHC-nonsusceptible group. Multivariate Logistic regression analysis revealed that, for those with WHO functional class III-IV (OR = 23.45, 95%CI: 2.85-193.09) and the decline of systolic pulmonary arterial pressure in vasoreactivity testing (OR = 1.12, 95%CI: 1.04-1.22) were independent risk factors for PHC in IPAH patients while patent foramen ovale (OR = 0.01, 95%CI: 0.00-0.52) was a protective factor. PHC in IPAH patients is correlated with WHO functional class, pulmonary vascular reactivity, baseline pulmonary arterial pressure and patent foramen ovale. And exercise is the most common stimulus to PHC.
Physiological and Functional Alterations after Spaceflight and Bed Rest.
Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J
2018-04-03
Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is required to maintain functional performance.
Maniatis, Nikolaos A.; Chernaya, Olga; Shinin, Vasily; Minshall, Richard D.
2012-01-01
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases. PMID:22411320
Secondary Pulmonary Hypertension and Right-Sided Heart Failure at Presentation in Grave's Disease
Ganeshpure, Swapnil Panjabrao; Vaidya, Gaurang Nandkishor; Gattani, Vipul
2012-01-01
A young female presented with evidence of right-sided heart failure and was subsequently found to have significant pulmonary artery hypertension (PAH). Because of her normal left ventricular function and pulmonary capillary wedge pressure, the most probable site of etiology seemed to be the pulmonary vasculature. All the common possible secondary causes of PAH were ruled out, but during the investigations, she was found to have elevated thyroid function tests compatible with the diagnosis of Grave's disease. The treatment of Grave's disease, initially by medications and subsequently by radioiodine therapy, was associated with a significant reduction in the pulmonary artery systolic pressure. The purpose of this case report is to highlight one of the unusual and underdiagnosed presentations of Grave's disease. PMID:23198182
Imaging-based assessment of dyspnea in cigarette smokers
NASA Astrophysics Data System (ADS)
Galvin, Jeffrey R.; Chang, Paul J.; Schwartz, David A.; Hunninghake, Gary W.; Helmers, Richard; Mori, Masaki
1994-05-01
Patients with pulmonary fibrosis frequently smoke cigarettes. The cause of dyspnea in these patients is often complex because of the coexistence of multiple disease processes. We investigated 10 cigarette smokers with pulmonary fibrosis who were referred for evaluation of new onset or worsening dyspnea. Chest radiographs and pulmonary function tests were obtained in addition to high-resolution computed tomography (HRCT). In those patients with HRCT evidence of both diseases, spirometry and lung volumes were most often normal. Although plain films provided a reasonable assessment of fibrosis, they underestimated the severity of emphysema. Quantitation of both emphysema and fibrosis by HRCT was reproducible and correlated with key pulmonary function tests. Our findings indicate that the HRCT scan is a useful diagnostic test in patients with pulmonary fibrosis who are also cigarette smokers.
Linking microbiota and respiratory disease.
Hauptmann, Matthias; Schaible, Ulrich E
2016-11-01
An increasing body of evidence indicates the relevance of microbiota for pulmonary health and disease. Independent investigations recently demonstrated that the lung harbors a resident microbiota. Therefore, it is intriguing that a lung microbiota can shape pulmonary immunity and epithelial barrier functions. Here, we discuss the ways how the composition of the microbial community in the lung may influence pulmonary health and vice versa, factors that determine community composition. Prominent microbiota at other body sites such as the intestinal one may also contribute to pulmonary health and disease. However, it is difficult to discriminate between influences of lung vs. gut microbiota due to systemic mutuality between both communities. With focuses on asthma and respiratory infections, we discuss how microbiota of lung and gut can determine pulmonary immunity and barrier functions. © 2016 Federation of European Biochemical Societies.
Percutaneous Pulmonary Valve Placement
Prieto, Lourdes R.
2015-01-01
Patients with congenital heart disease and pulmonary valve disease need multiple procedures over their lifetimes to replace their pulmonary valves. Chronic pulmonary stenosis, regurgitation, or both have untoward effects on ventricular function and on the clinical status of these patients. To date, all right ventricle–pulmonary artery conduits have had relatively short lifespans. Percutaneous pulmonary valve implantation, although relatively new, will probably reduce the number of operative procedures that these patients will have to undergo over a lifetime. Refinement and further development of this procedure holds promise for the extension of this technology to other patient populations. PMID:26175629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukunaga, Satoki; Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558; Kakehashi, Anna
To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective ofmore » initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.« less
Xu, Q F; Yuan, W; Zhao, X J; Li, B; Wang, H Y
2016-02-01
To investigate the exercise-related risk at anaerobic threshold(AT) in patients with chronic obstructive pulmonary disease(COPD). Sixty two patients [men 56, women 6, aged (66±8) yr] with stable COPD in Beijing Friendship Hospital during 2013-2014, participated in this study. Incremental symptom-limited cardiopulmonary exercise test was performed on cycle ergometer. The AT was determined using the V-Slope technique and ventilatory equivalents for carbon dioxide and oxygen. Symptoms, 10-lead electrocardiogram, oxygen saturation by pulse oximetry(SpO(2)) were monitored during exercise. The AT, detectable in 53 patients, occurred at (68±10)% of peak oxygen uptake(peak VO(2)). The SpO(2) was in the safe range (94±2) % and the respiratory reserve was relatively high at AT (i.e. 48%). High-intensity exercise training can be performed in patients with moderate-to- severe COPD without resting oxygen desaturation.
Cabral, Joana; Vidaurre, Diego; Marques, Paulo; Magalhães, Ricardo; Silva Moreira, Pedro; Miguel Soares, José; Deco, Gustavo; Sousa, Nuno; Kringelbach, Morten L
2017-07-11
Growing evidence has shown that brain activity at rest slowly wanders through a repertoire of different states, where whole-brain functional connectivity (FC) temporarily settles into distinct FC patterns. Nevertheless, the functional role of resting-state activity remains unclear. Here, we investigate how the switching behavior of resting-state FC relates with cognitive performance in healthy older adults. We analyse resting-state fMRI data from 98 healthy adults previously categorized as being among the best or among the worst performers in a cohort study of >1000 subjects aged 50+ who underwent neuropsychological assessment. We use a novel approach focusing on the dominant FC pattern captured by the leading eigenvector of dynamic FC matrices. Recurrent FC patterns - or states - are detected and characterized in terms of lifetime, probability of occurrence and switching profiles. We find that poorer cognitive performance is associated with weaker FC temporal similarity together with altered switching between FC states. These results provide new evidence linking the switching dynamics of FC during rest with cognitive performance in later life, reinforcing the functional role of resting-state activity for effective cognitive processing.
Functional Covariance Networks: Obtaining Resting-State Networks from Intersubject Variability
Gohel, Suril; Di, Xin; Walter, Martin; Biswal, Bharat B.
2012-01-01
Abstract In this study, we investigate a new approach for examining the separation of the brain into resting-state networks (RSNs) on a group level using resting-state parameters (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [fALFF], the Hurst exponent, and signal standard deviation). Spatial independent component analysis is used to reveal covariance patterns of the relevant resting-state parameters (not the time series) across subjects that are shown to be related to known, standard RSNs. As part of the analysis, nonresting state parameters are also investigated, such as mean of the blood oxygen level-dependent time series and gray matter volume from anatomical scans. We hypothesize that meaningful RSNs will primarily be elucidated by analysis of the resting-state functional connectivity (RSFC) parameters and not by non-RSFC parameters. First, this shows the presence of a common influence underlying individual RSFC networks revealed through low-frequency fluctation (LFF) parameter properties. Second, this suggests that the LFFs and RSFC networks have neurophysiological origins. Several of the components determined from resting-state parameters in this manner correlate strongly with known resting-state functional maps, and we term these “functional covariance networks”. PMID:22765879
García-Montes, José Antonio; Zabal Cerdeira, Carlos; Calderón-Colmenero, Juan; Espínola, Nilda; Fernández de la Reguera, Guillermo; Buendía Hernández, Alfonso
2005-01-01
Surgical treatment of multiple muscular ventricular septal defects with associated lesions and severe pulmonary hypertension has a high morbility and mortality. Closure of these defects by the Amplatzer muscular VSD occluder is an alternative to surgery, avoiding the need of cardiopulmonary bypass. We present the case of a 38 year-old woman with signs of heart failure in NYHA functional class IV, with two muscular ventricular septal defects, patent ductus arteriosus and severe pulmonary hypertension, that were treated with three Amplatzer muscular VSD occluders, with significant reduction of pulmonary pressure and functional class improvement.
Recent lung imaging studies. [Effectiveness for diagnosis of chronic obstructive pulmonary disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taplin, G.V.; Chopra, S.K.
1976-01-01
Radionuclide lung imaging procedures have been available for 11 years but only the perfusion examination has been used extensively and mainly for the diagnosis of pulmonary embolism (P.E.). Its ability to reveal localized ischemia makes it a valuable test of regional lung function as well as a useful diagnostic aid in P.E. Although it had been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as amore » means of distinguishing P.E. from COPD. In this review emphasis is placed on our recent experience with both of these inhalation procedures in comparison with pulmonary function tests and roentgenography for the early detection of COPD in population studies. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging for a functional diagnosis of P.E. Two new developments in regional lung diffusion imaging, performed after the inhalation of radioactive gases and/or rapidly absorbed radioaerosols are described. The experimental basis for their potential clinical application in pulmonary embolism detection is presented.« less
Wilkens, H; Weingard, B; Lo Mauro, A; Schena, E; Pedotti, A; Sybrecht, G W; Aliverti, A
2010-09-01
Pulmonary fibrosis (PF), cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often cause chronic respiratory failure (CRF). In order to investigate if there are different patterns of adaptation of the ventilatory pump in CRF, in three groups of lung transplant candidates with PF (n=9, forced expiratory volume in 1 s (FEV(1))=37+/-3% predicted, forced vital capacity (FVC)=32+/-2% predicted), CF (n=9, FEV(1)=22+/-3% predicted, FVC=30+/-3% predicted) and COPD (n=21, FEV(1)=21+/-1% predicted, FVC=46+/-2% predicted), 10 healthy controls and 16 transplanted patients, total and compartmental chest wall volumes were measured by opto-electronic plethysmography during rest and exercise. Three different breathing patterns were found during CRF in PF, CF and COPD. Patients with COPD were characterised by a reduced duty cycle at rest and maximal exercise (34+/-1%, p<0.001), while patients with PF and CF showed an increased breathing frequency (49+/-6 and 34+/-2/min, respectively) and decreased tidal volume (0.75+/-0.10 and 0.79+/-0.07 litres) (p<0.05). During exercise, end-expiratory chest wall and rib cage volumes increased significantly in patients with COPD and CF but not in those with PF. End-inspiratory volumes did not increase in CF and PF. The breathing pattern of transplanted patients was similar to that of healthy controls. There are three distinct patterns of CRF in patients with PF, CF and COPD adopted by the ventilatory pump to cope with the underlying lung disease that may explain why patients with PF and CF are prone to respiratory failure earlier than patients with COPD. After lung transplantation the chronic adaptations of the ventilatory pattern to advanced lung diseases are reversible and indicate that the main contributing factor is the lung itself rather than systemic effects of the disease.
D'Armini, Andrea M; Ghofrani, Hossein-Ardeschir; Kim, Nick H; Mayer, Eckhard; Morsolini, Marco; Pulido-Zamudio, Tomás; Simonneau, Gerald; Wilkins, Martin R; Curram, John; Davie, Neil; Hoeper, Marius M
2015-03-01
In the Chronic Thromboembolic Pulmonary Hypertension Soluble Guanylate Cyclase - Stimulator Trial 1 (CHEST-1) study, riociguat improved 6-minute walking distance (6MWD) vs placebo in patients with inoperable chronic thromboembolic pulmonary hypertension or persistent/recurrent pulmonary hypertension after pulmonary endarterectomy. In this study, the proportion of patients who achieved responder thresholds that correlate with improved outcome in patients with pulmonary arterial hypertension was determined at baseline and at the end of CHEST-1. Patients received placebo or riociguat individually adjusted up to 2.5 mg 3 times a day for 16 weeks. Response criteria were defined as follows: 6MWD increase ≥40 m, 6MWD ≥380 m, cardiac index ≥2.5 liters/min/m(2), pulmonary vascular resistance <500 dyn∙sec∙cm(-5), mixed venous oxygen saturation ≥65%, World Health Organization functional class I/II, N-terminal pro-brain natriuretic peptide <1,800 pg/ml, and right atrial pressure <8 mm Hg. Riociguat increased the proportion of patients with 6MWD ≥380 m, World Health Organization functional class I/II, and pulmonary vascular resistance <500 dyn∙sec∙cm(-5) from 37%, 34%, and 25% at baseline to 58%, 57%, and 50% at Week 16, whereas there was little change in placebo-treated patients (6MWD ≥380 m, 43% vs 44%; World Health Organization functional class I/II, 29% vs 38%; pulmonary vascular resistance <500 dyn∙sec∙cm(-5), 27% vs 26%). Similar changes were observed for thresholds for cardiac index, mixed venous oxygen saturation, N-terminal pro-brain natriuretic peptide, and right atrial pressure. In this exploratory analysis, riociguat increased the proportion of patients with inoperable chronic thromboembolic pulmonary hypertension or persistent/recurrent pulmonary hypertension after pulmonary endarterectomy achieving criteria defining a positive response to therapy. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Clinical characteristics of obesity-hypoventilation syndrome in Japan: a multi-center study.
Akashiba, Tsuneto; Akahoshi, Toshiki; Kawahara, Seiji; Uematsu, Akihito; Katsura, Kazuhito; Sakurai, Shigeru; Murata, Akira; Sakakibara, Hiroki; Chin, Kazuo; Hida, Wataru; Nakamura, Hiroshi
2006-01-01
To clarify the prevalence and clinical characteristics of obesity-hypoventilation syndrome (OHS) in a large number of patients with moderate to severe obstructive sleep apnea syndrome (OSAS). Subjects comprised 611 patients with OSAS registered from 7 sleep centers and clinics and analyzed according to the definitions of the Respiratory Failure Research Group of the Japanese Ministry of Health and Welfare. Baseline characteristics, polysomnographic data during sleep, laboratory blood examinations, excessive daytime sleepiness, pulmonary functions, and arterial blood gases were compared between OHS and non-OHS patients. Determinants of daytime hypercapnia were also examined in OHS patients. OHS was identified in 55 of the 611 patients with OSAS (9%). OHS patients were younger, heavier, and more somnolent than non-OHS patients and displayed more severe OSAS, liver dysfunctions, higher total cholesterol, and impaired pulmonary function. However, these differences were resolved except for pulmonary function after correction for obesity. Daytime hypercapnia was associated with impaired pulmonary function. Percent vital capacity (%VC) was most closely correlated with PaCO2 in OHS. OHS patients display numerous abnormalities due to obesity compared with non-OHS patients. Impaired pulmonary function, particularly %VC, may play an important role in the development of daytime hypercapnia independent of obesity in OHS patients.
Pulmonary Screening in Subjects after the Fontan Procedure.
Liptzin, Deborah R; Di Maria, Michael V; Younoszai, Adel; Narkewicz, Michael R; Kelly, Sarah L; Wolfe, Kelly R; Veress, Livia A
2018-05-07
To review the pulmonary findings of the first 51 patients who presented to our interdisciplinary single-ventricle clinic after undergoing the Fontan procedure. We performed an Institutional Review Board-approved retrospective review of 51 patients evaluated following the Fontan procedure. Evaluation included history, physical examination, pulmonary function testing, and 6-minute walk. Descriptive statistics were used to describe the population and testing data. Sixty-one percent of the patients had a pulmonary concern raised during the visit. Three patients had plastic bronchitis. Abnormal lung function testing was present in 46% of patients. Two-thirds (66%) of the patients had significant desaturation during the 6-minute walk test. Patients who underwent a fenestrated Fontan procedure and those who underwent unfenestrated Fontan were compared in terms of saturation and 6-minute walk test results. Sleep concerns were present in 45% of the patients. Pulmonary morbidities are common in patients after Fontan surgery and include plastic bronchitis, abnormal lung function, desaturations with walking, and sleep concerns. Abnormal lung function and obstructive sleep apnea may stress the Fontan circuit and may have implications for cognitive and emotional functioning. A pulmonologist involved in the care of patients after Fontan surgery can assist in screening for comorbidities and recommend interventions. Copyright © 2018 Elsevier Inc. All rights reserved.
Infection, inflammation, and lung function decline in infants with cystic fibrosis.
Pillarisetti, Naveen; Williamson, Elizabeth; Linnane, Barry; Skoric, Billy; Robertson, Colin F; Robinson, Phil; Massie, John; Hall, Graham L; Sly, Peter; Stick, Stephen; Ranganathan, Sarath
2011-07-01
Better understanding of evolution of lung function in infants with cystic fibrosis (CF) and its association with pulmonary inflammation and infection is crucial in informing both early intervention studies aimed at limiting lung damage and the role of lung function as outcomes in such studies. To describe longitudinal change in lung function in infants with CF and its association with pulmonary infection and inflammation. Infants diagnosed after newborn screening or clinical presentation were recruited prospectively. FVC, forced expiratory volume in 0.5 seconds (FEV(0.5)), and forced expiratory flows at 75% of exhaled vital capacity (FEF(75)) were measured using the raised-volume technique, and z-scores were calculated from published reference equations. Pulmonary infection and inflammation were measured in bronchoalveolar lavage within 48 hours of lung function testing. Thirty-seven infants had at least two successful repeat lung function measurements. Mean (SD) z-scores for FVC were -0.8 (1.0), -0.9 (1.1), and -1.7 (1.2) when measured at the first visit, 1-year visit, or 2-year visit, respectively. Mean (SD) z-scores for FEV(0.5) were -1.4 (1.2), -2.4 (1.1), and -4.3 (1.6), respectively. In those infants in whom free neutrophil elastase was detected, FVC z-scores were 0.81 lower (P=0.003), and FEV(0.5) z-scores 0.96 lower (P=0.001), respectively. Significantly greater decline in FEV(0.5) z-scores occurred in those infected with Staphylococcus aureus (P=0.018) or Pseudomonas aeruginosa (P=0.021). In infants with CF, pulmonary inflammation is associated with lower lung function, whereas pulmonary infection is associated with a greater rate of decline in lung function. Strategies targeting pulmonary inflammation and infection are required to prevent early decline in lung function in infants with CF.
BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.
Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D
2015-06-12
During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. Copyright © 2015, American Association for the Advancement of Science.
Shieh, Tzong-Shiun; Chung, Jui-Jung; Wang, Chung-Jing; Tsai, Perng-Jy; Kuo, Yau-Chang; Guo, How-Ran
2012-02-13
To evaluate pulmonary function and respiratory symptoms in workers engaged in the early manufacturing processes of tea and to identify the associated factors, we conducted a study in a tea production area in Taiwan. We recruited tea workers who engaged in the early manufacturing process in the Mountain Ali area in Taiwan and a comparison group of local office workers who were matched for age, gender, and smoking habits. We performed questionnaire interviews, pulmonary function tests, skin prick tests, and measurement of specific IgE for tea on the participants and assessed tea dust exposures in the tea factories. The 91 participating tea workers had higher prevalence of respiratory symptoms than the comparison group (32 participants). Among tea workers, ball-rolling workers had the highest prevalence of symptoms and the highest exposures of inhalable dusts. At baseline, tea workers had similar pulmonary functions as the comparison group, but compared to the other tea workers ball-rolling workers had a lower ratio of the 1-second forced expiratory volume to forced vital capacity (FEV1/FVC) and a lower maximal mid-expiratory flow rate expressed as% of the predicted value--MMF (%pred). A total of 58 tea workers participated in the on-site investigation and the cross-shift lung function measurements. We found ball-rolling yielded the highest inhalable dust level, panning yielded the highest respirable dust level, and withering yielded the lowest levels of both dusts. Ball-rolling also yielded the highest coarse fraction (defined as inhalable dusts minus respirable dusts), which represented exposures from nose to tracheobronchial tract. During the shift, we observed significant declines in pulmonary function, especially in ball-rolling workers. Multiple regressions showed that age, height, work tasks, coarse fraction, and number of months working in tea manufacturing each year were independent predictors of certain pulmonary function parameters in tea workers. Tea workers engaged in early manufacturing processes of tea have higher prevalence of respiratory symptoms and pulmonary function impairment, which might be related to tea dust exposures, especially the coarse fraction.
[Normal lung volumes in patients with idiopathic pulmonary fibrosis and emphysema].
Casas, Juan Pablo; Abbona, Horacio; Robles, Adriana; López, Ana María
2008-01-01
Pulmonary function tests in idiopathic pulmonary fibrosis characteristically show a restrictive pattern, resulting from reduction of pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. Previous reports suggest that when both diseases coexist, pulmonary volumes are compensated and a smaller than expected reduction or even normal lung volumes can be found. We report 4 male patients of 64, 60, 73 and 70 years, all with heavy cigarette smoking history and progressive breathlessness. Three of them had severe limitation in their quality of life. All four showed advanced lung interstitial involvement, at high resolution CT scan, fibrotic changes predominantly in the subpleural areas of lower lung fields and concomitant emphysema in the upper lobes. Emphysema and pulmonary fibrosis was confirmed by open lung biopsy in one patient. The four patients showed normal spirometry and lung volumes with severe compromise of gas exchange and poor exercise tolerance evaluated by 6 minute walk test. Severe pulmonary arterial hypertension was also confirmed in three patients. Normal lung volumes does not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.
Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning. PMID:25243168
Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.
Hyde, Richard W.; Puy, Ricardo J. M.; Raub, William F.; Forster, Robert E.
1968-01-01
The dynamics of CO2 exchange in the lungs of man was studied by observing the rate of disappearance of a stable isotope of CO2 (13CO2) from the alveolar gas during breath holding. Over 50% of the inspired isotope disappeared within the first 3 sec followed by a moderately rapid logarithmic decline in which one-half of the remaining 13CO2 disappeared every 10 sec. The large initial disappearance of 13CO2 indicated that alveolar 13CO2 equilibrated in less than 3 sec with the CO2 stored in the pulmonary tissues and capillary blood. The volume of CO2 in the pulmonary tissues calculated from this initial disappearance was 200 ml or 0.33 ml of CO2 per milliliter of pulmonary tissue volume. The alveolar to end-capillary gradient for 13CO2 was calculated by comparing the simultaneous disappearance rates of 13CO2 and acetylene. At rest and during exercise this gradient for 13CO2 was either very small or not discernible, and diffusing capacity for CO2 (DLCO2) exceeded 200 ml/(min × mm Hg). After the administration of a carbonic anhydrase inhibitor the rate of disappearance of 13CO2 decreased markedly. DLCO2 fell to 42 ml/(min × mm Hg) and at least 70% of the exchange of 13CO2 with the CO2 stores in the pulmonary tissues and blood was blocked by the inhibitor. These changes were attributed to impairment of exchange of 13CO2 with the bicarbonate in the pulmonary tissues and blood. The pH of the pulmonary tissues (Vtis) was determined by a method based on the premise that the CO2 space in the pulmonary tissues blocked by the inhibitor represented total bicarbonate content. At an alveolar PCO2 of 40 mm Hg pH of Vtis equalled 6.97 ± 0.09. PMID:5658586
Li, Ji-Feng; Zhai, Zhen-Guo; Kuang, Tu-Guang; Liu, Min; Ma, Zhan-Hong; Li, Yi-Dan; Yang, Yuan-Hua
2017-08-01
Pulmonary hypertension (PH) can be caused by a fistula between the systemic and pulmonary arteries. Here, we report a case of PH due to multiple fistulas between systemic arteries and the right pulmonary artery where the ventilation/perfusion scan showed no perfusion in the right lung. A 32-year-old male patient was hospitalised for community-acquired pneumonia. After treatment with antibiotics, the pneumonia was alleviated but dyspnoea persisted. Pulmonary hypertension was diagnosed using right heart catheterisation, which detected the mean pulmonary artery pressure as 37mmHg. The anomalies were confirmed by contrast-enhanced CT scan (CT pulmonary angiography), systemic arterial angiography and pulmonary angiography. Following embolisation of the largest fistula, the haemodynamics and oxygen dynamics did not improve, and even worsened to some extent. After supportive therapy including diuretics and oxygen, the patient's dyspnoea, WHO function class and right heart function by transthoracic echocardiography all improved during follow-up. Pulmonary hypertension can be present even when the right lung perfusion is lost. Closure of fistulas by embolisation, when those fistulas act as the proliferating vessels, may be harmful. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Resting cerebral blood flow, attention, and aging.
Bertsch, Katja; Hagemann, Dirk; Hermes, Michael; Walter, Christof; Khan, Robina; Naumann, Ewald
2009-04-24
Aging is accompanied by a decline of fluid cognitive functions, e.g., a slowing of information processing, working memory, and division of attention. This is at least partly due to structural and functional changes in the aging brain. Although a decrement of resting cerebral blood flow (CBF) has been positively associated with cognitive functions in patients with brain diseases, studies with healthy participants have revealed inconsistent results. Therefore, we investigated the relation between resting cerebral blood flow and cognitive functions (tonic and phasic alertness, selective and divided attention) in two samples of healthy young and older participants. We found higher resting CBF and better cognitive performances in the young than in the older sample. In addition, resting CBF was inversely correlated with selective attention in the young and with tonic alertness in the elderly participants. This finding is discussed with regard to the neural efficiency hypothesis of human intelligence.
Lee, Sung-soon; Kim, Changhwan; Jin, Young-Soo; Oh, Yeon-Mok; Lee, Sang-Do; Yang, Yun Jun; Park, Yong Bum
2013-05-01
Despite documented efficacy and recommendations, pulmonary rehabilitation (PR) in chronic obstructive pulmonary disease (COPD) has been underutilized. Home-based PR was proposed as an alternative, but there were limited data. The adequate exercise intensity was also a crucial issue. The aim of this study was to investigate the effects of home-based PR with a metronome-guided walking pace on functional exercise capacity and health-related quality of life (HRQOL) in COPD. The subjects participated in a 12-week home-based PR program. Exercise intensity was initially determined by cardiopulmonary exercise test, and was readjusted (the interval of metronome beeps was reset) according to submaximal endurance test. Six-minute walk test, pulmonary function test, cardiopulmonary exercise test, and St. George's Respiratory Questionnaire (SGRQ) were done before and after the 12-week program, and at 6 months after completion of rehabilitation. Thirty-three patients participated in the program. Six-minute walking distance was significantly increased (48.8 m; P = 0.017) and the SGRQ score was also improved (-15; P < 0.001) over the six-month follow-up period after rehabilitation. There were no significant differences in pulmonary function and peak exercise parameters. We developed an effective home-based PR program with a metronome-guided walking pace for COPD patients. This rehabilitation program may improve functional exercise capacity and HRQOL.
Patel, Neil
2012-01-01
Pulmonary hypertension and secondary cardiac dysfunction are important contributors of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). Milrinone, a phosphodiesterase-3 inhibitor, may be useful in this setting for its combined actions as a pulmonary vasodilator and to improve systolic and diastolic function. This study aimed to assess the effects of milrinone on cardiac function and pulmonary artery pressure in infants with CDH. A retrospective review of echocardiograms performed on infants with CDH who received milrinone was performed. Tissue Doppler imaging velocities were used to assess systolic and diastolic function. Pulmonary artery pressure was assessed from the pattern and velocity of ductal shunting. Six infants with CDH and severe pulmonary hypertension were identified. Systolic and diastolic myocardial velocities were reduced in the right ventricle (RV) and interventricular septum (IVS) at baseline. In the 72 h after commencement of milrinone, there was a significant increase in early diastolic myocardial velocities in the RV, accompanied by increasing systolic velocities in the RV and IVS. Oxygenation index was significantly reduced, blood pressure unchanged, and ductal shunt velocity minimally altered over the same time period. Milrinone use was associated with an improvement in systolic and diastolic function in the RV, corresponding to an improvement in clinical status. Copyright © 2012 S. Karger AG, Basel.
The impact of bariatric surgery on pulmonary function: a meta-analysis.
Alsumali, Adnan; Al-Hawag, Ali; Bairdain, Sigrid; Eguale, Tewodros
2018-02-01
Morbid obesity may affect several body systems and cause ill effects to the cardiovascular, hepatobiliary, endocrine, and mental health systems. However, the impact on the pulmonary system and pulmonary function has been debated in the literature. A systematic review and meta-analysis for studies that have evaluated the impact of bariatric surgery on pulmonary function were pooled for this analysis. PubMed, Cochrane, and Embase databases were evaluated through September 31, 2016. They were used as the primary search engine for studies evaluating the impact pre- and post-bariatric surgery on pulmonary function. Pooled effect estimates were calculated using random-effects model. Twenty-three studies with 1013 participants were included in the final meta-analysis. Only 8 studies had intervention and control groups with different time points, but 15 studies had matched groups with different time points. Overall, pulmonary function score was significantly improved after bariatric surgery, with a pooled standardized mean difference of .59 (95% confidence interval: .46-.73). Heterogeneity test was performed by using Cochran's Q test (I 2 = 46%; P heterogeneity = .10). Subgroup analysis and univariate meta-regression based on study quality, age, presurgery body mass index, postsurgery body mass index, study design, female patients only, study continent, asthmatic patients in the study, and the type of bariatric surgery confirmed no statistically significant difference among these groups (P value>.05 for all). A multivariate meta-regression model, which adjusted simultaneously for these same covariates, did not change the results (P value > .05 overall). Assessment of publication bias was done visually and by Begg's rank correlation test and indicated the absence of publication bias (asymmetric shape was observed and P = .34). This meta-analysis shows that bariatric surgery significantly improved overall pulmonary functions score for morbid obesity. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Wink, Jeroen; de Wilde, Rob B P; Wouters, Patrick F; van Dorp, Eveline L A; Veering, Bernadette Th; Versteegh, Michel I M; Aarts, Leon P H J; Steendijk, Paul
2016-10-18
Blockade of cardiac sympathetic fibers by thoracic epidural anesthesia may affect right ventricular function and interfere with the coupling between right ventricular function and right ventricular afterload. Our main objectives were to study the effects of thoracic epidural anesthesia on right ventricular function and ventricular-pulmonary coupling. In 10 patients scheduled for lung resection, right ventricular function and its response to increased afterload, induced by temporary, unilateral clamping of the pulmonary artery, was tested before and after induction of thoracic epidural anesthesia using combined pressure-conductance catheters. Thoracic epidural anesthesia resulted in a significant decrease in right ventricular contractility (ΔESV 25 : +25.5 mL, P=0.0003; ΔEes: -0.025 mm Hg/mL, P=0.04). Stroke work, dP/dt MAX , and ejection fraction showed a similar decrease in systolic function (all P<0.05). A concomitant decrease in effective arterial elastance (ΔEa: -0.094 mm Hg/mL, P=0.004) yielded unchanged ventricular-pulmonary coupling. Cardiac output, systemic vascular resistance, and mean arterial blood pressure were unchanged. Clamping of the pulmonary artery significantly increased afterload (ΔEa: +0.226 mm Hg/mL, P<0.001). In response, right ventricular contractility increased (ΔESV 25 : -26.6 mL, P=0.0002; ΔEes: +0.034 mm Hg/mL, P=0.008), but ventricular-pulmonary coupling decreased (Δ(Ees/Ea) = -0.153, P<0.0001). None of the measured indices showed significant interactive effects, indicating that the effects of increased afterload were the same before and after thoracic epidural anesthesia. Thoracic epidural anesthesia impairs right ventricular contractility but does not inhibit the native positive inotropic response of the right ventricle to increased afterload. Right ventricular-pulmonary arterial coupling was decreased with increased afterload but not affected by the induction of thoracic epidural anesthesia. URL: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2844. Unique identifier: NTR2844. © 2016 American Heart Association, Inc.
Chronic Obstructive Pulmonary Disease: Diagnosis and Management.
Gentry, Shari; Gentry, Barry
2017-04-01
The diagnosis of chronic obstructive pulmonary disease (COPD) should be suspected in patients with risk factors (primarily a history of smoking) who report dyspnea at rest or with exertion, chronic cough with or without sputum production, or a history of wheezing. COPD may be suspected based on findings from the history and physical examination, but must be confirmed by spirometry to detect airflow obstruction. Findings that are most helpful to rule in COPD include a smoking history of more than 40 pack-years, a self-reported history of COPD, maximal laryngeal height, and age older than 45 years. The combination of three clinical variables-peak flow rate less than 350 L per minute, diminished breath sounds, and a smoking history of 30 pack-years or more-is another good clinical predictor, whereas the absence of all three of these signs essentially rules out airflow obstruction. Pharmacotherapy and smoking cessation are the mainstays of treatment, and pulmonary rehabilitation, long-term oxygen therapy, and surgery may be considered in select patients. Current guidelines recommend starting monotherapy with an inhaled bronchodilator, stepping up to combination therapy as needed, and/or adding inhaled corticosteroids as symptom severity and airflow obstruction progress.
Pulmonary physiology during pulmonary embolism.
Elliott, C G
1992-04-01
Acute pulmonary thromboembolism produces a number of pathophysiologic derangements of pulmonary function. Foremost among these alterations is increased pulmonary vascular resistance. For patients without preexistent cardiopulmonary disease, increased pulmonary vascular resistance is directly related to the degree of vascular obstruction demonstrated on the pulmonary arteriogram. Vasoconstriction, either reflexly or biochemically mediated, may contribute to increased pulmonary vascular resistance. Acute pulmonary thromboembolism also disturbs matching of ventilation and blood flow. Consequently, some lung units are overventilated relative to perfusion (increased dead space), while other lung units are underventilated relative to perfusion (venous admixture). True right-to-left shunting of mixed venous blood can occur through the lungs (intrapulmonary shunt) or across the atrial septum (intracardiac shunt). In addition, abnormalities of pulmonary gas exchange (carbon monoxide transfer), pulmonary compliance and airway resistance, and ventilatory control may accompany pulmonary embolism. Thrombolytic therapy can reverse the hemodynamic derangements of acute pulmonary thromboembolism more rapidly than anticoagulant therapy. Limited data suggest a sustained benefit of thrombolytic treatment on the pathophysiologic alterations of pulmonary vascular resistance and pulmonary gas exchange produced by acute pulmonary emboli.
NASA Astrophysics Data System (ADS)
Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi
2014-03-01
A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.
A computer system for processing data from routine pulmonary function tests.
Pack, A I; McCusker, R; Moran, F
1977-01-01
In larger pulmonary function laboratories there is a need for computerised techniques of data processing. A flexible computer system, which is used routinely, is described. The system processes data from a relatively large range of tests. Two types of output are produced--one for laboratory purposes, and one for return to the referring physician. The system adds an automatic interpretative report for each set of results. In developing the interpretative system it has been necessary to utilise a number of arbitrary definitions. The present terminology for reporting pulmonary function tests has limitations. The computer interpretation system affords the opportunity to take account of known interaction between measurements of function and different pathological states. Images PMID:329462
Kirkhus, Niels E; Skare, Øivind; Ulvestad, Bente; Aaløkken, Trond Mogens; Günther, Anne; Olsen, Raymond; Thomassen, Yngvar; Lund, May Brit; Ellingsen, Dag G
2018-04-01
The aim of this study was to assess short-term changes in pulmonary function in drill floor workers currently exposed to airborne contaminants generated as a result of drilling offshore. We also aimed to study the prevalence of pulmonary fibrosis using high-resolution computed tomography (HRCT) scans of another group of previously exposed drill floor workers. Pulmonary function was measured before and after a 14-day work period in a follow-up study of 65 drill floor workers and 65 referents. Additionally, 57 other drill floor workers exposed to drilling fluids during the 1980s were examined with HRCT of the lungs in a cross-sectional study. The drill floor workers had a statistically significant decline in forced expiratory volume in 1 s (FEV 1 ) across the 14-day work period after adjustment for diurnal variations in pulmonary function (mean 90 mL, range 30-140 mL), while the small decline among the referents (mean 20 mL, range - 30 to 70 mL) was not of statistical significance. Larger declines in FEV 1 among drill workers were associated with the fewer number of days of active drilling. There were no signs of pulmonary fibrosis related to oil mist exposure among the other previously exposed drill floor workers. After 14 days offshore, a statistically significant decline in FEV 1 was observed in the drill floor workers, which may not be related to oil mist exposure. No pulmonary fibrosis related to oil mist exposure was observed.
Benattia, Amira; Debeaumont, David; Guyader, Vincent; Tardif, Catherine; Peillon, Christophe; Cuvelier, Antoine; Baste, Jean-Marc
2016-06-01
Impaired respiratory function may prevent curative surgery for patients with non-small cell lung cancer (NSCLC). Video-assisted thoracoscopic surgery (VATS) reduces postoperative morbility-mortality and could change preoperative assessment practices and therapeutic decisions. We evaluated the relation between preoperative pulmonary function tests and the occurrence of postoperative complications after VATS pulmonary resection in patients with abnormal pulmonary function. We included 106 consecutive patients with ≤80% predicted value of presurgical expiratory volume in one second (FEV1) and/or diffusing capacity of carbon monoxide (DLCO) and who underwent VATS pulmonary resection for NSCLC from a prospective surgical database. Patients (64±9.5 years) had lobectomy (n=91), segmentectomy (n=7), bilobectomy (n=4), or pneumonectomy (n=4). FEV1 and DLCO preoperative averages were 68%±21% and 60%±18%. Operative mortality was 1.89%. Only FEV1 was predictive of postoperative complications [odds ratio (OR), 0.96; 95% confidence interval (CI), 0.926-0.991, P=0.016], but there was no determinable threshold. Twenty-five patients underwent incremental exercise testing. Desaturations during exercise (OR, 0.462; 95% CI, 0.191-0.878, P=0.039) and heart rate (HR) response (OR, 0.953; 95% CI, 0.895-0.993, P=0.05) were associated with postoperative complications. FEV1 but not DLCO was a significant predictor of pulmonary complications after VATS pulmonary resection despite a low rate of severe morbidity. Incremental exercise testing seems more discriminating. Further investigation is required in a larger patient population to change current pre-operative threshold in a new era of minimally invasive surgery.
Jacob, Joseph; Bartholmai, Brian J; Rajagopalan, Srinivasan; Kokosi, Maria; Nair, Arjun; Karwoski, Ronald; Raghunath, Sushravya M; Walsh, Simon L F; Wells, Athol U; Hansell, David M
2016-09-01
The aim of the study was to determine whether a novel computed tomography (CT) postprocessing software technique (CALIPER) is superior to visual CT scoring as judged by functional correlations in idiopathic pulmonary fibrosis (IPF). A total of 283 consecutive patients with IPF had CT parenchymal patterns evaluated quantitatively with CALIPER and by visual scoring. These 2 techniques were evaluated against: forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), diffusing capacity for carbon monoxide (DLco), carbon monoxide transfer coefficient (Kco), and a composite physiological index (CPI), with regard to extent of interstitial lung disease (ILD), extent of emphysema, and pulmonary vascular abnormalities. CALIPER-derived estimates of ILD extent demonstrated stronger univariate correlations than visual scores for most pulmonary function tests (PFTs): (FEV1: CALIPER R=0.29, visual R=0.18; FVC: CALIPER R=0.41, visual R=0.27; DLco: CALIPER R=0.31, visual R=0.35; CPI: CALIPER R=0.48, visual R=0.44). Correlations between CT measures of emphysema extent and PFTs were weak and did not differ significantly between CALIPER and visual scoring. Intriguingly, the pulmonary vessel volume provided similar correlations to total ILD extent scored by CALIPER for FVC, DLco, and CPI (FVC: R=0.45; DLco: R=0.34; CPI: R=0.53). CALIPER was superior to visual scoring as validated by functional correlations with PFTs. The pulmonary vessel volume, a novel CALIPER CT parameter with no visual scoring equivalent, has the potential to be a CT feature in the assessment of patients with IPF and requires further exploration.
Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu
2017-07-01
Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Pulmonary Outcomes in Survivors of Childhood Cancer
Hudson, Melissa M.; Stokes, Dennis C.; Krasin, Matthew J.; Spunt, Sheri L.; Ness, Kirsten K.
2011-01-01
Background: The purpose of this article is to summarize the literature that documents the long-term impact of cancer treatment modalities on pulmonary function among survivors of cancer and to identify potential areas for further research. Methods: Systematic reviews of clinical trials, observational studies, case series, and review articles were conducted. Articles were limited to the studies that discussed pulmonary toxicity or late effects among pediatric cancer survivors and to follow-up investigations that were conducted a minimum of 2 years after completion of cancer-related treatment or 1 year after hematopoietic stem cell transplant. Results: Sixty publications (51 clinical studies/reports and nine reviews) published from January 1970 to June 2010 in PubMed met the inclusion criteria. Data showed an association between radiotherapy, alkylating agents, bleomycin, hematopoietic stem cell transplant, and thoracic surgery and pulmonary toxicity, as well as possible interactions among these modalities. Conclusions: Pulmonary toxicity is a common long-term complication of exposure to certain anticancer therapies in childhood and can vary from subclinical to life threatening. Pulmonary function and associated loss of optimal exercise capacity may have adverse effects on long-term quality of life in survivors. Lung function diminishes as a function of normal aging, and the effects of early lung injury from cancer therapy may compound these changes. The information presented in this review is designed to provide a stimulus to promote both observational and interventional research that expands our knowledge and aids in the design of interventions to prevent or ameliorate pulmonary late effects among survivors of childhood cancer. PMID:21415131
Using Operational Analysis to Improve Access to Pulmonary Function Testing.
Ip, Ada; Asamoah-Barnieh, Raymond; Bischak, Diane P; Davidson, Warren J; Flemons, W Ward; Pendharkar, Sachin R
2016-01-01
Background. Timely pulmonary function testing is crucial to improving diagnosis and treatment of pulmonary diseases. Perceptions of poor access at an academic pulmonary function laboratory prompted analysis of system demand and capacity to identify factors contributing to poor access. Methods. Surveys and interviews identified stakeholder perspectives on operational processes and access challenges. Retrospective data on testing demand and resource capacity was analyzed to understand utilization of testing resources. Results. Qualitative analysis demonstrated that stakeholder groups had discrepant views on access and capacity in the laboratory. Mean daily resource utilization was 0.64 (SD 0.15), with monthly average utilization consistently less than 0.75. Reserved testing slots for subspecialty clinics were poorly utilized, leaving many testing slots unfilled. When subspecialty demand exceeded number of reserved slots, there was sufficient capacity in the pulmonary function schedule to accommodate added demand. Findings were shared with stakeholders and influenced scheduling process improvements. Conclusion. This study highlights the importance of operational data to identify causes of poor access, guide system decision-making, and determine effects of improvement initiatives in a variety of healthcare settings. Importantly, simple operational analysis can help to improve efficiency of health systems with little or no added financial investment.
Lung imaging in pulmonary disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taplin, G.V.; Chopra, S.K.
1976-01-01
Although it has been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing pulmonary embolism (P.E.) from COPD is reported. Recent experience is reported with the use of both of these procedures in comparison with pulmonary function tests for the early detection of COPD in population studies and also in P.E. suspects. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imagingmore » in the differential diagnosis of P.E. Finally, this paper is concerned with new developments in regional lung diffusion imaging following the inhalation of radioactive gases and rapidly absorbed radioaerosols. Their experimental basis is presented and their potential clinical applications in pulmonary embolism are discussed. As a result of these investigations, a functional (V/P) diagnosis of pulmonary embolism in patients may be possible in the near future with a sequential radioaerosol inhalation procedure alone.« less
Kim, Hee Jin; Cha, Jungho; Lee, Jong-Min; Shin, Ji Soo; Jung, Na-Yeon; Kim, Yeo Jin; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won
2016-01-01
Recent advances in resting-state functional MRI have revealed altered functional networks in Alzheimer's disease (AD), especially those of the default mode network (DMN) and central executive network (CEN). However, few studies have evaluated whether small vessel disease (SVD) or combined amyloid and SVD burdens affect the DMN or CEN. The aim of this study was to evaluate whether SVD or combined amyloid and SVD burdens affect the DMN or CEN. In this cross-sectional study, we investigated the resting-state functional connectivity within DMN and CEN in 37 Pittsburgh compound-B (PiB)(+) AD, 37 PiB(-) subcortical vascular dementia (SVaD), 13 mixed dementia patients, and 65 normal controls. When the resting-state DMN of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(+) AD patients displayed lower functional connectivity in the inferior parietal lobule while the PiB(-) SVaD patients displayed lower functional connectivity in the medial frontal and superior frontal gyri. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the DMN in the posterior cingulate gyrus. When the resting-state CEN connectivity of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(-) SVaD patients displayed lower functional connectivity in the anterior insular region. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the CEN in the inferior frontal gyrus. Our findings suggest that in PiB(+) AD and PiB(-) SVaD, there is divergent disruptions in resting-state DMN and CEN. Furthermore, patients with combined amyloid and SVD burdens exhibited more disrupted resting-state DMN and CEN than patients with only amyloid or SVD burden.
Giuliano, Ryan J; Gatzke-Kopp, Lisa M; Roos, Leslie E; Skowron, Elizabeth A
2017-08-01
The neurovisceral integration model stipulates that autonomic function plays a critical role in the regulation of higher-order cognitive processes, yet most work to date has examined parasympathetic function in isolation from sympathetic function. Furthermore, the majority of work has been conducted on normative samples, which typically demonstrate parasympathetic withdrawal to increase arousal needed to complete cognitive tasks. Little is known about how autonomic regulation supports cognitive function in populations exposed to high levels of stress, which is critical given that chronic stress exposure alters autonomic function. To address this, we sought to characterize how parasympathetic (high-frequency heart rate variability, HF-HRV) and sympathetic (preejection period, PEP) measures of cardiac function contribute to individual differences in working memory (WM) capacity in a sample of high-risk women. HF-HRV and PEP were measured at rest and during a visual change detection measure of WM. Multilevel modeling was used to examine within-person fluctuations in WM performance throughout the task concurrently with HF-HRV and PEP, as well as between-person differences as a function of resting HF-HRV and PEP levels. Results indicate that resting PEP moderated the association between HF-HRV reactivity and WM capacity. Increases in WM capacity across the task were associated with increases in parasympathetic activity, but only among individuals with longer resting PEP (lower sympathetic arousal). Follow-up analyses showed that shorter resting PEP was associated with greater cumulative risk exposure. These results support the autonomic space framework, in that the relationship between behavior and parasympathetic function appears dependent on resting sympathetic activation. © 2017 Society for Psychophysiological Research.