Friel, KM; Chakrabarty, S; H-C, Kuo; Martin, JH
2012-01-01
This study investigated requirements for restoring motor function after corticospinal (CS) system damage during early postnatal development. Activity-dependent competition between the CS tracts (CST) of the two hemispheres is imperative for normal development. Blocking primary motor cortex (M1) activity unilaterally during a critical period (postnatal weeks-PW-5–7) produces permanent contralateral motor skill impairments, loss of M1 motor map, aberrant CS terminations, and decreases in CST presynaptic sites and spinal cholinergic interneuron numbers. To repair these motor systems impairments and restore function, we manipulated motor experience in three groups of cats after this CST injury produced by inactivation. One group wore a jacket restraining the limb ipsilateral to inactivation, forcing use of the contralateral, impaired, limb, for the month following M1 inactivation (PW8–13; “Restraint Alone”). A second group wore the restraint during PW8–13, and was also trained for 1 h/day in a reaching task with the contralateral forelimb (“Early Training”). To test the efficacy of intervention during adolescence, a third group wore the restraint and received reach training during PW20–24 (“Delayed Training”). Early training restored CST connections and the M1 motor map; increased cholinergic spinal interneurons numbers on the contralateral, relative to ipsilateral, side; and abrogated limb control impairments. Delayed training restored CST connectivity and the M1 motor map, but not contralateral spinal cholinergic cell counts or motor performance. Restraint alone only restored CST connectivity. Our findings stress the need to reestablish the integrated functions of the CS system at multiple hierarchical levels in restoring skilled motor function after developmental injury. PMID:22764234
Chen, Albert; Yao, Jun; Kuiken, Todd; Dewald, Julius P A
2013-01-01
Previous studies have postulated that the amount of brain reorganization following peripheral injuries may be correlated with negative symptoms or consequences. However, it is unknown whether restoring effective limb function may then be associated with further changes in the expression of this reorganization. Recently, targeted reinnervation (TR), a surgical technique that restores a direct neural connection from amputated sensorimotor nerves to new peripheral targets such as muscle, has been successfully applied to upper-limb amputees. It has been shown to be effective in restoring both peripheral motor and sensory functions via the reinnervated nerves as soon as a few months after the surgery. However, it was unclear whether TR could also restore normal cortical motor representations for control of the missing limb. To answer this question, we used high-density electroencephalography (EEG) to localize cortical activity related to cued motor tasks generated by the intact and missing limb. Using a case study of 3 upper-limb amputees, 2 of whom went through pre and post-TR experiments, we present unique quantitative evidence for the re-mapping of motor representations for the missing limb closer to their original locations following TR. This provides evidence that an effective restoration of peripheral function from TR can be linked to the return of more normal cortical expression for the missing limb. Therefore, cortical mapping may be used as a potential guide for monitoring rehabilitation following peripheral injuries.
Laskawi, R.; Rohrbach, S.
2005-01-01
The present review gives a survey of rehabilitative measures for disorders of the motor function of the mimetic muscles (facial nerve), and muscles innervated by the spinal accessory and hypoglossal nerves. The dysfunction can present either as paralysis or hyperkinesis (hyperkinesia). Conservative and surgical treatment options aimed at restoring normal motor function and correcting the movement disorders are described. Static reanimation techniques are not dealt with. The final section describes the use of botulinum toxin in the therapy of dysphagia. PMID:22073058
Liu, Ying Hsiu; Sahashi, Kentaro; Rigo, Frank; Bennett, C. Frank
2015-01-01
Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice. PMID:25583329
Neuromodulation of lower limb motor control in restorative neurology.
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-06-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.
Neuromodulation of lower limb motor control in restorative neurology
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-01-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657
Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J
2012-06-20
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.
Improving Survival and Promoting Respiratory Motor Function after Cervical Spinal Cord Injury
2016-09-01
AWARD NUMBER: W81XWH-15-1-0378 TITLE: Improving Survival and Promoting Respiratory Motor Function after Cervical Spinal Cord Injury PRINCIPAL...Aug 2015 - 14 Aug 2016 4. TITLE AND SUBTITLE CordCorInjury 5a. CONTRACT NUMBER Improvi g Survival and Promoting Respiratory Motor Function After... respiratory complications. This application proposes to help improve survival, decrease early dependence on mechanical ventilation, and restore breathing
Fox, Ida K; Novak, Christine B; Kahn, Lorna C; Mackinnon, Susan E; Ruvinskaya, Rimma; Juknis, Neringa
2018-01-01
Nerve transfers are used routinely for reconstruction of hand function following lower motor neuron lesions. In people with cervical spinal cord injury (SCI), this novel and alternate reconstruction option may be useful to restore prehension and grasp, and improve hand function. A 34-year-old male presented 12 years post-mid-cervical SCI. Pre-operative electrodiagnostic studies revealed intact lower motor neurons below the SCI level. He elected to undergo nerve transfer surgery to restore hand function. Intraoperative evaluation led to the transfer of a brachialis nerve to several median nerve recipient branches. Post surgery, he was discharged home and resumed activities of daily living. He achieved independent thumb and finger flexion function and continued to exhibit functional improvement at 4 years post surgery. These results should prompt referral for consideration of nerve transfer surgery-an exciting alternative to tendon transfer and neuroprostheses.
The DcpS inhibitor RG3039 improves motor function in SMA mice
Van Meerbeke, James P.; Gibbs, Rebecca M.; Plasterer, Heather L.; Miao, Wenyan; Feng, Zhihua; Lin, Ming-Yi; Rucki, Agnieszka A.; Wee, Claribel D.; Xia, Bing; Sharma, Shefali; Jacques, Vincent; Li, Darrick K.; Pellizzoni, Livio; Rusche, James R.; Ko, Chien-Ping; Sumner, Charlotte J.
2013-01-01
Spinal muscular atrophy (SMA) is caused by mutations of the survival motor neuron 1 (SMN1) gene, retention of the survival motor neuron 2 (SMN2) gene and insufficient expression of full-length survival motor neuron (SMN) protein. Quinazolines increase SMN2 promoter activity and inhibit the ribonucleic acid scavenger enzyme DcpS. The quinazoline derivative RG3039 has advanced to early phase clinical trials. In preparation for efficacy studies in SMA patients, we investigated the effects of RG3039 in severe SMA mice. Here, we show that RG3039 distributed to central nervous system tissues where it robustly inhibited DcpS enzyme activity, but minimally activated SMN expression or the assembly of small nuclear ribonucleoproteins. Nonetheless, treated SMA mice showed a dose-dependent increase in survival, weight and motor function. This was associated with improved motor neuron somal and neuromuscular junction synaptic innervation and function and increased muscle size. RG3039 also enhanced survival of conditional SMA mice in which SMN had been genetically restored to motor neurons. As this systemically delivered drug may have therapeutic benefits that extend beyond motor neurons, it could act additively with SMN-restoring therapies delivered directly to the central nervous system such as antisense oligonucleotides or gene therapy. PMID:23727836
Grahn, Peter J.; Mallory, Grant W.; Berry, B. Michael; Hachmann, Jan T.; Lobel, Darlene A.; Lujan, J. Luis
2014-01-01
Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles. PMID:25278830
Kumar, A; Kothari, M; Grigoriadis, A; Trulsson, M; Svensson, P
2018-04-01
Tooth loss, decreased mass and strength of the masticatory muscles leading to difficulty in chewing have been suggested as important determinants of eating and nutrition in the elderly. To compensate for the loss of teeth, in particular, a majority of the elderly rely on dental prosthesis for chewing. Chewing function is indeed an important aspect of oral health, and therefore, oral rehabilitation procedures should aim to restore or maintain adequate function. However, even if the possibilities to anatomically restore lost teeth and occlusion have never been better; conventional rehabilitation procedures may still fail to optimally restore oral functions. Perhaps this is due to the lack of focus on the importance of the brain in the rehabilitation procedures. Therefore, the aim of this narrative review was to discuss the importance of maintaining or restoring optimum chewing function in the superageing population and to summarise the emerging studies on oral motor task performance and measures of cortical neuroplasticity induced by systematic training paradigms in healthy participants. Further, brain imaging studies in patients undergoing or undergone oral rehabilitation procedures will be discussed. Overall, this information is believed to enhance the understanding and develop better rehabilitative strategies to exploit training-induced cortical neuroplasticity in individuals affected by impaired oral motor coordination and function. Training or relearning of oral motor tasks could be important to optimise masticatory performance in dental prosthesis users and may represent a much-needed paradigm shift in the approach to oral rehabilitation procedures. © 2018 John Wiley & Sons Ltd.
Motor Control of Human Spinal Cord Disconnected from the Brain and Under External Movement.
Mayr, Winfried; Krenn, Matthias; Dimitrijevic, Milan R
2016-01-01
Motor control after spinal cord injury is strongly depending on residual ascending and descending pathways across the lesion. The individually altered neurophysiology is in general based on still intact sublesional control loops with afferent sensory inputs linked via interneuron networks to efferent motor outputs. Partial or total loss of translesional control inputs reduces and alters the ability to perform voluntary movements and results in motor incomplete (residual voluntary control of movement functions) or motor complete (no residual voluntary control) spinal cord injury classification. Of particular importance are intact functionally silent neural structures with residual brain influence but reduced state of excitability that inhibits execution of voluntary movements. The condition is described by the term discomplete spinal cord injury. There are strong evidences that artificial afferent input, e.g., by epidural or noninvasive electrical stimulation of the lumbar posterior roots, can elevate the state of excitability and thus re-enable or augment voluntary movement functions. This modality can serve as a powerful assessment technique for monitoring details of the residual function profile after spinal cord injury, as a therapeutic tool for support of restoration of movement programs and as a neuroprosthesis component augmenting and restoring movement functions, per se or in synergy with classical neuromuscular or muscular electrical stimulation.
Quandt, Fanny; Hummel, Friedhelm C
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success.
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success. PMID:25276333
Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.
2011-01-01
SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257
Carmel, Jason B.; Martin, John H.
2014-01-01
The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971
Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao
2014-01-01
Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728
Axon-Sorting Multifunctional Nerve Guides: Accelerating Restoration of Nerve Function
2014-10-01
factor (singly & in selected combinations) in the organotypic model system for preferential sensory or motor axon extension. Use confocal microscopy to...track axon extension of labeled sensory or motor neurons from spinal cord slices (motor) or dorsal root ganglia ( DRG ) (sensory). 20 Thy1-YFP mice...RESEARCH ACCOMPLISHMENTS: • Established a system of color-coded mixed nerve tracking using GFP and RFP expressing motor and sensory neurons (Figure 1
SMN is required for sensory-motor circuit function in Drosophila
Imlach, Wendy L.; Beck, Erin S.; Choi, Ben Jiwon; Lotti, Francesco; Pellizzoni, Livio; McCabe, Brian D.
2012-01-01
Summary Spinal muscular atrophy (SMA) is a lethal human disease characterized by motor neuron dysfunction and muscle deterioration due to depletion of the ubiquitous Survival Motor Neuron (SMN) protein. Drosophila SMN mutants have reduced muscle size and defective locomotion, motor rhythm and motor neuron neurotransmission. Unexpectedly, restoration of SMN in either muscles or motor neurons did not alter these phenotypes. Instead, SMN must be expressed in proprioceptive neurons and interneurons in the motor circuit to non-autonomously correct defects in motor neurons and muscles. SMN depletion disrupts the motor system subsequent to circuit development and can be mimicked by the inhibition of motor network function. Furthermore, increasing motor circuit excitability by genetic or pharmacological inhibition of K+ channels can correct SMN-dependent phenotypes. These results establish sensory-motor circuit dysfunction as the origin of motor system deficits in this SMA model and suggest that enhancement of motor neural network activity could ameliorate the disease. PMID:23063130
Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang
2014-01-01
A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics. PMID:25084446
Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang
2014-01-01
A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.
Regaining motor control in musician's dystonia by restoring sensorimotor organization.
Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C
2009-11-18
Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.
Music supported therapy promotes motor plasticity in individuals with chronic stroke.
Ripollés, P; Rojo, N; Grau-Sánchez, J; Amengual, J L; Càmara, E; Marco-Pallarés, J; Juncadella, M; Vaquero, L; Rubio, F; Duarte, E; Garrido, C; Altenmüller, E; Münte, T F; Rodríguez-Fornells, A
2016-12-01
Novel rehabilitation interventions have improved motor recovery by induction of neural plasticity in individuals with stroke. Of these, Music-supported therapy (MST) is based on music training designed to restore motor deficits. Music training requires multimodal processing, involving the integration and co-operation of visual, motor, auditory, affective and cognitive systems. The main objective of this study was to assess, in a group of 20 individuals suffering from chronic stroke, the motor, cognitive, emotional and neuroplastic effects of MST. Using functional magnetic resonance imaging (fMRI) we observed a clear restitution of both activity and connectivity among auditory-motor regions of the affected hemisphere. Importantly, no differences were observed in this functional network in a healthy control group, ruling out possible confounds such as repeated imaging testing. Moreover, this increase in activity and connectivity between auditory and motor regions was accompanied by a functional improvement of the paretic hand. The present results confirm MST as a viable intervention to improve motor function in chronic stroke individuals.
Dopaminergic influences on formation of a motor memory.
Flöel, Agnes; Breitenstein, Caterina; Hummel, Friedhelm; Celnik, Pablo; Gingert, Christian; Sawaki, Lumy; Knecht, Stefan; Cohen, Leonardo G
2005-07-01
The ability of the central nervous system to form motor memories, a process contributing to motor learning and skill acquisition, decreases with age. Dopaminergic activity, one of the mechanisms implicated in memory formation, experiences a similar decline with aging. It is possible that restoring dopaminergic function in elderly adults could lead to improved formation of motor memories with training. We studied the influence of a single oral dose of levodopa (100mg) administered preceding training on the ability to encode an elementary motor memory in the primary motor cortex of elderly and young healthy volunteers in a randomized, double-blind, placebo-controlled design. Attention to the task and motor training kinematics were comparable across age groups and sessions. In young subjects, encoding a motor memory under placebo was more prominent than in older subjects, and the encoding process was accelerated by intake of levodopa. In the elderly group, diminished motor memory encoding under placebo was enhanced by intake of levodopa to levels present in younger subjects. Therefore, upregulation of dopaminergic activity accelerated memory formation in young subjects and restored the ability to form a motor memory in elderly subjects; possible mechanisms underlying the beneficial effects of dopaminergic agents on motor learning in neurorehabilitation.
In silico modeling of axonal reconnection within a discrete fiber tract after spinal cord injury.
Woolfe, Franco; Waxman, Stephen G; Hains, Bryan C
2007-02-01
Following spinal cord injury (SCI), descending axons that carry motor commands from the brain to the spinal cord are injured or transected, producing chronic motor dysfunction and paralysis. Reconnection of these axons is a major prerequisite for restoration of function after SCI. Thus far, only modest gains in motor function have been achieved experimentally or in the clinic after SCI, identifying the practical limitations of current treatment approaches. In this paper, we use an ordinary differential equation (ODE) to simulate the relative and synergistic contributions of several experimentally-established biological factors related to inhibition or promotion of axonal repair and restoration of function after SCI. The factors were mathematically modeled by the ODE. The results of our simulation show that in a model system, many factors influenced the achievability of axonal reconnection. Certain factors more strongly affected axonal reconnection in isolation, and some factors interacted in a synergistic fashion to produce further improvements in axonal reconnection. Our data suggest that mathematical modeling may be useful in evaluating the complex interactions of discrete therapeutic factors not possible in experimental preparations, and highlight the benefit of a combinatorial therapeutic approach focused on promoting axonal sprouting, attraction of cut ends, and removal of growth inhibition for achieving axonal reconnection. Predictions of this simulation may be of utility in guiding future experiments aimed at restoring function after SCI.
Nichols, Nicole L.; Gowing, Genevieve; Satriotomo, Irawan; Nashold, Lisa J.; Dale, Erica A.; Suzuki, Masatoshi; Avalos, Pablo; Mulcrone, Patrick L.; McHugh, Jacalyn
2013-01-01
Rationale: Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease causing paralysis and death from respiratory failure. Strategies to preserve and/or restore respiratory function are critical for successful treatment. Although breathing capacity is maintained until late in disease progression in rodent models of familial ALS (SOD1G93A rats and mice), reduced numbers of phrenic motor neurons and decreased phrenic nerve activity are observed. Decreased phrenic motor output suggests imminent respiratory failure. Objectives: To preserve or restore phrenic nerve activity in SOD1G93A rats at disease end stage. Methods: SOD1G93A rats were injected with human neural progenitor cells (hNPCs) bracketing the phrenic motor nucleus before disease onset, or exposed to acute intermittent hypoxia (AIH) at disease end stage. Measurements and Main Results: The capacity to generate phrenic motor output in anesthetized rats at disease end stage was: (1) transiently restored by a single presentation of AIH; and (2) preserved ipsilateral to hNPC transplants made before disease onset. hNPC transplants improved ipsilateral phrenic motor neuron survival. Conclusions: AIH-induced respiratory plasticity and stem cell therapy have complementary translational potential to treat breathing deficits in patients with ALS. PMID:23220913
NASA Astrophysics Data System (ADS)
Roshani, Amir; Erfanian, Abbas
2016-08-01
Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS through an array of microelectrodes.
Lembke, Kayly M; Scudder, Charles; Morton, David B
2017-09-27
Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 ortholog TBPH, we previously showed that TBPH-null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony , a Type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of neuromuscular junction physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the neuromuscular junction, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in neuromuscular junction physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects. SIGNIFICANCE STATEMENT TDP-43 dysfunction is a common feature in neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar dementia, and Alzheimer's disease. Loss- and gain-of-function models have shown that neurons are sensitive to TDP-43 expression levels, but the specific defects caused by TDP-43 loss of function have not been described in detail. A Drosophila loss-of-function model displays pronounced locomotion defects that can be reversed by restoring the expression levels of a voltage-gated calcium channel, cacophony. We show these defects can be rescued by expression of cacophony in motor neurons and by expression in two pairs of neurons in the brain. These data suggest that loss of TDP-43 can disrupt the central circuitry of the CNS, opening up identification of alternative therapeutic targets for TDP-43 proteinopathies. Copyright © 2017 the authors 0270-6474/17/379486-12$15.00/0.
Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P
2017-08-01
Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.
A SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function
Lotti, Francesco; Imlach, Wendy L.; Saieva, Luciano; Beck, Erin S.; Hao, Le T.; Li, Darrick K.; Jiao, Wei; Mentis, George Z.; Beattie, Christine E.; McCabe, Brian D.; Pellizzoni, Livio
2012-01-01
SUMMARY Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a novel protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA. PMID:23063131
Electrical stimulation and motor recovery.
Young, Wise
2015-01-01
In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.
Regaining motor control in musician's dystonia by restoring sensorimotor organisation
Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C.
2010-01-01
Professional musicians are an excellent human model of long term effects of skilled motor training on the structure and function of the motor system. However, such effects are accompanied by an increased risk of developing motor abnormalities, in particular musician's dystonia. Previously we found that there was an expanded spatial integration of proprioceptive input into the hand area of motor cortex (sensorimotor organisation, SMO) in healthy musicians as tested with a transcranial magnetic stimulation (TMS) paradigm. In musician's dystonia, this expansion was even larger, resulting in a complete lack of somatotopic organisation. We hypothesised that the disordered motor control in musician's dystonia is a consequence of the disordered SMO. In the present paper we test this idea by giving pianists with musician's dystonia 15 min experience of a modified proprioceptive training task. This restored SMO towards that seen in healthy pianists. Crucially, motor control of the affected task improved significantly and objectively as measured with a MIDI piano, and the amount of behavioural improvement was significantly correlated to the degree of sensorimotor re-organisation. In healthy pianists and non-musicians, the SMO and motor performance remained essentially unchanged. These findings suggest a link between the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks in highly skilled individuals. PMID:19923295
Brunetti, F; Garay, Á; Moreno, J C; Pons, J L
2011-01-01
This paper presents the development of a novel functional electrical stimulation (FES) system. New approaches in emerging rehabilitation robotics propose the use of residual muscular activity or limbs movements during the rehabilitation process of neuromotor. More ambitious projects propose the use of FES systems to restore or compensate motor capabilities by controlling existing muscles or subject limbs. These emerging approaches require more sophisticated FES devices in terms of channels, signals controls and portability. In the framework of HYPER project, such devices are being developed to support the main objective of the project: the development of neurorobots and neuroprosthetics to restore functional motor capabilities in patients who suffered cerebrovascular accidents or spinal cord injury. The presented portable FES system includes novel elec-trostimulator circuits and improved channel switching capacities to enable emerging approaches in rehabilitation robotics. © 2011 IEEE
An adaptive brain actuated system for augmenting rehabilitation
Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.
2014-01-01
For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945
Khodaparast, N; Hays, S A; Sloan, A M; Hulsey, D R; Ruiz, A; Pantoja, M; Rennaker, R L; Kilgard, M P
2013-12-01
Upper limb impairment is a common debilitating consequence of ischemic stroke. Physical rehabilitation after stroke enhances neuroplasticity and improves limb function, but does not typically restore normal movement. We have recently developed a novel method that uses vagus nerve stimulation (VNS) paired with forelimb movements to drive specific, long-lasting map plasticity in rat primary motor cortex. Here we report that VNS paired with rehabilitative training can enhance recovery of forelimb force generation following infarction of primary motor cortex in rats. Quantitative measures of forelimb function returned to pre-lesion levels when VNS was delivered during rehab training. Intensive rehab training without VNS failed to restore function back to pre-lesion levels. Animals that received VNS during rehab improved twice as much as rats that received the same rehabilitation without VNS. VNS delivered during physical rehabilitation represents a novel method that may provide long-lasting benefits towards stroke recovery. © 2013.
Astrocytes influence the severity of spinal muscular atrophy
Rindt, Hansjörg; Feng, Zhihua; Mazzasette, Chiara; Glascock, Jacqueline J.; Valdivia, David; Pyles, Noah; Crawford, Thomas O.; Swoboda, Kathryn J.; Patitucci, Teresa N.; Ebert, Allison D.; Sumner, Charlotte J.; Ko, Chien-Ping; Lorson, Christian L.
2015-01-01
Systemically low levels of survival motor neuron-1 (SMN1) protein cause spinal muscular atrophy (SMA). α-Motor neurons of the spinal cord are considered particularly vulnerable in this genetic disorder and their dysfunction and loss cause progressive muscle weakness, paralysis and eventually premature death of afflicted individuals. Historically, SMA was therefore considered a motor neuron-autonomous disease. However, depletion of SMN in motor neurons of normal mice elicited only a very mild phenotype. Conversely, restoration of SMN to motor neurons in an SMA mouse model had only modest effects on the SMA phenotype and survival. Collectively, these results suggested that additional cell types contribute to the pathogenesis of SMA, and understanding the non-autonomous requirements is crucial for developing effective therapies. Astrocytes are critical for regulating synapse formation and function as well as metabolic support for neurons. We hypothesized that astrocyte functions are disrupted in SMA, exacerbating disease progression. Using viral-based restoration of SMN specifically to astrocytes, survival in severe and intermediate SMA mice was observed. In addition, neuromuscular circuitry was improved. Astrogliosis was prominent in end-stage SMA mice and in post-mortem patient spinal cords. Increased expression of proinflammatory cytokines was partially normalized in treated mice, suggesting that astrocytes contribute to the pathogenesis of SMA. PMID:25911676
Emerging Treatments for Motor Rehabilitation After Stroke
Krishnan, Chandramouli; Khot, Sandeep P.
2015-01-01
Although numerous treatments are available to improve cerebral perfusion after acute stroke and prevent recurrent stroke, few rehabilitation treatments have been conclusively shown to improve neurologic recovery. The majority of stroke survivors with motor impairment do not recover to their functional baseline, and there remains a need for novel neurorehabilitation treatments to minimize long-term disability, maximize quality of life, and optimize psychosocial outcomes. In recent years, several novel therapies have emerged to restore motor function after stroke, and additional investigational treatments have also shown promise. Here, we familiarize the neurohospitalist with emerging treatments for poststroke motor rehabilitation. The rehabilitation treatments covered in this review will include selective serotonin reuptake inhibitor medications, constraint-induced movement therapy, noninvasive brain stimulation, mirror therapy, and motor imagery or mental practice. PMID:25829989
Cannoy, Jill; Crowley, Sam; Jarratt, Allen; Werts, Kelly LeFevere; Osborne, Krista; Park, Sohee
2016-01-01
Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair. PMID:27466130
[Complex program for the recovery of the vertebral column motor function].
Kukareko, V P; Furmanov, A G
2011-01-01
This paper addresses the problems pertinent to the improvement of the efficacy of restoration of the vertebral column motor function based on the implementation of a comprehensive therapeutic program including massage, thermal procedures, and physical exercises. The program was realized in three phases, viz. preparatory, basic, and consolidating. The results of integral estimation of the whole body and vertebral column condition were taken into consideration. The experiment lasted 6 months and confirmed high efficiency of the comprehensive program.
Kalderon, N; Xu, S; Koutcher, J A; Fuks, Z
2001-06-22
Previous studies suggest that motor recovery does not occur after spinal cord injury because reactive glia abort the natural repair processes. A permanent wound gap is left in the cord and the brain-cord circuitry consequently remains broken. Single-dose x-irradiation destroys reactive glia at the damage site in transected adult rat spinal cord. The wound then heals naturally, and a partially functional brain-cord circuitry is reconstructed. Timing is crucial; cell ablation is beneficial only within the third week after injury. Data presented here point to the possibility of translating these observations into a clinical therapy for preventing the paralysis following spinal cord injury in the human. The lesion site (at low thoracic level) in severed adult rat spinal cord was treated daily, over the third week postinjury, with protocols of fractionated radiation similar to those for treating human spinal cord tumors. This resulted, as with the single-dose protocol, in wound healing and restoration of some hindquarter motor function; in addition, the beneficial outcome was augmented. Of the restored hindlimb motor functions, weight-support and posture in stance was the only obvious one. Recovery of this motor function was partial to substantial and its incidence was 100% instead of about 50% obtained with the single-dose treatment. None of the hindlimbs, however, regained frequent stepping or any weight-bearing locomotion. These data indicate that the therapeutic outcome may be further augmented by tuning the radiation parameters within the critical time-window after injury. These data also indicate that dose-fractionation is an effective strategy and better than the single-dose treatment for targeting of reactive cells that abort the natural repair, suggesting that radiation therapy could be developed into a therapeutic procedure for repairing injured spinal cord.
Dorsi, Michael J; Belzberg, Allan J
2012-01-01
Transverse myelitis (TM) may result in permanent neurologic dysfunction. Nerve transfers have been developed to restore function after peripheral nerve injury. Here, we present a case report of a child with permanent right upper extremity weakness due to TM that underwent nerve transfers. The following procedures were performed: double fascicle transfer from median nerve and ulnar nerve to the brachialis and biceps branches of the musculocutaneous nerve, spinal accessory to suprascapular nerve, and medial cord to axillary nerve end-to-side neurorraphy. At 22 months, the patient demonstrated excellent recovery of elbow flexion with minimal improvement in shoulder abduction. We propose that the treatment of permanent deficits from TM represents a novel indication for nerve transfers in a subset of patients. Copyright © 2011 Wiley Periodicals, Inc.
Custer, Sara K; Todd, Adrian G; Singh, Natalia N; Androphy, Elliot J
2013-10-15
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder that stems from low levels of survival of motor neuron (SMN) protein. The processes that cause motor neurons and muscle cells to become dysfunctional are incompletely understood. We are interested in neuromuscular homeostasis and the stresses put upon that system by loss of SMN. We recently reported that α-COP, a member of the coatomer complex of coat protein I (COPI) vesicles, is an SMN-binding partner, implicating this protein complex in normal SMN function. To investigate the functional significance of the interaction between α-COP and SMN, we constructed an inducible NSC-34 cell culture system to model the consequences of SMN depletion and find that depletion of SMN protein results in shortened neurites. Heterologous expression of human SMN, and interestingly over-expression of α-COP, restores normal neurite length and morphology. Mutagenesis of the canonical COPI dilysine motifs in exon 2b results in failure to bind to α-COP and abrogates the ability of human SMN to restore neurite outgrowth in SMN-depleted motor neuron-like NSC-34 cells. We conclude that the interaction between SMN and α-COP serves an important function in the growth and maintenance of motor neuron processes and may play a significant role in the pathogenesis of SMA.
Rivastigmine is Associated with Restoration of Left Frontal Brain Activity in Parkinson’s Disease
Possin, Katherine L.; Kang, Gail A.; Guo, Christine; Fine, Eric M.; Trujillo, Andrew J.; Racine, Caroline A.; Wilheim, Reva; Johnson, Erica T.; Witt, Jennifer L.; Seeley, William W.; Miller, Bruce L.; Kramer, Joel H.
2013-01-01
Objective To investigate how acetylcholinesterase inhibitor (ChEI) treatment impacts brain function in Parkinson’s disease (PD). Methods Twelve patients with PD and either dementia or mild cognitive impairment underwent task-free functional magnetic resonance imaging before and after three months of ChEI treatment and were compared to 15 age and sex matched neurologically healthy controls. Regional spontaneous brain activity was measured using the fractional amplitude of low frequency fluctuations. Results At baseline, patients showed reduced spontaneous brain activity in regions important for motor control (e.g., caudate, supplementary motor area, precentral gyrus, thalamus), attention and executive functions (e.g., lateral prefrontal cortex), and episodic memory (e.g., precuneus, angular gyrus, hippocampus). After treatment, the patients showed a similar but less extensive pattern of reduced spontaneous brain activity relative to controls. Spontaneous brain activity deficits in the left premotor cortex, inferior frontal gyrus, and supplementary motor area were restored such that the activity was increased post-treatment compared to baseline and was no longer different from controls. Treatment-related increases in left premotor and inferior frontal cortex spontaneous brain activity correlated with parallel reaction time improvement on a test of controlled attention. Conclusions PD patients with cognitive impairment show numerous regions of decreased spontaneous brain function compared to controls, and rivastigmine is associated with performance-related normalization in left frontal cortex function. PMID:23847120
2013-01-01
Background Recent evidence has demonstrated the efficacy of Virtual Reality (VR) for stroke rehabilitation nonetheless its benefits and limitations in large population of patients have not yet been studied. Objectives To evaluate the effectiveness of non-immersive VR treatment for the restoration of the upper limb motor function and its impact on the activities of daily living capacities in post-stroke patients. Methods A pragmatic clinical trial was conducted among post-stroke patients admitted to our rehabilitation hospital. We enrolled 376 subjects who had a motor arm subscore on the Italian version of the National Institutes of Health Stroke Scale (It-NIHSS) between 1 and 3 and without severe neuropsychological impairments interfering with recovery. Patients were allocated to two treatments groups, receiving combined VR and upper limb conventional (ULC) therapy or ULC therapy alone. The treatment programs consisted of 2 hours of daily therapy, delivered 5 days per week, for 4 weeks. The outcome measures were the Fugl-Meyer Upper Extremity (F-M UE) and Functional Independence Measure (FIM) scales. Results Both treatments significantly improved F-M UE and FIM scores, but the improvement obtained with VR rehabilitation was significantly greater than that achieved with ULC therapy alone. The estimated effect size of the minimal difference between groups in F-M UE and FIM scores was 2.5 ± 0.5 (P < 0.001) pts and 3.2 ± 1.2 (P = 0.007) pts, respectively. Conclusions VR rehabilitation in post-stroke patients seems more effective than conventional interventions in restoring upper limb motor impairments and motor related functional abilities. Trial registration Italian Ministry of Health IRCCS Research Programme 2590412 PMID:23914733
Remsik, Alexander; Young, Brittany; Vermilyea, Rebecca; Kiekoefer, Laura; Abrams, Jessica; Elmore, Samantha Evander; Schultz, Paige; Nair, Veena; Edwards, Dorothy; Williams, Justin; Prabhakaran, Vivek
2016-01-01
Stroke is a leading cause of acquired disability resulting in distal upper extremity functional motor impairment. Stroke mortality rates continue to decline with advances in healthcare and medical technology. This has led to an increased demand for advanced, personalized rehabilitation. Survivors often experience some level of spontaneous recovery shortly after their stroke event; yet reach a functional plateau after which there is exiguous motor recovery. Nevertheless, studies have demonstrated the potential for recovery beyond this plateau. Non-traditional neurorehabilitation techniques, such as those incorporating the brain-computer interface (BCI), are being investigated for rehabilitation. BCIs may offer a gateway to the brain’s plasticity and revolutionize how humans interact with the world. Non-invasive BCIs work by closing the proprioceptive feedback loop with real-time, multi-sensory feedback allowing for volitional modulation of brain signals to assist hand function. BCI technology potentially promotes neuroplasticity and Hebbian-based motor recovery by rewarding cortical activity associated with sensory-motor rhythms through use with a variety of self-guided and assistive modalities. PMID:27112213
Virtual Reality: The New Era of Rehabilitation Engineering [From the Regional Editor].
Tong, Shanbao
2016-01-01
Rehabilitation engineering refers to the development and application of techniques, devices, and protocols for restoring function following disability. Although in most cases the concept relates to motor functions (e.g., training after a stroke or the use of limb prosthetics), mental rehabilitation engineering is also an emerging area.
Carmel, Jason B; Kimura, Hiroki; Martin, John H
2014-01-08
Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.
Neuroprosthetic technology for individuals with spinal cord injury
Collinger, Jennifer L.; Foldes, Stephen; Bruns, Tim M.; Wodlinger, Brian; Gaunt, Robert; Weber, Douglas J.
2013-01-01
Context Spinal cord injury (SCI) results in a loss of function and sensation below the level of the lesion. Neuroprosthetic technology has been developed to help restore motor and autonomic functions as well as to provide sensory feedback. Findings This paper provides an overview of neuroprosthetic technology that aims to address the priorities for functional restoration as defined by individuals with SCI. We describe neuroprostheses that are in various stages of preclinical development, clinical testing, and commercialization including functional electrical stimulators, epidural and intraspinal microstimulation, bladder neuroprosthesis, and cortical stimulation for restoring sensation. We also discuss neural recording technologies that may provide command or feedback signals for neuroprosthetic devices. Conclusion/clinical relevance Neuroprostheses have begun to address the priorities of individuals with SCI, although there remains room for improvement. In addition to continued technological improvements, closing the loop between the technology and the user may help provide intuitive device control with high levels of performance. PMID:23820142
Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L
2018-05-11
Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.
Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo
2015-05-06
Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.
Mountain, Vicki; Simerly, Calvin; Howard, Louisa; Ando, Asako; Schatten, Gerald; Compton, Duane A.
1999-01-01
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes. PMID:10525540
Arnold, W. David; Duque, Sandra; Iyer, Chitra C.; Zaworski, Phillip; McGovern, Vicki L.; Taylor, Shannon J.; von Herrmann, Katharine M.; Kobayashi, Dione T.; Chen, Karen S.; Kolb, Stephen J.; Paushkin, Sergey V.; Burghes, Arthur H. M.
2016-01-01
Introduction and Objective Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function. The goal was to determine whether levels of plasma markers were altered in the SMNΔ7 mouse model of SMA and whether postnatal SMN restoration resulted in normalization of the biomarkers. Methods SMNΔ7 and control mice were treated with antisense oligonucleotides (ASO) targeting ISS-N1 to increase SMN protein from SMN2 or scramble ASO (sham treatment) via intracerebroventricular injection on postnatal day 1 (P1). Brain, spinal cord, quadriceps muscle, and liver were analyzed for SMN protein levels at P12 and P90. Ten plasma biomarkers (a subset of biomarkers in the SMA-MAP panel available for analysis in mice) were analyzed in plasma obtained at P12, P30, and P90. Results Of the eight plasma biomarkers assessed, 5 were significantly changed in sham treated SMNΔ7 mice compared to control mice and were normalized in SMNΔ7 mice treated with ASO. Conclusion This study defines a subset of the SMA-MAP plasma biomarker panel that is abnormal in the most commonly used mouse model of SMA. Furthermore, some of these markers are responsive to postnatal SMN restoration. These findings support continued clinical development of these potential prognostic and pharmacodynamic biomarkers. PMID:27907033
Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats.
Viaro, Riccardo; Morari, Michele; Franchi, Gianfranco
2011-03-23
Many studies have attempted to correlate changes of motor cortex activity with progression of Parkinson's disease, although results have been controversial. In the present study we used intracortical microstimulation (ICMS) combined with behavioral testing in 6-hydroxydopamine hemilesioned rats to evaluate the impact of dopamine depletion on movement representations in primary motor cortex (M1) and motor behavior. ICMS allows for motor-effective stimulation of corticofugal neurons in motor areas so as to obtain topographic movements representations based on movement type, area size, and threshold currents. Rats received unilateral 6-hydroxydopamine in the nigrostriatal bundle, causing motor impairment. Changes in M1 were time dependent and bilateral, although stronger in the lesioned than the intact hemisphere. Representation size and threshold current were maximally impaired at 15 d, although inhibition was still detectable at 60-120 d after lesion. Proximal forelimb movements emerged at the expense of the distal ones. Movement lateralization was lost mainly at 30 d after lesion. Systemic L-3,4-dihydroxyphenylalanine partially attenuated motor impairment and cortical changes, particularly in the caudal forelimb area, and completely rescued distal forelimb movements. Local application of the GABA(A) antagonist bicuculline partially restored cortical changes, particularly in the rostral forelimb area. The local anesthetic lidocaine injected into the M1 of the intact hemisphere restored movement lateralization in the lesioned hemisphere. This study provides evidence for motor cortex remodeling after unilateral dopamine denervation, suggesting that cortical changes were associated with dopamine denervation, pathogenic intracortical GABA inhibition, and altered interhemispheric activity.
Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman
2015-04-01
Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Higo, Noriyuki; Hayashi, Takuya; Nishimura, Yukio; Sugiyama, Yoko; Oishi, Takao; Tsukada, Hideo; Isa, Tadashi; Onoe, Hirotaka
2015-01-01
The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H215O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period. PMID:25568105
78 FR 14072 - Trestle Forest Health Project, Eldorado National Forest, El Dorado County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... compaction, restore infiltration, and discourage unauthorized motor vehicle use. Approximately 70 existing..., restore infiltration, and discourage unauthorized motor vehicle use. Remove approximately 26 miles of...
Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke
Rüber, Theodor
2012-01-01
Objectives: Studies on nonhuman primates have demonstrated that the cortico-rubro-spinal system can compensate for damage to the pyramidal tract (PT). In humans, so-called alternate motor fibers (aMF), which may comprise the cortico-rubro-spinal tract, have been suggested to play a similar role in motor recovery after stroke. Using diffusion tensor imaging, we examined PT and aMF in the context of human motor recovery by relating their microstructural properties to functional outcome in chronic stroke patients. Methods: PT and aMF were reconstructed based on their origins in primary motor, dorsal premotor, and supplementary motor cortices in 18 patients and 10 healthy controls. The patients' degree of motor recovery was assessed using the Wolf Motor Function Test (WMFT). Results: Compared to controls, fractional anisotropy (FA) was lower along ipsilesional PT and aMF in chronic stroke patients, but clusters of higher FA were found bilaterally in aMF within the vicinity of the red nuclei. FA along ipsilesional PT and aMF and within the red nuclei correlated significantly with WMFT scores. Probabilistic connectivity of aMF originating from ipsilesional primary motor cortex was higher in patients, whereas the ipsilesional PT exhibited lower connectivity compared to controls. Conclusions: The strong correlations observed between microstructural properties of bilateral red nuclei and the level of motor function in chronic stroke patients indicate possible remodeling during recovery. Our results shed light on the role of different corticofugal motor tracts, and highlight a compensatory function of the cortico-rubro-spinal system which may be used as a target in future restorative treatments. PMID:22843266
Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente
2015-09-01
The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reanimating the arm and hand with intraspinal microstimulation
NASA Astrophysics Data System (ADS)
Zimmermann, Jonas B.; Seki, Kazuhiko; Jackson, Andrew
2011-10-01
To date, there is no effective therapy for spinal cord injury, and many patients could benefit dramatically from at least partial restoration of arm and hand function. Despite a substantial body of research investigating intraspinal microstimulation (ISMS) in frogs, rodents and cats, little is known about upper-limb responses to cervical stimulation in the primate. Here, we show for the first time that long trains of ISMS delivered to the macaque spinal cord can evoke functional arm and hand movements. Complex movements involving coordinated activation of multiple muscles could be elicited from a single electrode, while just two electrodes were required for independent control of reaching and grasping. We found that the motor responses to ISMS were described by a dual exponential model that depended only on stimulation history. We demonstrate that this model can be inverted to generate stimulus trains capable of eliciting arbitrary, graded motor responses, and could be used to restore volitional movements in a closed-loop brain-machine interface.
Motor Recovery After Subcortical Stroke Depends on Modulation of Extant Motor Networks.
Sharma, Nikhil; Baron, Jean-Claude
2015-01-01
Stroke is the leading cause of long-term disability. Functional imaging studies report widespread changes in movement-related cortical networks after stroke. Whether these are a result of stroke-specific cognitive processes or reflect modulation of existing movement-related networks is unknown. Understanding this distinction is critical in establishing more effective restorative therapies after stroke. Using multivariate analysis (tensor-independent component analysis - TICA), we map the neural networks involved during motor imagery (MI) and executed movement (EM) in subcortical stroke patients and age-matched controls. Twenty subcortical stroke patients and 17 age-matched controls were recruited. They were screened for their ability to carry out MI (Chaotic MI Assessment). The fMRI task was a right-hand finger-thumb opposition sequence (auditory-paced 1 Hz; 2, 3, 4, 5, 2…). Two separate runs were acquired (MI and rest and EM and rest; block design). There was no distinction between groups or tasks until the last stage of analysis, which allowed TICA to identify independent components (ICs) that were common or distinct to each group or task with no prior assumptions. TICA defined 28 ICs. ICs representing artifacts were excluded. ICs were only included if the subject scores were significant (for either EM or MI). Seven ICs remained that involved the primary and secondary motor networks. All ICs were shared between the stroke and age-matched controls. Five ICs were common to both tasks and three were exclusive to EM. Two ICs were related to motor recovery and one with time since stroke onset, but all were shared with age-matched controls. No IC was exclusive to stroke patients. We report that the cortical networks in stroke patients that relate to recovery of motor function represent modulation of existing cortical networks present in age-matched controls. The absence of cortical networks specific to stroke patients suggests that motor adaptation and other potential confounders (e.g., effort and additional muscle use) are not responsible for the changes in the cortical networks reported after stroke. This highlights that recovery of motor function after subcortical stroke involves preexisting cortical networks that could help identify more effective restorative therapies.
The First Experience of Triple Nerve Transfer in Proximal Radial Nerve Palsy.
Emamhadi, Mohammadreza; Andalib, Sasan
2018-01-01
Injury to distal portion of posterior cord of brachial plexus leads to palsy of radial and axillary nerves. Symptoms are usually motor deficits of the deltoid muscle; triceps brachii muscle; and extensor muscles of the wrist, thumb, and fingers. Tendon transfers, nerve grafts, and nerve transfers are options for surgical treatment of proximal radial nerve palsy to restore some motor functions. Tendon transfer is painful, requires a long immobilization, and decreases donor muscle strength; nevertheless, nerve transfer produces promising outcomes. We present a patient with proximal radial nerve palsy following a blunt injury undergoing triple nerve transfer. The patient was involved in a motorcycle accident with complete palsy of the radial and axillary nerves. After 6 months, on admission, he showed spontaneous recovery of axillary nerve palsy, but radial nerve palsy remained. We performed triple nerve transfer, fascicle of ulnar nerve to long head of the triceps branch of radial nerve, flexor digitorum superficialis branch of median nerve to extensor carpi radialis brevis branch of radial nerve, and flexor carpi radialis branch of median nerve to posterior interosseous nerve, for restoration of elbow, wrist, and finger extensions, respectively. Our experience confirmed functional elbow, wrist, and finger extensions in the patient. Triple nerve transfer restores functions of the upper limb in patients with debilitating radial nerve palsy after blunt injuries. Copyright © 2017 Elsevier Inc. All rights reserved.
Transplantation of severed digits to forearm stump for restoration of partial hand function.
Cheng, G L; Pan, D D; Qu, Z Y
1985-10-01
Three cases of mutilating injury of the distal end of the forearm, wrist, and palm treated by transplantation of severed digits to the forearm stump are reported. Follow-up examinations made at 1 year and 4 months to 31/2 years postoperatively revealed fair sensory and motor functions. The functional result is better than that obtained after Krukenberg's operation or prosthesis fitting, and is comparable to that of "hand" reconstruction by autotransplantation of toes. Since this procedure can fulfill the basic requirements of hand function by reconstruction, namely, good sensibility; basic motor functions of pinching, grasping, and powerful gripping; and acceptable outward appearance, and can be accomplished in a one-stage operation without sacrificing toes, it should be considered as first choice whenever a suitable case is encountered.
Nerve Transfer Versus Nerve Graft for Reconstruction of High Ulnar Nerve Injuries.
Sallam, Asser A; El-Deeb, Mohamed S; Imam, Mohamed A
2017-04-01
To assess the efficacy of nerve transfer versus nerve grafting in restoring motor and sensory hand function in patients with complete, isolated high ulnar nerve injuries. A retrospective chart review was performed, at a minimum 2 years of follow-up, of 52 patients suffering complete, isolated high ulnar nerve injury between January 2006 and June 2013 in one specialized hand surgery unit. Twenty-four patients underwent motor and sensory nerve transfers (NT group). Twenty-eight patients underwent sural nerve grafting (NG group). Motor recovery, return of sensibility and complications were examined as outcome measures. The Medical Research Council scale was applied to evaluate sensory and motor recovery. Grip and pinch strengths of the hand were measured. Twenty of 24 patients (83.33%) in the NT group regained M3 grade or greater for the adductor pollicis, the abductor digiti minimi, and the medial 2 lumbricals and interossei, compared with only 16 of 28 patients (57.14%) in the NG group. Means for percentage recovery of grip strengths compared with the other healthy hand were significantly higher for the NT group than the NG group. Sensory recovery of S3 or greater was achieved in more than half of each group with no significant difference between groups. Nerve transfer is favored over nerve grafting in managing high ulnar nerve injuries because of better improvement of motor power and better restoration of grip functions of the hand. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Avraham, Y; Grigoriadis, NC; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, EM
2011-01-01
BACKGROUND AND PURPOSE Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT1A, on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. EXPERIMENTAL APPROACH Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. KEY RESULTS Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. CONCLUSIONS AND IMPLICATIONS Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. PMID:21182490
Avraham, Y; Grigoriadis, Nc; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, Em
2011-04-01
Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT(1A) , on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F; Mir, Anis; Schwab, Martin E; Belhaj-Saif, Abderraouf; Rouiller, Eric M
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns ("true" recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F.; Mir, Anis; Schwab, Martin E.; Belhaj-Saif, Abderraouf; Rouiller, Eric M.
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns (“true” recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex. PMID:23885254
Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions
NASA Astrophysics Data System (ADS)
Wu, Pae C.; Knaack, Gretchen; Weber, Douglas J.
2016-05-01
The rapid and exponential advances in micro- and nanotechnologies over the last decade have enabled devices that communicate directly with the nervous system to measure and influence neural activity. Many of the earliest implementations focused on restoration of sensory and motor function, but as knowledge of physiology advances and technology continues to improve in accuracy, precision, and safety, new modes of engaging with the autonomic system herald an era of health restoration that may augment or replace many conventional pharmacotherapies. DARPA's Biological Technologies Office is continuing to advance neurotechnology by investing in neural interface technologies that are effective, reliable, and safe for long-term use in humans. DARPA's Hand Proprioception and Touch Interfaces (HAPTIX) program is creating a fully implantable system that interfaces with peripheral nerves in amputees to enable natural control and sensation for prosthetic limbs. Beyond standard electrode implementations, the Electrical Prescriptions (ElectRx) program is investing in innovative approaches to minimally or non-invasively interface with the peripheral nervous system using novel magnetic, optogenetic, and ultrasound-based technologies. These new mechanisms of interrogating and stimulating the peripheral nervous system are driving towards unparalleled spatiotemporal resolution, specificity and targeting, and noninvasiveness to enable chronic, human-use applications in closed-loop neuromodulation for the treatment of disease.
Stein, Joel
2009-01-01
Therapy incorporating the repeated practice of motor tasks has been found to enhance motor function after stroke. This type of therapy may be facilitated by robotic devices and several such devices are being developed for use in rehabilitation. The Myomo e100 NeuroRobotic system is a novel device developed to provide assistance during elbow movements in stroke survivors. The device uses surface electromyographic signals to control a powered elbow orthosis. Data from a pilot study reveals that the device can be used successfully by stroke survivors and suggests that it may be effective in helping to restore motor control after stroke. Further studies are needed to confirm these preliminary results.
Cerebellar Influence on Motor Cortex Plasticity: Behavioral Implications for Parkinson’s Disease
Kishore, Asha; Meunier, Sabine; Popa, Traian
2014-01-01
Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration, and normal functioning of these networks. Strong topography-specific connections among the basal ganglia, cerebellum, and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD) could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar, and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD. PMID:24834063
The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence
d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G.; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo
2016-01-01
Abstract Brain plasticity is the basis for systems‐level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25‐minutes of task practice, were performed. Within‐session between‐run change in task‐related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium‐enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between‐run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice‐induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short‐term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery‐oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431–2445, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26991559
Tomassini, Valentina; d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo
2016-07-01
Brain plasticity is the basis for systems-level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25-minutes of task practice, were performed. Within-session between-run change in task-related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium-enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between-run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice-induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short-term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery-oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431-2445, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Taoro-Gonzalez, Lucas; Gonzalez-Usano, Alba; Agusti, Ana; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente
2016-04-18
Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: (a) Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. (b) Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. (c) Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.
Liu, Zehan; Ren, Shuai; Fu, Kuang; Wu, Qiong; Wu, Jun; Hou, Liting; Pan, Hong; Sun, Linlin; Zhang, Jian; Wang, Bingjian; Miao, Qing; Sun, Guiyin; Bonicalzi, Vincenzo; Canavero, Sergio; Ren, Xiaoping
2018-05-01
Cephalosomatic anastomosis or what has been called a "head transplantation" requires full reconnection of the respective transected ends of the spinal cords. The GEMINI spinal cord fusion protocol has been developed for this reason. Here, we report the first randomized, controlled study of the GEMINI protocol in large animals. We conducted a randomized, controlled study of a complete transection of the spinal cord at the level of T10 in dogs at Harbin Medical University, Harbin, China. These dogs were followed for up to 8 weeks postoperatively by assessments of recovery of motor function, somato-sensory evoked potentials, and diffusion tensor imaging using magnetic resonance imaging. A total of 12 dogs were subjected to operative exposure of the dorsal aspect of the spinal cord after laminectomy and longitudinal durotomy followed by a very sharp, controlled, full-thickness, complete transection of the spinal cord at T10. The fusogen, polyethylene glycol, was applied topically to the site of the spinal cord transection in 7 of 12 dogs; 0.9% NaCl saline was applied to the site of transection in the remaining 5 control dogs. Dogs were selected randomly to receive polyethylene glycol or saline. All polyethylene glycol-treated dogs reacquired a substantial amount of motor function versus none in controls over these first 2 months as assessed on the 20-point (0-19), canine, Basso-Beattie-Bresnahan rating scale (P<.006). Somatosensory evoked potentials confirmed restoration of electrical conduction cranially across the site of spinal cord transection which improved over time. Diffusion tensor imaging, a magnetic resonance permutation that assesses the integrity of nerve fibers and cells, showed restitution of the transected spinal cord with polyethylene glycol treatment (at-injury level difference: P<.02). A sharply and fully transected spinal cord at the level of T10 can be reconstructed with restoration of many aspects of electrical continuity in large animals following the GEMINI spinal cord fusion protocol, with objective evidence of motor recovery and of electrical continuity across the site of transection, opening the way to the first cephalosomatic anastomosis. (Surgery 2017;160:XXX-XXX.). Copyright © 2017. Published by Elsevier Inc.
Mozheiko, E Yu; Prokopenko, S V; Alekseevich, G V
To reason the choice of methods of restoration of advanced hand activity depending on severity of motor disturbance in the top extremity. Eighty-eight patients were randomized into 3 groups: 1) the mCIMT group, 2) the 'touch glove' group, 3) the control group. For assessment of physical activity of the top extremity Fugl-Meyer Assessment Upper Extremity, Nine-Hole Peg Test, Motor Assessment Scale were used. Assessment of non-use phenomenon was carried out with the Motor Activity Log scale. At a stage of severe motor dysfunction, there was a restoration of proximal departments of a hand in all groups, neither method was superior to the other. In case of moderate severity of motor deficiency of the upper extremity the most effective was the method based on the principle of biological feedback - 'a touch glove'. In the group with mild severity of motor dysfunction, the best recovery was achieved in the mCIMT group.
Neural correlates underlying micrographia in Parkinson’s disease
Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu
2016-01-01
Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918
Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling.
Altmann, Christine; Vasic, Verica; Hardt, Stefanie; Heidler, Juliana; Häussler, Annett; Wittig, Ilka; Schmidt, Mirko H H; Tegeder, Irmgard
2016-10-22
Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in 'regulation of transcription' and 'response to insulin' (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery.
Bajaj, Sahil; Butler, Andrew J.; Drake, Daniel; Dhamala, Mukesh
2015-01-01
Multiple cortical areas of the human brain motor system interact coherently in the low frequency range (<0.1 Hz), even in the absence of explicit tasks. Following stroke, cortical interactions are functionally disturbed. How these interactions are affected and how the functional organization is regained from rehabilitative treatments as people begin to recover motor behaviors has not been systematically studied. We recorded the intrinsic functional magnetic resonance imaging (fMRI) signals from 30 participants: 17 young healthy controls and 13 aged stroke survivors. Stroke participants underwent mental practice (MP) or both mental practice and physical therapy (MP+PT) within 14–51 days following stroke. We investigated the network activity of five core areas in the motor-execution network, consisting of the left primary motor area (LM1), the right primary motor area (RM1), the left pre-motor cortex (LPMC), the right pre-motor cortex (RPMC) and the supplementary motor area (SMA). We discovered that (i) the network activity dominated in the frequency range 0.06–0.08 Hz for all the regions, and for both able-bodied and stroke participants (ii) the causal information flow between the regions: LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was reduced significantly for stroke survivors (iii) the flow did not increase significantly after MP alone and (iv) the flow among the regions during MP+PT increased significantly. We also found that sensation and motor scores were significantly higher and correlated with directed functional connectivity measures when the stroke-survivors underwent MP+PT but not MP alone. The findings provide evidence that a combination of mental practice and physical therapy can be an effective means of treatment for stroke survivors to recover or regain the strength of motor behaviors, and that the spectra of causal information flow can be used as a reliable biomarker for evaluating rehabilitation in stroke survivors. PMID:25870557
Muscle Control and Non‐specific Chronic Low Back Pain
Deckers, Kristiaan; Eldabe, Sam; Kiesel, Kyle; Gilligan, Chris; Vieceli, John; Crosby, Peter
2017-01-01
Objectives Chronic low back pain (CLBP) is the most prevalent of the painful musculoskeletal conditions. CLBP is a heterogeneous condition with many causes and diagnoses, but there are few established therapies with strong evidence of effectiveness (or cost effectiveness). CLBP for which it is not possible to identify any specific cause is often referred to as non‐specific chronic LBP (NSCLBP). One type of NSCLBP is continuing and recurrent primarily nociceptive CLBP due to vertebral joint overload subsequent to functional instability of the lumbar spine. This condition may occur due to disruption of the motor control system to the key stabilizing muscles in the lumbar spine, particularly the lumbar multifidus muscle (MF). Methods This review presents the evidence for MF involvement in CLBP, mechanisms of action of disruption of control of the MF, and options for restoring control of the MF as a treatment for NSCLBP. Results Imaging assessment of motor control dysfunction of the MF in individual patients is fraught with difficulty. MRI or ultrasound imaging techniques, while reliable, have limited diagnostic or predictive utility. For some patients, restoration of motor control to the MF with specific exercises can be effective, but population results are not persuasive since most patients are unable to voluntarily contract the MF and may be inhibited from doing so due to arthrogenic muscle inhibition. Conclusions Targeting MF control with restorative neurostimulation promises a new treatment option. PMID:29230905
Neuroplasticity in the context of motor rehabilitation after stroke
Dimyan, Michael A.; Cohen, Leonardo G.
2016-01-01
Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain–computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation. PMID:21243015
Neuroplasticity in the context of motor rehabilitation after stroke.
Dimyan, Michael A; Cohen, Leonardo G
2011-02-01
Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain-computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation.
Network-wide reorganization of procedural memory during NREM sleep revealed by fMRI
Vahdat, Shahabeddin; Fogel, Stuart; Benali, Habib; Doyon, Julien
2017-01-01
Sleep is necessary for the optimal consolidation of newly acquired procedural memories. However, the mechanisms by which motor memory traces develop during sleep remain controversial in humans, as this process has been mainly investigated indirectly by comparing pre- and post-sleep conditions. Here, we used functional magnetic resonance imaging and electroencephalography during sleep following motor sequence learning to investigate how newly-formed memory traces evolve dynamically over time. We provide direct evidence for transient reactivation followed by downscaling of functional connectivity in a cortically-dominant pattern formed during learning, as well as gradual reorganization of this representation toward a subcortically-dominant consolidated trace during non-rapid eye movement (NREM) sleep. Importantly, the putamen functional connectivity within the consolidated network during NREM sleep was related to overnight behavioral gains. Our results demonstrate that NREM sleep is necessary for two complementary processes: the restoration and reorganization of newly-learned information during sleep, which underlie human motor memory consolidation. DOI: http://dx.doi.org/10.7554/eLife.24987.001 PMID:28892464
NASA Technical Reports Server (NTRS)
Soldatov, A. D.; Finogeyev, V. I.
1980-01-01
The effects of different regimens of treatment following prolonged hypokinesia were studied in order to determine the most effective program. The types of programs considered were passive means, consisting of physical therapy; active means, consisting of athletic training; and a combined program. In the first stage of the experiment, the effects of a 10 day period of hypokinesia were studied. It was determined that the restoration programs must address the problems of: (1) increasing defense function and general tone of the body; (2) restore orthostatic stability; and (3) increase general endurance. In later stages, groups of athletes and nonathletes underwent 30 day periods of hypokinesia. Restoration was carefully monitored for groups treated with the various regimens. It was determined that the most effective treatment was a comprehensive program of passive and active therapy.
Wichmann, Thomas; DeLong, Mahlon R
2016-04-01
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Smith, Jacklyn; Rho, Jong M; Teskey, G Campbell
2016-05-01
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder characterized by deficits in sociability and communication, and restricted and/or repetitive motor behaviors. Amongst the diverse hypotheses regarding the pathophysiology of ASD, one possibility is that there is increased neuronal excitation, leading to alterations in sensory processing, functional integration and behavior. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used in the treatment of medically intractable epilepsy, has already been shown to reduce autistic behaviors in both humans and in rodent models of ASD. While the mechanisms underlying these effects remain unclear, we hypothesized that this dietary approach might shift the balance of excitation and inhibition towards more normal levels of inhibition. Using high-resolution intracortical microstimulation, we investigated basal sensorimotor excitation/inhibition in the BTBR T+Itpr(tf)/J (BTBR) mouse model of ASD and tested whether the KD restores the balance of excitation/inhibition. We found that BTBR mice had lower movement thresholds and larger motor maps indicative of higher excitation/inhibition compared to C57BL/6J (B6) controls, and that the KD reversed both these abnormalities. Collectively, our results afford a greater understanding of cortical excitation/inhibition balance in ASD and may help expedite the development of therapeutic approaches aimed at improving functional outcomes in this disorder. Copyright © 2016 Elsevier B.V. All rights reserved.
Vourvopoulos, Athanasios; Bermúdez I Badia, Sergi
2016-08-09
The use of Brain-Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training. In order to investigate how different BCI paradigms impact brain activation, we designed 3 experimental conditions in a within-subject design, including an immersive Multimodal Virtual Reality with Motor Priming (VRMP) condition where users had to perform motor-execution before BCI training, an immersive Multimodal VR condition, and a control condition with standard 2D feedback. Further, these were also compared to overt motor-execution. Finally, a set of questionnaires were used to gather subjective data on Workload, Kinesthetic Imagery and Presence. Our findings show increased capacity to modulate and enhance brain activity patterns in all extracted EEG rhythms matching more closely those present during motor-execution and also a strong relationship between electrophysiological data and subjective experience. Our data suggest that both VR and particularly MP can enhance the activation of brain patterns present during overt motor-execution. Further, we show changes in the interhemispheric EEG balance, which might play an important role in the promotion of neural activation and neuroplastic changes in stroke patients in a motor-imagery neurofeedback paradigm. In addition, electrophysiological correlates of psychophysiological responses provide us with valuable information about the motor and affective state of the user that has the potential to be used to predict MI-BCI training outcome based on user's profile. Finally, we propose a BCI paradigm in VR, which gives the possibility of motor priming for patients with low level of motor control.
Khodaparast, Navid; Hays, Seth A.; Sloan, Andrew M.; Fayyaz, Tabbassum; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.
2014-01-01
Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into three groups: vagus nerve stimulation during rehab, vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), pre-lesion training, post-lesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed one week of recovery before post-lesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All seventeen trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to pre-lesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to pre-lesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared to rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102
Muley, Milind M; Thakare, Vishnu N; Patil, Rajesh R; Bafna, Pallavi A; Naik, Suresh R
2013-07-19
The neuroprotective activities of silymarin, piracetam and protocatechuic acid ethyl ester (PCA) on cerebral global ischemic/reperfusion were evaluated in a rat model. A midline ventral incision was made in the throat region. The right and left common carotid arteries were located and a bilateral common carotid artery occlusion (BCCAO) was performed for 30min using atraumatic clamps followed by a 24h period of reperfusion. Neurological/behavioral functions (cognitive and motor), endogenous defense systems (lipid peroxidation, glutathione, catalase, and superoxide dismutase), reduced water content and infarct size and histopathological alterations were then studied. Silymarin and PCA treatments significantly improved cognitive, motor and endogenous defense functions, histopathological alterations, and, reduced both water content and infarct size compared to the vehicle-treated ischemic control group. Piracetam treatment improved neurological and histopathological alterations, reduced water content and infarct size, but failed to restore/prevent the impaired endogenous defense functions significantly. Silymarin showed better neuroprotection than piracetam and PCA in experimentally induced global ischemic/reperfusion and was able to facilitate mnemonic performance. Copyright © 2013 Elsevier Inc. All rights reserved.
Investigating the Efficacy of Novel TrkB Agonists to Augment Stroke Recovery
NASA Astrophysics Data System (ADS)
Warraich, Zuha
Stroke remains the leading cause of adult disability in developed countries. Most survivors live with residual motor impairments that severely diminish independence and quality of life. After stroke, the only accepted treatment for these patients is motor rehabilitation. However, the amount and kind of rehabilitation required to induce clinically significant improvements in motor function is rarely given due to the constraints of our current health care system. Research reported in this dissertation contributes towards developing adjuvant therapies that may augment the impact of motor rehabilitation and improve functional outcome. These studies have demonstrated reorganization of maps within motor cortex as a function of experience in both healthy and brain-injured animals by using intracortical microstimulation technique. Furthermore, synaptic plasticity has been identified as a key neural mechanism in directing motor map plasticity, evidenced by restoration of movement representations within the spared cortical tissue accompanied by increase in synapse number translating into motor improvement after stroke. There is increasing evidence that brain-derived neurotrophic factor (BDNF) modulates synaptic and morphological plasticity in the developing and mature nervous system. Unfortunately, BDNF itself is a poor candidate because of its short half-life, low penetration through the blood brain barrier, and activating multiple receptor units, p75 and TrkB on the neuronal membrane. In order to circumvent this problem efficacy of two recently developed novel TrkB agonists, LM22A-4 and 7,8-dihydroxyflavone, that actively penetrate the blood brain barrier and enhance functional recovery. Findings from these dissertation studies indicate that administration of these pharmacological compounds, accompanied by motor rehabilitation provide a powerful therapeutic tool for stroke recovery.
[Functional magnetic resonance imaging. What are the benefits expected in hand surgery?].
Moutet, F; Delon-Martin, C; Martin, O; Sirigu, A; Delaquaize, F; Benali, H; Masquelet, A-C
2013-06-01
Functional MRI (fMRI) allowed considerable advances upon understanding of cerebral functioning. Cortical plasticity, which allows the voluntary command of a restored function by a transferred muscle remains to be investigated in its intimacy. The authors present here the round table held at the 48th annual meeting of the French Society for Surgery of the Hand on December 22nd, 2012. It tries to review the analysis of the phenomenon observed during multiple tendinous transfers for restoration of proximal radial nerve palsy. Were successively approached: 1) Methods of acquisition and analysis of the signals (C. D-M.); 2) Movement reorganization (O.M.); 3) Motor plasticity after hand allograft (A. S.); 4) The potential interest of the fMRI in hand rehabilitation (F. D.); 5) The analysis of cerebral plasticity in general (H. B.). A rather philosophical conclusion opens other fields to f MRI (A.M.). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang
2014-07-03
Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.
Can the mammalian lumbar spinal cord learn a motor task?
Hodgson, J A; Roy, R R; de Leon, R; Dobkin, B; Edgerton, V R
1994-12-01
Progress toward restoring locomotor function in low thoracic spinal transected cats and the application of similar techniques to patients with spinal cord injury is reviewed. Complete spinal cord transection (T12-T13) in adult cats results in an immediate loss of locomotor function in the hindlimbs. Limited locomotor function returns after several months in cats that have not received specific therapies designed to restore hindlimb stepping. Training transected cats to step on a treadmill for 30 min.d-1 and 5 d.wk-1 greatly improves their stepping ability. The most successful outcome was in cats where training began early, i.e., 1 wk after spinal transection. Cats trained to stand instead of stepping had great difficulty using the hindlimbs for locomotion. These effects were reversible over a 20-month period such that cats unable to step as a result of standing training could be trained to step and, conversely, locomotion in stepping-trained cats could be abolished by standing training. These results indicate that the spinal cord is capable of learning specific motor tasks. It has not been possible to elicit locomotion in patients with clinically complete spinal injuries, but appropriately coordinated EMG activity has been demonstrated in musculature of the legs during assisted locomotion on a treadmill.
Lee, Nam Gi; Jeong, Su Ji; You, Joshua Sung Hyun; Cho, Kang Hee; Lee, Tae Heon
2013-01-01
The purpose of this study was to investigate the effects of the progressive walking-to-running technique (PWRT) in a child with spastic diplegic cerebral palsy (CP). A single case study with pre-/post-test. An 11-year-old male, diagnosed with spastic diplegic CP. The PWRT was provided for 60 minutes a day, 2 times a week for 12 weeks. Gross motor function tests, ultrasound imaging, hand-held dynamometer, and the Vicon motion capture system were used to determine motor function, muscle size and strength, and gait kinematics. Gross motor function was improved after the intervention. The size of right and left rectus femoris and tibialis anterior muscles in their contracted states were enhanced by 1.36, 5.09, 83.74, and 54.37%, respectively. Associated muscle strength was also increased by 58.8, 30.8, 28.0, and 118.2% in both rectus femoris and tibialis anterior muscles. Left stride length, walking speed, maximal flexion-extension angular excursion of the hip joint were enhanced by 95.7, 87.8, and 100.4% after PWRT, respectively. Our novel walking-running training paradigm was effective for restoring gait and running ability in a child with spastic diplegic CP.
Muscle Control and Non-specific Chronic Low Back Pain.
Russo, Marc; Deckers, Kristiaan; Eldabe, Sam; Kiesel, Kyle; Gilligan, Chris; Vieceli, John; Crosby, Peter
2018-01-01
Chronic low back pain (CLBP) is the most prevalent of the painful musculoskeletal conditions. CLBP is a heterogeneous condition with many causes and diagnoses, but there are few established therapies with strong evidence of effectiveness (or cost effectiveness). CLBP for which it is not possible to identify any specific cause is often referred to as non-specific chronic LBP (NSCLBP). One type of NSCLBP is continuing and recurrent primarily nociceptive CLBP due to vertebral joint overload subsequent to functional instability of the lumbar spine. This condition may occur due to disruption of the motor control system to the key stabilizing muscles in the lumbar spine, particularly the lumbar multifidus muscle (MF). This review presents the evidence for MF involvement in CLBP, mechanisms of action of disruption of control of the MF, and options for restoring control of the MF as a treatment for NSCLBP. Imaging assessment of motor control dysfunction of the MF in individual patients is fraught with difficulty. MRI or ultrasound imaging techniques, while reliable, have limited diagnostic or predictive utility. For some patients, restoration of motor control to the MF with specific exercises can be effective, but population results are not persuasive since most patients are unable to voluntarily contract the MF and may be inhibited from doing so due to arthrogenic muscle inhibition. Targeting MF control with restorative neurostimulation promises a new treatment option. © 2017 The Authors. Neuromodulation: Technology at the Neural Interface published by Wiley Periodicals, Inc. on behalf of International Neuromodulation Society.
Polar, Christian A; Gupta, Rahul; Lehmkuhle, Mark J; Dorval, Alan D
2018-05-30
The motor cortex and subthalamic nucleus (STN) of patients with Parkinson's disease (PD) exhibit abnormally high levels of electrophysiological oscillations in the ~12-35 Hz beta-frequency range. Recent studies have shown that beta is partly carried forward to regulate future motor states in the healthy condition, suggesting that steady state beta power is lower when a sequence of movements occurs in a short period of time, such as during fast gait. However, whether this relationship between beta power and motor states persists upon parkinsonian onset or in response to effective therapy is unclear. Using a 6-hydroxy dopamine (6-OHDA) rat model of PD and a custom-built behavioral and neurophysiological recording system, we aimed to elucidate a better understanding of the mechanisms underlying cortical beta power and PD symptoms. In addition to elevated levels of beta oscillations, we show that parkinsonian onset was accompanied by a decoupling of movement intensity - quantified as gait speed - from cortical beta power. Although subthalamic deep brain stimulation (DBS) reduced general levels of beta oscillations in the cortex of all PD animals, the brain's capacity to regulate steady state levels of beta power as a function of movement intensity was only restored in animals with therapeutic DBS. We propose that, in addition to lowering general levels of cortical beta power, restoring the brain's ability to maintain this inverse relationship is critical for effective symptom suppression. Copyright © 2017. Published by Elsevier Inc.
Sensitive and Motor Neuroanastomosis After Facial Trauma.
Ribeiro-Junior, Paulo Domingos; Senko, Ricardo Alexandre Galdioli; Mendes, Gabriel Cury Batista; Peres, Fernando Gianzanti
2016-10-01
Facial nerve has great functional and aesthetic importance to the face, and damage to its structure can lead to major complications. This article reports a clinical case of neuroanastomosis of the facial nerve after facial trauma, describing surgical procedure and postoperative follow-up. A trauma patient with extensive injury cut in right mandibular body causing neurotmesis of the VIIth cranial nerve and mandibular angle fracture right side was treated. During surgical exploration, the nerve segments were identified and a neuroanastomosis was performed using nylon 10-0, after reduction and internal fixation of the mandibular fracture. Postoperatively, an 8-month follow-up showed good evolution and preservation of motor function of the muscles of facial mime, highlighting the success of the surgical treatment. Nerve damage because of facial trauma can be a surgical treatment challenge, but when properly conducted can functionally restore the damaged nerve.
Grau-Sánchez, Jennifer; Duarte, Esther; Ramos-Escobar, Neus; Sierpowska, Joanna; Rueda, Nohora; Redón, Susana; Veciana de Las Heras, Misericordia; Pedro, Jordi; Särkämö, Teppo; Rodríguez-Fornells, Antoni
2018-04-01
The effect of music-supported therapy (MST) as a tool to restore hemiparesis of the upper extremity after a stroke has not been appropriately contrasted with conventional therapy. The aim of this trial was to test the effectiveness of adding MST to a standard rehabilitation program in subacute stroke patients. A randomized controlled trial was conducted in which patients were randomized to MST or conventional therapy in addition to the rehabilitation program. The intensity and duration of the interventions were equated in both groups. Before and after 4 weeks of treatment, motor and cognitive functions, mood, and quality of life (QoL) of participants were evaluated. A follow-up at 3 months was conducted to examine the retention of motor gains. Both groups significantly improved their motor function, and no differences between groups were found. The only difference between groups was observed in the language domain for QoL. Importantly, an association was encountered between the capacity to experience pleasure from music activities and the motor improvement in the MST group. MST as an add-on treatment showed no superiority to conventional therapies for motor recovery. Importantly, patient's intrinsic motivation to engage in musical activities was associated with better motor improvement. © 2018 New York Academy of Sciences.
Bertelli, Jayme Augusto; Ghizoni, Marcos Flavio
2010-07-01
In C7-T1 palsies of the brachial plexus, shoulder and elbow function are preserved, but finger motion is absent. Finger flexion has been reconstructed by tendon or nerve transfers. Finger extension has been restored ineffectively by attaching the extensor tendons to the distal aspect of the dorsal radius (termed tenodesis) or by tendon transfers. In these palsies, supinator muscle function is preserved, because innervation stems from the C-6 root. The feasibility of transferring supinator branches to the posterior interosseous nerve has been documented in a previous anatomical study. In this paper, the authors report the clinical results of supinator motor nerve transfer to the posterior interosseous nerve in 4 patients with a C7-T1 root lesion. Four adult patients with C7-T1 root lesions underwent surgery between 5 and 7 months postinjury. The patients had preserved motion of the shoulder, elbow, and wrist, but they had complete palsy of finger motion. They underwent finger flexion reconstruction via transfer of the brachialis muscle, and finger and thumb extension were restored by transferring the supinator motor branches to the posterior interosseous nerve. This nerve transfer was performed through an incision over the proximal third of the radius. Dissection was carried out between the extensor carpi radialis brevis and the extensor digitorum communis. The patients were followed up as per regular protocol and underwent a final evaluation 12 months after surgery. To document the extent of recovery, the authors assessed the degree of active metacarpophalangeal joint extension of the long fingers. The thumb span was evaluated by measuring the distance between the thumb pulp and the lateral aspect of the index finger. Surgery to transfer the supinator motor branches to the posterior interosseous nerve was straightforward. Twelve months after surgery, all patients were capable of opening their hand and could fully extend their metacarpophalangeal joints. The distance of thumb abduction improved from 0 to 5 cm from the lateral aspect of the index finger. Transferring supinator motor nerves directly to the posterior interosseous nerve is effective in at least partially restoring thumb and finger extension in patients with lower-type injuries of the brachial plexus.
Surmounting retraining limits in musicians' dystonia by transcranial stimulation.
Furuya, Shinichi; Nitsche, Michael A; Paulus, Walter; Altenmüller, Eckart
2014-05-01
Abnormal cortical excitability is evident in various movement disorders that compromise fine motor control. Here we tested whether skilled finger movements can be restored in musicians with focal hand dystonia through behavioral training assisted by transcranial direct current stimulation to the motor cortex of both hemispheres. The bilateral motor cortices of 20 pianists (10 with focal dystonia, 10 healthy controls) were electrically stimulated noninvasively during bimanual mirrored finger movements. We found improvement in the rhythmic accuracy of sequential finger movements with the affected hand during and after cathodal stimulation over the affected cortex and simultaneous anodal stimulation over the unaffected cortex. The improvement was retained 4 days after intervention. Neither a stimulation with the reversed montage of electrodes nor sham stimulation yielded any improvement. Furthermore, the amount of improvement was positively correlated with the severity of the symptoms. Bihemispheric stimulation without concurrent motor training failed to improve fine motor control, underlining the importance of combined retraining and stimulation for restoring the dystonic symptoms. For the healthy pianists, none of the stimulation protocols enhanced movement accuracy. These results suggest a therapeutic potential of behavioral training assisted by bihemispheric, noninvasive brain stimulation in restoring fine motor control in focal dystonia. © 2014 American Neurological Association.
Brain-controlled muscle stimulation for the restoration of motor function
Ethier, Christian; Miller, Lee E
2014-01-01
Loss of the ability to move, as a consequence of spinal cord injury or neuromuscular disorder, has devastating consequences for the paralyzed individual, and great economic consequences for society. Functional Electrical Stimulation (FES) offers one means to restore some mobility to these individuals, improving not only their autonomy, but potentially their general health and well-being as well. FES uses electrical stimulation to cause the paralyzed muscles to contract. Existing clinical systems require the stimulation to be preprogrammed, with the patient typically using residual voluntary movement of another body part to trigger and control the patterned stimulation. The rapid development of neural interfacing in the past decade offers the promise of dramatically improved control for these patients, potentially allowing continuous control of FES through signals recorded from motor cortex, as the patient attempts to control the paralyzed body part. While application of these ‘Brain Machine Interfaces’ (BMIs) has undergone dramatic development for control of computer cursors and even robotic limbs, their use as an interface for FES has been much more limited. In this review, we consider both FES and BMI technologies and discuss the prospect for combining the two to provide important new options for paralyzed individuals. PMID:25447224
Raffa, Giovanni; Conti, Alfredo; Scibilia, Antonino; Sindorio, Carmela; Quattropani, Maria Catena; Visocchi, Massimiliano; Germanò, Antonino; Tomasello, Francesco
2017-01-01
Surgery of low-grade gliomas (LGGs) in eloquent areas still presents a challenge. New technologies have been introduced to enable the performance of "functional", customized preoperative planning aimed at maximal resection, while reducing the risk of postoperative deficits. We describe our experience in the surgery of LGGs in eloquent areas using preoperative planning based on navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging (DTI) tractography. Sixteen patients underwent preoperative planning, using nTMS and nTMS-based DTI tractography. Motor and language functions were mapped. Preoperative data allowed for tailoring of the surgical strategy. The impact of these modalities on surgical planning was evaluated. Influence on functional outcome was analyzed in comparison with results in a historical control group. In 12 patients (75 %), nTMS added useful information on functional anatomy and surgical risks. Surgical strategy was modified in 9 of 16 cases (56 %). The nTMS "functional approach" provided a good outcome at discharge, with a decrease in postoperative motor and/or language deficits, as compared with controls (6 vs. 44 %; p = 0.03). The functional preoperative mapping of speech and motor pathways based on nTMS and DTI tractography provided useful information, allowing us to plan the best surgical strategy for radical resection; this resulted in improved postoperative neurological results.
Recent achievements in restorative neurology: Progressive neuromuscular diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, M.R.; Kakulas, B.A.; Vrbova, G.
1986-01-01
This book contains 27 chapters. Some of the chapter titles are: Computed Tomography of Muscles in Neuromuscular Disease; Mapping the Genes for Muscular Dystrophy; Trophic Factors and Motor Neuron Development; Size of Motor Units and Firing Rate in Muscular Dystrophy; Restorative Possibilities in Relation to the Pathology of Progressive Neuromuscular Disease; and An Approach to the Pathogenesis of some Congenital Myopathies.
Osseoperception: An Implant Mediated Sensory Motor Control- A Review
Karani, Jyoti T.; Khanna, Anshul; Badwaik, Praveen; Pai, Ashutosh
2015-01-01
Osseointegration of dental implants has been researched extensively, covering various aspects such as bone apposition, biomechanics and microbiology etc however, physiologic integration of implants and the associated prosthesis in the body has received very little attention. This integration is due to the development of a special sensory ability, which is able to restore peripheral sensory feedback mechanism. The underlying mechanism of this so-called ‘osseoperception’ phenomenon remains a matter of debate. The following article reveals the histological, neurophysiologic and psychophysical aspects of osseoperception. A comprehensive research to provide scientific evidence of osseoperception was carried out using various online resources such as Pubmed, Google scholar etc to retrieve studies published between 1985 to 2014 using the following keywords: “osseoperception”, “mechanoreceptors”, “tactile sensibility”. Published data suggests that a peripheral feedback pathway can be restored with osseointegrated implants. This implant-mediated sensory-motor control may have important clinical implications in the normal functioning of the implant supported prosthesis. PMID:26501033
Rehabilitation of the trigeminal nerve
Iro, Heinrich; Bumm, Klaus; Waldfahrer, Frank
2005-01-01
When it comes to restoring impaired neural function by means of surgical reconstruction, sensory nerves have always been in the role of the neglected child when compared with motor nerves. Especially in the head and neck area, with its either sensory, motor or mixed cranial nerves, an impaired sensory function can cause severe medical conditions. When performing surgery in the head and neck area, sustaining neural function must not only be highest priority for motor but also for sensory nerves. In cases with obvious neural damage to sensory nerves, an immediate neural repair, if necessary with neural interposition grafts, is desirable. Also in cases with traumatic trigeminal damage, an immediate neural repair ought to be considered, especially since reconstructive measures at a later time mostly require for interposition grafts. In terms of the trigeminal neuralgia, commonly thought to arise from neurovascular brainstem compression, a pharmaceutical treatment is considered as the state of the art in terms of conservative therapy. A neurovascular decompression of the trigeminal root can be an alternative in some cases when surgical treatment is sought after. Besides the above mentioned therapeutic options, alternative treatments are available. PMID:22073060
Alia, Claudia; Spalletti, Cristina; Lai, Stefano; Panarese, Alessandro; Lamola, Giuseppe; Bertolucci, Federica; Vallone, Fabio; Di Garbo, Angelo; Chisari, Carmelo; Micera, Silvestro; Caleo, Matteo
2017-01-01
Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration. PMID:28360842
Psychosocial Modulators of Motor Learning in Parkinson’s Disease
Zemankova, Petra; Lungu, Ovidiu; Bares, Martin
2016-01-01
Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD) and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here, we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD. PMID:26973495
Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy
Powis, Rachael A.; Karyka, Evangelia; Boyd, Penelope; Côme, Julien; Jones, Ross A.; Zheng, Yinan; Szunyogova, Eva; Groen, Ewout J.N.; Hunter, Gillian; Thomson, Derek; Wishart, Thomas M.; Becker, Catherina G.; Parson, Simon H.; Martinat, Cécile; Azzouz, Mimoun; Gillingwater, Thomas H.
2016-01-01
The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell–derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9–UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA. PMID:27699224
McCreary, J Keiko; Erickson, Zachary T; Metz, Gerlinde A S
2016-10-06
An adverse fetal environment in utero has been associated with long-term alterations in brain structure and function, and a higher risk of neurological disorders in later life. A common consequence of early adverse experience is impaired motor system function. A causal relationship for stress-associated impairments and a suitable therapy, however, have not been determined yet. To investigate the impact of ancestral stress on corticospinal tract (CST) morphology and fine motor performance in rats, and to determine if adverse programming by ancestral stress can be mitigated by environmental enrichment therapy in rats. The study examined F3 offspring generated by three lineages; one with prenatal stress only in the F1 generation, one with compounding effects of multigenerational prenatal stress, and a non-stress control lineage. F3 offspring from each lineage were injected with biotinylated dextran amine (BDA) into the motor cortex for anterograde tracing of the CST. Examination of the CST revealed reduced axonal density in the ancestrally stressed lineages. These anatomical changes were associated with significant impairments in skilled walking, as indicated by reduced foot placement accuracy and disturbed inter-limb coordination. Therapeutic intervention by environmental enrichment reduced the neuromorphological consequences of ancestral stress and restored skilled walking ability. The data suggest a causal relationship between stress-induced abnormal CST function and loss of fine motor performance. Thus, ancestral stress may be a determinant of motor system development and motor skill. Environmental enrichment may represent an effective intervention for the adverse programming by ancestral stress and trauma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sinis, Nektarios; Horn, Frauke; Genchev, Borislav; Skouras, Emmanouil; Merkel, Daniel; Angelova, Srebrina K; Kaidoglou, Katerina; Michael, Joern; Pavlov, Stoyan; Igelmund, Peter; Schaller, Hans-Eberhard; Irintchev, Andrey; Dunlop, Sarah A; Angelov, Doychin N
2009-10-01
The outcome of peripheral nerve injuries requiring surgical repair is poor. Recent work has suggested that electrical stimulation (ES) of denervated muscles could be beneficial. Here we tested whether ES has a positive influence on functional recovery after injury and surgical repair of the facial nerve. Outcomes at 2 months were compared to animals receiving sham stimulation (SS). Starting on the first day after end-to-end suture (facial-facial anastomosis), electrical stimulation (square 0.1 ms pulses at 5 Hz at an ex tempore established threshold amplitude of between 3.0 and 5.0V) was delivered to the vibrissal muscles for 5 min a day, 3 times a week. Restoration of vibrissal motor performance following ES or SS was evaluated using the video-based motion analysis and correlated with the degree of collateral axonal branching at the lesion site, the number of motor endplates in the target musculature and the quality of their reinnervation, i.e. the degree of mono- versus poly-innervation. Neither protocol reduced collateral branching. ES did not improve functional outcome, but rather reduced the number of innervated motor endplates to approximately one-fifth of normal values and failed to reduce the proportion of poly-innervated motor endplates. We conclude that ES is not beneficial for recovery of whisker function after facial nerve repair in rats.
Design of smart prosthetic knee utilizing magnetorheological damper
NASA Astrophysics Data System (ADS)
Gao, F.; Liu, Y. N.; Liao, W. H.
2017-04-01
In this study, based on human knee's kinetics, a smart prosthetic knee employing springs, DC motor and magnetorheological (MR) damper is designed. The MR damper is coupled in series with the springs that are mounted in parallel with the DC motor. The working principle of the prosthesis during level-ground walking is presented. During stance phase, the MR damper is powered on. The springs will store and release the negative mechanical energy for restoring the function of human knee joint. In swing phase, the MR damper is powered off for disengaging the springs. In this phase, the work of knee joint is negative. For improving the system energy efficiency, the DC motor will work as a power generator to supply required damping torque and harvest electrical energy. Finally, the design of MR damper is introduced.
"In Situ Vascular Nerve Graft" for Restoration of Intrinsic Hand Function: An Anatomical Study.
Mozaffarian, Kamran; Zemoodeh, Hamid Reza; Zarenezhad, Mohammad; Owji, Mohammad
2018-06-01
In combined high median and ulnar nerve injury, transfer of the posterior interosseous nerve branches to the motor branch of the ulnar nerve (MUN) is previously described in order to restore intrinsic hand function. In this operation a segment of sural nerve graft is required to close the gap between the donor and recipient nerves. However the thenar muscles are not innervated by this nerve transfer. The aim of the present study was to evaluate whether the superficial radial nerve (SRN) can be used as an "in situ vascular nerve graft" to connect the donor nerves to the MUN and the motor branch of median nerve (MMN) at the same time in order to address all denervated intrinsic and thenar muscles. Twenty fresh male cadavers were dissected in order to evaluate the feasibility of this modification of technique. The size of nerve branches, the number of axons and the tension at repair site were evaluated. This nerve transfer was technically feasible in all specimens. There was no significant size mismatch between the donor and recipient nerves Conclusions: The possible advantages of this modification include innervation of both median and ulnar nerve innervated intrinsic muscles, preservation of vascularity of the nerve graft which might accelerate the nerve regeneration, avoidance of leg incision and therefore the possibility of performing surgery under regional instead of general anesthesia. Briefly, this novel technique is a viable option which can be used instead of conventional nerve graft in some brachial plexus or combined high median and ulnar nerve injuries when restoration of intrinsic hand function by transfer of posterior interosseous nerve branches is attempted.
Lazarou, Ioulietta; Nikolopoulos, Spiros; Petrantonakis, Panagiotis C.; Kompatsiaris, Ioannis; Tsolaki, Magda
2018-01-01
People with severe neurological impairments face many challenges in sensorimotor functions and communication with the environment; therefore they have increased demand for advanced, adaptive and personalized rehabilitation. During the last several decades, numerous studies have developed brain–computer interfaces (BCIs) with the goals ranging from providing means of communication to functional rehabilitation. Here we review the research on non-invasive, electroencephalography (EEG)-based BCI systems for communication and rehabilitation. We focus on the approaches intended to help severely paralyzed and locked-in patients regain communication using three different BCI modalities: slow cortical potentials, sensorimotor rhythms and P300 potentials, as operational mechanisms. We also review BCI systems for restoration of motor function in patients with spinal cord injury and chronic stroke. We discuss the advantages and limitations of these approaches and the challenges that need to be addressed in the future. PMID:29472849
Zheng, Jian; Ding, Weijun; Li, Baoming; Yang, Youjun
2017-08-10
Brain structure and functions are significantly affected by enriched environment (EE). Rodent and rhesus monkeys raised in EE will increase myelination in development, and these increase correlate with improved cognitive functions on learning and memory. However, whether and how EE influences remyelination in the adult remained undefined. Here, we used a cuprizone-induced demyelination mouse model demonstrate that EE significantly enhances remyelination. This EE-regulated remyelination is associated with improved motor skills. We found that histone deacetylases 1/2 (HDAC1/2) were drastically increased in EE. EE act mechanistically by inhibition of Wnt signaling pathway during remyelination through promotion of HDAC1/2. Moreover, pharmacological inhibition of HDACs promoted Wnt signaling activation and impaired remyelination in EE. These results suggested that the effect of EE is likely to be mediated, at least in part, by elevating HDAC1/2 expression and inhibiting Wnt signal pathway, which initiates 'rewiring' of the neural network and accelerates remyelination. These findings highlighted the potential of EE as a promising noninvasive strategy to accelerate remyelination and to restore motor functions for demyelination related disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro
2015-01-01
Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice.
Nerve transfers in tetraplegia I: Background and technique
Brown, Justin M.
2011-01-01
Background: The recovery of hand function is consistently rated as the highest priority for persons with tetraplegia. Recovering even partial arm and hand function can have an enormous impact on independence and quality of life of an individual. Currently, tendon transfers are the accepted modality for improving hand function. In this procedure, the distal end of a functional muscle is cut and reattached at the insertion site of a nonfunctional muscle. The tendon transfer sacrifices the function at a lesser location to provide function at a more important location. Nerve transfers are conceptually similar to tendon transfers and involve cutting and connecting a healthy but less critical nerve to a more important but paralyzed nerve to restore its function. Methods: We present a case of a 28-year-old patient with a C5-level ASIA B (international classification level 1) injury who underwent nerve transfers to restore arm and hand function. Intact peripheral innervation was confirmed in the paralyzed muscle groups corresponding to finger flexors and extensors, wrist flexors and extensors, and triceps bilaterally. Volitional control and good strength were present in the biceps and brachialis muscles, the deltoid, and the trapezius. The patient underwent nerve transfers to restore finger flexion and extension, wrist flexion and extension, and elbow extension. Intraoperative motor-evoked potentials and direct nerve stimulation were used to identify donor and recipient nerve branches. Results: The patient tolerated the procedure well, with a preserved function in both elbow flexion and shoulder abduction. Conclusions: Nerve transfers are a technically feasible means of restoring the upper extremity function in tetraplegia in cases that may not be amenable to tendon transfers. PMID:21918736
Remapping residual coordination for controlling assistive devices and recovering motor functions
Pierella, Camilla; Abdollahi, Farnaz; Farshchiansadegh, Ali; Pedersen, Jessica; Thorp, Elias; Mussa-Ivaldi, Ferdinando A.; Casadio, Maura
2015-01-01
The concept of human motor redundancy attracted much attention since the early studies of motor control, as it highlights the ability of the motor system to generate a great variety of movements to achieve any single well-defined goal. The abundance of degrees of freedom in the human body may be a fundamental resource in the learning and remapping problems that are encountered in human–machine interfaces (HMIs) developments. The HMI can act at different levels decoding brain signals or body signals to control an external device. The transformation from neural signals to device commands is the core of research on brain-machine interfaces (BMIs). However, while BMIs bypass completely the final path of the motor system, body-machine interfaces (BoMIs) take advantage of motor skills that are still available to the user and have the potential to enhance these skills through their consistent use. BoMIs empower people with severe motor disabilities with the possibility to control external devices, and they concurrently offer the opportunity to focus on achieving rehabilitative goals. In this study we describe a theoretical paradigm for the use of a BoMI in rehabilitation. The proposed BoMI remaps the user’s residual upper body mobility to the two coordinates of a cursor on a computer screen. This mapping is obtained by principal component analysis (PCA). We hypothesize that the BoMI can be specifically programmed to engage the users in functional exercises aimed at partial recovery of motor skills, while simultaneously controlling the cursor and carrying out functional tasks, e.g. playing games. Specifically, PCA allows us to select not only the subspace that is most comfortable for the user to act upon, but also the degrees of freedom and coordination patterns that the user has more difficulty engaging. In this article, we describe a family of map modifications that can be made to change the motor behavior of the user. Depending on the characteristics of the impairment of each high-level spinal cord injury (SCI) survivor, we can make modifications to restore a higher level of symmetric mobility (left versus right), or to increase the strength and range of motion of the upper body that was spared by the injury. Results showed that this approach restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom in the participants involved in the control of the interface. This is a proof of concept that our BoMI may be used concurrently to control assistive devices and reach specific rehabilitative goals. Engaging the users in functional and entertaining tasks while practicing the interface and changing the map in the proposed ways is a novel approach to rehabilitation treatments facilitated by portable and low-cost technologies. PMID:26341935
Remapping residual coordination for controlling assistive devices and recovering motor functions.
Pierella, Camilla; Abdollahi, Farnaz; Farshchiansadegh, Ali; Pedersen, Jessica; Thorp, Elias B; Mussa-Ivaldi, Ferdinando A; Casadio, Maura
2015-12-01
The concept of human motor redundancy attracted much attention since the early studies of motor control, as it highlights the ability of the motor system to generate a great variety of movements to achieve any well-defined goal. The abundance of degrees of freedom in the human body may be a fundamental resource in the learning and remapping problems that are encountered in human-machine interfaces (HMIs) developments. The HMI can act at different levels decoding brain signals or body signals to control an external device. The transformation from neural signals to device commands is the core of research on brain-machine interfaces (BMIs). However, while BMIs bypass completely the final path of the motor system, body-machine interfaces (BoMIs) take advantage of motor skills that are still available to the user and have the potential to enhance these skills through their consistent use. BoMIs empower people with severe motor disabilities with the possibility to control external devices, and they concurrently offer the opportunity to focus on achieving rehabilitative goals. In this study we describe a theoretical paradigm for the use of a BoMI in rehabilitation. The proposed BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer screen. This mapping is obtained by principal component analysis (PCA). We hypothesize that the BoMI can be specifically programmed to engage the users in functional exercises aimed at partial recovery of motor skills, while simultaneously controlling the cursor and carrying out functional tasks, e.g. playing games. Specifically, PCA allows us to select not only the subspace that is most comfortable for the user to act upon, but also the degrees of freedom and coordination patterns that the user has more difficulty engaging. In this article, we describe a family of map modifications that can be made to change the motor behavior of the user. Depending on the characteristics of the impairment of each high-level spinal cord injury (SCI) survivor, we can make modifications to restore a higher level of symmetric mobility (left versus right), or to increase the strength and range of motion of the upper body that was spared by the injury. Results showed that this approach restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom in the participants involved in the control of the interface. This is a proof of concept that our BoMI may be used concurrently to control assistive devices and reach specific rehabilitative goals. Engaging the users in functional and entertaining tasks while practicing the interface and changing the map in the proposed ways is a novel approach to rehabilitation treatments facilitated by portable and low-cost technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Microinvasive dental treatment in pre-school children].
Korolenkova, M V
The aim of the study was to assess the efficiency of atraumatic restorative treatment (ART) with cavity preparation by means of dental endo motor. ART method was applied in 94 children (50 females and 44 males, 301 teeth treated) aged 21-96 months. Wireless dental endo motor (Endo Mate TC2, NSK, Japan) was used for cavity preparation. The cavities (102 (33.9%) class I, 156 (51.8%) class V, 20 (6.6%) class II, 18 (6%) class III and 5 (1.7%) class IV) were then filled with glass-ionomer cement (Fuji IX, GC, Japan). Success rate was assessed 3, 6, 12 and 18 months after treatment. Overall ART procedure success rate (good marginal fit, no occlusal wearing or restoration fractures) at 18-month follow up was 88.7% (267 fillings out of 301) with the highest survival in class I (96.1%) and class V (96.2%) restoration and poorest in class II (50%), class III (44.4%) and class IV (20%) restorations. Cavity preparation with wireless dental endo motor was well tolerated even by infants (12 children were younger than 24 months), as it is noiseless and significantly faster than conventional manual preparation. ART method with the use of dental endo motor showed good success rate and proved to be highly efficient in small and apprehensive children. The method, however, should be avoided in class III and IV cavities as the success rate is poor mostly because of restoration fractures.
Winkler, Christian; Reis, Janine; Hoffmann, Nadin; Gellner, Anne-Kathrin; Münkel, Christian; Curado, Marco Rocha; Furlanetti, Luciano; Garcia, Joanna; Döbrössy, Máté D; Fritsch, Brita
2017-01-01
Restorative therapy concepts, such as cell based therapies aim to restitute impaired neurotransmission in neurodegenerative diseases. New strategies to enhance grafted cell survival and integration are still needed to improve functional recovery. Anodal direct current stimulation (DCS) promotes neuronal activity and secretion of the trophic factor BDNF in the motor cortex. Transcranial DCS applied to the motor cortex transiently improves motor symptoms in Parkinson's disease (PD) patients. In this proof-of-concept study, we combine cell based therapy and noninvasive neuromodulation to assess whether neurotrophic support via transcranial DCS would enhance the restitution of striatal neurotransmission by fetal dopaminergic transplants in a rat Parkinson model. Transcranial DCS was applied daily for 20 min on 14 consecutive days following striatal transplantation of fetal ventral mesencephalic (fVM) cells derived from transgenic rat embryos ubiquitously expressing GFP. Anodal but not cathodal transcranial DCS significantly enhanced graft survival and dopaminergic reinnervation of the surrounding striatal tissue relative to sham stimulation. Behavioral recovery was more pronounced following anodal transcranial DCS, and behavioral effects correlated with the degree of striatal innervation. Our results suggest anodal transcranial DCS may help advance cell-based restorative therapies in neurodegenerative diseases. In particular, such an assistive approach may be beneficial for the already established cell transplantation therapy in PD.
[Rehabilitation after replantation].
Klauser, H; Stein, S; Freimark, C; Flatau, I; Brunnemann, S; Weber, U
2003-05-01
Limb replantation represents a particular surgical challenge. Rehabilitation and functional integration of the patient into everyday life has proven to be as equally important as the operation itself. This requires intensive and long-term cooperation between surgeon, therapist, and patient since replanted limbs without restoration of function are of no use. Besides physiotherapy, ergotherapy is highly important for this since it helps to reactivate daily activities.Also, tactile gnosis and protecting nervous sensibility and motor function can be improved by ergotherapy. With the help of special devices, adjustments,and psychological care, ergotherapy also supports the patient's reintegration into his former social environment.
Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise
2012-11-01
Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition
2014-01-01
Background Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. Results Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). Conclusions This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury. PMID:24618249
Hypothesis that vagal reinervation of diaphragm could sensitise it to electrical stimulation.
Pavlovic, Dragan; Wendt, Michael
2003-03-01
The hypothesis proposed is that restoration of functional capacity of denervated diaphragm may be achieved by reinervating it with vagus nerve. Following trauma, carcinomatose infiltration, and/or large thoracic surgery and neck surgery, phrenic nerve is frequently injured. Reinervation even in the most favourable conditions would not follow and diaphragm would rest permanently denervated and paralysed. This results in unilateral or bilateral paralysis of diaphragm. In principle, intermittent electrical stimulation of the phrenic nerve or diaphragm could elicit regular diaphragm contractions and maintain satisfactory respiration. While this technique could be used in upper motor neurone injury, in lower motor neurone injury and denervated diaphragm, that imposes too high electrical resistance, direct diaphragm pacing is practically impossible. In these cases, long term artificial ventilation is often necessary. Nevertheless, those patients are at high risk to suffer from atelectasis and respiratory infections. We project a hypothesis that reinervation of denervated diaphragm by vagus nerve could re-establishes its sensitivity to intramuscular electrical stimulation and may allow stimulation of the diaphragm by implanted pace-maker electrodes. An appropriate electrical stimulation might then be possible and diaphragm pacing could replace prolonged artificial ventilation in those patients. Restoration of functional capacity of denervated diaphragm could open a perspective for long term diaphragm pacing in patients with irreversible phrenic nerve injury and diaphragm paralysis.
Blana, Dimitra; Hincapie, Juan G; Chadwick, Edward K; Kirsch, Robert F
2013-01-01
Neuroprosthetic systems based on functional electrical stimulation aim to restore motor function to individuals with paralysis following spinal cord injury. Identifying the optimal electrode set for the neuroprosthesis is complicated because it depends on the characteristics of the individual (such as injury level), the force capacities of the muscles, the movements the system aims to restore, and the hardware limitations (number and type of electrodes available). An electrode-selection method has been developed that uses a customized musculoskeletal model. Candidate electrode sets are created based on desired functional outcomes and the hard ware limitations of the proposed system. Inverse-dynamic simulations are performed to determine the proportion of target movements that can be accomplished with each set; the set that allows the most movements to be performed is chosen as the optimal set. The technique is demonstrated here for a system recently developed by our research group to restore whole-arm movement to individuals with high-level tetraplegia. The optimal set included selective nerve-cuff electrodes for the radial and musculocutaneous nerves; single-channel cuffs for the axillary, suprascapular, upper subscapular, and long-thoracic nerves; and muscle-based electrodes for the remaining channels. The importance of functional goals, hardware limitations, muscle and nerve anatomy, and surgical feasibility are highlighted.
Bögli, Stefan Yu; Afthinos, Maresa; Huang, Melody Ying-Yu
2017-06-01
Infantile nystagmus syndrome (INS) is a disorder characterized by typical horizontal eye oscillations. Due to the uncertain etiology of INS, developing specific treatments remains difficult. Single reports demonstrated, on limited measures, alleviating effects of gabapentin and memantine. In the current study, we employed the zebrafish INS model belladonna (bel) to conduct an in-depth study of how gabapentin and memantine interventions alleviate INS signs, which may further restore visual conditions in affected subjects. Moreover, we described the influence of both medications on ocular motor functions in healthy zebrafish, evaluating possible iatrogenic effects. Ocular motor function and INS characteristics were assessed by eliciting optokinetic response, spontaneous nystagmus, and spontaneous saccades in light and in dark, in 5- to 6-day postfertilization bel larvae and heterozygous siblings. Single larvae were recorded before and after a 1-hour drug treatment (200 mM gabapentin/0.2 mM memantine). Both interventions significantly reduced nystagmus intensity (gabapentin: 59.98%, memantine: 39.59%). However, while the application of gabapentin affected all tested ocular motor functions, memantine specifically reduced nystagmus amplitude and intensity, and thus left controls completely unaffected. Finally, both drug treatments resulted in specific changes in nystagmus waveform and velocity. Our study provides deeper insight into gabapentin and memantine treatment effect in the zebrafish INS model. Moreover, this study should establish zebrafish as a pharmacologic animal model for treating nystagmus and ocular motor disease, serving as a basis for future large-scale drug screenings.
Substantial Differentiation of Human Neural Stem Cells Into Motor Neurons on a Biomimetic Polyureaa
Yun, Donghwa; Lee, Young M.; Laughter, Melissa R.; Freed, Curt R.
2015-01-01
To find the first restorative treatment for spinal cord injury (SCI), researchers have focused on stem cell therapies. However, one obstacle is the lack of an implantable cell scaffold that can support efficient motor neuron (MN) differentiation and proliferation. We aimed to overcome this through the use of an RGD functionalized novel biomimetic polyurea, optimized to encourage efficient differentiation of MNs. Images taken after 14-days showed increased differentiation (~40%) of hNSCs into MNs as well as increased cell count on the biomimetic polymer compared to PDL-Laminin coating, indicating that the RGD-polyurea provides a favorable microenvironment for hNSC survival, having promising implications for future SCI therapies. PMID:26033933
Esophageal Reconstruction with the Stomach, a Functional Dilemma?
Predescu, Dragoş; Constantinoiu, Silviu
2018-01-01
Background: A few decades ago, esophageal substitution was mainly dedicated particularly in postcaustic esophageal stenosis; currently, the reconstruction has expanded its palette of indications to other areas of benign esophageal pathology (severe motor disorders, esophageal achalasia with multiple relapses, peptic stenosis, etc.) but has also become a quasi-obligatory final time in the esophagectomy for cancer whenever it is possible. The techniques of esophageal reconstruction using the stomach, regardless of the indication and the chosen technical option, remain a valuable and effective method. A number of striking arguments advocate for one or another type of gastric graft: anatomic factors more than convenient (vascularization, sufficient length, a wall structure favorable for suture, etc.) and a sustainable surgical intervention (length, approach, complexity of the surgical steps digestive disorders after surgery, post-therapeutic functionality, etc.). Choosing a technique or another, beyond pathological arguments, should take into account remote functionality, with a clear impact on metabolic status and quality of life. So, according to this criterion, can we functionally justify a type or another of gastric restoration? Finally, the proof of an adequate solution is relatively easy to appreciate: has swallowing been restored and if so, the result has been maintained over time? For oncological cases, the assessment should also take into account the chronological criterion of the postoperative survival rate. Methods: The statistically rated lot ranged from 1981 to 2016 and included 268 patients with surgical interventions for esophageal stenosis, distributed according to etiopathogenesis and indication in 201 reconstructions for post-caustic stenosis, and 67 for post-esophagectomy replacement for neoplasm. The techniques used for remote functional evaluation included: barium swallow, endoscopy + biopsy, and in cases with obvious changes pH measurement/24 h and manometry and, only in exceptional cases, scintigraphy with marked foods. Results: two types of problems have been identified: a particular type of neuro-motor dysfunction of the esophageal substitute in 6 patients (1 patient with Gavriliu reconstruction and 5 with Nakayama reconstruction, using the whole stomach), with difficulty, delayed gastric graft evacuation, with major stasis and abdominal discomfort vomiting, inability to eat, aspiration phenomena) respectively a reflux pathology - 8 patients, being proved by a specific simptomatology, barium lunch, endoscopic examination and pH-metric examination. Reflux was alkaline in 7 patients, all with pyloroplasty, 5 with whole stomach and 2 with Akiyama procedure; in 1 case with Gavriliu procedure the reflux was acid. Conclusions: Stomach is a good option in esophageal substitution. Concerning the remote results, a good functionality is found with a reasonable metabolic status. The two phenomena on which the function of the graft depends - secretory activity and motor activity - seem to be restored in time but these does not occur concurrently, the recovery of the secretory function being much faster. Celsius.
Enhanced brain motor activity in patients with MS after a single dose of 3,4-diaminopyridine.
Mainero, C; Inghilleri, M; Pantano, P; Conte, A; Lenzi, D; Frasca, V; Bozzao, L; Pozzilli, C
2004-06-08
3,4-diaminopyridine (3,4-DAP), a potassium (K+) channel blocker, improves fatigue and motor function in multiple sclerosis (MS). Although it was thought to do so by restoring conduction to demyelinated axons, recent experimental data show that aminopyridines administered at clinical doses potentiate synaptic transmission. To investigate motor cerebral activity with fMRI and transcranial magnetic stimulation (TMS) after a single oral dose of 3,4-DAP in patients with MS. Twelve right-handed women (mean +/- SD age 40.9 +/- 9.3 years) underwent fMRI on two separate occasions (under 3,4-DAP and under placebo) during a simple motor task with the right hand. FMRI data were analyzed with SPM99. After fMRI, patients underwent single-pulse TMS to test motor threshold, amplitude, and latency of motor evoked potentials, central conduction time, and the cortical silent period; paired-pulse TMS to investigate intracortical inhibition (ICI) and intracortical facilitation (ICF); and quantitative electromyography during maximal voluntary contraction. FMRI motor-evoked brain activation was greater under 3,4-DAP than under placebo in the ipsilateral sensorimotor cortex and supplementary motor area (p < 0.05). 3,4-DAP decreased ICI and increased ICF; central motor conduction time and muscular fatigability did not change. 3,4-DAP may modulate brain motor activity in patients with MS, probably by enhancing excitatory synaptic transmission.
Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro
2016-01-01
Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice. PMID:26834638
Shahdoost, Shahab; Frost, Shawn; Dunham, Caleb; DeJong, Stacey; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram
2015-08-01
Approximately 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress toward developing a miniaturized brain-machine-spinal cord interface (BMSI) that converts in real time the neural command signals recorded from the cortical motor regions to electrical stimuli delivered to the spinal cord below the injury level. Using a combination of custom integrated circuit (IC) technology for corticospinal interfacing and field-programmable gate array (FPGA)-based technology for embedded signal processing, we demonstrate proof-of-concept of distinct muscle pattern activation via intraspinal microstimulation (ISMS) controlled in real time by intracortical neural spikes in an anesthetized laboratory rat.
An effective 3-fingered augmenting exoskeleton for the human hand.
Gearhart, C J; Varone, B; Stella, M H; BuSha, B F
2016-08-01
Every year, thousands of Americans suffer from pathological and traumatic events that result in loss of dexterity and strength of the hand. Although many supportive devices have been designed to restore functional hand movement, most are very complex and expensive. The goal of this project was to design and implement a cost-effective, electrically powered exoskeleton for the human hand that could improve grasping strength. A 3-D printed thermoplastic exoskeleton that allowed independent and enhanced movement of the index, middle and ring fingers was constructed. In addition, a 3-D printed structure was designed to house three linear actuators, an Arduino-based control system, and a power supply. A single force sensing resistor was located on the lower inner-surface of the index fingertip which was used to proportionally activate the three motors, one motor per finger, as a function of finger force applied to the sensor. The device was tested on 4 normal human subjects. Results showed that the activation of the motor control system significantly reduced the muscle effort needed to maintain a sub-maximal grasp effort.
Novel strategies to improve immunomodulation and non invasive clinical monitoring in VCA
2017-08-01
and motor vehicle accidents, amongst others. People with these types of traumatic injuries have decreased quality of life, and are often disabled ...ability to restore form and function after these injuries. Disability with associated long-term medical care and disability benefit costs is common...entirely new IRB protocol that is specific and inclusive only of the work stated in the Statement of Work for this award. This protocol has been
Kraus, Dominic; Naros, Georgios; Guggenberger, Robert; Leão, Maria Teresa; Ziemann, Ulf; Gharabaghi, Alireza
2018-02-07
Standard brain stimulation protocols modify human motor cortex excitability by modulating the gain of the activated corticospinal pathways. However, the restoration of motor function following lesions of the corticospinal tract requires also the recruitment of additional neurons to increase the net corticospinal output. For this purpose, we investigated a novel protocol based on brain state-dependent paired associative stimulation.Motor imagery (MI)-related electroencephalography was recorded in healthy males and females for brain state-dependent control of both cortical and peripheral stimulation in a brain-machine interface environment. State-dependency was investigated with concurrent, delayed, and independent stimulation relative to the MI task. Specifically, sensorimotor event-related desynchronization (ERD) in the β-band (16-22 Hz) triggered peripheral stimulation through passive hand opening by a robotic orthosis and transcranial magnetic stimulation to the respective cortical motor representation, either synchronously or subsequently. These MI-related paradigms were compared with paired cortical and peripheral input applied independent of the brain state. Cortical stimulation resulted in a significant increase in corticospinal excitability only when applied brain state-dependently and synchronously to peripheral input. These gains were resistant to a depotentiation task, revealed a nonlinear evolution of plasticity, and were mediated via the recruitment of additional corticospinal neurons rather than via synchronization of neuronal firing. Recruitment of additional corticospinal pathways may be achieved when cortical and peripheral inputs are applied concurrently, and during β-ERD. These findings resemble a gating mechanism and are potentially important for developing closed-loop brain stimulation for the treatment of hand paralysis following lesions of the corticospinal tract. SIGNIFICANCE STATEMENT The activity state of the motor system influences the excitability of corticospinal pathways to external input. State-dependent interventions harness this property to increase the connectivity between motor cortex and muscles. These stimulation protocols modulate the gain of the activated pathways, but not the overall corticospinal recruitment. In this study, a brain-machine interface paired peripheral stimulation through passive hand opening with transcranial magnetic stimulation to the respective cortical motor representation during volitional β-band desynchronization. Cortical stimulation resulted in the recruitment of additional corticospinal pathways, but only when applied brain state-dependently and synchronously to peripheral input. These effects resemble a gating mechanism and may be important for the restoration of motor function following lesions of the corticospinal tract. Copyright © 2018 the authors 0270-6474/18/381397-12$15.00/0.
Micromotors Spontaneously Neutralize Gastric Acid for pH-Responsive Payload Release.
Li, Jinxing; Angsantikul, Pavimol; Liu, Wenjuan; Esteban-Fernández de Ávila, Berta; Thamphiwatana, Soracha; Xu, Mingli; Sandraz, Elodie; Wang, Xiaolei; Delezuk, Jorge; Gao, Weiwei; Zhang, Liangfang; Wang, Joseph
2017-02-13
The highly acidic gastric environment creates a physiological barrier for using therapeutic drugs in the stomach. While proton pump inhibitors have been widely used for blocking acid-producing enzymes, this approach can cause various adverse effects. Reported herein is a new microdevice, consisting of magnesium-based micromotors which can autonomously and temporally neutralize gastric acid through efficient chemical propulsion in the gastric fluid by rapidly depleting the localized protons. Coating these micromotors with a cargo-containing pH-responsive polymer layer leads to autonomous release of the encapsulated payload upon gastric-acid neutralization by the motors. Testing in a mouse model demonstrate that these motors can safely and rapidly neutralize gastric acid and simultaneously release payload without causing noticeable acute toxicity or affecting the stomach function, and the normal stomach pH is restored within 24 h post motor administration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Illusory movement perception improves motor control for prosthetic hands
Marasco, Paul D.; Hebert, Jacqueline S.; Sensinger, Jon W.; Shell, Courtney E.; Schofield, Jonathon S.; Thumser, Zachary C.; Nataraj, Raviraj; Beckler, Dylan T.; Dawson, Michael R.; Blustein, Dan H.; Gill, Satinder; Mensh, Brett D.; Granja-Vazquez, Rafael; Newcomb, Madeline D.; Carey, Jason P.; Orzell, Beth M.
2018-01-01
To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement’s progress. This largely non-conscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. Here we report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. PMID:29540617
Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo
2016-01-01
Purpose Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may “take over” control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Methods Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Results Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. Conclusions These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance pattern. These reorganizations may underlie vicariation of lost functions following stroke. PMID:26752066
Vallone, Fabio; Lai, Stefano; Spalletti, Cristina; Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo
2016-01-01
Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance pattern. These reorganizations may underlie vicariation of lost functions following stroke.
Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A
2016-05-01
Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.
New modalities of brain stimulation for stroke rehabilitation
Lucas, T. H.; Carey, J. R.; Fetz, E. E.
2014-01-01
Stroke is a leading cause of disability, and the number of stroke survivors continues to rise. Traditional neurorehabilitation strategies aimed at restoring function to weakened limbs provide only modest benefit. New brain stimulation techniques designed to augment traditional neurorehabilitation hold promise for reducing the burden of stroke-related disability. Investigators discovered that repetitive transcranial magnetic stimulation (rTMS), trans-cranial direct current stimulation (tDCS), and epidural cortical stimulation (ECS) can enhance neural plasticity in the motor cortex post-stroke. Improved outcomes may be obtained with activity-dependent stimulation, in which brain stimulation is contingent on neural or muscular activity during normal behavior. We review the evidence for improved motor function in stroke patients treated with rTMS, tDCS, and ECS and discuss the mediating physiological mechanisms. We compare these techniques to activity-dependent stimulation, discuss the advantages of this newer strategy for stroke rehabilitation, and suggest future applications for activity-dependent brain stimulation. PMID:23192336
Future developments in brain-machine interface research.
Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L
2011-01-01
Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.
Behavioral alterations in cystic fibrosis mice are prevented by cannabinoid treatment in infancy.
Bregman, Tatiana; Fride, Ester
2011-06-17
Substantial data have been accumulated regarding the molecular basis of cystic fibrosis (CF) pathogenesis, whereas the influence of biochemical impairments on brain processes has been the focus of much less attention. We have studied some behavioral parameters, such as motor activity and anxiety level, in a mice model of CF. We have assumed that functioning of the endocannabinoid system could be impaired in CF (endocannabinoids are fatty acid derivatives, and fatty acid deficiency is considered a major factor in CF etiology). We have suggested that chronic treatment with cannabinoid receptors agonist during infancy would balance cannabinoid levels and prevent CF-related behavioral alterations. Motor activity and anxiety level were studied in naïve adult CF mice (cftr-deficient mice) and compared with wild-type mice and to CF mice treated chronically with Δ9-tetrahydrocannabinol (Δ9-THC; endocannabinoid receptor agonist) during infancy (from days 7 to 28). Motor activity was tested in the tetrad, and level of anxiety in the plus maze, a month after cessation of treatment. Motor activity decrease and elevated anxiety level were found in adult naïve CF mice compared with wild-type mice. CF mice treated with THC in infancy showed normal motor activity and anxiety levels in adulthood. Motor function alteration and elevated anxiety levels in CF can result from lack of CFTR-channel in neurons and disturbed activity of various brain areas, as well as being secondary and mediated by fatty acids deficiency, altered levels of endocannabinoids and their receptors. It can be suggested that chronic treatment during infancy restores endocannabinoid function and thus prevents behavioral alterations.
Zia, Muhammad TK; Vinukonda, Govindaiah; Vose, Linnea; Bhimavarapu, Bala B.R.; Iacobas, Sanda; Pandey, Nishi K.; Beall, Ann Marie; Dohare, Preeti; LaGamma, Edmund F.; Iacobas, Dumitru A.; Ballabh, Praveen
2014-01-01
Postnatal glucocorticoids (GCs) are widely used in the prevention of chronic lung disease in premature infants. Their pharmacologic use is associated with neurodevelopmental delay and cerebral palsy. However, the effect of GC dose and preparation (dexamethasone versus betamethasone) on short and long-term neurological outcomes remains undetermined, and the mechanisms of GC-induced brain injury are unclear. We hypothesized that postnatal GC would induce hypomyelination and motor impairment in a preparation- and dose-specific manner, and that GC receptor (GR) inhibition might restore myelination and neurological function in GC-treated animals. Additionally, GC-induced hypomyelination and neurological deficit might be transient. To test our hypotheses, we treated prematurely delivered rabbit pups with high (0.5 mg/kg/day) or low (0.2 mg/kg/day) doses of dexamethasone or betamethasone. Myelin basic protein (MBP), oligodendrocyte proliferation and maturation, astrocytes, transcriptomic profile, and neurobehavioral functions were evaluated. We found that high-dose GC treatment, but not low-dose, reduced MBP expression and impaired motor function at postnatal day 14. High-dose dexamethasone induced astrogliosis, betamethasone did not. Mifepristone, a GR antagonist, reversed dexamethasone-induced myelination, but not astrogliosis. Both GCs inhibited oligodendrocyte proliferation and maturation. Moreover, high-dose dexamethasone altered genes associated with myelination, cell-cycle, GR, and Mitogen-activated protein kinase. Importantly, GC-induced hypomyelination, gliosis, and motor-deficit, observed at day 14, completely recovered by day 21. Hence, high-dose, but not low-dose, postnatal GC causes reversible reductions in myelination and motor functions. GC treatment induces hypomyelination by GR-dependent genomic mechanisms, but astrogliosis by non-genomic mechanisms. GC-induced motor impairment and neurodevelopmental delay might be transient and recover spontaneously in premature infants. PMID:25263581
Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi
2017-09-26
Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.
Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi
2017-01-01
Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391
Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W
2014-01-01
Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p = 0.05), reduced contralesional-frontoparietal coherence (p = 0.05), and reduced left-temporal spectral power (p = 0.05). Gait analyses revealed an increase in nonparetic step length (p = 0.05) in the HR group only. These results suggest that combining explicit rewards with novel anklebot training may accelerate motor learning for restoring mobility.
A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease
Puigdellívol, Mar; Cherubini, Marta; Brito, Verónica; Giralt, Albert; Suelves, Núria; Ballesteros, Jesús; Zamora-Moratalla, Alfonsa; Martín, Eduardo D.; Eipper, Betty A.; Alberch, Jordi; Ginés, Silvia
2015-01-01
Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD. PMID:26464483
Winkler, Christian; Reis, Janine; Hoffmann, Nadin; Gellner, Anne-Kathrin; Münkel, Christian; Curado, Marco Rocha
2017-01-01
Abstract Restorative therapy concepts, such as cell based therapies aim to restitute impaired neurotransmission in neurodegenerative diseases. New strategies to enhance grafted cell survival and integration are still needed to improve functional recovery. Anodal direct current stimulation (DCS) promotes neuronal activity and secretion of the trophic factor BDNF in the motor cortex. Transcranial DCS applied to the motor cortex transiently improves motor symptoms in Parkinson’s disease (PD) patients. In this proof-of-concept study, we combine cell based therapy and noninvasive neuromodulation to assess whether neurotrophic support via transcranial DCS would enhance the restitution of striatal neurotransmission by fetal dopaminergic transplants in a rat Parkinson model. Transcranial DCS was applied daily for 20 min on 14 consecutive days following striatal transplantation of fetal ventral mesencephalic (fVM) cells derived from transgenic rat embryos ubiquitously expressing GFP. Anodal but not cathodal transcranial DCS significantly enhanced graft survival and dopaminergic reinnervation of the surrounding striatal tissue relative to sham stimulation. Behavioral recovery was more pronounced following anodal transcranial DCS, and behavioral effects correlated with the degree of striatal innervation. Our results suggest anodal transcranial DCS may help advance cell-based restorative therapies in neurodegenerative diseases. In particular, such an assistive approach may be beneficial for the already established cell transplantation therapy in PD. PMID:28966974
Mesenchymal stem cells restore orientation and exploratory behavior of rats after brain injury.
Sokolova, I B; Fedotova, O R; Tsikunov, S G; Polyntsev, D G
2011-05-01
We studied the effects of intravenous and intracerebral transplantation of MSC on restoration of orientation and exploratory behavior of Wistar-Kyoto rats after removal of the left motor cortex. Removal of the motor cortex led to a significant reduction of the number of behavioral acts in the open field test. Two weeks after removal of the motor cortex and intravenous transplantation, the animals were as inhibited as the controls, but during the next 10 weeks, the behavioral status of these rats remained unchanged, while controls exhibited further behavioral degradation. After injection of MSC into the brain, the behavior of rats with trauma did not change in comparison with intact rats over 10 weeks.
Tongue corticospinal modulation during attended verbal stimuli: priming and coarticulation effects.
D'Ausilio, Alessandro; Jarmolowska, Joanna; Busan, Pierpaolo; Bufalari, Ilaria; Craighero, Laila
2011-11-01
Humans perceive continuous speech through interruptions or brief noise bursts cancelling entire phonemes. This robust phenomenon has been classically associated with mechanisms of perceptual restoration. In parallel, recent experimental evidence suggests that the motor system may actively participate in speech perception, even contributing to phoneme discrimination. In the present study we intended to verify if the motor system has a specific role in speech perceptual restoration as well. To this aim we recorded tongue corticospinal excitability during phoneme expectation induced by contextual information. Results showed that phoneme expectation determines an involvement of the individual's motor system specifically implicated in the production of the attended phoneme, exactly as it happens during actual listening of that phoneme, suggesting the presence of a speech imagery-like process. Very interestingly, this motoric phoneme expectation is also modulated by subtle coarticulation cues of which the listener is not consciously aware. Present data indicate that the rehearsal of a specific phoneme requires the contribution of the motor system exactly as it happens during the rehearsal of actions executed by the limbs, and that this process is abolished when an incongruent phonemic cue is presented, as similarly occurs during observation of anomalous hand actions. We propose that altogether these effects indicate that during speech listening an attentional-like mechanism driven by the motor system, based on a feed-forward anticipatory mechanism constantly verifying incoming information, is working allowing perceptual restoration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ye, Qingsong; Wu, Yanqing; Wu, Jiamin; Zou, Shuang; Al-Zaazaai, Ali Ahmed; Zhang, Hongyu; Shi, Hongxue; Xie, Ling; Liu, Yanlong; Xu, Ke; He, Huacheng; Zhang, Fabiao; Ji, Yiming; He, Yan; Xiao, Jian
2018-01-01
Neonatal hypoxia-ischemia (HI) causes severe brain damage and significantly increases neonatal morbidity and mortality. Increasing evidences have verified that stem cell-based therapy has the potential to rescue the ischemic tissue and restore function via secreting growth factors after HI. Here, we had investigated whether intranasal neural stem cells (NSCs) treatment improves the recovery of neonatal HI, and NSCs overexpressing basic fibroblast growth factor (bFGF) has a better therapeutic effect for recovery than NSCs treatment only. We performed permanent occlusion of the right common carotid artery in 9-day old ICR mice as animal model of neonatal hypoxia-ischemia. At 3 days post-HI, NSC, NSC-GFP, NSC-bFGF and vehicle were delivered intranasally. To determine the effect of intranasal NSC, NSC-GFP and NSC-bFGF treatment on recovery after HI, we analyzed brain damage, sensor-motor function and cell differentiation. It was observed that intranasal NSC, NSC-GFP and NSC-bFGF treatment decreased gray and white matter loss area in comparison with vehicle-treated mouse. NSC, NSC-GFP and NSC-bFGF treatment also significantly improved sensor motor function in cylinder rearing test and adhesive removal test, however, NSC-bFGF-treatment was more effective than NSC-treatment in the improvement of somatosensory function. Furthermore, compared with NSC and NSC-GFP, NSC-bFGF treatment group appeared to differentiate into more neurons. Taken together, intranasal administration of NSCs is a promising therapy for treatment of neonatal HI, but NSCs overexpressing bFGF promotes the survival and differentiation of NSCs, and consequently achieves a better therapeutic effect in improving recovery after neonatal HI. © 2018 The Author(s). Published by S. Karger AG, Basel.
Shepherd, Danielle L; Hathaway, Quincy A; Nichols, Cody E; Durr, Andrya J; Pinti, Mark V; Hughes, Kristen M; Kunovac, Amina; Stine, Seth M; Hollander, John M
2018-06-01
>99% of the mitochondrial proteome is nuclear-encoded. The mitochondrion relies on a coordinated multi-complex process for nuclear genome-encoded mitochondrial protein import. Mitochondrial heat shock protein 70 (mtHsp70) is a key component of this process and a central constituent of the protein import motor. Type 2 diabetes mellitus (T2DM) disrupts mitochondrial proteomic signature which is associated with decreased protein import efficiency. The goal of this study was to manipulate the mitochondrial protein import process through targeted restoration of mtHsp70, in an effort to restore proteomic signature and mitochondrial function in the T2DM heart. A novel line of cardiac-specific mtHsp70 transgenic mice on the db/db background were generated and cardiac mitochondrial subpopulations were isolated with proteomic evaluation and mitochondrial function assessed. MicroRNA and epigenetic regulation of the mtHsp70 gene during T2DM were also evaluated. MtHsp70 overexpression restored cardiac function and nuclear-encoded mitochondrial protein import, contributing to a beneficial impact on proteome signature and enhanced mitochondrial function during T2DM. Further, transcriptional repression at the mtHsp70 genomic locus through increased localization of H3K27me3 during T2DM insult was observed. Our results suggest that restoration of a key protein import constituent, mtHsp70, provides therapeutic benefit through attenuation of mitochondrial and contractile dysfunction in T2DM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Restoring cortical control of functional movement in a human with quadriplegia.
Bouton, Chad E; Shaikhouni, Ammar; Annetta, Nicholas V; Bockbrader, Marcia A; Friedenberg, David A; Nielson, Dylan M; Sharma, Gaurav; Sederberg, Per B; Glenn, Bradley C; Mysiw, W Jerry; Morgan, Austin G; Deogaonkar, Milind; Rezai, Ali R
2016-05-12
Millions of people worldwide suffer from diseases that lead to paralysis through disruption of signal pathways between the brain and the muscles. Neuroprosthetic devices are designed to restore lost function and could be used to form an electronic 'neural bypass' to circumvent disconnected pathways in the nervous system. It has previously been shown that intracortically recorded signals can be decoded to extract information related to motion, allowing non-human primates and paralysed humans to control computers and robotic arms through imagined movements. In non-human primates, these types of signal have also been used to drive activation of chemically paralysed arm muscles. Here we show that intracortically recorded signals can be linked in real-time to muscle activation to restore movement in a paralysed human. We used a chronically implanted intracortical microelectrode array to record multiunit activity from the motor cortex in a study participant with quadriplegia from cervical spinal cord injury. We applied machine-learning algorithms to decode the neuronal activity and control activation of the participant's forearm muscles through a custom-built high-resolution neuromuscular electrical stimulation system. The system provided isolated finger movements and the participant achieved continuous cortical control of six different wrist and hand motions. Furthermore, he was able to use the system to complete functional tasks relevant to daily living. Clinical assessment showed that, when using the system, his motor impairment improved from the fifth to the sixth cervical (C5-C6) to the seventh cervical to first thoracic (C7-T1) level unilaterally, conferring on him the critical abilities to grasp, manipulate, and release objects. This is the first demonstration to our knowledge of successful control of muscle activation using intracortically recorded signals in a paralysed human. These results have significant implications in advancing neuroprosthetic technology for people worldwide living with the effects of paralysis.
Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried
2016-03-30
Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization, thus contributing to axon degeneration, muscle denervation, and motor neuron cell death in SMA. Copyright © 2016 the authors 0270-6474/16/363811-10$15.00/0.
[Phantom limb pain syndrome: therapeutic approach using mirror therapy in a Geriatric Department].
González García, Paloma; Manzano Hernández, M Pilar; Muñoz Tomás, M Teresa; Martín Hernández, Carlos; Forcano García, Mercedes
2013-01-01
The clinical use of mirror visual feedback was initially introduced to alleviate phantom pain by restoring motor function through plastic changes in the human primary motor cortex. It is a promising novel technique that gives a new perspective to neurological rehabilitation. Using this therapy, the mirror neuron system is activated and decrease the activity of those systems that perceive protopathic pain, making somatosensory cortex reorganization possible. This paper reports the results of the mirror therapy in three patients with phantom limb pain after recent lower limb amputation, showing its analgesic effects and its benefits as a comprehensive rehabilitation instrument for lower limb amputee geriatric patients. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.
Artificial grasping system for the paralyzed hand.
Ferrari de Castro, M C; Cliquet, A
2000-03-01
Neuromuscular electrical stimulation has been used in upper limb rehabilitation towards restoring motor hand function. In this work, an 8 channel microcomputer controlled stimulator with monophasic square voltage output was used. Muscle activation sequences were defined to perform palmar and lateral prehension and power grip (index finger extension type). The sequences used allowed subjects to demonstrate their ability to hold and release objects that are encountered in daily living, permitting activities such as drinking, eating, writing, and typing.
Spinal cord injury: overview of experimental approaches used to restore locomotor activity.
Fakhoury, Marc
2015-01-01
Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.
Musaev, A V; Guseĭnova, S G; Musaeva, I R
2008-01-01
The data of the Azerbaijan Neurosurgical Center, including 2618 case-reports of patients operated on for low back discal hernia between 1997 and 2002, have been analyzed. The retrospective analysis of the data reveals that 26,4% of patients need further restorative treatment due to the presence of various neurological disturbances: pain syndromes of different intensity, motor deficits (pareses), sensory disorders and functional disorders of pelvic organs. The retrospective analysis of the data reveals that 26,4% of patients need further restorative treatment due to the presence of various neurological disturbances: pain syndromes of different intensity, motor deficits (pareses), sensory disorders and functional disorders of pelvic organs. Along with these data, the results of our own clinical and neurophysiological study of 110 patients have been summarized as well. Along with these data, the results of our own clinical and neurophysiological study of 110 patients have been summarized as well. A high effectiveness of electrostimulation and naphthalan therapy alone and in combination with massage and medical gymnastics has been revealed. A high effectiveness of electrostimulation and naphthalan therapy alone and in combination with massage and medical gymnastics has been revealed. Electroneuromyographic data revealing the positive dynamics as a result of the treatment of patients with the post-discectomy syndrome are presented. Electroneuromyographic data revealing the positive dynamics as a result of the treatment of patients with the post-discectomy syndrome are presented.
A novel command signal for motor neuroprosthetic control.
Moss, Christa W; Kilgore, Kevin L; Peckham, P Hunter
2011-01-01
Neuroprostheses can restore functions such as hand grasp or standing to individuals with spinal cord injury (SCI) using electrical stimulation to elicit movements in paralyzed muscles. Implanted neuroprostheses currently use electromyographic (EMG) activity from muscles above the lesion that remain under volitional control as a command input. Systems in development use a networked approach and will allow for restoration of multiple functions but will require additional command signals to control the system, especially in individuals with high-level tetraplegia. The objective of this study was to investigate the feasibility of using muscles innervated below the injury level as command sources for a neuroprosthesis. Recent anatomical and physiological studies have demonstrated the presence of intact axons across the lesion, even in those diagnosed with a clinically complete SCI; hence, EMG activity may be present in muscles with no sign of movement. Twelve participants with motor complete SCI were enrolled and EMG was recorded with surface electrodes from 8 muscles below the knee in each leg. Significant activity was evident in 89% of the 192 muscles studied during attempted movements of the foot and lower limb. At least 2 muscles from each participant were identified as potential command signals for a neuroprosthesis based on 2-state, threshold classification. Results suggest that voluntary activity is present and recordable in below lesion muscles even after clinically complete SCI.
Restoration of Function With Acupuncture Following Severe Traumatic Brain Injury: A Case Report.
Wolf, Jacob; Sparks, Linda; Deng, Yong; Langland, Jeffrey
2015-11-01
This case report illustrates the improvement of an acupuncture-treated patient who incurred a severe traumatic brain injury (TBI) from a snowboarding accident. Over 4 years, the patient progressed from initially not being able to walk, having difficulty with speech, and suffering from poor eyesight to where he has now regained significant motor function, speech, and vision and has returned to snowboarding. A core acupuncture protocol plus specific points added to address the patient's ongoing concerns was used. This case adds to the medical literature by demonstrating the potential role of acupuncture in TBI treatment.
Praveen, Kavita; Wen, Ying; Matera, A Gregory
2012-06-28
The spinal muscular atrophy (SMA) protein, survival motor neuron (SMN), functions in the biogenesis of small nuclear ribonucleoproteins (snRNPs). SMN has also been implicated in tissue-specific functions; however, it remains unclear which of these is important for the etiology of SMA. Smn null mutants display larval lethality and show significant locomotion defects as well as reductions in minor-class spliceosomal snRNAs. Despite these reductions, we found no appreciable defects in the splicing of mRNAs containing minor-class introns. Transgenic expression of low levels of either wild-type or an SMA patient-derived form of SMN rescued the larval lethality and locomotor defects; however, snRNA levels were not restored. Thus, the snRNP biogenesis function of SMN is not a major contributor to the phenotype of Smn null mutants. These findings have major implications for SMA etiology because they show that SMN's role in snRNP biogenesis can be uncoupled from the organismal viability and locomotor defects. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
32 CFR 634.14 - Restoration of driving privileges upon acquittal of intoxicated driving.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Restoration of driving privileges upon acquittal of intoxicated driving. 634.14 Section 634.14 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges § 634.14 Restoration...
Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies.
Aliane, Verena; Pérez, Sylvie; Bohren, Yohann; Deniau, Jean-Michel; Kemel, Marie-Louise
2011-01-01
Motor stereotypy is a key symptom of various disorders such as Tourette's syndrome and punding. Administration of nicotine or cholinesterase inhibitors is effective in treating some of these symptoms. However, the role of cholinergic transmission in motor stereotypy remains unknown. During strong cocaine-induced motor stereotypy, we showed earlier that increased dopamine release results in decreased acetylcholine release in the territory of the dorsal striatum related to the prefrontal cortex. Here, we investigated the role of striatal cholinergic transmission in the arrest of motor stereotypy. Analysis of N-methyl-d-aspartic acid-evoked release of dopamine and acetylcholine during declining intensity of motor stereotypy revealed a dissociation between dopamine and acetylcholine release. Whereas dopamine release remained increased, the inhibition of acetylcholine release decreased, mirroring the time course of motor stereotypy. Furthermore, pharmacological treatments restoring striatal acetylcholine release (raclopride, dopamine D2 antagonist; intraperitoneal or local injection in prefrontal territory of the dorsal striatum) rapidly stopped motor stereotypy. In contrast, pharmacological treatments that blocked the post-synaptic effects of acetylcholine (scopolamine, muscarinic antagonist; intraperitoneal or striatal local injection) or induced degeneration of cholinergic interneurons (AF64A, cholinergic toxin) in the prefrontal territory of the dorsal striatum robustly prolonged the duration of strong motor stereotypy. Thus, we propose that restoration of cholinergic transmission in the prefrontal territory of the dorsal striatum plays a key role in the arrest of motor stereotypy.
Dell'Orco, James M.; Wasserman, Aaron H.; Chopra, Ravi; Ingram, Melissa A. C.; Hu, Yuan-Shih; Singh, Vikrant; Wulff, Heike; Opal, Puneet; Orr, Harry T.
2015-01-01
Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated compensatory role for neuronal shrinkage. Purkinje neuron firing in these mice is initially normal, but is followed by abnormal membrane depolarization resulting from a reduction in potassium channels. Subsequently, these electrophysiological effects are counteracted by cell atrophy, which by restoring normal potassium channel membrane density, re-establishes pacemaker firing. Reversing the initial membrane depolarization improved motor function and Purkinje neuron morphology in the SCA1 mice. These results suggest that Purkinje neuron remodeling in ataxia is an active compensatory response that serves to normalize intrinsic membrane excitability. PMID:26269637
Baarbé, Julianne K.; Yielder, Paul; Haavik, Heidi; Holmes, Michael W. R.
2018-01-01
The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI). Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation) would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18–27 years) or sham control (13 participants, 19–24 years). Twelve healthy controls (20–27 years) also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP) vs. healthy controls who disinhibited (98 ± 49% of test MEP, P<0.001), while the spinal manipulation group facilitated (146 ± 95% of test MEP, P<0.001). Greater inhibition in neck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain. PMID:29489878
A Wearable Multi-Site System for NMES-Based Hand Function Restoration.
Crema, Andrea; Malesevic, Nebojsa; Furfaro, Ivan; Raschella, Flavio; Pedrocchi, Alessandra; Micera, Silvestro
2018-02-01
Reaching and grasping impairments significantly affect the quality of life for people who have experienced a stroke or spinal cord injury. The long-term well-being of patients varies greatly according to the restorable residual capabilities. Electrical stimulation could be a promising solution to restore motor functions in these conditions, but its use is not clinically widespread. Here, we introduce the HandNMES, an electrode array (EA) for neuromuscular electrical stimulation (NMES) aimed at grasp training and assistance. The device was designed to deliver electrical stimulation to extrinsic and intrinsic hand muscles. Six independent EAs, positioned on the user forearm and hand, deliver NMES pulses originating from an external stimulator equipped with demultiplexers for interfacing with a large number of electrodes. The garment was designed to be adaptable to user needs and anthropometric characteristics; size, shape, and contact materials can be customized, and stimulation characteristics such as intensity of stimulation and virtual electrode location, and size can be adjusted. We performed extensive tests with nine healthy subjects showing the efficacy of the HandNMES in terms of stimulation performance and personalization. Because encouraging results were achieved, in the coming months, the HandNMES device will be tested in pilot clinical trials.
Rollator use and functional outcome of geriatric rehabilitation.
Vogt, Lutz; Lucki, Katrin; Bach, Matthias; Banzer, Winfried
2010-01-01
In a quasi-experimental pre- and postdesign, we examined the effect of rollator use on functional rehabilitation outcome in geriatric patients.From a sample of 458 geriatric inpatients, we matched 30 subjects who were not using assistive devices in their everyday lives but received a wheeled walker at the time of hospital admission (first-time user group) according to their admission scores on three motor performance tests (Timed Up-and-Go, Five-Times-Sit-to-Stand, and Performance-Oriented Mobility Assessment -Balance) with 30 patients who were actively using rollators as their primary walking aid for at least 3 months (long-term user group) and 30 control subjects without walking-aid assistance. Measurements were repeated after the inpatient rehabilitation regimen.The Kruskal-Wallis test did not reveal significant group differences in rehabilitation progress. Controls and device users, regardless of walking-aid experience, demonstrated nearly comparable mobility, strength, and balance improvements. More than half of each cohort (controls, n = 22; first-time, n = 17; long-term, n = 18) achieved functional gains in all three motor tests.The study showed that rollator assistance does not interfere with rehabilitation outcome and, to some extent, legitimates the prescription of assistive devices to improve confidence and restore or maintain motor ability at the highest possible level.
2011-01-01
Background Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) is a principal regulator of mitochondrial biogenesis and oxidative metabolism. Results In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α). Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord. Conclusion Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy. PMID:21771318
Lakatos, Anita; Goldberg, Natalie R S; Blurton-Jones, Mathew
2017-03-10
We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.
Torque control for electric motors
NASA Technical Reports Server (NTRS)
Bernard, C. A.
1980-01-01
Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.
Frost, Shawn B; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J
2013-08-01
The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for reliably locating cortical motor representations of the hindlimb. Intracortical microstimulation techniques were used to derive detailed maps of the hindlimb motor representations in 6 adult Fischer-344 rats. The organization of the hindlimb movement representation, while variable across individual rats in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and posterolateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 ± 0.50 mm(2). Superimposing individual maps revealed an overlapping area measuring 0.35 mm(2), indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25-3.75 mm posterior to the bregma, with an average center location approximately 2.6 mm posterior to the bregma. Likewise, the hindlimb representation was found 1-3.25 mm lateral to the midline, with an average center location approximately 2 mm lateral to the midline. The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to the bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being increasingly used in the development of brain-computer interfaces for restoration of function after spinal cord injury.
Reliability in the Location of Hindlimb Motor Representations in Fischer-344 Rats
Frost, Shawn B.; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J.
2014-01-01
Object The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for locating cortical motor representations of the hindlimb reliably. Methods Intracortical Microstimulation (ICMS) techniques were used to derive detailed maps of the hindlimb motor representations in six adult Fischer-344 rats. Results The organization of the hindlimb movement representation, while variable across individuals in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and postero-lateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 +/− 0.50 mm2. Superimposing individual maps revealed an overlapping area measuring 0.35 mm2, indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25–3.75 mm posterior to Bregma, with an average center location ~ 2.6 mm posterior to Bregma. Likewise, the hindlimb representation was found 1–3.25 mm lateral to the midline, with an average center location ~ 2 mm lateral to midline. Conclusions The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to Bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being used increasingly in the development of brain-computer interfaces for restoration of function after spinal cord injury. PMID:23725395
Ding, Zhuofeng; Cao, Jiawei; Shen, Yu; Zou, Yu; Yang, Xin; Zhou, Wen; Guo, Qulian; Huang, Changsheng
2018-01-01
Peripheral nerve injuries are generally associated with incomplete restoration of motor function. The slow rate of nerve regeneration after injury may account for this. Although many benefits of resveratrol have been shown in the nervous system, it is not clear whether resveratrol could promote fast nerve regeneration and motor repair after peripheral nerve injury. This study showed that the motor deficits caused by sciatic nerve crush injury were alleviated by daily systematic resveratrol treatment within 10 days. Resveratrol increased the number of axons in the distal part of the injured nerve, indicating enhanced nerve regeneration. In the affected ventral spinal cord, resveratrol enhanced the expression of several vascular endothelial growth factor family proteins (VEGFs) and increased the phosphorylation of p300 through Akt signaling, indicating activation of p300 acetyltransferase. Inactivation of p300 acetyltransferase reversed the resveratrol-induced expression of VEGFs and motor repair in rats that had undergone sciatic nerve crush injury. The above results indicated that daily systematic resveratrol treatment promoted nerve regeneration and led to rapid motor repair. Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus contributed to the acceleration of nerve regeneration and motor repair.
Minassian, Karen; McKay, W Barry; Binder, Heinrich; Hofstoetter, Ursula S
2016-04-01
Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.
Neuronal ensemble control of prosthetic devices by a human with tetraplegia
NASA Astrophysics Data System (ADS)
Hochberg, Leigh R.; Serruya, Mijail D.; Friehs, Gerhard M.; Mukand, Jon A.; Saleh, Maryam; Caplan, Abraham H.; Branner, Almut; Chen, David; Penn, Richard D.; Donoghue, John P.
2006-07-01
Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent. Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a `neural cursor' with which MN opened simulated e-mail and operated devices such as a television, even while conversing. Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity could provide a valuable new neurotechnology to restore independence for humans with paralysis.
Miniaturized neural interfaces and implants
NASA Astrophysics Data System (ADS)
Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin
2012-03-01
Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.
Prediger, Rui D S; Rojas-Mayorquin, Argelia E; Aguiar, Aderbal S; Chevarin, Caroline; Mongeau, Raymond; Hamon, Michel; Lanfumey, Laurence; Del Bel, Elaine; Muramatsu, Hisako; Courty, José; Raisman-Vozari, Rita
2011-08-01
There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson's disease (PD) begin many years before the appearance of the characteristic motor symptoms and that impairments in olfactory, cognitive and motor functions are associated with time-dependent disruption of dopaminergic neurotransmission in different brain areas. Midkine is a 13-kDa retinoic acid-induced heparin-binding growth factor involved in many biological processes in the central nervous system such as cell migration, neurogenesis and tissue repair. The abnormal midkine expression may be associated with neurochemical dysfunction in the dopaminergic system and cognitive impairments in rodents. Here, we employed adult midkine knockout mice (Mdk(-/-)) to further investigate the relevance of midkine in dopaminergic neurotransmission and in olfactory, cognitive and motor functions. Mdk(/-) mice displayed pronounced impairments in their olfactory discrimination ability and short-term social recognition memory with no gross motor alterations. Moreover, the genetic deletion of midkine decreased the expression of the enzyme tyrosine hydroxylase in the substantia nigra reducing partially the levels of dopamine and its metabolites in the olfactory bulb and striatum of mice. These findings indicate that the genetic deletion of midkine causes a partial loss of dopaminergic neurons and depletion of dopamine, resulting in olfactory and memory deficits with no major motor impairments. Therefore, Mdk(-/-) mice may represent a promising animal model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.
Bellinger, David C; Trachtenberg, Felicia; Daniel, David; Zhang, Annie; Tavares, Mary A; McKinlay, Sonja
2007-09-01
The New England Children's Amalgam Trial (NECAT) was a five-year randomized trial of 534 6- to 10-year-old children that compared the neuropsychological outcomes of those whose caries were restored using dental amalgam with the outcomes of those those whose caries were restored using mercury-free resin-based composite. The primary intention-to-treat analyses did not reveal significant differences between the treatment groups on the primary or secondary outcomes of the administered psychological tests: Full-Scale IQ score on the Wechsler Intelligence Scale for Children-Third Edition, General Memory Index of the Wide Range Assessment of Memory and Learning, and Visual-Motor Composite of the Wide Range Assessment of Visual Motor Abilities. To determine whether treatment group assignment, a dichotomous measure of exposure, was sufficiently sensitive to detect associations between mercury exposure and these outcomes, the authors conducted analyses to evaluate the associations between the primary and secondary outcomes and two continuously distributed indexes of potential exposure, surface-years of amalgam and urinary mercury excretion. Neither index of mercury exposure was significantly associated with any of the three outcomes. The authors found no evidence that exposure to mercury from dental amalgam was associated with any adverse neuropsychological effects over the five-year period after placement of amalgam restorations. Analyses of the outcomes of the NECAT study indicate that use of dental amalgam was not associated with an increase in children's risk of experiencing neuropsychological dysfunction.
Laloux, C; Gouel, F; Lachaud, C; Timmerman, K; Do Van, B; Jonneaux, A; Petrault, M; Garcon, G; Rouaix, N; Moreau, C; Bordet, R; Duce, J A; Devedjian, J C; Devos, D
2017-07-01
In Parkinson's disease (PD) depletion of dopamine in the nigro-striatal pathway is a main pathological hallmark that requires continuous and focal restoration. Current predominant treatment with intermittent oral administration of its precursor, Levodopa (l-dopa), remains the gold standard but pharmacological drawbacks trigger motor fluctuations and dyskinesia. Continuous intracerebroventricular (i.c.v.) administration of dopamine previously failed as a therapy because of an inability to resolve the accelerated dopamine oxidation and tachyphylaxia. We aim to overcome prior challenges by demonstrating treatment feasibility and efficacy of continuous i.c.v. of dopamine close to the striatum. Dopamine prepared either anaerobically (A-dopamine) or aerobically (O-dopamine) in the presence or absence of a conservator (sodium metabisulfite, SMBS) was assessed upon acute MPTP and chronic 6-OHDA lesioning and compared to peripheral l-dopa treatment. A-dopamine restored motor function and induced a dose dependent increase of nigro-striatal tyrosine hydroxylase positive neurons in mice after 7days of MPTP insult that was not evident with either O-dopamine or l-dopa. In the 6-OHDA rat model, continuous circadian i.c.v. injection of A-dopamine over 30days also improved motor activity without occurrence of tachyphylaxia. This safety profile was highly favorable as A-dopamine did not induce dyskinesia or behavioral sensitization as observed with peripheral l-dopa treatment. Indicative of a new therapeutic strategy for patients suffering from l-dopa related complications with dyskinesia, continuous i.c.v. of A-dopamine has greater efficacy in mediating motor impairment over a large therapeutic index without inducing dyskinesia and tachyphylaxia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Epilepsia partialis continua responsive to neocortical electrical stimulation.
Valentin, Antonio; Ughratdar, Ismail; Cheserem, Beverly; Morris, Robert; Selway, Richard; Alarcon, Gonzalo
2015-08-01
Epilepsia partialis continua (EPC), defined as a syndrome of continuous focal jerking, is a rare form of focal status epilepticus that usually affects a distal limb, and when prolonged, can produce long-lasting deficits in limb function. Substantial electrophysiologic evidence links the origin of EPC to the motor cortex; thus surgical resection carries the risk of significant handicap. We present two patients with focal, drug-resistant EPC, who were admitted for intracranial video-electroencephalography monitoring to elucidate the location of the epileptogenic focus and identification of eloquent motor cortex with functional mapping. In both cases, the focus resided at or near eloquent motor cortex and therefore precluded resective surgery. Chronic cortical stimulation delivered through subdural strips at the seizure focus (continuous stimulation at 60-130 Hz, 2-3 mA) resulted in >90% reduction in seizures and abolition of the EPC after a follow-up of 22 months in both patients. Following permanent implantation of cortical stimulators, no adverse effects were noted. EPC restarted when intensity was reduced or batteries depleted. Battery replacement restored previous improvement. This two-case report opens up avenues for the treatment of this debilitating condition. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H
2016-03-01
An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor recovery and substantial CST outgrowth with only 27 min of daily stimulation compared with 6h, as in our prior study, making it a potential therapy for humans with spinal cord injury. Copyright © 2015 Elsevier Inc. All rights reserved.
Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H.
2016-01-01
An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 minutes after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 minutes. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS + c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 minutes/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor recovery and substantial CST outgrowth with only 27 minutes of daily stimulation compared with 6 hours, as in our prior study, making it a potential therapy for humans with spinal cord injury. PMID:26708732
77 FR 4318 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
..., Clearwater National Forest Travel Planning Project, Proposes to Manage Motorized and Mechanized Travel.../2012, Contact: Heather Berg (208) 476-4541. EIS No. 20120014, Revised Draft EIS, USFS, MT, East Deer Lodge Valley Landscape Restoration Management Project, To Conduct Landscape Restoration Management...
Grau-Sánchez, Jennifer; Amengual, Julià L; Rojo, Nuria; Veciana de Las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F; Rodríguez-Fornells, Antoni
2013-01-01
Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.
Grau-Sánchez, Jennifer; Amengual, Julià L.; Rojo, Nuria; Veciana de las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F.; Rodríguez-Fornells, Antoni
2013-01-01
Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy. PMID:24027507
Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.
2015-01-01
Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719
Motor rehabilitation in stroke and traumatic brain injury: stimulating and intense.
Breceda, Erika Y; Dromerick, Alexander W
2013-12-01
The purpose of this review is to provide an update on the latest neurorehabilitation literature for motor recovery in stroke and traumatic brain injury to assist clinical decision making and assessing future research directions. The emerging approach to motor restoration is now multimodal. It engages the traditional multidisciplinary rehabilitation team, but incorporates highly structured activity-based therapies, pharmacology, brain stimulation and robotics. Clinical trial data support selective serotonin reuptake inhibitors and amantadine to assist motor recovery poststroke and traumatic brain injury, respectively. Similarly, there is continued support for intensity as a key factor in activity-based therapies, across skilled and nonskilled interventions. Aerobic training appears to have multiple benefits; increasing the capacity to meet the demands of hemiparetic gait improves endurance for activities of daily living while promoting cognition and mood. At this time, the primary benefit of robotic therapy lies in the delivery of highly intense and repetitive motor practice. Both transcranial direct current and magnetic stimulation therapies are in early stages, but have promise in motor and language restoration. Advancements in neurorehabilitation have shifted treatment away from nonspecific activity regimens and amphetamines. As the body of knowledge grows, evidence-based practice using interventions targeted at specific subgroups becomes progressively more feasible.
Rohm, Martin; Schneiders, Matthias; Müller, Constantin; Kreilinger, Alex; Kaiser, Vera; Müller-Putz, Gernot R; Rupp, Rüdiger
2013-10-01
The bilateral loss of the grasp function associated with a lesion of the cervical spinal cord severely limits the affected individuals' ability to live independently and return to gainful employment after sustaining a spinal cord injury (SCI). Any improvement in lost or limited grasp function is highly desirable. With current neuroprostheses, relevant improvements can be achieved in end users with preserved shoulder and elbow, but missing hand function. The aim of this single case study is to show that (1) with the support of hybrid neuroprostheses combining functional electrical stimulation (FES) with orthoses, restoration of hand, finger and elbow function is possible in users with high-level SCI and (2) shared control principles can be effectively used to allow for a brain-computer interface (BCI) control, even if only moderate BCI performance is achieved after extensive training. The individual in this study is a right-handed 41-year-old man who sustained a traumatic SCI in 2009 and has a complete motor and sensory lesion at the level of C4. He is unable to generate functionally relevant movements of the elbow, hand and fingers on either side. He underwent extensive FES training (30-45min, 2-3 times per week for 6 months) and motor imagery (MI) BCI training (415 runs in 43 sessions over 12 months). To meet individual needs, the system was designed in a modular fashion including an intelligent control approach encompassing two input modalities, namely an MI-BCI and shoulder movements. After one year of training, the end user's MI-BCI performance ranged from 50% to 93% (average: 70.5%). The performance of the hybrid system was evaluated with different functional assessments. The user was able to transfer objects of the grasp-and-release-test and he succeeded in eating a pretzel stick, signing a document and eating an ice cream cone, which he was unable to do without the system. This proof-of-concept study has demonstrated that with the support of hybrid FES systems consisting of FES and a semiactive orthosis, restoring hand, finger and elbow function is possible in a tetraplegic end-user. Remarkably, even after one year of training and 415 MI-BCI runs, the end user's average BCI performance remained at about 70%. This supports the view that in high-level tetraplegic subjects, an initially moderate BCI performance cannot be improved by extensive training. However, this aspect has to be validated in future studies with a larger population. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of training pre-movement sensorimotor rhythms on behavioral performance
NASA Astrophysics Data System (ADS)
McFarland, Dennis J.; Sarnacki, William A.; Wolpaw, Jonathan R.
2015-12-01
Objective. Brain-computer interface (BCI) technology might contribute to rehabilitation of motor function. This speculation is based on the premise that modifying the electroencephalographic (EEG) activity will modify behavior, a proposition for which there is limited empirical data. The present study asked whether learned modulation of pre-movement sensorimotor rhythm (SMR) activity can affect motor performance in normal human subjects. Approach. Eight individuals first performed a joystick-based cursor-movement task with variable warning periods. Targets appeared randomly on a video monitor and subjects moved the cursor to the target and pressed a select button within 2 s. SMR features in the pre-movement EEG that correlated with performance speed and accuracy were identified. The subjects then learned to increase or decrease these features to control a two-target BCI task. Following successful BCI training, they were asked to increase or decrease SMR amplitude in order to initiate the joystick task. Main results. After BCI training, pre-movement SMR amplitude was correlated with performance in subjects with initial poor performance: lower amplitude was associated with faster and more accurate movement. The beneficial effect on performance of lower SMR amplitude was greater in subjects with lower initial performance levels. Significance. These results indicate that BCI-based SMR training can affect a standard motor behavior. They provide a rationale for studies that integrate such training into rehabilitation protocols and examine its capacity to enhance restoration of useful motor function.
Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems
Castermans, Thierry; Duvinage, Matthieu; Cheron, Guy; Dutoit, Thierry
2014-01-01
In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS), functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), single-photon emission-computed tomography (SPECT)] and invasive studies. The first brain-computer interface (BCI) applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation. PMID:24961699
Dadwal, Parvati; Mahmud, Neemat; Sinai, Laleh; Azimi, Ashkan; Fatt, Michael; Wondisford, Fredric E; Miller, Freda D; Morshead, Cindi M
2015-08-11
The development of cell replacement strategies to repair the injured brain has gained considerable attention, with a particular interest in mobilizing endogenous neural stem and progenitor cells (known as neural precursor cells [NPCs]) to promote brain repair. Recent work demonstrated metformin, a drug used to manage type II diabetes, promotes neurogenesis. We sought to determine its role in neural repair following brain injury. We find that metformin administration activates endogenous NPCs, expanding the size of the NPC pool and promoting NPC migration and differentiation in the injured neonatal brain in a hypoxia-ischemia (H/I) injury model. Importantly, metformin treatment following H/I restores sensory-motor function. Lineage tracking reveals that metformin treatment following H/I causes an increase in the absolute number of subependyma-derived NPCs relative to untreated H/I controls in areas associated with sensory-motor function. Hence, activation of endogenous NPCs is a promising target for therapeutic intervention in childhood brain injury models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Deep brain stimulation mechanisms: beyond the concept of local functional inhibition.
Deniau, Jean-Michel; Degos, Bertrand; Bosch, Clémentine; Maurice, Nicolas
2010-10-01
Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high-frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high-frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson's disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Future developments in brain-machine interface research
Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L
2011-01-01
Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition. PMID:21779720
Illusory movement perception improves motor control for prosthetic hands.
Marasco, Paul D; Hebert, Jacqueline S; Sensinger, Jon W; Shell, Courtney E; Schofield, Jonathon S; Thumser, Zachary C; Nataraj, Raviraj; Beckler, Dylan T; Dawson, Michael R; Blustein, Dan H; Gill, Satinder; Mensh, Brett D; Granja-Vazquez, Rafael; Newcomb, Madeline D; Carey, Jason P; Orzell, Beth M
2018-03-14
To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Pinard, Emmanuel; Green, Luke; Reutlinger, Michael; Weetall, Marla; Naryshkin, Nikolai A; Baird, John; Chen, Karen S; Paushkin, Sergey V; Metzger, Friedrich; Ratni, Hasane
2017-05-25
Spinal muscular atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene, resulting in low levels of functional SMN protein. We have reported recently the identification of small molecules (coumarins, iso-coumarins and pyrido-pyrimidinones) that modify the alternative splicing of SMN2, a paralogous gene to SMN1, restoring the survival motor neuron (SMN) protein level in mouse models of SMA. Herein, we report our efforts to identify a novel chemotype as one strategy to potentially circumvent safety concerns from earlier derivatives such as in vitro phototoxicity and in vitro mutagenicity associated with compounds 1 and 2 or the in vivo retinal findings observed in a long-term chronic tox study with 3 at high exposures only. Optimized representative compounds modify the alternative splicing of SMN2, increase the production of full length SMN2 mRNA, and therefore levels of full length SMN protein upon oral administration in two mouse models of SMA.
Neuromodulation of the lumbar spinal locomotor circuit.
AuYong, Nicholas; Lu, Daniel C
2014-01-01
The lumbar spinal cord contains the necessary circuitry to independently drive locomotor behaviors. This function is retained following spinal cord injury (SCI) and is amenable to rehabilitation. Although the effectiveness of task-specific training and pharmacologic modulation has been repeatedly demonstrated in animal studies, results from human studies are less striking. Recently, lumbar epidural stimulation (EDS) along with locomotor training was shown to restore weight-bearing function and lower-extremity voluntary control in a chronic, motor-complete human SCI subject. Related animal studies incorporating EDS as part of the therapeutic regiment are also encouraging. EDS is emerging as a promising neuromodulatory tool for SCI. Copyright © 2014 Elsevier Inc. All rights reserved.
Henriques, Alexandre; Lequeu, Thiebault; Rene, Frederique; Bindler, Françoise; Dirrig-Grosch, Sylvie; Oudart, Hugues; Palamiuc, Lavinia; Metz-Boutigue, Marie-Helene; Dupuis, Luc; Marchioni, Eric; Gonzalez De Aguilar, Jose-Luis; Loeffler, Jean-Philippe
2013-01-01
The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS). Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles. PMID:23785402
Spalletti, Cristina; Alia, Claudia; Lai, Stefano; Panarese, Alessandro; Conti, Sara
2017-01-01
Focal cortical stroke often leads to persistent motor deficits, prompting the need for more effective interventions. The efficacy of rehabilitation can be increased by ‘plasticity-stimulating’ treatments that enhance experience-dependent modifications in spared areas. Transcallosal pathways represent a promising therapeutic target, but their role in post-stroke recovery remains controversial. Here, we demonstrate that the contralesional cortex exerts an enhanced interhemispheric inhibition over the perilesional tissue after focal cortical stroke in mouse forelimb motor cortex. Accordingly, we designed a rehabilitation protocol combining intensive, repeatable exercises on a robotic platform with reversible inactivation of the contralesional cortex. This treatment promoted recovery in general motor tests and in manual dexterity with remarkable restoration of pre-lesion movement patterns, evaluated by kinematic analysis. Recovery was accompanied by a reduction of transcallosal inhibition and ‘plasticity brakes’ over the perilesional tissue. Our data support the use of combinatorial clinical therapies exploiting robotic devices and modulation of interhemispheric connectivity. PMID:29280732
Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing “assistance-as-needed” during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space (p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion (p = 0.008), accuracy of movement (p = 0.01), and movement velocity (p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement (p = 0.001), grip force (p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 (p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living. PMID:27895550
Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing "assistance-as-needed" during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space ( p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion ( p = 0.008), accuracy of movement ( p = 0.01), and movement velocity ( p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement ( p = 0.001), grip force ( p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 ( p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living.
Can motor control training lower the risk of injury for professional football players?
Hides, Julie A; Stanton, Warren R
2014-04-01
Among injuries reported by the Australian Football League (AFL), lower limb injuries have shown the highest incidence and prevalence rates. Deficits in the muscles of the lumbopelvic region, such as a smaller size of multifidus (MF) muscle, have been related to the occurrence of lower limb injuries in the preseason in AFL players. Motor control training programs have been effective in restoring the size and control of the MF muscle, but the relationship between motor control training and occurrence of injuries has not been extensively examined. This pre- and postintervention trial was delivered during the playing season as a panel design with three groups. The motor control program involved voluntary contractions of the MF, transversus abdominis, and pelvic floor muscles while receiving feedback from ultrasound imaging and progressed into a functional rehabilitation program. Assessments of muscle size and function were performed using magnetic resonance imaging and included the measurement of cross-sectional areas of MF, psoas, and quadratus lumborum muscles and the change in trunk cross-sectional area due to voluntarily contracting the transversus abdominis muscle. Injury data were obtained from club records. Informed consent was obtained from all study participants. A smaller size of the MF muscle (odds ratio [OR] = 2.38) or quadratus lumborum muscle (OR = 2.17) was predictive of lower limb injury in the playing season. At the time point when one group of players had not received the intervention (n = 14), comparisons were made with the combined groups who had received the intervention (n = 32). The risk of sustaining a severe injury was lower for those players who received the motor control intervention (OR = 0.09). Although there are many factors associated with injuries in AFL, motor control training may provide a useful addition to strategies aimed at reducing lower limb injuries.
Prediger, Rui D S
2010-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting approximately 1% of the population older than 60 years. Classically, PD is considered to be a motor system disease and its diagnosis is based on the presence of a set of cardinal motor signs (rigidity, bradykinesia, rest tremor) that are consequence of a pronounced death of dopaminergic neurons in the substantia nigra pars compacta. Nowadays there is considerable evidence showing that non-dopaminergic degeneration also occurs in other brain areas which seems to be responsible for the deficits in olfactory, emotional and memory functions that precede the classical motor symptoms in PD. The present review attempts to examine results reported in epidemiological, clinical and animal studies to provide a comprehensive picture of the antiparkinsonian potential of caffeine. Convergent epidemiological and pre-clinical data suggest that caffeine may confer neuroprotection against the underlying dopaminergic neuron degeneration, and influence the onset and progression of PD. The available data also suggest that caffeine can improve the motor deficits of PD and that adenosine A2A receptor antagonists such as istradefylline reduces OFF time and dyskinesia associated with standard 'dopamine replacement' treatments. Finally, recent experimental findings have indicated the potential of caffeine in the management of non-motor symptoms of PD, which do not improve with the current dopaminergic drugs. Altogether, the studies reviewed provide strong evidence that caffeine may represent a promising therapeutic tool in PD, thus being the first compound to restore both motor and non-motor early symptoms of PD together with its neuroprotective potential.
NASA Astrophysics Data System (ADS)
Wang, Chun; Brunton, Emma; Haghgooie, Saman; Cassells, Kahli; Lowery, Arthur; Rajan, Ramesh
2013-08-01
Objective. Cortical neural prostheses with implanted electrode arrays have been used to restore compromised brain functions but concerns remain regarding their long-term stability and functional performance. Approach. Here we report changes in electrode impedance and stimulation thresholds for a custom-designed electrode array implanted in rat motor cortex for up to three months. Main Results. The array comprises four 2000 µm long electrodes with a large annular stimulating surface (7860-15700 µm2) displaced from the penetrating insulated tip. Compared to pre-implantation in vitro values there were three phases of impedance change: (1) an immediate large increase of impedance by an average of two-fold on implantation; (2) a period of continued impedance increase, albeit with considerable variability, which reached a peak at approximately four weeks post-implantation and remained high over the next two weeks; (3) finally, a period of 5-6 weeks when impedance stabilized at levels close to those seen immediately post-implantation. Impedance could often be temporarily decreased by applying brief trains of current stimulation, used to evoke motor output. The stimulation threshold to induce observable motor behaviour was generally between 75-100 µA, with charge density varying from 48-128 µC cm-2, consistent with the lower current density generated by electrodes with larger stimulating surface area. No systematic change in thresholds occurred over time, suggesting that device functionality was not compromised by the factors that caused changes in electrode impedance. Significance. The present results provide support for the use of annulus electrodes in future applications in cortical neural prostheses.
Balance of Go1α and Go2α expression regulates motor function via the striatal dopaminergic system.
Baron, J; Bilbao, A; Hörtnagl, H; Birnbaumer, L; Leixner, S; Spanagel, R; Ahnert-Hilger, G; Brunk, I
2018-05-10
The heterotrimeric G-protein Go with its splice variants, Go1α and Go2α, seems to be involved in the regulation of motor function but isoform specific effects are still unclear. We found that Go1α-/- knockouts performed worse on the rota-rod than Go2α-/- and wild type (WT) mice. In Go1+2α-/- mice motor function was partially recovered. Furthermore, Go1+2α-/- mice showed an increased spontaneous motor activity. Compared to wild types or Go2α-/- mice, Go1+2α-/- mice developed increased behavioural sensitization following repetitive cocaine treatment, but failed to develop conditioned place preference. Analysis of dopamine concentration and expression of D1 and D2 receptors unravelled splice-variant specific imbalances in the striatal dopaminergic system: In Go1α-/- mice dopamine concentration and vesicular monoamine uptake were increased compared to wild types. The expression of the D2 receptor was higher in Go1α-/- compared to wild type littermates, but unchanged in Go2α-/- mice. Deletion of both Go1α and Go2α re-established both dopamine and D2 receptor levels comparable to those in the wild type. Cocaine treatment had no effect on the ratio of D1 receptor to D2 receptor in Go1+2α-/- mutants, but decreased this ratio in Go2α-/- mice. Finally, we observed that the deletion of Go1α led to a threefold higher striatal expression of Go2α. Taken together our data suggest that a balance in the expression of Go1α and Go2α sustains normal motor function. Deletion of either splice variant results in divergent behavioural and molecular alterations in the striatal dopaminergic system. Deletion of both splice variants partially restores the behavioural and molecular changes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats
Satriotomo, Irawan; Grebe, Ashley M.
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model (SOD1G93A), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: Gq-protein-coupled 5-HT2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: Gs-protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male SOD1G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1G93A rats (∼30% survival; p < 0.001), BDNF and phosphorylated ERK expression were increased in spared phrenic motor neurons (p < 0.05), consistent with increased Q-pathway contributions to pLTF. Our results increase understanding of respiratory plasticity and its potential to preserve/restore breathing capacity in ALS. SIGNIFICANCE STATEMENT Since neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS), end life via respiratory failure, the ability to harness respiratory motor plasticity to improve breathing capacity could increase the quality and duration of life. In a rat ALS model (SOD1G93A) we previously demonstrated that spinal respiratory motor plasticity elicited by acute intermittent hypoxia is enhanced at disease end-stage, suggesting greater potential to preserve/restore breathing capacity. Here we demonstrate that enhanced intermittent hypoxia-induced phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. PMID:28500219
Cameron, Stella H; Alwakeel, Amr J; Goddard, Liping; Hobbs, Catherine E; Gowing, Emma K; Barnett, Elizabeth R; Kohe, Sarah E; Sizemore, Rachel J; Oorschot, Dorothy E
2015-09-01
Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically significant increase in their absolute number in the MSC group compared to their diluent controls. Investigation of behavior in another cohort of animals showed that delayed administration of a high-dose of bone marrow-derived MSCs, at one week after neonatal rat hypoxia-ischemia, improved motor function on the cylinder test. Thus, delayed therapy with a high- or low-dose of adult MSCs, at one week after injury, is effective in restoring the loss of striatal medium-spiny projection neurons after neonatal rat hypoxia-ischemia and a high-dose of MSCs improved motor function. Copyright © 2015 Elsevier Inc. All rights reserved.
Brain–computer interfaces: communication and restoration of movement in paralysis
Birbaumer, Niels; Cohen, Leonardo G
2007-01-01
The review describes the status of brain–computer or brain–machine interface research. We focus on non-invasive brain–computer interfaces (BCIs) and their clinical utility for direct brain communication in paralysis and motor restoration in stroke. A large gap between the promises of invasive animal and human BCI preparations and the clinical reality characterizes the literature: while intact monkeys learn to execute more or less complex upper limb movements with spike patterns from motor brain regions alone without concomitant peripheral motor activity usually after extensive training, clinical applications in human diseases such as amyotrophic lateral sclerosis and paralysis from stroke or spinal cord lesions show only limited success, with the exception of verbal communication in paralysed and locked-in patients. BCIs based on electroencephalographic potentials or oscillations are ready to undergo large clinical studies and commercial production as an adjunct or a major assisted communication device for paralysed and locked-in patients. However, attempts to train completely locked-in patients with BCI communication after entering the complete locked-in state with no remaining eye movement failed. We propose that a lack of contingencies between goal directed thoughts and intentions may be at the heart of this problem. Experiments with chronically curarized rats support our hypothesis; operant conditioning and voluntary control of autonomic physiological functions turned out to be impossible in this preparation. In addition to assisted communication, BCIs consisting of operant learning of EEG slow cortical potentials and sensorimotor rhythm were demonstrated to be successful in drug resistant focal epilepsy and attention deficit disorder. First studies of non-invasive BCIs using sensorimotor rhythm of the EEG and MEG in restoration of paralysed hand movements in chronic stroke and single cases of high spinal cord lesions show some promise, but need extensive evaluation in well-controlled experiments. Invasive BMIs based on neuronal spike patterns, local field potentials or electrocorticogram may constitute the strategy of choice in severe cases of stroke and spinal cord paralysis. Future directions of BCI research should include the regulation of brain metabolism and blood flow and electrical and magnetic stimulation of the human brain (invasive and non-invasive). A series of studies using BOLD response regulation with functional magnetic resonance imaging (fMRI) and near infrared spectroscopy demonstrated a tight correlation between voluntary changes in brain metabolism and behaviour. PMID:17234696
Ghaly, Ramsis F.; Lissounov, Alexei; Tverdohleb, Tatiana; Kohanchi, David; Candido, Kenneth D.; Knezevic, Nebojsa Nick
2016-01-01
Background: Bone morphogenic protein (BMP) for instrumented lumbar fusion was approved in 2002, and since then has led to an increasing incidence of BMP-related neuropathic pain. These patients are usually resistant to conventional medical therapy and frequently undergo multiple surgical revisions without any pain relief. Case Description: A 58-year-old male was referred to the author's outpatient clinic after four lumbar surgeries did not provide satisfactory pain relief. During his 10 years of suffering from low back pain after an injury, the patient was resistant to conventional and interventional treatment options. He was experiencing severe back pain rated 10/10, as well as right lower extremity pain, numbness, tingling, and motor deficits. Outside spine specialists had performed revision surgeries for BMP-related exuberant bone formation at L5–S1, which included the removal of the ipsilateral hardware and debridement of intradiscal and intraforamina heterotrophic exuberant bony formation. The author implanted the patient with a permanent continuous spinal cord stimulator, after which he achieved complete pain relief (0/10) and restoration of motor, sensory, autonomic, and sphincter functions. Conclusion: This is the first reported case of restorative function with neuromodulation therapy in a BMP-induced postoperative complication, which is considered as a primarily inflammatory process, rather than nerve root compression due to exuberant bony formation. We hypothesize that neuromodulation may enhance blood flow and interfere with inflammatory processes, in addition to functioning by the accepted gate control theory mechanism. The neuromodulation therapy should be strongly considered as a therapeutic approach, even with confirmed BMP-induced postoperative radiculitis, rather than proposing multiple surgical revisions. PMID:27843683
Neuroanatomical correlates of brain-computer interface performance.
Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi
2015-04-15
Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Mimicking muscle activity with electrical stimulation
NASA Astrophysics Data System (ADS)
Johnson, Lise A.; Fuglevand, Andrew J.
2011-02-01
Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.
Harnessing neurogenesis for the possible treatment of Parkinson's disease.
Lamm, Omri; Ganz, Javier; Melamed, Eldad; Offen, Daniel
2014-08-15
The discovery of neurogenesis in the adult brain has created new possibilities for therapeutics in neurodegenerative diseases. Neural precursor cells, which have been found in various parts of the brain, e.g., the subventricular zone (SVZ) and substantia nigra (SN), have promising potential to replace the extensive loss of neurons occurring in neurodegenerative disorders. In Parkinson's disease (PD) the degeneration of nigral dopaminergic neurons and consequently the nigrostriatal pathway, which has been found to innervate proximally to the SVZ, causes motor and cognitive impairments. There is strong evidence that neurogenesis is impaired in PD, which has been related to the nonmotor symptoms of the disease. Recent evidence supports that this impairment in neurogenesis is partially caused by the lack of dopamine in one of the adult neurogenic niches, the SVZ. Thus, restoring the dopaminergic pathway in PD patients may have implications not only for motor function improvement, but for other cognitive and autonomic symptoms. Currently, there are no effective treatments that can stop or reverse the neurodegeneration process in the brain. Here we review the neurogenic process and observed alterations found in PD animal models and postmortem brains of PD patients. Finally, we review several attempts to stimulate the neurogenic process for nigral and/or striatal dopaminergic restoration by transgenic expression, exercise, or cell therapy. © 2014 Wiley Periodicals, Inc.
Scandola, Michele; Aglioti, Salvatore Maria; Bonente, Claudio; Avesani, Renato; Moro, Valentina
2016-04-06
Peripersonal space (PPS) is the space surrounding us within which we interact with objects. PPS may be modulated by actions (e.g. when using tools) or sense of ownership (e.g. over a rubber hand). Indeed, intense and/or prolonged use of a tool may induce a sense of ownership over it. Conversely, inducing ownership over a rubber hand may activate brain regions involved in motor control. However, the extent to which PPS is modulated by action-dependent or ownership-dependent mechanisms remains unclear. Here, we explored the PPS around the feet and the sense of ownership over lower limbs in people with Paraplegia following Complete spinal cord Lesions (PCL) and in healthy subjects. PCL people can move their upper body but have lost all sensory-motor functions in their lower body (e.g. lower limbs). We tested whether PPS alterations reflect the topographical representations of various body parts. We found that the PPS around the feet was impaired in PCL who however had a normal representation of the PPS around the hands. Significantly, passive mobilization of paraplegic limbs restored the PPS around the feet suggesting that activating action representations in PCL brings about short-term changes of PPS that may thus be more plastic than previously believed.
Benammi, Hind; Erazi, Hasna; El Hiba, Omar; Vinay, Laurent
2017-01-01
Lead poisoning is one of the most significant health problem of environmental origin. It is known to cause different damages in the central and peripheral nervous system which could be represented by several neurophysiological and behavioral symptoms. In this study we firstly investigated the effect of lead prenatal exposure in rats to (3g/L), from neonatal to young age, on the motor/sensory performances, excitability of the spinal cord and gaits during development. Then we evaluated neuroprotective effects of curcumin I (Cur I) against lead neurotoxicity, by means of grasping and cliff avoidance tests to reveal the impairment of the sensorimotor functions in neonatal rats exposed prenatally to lead. In addition, extracellular recordings of motor output in spinal cord revealed an hyper-excitability of spinal networks in lead treated rats. The frequency of induced fictive locomotion was also increased in treated rats. At the young age, rats exhibited an impaired locomotor gait. All those abnormalities were attenuated by Cur I treatment at a dose of 16g/kg. Based on our finding, Cur I has shown features of a potent chemical compound able to restore the neuronal and the relative locomotor behaviors disturbances induced by lead intoxication. Therefore, this chemical can be recommended as a new therapeutic trial against lead induced neurotoxicity. PMID:28267745
Lactobacillus rhamnosus strain JB-1 reverses restraint stress-induced gut dysmotility.
West, C; Wu, R Y; Wong, A; Stanisz, A M; Yan, R; Min, K K; Pasyk, M; McVey Neufeld, K-A; Karamat, M I; Foster, J A; Bienenstock, J; Forsythe, P; Kunze, W A
2017-01-01
Environmental stress affects the gut with dysmotility being a common consequence. Although a variety of microbes or molecules may prevent the dysmotility, none reverse the dysmotility. We have used a 1 hour restraint stress mouse model to test for treatment effects of the neuroactive microbe, L. rhamnosus JB-1 ™ . Motility of fluid-filled ex vivo gut segments in a perfusion organ bath was recorded by video and migrating motor complexes measured using spatiotemporal maps of diameter changes. Stress reduced jejunal and increased colonic propagating contractile cluster velocities and frequencies, while increasing contraction amplitudes for both. Luminal application of 10E8 cfu/mL JB-1 restored motor complex variables to unstressed levels within minutes of application. L. salivarius or Na.acetate had no treatment effects, while Na.butyrate partially reversed stress effects on colonic frequency and amplitude. Na.propionate reversed the stress effects for jejunum and colon except on jejunal amplitude. Our findings demonstrate, for the first time, a potential for certain beneficial microbes as treatment of stress-induced intestinal dysmotility and that the mechanism for restoration of function occurs within the intestine via a rapid drug-like action on the enteric nervous system. © 2016 John Wiley & Sons Ltd.
Scandola, Michele; Aglioti, Salvatore Maria; Bonente, Claudio; Avesani, Renato; Moro, Valentina
2016-01-01
Peripersonal space (PPS) is the space surrounding us within which we interact with objects. PPS may be modulated by actions (e.g. when using tools) or sense of ownership (e.g. over a rubber hand). Indeed, intense and/or prolonged use of a tool may induce a sense of ownership over it. Conversely, inducing ownership over a rubber hand may activate brain regions involved in motor control. However, the extent to which PPS is modulated by action-dependent or ownership-dependent mechanisms remains unclear. Here, we explored the PPS around the feet and the sense of ownership over lower limbs in people with Paraplegia following Complete spinal cord Lesions (PCL) and in healthy subjects. PCL people can move their upper body but have lost all sensory-motor functions in their lower body (e.g. lower limbs). We tested whether PPS alterations reflect the topographical representations of various body parts. We found that the PPS around the feet was impaired in PCL who however had a normal representation of the PPS around the hands. Significantly, passive mobilization of paraplegic limbs restored the PPS around the feet suggesting that activating action representations in PCL brings about short-term changes of PPS that may thus be more plastic than previously believed. PMID:27049439
Multi-segmental movements as a function of experience in karate.
Zago, Matteo; Codari, Marina; Iaia, F Marcello; Sforza, Chiarella
2017-08-01
Karate is a martial art that partly depends on subjective scoring of complex movements. Principal component analysis (PCA)-based methods can identify the fundamental synergies (principal movements) of motor system, providing a quantitative global analysis of technique. In this study, we aimed at describing the fundamental multi-joint synergies of a karate performance, under the hypothesis that the latter are skilldependent; estimate karateka's experience level, expressed as years of practice. A motion capture system recorded traditional karate techniques of 10 professional and amateur karateka. At any time point, the 3D-coordinates of body markers produced posture vectors that were normalised, concatenated from all karateka and submitted to a first PCA. Five principal movements described both gross movement synergies and individual differences. A second PCA followed by linear regression estimated the years of practice using principal movements (eigenpostures and weighting curves) and centre of mass kinematics (error: 3.71 years; R2 = 0.91, P ≪ 0.001). Principal movements and eigenpostures varied among different karateka and as functions of experience. This approach provides a framework to develop visual tools for the analysis of motor synergies in karate, allowing to detect the multi-joint motor patterns that should be restored after an injury, or to be specifically trained to increase performance.
Shukitt-Hale, Barbara; Galli, Rachel L; Meterko, Vanessa; Carey, Amanda; Bielinski, Donna F; McGhie, Tony; Joseph, James A
2005-03-01
Dietary supplementation with fruit or vegetable extracts can ameliorate age-related declines in measures of learning, memory, motor performance, and neuronal signal transduction in a rat model. To date, blueberries have proved most effective at improving measures of motor performance, spatial learning and memory, and neuronal functioning in old rats. In an effort to further characterize the bioactive properties of fruits rich in color and correspondingly high in anthocyanins and other polyphenolics, 19-month-old male Fischer rats were fed a well-balanced control diet, or the diet supplemented with 2% extract from either blueberry, cranberry, blackcurrant, or Boysenberry fruit for eight weeks before testing began. The blackcurrant and cranberry diets enhanced neuronal signal transduction as measured by striatal dopamine release, while the blueberry and cranberry diets were effective in ameliorating deficits in motor performance and hippocampal HSP70 neuroprotection; these changes in HSP70 were positively correlated with performance on the inclined screen. It appears that the polyphenols in blueberries and cranberries have the ability to improve muscle tone, strength and balance in aging rats, whereas polyphenols in blueberries, cranberries and blackcurrants have the ability to enhance neuronal functioning and restore the brain's ability to generate a neuroprotective response to stress.
Minocycline in leprosy patients with recent onset clinical nerve function impairment.
Narang, Tarun; Arshdeep; Dogra, Sunil
2017-01-01
Nerve function impairment (NFI) in leprosy may occur and progress despite multidrug therapy alone or in combination with corticosteroids. We observed improvement in neuritis when minocycline was administered in patients with type 2 lepra reaction. This prompted us to investigate the role of minocycline in recent onset NFI, especially in corticosteroid unresponsive leprosy patients. Leprosy patients with recent onset clinical NFI (<6 months), as determined by Monofilament Test (MFT) and Voluntary Muscle Test (VMT), were recruited. Minocycline 100mg/day was given for 3 months to these patients. The primary outcome was the proportion of patients with 'restored,' 'improved,' 'stabilized,' or 'deteriorated' NFI. Secondary outcomes included any improvement in nerve tenderness and pain. In this pilot study, 11 patients were recruited. The progression of NFI was halted in all; with 9 out of 11 patients (81.82%) showing ?restored? or ?improved? sensory or motor nerve functions, on assessment with MFT and VMT. No serious adverse effects due to minocycline were observed. Our pilot study demonstrates the efficacy and safety of minocycline in recent onset NFI in leprosy patients. However, larger and long term comparative trials are needed to validate the efficacy of minocycline in leprosy neuropathy. © 2016 Wiley Periodicals, Inc.
Ding, Yuetong; Qu, Yibo; Feng, Jia; Wang, Meizhi; Han, Qi; So, Kwok-Fai; Wu, Wutian; Zhou, Libing
2014-01-01
Brachial plexus injury (BPI) and experimental spinal root avulsion result in loss of motor function in the affected segments. After root avulsion, significant motoneuron function is restored by re-implantation of the avulsed root. How much this functional recovery depends on corticospinal inputs is not known. Here, we studied that question using Celsr3|Emx1 mice, in which the corticospinal tract (CST) is genetically absent. In adult mice, we tore off right C5–C7 motor and sensory roots and re-implanted the right C6 roots. Behavioral studies showed impaired recovery of elbow flexion in Celsr3|Emx1 mice compared to controls. Five months after surgery, a reduced number of small axons, and higher G-ratio of inner to outer diameter of myelin sheaths were observed in mutant versus control mice. At early stages post-surgery, mutant mice displayed lower expression of GAP-43 in spinal cord and of myelin basic protein (MBP) in peripheral nerves than control animals. After five months, mutant animals had atrophy of the right biceps brachii, with less newly formed neuromuscular junctions (NMJs) and reduced peak-to-peak amplitudes in electromyogram (EMG), than controls. However, quite unexpectedly, a higher motoneuron survival rate was found in mutant than in control mice. Thus, following root avulsion/re-implantation, the absence of the CST is probably an important reason to hamper axonal regeneration and remyelination, as well as target re-innervation and formation of new NMJ, resulting in lower functional recovery, while fostering motoneuron survival. These results indicate that manipulation of corticospinal transmission may help improve functional recovery following BPI. PMID:25003601
Kaplan, Andrew; Bueno, Mardja; Hua, Luyang; Fournier, Alyson E
2018-01-01
The failure of damaged axons to regrow underlies disability in central nervous system injury and disease. Therapies that stimulate axon repair will be critical to restore function. Extensive axon regeneration can be induced by manipulation of oncogenes and tumor suppressors; however, it has been difficult to translate this into functional recovery in models of spinal cord injury. The current challenge is to maximize the functional integration of regenerating axons to recover motor and sensory behaviors. Insights into axonal growth and wiring during nervous system development are helping guide new approaches to boost regeneration and functional connectivity after injury in the mature nervous system. Here we discuss our current understanding of axonal behavior after injury and prospects for the development of drugs to optimize axon regeneration and functional recovery after CNS injury. Developmental Dynamics 247:18-23, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Canopoli, Alessandro; Herbst, Joshua A; Hahnloser, Richard H R
2014-05-14
Many animals exhibit flexible behaviors that they can adjust to increase reward or avoid harm (learning by positive or aversive reinforcement). But what neural mechanisms allow them to restore their original behavior (motor program) after reinforcement is withdrawn? One possibility is that motor restoration relies on brain areas that have a role in memorization but no role in either motor production or in sensory processing relevant for expressing the behavior and its refinement. We investigated the role of a higher auditory brain area in the songbird for modifying and restoring the stereotyped adult song. We exposed zebra finches to aversively reinforcing white noise stimuli contingent on the pitch of one of their stereotyped song syllables. In response, birds significantly changed the pitch of that syllable to avoid the aversive reinforcer. After we withdrew reinforcement, birds recovered their original song within a few days. However, we found that large bilateral lesions in the caudal medial nidopallium (NCM, a high auditory area) impaired recovery of the original pitch even several weeks after withdrawal of the reinforcing stimuli. Because NCM lesions spared both successful noise-avoidance behavior and birds' auditory discrimination ability, our results show that NCM is not needed for directed motor changes or for auditory discriminative processing, but is implied in memorizing or recalling the memory of the recent song target. Copyright © 2014 the authors 0270-6474/14/347018-09$15.00/0.
Restoring balance in focal limb dystonia with botulinum toxin.
Sheean, Geoffrey
2007-12-15
Focal task-specific dystonia of the hand is rare in the general population, where it usually manifests as writer's cramp, but seems relatively common among musicians. The disability may be so severe as to prevent writing altogether or to end a professional musician's career. The cause is usually unknown but it is thought to be primarily a basal ganglia disorder with dysfunction of cortical-striatothalamic-cortical circuits. Abnormalities have been found in cortical movement preparation, intracortical inhibition, sensory and motor maps, and patterns of cortical activation during movement. Much evidence supports disordered processing of sensory information with disturbed sensorimotor integration. Underlying this may be maladaptive neural plasticity mechanisms. Treatment is difficult. Oral medications are generally ineffective and have troublesome side-effects. Intensive rehabilitation techniques based on neural plasticity theory show promise but are rarely available and are time-intensive. Botulinum toxin injections appear to be effective in writer's cramp and musician's dystonia, at least initially; long-term benefit is less common. Despite definite improvement, some patients abandon treatment because the gain is insufficient for meaningful function: this is particularly so for musicians. Much of the benefit from botulinum toxin injection comes from simply reducing muscle overactivity through muscle paralysis, restoring balance to motor control. However, some evidence suggests that botulinum toxin injections can produce transient improvement in some of the various cortical abnormalities described, probably through alteration of sensory input from the periphery, by direct and indirect means. These changes in cortical function might be usefully combined with those brought about by sensorimotor retraining programs, but such studies are awaited.
Scibilia, Antonino; Raffa, Giovanni; Rizzo, Vincenzo; Quartarone, Angelo; Visocchi, Massimiliano; Germanò, Antonino; Tomasello, Francesco
2017-01-01
Although there is recent evidence for the role of intraoperative neurophysiological monitoring (IONM) in spine surgery, there are no uniform opinions on the optimal combination of the different tools. At our institution, multimodal IONM (mIONM) approach in spine surgery involves the evaluation of somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) with electrical transcranial stimulation, including the use of a multipulse technique with multiple myomeric registration of responses from limbs, and a single-pulse technique with D-wave registration through epi- and intradural recording, and free running and evoked electromyography (frEMG and eEMG) with bilateral recording from segmental target muscles. We analyzed the impact of the mIONM on the preservation of neuronal structures and on functional restoration in a prospective series of patients who underwent spine surgery. We observed an improvement of neurological status in 50 % of the patients. The D-wave registration was the most useful intraoperative tool, especially when MEP and SEP responses were absent or poorly recordable. Our preliminary data confirm that mIONM plays a fundamental role in the identification and functional preservation of the spinal cord and nerve roots. It is highly sensitive and specific for detecting and avoiding neurological injury during spine surgery and represents a helpful tool for achieving optimal postoperative functional outcome.
O'Hern, Patrick J; do Carmo G. Gonçalves, Inês; Brecht, Johanna; López Soto, Eduardo Javier; Simon, Jonah; Chapkis, Natalie; Lipscombe, Diane; Kye, Min Jeong; Hart, Anne C
2017-01-01
Spinal Muscular Atrophy (SMA) is caused by diminished Survival of Motor Neuron (SMN) protein, leading to neuromuscular junction (NMJ) dysfunction and spinal motor neuron (MN) loss. Here, we report that reduced SMN function impacts the action of a pertinent microRNA and its mRNA target in MNs. Loss of the C. elegans SMN ortholog, SMN-1, causes NMJ defects. We found that increased levels of the C. elegans Gemin3 ortholog, MEL-46, ameliorates these defects. Increased MEL-46 levels also restored perturbed microRNA (miR-2) function in smn-1(lf) animals. We determined that miR-2 regulates expression of the C. elegans M2 muscarinic receptor (m2R) ortholog, GAR-2. GAR-2 loss ameliorated smn-1(lf) and mel-46(lf) synaptic defects. In an SMA mouse model, m2R levels were increased and pharmacological inhibition of m2R rescued MN process defects. Collectively, these results suggest decreased SMN leads to defective microRNA function via MEL-46 misregulation, followed by increased m2R expression, and neuronal dysfunction in SMA. DOI: http://dx.doi.org/10.7554/eLife.20752.001 PMID:28463115
Petri, Sebastian; Grimmler, Matthias; Over, Sabine; Fischer, Utz; Gruss, Oliver J.
2007-01-01
The survival motor neuron (SMN) complex functions in maturation of uridine-rich small nuclear ribonucleoprotein (RNP) particles. SMN mediates the cytoplasmic assembly of Sm proteins onto uridine-rich small RNAs, and then participates in targeting RNPs to nuclear Cajal bodies (CBs). Recent studies have suggested that phosphorylation might control localization and function of the SMN complex. Here, we show that the nuclear phosphatase PPM1G/PP2Cγ interacts with and dephosphorylates the SMN complex. Small interfering RNA knockdown of PPM1G leads to an altered phosphorylation pattern of SMN and Gemin3, loss of SMN from CBs, and reduced stability of SMN. Accumulation in CBs is restored upon overexpression of catalytically active, but not that of inactive, PPM1G. This demonstrates that PPM1G's phosphatase activity is necessary to maintain SMN subcellular distribution. Concomitant knockdown of unr interacting protein (unrip), a component implicated in cytoplasmic retention of the SMN complex, also rescues the localization defects. Our data suggest that an interplay between PPM1G and unrip determine compartment-specific phosphorylation patterns, localization, and function of the SMN complex. PMID:17984321
Motor cortical activity changes during neuroprosthetic-controlled object interaction.
Downey, John E; Brane, Lucas; Gaunt, Robert A; Tyler-Kabara, Elizabeth C; Boninger, Michael L; Collinger, Jennifer L
2017-12-05
Brain-computer interface (BCI) controlled prosthetic arms are being developed to restore function to people with upper-limb paralysis. This work provides an opportunity to analyze human cortical activity during complex tasks. Previously we observed that BCI control became more difficult during interactions with objects, although we did not quantify the neural origins of this phenomena. Here, we investigated how motor cortical activity changed in the presence of an object independently of the kinematics that were being generated using intracortical recordings from two people with tetraplegia. After identifying a population-wide increase in neural firing rates that corresponded with the hand being near an object, we developed an online scaling feature in the BCI system that operated without knowledge of the task. Online scaling increased the ability of two subjects to control the robotic arm when reaching to grasp and transport objects. This work suggests that neural representations of the environment, in this case the presence of an object, are strongly and consistently represented in motor cortex but can be accounted for to improve BCI performance.
Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William
2015-11-01
Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. © 2015 International Society for Neurochemistry.
Li, Zhan; Guiraud, David; Andreu, David; Benoussaad, Mourad; Fattal, Charles; Hayashibe, Mitsuhiro
2016-06-22
Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.
Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco
2014-01-01
Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems.
Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco
2014-01-01
Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987
Intraspinal Microstimulation Produces Over-ground Walking in Anesthetized Cats
Holinski, B.J.; Mazurek, K.A.; Everaert, D.G.; Toossi, A.; Lucas-Osma, A.M.; Troyk, P.; Etienne-Cummings, R.; Stein, R.B.; Mushahwar, V.K.
2016-01-01
Objective Spinal cord injury causes a drastic loss of motor, sensory and autonomic function. The goal of this project was to investigate the use of intraspinal microstimulation (ISMS) for producing long distances of walking over ground. ISMS is an electrical stimulation method developed for restoring motor function by activating spinal networks below the level of an injury. It produces movements of the legs by stimulating the ventral horn of the lumbar enlargement using fine penetrating electrodes (≤ 50µm diameter). Approach In each of five adult cats (4.2–5.5kg), ISMS was applied through 16 electrodes implanted with tips targeting lamina IX in the ventral horn bilaterally. A desktop system implemented a physiologically-based control strategy that delivered different stimulation patterns through groups of electrodes to evoke walking movements with appropriate limb kinematics and forces corresponding to swing and stance. Each cat walked over an instrumented 2.9m walkway and limb kinematics and forces were recorded. Main Results Both propulsive and supportive forces were required for over-ground walking. Cumulative walking distances ranging from 609m to 835m (longest tested) were achieved in three animals. In these three cats, the mean peak supportive force was 3.5±0.6N corresponding to full-weight-support of the hind legs, while the angular range of the hip, knee, and ankle joints were 23.1±2.0°, 29.1±0.2°, and 60.3±5.2°, respectively. To further demonstrate the viability of ISMS for future clinical use, a prototype implantable module was successfully implemented in a subset of trials and produced comparable walking performance. Significance By activating inherent locomotor networks within the lumbosacral spinal cord, ISMS was capable of producing bilaterally coordinated and functional over-ground walking with current amplitudes <100 µA. These exciting results suggest that ISMS may be an effective intervention for restoring functional walking after spinal cord injury. PMID:27619069
Water metabolism regulating mechanisms in hypokinesia
NASA Technical Reports Server (NTRS)
Krotov, V. P.
1980-01-01
The range of daily fluctuations of the proportion of the amount of consumed water and its content in the body was evaluated by means of a water metabolism regulation factor. This index constitutes a relative measure of fluctuations of the constant of tritium water elimination from the body per 24 hours. It is established that under conditions of long term hypokinesia regulation of water metabolism is disturbed both in humans and in animals. Still more marked changes are observed 2 to 3 weeks after restoration of motor activity. The shifts noted are evidence of general biological regularity of disturbance of regulation systems in long term restriction of motor activity and in the early restoration period.
Delli Pizzi, Stefano; Bellomo, Rosa Grazia; Carmignano, Simona Maria; Ancona, Emilio; Franciotti, Raffaella; Supplizi, Marco; Barassi, Giovanni; Onofrj, Marco; Bonanni, Laura; Saggini, Raoul
2017-01-01
Abstract Rehabilitation interventions represent an alternative strategy to pharmacological treatment in order to slow or reverse some functional aspects of disability in Parkinson's disease (PD). To date, the neurophysiological mechanisms underlying rehabilitation-mediated improvement in PD patients are still poorly understood. Interestingly, growing evidence has highlighted a key role of the glutamate in neurogenesis and brain plasticity. The brain levels of glutamate, and of its precursor glutamine, can be detected in vivo and noninvasively as “Glx” by means of proton magnetic resonance spectroscopy (1H-MRS). In the present pilot study, 7 PD patients with frequent falls and axial dystonia underwent 8-week rehabilitative protocol focused on sensorimotor improvement. Clinical evaluation and Glx quantification were performed before and after rehabilitation. The Glx assessment was focused on the basal ganglia in agreement with their key role in the motor functions. We found that the rehabilitation program improves the static and dynamic balance in PD patients, promoting a better global motor performance. Moreover, we observed that the levels of Glx within the left basal ganglia were higher after rehabilitation as compared with baseline. Thus, we posit that our sensorimotor rehabilitative protocol could stimulate the glutamate metabolism in basal ganglia and, in turn, neuroplasticity processes. We also hypothesize that these mechanisms could prepare the ground to restore the functional interaction among brain areas deputed to motor controls, which are affected in PD. PMID:29390267
Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats.
Lin, Chao-Wei; Chen, Bi; Huang, Ke-Lun; Dai, Yu-Sen; Teng, Hong-Lin
2016-04-01
17β-estradiol (E2) has been shown to have neuroprotective effects in different central nervous system diseases. The mechanisms underlying estrogen neuroprotection in spinal cord injury (SCI) remain unclear. Previous studies have shown that autophagy plays a crucial role in the course of nerve injury. In this study, we showed that E2 treatment improved the restoration of locomotor function and decreased the loss of motor neurons in SCI rats. Real-time PCR and western blot analysis revealed that the protective function of E2 was related to the suppression of LC3II and beclin-1 expression. Immunohistochemical study further confirmed that the immunoreactivity of LC3 in the motor neurons was down-regulated when treated with E2. In vitro studies demonstrated similar results that E2 pretreatment decreased the autophagic activity induced by rapamycin (autophagy sensitizer) and increased viability in a PC12 cell model. These results indicated that the neuroprotective effects of E2 in SCI are partly related to the suppression of excessive autophagy.
Apollo’s gift: new aspects of neurologic music therapy
Altenmüller, Eckart; Schlaug, Gottfried
2015-01-01
Music listening and music making activities are powerful tools to engage multisensory and motor networks, induce changes within these networks, and foster links between distant, but functionally related brain regions with continued and life-long musical practice. These multimodal effects of music together with music’s ability to tap into the emotion and reward system in the brain can be used to facilitate and enhance therapeutic approaches geared toward rehabilitating and restoring neurological dysfunctions and impairments of an acquired or congenital brain disorder. In this article, we review plastic changes in functional networks and structural components of the brain in response to short- and long-term music listening and music making activities. The specific influence of music on the developing brain is emphasized and possible transfer effects on emotional and cognitive processes are discussed. Furthermore, we present data on the potential of using musical tools and activities to support and facilitate neurorehabilitation. We will focus on interventions such as melodic intonation therapy and music-supported motor rehabilitation to showcase the effects of neurologic music therapies and discuss their underlying neural mechanisms. PMID:25725918
Apollo's gift: new aspects of neurologic music therapy.
Altenmüller, Eckart; Schlaug, Gottfried
2015-01-01
Music listening and music making activities are powerful tools to engage multisensory and motor networks, induce changes within these networks, and foster links between distant, but functionally related brain regions with continued and life-long musical practice. These multimodal effects of music together with music's ability to tap into the emotion and reward system in the brain can be used to facilitate and enhance therapeutic approaches geared toward rehabilitating and restoring neurological dysfunctions and impairments of an acquired or congenital brain disorder. In this article, we review plastic changes in functional networks and structural components of the brain in response to short- and long-term music listening and music making activities. The specific influence of music on the developing brain is emphasized and possible transfer effects on emotional and cognitive processes are discussed. Furthermore, we present data on the potential of using musical tools and activities to support and facilitate neurorehabilitation. We will focus on interventions such as melodic intonation therapy and music-supported motor rehabilitation to showcase the effects of neurologic music therapies and discuss their underlying neural mechanisms. © 2015 Elsevier B.V. All rights reserved.
Poewe, Werner; Seppi, Klaus; Tanner, Caroline M; Halliday, Glenda M; Brundin, Patrik; Volkmann, Jens; Schrag, Anette-Eleonore; Lang, Anthony E
2017-03-23
Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.
Goelman, G; Ilinca, R; Zohar, I; Weinstock, M
2014-09-01
Stress during pregnancy in humans is known to be a risk factor for neuropsychiatric disorders in the offspring. Prenatal stress in rats caused depressive-like behavior that was restored to that of controls by maternal treatment with ladostigil (8.5 mg/kg per day), a brain-selective monoamine oxidase (MAO) inhibitor that prevented increased anxiety-like behavior in stressed mothers. Ladostigil inhibited maternal striatal MAO-A and -B by 45-50% at the time the pups were weaned. Using resting state-functional connectivity magnetic resonance imaging on rat male offspring of control mothers, and mothers stressed during gestation with and without ladostigil treatment, we identified neuronal connections that differed between these groups. The percentage of significant connections within a predefined predominantly limbic network in control rats was 23.3 within the right and 22.0 within the left hemisphere. Prenatal stress disturbed hemispheric symmetry, resulting in 30.2 and 21.6%, significant connections in the right and left hemispheres, respectively, but this was fully restored in the maternal ladostigil group to 24.6% in both hemispheres. All connections that were modified in prenatally stressed rats and restored by maternal drug treatment were associated with the dopaminergic system. Specifically, we observed that restoration of the connections of the right nucleus accumbens shell with frontal areas, the cingulate, septum and motor and sensory cortices, and those of the right globus pallidus with the infra-limbic and the dentate gyrus, were most important for prevention of depressive-like behavior. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Gomez-Pilar, Javier; Corralejo, Rebeca; Nicolas-Alonso, Luis F; Álvarez, Daniel; Hornero, Roberto
2016-11-01
Neurofeedback training (NFT) has shown to be promising and useful to rehabilitate cognitive functions. Recently, brain-computer interfaces (BCIs) were used to restore brain plasticity by inducing brain activity with an NFT. In our study, we hypothesized that an NFT with a motor imagery-based BCI (MI-BCI) could enhance cognitive functions related to aging effects. To assess the effectiveness of our MI-BCI application, 63 subjects (older than 60 years) were recruited. This novel application was used by 31 subjects (NFT group). Their Luria neuropsychological test scores were compared with the remaining 32 subjects, who did not perform NFT (control group). Electroencephalogram changes measured by relative power (RP) endorsed cognitive potential findings under study: visuospatial, oral language, memory, intellectual and attention functions. Three frequency bands were selected to assess cognitive changes: 12, 18, and 21 Hz (bandwidth 3 Hz). Significant increases (p < 0.01) in the RP of these frequency bands were found. Moreover, results from cognitive tests showed significant improvements (p < 0.01) in four cognitive functions after performing five NFT sessions: visuospatial, oral language, memory, and intellectual. This established evidence in the association between NFT performed by a MI-BCI and enhanced cognitive performance. Therefore, it could be a novel approach to help elderly people.
Park, Myoung-Ok; Lee, Sang-Heon
2018-06-01
Preservation and enhancement of cognitive function are essential for the restoration of functional abilities and independence following stroke. While cognitive-motor dual-task training (CMDT) has been utilized in rehabilitation settings, many patients with stroke experience impairments in cognitive function that can interfere with dual-task performance. In the present study, we investigated the effects of CMDT combined with auditory motor synchronization training (AMST) utilizing rhythmic cues on cognitive function in patients with stroke. The present randomized controlled trial was conducted at a single rehabilitation hospital. Thirty patients with chronic stroke were randomly divided an experimental group (n = 15) and a control group (n = 15). The experimental group received 3 CMDT + AMST sessions per week for 6 weeks, whereas the control group received CMDT only 3 times per week for 6 weeks. Changes in cognitive function were evaluated using the trail making test (TMT), digit span test (DST), and stroop test (ST). Significant differences in TMT-A and B (P = .001, P = .001), DST-forward (P = .001, P = .001), DST-backward (P = .000, P = .001), ST-word (P = .001, P = .001), and ST-color (P = .002, P = .001) scores were observed in both the control and experimental groups, respectively. Significant differences in TMT-A (P = .001), DST-forward (P = .027), DST-backward (P = .002), and ST-word (P = .025) scores were observed between the 2 groups. Performance speed on the TMT-A was faster in the CMDT + AMST group than in the CMDT group. Moreover, DST-forward and DST-backward scores were higher in the CMDT + AMST group than in the CDMT group. Although ST-color results were similar in the 2 groups, ST-word scores were higher in the CMDT + AMST group than in the CMDT group. This finding indicates that the combined therapy CMDT and AMST can be used to increase attention, memory, and executive function for people with stroke.
A new psychometric questionnaire for reporting of somatosensory percepts
NASA Astrophysics Data System (ADS)
Kim, L. H.; McLeod, R. S.; Kiss, Z. H. T.
2018-02-01
Objective. There have been remarkable advances over the past decade in neural prostheses to restore lost motor function. However, restoration of somatosensory feedback, which is essential for fine motor control and user acceptance, has lagged behind. With an increasing interest in using electrical stimulation to restore somatosensory sensations within the peripheral (PNS) and central nervous systems (CNS), it is critical to characterize the percepts evoked by electrical stimulation in a standardized manner with a validated psychometric questionnaire. This will allow comparison of results from applications at various nervous system levels in multiple settings. Approach. We compiled a summary of published reports of somatosensory percepts that were elicited by electrical stimulation in humans and used these to develop a new psychometric questionnaire. Results. This new questionnaire was able to characterize subjective evoked sensations with good test-retest reliability (Spearman’s correlation coefficients ranging 0.716 ⩽ ρ ⩽ 1.000, p ⩽ 0.005) in 13 subjects receiving stimulation through neural implants in both the CNS and PNS. Furthermore, the new questionnaire captured more descriptors (M = 2.65, SD = 0.91) that would have been missed by being categorized as ‘other sensations’, using a previous questionnaire (M = 1.40, SD = 0.77, t(12) = -10.24, p < 0.001). Lastly, the new questionnaire was able to capture different descriptors within subjects using different patterns of electrical stimulation (Wilk’s Lambda = 0.42, F(3, 10) = 4.58, p = 0.029). Significance. This new somatosensory psychometric questionnaire will aid in establishing consistency and standardization of reporting in future studies of somatosensory neural prostheses.
Miller, Claire Kane; Rutter, Michael J; von Allmen, Daniel; Stoops, Marilyn; Putnam, Philip; Stevens, Luann; Willging, J Paul
2016-07-01
A case report of a 10 year old male illustrates the effect of damage to the tongue base, hypopharynx, cricopharyngeus, and esophagus on the sensory and motor components of the swallowing mechanism. The characteristics of the dysphagia were manifested clinically, radiographically, and endoscopically. A myectomy was required to restore functional swallowing as scar tissue formation in the cricopharyngeus severely interfered with the dynamic components of swallowing. A collaborative approach facilitated communication and effective treatment planning; the multidisciplinary components in the management of this case are discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kim, Sung-Phil; Simeral, John D; Hochberg, Leigh R; Donoghue, John P; Black, Michael J
2010-01-01
Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. PMID:19015583
Henriques, Alexandre; Huebecker, Mylene; Blasco, Hélène; Keime, Céline; Andres, Christian R; Corcia, Philippe; Priestman, David A; Platt, Frances M; Spedding, Michael; Loeffler, Jean-Philippe
2017-07-12
Recent metabolomic reports connect dysregulation of glycosphingolipids, particularly ceramide and glucosylceramide, to neurodegeneration and to motor unit dismantling in amyotrophic lateral sclerosis at late disease stage. We report here altered levels of gangliosides in the cerebrospinal fluid of amyotrophic lateral sclerosis patients in early disease stage. Conduritol B epoxide is an inhibitor of acid beta-glucosidase, and lowers glucosylceramide degradation. Glucosylceramide is the precursor for all of the more complex glycosphingolipids. In SOD1 G86R mice, an animal model of amyotrophic lateral sclerosis, conduritol B epoxide preserved ganglioside distribution at the neuromuscular junction, delayed disease onset, improved motor function and preserved motor neurons as well as neuromuscular junctions from degeneration. Conduritol B epoxide mitigated gene dysregulation in the spinal cord and restored the expression of genes involved in signal transduction and axonal elongation. Inhibition of acid beta-glucosidase promoted faster axonal elongation in an in vitro model of neuromuscular junctions and hastened recovery after peripheral nerve injury in wild type mice. Here, we provide evidence that glycosphingolipids play an important role in muscle innervation, which degenerates in amyotrophic lateral sclerosis from the early disease stage. This is a first proof of concept study showing that modulating the catabolism of glucosylceramide may be a therapeutic target for this devastating disease.
Atomoxetine restores the response inhibition network in Parkinson’s disease
Rae, Charlotte L.; Nombela, Cristina; Rodríguez, Patricia Vázquez; Ye, Zheng; Hughes, Laura E.; Jones, P. Simon; Ham, Timothy; Rittman, Timothy; Coyle-Gilchrist, Ian; Regenthal, Ralf; Sahakian, Barbara J.; Barker, Roger A.; Robbins, Trevor W.
2016-01-01
Abstract Parkinson’s disease impairs the inhibition of responses, and whilst impulsivity is mild for some patients, severe impulse control disorders affect ∼10% of cases. Based on preclinical models we proposed that noradrenergic denervation contributes to the impairment of response inhibition, via changes in the prefrontal cortex and its subcortical connections. Previous work in Parkinson’s disease found that the selective noradrenaline reuptake inhibitor atomoxetine could improve response inhibition, gambling decisions and reflection impulsivity. Here we tested the hypotheses that atomoxetine can restore functional brain networks for response inhibition in Parkinson’s disease, and that both structural and functional connectivity determine the behavioural effect. In a randomized, double-blind placebo-controlled crossover study, 19 patients with mild-to-moderate idiopathic Parkinson’s disease underwent functional magnetic resonance imaging during a stop-signal task, while on their usual dopaminergic therapy. Patients received 40 mg atomoxetine or placebo, orally. This regimen anticipates that noradrenergic therapies for behavioural symptoms would be adjunctive to, not a replacement for, dopaminergic therapy. Twenty matched control participants provided normative data. Arterial spin labelling identified no significant changes in regional perfusion. We assessed functional interactions between key frontal and subcortical brain areas for response inhibition, by comparing 20 dynamic causal models of the response inhibition network, inverted to the functional magnetic resonance imaging data and compared using random effects model selection. We found that the normal interaction between pre-supplementary motor cortex and the inferior frontal gyrus was absent in Parkinson’s disease patients on placebo (despite dopaminergic therapy), but this connection was restored by atomoxetine. The behavioural change in response inhibition (improvement indicated by reduced stop-signal reaction time) following atomoxetine correlated with structural connectivity as measured by the fractional anisotropy in the white matter underlying the inferior frontal gyrus. Using multiple regression models, we examined the factors that influenced the individual differences in the response to atomoxetine: the reduction in stop-signal reaction time correlated with structural connectivity and baseline performance, while disease severity and drug plasma level predicted the change in fronto-striatal effective connectivity following atomoxetine. These results suggest that (i) atomoxetine increases sensitivity of the inferior frontal gyrus to afferent inputs from the pre-supplementary motor cortex; (ii) atomoxetine can enhance downstream modulation of frontal-subcortical connections for response inhibition; and (iii) the behavioural consequences of treatment are dependent on fronto-striatal structural connections. The individual differences in behavioural responses to atomoxetine highlight the need for patient stratification in future clinical trials of noradrenergic therapies for Parkinson’s disease. PMID:27343257
"Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".
Christie, Breanne P; Freeberg, Max; Memberg, William D; Pinault, Gilles J C; Hoyen, Harry A; Tyler, Dustin J; Triolo, Ronald J
2017-07-11
Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation. Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.7 ± 3.1 years). The primary outcome measures utilized in this study were muscle recruitment curves, charge thresholds, and percent overlap of recruited motor unit populations. In the eight recipients still actively involved in research studies, 44/45 of the spiral contacts were still functional. In four participants regularly studied over the course of 1 month to 10.4 years, the charge thresholds of the majority of individual contacts remained stable over time. The four participants with spiral cuffs on their femoral nerves were all able to generate sufficient moment to keep the knees locked during standing after 2-4.5 years. The dorsiflexion moment produced by all four fibular nerve cuffs in the active participants exceeded the value required to prevent foot drop, but no tibial nerve cuffs were able to meet the plantarflexion moment that occurs during push-off at a normal walking speed. The selectivity of two multi-contact spiral cuffs was examined and both were still highly selective for different motor unit populations for up to 6.3 years after implantation. The spiral nerve cuffs examined remain functional in motor and sensory neuroprostheses for 2-11 years after implantation. They exhibit stable charge thresholds, clinically relevant recruitment properties, and functional muscle selectivity. Non-penetrating spiral nerve cuff electrodes appear to be a suitable option for long-term clinical use on human peripheral nerves in implanted neuroprostheses.
Fault tolerant vector control of induction motor drive
NASA Astrophysics Data System (ADS)
Odnokopylov, G.; Bragin, A.
2014-10-01
For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.
Honda, Koji; Hirota, Makoto; Iwai, Toshinori; Fujita, Koichi; Omura, Susumu; Ono, Takashi; Tohnai, Iwai
2018-05-01
Occlusal and esthetic rehabilitation of jaw deformities in patients with partially edentulous maxilla are challenging procedures. This article describes a patient involving a skeletal Class III, 36-year-old male patient with a single bilateral anterior partially edentulous maxilla resulting from injuries sustained in a motor vehicle accident; his anterior teeth had been lost for more than 10 years. His lip protruded from the lateral view due to the proclined upper incisors and mandibular protrusion.Because of the facial deformity and inadequate prosthesis of the maxilla, the prosthesis had dropped out repeatedly. Bone deficiency was prominent in the area of the anterior maxillary region and required augmentation for implant restoration.Consultation among the prosthodontist, orthodontist, and patient led to a decision to perform an orthognathic surgery and bone graft before implant treatment. After orthodontic treatment combined with orthognathic surgery, 3 dental implants were placed with simultaneous iliac bone graft for prosthetic rehabilitation. The treatment restored the maxillary dental arch, which supported the upper lip with appropriate occlusion, both esthetically and functionally. After a 2-year clinical follow-up, the orthoprosthesis of the maxilla remained stable, and the patient was satisfied with the outcome of treatment. The combination of orthodontic, surgical, and dental implant treatment could be an option for skeletal Class III patients with bone-deficient, edentulous jaws.
TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals
Sahashi, Kentaro; Hua, Yimin; Ling, Karen K.Y.; Hung, Gene; Rigo, Frank; Horev, Guy; Katsuno, Masahisa; Sobue, Gen; Ko, Chien-Ping; Bennett, C. Frank; Krainer, Adrian R.
2012-01-01
Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect—e.g., with ASOs—is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn−/− mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with α-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics. PMID:22895255
Wang, Shu-feng; Li, Peng-cheng; Xue, Yun-hao; Zou, Ji-yao; Li, Wen-jun; Li, Yucheng
2016-02-01
To overcome the mismatch in nerve sizes in phrenic nerve transfer to the radial nerve for elbow and finger extension reanimation for patients with total brachial plexus injuries (TBPI), a selective neurotization procedure was designed. To investigate the long-term results of phrenic nerve transfer to the posterior division of the lower trunk with direct coaptation in restoring elbow and finger extension after TBPI. Phrenic nerve was transferred to and directly coapted with the posterior division of the lower trunk in 27 patients with TBPI. Seven patients were <18 years old (adolescent group), and the remaining 20 patients ≥18 years (adult group). Postoperative mean follow-up period was 54 ± 9 months (range, 48-85 months). The motor function attained M3 or greater in 81.5% of patients for elbow extension and in 48% of patients for finger extension. The percentage of patients who regained M3 or greater muscle power of finger extension in the adolescent group and the adult group was 71.4%, and 40%, respectively. Meanwhile, 85.7% in the adolescent group and 80% in the adult group achieved M3 or greater muscle power of elbow extension. There were no significant differences between the 2 groups. The elbow extension and finger extension were synchronous contractions and did not become independent of respiratory effort. This procedure simultaneously and effectively restores the function of elbow and finger extension in patients after TBPI. However, the patients could not do elbow and finger extension separately.
Beleslin, D B; Samardzić, R
1979-04-11
Carbachol, muscarine, eserine and neostigmine injected into the cerebral ventricles of conscious cats evoked emotional behaviour with aggression, autonomic and motor phenomena as well as clonic-tonic convulsions. The main and the most impressive feature of the gross behavioural effects of intraventricular carbachol, muscarine, eserine and neostigmine in conscious cats was the affective type of aggression. However, neostigmine produced aggressive behaviour only in about one-quarter of the experiments. After intraventricular hemicholinium-3 and triethylcholine carbachol, muscarine, eserine and neostigmine elicited autonomic and motor phenomena. In these cats cholinomimetics and anticholinesterases evoked only slight hissing and snarling. Choline administered into the cerebral ventricles of hemicholinium-3 and triethylcholine-treated cats restored the emotional behaviour with aggression, autonomic and motor phenomena as well as clonic-tonic convulsions to intraventricular carbachol, muscarine, eserine and neostigmine. The restored gross behavioural changes to eserine were almost of the same intensity, while those to carbachol and muscarine were of lesser intensity than in control cats. From these experiments it is concluded that cholinergic neurones are involved in the appearance of the affective type of aggression resulting from intraventricular carbachol, muscarine, eserine and neostigmine.
Case study of Bell's palsy applying complementary treatment within an occupational therapy model.
Haltiwanger, Emily; Huber, Theresa; Chang, Joe C; Gonzalez-Stuart, Armando; Gonzales-Stuart, Armando
2009-01-01
For 7% of people with Bell's palsy, facial impairment is permanent. The case study patient was a 48-year-old female who had no recovery from paralysis 12 weeks after onset. Goals were to restore facial sensory-motor functions, functional abilities and reduce depression. Facial paralysis was assessed by clinical observations, the Facial Disability Index and Beck Depression Index. Complementary interventions of aromatherapy, reflexology and electro-acupuncture were used with common physical agent modalities in an intensive home activity and exercise programme. The patient had 100% return of function and resolution of depression after 10 days of intervention. The limitation of this study is that it was a retrospective case study and the investigators reconstructed the case from clinical notes. Further research using a prospective approach is recommended to replicate this study. 2009 John Wiley & Sons, Ltd
Is there room for new non-dopaminergic treatments in Parkinson's disease?
Pilleri, Manuela; Koutsikos, Konstantinos; Antonini, Angelo
2013-02-01
The contribution of non-dopaminergic degeneration to disability in Parkinson's disease (PD) is still debated. It has been argued that no additional advance can be expected in the management of PD by the development of new dopaminergic agents and suggested that future research should mainly focus on therapies targeting the non-dopaminergic systems involved in the pathogenesis of levodopa resistant motor and non-motor symptoms. We believe this is only partially true and the achievement of a stable dopaminergic restoration and modulation of the dopaminergic system is still an important, unmet need of current pharmacological therapies in PD. Currently available oral levodopa and dopamine agonist medications provide insufficient benefit, as the therapeutic window progressively narrows and motor fluctuations eventually develop in most patients. Conversely, the application of infusion and surgical therapies is limited by selective indications and possible irreversible adverse events and device-related problems. Research of new, safer and less invasive strategies, able to modulate the dopaminergic circuits, would certainly improve the management of motor complications, and most importantly such treatments would be also beneficial to axial and non-motor symptoms, which are universally regarded as the major cause of PD functional disability. Indeed, gait and balance problems may improve with dopaminergic treatment in most patients and they become unresponsive only at the very late stages of the disease. Moreover, several non-motor disturbances, including cognition and depression are often linked to oscillation of dopamine concentrations, and are frequently relieved by treatments providing continuous dopaminergic delivery. Finally, drug trials testing non-dopaminergic treatments for motor and non-motor symptoms of PD provided so far disappointing results. Despite the impressive advances of PD therapeutic strategy, we think there is still need for safe, non-invasive and easily manageable dopaminergic treatments able to provide constant dopamine receptor stimulation and ensure a more stable control of dopamine responsive motor and non-motor symptoms at any stage of the disease.
What Is the Contribution of Ia-Afference for Regulating Motor Output Variability during Standing?
König, Niklas; Ferraro, Matteo G; Baur, Heiner; Taylor, William R; Singh, Navrag B
2017-01-01
Motor variability is an inherent feature of all human movements, and describes the system's stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability.
Harada, Y; Ro, S; Ochiai, M; Hayashi, K; Hosomi, E; Fujitsuka, N; Hattori, T; Yakabi, K
2015-08-01
Functional dyspepsia (FD) is one of the most common disorders of gastrointestinal (GI) diseases. However, no curable treatment is available for FD because the detailed mechanism of GI dysfunction in stressed conditions remains unclear. We aimed to clarify the association between endogenous acylated ghrelin signaling and gastric motor dysfunction and explore the possibility of a drug with ghrelin signal-enhancing action for FD treatment. Solid gastric emptying (GE) and plasma acylated ghrelin levels were evaluated in an urocortin1 (UCN1) -induced stress model. To clarify the role of acylated ghrelin on GI dysfunction in the model, exogenous acylated ghrelin, an endogenous ghrelin enhancer, rikkunshito, or an α2 -adrenergic receptor (AR) antagonist was administered. Postprandial motor function was investigated using a strain gauge force transducer in a free-moving condition. Exogenous acylated ghrelin supplementation restored UCN1-induced delayed GE. Alpha2 -AR antagonist and rikkunshito inhibited the reduction in plasma acylated ghrelin and GE in the stress model. The action of rikkunshito on delayed GE was blocked by co-administration of the ghrelin receptor antagonist. UCN1 decreased the amplitude of contraction in the antrum while increasing it in the duodenum. The motility index of the antrum but not the duodenum was significantly reduced by UCN1 treatment, which was improved by acylated ghrelin or rikkunshito. The UCN1-induced gastric motility dysfunction was mediated by abnormal acylated ghrelin dynamics. Supplementation of exogenous acylated ghrelin or enhancement of endogenous acylated ghrelin secretion by rikkunshito may be effective in treating functional GI disorders. © 2015 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.
Kwak, Sang Su; Jeong, Mikyoung; Choi, Ji Hye; Kim, Daesoo; Min, Hyesun; Yoon, Yoosik; Hwang, Onyou; Meadows, Gary G.; Joe, Cheol O.
2013-01-01
This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency. PMID:23577163
Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario
2015-02-01
Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.
VanderWerf, Frans; Reits, Dik; Metselaar, Mick; De Zeeuw, Chris I
2012-03-01
To determine the functional recovery in patients with severe transient peripheral facial motor paralysis (Bell palsy). Prospective controlled trial. Academic medical center. Blink recovery was studied in 2 groups of severely affected Bell palsy patients during a follow-up period of 84 weeks. The patients in one group received prednisolone within the first week after the onset of symptoms. No medication was given to the other group. A control group of healthy subjects was also included. Simultaneous orbicularis oculi muscle activity and eyelid kinematics were recorded by surface electromyographic (EMG) recording and eyelid search coils, respectively. At the beginning of the paralysis, very little integrated orbicularis oculi muscle activity and eyelid movement was measured at the palsied side of the face. Thirteen weeks later, the integrated orbicularis oculi EMG and functional blink recovery gradually improved until 39 weeks. Beyond, only the integrated orbicularis oculi EMG slightly increased. At 84 weeks, the integrated orbicularis oculi EMG was significantly larger in the prednisolone group compared with the control group. The integrated EMG of the nonmedicated group recovered to normal values. Curiously enough, the functional blink recovery at the palsied side remained reduced to 64% compared with the healthy controls in the prednisolone-treated group and to 36% in the nonmedicated group. The authors demonstrate that prednisolone significantly increased the orbicularis oculi muscle activity and significantly improved functional blink recovery in severely affected Bell palsy patients. However, the increase of muscle activity was insufficient to restore functional blinking to normal values.
NASA Astrophysics Data System (ADS)
Bundy, David T.; Wronkiewicz, Mark; Sharma, Mohit; Moran, Daniel W.; Corbetta, Maurizio; Leuthardt, Eric C.
2012-06-01
Brain-computer interface (BCI) systems have emerged as a method to restore function and enhance communication in motor impaired patients. To date, this has been applied primarily to patients who have a compromised motor outflow due to spinal cord dysfunction, but an intact and functioning cerebral cortex. The cortical physiology associated with movement of the contralateral limb has typically been the signal substrate that has been used as a control signal. While this is an ideal control platform in patients with an intact motor cortex, these signals are lost after a hemispheric stroke. Thus, a different control signal is needed that could provide control capability for a patient with a hemiparetic limb. Previous studies have shown that there is a distinct cortical physiology associated with ipsilateral, or same-sided, limb movements. Thus far, it was unknown whether stroke survivors could intentionally and effectively modulate this ipsilateral motor activity from their unaffected hemisphere. Therefore, this study seeks to evaluate whether stroke survivors could effectively utilize ipsilateral motor activity from their unaffected hemisphere to achieve this BCI control. To investigate this possibility, electroencephalographic (EEG) signals were recorded from four chronic hemispheric stroke patients as they performed (or attempted to perform) real and imagined hand tasks using either their affected or unaffected hand. Following performance of the screening task, the ability of patients to utilize a BCI system was investigated during on-line control of a one-dimensional control task. Significant ipsilateral motor signals (associated with movement intentions of the affected hand) in the unaffected hemisphere, which were found to be distinct from rest and contralateral signals, were identified and subsequently used for a simple online BCI control task. We demonstrate here for the first time that EEG signals from the unaffected hemisphere, associated with overt and imagined movements of the affected hand, can enable stroke survivors to control a one-dimensional computer cursor rapidly and accurately. This ipsilateral motor activity enabled users to achieve final target accuracies between 68% and 91% within 15 min. These findings suggest that ipsilateral motor activity from the unaffected hemisphere in stroke survivors could provide a physiological substrate for BCI operation that can be further developed as a long-term assistive device or potentially provide a novel tool for rehabilitation.
A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.
Chang, Sarah R; Nandor, Mark J; Li, Lu; Kobetic, Rudi; Foglyano, Kevin M; Schnellenberger, John R; Audu, Musa L; Pinault, Gilles; Quinn, Roger D; Triolo, Ronald J
2017-05-30
Functional neuromuscular stimulation, lower limb orthosis, powered lower limb exoskeleton, and hybrid neuroprosthesis (HNP) technologies can restore stepping in individuals with paraplegia due to spinal cord injury (SCI). However, a self-contained muscle-driven controllable exoskeleton approach based on an implanted neural stimulator to restore walking has not been previously demonstrated, which could potentially result in system use outside the laboratory and viable for long term use or clinical testing. In this work, we designed and evaluated an untethered muscle-driven controllable exoskeleton to restore stepping in three individuals with paralysis from SCI. The self-contained HNP combined neural stimulation to activate the paralyzed muscles and generate joint torques for limb movements with a controllable lower limb exoskeleton to stabilize and support the user. An onboard controller processed exoskeleton sensor signals, determined appropriate exoskeletal constraints and stimulation commands for a finite state machine (FSM), and transmitted data over Bluetooth to an off-board computer for real-time monitoring and data recording. The FSM coordinated stimulation and exoskeletal constraints to enable functions, selected with a wireless finger switch user interface, for standing up, standing, stepping, or sitting down. In the stepping function, the FSM used a sensor-based gait event detector to determine transitions between gait phases of double stance, early swing, late swing, and weight acceptance. The HNP restored stepping in three individuals with motor complete paralysis due to SCI. The controller appropriately coordinated stimulation and exoskeletal constraints using the sensor-based FSM for subjects with different stimulation systems. The average range of motion at hip and knee joints during walking were 8.5°-20.8° and 14.0°-43.6°, respectively. Walking speeds varied from 0.03 to 0.06 m/s, and cadences from 10 to 20 steps/min. A self-contained muscle-driven exoskeleton was a feasible intervention to restore stepping in individuals with paraplegia due to SCI. The untethered hybrid system was capable of adjusting to different individuals' needs to appropriately coordinate exoskeletal constraints with muscle activation using a sensor-driven FSM for stepping. Further improvements for out-of-the-laboratory use should include implantation of plantar flexor muscles to improve walking speed and power assist as needed at the hips and knees to maintain walking as muscles fatigue.
Speckle interferometry. Data acquisition and control for the SPID instrument.
NASA Astrophysics Data System (ADS)
Altarac, S.; Tallon, M.; Thiebaut, E.; Foy, R.
1998-08-01
SPID (SPeckle Imaging by Deconvolution) is a new speckle camera currently under construction at CRAL-Observatoire de Lyon. Its high spectral resolution and high image restoration capabilities open new astrophysical programs. The instrument SPID is composed of four main optical modules which are fully automated and computer controlled by a software written in Tcl/Tk/Tix and C. This software provides an intelligent assistance to the user by choosing observational parameters as a function of atmospheric parameters, computed in real time, and the desired restored image quality. Data acquisition is made by a photon-counting detector (CP40). A VME-based computer under OS9 controls the detector and stocks the data. The intelligent system runs under Linux on a PC. A slave PC under DOS commands the motors. These 3 computers communicate through an Ethernet network. SPID can be considered as a precursor for VLT's (Very Large Telescope, four 8-meter telescopes currently built in Chile by European Southern Observatory) very high spatial resolution camera.
NASA Astrophysics Data System (ADS)
Osuagwu, Bethel C. A.; Wallace, Leslie; Fraser, Mathew; Vuckovic, Aleksandra
2016-12-01
Objective. To compare neurological and functional outcomes between two groups of hospitalised patients with subacute tetraplegia. Approach. Seven patients received 20 sessions of brain computer interface (BCI) controlled functional electrical stimulation (FES) while five patients received the same number of sessions of passive FES for both hands. The neurological assessment measures were event related desynchronization (ERD) during movement attempt, Somatosensory evoked potential (SSEP) of the ulnar and median nerve; assessment of hand function involved the range of motion (ROM) of wrist and manual muscle test. Main results. Patients in both groups initially had intense ERD during movement attempt that was not restricted to the sensory-motor cortex. Following the treatment, ERD cortical activity restored towards the activity in able-bodied people in BCI-FES group only, remaining wide-spread in FES group. Likewise, SSEP returned in 3 patients in BCI-FES group, having no changes in FES group. The ROM of the wrist improved in both groups. Muscle strength significantly improved for both hands in BCI-FES group. For FES group, a significant improvement was noticed for right hand flexor muscles only. Significance. Combined BCI-FES therapy results in better neurological recovery and better improvement of muscle strength than FES alone. For spinal cord injured patients, BCI-FES should be considered as a therapeutic tool rather than solely a long-term assistive device for the restoration of a lost function.
Autologous mesenchymal stem cell–derived dopaminergic neurons function in parkinsonian macaques
Hayashi, Takuya; Wakao, Shohei; Kitada, Masaaki; Ose, Takayuki; Watabe, Hiroshi; Kuroda, Yasumasa; Mitsunaga, Kanae; Matsuse, Dai; Shigemoto, Taeko; Ito, Akihito; Ikeda, Hironobu; Fukuyama, Hidenao; Onoe, Hirotaka; Tabata, Yasuhiko; Dezawa, Mari
2012-01-01
A cell-based therapy for the replacement of dopaminergic neurons has been a long-term goal in Parkinson’s disease research. Here, we show that autologous engraftment of A9 dopaminergic neuron-like cells induced from mesenchymal stem cells (MSCs) leads to long-term survival of the cells and restoration of motor function in hemiparkinsonian macaques. Differentiated MSCs expressed markers of A9 dopaminergic neurons and released dopamine after depolarization in vitro. The differentiated autologous cells were engrafted in the affected portion of the striatum. Animals that received transplants showed modest and gradual improvements in motor behaviors. Positron emission tomography (PET) using [11C]-CFT, a ligand for the dopamine transporter (DAT), revealed a dramatic increase in DAT expression, with a subsequent exponential decline over a period of 7 months. Kinetic analysis of the PET findings revealed that DAT expression remained above baseline levels for over 7 months. Immunohistochemical evaluations at 9 months consistently demonstrated the existence of cells positive for DAT and other A9 dopaminergic neuron markers in the engrafted striatum. These data suggest that transplantation of differentiated autologous MSCs may represent a safe and effective cell therapy for Parkinson’s disease. PMID:23202734
Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J
2011-11-09
The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
[Hand transplantation and implantation of nerve chips. New developments within hand surgery].
Dahlin, L; Fridén, J; Hagberg, L; Lundborg, G
1999-10-06
Injuries and diseases of the hand naturally have an enormous impact on hand function and on quality of life, both occupational and social. The majority of hand-injury patients are under 30 years of age. Hand surgery, an established specialty in Sweden since 1969, is of great importance in terms of clinical developments, education and research. In the coming decade, scientific and clinical advances are to be expected in several fields such as nerve injuries including brachial plexus lesion, microsurgery, flexor tendon injuries and tendon transfer. Bioimplant research and new advances at the biotechnological interface will yield new options in nerve reconstruction, microchip implants in the nervous system, and the restoration of muscle-tendon function following injury. Artificial limbs with advanced motor and sensory functions will be important future aids in the rehabilitation of amputees. Transplantation of human hands is another promising reconstructive procedure which may open up new perspectives in the coming millennium.
[Hand transplantation and implantation of nerve chips. New developments within hand surgery].
Dahlin, L; Fridén, J; Hagberg, L; Lundborg, G
2000-03-20
Injuries and diseases of the hand naturally have an enormous impact on hand function and on quality of life, both occupational and social. The majority of hand-injury patients are under 30 years of age. Hand surgery, an established specialty in Sweden since 1969, is of great importance in terms of clinical developments, education and research. In the coming decade, scientific and clinical advances are to be expected in several fields such as nerve injuries including brachial plexus lesion, microsurgery, flexor tendon injuries and tendon transfer. Bioimplant research and new advances at the biotechnological interface will yield new options in nerve reconstruction, microchip implants in the nervous system, and the restoration of muscle-tendon function following injury. Artificial limbs with advanced motor and sensory functions will be important future aids in the rehabilitation of amputees. Transplantation of human hands is another promising reconstructive procedure which may open iup new perspectives in the coming millennium.
Keirstead, Hans S; Nistor, Gabriel; Bernal, Giovanna; Totoiu, Minodora; Cloutier, Frank; Sharp, Kelly; Steward, Oswald
2005-05-11
Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.
NASA Astrophysics Data System (ADS)
Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.
2011-12-01
Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.
Zarin, Aref Arzan; Asadzadeh, Jamshid; Hokamp, Karsten; McCartney, Daniel; Yang, Long; Bashaw, Greg J; Labrador, Juan-Pablo
2014-03-19
Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons. Copyright © 2014 Elsevier Inc. All rights reserved.
Zarin, Aref Arzan; Asadzadeh, Jamshid; Hokamp, Karsten; McCartney, Daniel; Yang, Long; Bashaw, Greg J.; Labrador, Juan-Pablo
2014-01-01
SUMMARY Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons. PMID:24560702
Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L
2015-01-01
A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.
A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm.
Dethier, Julie; Nuyujukian, Paul; Eliasmith, Chris; Stewart, Terry; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena
2011-01-01
Motor prostheses aim to restore function to disabled patients. Despite compelling proof of concept systems, barriers to clinical translation remain. One challenge is to develop a low-power, fully-implantable system that dissipates only minimal power so as not to damage tissue. To this end, we implemented a Kalman-filter based decoder via a spiking neural network (SNN) and tested it in brain-machine interface (BMI) experiments with a rhesus monkey. The Kalman filter was trained to predict the arm's velocity and mapped on to the SNN using the Neural Engineering Framework (NEF). A 2,000-neuron embedded Matlab SNN implementation runs in real-time and its closed-loop performance is quite comparable to that of the standard Kalman filter. The success of this closed-loop decoder holds promise for hardware SNN implementations of statistical signal processing algorithms on neuromorphic chips, which may offer power savings necessary to overcome a major obstacle to the successful clinical translation of neural motor prostheses.
Namdari, Surena; Alosh, Hassan; Baldwin, Keith; Mehta, Samir; Keenan, Mary Ann
2011-07-01
Shoulder adduction and internal rotation contractures commonly develop in patients with spastic hemiplegia after upper motor neuron (UMN) injury. Contractures are often painful, macerate skin, and impair axillary hygiene. We hypothesize that shoulder tenotomies are an effective means of pain relief and passive motion restoration in patients without active upper extremity motor function. A consecutive series of 36 adults (10 men, 26 women) with spastic hemiplegia from UMN injury, shoulder adduction, and internal rotation contractures, and no active movement, who underwent shoulder tenotomies of the pectoralis major, latissimus dorsi, teres major, and subscapularis were evaluated. Patients were an average age of 52.2 years. Pain, passive motion, and satisfaction were considered preoperatively and postoperatively. Average follow-up was 14.3 months. Preoperatively, all patients had limited passive motion that interfered with passive functions. Nineteen patients had pain. After surgery, passive extension, flexion, abduction, and external rotation improved from 50%, 27%, 27%, and 1% to 85%, 70%, 66%, and 56%, respectively, compared with the normal contralateral side (P < .001). All patients with preoperative pain had improved pain relief at follow-up, with 18 (95%) being pain-free. Thirty-five (97%) were satisfied with the outcome of surgery, and all patients reported improved axillary hygiene and skin care. Age, gender, etiology, and chronicity of UMN injury were not associated with improvement in motion. We observed improvements in passive ROM and high patient satisfaction with surgery at early follow-up. Patients who had pain with passive motion preoperatively had significant improvements in pain after shoulder tenotomy. Shoulder tenotomy to relieve spastic contractures resulting from UMN injury can be an effective means of pain relief and improved passive range of motion in patients without active motor function. Copyright © 2011 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Computationally efficient models of neuromuscular recruitment and mechanics.
Song, D; Raphael, G; Lan, N; Loeb, G E
2008-06-01
We have improved the stability and computational efficiency of a physiologically realistic, virtual muscle (VM 3.*) model (Cheng et al 2000 J. Neurosci. Methods 101 117-30) by a simpler structure of lumped fiber types and a novel recruitment algorithm. In the new version (VM 4.0), the mathematical equations are reformulated into state-space representation and structured into a CMEX S-function in SIMULINK. A continuous recruitment scheme approximates the discrete recruitment of slow and fast motor units under physiological conditions. This makes it possible to predict force output during smooth recruitment and derecruitment without having to simulate explicitly a large number of independently recruited units. We removed the intermediate state variable, effective length (Leff), which had been introduced to model the delayed length dependency of the activation-frequency relationship, but which had little effect and could introduce instability under physiological conditions of use. Both of these changes greatly reduce the number of state variables with little loss of accuracy compared to the original VM. The performance of VM 4.0 was validated by comparison with VM 3.1.5 for both single-muscle force production and a multi-joint task. The improved VM 4.0 model is more suitable for the analysis of neural control of movements and for design of prosthetic systems to restore lost or impaired motor functions. VM 4.0 is available via the internet and includes options to use the original VM model, which remains useful for detailed simulations of single motor unit behavior.
Computationally efficient models of neuromuscular recruitment and mechanics
NASA Astrophysics Data System (ADS)
Song, D.; Raphael, G.; Lan, N.; Loeb, G. E.
2008-06-01
We have improved the stability and computational efficiency of a physiologically realistic, virtual muscle (VM 3.*) model (Cheng et al 2000 J. Neurosci. Methods 101 117-30) by a simpler structure of lumped fiber types and a novel recruitment algorithm. In the new version (VM 4.0), the mathematical equations are reformulated into state-space representation and structured into a CMEX S-function in SIMULINK. A continuous recruitment scheme approximates the discrete recruitment of slow and fast motor units under physiological conditions. This makes it possible to predict force output during smooth recruitment and derecruitment without having to simulate explicitly a large number of independently recruited units. We removed the intermediate state variable, effective length (Leff), which had been introduced to model the delayed length dependency of the activation-frequency relationship, but which had little effect and could introduce instability under physiological conditions of use. Both of these changes greatly reduce the number of state variables with little loss of accuracy compared to the original VM. The performance of VM 4.0 was validated by comparison with VM 3.1.5 for both single-muscle force production and a multi-joint task. The improved VM 4.0 model is more suitable for the analysis of neural control of movements and for design of prosthetic systems to restore lost or impaired motor functions. VM 4.0 is available via the internet and includes options to use the original VM model, which remains useful for detailed simulations of single motor unit behavior.
Francio, Vinicius T; Boesch, Ron; Tunning, Michael
2015-03-01
Posterior cortical atrophy (PCA) is a rare progressive neurodegenerative syndrome which unusual symptoms include deficits of balance, bodily orientation, chronic pain syndrome and dysfunctional motor patterns. Current research provides minimal guidance on support, education and recommended evidence-based patient care. This case reports the utilization of chiropractic spinal manipulation, dynamic neuromuscular stabilization (DNS), and other adjunctive procedures along with medical treatment of PCA. A 54-year-old male presented to a chiropractic clinic with non-specific back pain associated with visual disturbances, slight memory loss, and inappropriate cognitive motor control. After physical examination, brain MRI and PET scan, the diagnosis of PCA was recognized. Chiropractic spinal manipulation and dynamic neuromuscular stabilization were utilized as adjunctive care to conservative pharmacological treatment of PCA. Outcome measurements showed a 60% improvement in the patient's perception of health with restored functional neuromuscular pattern, improvements in locomotion, posture, pain control, mood, tolerance to activities of daily living (ADLs) and overall satisfactory progress in quality of life. Yet, no changes on memory loss progression, visual space orientation, and speech were observed. PCA is a progressive and debilitating condition. Because of poor awareness of PCA by physicians, patients usually receive incomplete care. Additional efforts must be centered on the musculoskeletal features of PCA, aiming enhancement in quality of life and functional improvements (FI). Adjunctive rehabilitative treatment is considered essential for individuals with cognitive and motor disturbances, and manual medicine procedures may be consider a viable option.
Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?
Calabresi, Paolo; Ghiglieri, Veronica; Mazzocchetti, Petra; Corbelli, Ilenia; Picconi, Barbara
2015-01-01
The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients. PMID:26009763
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Fisher, Elizabeth; Wood, Scott; Serrador, Jorge; Peters, Brian; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob
2009-01-01
Astronauts experience disturbances in sensorimotor function following their return to Earth due to adaptive responses that occur during exposure to the microgravity conditions of space flight. As part of the Crew Exploration Vehicle design requirements, the crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions following a water landing. The act of emergency egress includes and is not limited to rapid motor control tasks (including both fine motor such as object manipulation and gross motor such as opening a hatch) and visual acuity tasks while maintaining spatial orientation and postural stability in time to escape safely. Exposure to even low frequency motions (0.2-2.0 Hz) induced by sea conditions surrounding a vessel can cause significant fine and gross motor control problems affecting critical functions. These motion frequencies coupled with the varying sea state conditions (frequencies ranging from 0.125-0.5 Hz) cause performance deficits by affecting the efficacy of motor and visual acuity dependent skills in tasks critical to emergency egress activities such as visual monitoring of displays, actuating discrete controls, operating auxiliary equipment and communicating with Mission Control and recovery teams. Thus, during exploration class missions the sensorimotor disturbances due to the crewmember's adaptation to microgravity may lead to disruption in the ability to maintain postural stability and perform functional egress tasks during the initial introduction to the Earth's gravitational environment. At present, the functional implication of the interactions between a debilitated crewmember during readaptation to Earth s gravity and the environmental constraints imposed by a water landing scenario is not defined and no operational countermeasure has been implemented to mitigate this risk. Stochastic resonance (SR) is a mechanism whereby noise can assist and hence enhance the response of neural systems to relevant, subthreshold sensory signals. Application of subthreshold stochastic resonance noise coupled to sensory input either through the proprioceptive, visual or vestibular sensory systems, has been shown to improve motor function. Crew members who have adapted to microgravity have acquired new sensorimotor strategies that take time to discard. We hypothesize that detection of time-critical subthreshold sensory signals will play a crucial role in improving strategic responses and thus the rate of skill re-acquisition will be faster, leading to faster recovery of function during their re-adaptation to Earth G. Therefore, we expect the use of stochastic resonance mechanisms will enhance the acquisition of new strategic abilities. This process should ensure rapid restoration of functional egress capabilities during the initial return to Earth G after prolonged space flight. Therefore, the overall goals of this project are to investigate performance of motor and visual tasks during varying sea state conditions and develop a countermeasure based on stochastic resonance that could be implemented to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to Earth s gravity, allowing rapid CEV egress on water in varying sea states following long-duration space flight.
Frolov, Alexander A; Mokienko, Olesya; Lyukmanov, Roman; Biryukova, Elena; Kotov, Sergey; Turbina, Lydia; Nadareyshvily, Georgy; Bushkova, Yulia
2017-01-01
Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group ( n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group ( n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points ( p < 0.01) and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points ( p < 0.01). Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT) and 15.8% (FMMA). These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than chance level. A correlation between the classification accuracy and the improvement in the upper extremity function was found. An improvement of motor function was found for patients with different duration, severity and location of the stroke.
Functional restoration of cirrhotic liver after partial hepatectomy in the rat.
Hashimoto, Masaji; Watanabe, Goro
2005-01-01
Although cirrhosis is the terminal stage of various liver diseases, thanks to recent advances one might eliminate some causes of liver damage. Liver has a potent regeneration capacity. It is important to evaluate the regenerating cirrhotic liver after partial hepatectomy, morphologically and functionally, in the long term. We evaluated the functional capacity of the rat liver rendered cirrhotic by orally administered thioacetamide, and examined the correlation between morphological and functional restoration after 2/3 hepatectomy in comparison with hepatectomized normal rats and sham-operated cirrhotic rats. Morphological restoration was evaluated by remnant liver weight, proliferating cell nuclear antigen labeling index, and fibrosis ratio. Functional restoration was evaluated by the indocyanine green disappearance rate and aminopyrine clearance. Cirrhotic rats were functionally deteriorated in comparison with the normal rats. Morphological restoration in cirrhotic rats was delayed in comparison with normal rats. Functional restoration after 2/3 hepatectomy was advanced in comparison with morphological restoration. In comparison with sham-operated cirrhotic rats, functional restoration of the cirrhotic liver was accelerated by partial hepatectomy. In cirrhotic rats, functional restoration of the liver after 2/3 hepatectomy was advanced in comparison with morphological restoration. Partial hepatectomy seemed to promote functional restoration of the cirrhotic liver.
Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability.
Kraus, Dominic; Naros, Georgios; Bauer, Robert; Leão, Maria Teresa; Ziemann, Ulf; Gharabaghi, Alireza
2016-01-15
Brain-robot interfaces (BRI) are studied as novel interventions to facilitate functional restoration in patients with severe and persistent motor deficits following stroke. They bridge the impaired connection in the sensorimotor loop by providing brain-state dependent proprioceptive feedback with orthotic devices attached to the hand or arm of the patients. The underlying neurophysiology of this BRI neuromodulation is still largely unknown. We investigated changes of corticospinal excitability with transcranial magnetic stimulation in thirteen right-handed healthy subjects who performed 40min of kinesthetic motor imagery receiving proprioceptive feedback with a robotic orthosis attached to the left hand contingent to event-related desynchronization of the right sensorimotor cortex in the β-band (16-22Hz). Neural correlates of this BRI intervention were probed by acquiring the stimulus-response curve (SRC) of both motor evoked potential (MEP) peak-to-peak amplitudes and areas under the curve. In addition, a motor mapping was obtained. The specificity of the effects was studied by comparing two neighboring hand muscles, one BRI-trained and one control muscle. Robust changes of MEP amplitude but not MEP area occurred following the BRI intervention, but only in the BRI-trained muscle. The steep part of the SRC showed an MEP increase, while the plateau of the SRC showed an MEP decrease. MEP mapping revealed a distributed pattern with a decrease of excitability in the hand area of the primary motor cortex, which controlled the BRI, but an increase of excitability in the surrounding somatosensory and premotor cortex. In conclusion, the BRI intervention induced a complex pattern of modulated corticospinal excitability, which may boost subsequent motor learning during physiotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C
2016-11-01
Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative dP/dt, decreased intrinsic heart rate (IHR), lower parasympathetic and higher sympathetic tonus, reduced preganglionic vagal neurones and ChATir in the DMV/NA, and increased RVLM DBHir. Training increased treadmill performance, normalized autonomic tonus and IHR, restored the number of DMV and NA neurones and corrected ChATir without affecting ventricular function. There were strong positive correlations between parasympathetic tonus and ChATir in NA and DMV. RVLM DBHir was also normalized by training, but there was no change in neurone number and no correlation with sympathetic tonus. Training-induced preservation of preganglionic vagal neurones is crucial to normalize parasympathetic activity and restore autonomic balance to the heart even in the persistence of cardiac dysfunction. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Ishida, Akimasa; Isa, Kaoru; Umeda, Tatsuya; Kobayashi, Kazuto; Kobayashi, Kenta; Hida, Hideki
2016-01-01
Intensive rehabilitation is believed to induce use-dependent plasticity in the injured nervous system; however, its causal relationship to functional recovery is unclear. Here, we performed systematic analysis of the effects of forced use of an impaired forelimb on the recovery of rats after lesioning the internal capsule with intracerebral hemorrhage (ICH). Forced limb use (FLU) group rats exhibited better recovery of skilled forelimb functions and their cortical motor area with forelimb representation was restored and enlarged on the ipsilesional side. In addition, abundant axonal sprouting from the reemerged forelimb area was found in the ipsilateral red nucleus after FLU. To test the causal relationship between the plasticity in the cortico-rubral pathway and recovery, loss-of-function experiments were conducted using a double-viral vector technique, which induces selective blockade of the target pathway. Blockade of the cortico-rubral tract resulted in deficits of the recovered forelimb function in FLU group rats. These findings suggest that the cortico-rubral pathway is a substrate for recovery induced by intensive rehabilitation after ICH. SIGNIFICANCE STATEMENT The research aimed at determining the causal linkage between reorganization of the motor pathway induced by intensive rehabilitative training and recovery after stroke. We clarified the expansion of the forelimb representation area of the ipsilesional motor cortex by forced impaired forelimb use (FLU) after lesioning the internal capsule with intracerebral hemorrhaging (ICH) in rats. Anterograde tracing showed robust axonal sprouting from the forelimb area to the red nucleus in response to FLU. Selective blockade of the cortico-rubral pathway by the novel double-viral vector technique clearly revealed that the increased cortico-rubral axonal projections had causal linkage to the recovery of reaching movements induced by FLU. Our data demonstrate that the cortico-rubral pathway is responsible for the effect of intensive limb use. PMID:26758837
Bülbül, Mehmet; Sinen, Osman; Gemici, Burcu; İzgüt-Uysal, V Nimet
2017-01-01
Hypothalamic oxytocin (OXT) and arginine vasopressin (AVP) are known to act oppositely on hypothalamic-pituitary-adrenal (HPA) axis, stress response and gastrointestinal (GI) motility. In rodents, exposure to restraint stress (RS) delays gastric emptying (GE), however, repeated exposure to the same stressor (chronic homotypic stress (CHS)), the delayed GE is restored to basal level, while hypothalamic OXT is upregulated. In contrast, when rats are exposed to chronic heterotypic stress (CHeS), these adaptive changes are not observed. Although the involvement of central OXT in gastric motor adaptation is partly investigated, the role of hypothalamic AVP in CHeS-induced maladaptive paradigm is poorly understood. Using in-vivo brain microdialysis in rats, the changes OXT and AVP release from hypothalamus were monitored under basal non-stressed (NS) conditions and in rats exposed to acute stress (AS), CHS and CHeS. To investigate the involvement of central endogenous OXT or AVP in CHS-induced habituation and CHeS-induced maladaptation, chronic central administration of selective OXT receptor antagonist L-371257 and selective AVP V 1b receptor antagonist SSR-149415 was performed daily. OXT was measured higher in AS and CHS group, but not in CHeS-loaded rats, whereas AVP significantly increased in rats exposed to AS and CHeS. Additionally, the response of the hypothalamic OXT- and AVP-producing cells was amplified following CHS and CHeS, respectively. In rats exposed to AS for 90min solid GE significantly delayed. The delayed-GE was completely restored to the basal level following CHS, however, it remained delayed in CHeS-loaded rats. The CHS-induced restoration was prevented by L-371257, whereas SSR-149415 abolished the CHeS-induced impaired GE. A significant correlation was observed between GE and (i) OXT in CHS-loaded rats (rho=0.61, p<0.05, positively), (ii) AVP in CHeS-loaded rats (rho=0.69, p<0.05, negatively). Under long term stressed conditions, the release of AVP and OXT from hypothalamus may vary depending on the content of the stressors. Central AVP appears to act oppositely to OXT by mediating CHeS-induced gastric motor maladaptation. Long term central AVP antagonism might be a pharmacological approach for the treatment of stress-related gastric motility disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Alsuliman, Abdullah; Appel, Stanley H; Beers, David R; Basar, Rafet; Shaim, Hila; Kaur, Indresh; Zulovich, Jane; Yvon, Eric; Muftuoglu, Muharrem; Imahashi, Nobuhiko; Kondo, Kayo; Liu, Enli; Shpall, Elizabeth J; Rezvani, Katayoun
2016-10-01
Regulatory T cells (Tregs) play a fundamental role in the maintenance of self-tolerance and immune homeostasis. Defects in Treg function and/or frequencies have been reported in multiple disease models. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons. Compelling evidence supports a neuroprotective role for Tregs in this disease. Indeed, rapid progression in ALS patients is associated with decreased FoxP3 expression and Treg frequencies. Thus, we propose that strategies to restore Treg number and function may slow disease progression in ALS. In this study, we developed a robust, Good Manufacturing Practice (GMP)-compliant procedure to enrich and expand Tregs from ALS patients. Tregs isolated from these patients were phenotypically similar to those from healthy individuals but were impaired in their ability to suppress T-cell effector function. In vitro expansion of Tregs for 4 weeks in the presence of GMP-grade anti-CD3/CD28 beads, interleukin (IL)-2 and rapamcyin resulted in a 25- to 200-fold increase in their number and restored their immunoregulatory activity. Collectively, our data facilitate and support the implementation of clinical trials of adoptive therapy with ex vivo expanded and highly suppressive Tregs in patients with ALS. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Park, Eun-Young; Kim, Won-Ho
2013-05-01
Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Salimi, I; Friel, KM; Martin, JH
2008-01-01
Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study we tested the competition hypothesis by determining if activating CST axons, after prior silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5-7. We next electrically stimulated CST axons in the medullary pyramid 2.5 hours daily, between weeks 7-10. In controls (n=3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After prior inactivation (n=3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n=6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury. PMID:18632946
Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits.
Velazquez, Ramon; Ferreira, Eric; Tran, An; Turner, Emily C; Belfiore, Ramona; Branca, Caterina; Oddo, Salvatore
2018-05-10
Misfolded and hyperphosphorylated tau accumulates in several neurodegenerative disorders including Alzheimer's disease, frontotemporal dementia with Parkinsonism, corticobasal degeneration, progressive supranuclear palsy, Down syndrome, and Pick's disease. Tau is a microtubule-binding protein, and its role in microtubule stabilization is well defined. In contrast, while growing evidence suggests that tau is also involved in synaptic physiology, a complete assessment of tau function in the adult brain has been hampered by robust developmental compensation of other microtubule-binding proteins in tau knockout mice. To circumvent these developmental compensations and assess the role of tau in the adult brain, we generated an adeno-associated virus (AAV) expressing a doxycycline-inducible short-hairpin (Sh) RNA targeted to tau, herein referred to as AAV-ShRNATau. We performed bilateral stereotaxic injections in 7-month-old C57Bl6/SJL wild-type mice with either the AAV-ShRNATau or a control AAV. We found that acute knockdown of tau in the adult hippocampus significantly impaired motor coordination and spatial memory. Blocking the expression of the AAV-ShRNATau, thereby allowing tau levels to return to control levels, restored motor coordination and spatial memory. Mechanistically, the reduced tau levels were associated with lower BDNF levels, reduced levels of synaptic proteins associated with learning, and decreased spine density. We provide compelling evidence that tau is necessary for motor and cognitive function in the adult brain, thereby firmly supporting that tau loss-of-function may contribute to the clinical manifestations of many tauopathies. These findings have profound clinical implications given that anti-tau therapies are in clinical trials for Alzheimer's disease. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice.
Montalvo-Ortiz, Janitza L; Fisher, Daniel W; Rodríguez, Guadalupe; Fang, Deyu; Csernansky, John G; Dong, Hongxin
2017-08-01
Older patients can be especially susceptible to antipsychotic-induced side effects, and the pharmacodynamic mechanism underlying this phenomenon remains unclear. We hypothesized that age-related epigenetic alterations lead to decreased expression and functionality of the dopamine D2 receptor (D2R), contributing to this susceptibility. In this study, we treated young (2-3 months old) and aged (22-24 months old) C57BL/6 mice with the D2R antagonist haloperidol (HAL) once a day for 14 days to evaluate HAL-induced motor side effects. In addition, we pretreated separate groups of young and aged mice with histone deacetylase (HDAC) inhibitors valproic acid (VPA) or entinostat (MS-275) and then administered HAL. Our results show that the motor side effects of HAL are exaggerated in aged mice as compared to young mice and that HDAC inhibitors are able to reverse the severity of these deficits. HAL-induced motor deficits in aged mice are associated with an age- and drug-dependent decrease in striatal D2R protein levels and functionality. Further, histone acetylation was reduced while histone tri-methylation was increased at specific lysine residues of H3 and H4 within the Drd2 promoter in the striatum of aged mice. HDAC inhibitors, particularly VPA, restored striatal D2R protein levels and functionality and reversed age- and drug-related histone modifications at the Drd2 promoter. These results suggest that epigenetic changes at the striatal Drd2 promoter drive age-related increases in antipsychotic side effect susceptibility, and HDAC inhibitors may be an effective adjunct treatment strategy to reduce side effects in aged populations.
Motor automaticity in Parkinson’s disease
Wu, Tao; Hallett, Mark; Chan, Piu
2017-01-01
Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020
Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B.; Corti, Stefania
2016-01-01
Spinal Muscular Atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the Survival Motor Neuron 1 (SMN1) gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. These contribution of non-motor neuronal cells to disease pathogenesis has important therapeutic implications: in fact, even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It will be crucial to take this evidence into account before clinical translation of the novel therapeutic approaches that are currently under development. PMID:26681261
Shtemberg, A S; Lebedeva-Georgievskaia, K V; Matveeva, M I; Kudrin, V S; Narkevich, V B; Klodt, P M; Bazian, A S
2014-01-01
Experimental treatment (long-term fractionated γ-irradiation, antiorthostatic hypodynamia, and the combination of these factors) simulating the effect of space flight in ground-based experiments rapidly restored the motor and orienting-investigative activity of animals (rats) in "open-field" tests. The study of the dynamics of discriminant learning of rats of experimental groups did not show significant differences from the control animals. It was found that the minor effect of these factors on the cognitive performance of animals correlated with slight changes in the concentration ofmonoamines in the brain structures responsible for the cognitive, emotional, and motivational functions.
Park, Myoung-Ok
2017-02-01
[Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.
Moien-Afshari, Farzad; Ghosh, Sanjoy; Elmi, Shahrzad; Khazaei, Majid; Rahman, Mohammad M; Sallam, Nada; Laher, Ismail
2008-10-01
Regulation of coronary function in diabetic hearts is an important component in preventing ischemic cardiac events but remains poorly studied. Exercise is recommended in the management of diabetes, but its effects on diabetic coronary function are relatively unknown. We investigated coronary artery myogenic tone and endothelial function, essential elements in maintaining vascular fluid dynamics in the myocardium. We hypothesized that exercise reduces pressure-induced myogenic constriction of coronary arteries while improving endothelial function in db/db mice, a model of type 2 diabetes. We used pressurized mouse coronary arteries isolated from hearts of control and db/db mice that were sedentary or exercised for 1 h/day on a motorized exercise-wheel system (set at 5.2 m/day, 5 days/wk). Exercise caused a approximately 10% weight loss in db/db mice and decreased whole body oxidative stress, as measured by plasma 8-isoprostane levels, but failed to improve hyperglycemia or plasma insulin levels. Exercise did not alter myogenic regulation of arterial diameter stimulated by increased transmural pressure, nor did it alter smooth muscle responses to U-46619 (a thromboxane agonist) or sodium nitroprusside (an endothelium-independent dilator). Moderate levels of exercise restored ACh-simulated, endothelium-dependent coronary artery vasodilation in db/db mice and increased expression of Mn SOD and decreased nitrotyrosine levels in hearts of db/db mice. We conclude that the vascular benefits of moderate levels of exercise were independent of changes in myogenic tone or hyperglycemic status and primarily involved increased nitric oxide bioavailability in the coronary microcirculation.
NASA Astrophysics Data System (ADS)
Zhang, Hang; Yao, Li; Long, Zhiying
2011-03-01
Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.
Active tactile exploration using a brain-machine-brain interface.
O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L
2011-10-05
Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.
Micera, Silvestro; Rossini, Paolo M; Rigosa, Jacopo; Citi, Luca; Carpaneto, Jacopo; Raspopovic, Stanisa; Tombini, Mario; Cipriani, Christian; Assenza, Giovanni; Carrozza, Maria C; Hoffmann, Klaus-Peter; Yoshida, Ken; Navarro, Xavier; Dario, Paolo
2011-09-05
The restoration of complex hand functions by creating a novel bidirectional link between the nervous system and a dexterous hand prosthesis is currently pursued by several research groups. This connection must be fast, intuitive, with a high success rate and quite natural to allow an effective bidirectional flow of information between the user's nervous system and the smart artificial device. This goal can be achieved with several approaches and among them, the use of implantable interfaces connected with the peripheral nervous system, namely intrafascicular electrodes, is considered particularly interesting. Thin-film longitudinal intra-fascicular electrodes were implanted in the median and ulnar nerves of an amputee's stump during a four-week trial. The possibility of decoding motor commands suitable to control a dexterous hand prosthesis was investigated for the first time in this research field by implementing a spike sorting and classification algorithm. The results showed that motor information (e.g., grip types and single finger movements) could be extracted with classification accuracy around 85% (for three classes plus rest) and that the user could improve his ability to govern motor commands over time as shown by the improved discrimination ability of our classification algorithm. These results open up new and promising possibilities for the development of a neuro-controlled hand prosthesis.
No Further Action Decision Under Cercla Study Area 61Z Building 202 Historic Motor Pool
2000-01-01
appropriate response actions are implemented at Fort Devens under CERCLA. AOC 61Z is the former site of a motor pool at the corner of Carey and St. Mihiel...provided recommendations for response actions with the objective of identifying priorities for environmental restoration at Fort Devens . Areas...a final permit that included a list of Solid Waste Management Units requiring corrective action . In December 1989, Fort Devens was placed on the
Kim, C-Yoon; Hwang, In-Kyu; Kim, Hana; Jang, Se-Woong; Kim, Hong Seog; Lee, Won-Young
2016-01-01
A case report on observing the recovery of sensory-motor function after cervical spinal cord transection. Laminectomy and transection of cervical spinal cord (C5) was performed on a male beagle weighing 3.5 kg. After applying polyethylene glycol (PEG) on the severed part, reconstruction of cervical spinal cord was confirmed by the restoration of sensorimotor function. Tetraplegia was observed immediately after operation, however, the dog showed stable respiration and survival without any complication. The dog showed fast recovery after 1 week, and recovered approximately 90% of normal sensorimotor function 3 weeks after the operation, although urinary disorder was still present. All recovery stages were recorded by video camera twice a week for behavioral analysis. While current belief holds that functional recovery is impossible after a section greater than 50% at C5-6 in the canine model, this case study shows the possibility of cervical spinal cord reconstruction after near-total transection. Furthermore, this case study also confirms that PEG can truly expedite the recovery of sensorimotor function after cervical spinal cord sections in dogs.
NASA Astrophysics Data System (ADS)
Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.
2008-12-01
Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.
Taylor, Tonya N; Caudle, W Michael; Shepherd, Kennie R; Noorian, AliReza; Jackson, Chad R; Iuvone, P Michael; Weinshenker, David; Greene, James G; Miller, Gary W
2009-06-24
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, culminating in severe motor symptoms, including resting tremor, rigidity, bradykinesia, and postural instability. In addition to motor deficits, there are a variety of nonmotor symptoms associated with PD. These symptoms generally precede the onset of motor symptoms, sometimes by years, and include anosmia, problems with gastrointestinal motility, sleep disturbances, sympathetic denervation, anxiety, and depression. Previously, we have shown that mice with a 95% genetic reduction in vesicular monoamine transporter expression (VMAT2-deficient, VMAT2 LO) display progressive loss of striatal dopamine, L-DOPA-responsive motor deficits, alpha-synuclein accumulation, and nigral dopaminergic cell loss. We hypothesized that since these animals exhibit deficits in other monoamine systems (norepinephrine and serotonin), which are known to regulate some of these behaviors, the VMAT2-deficient mice may display some of the nonmotor symptoms associated with PD. Here we report that the VMAT2-deficient mice demonstrate progressive deficits in olfactory discrimination, delayed gastric emptying, altered sleep latency, anxiety-like behavior, and age-dependent depressive behavior. These results suggest that the VMAT2-deficient mice may be a useful model of the nonmotor symptoms of PD. Furthermore, monoamine dysfunction may contribute to many of the nonmotor symptoms of PD, and interventions aimed at restoring monoamine function may be beneficial in treating the disease.
Effects of Transcranial Direct Current Stimulation on Neural Networks in Young and Older Adults
Martin, Andrew K; Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Flöel, Agnes
2017-11-01
Transcranial direct current stimulation (tDCS) may be a viable tool to improve motor and cognitive function in advanced age. However, although a number of studies have demonstrated improved cognitive performance in older adults, other studies have failed to show restorative effects. The neural effects of beneficial stimulation response in both age groups is lacking. In the current study, tDCS was administered during simultaneous fMRI in 42 healthy young and older participants. Semantic word generation and motor speech baseline tasks were used to investigate behavioral and neural effects of uni- and bihemispheric motor cortex tDCS in a three-way, crossover, sham tDCS controlled design. Independent components analysis assessed differences in task-related activity between the two age groups and tDCS effects at the network level. We also explored whether laterality of language network organization was effected by tDCS. Behaviorally, both active tDCS conditions significantly improved semantic word retrieval performance in young and older adults and were comparable between groups and stimulation conditions. Network-level tDCS effects were identified in the ventral and dorsal anterior cingulate networks in the combined sample during semantic fluency and motor speech tasks. In addition, a shift toward enhanced left laterality was identified in the older adults for both active stimulation conditions. Thus, tDCS results in common network-level modulations and behavioral improvements for both age groups, with an additional effect of increasing left laterality in older adults.
Rhythm perturbations in acoustically paced treadmill walking after stroke.
Roerdink, Melvyn; Lamoth, Claudine J C; van Kordelaar, Joost; Elich, Peter; Konijnenbelt, Manin; Kwakkel, Gert; Beek, Peter J
2009-09-01
In rehabilitation, acoustic rhythms are often used to improve gait after stroke. Acoustic cueing may enhance gait coordination by creating a stable coupling between heel strikes and metronome beats and provide a means to train the adaptability of gait coordination to environmental changes, as required in everyday life ambulation. To examine the stability and adaptability of auditory-motor synchronization in acoustically paced treadmill walking in stroke patients. Eleven stroke patients and 10 healthy controls walked on a treadmill at preferred speed and cadence under no metronome, single-metronome (pacing only paretic or nonparetic steps), and double-metronome (pacing both footfalls) conditions. The stability of auditory-motor synchronization was quantified by the variability of the phase relation between footfalls and beats. In a separate session, the acoustic rhythms were perturbed and adaptations to restore auditory-motor synchronization were quantified. For both groups, auditory-motor synchronization was more stable for double-metronome than single-metronome conditions, with stroke patients exhibiting an overall weaker coupling of footfalls to metronome beats than controls. The recovery characteristics following rhythm perturbations corroborated the stability findings and further revealed that stroke patients had difficulty in accelerating their steps and instead preferred a slower-step response to restore synchronization. In gait rehabilitation practice, the use of acoustic rhythms may be more effective when both footfalls are paced. In addition, rhythm perturbations during acoustically paced treadmill walking may not only be employed to evaluate the stability of auditory-motor synchronization but also have promising implications for evaluation and training of gait adaptations in neurorehabilitation practice.
Goubier, Jean-Noel; Teboul, Frédéric
2011-05-01
Restoring elbow flexion remains the first step in the management of total palsy of the brachial plexus. Non avulsed upper roots may be grafted on the musculocutaneous nerve. When this nerve is entirely grafted, some motor fibres regenerate within the sensory fibres quota. Aiming potential utilization of these lost motor fibres, we attempted suturing the sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The objective of our study was to assess the anatomic feasibility of such direct suturing of the terminal sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The study was carried out with 10 upper limbs from fresh cadavers. The sensory branch of the musculocutaneous muscle was dissected right to its division. The motor branch of the radial nerve was identified and dissected as proximally as possible into the radial nerve. Then, the distance separating the two nerves was measured so as to assess whether direct neurorraphy of the two branches was feasible. The excessive distance between the two branches averaged 6 mm (1-13 mm). Thus, direct neurorraphy of the sensory branch of the musculocutaneous nerve and the deep branch of the radial nerve was possible. When the whole musculocutaneous nerve is grafted, some of its motor fibres are lost amongst the sensory fibres (cutaneous lateral antebrachial nerve). By suturing this sensory branch onto the deep branch of the radial nerve, "lost" fibres may be retrieved, resulting in restoration of digital extension. Copyright © 2011 Wiley-Liss, Inc.
Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease
Kim, Sang Jin; Udupa, Kaviraja; Ni, Zhen; Moro, Elena; Gunraj, Carolyn; Mazzella, Filomena; Lozano, Andres M.; Hodaie, Mojgan; Lang, Anthony E.
2015-01-01
Objective: We hypothesized that subthalamic nucleus (STN) deep brain stimulation (DBS) will improve long-term potentiation (LTP)-like plasticity in motor cortex in Parkinson disease (PD). Methods: We studied 8 patients with PD treated with STN-DBS and 9 age-matched healthy controls. Patients with PD were studied in 4 sessions in medication (Med) OFF/stimulator (Stim) OFF, Med-OFF/Stim-ON, Med-ON/Stim-OFF, and Med-ON/Stim-ON states in random order. Motor evoked potential amplitude and cortical silent period duration were measured at baseline before paired associated stimulation (PAS) and at 3 different time intervals (T0, T30, T60) up to 60 minutes after PAS in the abductor pollicis brevis and abductor digiti minimi muscles. Results: Motor evoked potential size significantly increased after PAS in controls (+67.7% of baseline at T30) and in patients in the Med-ON/Stim-ON condition (+55.8% of baseline at T30), but not in patients in the Med-OFF/Stim-OFF (−0.4% of baseline at T30), Med-OFF/Stim-ON (+10.3% of baseline at T30), and Med-ON/Stim-OFF conditions (+17.3% of baseline at T30). Cortical silent period duration increased after PAS in controls but not in patients in all test conditions. Conclusions: Our findings suggest that STN-DBS together with dopaminergic medications restore LTP-like plasticity in motor cortex in PD. Restoration of cortical plasticity may be one of the mechanisms of how STN-DBS produces clinical benefit. PMID:26156511
Nath, Rahul K; Boutros, Sean G; Somasundaram, Chandra
2017-01-01
Background: Functional free gracilis muscle transfer is an operative procedure for elbow reconstruction in patients with complete brachial plexus nerve and avulsion injuries and in delayed or prolonged nerve denervation, as well as in patients with inadequate upper extremity function after primary nerve reconstruction. Methods: We retrospectively reviewed our patient records and identified 24 patients with complete brachial plexus nerve injury (13 obstetric, 11 males and 2 females; 11 traumatic, 9 males and 2 females) whose affected arm and shoulder were totally paralyzed and their voluntary elbow flexion or the biceps function was poor preoperatively (mean M0-1/5 in MRC grade). These patients had undergone the functional free gracilis muscle transfer procedure at our clinic since 2005. Results: Ninety-two percent of all patients showed recovery and improvement. Successful free gracilis muscle transfer is defined as antigravity biceps muscle strength of M3-4/5 and higher, which was observed in 16 (8 obstetric and 8 traumatic) of our 24 patients (67%) in this study at least 1 year after functional free gracilis muscle transfer. This is statistically significant ( P < .000001) in comparison with their mean preoperative score (M0-1/5). There was no improvement in motor level of the biceps muscle (M0/5) in 2 patients (1 from each group). The donor site of these 24 patients showed no deficit in motor and sensory functions. Conclusions: Taken together, a significant number (92%) of patients in both obstetric and traumatic brachial plexus injury groups had recovery and improvement and most of these patients (64%) achieved antigravity and elbow flexion at least 1 year after free gracilis muscle transfer at our clinic.
Boutros, Sean G.; Somasundaram, Chandra
2017-01-01
Background: Functional free gracilis muscle transfer is an operative procedure for elbow reconstruction in patients with complete brachial plexus nerve and avulsion injuries and in delayed or prolonged nerve denervation, as well as in patients with inadequate upper extremity function after primary nerve reconstruction. Methods: We retrospectively reviewed our patient records and identified 24 patients with complete brachial plexus nerve injury (13 obstetric, 11 males and 2 females; 11 traumatic, 9 males and 2 females) whose affected arm and shoulder were totally paralyzed and their voluntary elbow flexion or the biceps function was poor preoperatively (mean M0-1/5 in MRC grade). These patients had undergone the functional free gracilis muscle transfer procedure at our clinic since 2005. Results: Ninety-two percent of all patients showed recovery and improvement. Successful free gracilis muscle transfer is defined as antigravity biceps muscle strength of M3-4/5 and higher, which was observed in 16 (8 obstetric and 8 traumatic) of our 24 patients (67%) in this study at least 1 year after functional free gracilis muscle transfer. This is statistically significant (P < .000001) in comparison with their mean preoperative score (M0-1/5). There was no improvement in motor level of the biceps muscle (M0/5) in 2 patients (1 from each group). The donor site of these 24 patients showed no deficit in motor and sensory functions. Conclusions: Taken together, a significant number (92%) of patients in both obstetric and traumatic brachial plexus injury groups had recovery and improvement and most of these patients (64%) achieved antigravity and elbow flexion at least 1 year after free gracilis muscle transfer at our clinic. PMID:29213347
Mondragon-Lozano, Rodrigo; Ríos, Camilo; Roldan-Valadez, Ernesto; Cruz, Guillermo J; Olayo, Maria G; Olayo, Roberto; Salgado-Ceballos, Hermelinda; Morales, Juan; Mendez-Armenta, Marisela; Alvarez-Mejia, Laura; Fabela, Omar; Morales-Guadarrama, Axayacatl; Sánchez-Torres, Stephanie; Diaz-Ruiz, Araceli
2017-04-01
Traumatic spinal cord injury (SCI) causes irreversible damage with loss of motor, sensory, and autonomic functions. Currently, there is not an effective treatment to restore the lost neurologic functions. Injection of polypyrrole-iodine(PPy-I) particle suspension is proposed as a therapeutic strategy. This is an in vivo animal study. This study evaluates the use of such particles in rats after SCI by examining spared nervous tissue and the Basso, Beattie, and Bresnahan (BBB) scale to evaluate the functional outcome. Diffusive magnetic resonance imaging (MRI) was employed to measure the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) as non-invasive biomarkers of damage after SCI. Fractional anisotropy decreased, whereas ADC increased in all groups after the lesion. There were significant differences in FA when compared with the SCI-PPy-I group versus the SCI group (p<.05). Significant positive correlations between BBB and FA (r 2 =0.449, p<.05) and between FA and preserved tissue (r 2 =0.395, p<.05) were observed, whereas significant negative associations between BBB and ADC (r 2 =0.367, p<.05) and between ADC and preserved tissue (r 2 =0.421, p<.05) were observed. The results suggested that PPy-I is neuroprotective as it decreased the amount of damaged tissue while improving the motor function. Non-invasive MRI proved to be useful in the characterization of SCI and recovery. Copyright © 2016 Elsevier Inc. All rights reserved.
Flex Sensor Based Biofeedback Monitoring for Post-Stroke Fingers Myopathy Patients
NASA Astrophysics Data System (ADS)
Garda, Y. R.; Caesarendra, W.; Tjahjowidodo, T.; Turnip, A.; Wahyudati, S.; Nurhasanah, L.; Sutopo, D.
2018-04-01
Hands are one of the crucial parts of the human body in carrying out daily activities. Accidents on the hands decreasing in motor skills of the hand so that therapy is necessary to restore motor function of the hand. In addition to accidents, hand disabilities can be caused by certain diseases, e.g. stroke. Stroke is a partial destruction of the brain. It occurs if the arteries that drain blood to the brain are blocked, or if torn or leak. The purpose of this study to make biofeedback monitoring equipment for post-stroke hands myopathy patients. Biofeedback is an alternative method of treatment that involves measuring body functions measured subjects such as skin temperature, sweat activity, blood pressure, heart rate and hand paralysis due to stroke. In this study, the sensor used for biofeedback monitoring tool is flex sensor. Flex sensor is a passive resistive device that changes its resistance as the sensor is bent. Flex sensor converts the magnitude of the bend into electrical resistance, the greater the bend the greater the resistance value. The monitoring used in this biofeedback monitoring tool uses Graphical User Interface (GUI) in C# programming language. The motivation of the study is to monitor and record the progressive improvement of the hand therapy. Patients who experienced post-stroke can see the therapy progress quantitatively.
Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats.
Boulay, Chadwick B; Chen, Xiang Yang; Wolpaw, Jonathan R
2015-04-01
Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5-30 Hz), low γ (γ1; 40-85 Hz), and high γ (γ2; 100-200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs. Copyright © 2015 the American Physiological Society.
Francio, Vinicius T.; Boesch, Ron; Tunning, Michael
2015-01-01
Objective: Posterior cortical atrophy (PCA) is a rare progressive neurodegenerative syndrome which unusual symptoms include deficits of balance, bodily orientation, chronic pain syndrome and dysfunctional motor patterns. Current research provides minimal guidance on support, education and recommended evidence-based patient care. This case reports the utilization of chiropractic spinal manipulation, dynamic neuromuscular stabilization (DNS), and other adjunctive procedures along with medical treatment of PCA. Clinical features: A 54-year-old male presented to a chiropractic clinic with non-specific back pain associated with visual disturbances, slight memory loss, and inappropriate cognitive motor control. After physical examination, brain MRI and PET scan, the diagnosis of PCA was recognized. Intervention and Outcome: Chiropractic spinal manipulation and dynamic neuromuscular stabilization were utilized as adjunctive care to conservative pharmacological treatment of PCA. Outcome measurements showed a 60% improvement in the patient’s perception of health with restored functional neuromuscular pattern, improvements in locomotion, posture, pain control, mood, tolerance to activities of daily living (ADLs) and overall satisfactory progress in quality of life. Yet, no changes on memory loss progression, visual space orientation, and speech were observed. Conclusion: PCA is a progressive and debilitating condition. Because of poor awareness of PCA by physicians, patients usually receive incomplete care. Additional efforts must be centered on the musculoskeletal features of PCA, aiming enhancement in quality of life and functional improvements (FI). Adjunctive rehabilitative treatment is considered essential for individuals with cognitive and motor disturbances, and manual medicine procedures may be consider a viable option. PMID:25729084
Otte, Willem M; van der Marel, Kajo; van Meer, Maurits P A; van Rijen, Peter C; Gosselaar, Peter H; Braun, Kees P J; Dijkhuizen, Rick M
2015-08-01
Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions.
Bulstra, Liselotte F; Rbia, Nadia; Kircher, Michelle F; Spinner, Robert J; Bishop, Allen T; Shin, Alexander Y
2017-12-08
OBJECTIVE Reconstructive options for brachial plexus lesions continue to expand and improve. The purpose of this study was to evaluate the prevalence and quality of restored elbow extension in patients with brachial plexus injuries who underwent transfer of the spinal accessory nerve to the motor branch of the radial nerve to the long head of the triceps muscle with an intervening autologous nerve graft and to identify patient and injury factors that influence functional triceps outcome. METHODS A total of 42 patients were included in this retrospective review. All patients underwent transfer of the spinal accessory nerve to the motor branch of the radial nerve to the long head of the triceps muscle as part of their reconstruction plan after brachial plexus injury. The primary outcome was elbow extension strength according to the modified Medical Research Council muscle grading scale, and signs of triceps muscle recovery were recorded using electromyography. RESULTS When evaluating the entire study population (follow-up range 12-45 months, mean 24.3 months), 52.4% of patients achieved meaningful recovery. More specifically, 45.2% reached Grade 0 or 1 recovery, 19.1% obtained Grade 2, and 35.7% improved to Grade 3 or better. The presence of a vascular injury impaired functional outcome. In the subgroup with a minimum follow-up of 20 months (n = 26), meaningful recovery was obtained by 69.5%. In this subgroup, 7.7% had no recovery (Grade 0), 19.2% had recovery to Grade 1, and 23.1% had recovery to Grade 2. Grade 3 or better was reached by 50% of patients, of whom 34.5% obtained Grade 4 elbow extension. CONCLUSIONS Transfer of the spinal accessory nerve to the radial nerve branch to the long head of the triceps muscle with an interposition nerve graft is an adequate option for restoration of elbow extension, despite the relatively long time required for reinnervation. The presence of vascular injury impairs functional recovery of the triceps muscle, and the use of shorter nerve grafts is recommended when and if possible.
Lee, Kyoung-Hee
2015-01-01
This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program. PMID:26180287
Lee, Kyoung-Hee
2015-06-01
This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program.
Hall, E D; Von Voigtlander, P F
1987-11-01
The possible in vivo facilitatory effects of the pyrrolidine acetamide no-otropic agent piracetam on neuromuscular transmission, were studied based upon reports of enhancement of central cholinergic function. Piracetam was shown to antagonize the lethal effects of the neuromuscular blocking agent hemicholinium-3 (HC-3), in female CF-1 mice when administered in a dose of 100 mg/kg (i.p.) simultaneously with HC-3. A 30 mg/kg (i.p.) dose of piracetam was ineffective by itself, although it potentiated the protective effects of choline (25 mg/kg i.p.). The analogs of piracetam, aniracetam, oxiracetam, pramiracetam and dupracetam also significantly antagonized the lethality of HC-3 at doses over a 30-300 mg/kg range. The acute facilitatory properties of piracetam on neuromuscular transmission were examined in more detail in vivo in the soleus nerve muscle preparation of the cat. A 100 mg/kg (i.v.) dose of piracetam, while having no effect on its own, significantly enhanced the ability of a 200 micrograms/kg (i.v.) dose of edrophonium to produce a potentiation of muscle contraction dependent on repetitive discharges in the soleus motor nerve terminals. In preparations in which the motor nerve terminals of the soleus were in a partially degenerated state as a result of section of the motor axons 48 hr earlier, piracetam acted to restore their sensitivity to edrophonium. Furthermore, in both normal and partially degenerated preparations, piracetam significantly decreased the neuromuscular blocking effects of a 150 micrograms/kg (i.v.) dose of d-tubocurarine. The mechanism of the neuromuscular facilitatory effects of piracetam on neuromuscular transmission is discussed in terms of an enhanced excitability of motor nerve terminals together with an action to increase the synthesis and/or release of acetylcholine.
Simon, Magda; Porter, Rebecca; Brown, Robert; Coulton, Gary R; Terenghi, Giorgio
2003-11-01
We investigated whether neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) affected the reinnervation of slow and fast motor units. Neurotrophin-impregnated or plain fibronectin (FN) conduits were inserted into a sciatic nerve gap. Fast extensor digitorum longus (EDL) and slow soleus muscles were collected 4 months postsurgery. Muscles were weighed and fibre type proportion and mean fibre diameters were derived from muscle cross-sections. All fibre types in muscles from FN animals were severely atrophied and this correlated well with type 1 fibre loss and atrophy in soleus and type 2b loss and atrophy in EDL. Treatment with NT-4 reversed soleus but not EDL mass loss above the FN group by significantly restoring type 1 muscle fibre proportion and diameters towards those of normal unoperated animals. BDNF did not increase muscle mass but did have minor effects on fibre type and diameter. Thus, NT-4 significantly improved slow motor unit recovery, and provides a basis for therapies intended to aid the functional recovery of muscles after denervating injury.
Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation.
Carelli, Laura; Solca, Federica; Faini, Andrea; Meriggi, Paolo; Sangalli, Davide; Cipresso, Pietro; Riva, Giuseppe; Ticozzi, Nicola; Ciammola, Andrea; Silani, Vincenzo; Poletti, Barbara
2017-01-01
Alongside the best-known applications of brain-computer interface (BCI) technology for restoring communication abilities and controlling external devices, we present the state of the art of BCI use for cognitive assessment and training purposes. We first describe some preliminary attempts to develop verbal-motor free BCI-based tests for evaluating specific or multiple cognitive domains in patients with Amyotrophic Lateral Sclerosis, disorders of consciousness, and other neurological diseases. Then we present the more heterogeneous and advanced field of BCI-based cognitive training, which has its roots in the context of neurofeedback therapy and addresses patients with neurological developmental disorders (autism spectrum disorder and attention-deficit/hyperactivity disorder), stroke patients, and elderly subjects. We discuss some advantages of BCI for both assessment and training purposes, the former concerning the possibility of longitudinally and reliably evaluating cognitive functions in patients with severe motor disabilities, the latter regarding the possibility of enhancing patients' motivation and engagement for improving neural plasticity. Finally, we discuss some present and future challenges in the BCI use for the described purposes.
Brain-computer interfaces in neurological rehabilitation.
Daly, Janis J; Wolpaw, Jonathan R
2008-11-01
Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.
NASA Astrophysics Data System (ADS)
Song, Yoon-Kyu; Stein, John; Patterson, William R.; Bull, Christopher W.; Davitt, Kristina M.; Serruya, Mijail D.; Zhang, Jiayi; Nurmikko, Arto V.; Donoghue, John P.
2007-09-01
Recent advances in functional electrical stimulation (FES) show significant promise for restoring voluntary movement in patients with paralysis or other severe motor impairments. Current approaches for implantable FES systems involve multisite stimulation, posing research issues related to their physical size, power and signal delivery, surgical and safety challenges. To explore a different means for delivering the stimulus to a distant muscle nerve site, we have elicited in vitro FES response using a high efficiency microcrystal photovoltaic device as a neurostimulator, integrated with a biocompatible glass optical fiber which forms a lossless, interference-free lightwave conduit for signal and energy transport. As a proof of concept demonstration, a sciatic nerve of a frog is stimulated by the microcrystal device connected to a multimode optical fiber (core diameter of 62.5 µm), which converts optical activation pulses (~100 µs) from an infrared semiconductor laser source (at 852 nm wavelength) into an FES signal.
Tong, Xiaoping; Ao, Yan; Faas, Guido C; Nwaobi, Sinifunanya E; Xu, Ji; Haustein, Martin D; Anderson, Mark A; Mody, Istvan; Olsen, Michelle L; Sofroniew, Michael V; Khakh, Baljit S
2014-05-01
Huntington's disease (HD) is characterized by striatal medium spiny neuron (MSN) dysfunction, but the underlying mechanisms remain unclear. We explored roles for astrocytes, in which mutant huntingtin is expressed in HD patients and mouse models. We found that symptom onset in R6/2 and Q175 HD mouse models was not associated with classical astrogliosis, but was associated with decreased Kir4.1 K(+) channel functional expression, leading to elevated in vivo striatal extracellular K(+), which increased MSN excitability in vitro. Viral delivery of Kir4.1 channels to striatal astrocytes restored Kir4.1 function, normalized extracellular K(+), ameliorated aspects of MSN dysfunction, prolonged survival and attenuated some motor phenotypes in R6/2 mice. These findings indicate that components of altered MSN excitability in HD may be caused by heretofore unknown disturbances of astrocyte-mediated K(+) homeostasis, revealing astrocytes and Kir4.1 channels as therapeutic targets.
Padel, Thomas; Özen, Ilknur; Boix, Jordi; Barbariga, Marco; Gaceb, Abderahim; Roth, Michaela; Paul, Gesine
2016-10-01
Parkinson's disease (PD) is a neurodegenerative disease where the degeneration of the nigrostriatal pathway leads to specific motor deficits. There is an unmet medical need for regenerative treatments that stop or reverse disease progression. Several growth factors have been investigated in clinical trials to restore the dopaminergic nigrostriatal pathway damaged in PD. Platelet-derived growth factor-BB (PDGF-BB), a molecule that recruits pericytes to stabilize microvessels, was recently investigated in a phase-1 clinical trial, showing a dose-dependent increase in dopamine transporter binding in the putamen of PD patients. Interestingly, evidence is accumulating that PD is paralleled by microvascular changes, however, whether PDGF-BB modifies pericytes in PD is not known. Using a pericyte reporter mouse strain, we investigate the functional and restorative effect of PDGF-BB in a partial 6-hydroxydopamine medial forebrain bundle lesion mouse model of PD, and whether this restorative effect is accompanied by changes in pericyte features. We demonstrate that a 2-week treatment with PDGF-BB leads to behavioural recovery using several behavioural tests, and partially restores the nigrostriatal pathway. Interestingly, we find that pericytes are activated in the striatum of PD lesioned mice and that these changes are reversed by PDGF-BB treatment. The modulation of brain pericytes may contribute to the PDGF-BB-induced neurorestorative effects, PDGF-BB allowing for vascular stabilization in PD. Pericytes might be a new cell target of interest for future regenerative therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Fey, Andreas; Schachner, Melitta; Irintchev, Andrey
2010-05-01
Assessment of motor abilities after sciatic nerve injury in rodents, in particular mice, relies exclusively on walking track (footprint) analysis despite known limitations of this method. Using principles employed recently for video-based motion analyses after femoral nerve and spinal cord injuries, we have designed and report here a novel approach for functional assessments after sciatic nerve lesions in mice. Functional deficits are estimated by angle and distance measurements on single video frames recorded during beam-walking and inclined ladder climbing. Analyses of adult C57BL/6J mice after crush of the sciatic, tibial, or peroneal nerve allowed the identification of six numerical parameters, detecting impairments of the plantar flexion of the foot and the toe spread. Some of these parameters, as well as footprint functional indices, revealed severe impairment after crush injury of the sciatic or tibial, but not the peroneal nerve, and complete recovery within 3 weeks after lesion. Other novel estimates, however, showed that complete recovery is reached as late as 2-3 months after sciatic nerve crush. These measures detected both tibial and peroneal dysfunction. In contrast to the complete restoration of function in wild-type mice (100%), our new parameters, in contrast to the sciatic functional index, showed incomplete recovery (85%) 90 days after sciatic nerve crush in mice deficient in the neural cell adhesion molecule (NCAM). We conclude that the novel video-based approach is more precise, sensitive, and versatile than established tests, allowing objective numerical assessment of different motor functions in a sciatic nerve injury paradigm in mice.
Fu, Wei; Cao, Lei; Zhang, Yanming; Huo, Su; Du, JuBao; Zhu, Lin; Song, Weiqun
2017-05-01
Visuospatial neglect (VSN) is devastating and common after stroke, and is thought to involve functional disturbance of the attention network. Non-invasive theta-burst stimulation (TBS) may help restore the normal function of attention network, therefore facilitating recovery from VSN. This study investigated the effects of continuous TBS on resting-state functional connectivity (RSFC) in the attention network, and behavioral performances of patients with VSN after stroke. Twelve patients were randomly assigned to receive 10-day cTBS of the left posterior parietal cortex delivered at 80% (the cTBS group), or 40% (the active control group) of the resting motor threshold. Both groups received daily visual scanning training and motor function treatment. Resting-state functional MRI (fMRI) and behavioral tests including line bisection test and star cancelation test were conducted at baseline and after the treatment. At baseline, the two groups showed comparable results in the resting-state fMRI experiments and behavioral tests. After treatment, the cTBS group showed lower functional connectivity between right temporoparietal junction (TPJ) and right anterior insula, and between right superior temporal sulcus and right anterior insula, as compared with the active control group; both groups showed improvement in the behavioral tests, with the cTBS group showing larger changes from baseline than the active control group. cTBS of the left posterior parietal cortex in patients with VSN may induce changes in inter-regional RSFC in the right ventral attention network. These changes may be associated with improved recovery of behavioral deficits after behavioral training. The TPJ and superior temporal sulcus may play crucial roles in recovery from VSN.
Hassan, Atiq; Arnold, Breanna M; Caine, Sally; Toosi, Behzad M; Verge, Valerie M K; Muir, Gillian D
2018-01-01
One of the most promising approaches to improve recovery after spinal cord injury (SCI) is the augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute intermittent hypoxia (AIH, brief exposures to reduced O2 levels alternating with normal O2 levels) initiates plasticity in respiratory systems and has been shown to improve recovery in respiratory and non-respiratory spinal systems after SCI in experimental animals and humans. Although the mechanism by which AIH elicits its effects after SCI are not well understood, AIH is known to alter protein expression in spinal neurons in uninjured animals. Here, we examine hypoxia- and plasticity-related protein expression using immunofluorescence in spinal neurons in SCI rats that were treated with AIH combined with motor training, a protocol which has been demonstrated to improve recovery of forelimb function in this lesion model. Specifically, we assessed protein expression in spinal neurons from animals with incomplete cervical SCI which were exposed to AIH treatment + motor training either for 1 or 7 days. AIH treatment consisted of 10 episodes of AIH: (5 min 11% O2: 5 min 21% O2) for 7 days beginning at 4 weeks post-SCI. Both 1 or 7 days of AIH treatment + motor training resulted in significantly increased expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) relative to normoxia-treated controls, in neurons both proximal (cervical) and remote (lumbar) to the SCI. All other markers examined were significantly elevated in the 7 day AIH + motor training group only, at both cervical and lumbar levels. These markers included vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and phosphorylated and nonphosphorylated forms of the BDNF receptor tropomyosin-related kinase B (TrkB). In summary, AIH induces plasticity at the cellular level after SCI by altering the expression of major plasticity- and hypoxia-related proteins at spinal regions proximal and remote to the SCI. These changes occur under the same AIH protocol which resulted in recovery of limb function in this animal model. Thus AIH, which induces plasticity in spinal circuitry, could also be an effective therapy to restore motor function after nervous system injury.
Outcomes after hand and upper extremity transplantation.
Shores, Jaimie T; Malek, Veronika; Lee, W P Andrew; Brandacher, Gerald
2017-05-01
Hand and upper extremity transplantation (HUET) has emerged as the most frequently performed reconstructive procedure in the burgeoning field of vascularized composite allotransplantation (VCA). VCA refers to a form of transplant with multiple tissue types that represents a viable treatment option for devastating injuries where conventional reconstruction would be unable to restore form and function. As hand transplantation becomes increasingly more common, discussions on advantages and disadvantages of the procedure seem to intensify. Despite encouraging functional outcomes, current immunosuppressive regimens with their deleterious side-effect profile remain a major concern for a life-changing but not life-saving type of transplant. In addition, a growing number of recipients with progressively longer follow-up prompt the need to investigate potential long-term sequelae, such as chronic rejection. This review will discuss the current state of HUET, summarizing outcome data on graft survival, motor and sensory function, as well as immunosuppressive treatment. The implications of these findings for VCA in terms of achievements and challenges ahead will then be discussed.
Atomoxetine restores the response inhibition network in Parkinson's disease.
Rae, Charlotte L; Nombela, Cristina; Rodríguez, Patricia Vázquez; Ye, Zheng; Hughes, Laura E; Jones, P Simon; Ham, Timothy; Rittman, Timothy; Coyle-Gilchrist, Ian; Regenthal, Ralf; Sahakian, Barbara J; Barker, Roger A; Robbins, Trevor W; Rowe, James B
2016-08-01
Parkinson's disease impairs the inhibition of responses, and whilst impulsivity is mild for some patients, severe impulse control disorders affect ∼10% of cases. Based on preclinical models we proposed that noradrenergic denervation contributes to the impairment of response inhibition, via changes in the prefrontal cortex and its subcortical connections. Previous work in Parkinson's disease found that the selective noradrenaline reuptake inhibitor atomoxetine could improve response inhibition, gambling decisions and reflection impulsivity. Here we tested the hypotheses that atomoxetine can restore functional brain networks for response inhibition in Parkinson's disease, and that both structural and functional connectivity determine the behavioural effect. In a randomized, double-blind placebo-controlled crossover study, 19 patients with mild-to-moderate idiopathic Parkinson's disease underwent functional magnetic resonance imaging during a stop-signal task, while on their usual dopaminergic therapy. Patients received 40 mg atomoxetine or placebo, orally. This regimen anticipates that noradrenergic therapies for behavioural symptoms would be adjunctive to, not a replacement for, dopaminergic therapy. Twenty matched control participants provided normative data. Arterial spin labelling identified no significant changes in regional perfusion. We assessed functional interactions between key frontal and subcortical brain areas for response inhibition, by comparing 20 dynamic causal models of the response inhibition network, inverted to the functional magnetic resonance imaging data and compared using random effects model selection. We found that the normal interaction between pre-supplementary motor cortex and the inferior frontal gyrus was absent in Parkinson's disease patients on placebo (despite dopaminergic therapy), but this connection was restored by atomoxetine. The behavioural change in response inhibition (improvement indicated by reduced stop-signal reaction time) following atomoxetine correlated with structural connectivity as measured by the fractional anisotropy in the white matter underlying the inferior frontal gyrus. Using multiple regression models, we examined the factors that influenced the individual differences in the response to atomoxetine: the reduction in stop-signal reaction time correlated with structural connectivity and baseline performance, while disease severity and drug plasma level predicted the change in fronto-striatal effective connectivity following atomoxetine. These results suggest that (i) atomoxetine increases sensitivity of the inferior frontal gyrus to afferent inputs from the pre-supplementary motor cortex; (ii) atomoxetine can enhance downstream modulation of frontal-subcortical connections for response inhibition; and (iii) the behavioural consequences of treatment are dependent on fronto-striatal structural connections. The individual differences in behavioural responses to atomoxetine highlight the need for patient stratification in future clinical trials of noradrenergic therapies for Parkinson's disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Neurosurgery and the dawning age of Brain-Machine Interfaces
Rowland, Nathan C.; Breshears, Jonathan; Chang, Edward F.
2013-01-01
Brain–machine interfaces (BMIs) are on the horizon for clinical neurosurgery. Electrocorticography-based platforms are less invasive than implanted microelectrodes, however, the latter are unmatched in their ability to achieve fine motor control of a robotic prosthesis capable of natural human behaviors. These technologies will be crucial to restoring neural function to a large population of patients with severe neurologic impairment – including those with spinal cord injury, stroke, limb amputation, and disabling neuromuscular disorders such as amyotrophic lateral sclerosis. On the opposite end of the spectrum are neural enhancement technologies for specialized applications such as combat. An ongoing ethical dialogue is imminent as we prepare for BMI platforms to enter the neurosurgical realm of clinical management. PMID:23653884
Moon, Jisook; Schwarz, Sigrid C.; Lee, Hyun‐Seob; Kang, Jun Mo; Lee, Young‐Eun; Kim, Bona; Sung, Mi‐Young; Höglinger, Günter; Wegner, Florian; Kim, Jin Su; Chung, Hyung‐Min; Chang, Sung Woon; Cha, Kwang Yul; Kim, Kwang‐Soo
2016-01-01
Abstract We have developed a good manufacturing practice for long‐term cultivation of fetal human midbrain‐derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region‐specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells. The whole cultivation process of tissue preparation, cultivation, and cryopreservation was developed using strict serum‐free conditions and standardized operating protocols under clean‐room conditions. Long‐term‐cultivated midbrain‐derived neural progenitor cells retained stemness, midbrain fate specificity, and floorplate markers. The potential to differentiate into authentic A9‐specific dopaminergic neurons was markedly elevated after prolonged expansion, resulting in large quantities of functional dopaminergic neurons without genetic modification. In restorative cell therapeutic approaches, midbrain‐derived neural progenitor cells reversed impaired motor function in rodents, survived well, and did not exhibit tumor formation in immunodeficient nude mice in the short or long term (8 and 30 weeks, respectively). We conclude that midbrain‐derived neural progenitor cells are a promising source for human dopaminergic neurons and suitable for long‐term expansion under good manufacturing practice, thus opening the avenue for restorative clinical applications or robust cellular models such as high‐content or high‐throughput screening. Stem Cells Translational Medicine 2017;6:576–588 PMID:28191758
Neuromechanics: an integrative approach for understanding motor control.
Nishikawa, Kiisa; Biewener, Andrew A; Aerts, Peter; Ahn, Anna N; Chiel, Hillel J; Daley, Monica A; Daniel, Thomas L; Full, Robert J; Hale, Melina E; Hedrick, Tyson L; Lappin, A Kristopher; Nichols, T Richard; Quinn, Roger D; Satterlie, Richard A; Szymik, Brett
2007-07-01
Neuromechanics seeks to understand how muscles, sense organs, motor pattern generators, and brain interact to produce coordinated movement, not only in complex terrain but also when confronted with unexpected perturbations. Applications of neuromechanics include ameliorating human health problems (including prosthesis design and restoration of movement following brain or spinal cord injury), as well as the design, actuation and control of mobile robots. In animals, coordinated movement emerges from the interplay among descending output from the central nervous system, sensory input from body and environment, muscle dynamics, and the emergent dynamics of the whole animal. The inevitable coupling between neural information processing and the emergent mechanical behavior of animals is a central theme of neuromechanics. Fundamentally, motor control involves a series of transformations of information, from brain and spinal cord to muscles to body, and back to brain. The control problem revolves around the specific transfer functions that describe each transformation. The transfer functions depend on the rules of organization and operation that determine the dynamic behavior of each subsystem (i.e., central processing, force generation, emergent dynamics, and sensory processing). In this review, we (1) consider the contributions of muscles, (2) sensory processing, and (3) central networks to motor control, (4) provide examples to illustrate the interplay among brain, muscles, sense organs and the environment in the control of movement, and (5) describe advances in both robotics and neuromechanics that have emerged from application of biological principles in robotic design. Taken together, these studies demonstrate that (1) intrinsic properties of muscle contribute to dynamic stability and control of movement, particularly immediately after perturbations; (2) proprioceptive feedback reinforces these intrinsic self-stabilizing properties of muscle; (3) control systems must contend with inevitable time delays that can simplify or complicate control; and (4) like most animals under a variety of circumstances, some robots use a trial and error process to tune central feedforward control to emergent body dynamics.
Nataraj, Raviraj; Audu, Musa L.; Triolo, Ronald J.
2017-01-01
This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment. PMID:28215399
Hara, Yuki; Nishiura, Yasumasa; Ochiai, Naoyuki; Murai, Shinji; Yamazaki, Masashi
2017-05-01
Needle electromyography provides essential information about the functional aspects of the muscle. But little attention has been given in the literature to needle electromyography examinations in carpal tunnel syndrome. We examined the relationship between preoperative needle electromyography findings and functional recovery of the abductor pollicis brevis (APB) muscle in severe carpal tunnel syndrome patients. The subjects of this study were 49 patients, 58 hands, who fit the following 5 criteria: (1) idiopathic carpal tunnel syndrome; (2) pre-op MMT grade of the APB muscle was M0 or M1; (3) APB-CMAP (compound muscle action potential) was not evoked in a median nerve conduction study; (4) needle electromyography of the APB muscle had been done; (5) underwent carpal tunnel release only. The patients were divided into two groups according to the results of pre-op needle electromyography: voluntary motor unit potential of the APB muscle was evoked [MUP(+) group]or not [MUP(-) group]. We evaluated APB muscle strength at one year after surgery, and patient satisfaction and functional evaluations (CTSI-FS) at more than one year after. The APB muscle recovery rate to M3 or higher was 100% in the MUP(+) group, and 57% in the MUP(-) group. Patient satisfaction was also high and functional recovery was sufficient in the MUP(+) group. No patients requested a second opponensplasty. Our findings suggest that post-op restoration of thumb function relates to whether or not the MUP ofthe APB muscle is evoked. Single-stage opponensplasty may be unnecessary if the MUP of the APB muscle is; evoked. Needle electromyography is therefore useful in consideration for opponensplasty. Level Ⅲ, case-control study. Copyright © 2017. Published by Elsevier B.V.
Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J
2017-04-01
This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Relation between hand function and gross motor function in full term infants aged 4 to 8 months.
Nogueira, Solange F; Figueiredo, Elyonara M; Gonçalves, Rejane V; Mancini, Marisa C
2015-01-01
In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. RESULTS revealed a significant increase in the number of reaches (p<0.001), the time of manipulation (p<0.001) and gross motor function (p<0.001) over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001) and manipulation and gross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development.
The negotiated equilibrium model of spinal cord function.
Wolpaw, Jonathan R
2018-04-16
The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and aging, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Functional restoration of diaphragmatic paralysis: an evaluation of phrenic nerve reconstruction.
Kaufman, Matthew R; Elkwood, Andrew I; Colicchio, Alan R; CeCe, John; Jarrahy, Reza; Willekes, Lourens J; Rose, Michael I; Brown, David
2014-01-01
Unilateral diaphragmatic paralysis causes respiratory deficits and can occur after iatrogenic or traumatic phrenic nerve injury in the neck or chest. Patients are evaluated using spirometry and imaging studies; however, phrenic nerve conduction studies and electromyography are not widely available or considered; thus, the degree of dysfunction is often unknown. Treatment has been limited to diaphragmatic plication. Phrenic nerve operations to restore diaphragmatic function may broaden therapeutic options. An interventional study of 92 patients with symptomatic diaphragmatic paralysis assigned 68 (based on their clinical condition) to phrenic nerve surgical intervention (PS), 24 to nonsurgical (NS) care, and evaluated a third group of 68 patients (derived from literature review) treated with diaphragmatic plication (DP). Variables for assessment included spirometry, the Short-Form 36-Item survey, electrodiagnostics, and complications. In the PS group, there was an average 13% improvement in forced expiratory volume in 1 second (p < 0.0001) and 14% improvement in forced vital capacity (p < 0.0001), and there was corresponding 17% (p < 0.0001) and 16% (p < 0.0001) improvement in the DP cohort. In the PS and DP groups, the average postoperative values were 71% for forced expiratory volume in 1 second and 73% for forced vital capacity. The PS group demonstrated an average 28% (p < 0.01) improvement in Short-Form 36-Item survey reporting. Electrodiagnostic testing in the PS group revealed a mean 69% (p < 0.05) improvement in conduction latency and a 37% (p < 0.0001) increase in motor amplitude. In the NS group, there was no significant change in Short-Form 36-Item survey or spirometry values. Phrenic nerve operations for functional restoration of the paralyzed diaphragm should be part of the standard treatment algorithm in the management of symptomatic patients with this condition. Assessment of neuromuscular dysfunction can aid in determining the most effective therapy. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Neuroimaging Identifies Patients Most Likely to Respond to a Restorative Stroke Therapy.
Cassidy, Jessica M; Tran, George; Quinlan, Erin B; Cramer, Steven C
2018-02-01
Patient heterogeneity reduces statistical power in clinical trials of restorative therapies. Valid predictors of treatment responsiveness are needed, and several have been studied with a focus on corticospinal tract (CST) injury. We studied performance of 4 such measures for predicting behavioral gains in response to motor training therapy. Patients with subacute-chronic hemiparetic stroke (n=47) received standardized arm motor therapy, and change in arm Fugl-Meyer score was calculated from baseline to 1 month post-therapy. Injury measures calculated from baseline magnetic resonance imaging included (1) percent CST overlap with stroke, (2) CST-related atrophy (cerebral peduncle area), (3) CST integrity (fractional anisotropy) in the cerebral peduncle, and (4) CST integrity in the posterior limb of internal capsule. Percent CST overlap with stroke, CST-related atrophy, and CST integrity did not correlate with one another, indicating that these 3 measures captured independent features of CST injury. Percent injury to CST significantly predicted treatment-related behavioral gains ( r =-0.41; P =0.004). The other CST injury measures did not, neither did total infarct volume nor baseline behavioral deficits. When directly comparing patients with mild versus severe injury using the percent CST injury measure, the odds ratio was 15.0 (95% confidence interval, 1.54-147; P <0.005) for deriving clinically important treatment-related gains. Percent CST injury is useful for predicting motor gains in response to therapy in the setting of subacute-chronic stroke. This measure can be used as an entry criterion or a stratifying variable in restorative stroke trials to increase statistical power, reduce sample size, and reduce the cost of such trials. © 2018 American Heart Association, Inc.
Coughlan, Karen S.; Halang, Luise; Woods, Ina
2016-01-01
ABSTRACT Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43A315T mice. Similar to our recent results in SOD1G93A mice, TDP-43A315T mice fed a standard pellet diet showed increased 5′ adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43A315T mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43A315T model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS. PMID:27491077
Coughlan, Karen S; Halang, Luise; Woods, Ina; Prehn, Jochen H M
2016-09-01
Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43(A315T) mice. Similar to our recent results in SOD1(G93A) mice, TDP-43(A315T) mice fed a standard pellet diet showed increased 5' adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43(A315T) mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43(A315T) model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS. © 2016. Published by The Company of Biologists Ltd.
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Wang, Qi; Gao, Jing
2015-01-01
Due to the rapid development of motor vehicle Driver Assistance Systems (DAS), the safety problems associated with automatic driving have become a hot issue in Intelligent Transportation. The traffic sign is one of the most important tools used to reinforce traffic rules. However, traffic sign image degradation based on computer vision is unavoidable during the vehicle movement process. In order to quickly and accurately recognize traffic signs in motion-blurred images in DAS, a new image restoration algorithm based on border deformation detection in the spatial domain is proposed in this paper. The border of a traffic sign is extracted using color information, and then the width of the border is measured in all directions. According to the width measured and the corresponding direction, both the motion direction and scale of the image can be confirmed, and this information can be used to restore the motion-blurred image. Finally, a gray mean grads (GMG) ratio is presented to evaluate the image restoration quality. Compared to the traditional restoration approach which is based on the blind deconvolution method and Lucy-Richardson method, our method can greatly restore motion blurred images and improve the correct recognition rate. Our experiments show that the proposed method is able to restore traffic sign information accurately and efficiently. PMID:25849350
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Wang, Qi; Gao, Jing
2015-01-01
Due to the rapid development of motor vehicle Driver Assistance Systems (DAS), the safety problems associated with automatic driving have become a hot issue in Intelligent Transportation. The traffic sign is one of the most important tools used to reinforce traffic rules. However, traffic sign image degradation based on computer vision is unavoidable during the vehicle movement process. In order to quickly and accurately recognize traffic signs in motion-blurred images in DAS, a new image restoration algorithm based on border deformation detection in the spatial domain is proposed in this paper. The border of a traffic sign is extracted using color information, and then the width of the border is measured in all directions. According to the width measured and the corresponding direction, both the motion direction and scale of the image can be confirmed, and this information can be used to restore the motion-blurred image. Finally, a gray mean grads (GMG) ratio is presented to evaluate the image restoration quality. Compared to the traditional restoration approach which is based on the blind deconvolution method and Lucy-Richardson method, our method can greatly restore motion blurred images and improve the correct recognition rate. Our experiments show that the proposed method is able to restore traffic sign information accurately and efficiently.
Suelves, Nuria; Miguez, Andrés; López-Benito, Saray; Barriga, Gerardo García-Díaz; Giralt, Albert; Alvarez-Periel, Elena; Arévalo, Juan Carlos; Alberch, Jordi; Ginés, Silvia; Brito, Verónica
2018-05-27
Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75 NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75 NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75 NTR expression. Genetic normalization of p75 NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75 NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75 NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75 NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75 NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75 NTR could be promising to prevent motor deficits in HD.
Nichols, Nicole L.; Satriotomo, Irawan; Harrigan, Daniel J.; Mitchell, Gordon S.
2015-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated superoxide dismutase-1 (SOD1G93A), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1G93A (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600µM; 12µL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms preserving/enhancing the capacity for pLTF in MT rats are not known. PMID:26287750
Ortiz-Abalia, Jon; Sahún, Ignasi; Altafaj, Xavier; Andreu, Núria; Estivill, Xavier; Dierssen, Mara; Fillat, Cristina
2008-01-01
Genetic-dissection studies carried out with Down syndrome (DS) murine models point to the critical contribution of Dyrk1A overexpression to the motor abnormalities and cognitive deficits displayed in DS individuals. In the present study we have used a murine model overexpressing Dyrk1A (TgDyrk1A mice) to evaluate whether functional CNS defects could be corrected with an inhibitory RNA against Dyrk1A, delivered by bilateral intrastriatal injections of adeno-associated virus type 2 (AAVshDyrk1A). We report that AAVshDyrk1A efficiently transduced HEK293 cells and primary neuronal cultures, triggering the specific inhibition of Dyrk1A expression. Injecting the vector into the striata of TgDyrk1A mice resulted in a restricted, long-term transduction of the striatum. This gene therapy was found to be devoid of toxicity and succeeded in normalizing Dyrk1A protein levels in TgDyrk1A mice. Importantly, the behavioral studies of the adult TgDyrk1A mice treated showed a reversal of corticostriatal-dependent phenotypes, as revealed by the attenuation of their hyperactive behavior, the restoration of motor-coordination defects, and an improvement in sensorimotor gating. Taken together, the data demonstrate that normalizing Dyrk1A gene expression in the striatum of adult TgDyrk1A mice, by means of AAVshRNA, clearly reverses motor impairment. Furthermore, these results identify Dyrk1A as a potential target for therapy in DS. PMID:18940310
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binukumar, BK; Gupta, Nidhi; Bal, Amanjit
Numerous epidemiological studies have shown an association between pesticide exposure and increased risk of developing Parkinson's diseases. Oxidative stress generated as a result of mitochondrial dysfunction has been implicated as an important factor in the etiology of Parkinson's disease. Previously, we reported that chronic dichlorvos exposure causes mitochondrial impairments and nigrostriatal neuronal death in rats. The present study was designed to test whether Coenzyme Q{sub 10} (CoQ{sub 10}) administration has any neuroprotective effect against dichlorvos mediated nigrostriatal neuronal death, {alpha}-synuclein aggregation, and motor dysfunction. Male albino rats were administered dichlorvos by subcutaneous injection at a dose of 2.5 mg/kg bodymore » weight over a period of 12 weeks. Results obtained there after showed that dichlorvos exposure leads to enhanced mitochondrial ROS production, {alpha}-synuclein aggregation, decreased dopamine and its metabolite levels resulting in nigrostriatal neurodegeneration. Pretreatment by Coenzyme Q{sub 10} (4.5 mg/kg ip for 12 weeks) to dichlorvos treated animals significantly attenuated the extent of nigrostriatal neuronal damage, in terms of decreased ROS production, increased dopamine and its metabolite levels, and restoration of motor dysfunction when compared to dichlorvos treated animals. Thus, the present study shows that Coenzyme Q{sub 10} administration may attenuate dichlorvos induced nigrostriatal neurodegeneration, {alpha}-synuclein aggregation and motor dysfunction by virtue of its antioxidant action. - Highlights: > CoQ{sub 10} administration attenuates dichlorvos induced nigrostriatal neurodegenaration. > CoQ{sub 10} pre treatment leads to preservation of TH-IR neurons. > CoQ{sub 10} may decrease oxidative damage and {alpha}-synuclin aggregation. > CoQ{sub 10} treatment enhances motor function and protects rats from catalepsy.« less
Schneider, Frank; Habel, Ute; Volkmann, Jens; Regel, Sabine; Kornischka, Jürgen; Sturm, Volker; Freund, Hans-Joachim
2003-03-01
High-frequency electrical stimulation of the subthalamic nucleus is a new and highly effective therapy for complications of long-term levodopa therapy and motor symptoms in advanced Parkinson disease (PD). Clinical observations indicate additional influence on emotional behavior. Electrical stimulation of deep brain nuclei with pulse rates above 100 Hz provokes a reversible, lesioning-like effect. Here, the effect of deep brain stimulation of the subthalamic nucleus on emotional, cognitive, and motor performance in patients with PD (n = 12) was examined. The results were compared with the effects of a suprathreshold dose of levodopa intended to transiently restore striatal dopamine deficiency. Patients were tested during medication off/stimulation off (STIM OFF), medication off/stimulation on (STIM ON), and during the best motor state after taking levodopa without deep brain stimulation (MED). More positive self-reported mood and an enhanced mood induction effect as well as improvement in emotional memory during STIM ON were observed, while during STIM OFF, patients revealed reduced emotional performance. Comparable effects were revealed by STIM ON and MED. Cognitive performance was not affected by the different conditions and treatments. Deep brain stimulation of the subthalamic nucleus selectively enhanced affective processing and subjective well-being and seemed to be antidepressive. Levodopa and deep brain stimulation had similar effects on emotion. This finding may provide new clues about the neurobiologic bases of emotion and mood disorders, and it illustrates the important role of the basal ganglia and the dopaminergic system in emotional processing in addition to the well-known motor and cognitive functions.
Zhao, Wei; Varghese, Merina; Vempati, Prashant; Dzhun, Anastasiya; Cheng, Alice; Wang, Jun; Lange, Dale; Bilski, Amanda; Faravelli, Irene; Pasinetti, Giulio Maria
2012-01-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients. PMID:23145119
Zhao, Wei; Varghese, Merina; Vempati, Prashant; Dzhun, Anastasiya; Cheng, Alice; Wang, Jun; Lange, Dale; Bilski, Amanda; Faravelli, Irene; Pasinetti, Giulio Maria
2012-01-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients.
Molecular motors and their functions in plants
NASA Technical Reports Server (NTRS)
Reddy, A. S.
2001-01-01
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.
Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta
2015-01-01
Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning. © The Author(s) 2014.
Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M K; Chang, Ya-Ju
2015-01-01
Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.).
Forest restoration, biodiversity and ecosystem functioning.
Aerts, Raf; Honnay, Olivier
2011-11-24
Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.
Cerebral palsy in Victoria: motor types, topography and gross motor function.
Howard, Jason; Soo, Brendan; Graham, H Kerr; Boyd, Roslyn N; Reid, Sue; Lanigan, Anna; Wolfe, Rory; Reddihough, Dinah S
2005-01-01
To study the relationships between motor type, topographical distribution and gross motor function in a large, population-based cohort of children with cerebral palsy (CP), from the State of Victoria, and compare this cohort to similar cohorts from other countries. An inception cohort was generated from the Victorian Cerebral Palsy Register (VCPR) for the birth years 1990-1992. Demographic information, motor types and topographical distribution were obtained from the register and supplemented by grading gross motor function according to the Gross Motor Function Classification System (GMFCS). Complete data were obtained on 323 (86%) of 374 children in the cohort. Gross motor function varied from GMFCS level I (35%) to GMFCS level V (18%) and was similar in distribution to a contemporaneous Swedish cohort. There was a fairly even distribution across the topographical distributions of hemiplegia (35%), diplegia (28%) and quadriplegia (37%) with a large majority of young people having the spastic motor type (86%). The VCPR is ideal for population-based studies of gross motor function in children with CP. Gross motor function is similar in populations of children with CP in developed countries but the comparison of motor types and topographical distribution is difficult because of lack of consensus with classification systems. Use of the GMFCS provides a valid and reproducible method for clinicians to describe gross motor function in children with CP using a universal language.
HEAVEN: The Frankenstein effect
Canavero, Sergio; Ren, XiaoPing; Kim, C. Yoon
2016-01-01
The HEAVEN head transplant initiative needs human data concerning the acute restoration of motor transmission after application of fusogens to the severed cord in man. Data from two centuries ago prove that a fresh cadaver, after hanging or decapitation, can be mobilized by electrical stimulation for up to 3 hours. By administering spinal cord stimulation by applied paddles to the cord or transcranial magnetic stimulation to M1 and recording motor evoked potentials, it should be possible to test fusogens in fresh cadavers. Delayed neuronal death might be the neuropathological reason. PMID:27656323
Contemporary forest restoration: A review emphasizing function
John A. Stanturf; Brian J. Palik; R. Kasten Dumroese
2014-01-01
The forest restoration challenge (globally 2 billion ha) and the prospect of changing climate with increasing frequency of extreme events argues for approaching restoration from a functional and landscape perspective. Because the practice of restoration utilizes many techniques common to silviculture, no clear line separates ordinary forestry practices from restoration...
de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael
2015-11-03
The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.
Vincristine and fine motor function of children with acute lymphoblastic leukemia
Sabarre, Cheryl L; Rassekh, Shahrad R; Zwicker, Jill G
2014-10-01
Children with acute lymphoblastic leukemia receive vincristine, a chemotherapy drug known to cause peripheral neuropathy. Yet, few studies have examined the association of vincristine to fine motor function. This study will describe the fine motor skills and function of children with acute lymphoblastic leukemia on maintenance vincristine. A prospective case series design assessed manual dexterity and parent-reported fine motor dysfunction of 15 children with acute lymphoblastic leukemia in relation to cumulative vincristine exposure. Almost half of the participants had below-average fine motor skills compared to age-related norms, and 57% of parents observed functional motor problems in their children. No significant associations were found between vincristine, manual dexterity, and functional motor skills. Early detection and intervention for fine motor difficulties is suggested. Research with a larger sample is necessary to further explore the association of vincristine and fine motor function in this clinical population.
Holloway, Jamie M; Long, Toby M; Biasini, Fred
2018-05-02
The purpose of this study was to examine the relationship between gross motor skills and social function in young boys with autism spectrum disorder. Twenty-one children with autism spectrum disorder participated in the study. The Peabody Developmental Motor Scales Second Edition and the Miller Function and Participation Scales were used to assess gross motor skills. The Social Skills Improvement System Rating Scales was used to assess social function. Moderately high correlations were found between overall gross motor and social skills (r = 0.644) and between the core stability motor subtest and overall social skills (r = -0.672). Specific motor impairments in stability, motor accuracy, and object manipulation scores were predictive of social function. This study suggests that motor skills and social function are related in young boys with autism. Implications for physical therapy intervention are also discussed.
Zhang, Z; Guth, L; Steward, O
1998-01-01
Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.
Luz, Carolina Lundberg; Moura, Maria Clara Drummond Soares de; Becker, Karine Kyomi; Teixeira, Rosani Aparecida Antunes; Voos, Mariana Callil; Hasue, Renata Hydee
2017-08-01
Motor function, cognition, functional independence and quality of life have been described in myelomeningocele patients, but no study has investigated their relationships. We aimed to investigate the relationships between motor function, cognition, functional independence, quality of life, age, and lesion level in myelomeningocele patients, and investigate the influence of hydrocephalus on these variables. We assessed 47 patients with the Gross Motor Function Measure (motor function), Raven's Colored Progressive Matrices (cognition), Pediatric Evaluation of Disability Inventory (functional independence) and the Autoquestionnaire Qualité de vie Enfant Imagé (quality of life). Spearman's correlation tests determined relationships between the variables. The Friedman ANOVAs determined the influence of hydrocephalus. Motor function was strongly related to mobility and lesion level, and moderately related to cognition, self-care and social function. Cognition and quality of life were moderately related to functional independence. Age correlated moderately with functional independence and quality of life. Hydrocephalus resulted in poorer motor/cognitive outcomes and lower functional independence.
Riessland, Markus; Kaczmarek, Anna; Schneider, Svenja; Swoboda, Kathryn J; Löhr, Heiko; Bradler, Cathleen; Grysko, Vanessa; Dimitriadi, Maria; Hosseinibarkooie, Seyyedmohsen; Torres-Benito, Laura; Peters, Miriam; Upadhyay, Aaradhita; Biglari, Nasim; Kröber, Sandra; Hölker, Irmgard; Garbes, Lutz; Gilissen, Christian; Hoischen, Alexander; Nürnberg, Gudrun; Nürnberg, Peter; Walter, Michael; Rigo, Frank; Bennett, C Frank; Kye, Min Jeong; Hart, Anne C; Hammerschmidt, Matthias; Kloppenburg, Peter; Wirth, Brunhilde
2017-02-02
Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca 2+ -dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Dual autonomic inhibitory action of central Apelin on gastric motor functions in rats.
Bülbül, Mehmet; Sinen, Osman
2018-07-01
Centrally administered apelin has been shown to inhibit gastric emptying (GE) in rodents, however, the relevant mechanism has been investigated incompletely. Using male Wistar rats, we investigated the efferent pathways involved in gastroinhibitory action of central apelin. Stereotaxic intracerebroventricular (icv) cannulation, subdiaphragmatic vagotomy (VGX) and/or celiac ganglionectomy (CGX) were performed 7 days prior to the experiments. Apelin-13 was administered (30 nmol, icv) 90 min prior to GE measurement. Nitric oxide synthase inhibitor L-NAME (100 mg/kg), sympatholytic agent guanethidine (5 mg/kg) and/or muscarinic receptor agonist bethanechol (1 mg/kg) were administered intraperitoneally 30 min prior to the central apelin-13 injection. Two strain gages were implanted serosally onto antrum and pylorus to monitor gastric postprandial motility. Heart rate variability (HRV) analysis was performed before and after central vehicle or apelin-13 administration. Apelin-13 delayed solid GE significantly by disturbing coordinated antral and pyloric postprandial contractions. The apelin-induced delayed GE was attenuated partially by CGX or VGX, whereas it was restored completely in rats underwent both CGX and VGX. L-NAME did not change the apelin-induced alterations. Guanethidine or bethanechol restored the apelin-induced gastroinhibition partially, while it was abolished completely in rats received both agents. Apelin-13 decreased the HRV spectral activity in high-frequency range by increasing low-frequency component and the ratio of LF:HF. The present data suggest that (1) both vagal parasympathetic and sympathetic pathways play a role in apelin-induced gastroinhibition, (2) central apelin attenuates vagal cholinergic pathway rather than activating nonadrenergic-noncholinergic pathway. Apelin/APJ receptor system might be candidate for the treatment of autonomic dysfunction and gastrointestinal motor disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Xiang-Hong; Wang, Jin-Yan; Gao, Ge; Chang, Jing-Yu; Woodward, Donald J; Luo, Fei
2010-05-15
Deep brain stimulation (DBS) has been used in the clinic to treat Parkinson's disease (PD) and other neuropsychiatric disorders. Our previous work has shown that DBS in the subthalamic nucleus (STN) can improve major motor deficits, and induce a variety of neural responses in rats with unilateral dopamine (DA) lesions. In the present study, we examined the effect of STN DBS on reaction time (RT) performance and parallel changes in neural activity in the cortico-basal ganglia regions of partially bilateral DA- lesioned rats. We recorded neural activity with a multiple-channel single-unit electrode system in the primary motor cortex (MI), the STN, and the substantia nigra pars reticulata (SNr) during RT test. RT performance was severely impaired following bilateral injection of 6-OHDA into the dorsolateral part of the striatum. In parallel with such behavioral impairments, the number of responsive neurons to different behavioral events was remarkably decreased after DA lesion. Bilateral STN DBS improved RT performance in 6-OHDA lesioned rats, and restored operational behavior-related neural responses in cortico-basal ganglia regions. These behavioral and electrophysiological effects of DBS lasted nearly an hour after DBS termination. These results demonstrate that a partial DA lesion-induced impairment of RT performance is associated with changes in neural activity in the cortico-basal ganglia circuit. Furthermore, STN DBS can reverse changes in behavior and neural activity caused by partial DA depletion. The observed long-lasting beneficial effect of STN DBS suggests the involvement of the mechanism of neural plasticity in modulating cortico-basal ganglia circuits. (c) 2009 Wiley-Liss, Inc.
Gantner, Carlos W.; Alsanie, Walaa F.; McDougall, Stuart J.; Bye, Chris R.; Elefanty, Andrew G.; Stanley, Edouard G.; Haynes, John M.; Pouton, Colin W.; Thompson, Lachlan H.
2016-01-01
Abstract Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)‐derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson’s disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder‐ and xenogeneic‐free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock‐in lines (LMX1A‐eGFP and PITX3‐eGFP) for in‐depth in vitro and in vivo tracking. Across multiple embryonic and induced hPSC lines, this “next generation” protocol consistently increases both the yield and proportion of vmDA neural progenitors (OTX2/FOXA2/LMX1A) and neurons (FOXA2/TH/PITX3) that display classical vmDA metabolic and electrophysiological properties. We identify the mechanism underlying these improvements and demonstrate clinical applicability with the first report of scalability and cryopreservation of bona fide vmDA progenitors at a time amenable to transplantation. Finally, transplantation of xeno‐free vmDA progenitors from LMX1A‐ and PITX3‐eGFP reporter lines into Parkinsonian rodents demonstrates improved engraftment outcomes and restoration of motor deficits. These findings provide important and necessary advancements for the translation of hPSC‐derived neurons into the clinic. Stem Cells Translational Medicine 2017;6:937–948 PMID:28297587
Knudsen, Eric B; Moxon, Karen A
2017-01-01
Single neuron and local field potential signals recorded in the primary motor cortex have been repeatedly demonstrated as viable control signals for multi-degree-of-freedom actuators. Although the primary source of these signals has been fore/upper limb motor regions, recent evidence suggests that neural adaptation underlying neuroprosthetic control is generalizable across cortex, including hindlimb sensorimotor cortex. Here, adult rats underwent a longitudinal study that included a hindlimb pedal press task in response to cues for specific durations, followed by brain machine interface (BMI) tasks in healthy rats, after rats received a complete spinal transection and after the BMI signal controls epidural stimulation (BMI-FES). Over the course of the transition from learned behavior to BMI task, fewer neurons were responsive after the cue, the proportion of neurons selective for press duration increased and these neurons carried more information. After a complete, mid-thoracic spinal lesion that completely severed both ascending and descending connections to the lower limbs, there was a reduction in task-responsive neurons followed by a reacquisition of task selectivity in recorded populations. This occurred due to a change in pattern of neuronal responses not simple changes in firing rate. Finally, during BMI-FES, additional information about the intended press duration was produced. This information was not dependent on the stimulation, which was the same for short and long duration presses during the early phase of stimulation, but instead was likely due to sensory feedback to sensorimotor cortex in response to movement along the trunk during the restored pedal press. This post-cue signal could be used as an error signal in a continuous decoder providing information about the position of the limb to optimally control a neuroprosthetic device.
Relation between hand function and gross motor function in full term infants aged 4 to 8 months
Nogueira, Solange F.; Figueiredo, Elyonara M.; Gonçalves, Rejane V.; Mancini, Marisa C.
2015-01-01
Background: In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. Objective: To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. Method: The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. Results: Results revealed a significant increase in the number of reaches (p<0.001), the time of manipulation (p<0.001) and gross motor function (p<0.001) over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001) and manipulation and gross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. Conclusion: The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development. PMID:25714437
Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation
Devinney, Michael J.; Nichols, Nicole L.
2016-01-01
Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal motor plasticity. Competing mechanisms give rise to phrenic motor facilitation (pMF; a general term including pLTF) depending on the severity of hypoxia within episodes. In contrast, moderate acute sustained hypoxia (mASH) does not elicit pMF. By varying the severity of ASH and targeting competing mechanisms of pMF, we sought to illustrate why moderate AIH (mAIH) elicits pMF but mASH does not. Although mAIH elicits serotonin-dependent pLTF, mASH does not; thus, mAIH-induced pLTF is pattern sensitive. In contrast, severe AIH (sAIH) elicits pLTF through adenosine-dependent mechanisms, likely from greater extracellular adenosine accumulation. Because serotonin- and adenosine-dependent pMF interact via cross talk inhibition, we hypothesized that pMF is obscured because the competing mechanisms of pMF are balanced and offsetting during mASH. Here, we demonstrate the following: (1) blocking spinal A2A receptors with MSX-3 reveals mASH-induced pMF; and (2) sASH elicits A2A-dependent pMF. In anesthetized rats pretreated with intrathecal A2A receptor antagonist injections before mASH (PaO2 = 40–54 mmHg) or sASH (PaO2 = 25–36 mmHg), (1) mASH induced a serotonin-dependent pMF and (2) sASH induced an adenosine-dependent pMF, which was enhanced by spinal serotonin receptor inhibition. Thus, competing adenosine- and serotonin-dependent mechanisms contribute differentially to pMF depending on the pattern/severity of hypoxia. Understanding interactions between these mechanisms has clinical relevance as we develop therapies to treat severe neuromuscular disorders that compromise somatic motor behaviors, including breathing. Moreover, these results demonstrate how competing mechanisms of plasticity can give rise to pattern sensitivity in pLTF. SIGNIFICANCE STATEMENT Intermittent hypoxia elicits pattern-sensitive spinal plasticity and improves motor function after spinal injury or during neuromuscular disease. Specific mechanisms of pattern sensitivity in this form of plasticity are unknown. We provide evidence that competing mechanisms of phrenic motor facilitation mediated by adenosine 2A and serotonin 2 receptors are differentially expressed, depending on the pattern/severity of hypoxia. Understanding how these distinct mechanisms interact during hypoxic exposures differing in severity and duration will help explain interesting properties of plasticity, such as pattern sensitivity, and may help optimize therapies to restore motor function in patients with neuromuscular disorders that compromise movement. PMID:27466333
Body machine interfaces for neuromotor rehabilitation: a case study.
Pierella, Camilla; Abdollahi, Farnaz; Farshchiansadegh, Ali; Pedersen, Jessica; Chen, David; Mussa-Ivaldi, Ferdinando A; Casadio, Maura
2014-01-01
High-level spinal cord injury (SCI) survivors face every day two related problems: recovering motor skills and regaining functional independence. Body machine interfaces (BoMIs) empower people with sever motor disabilities with the ability to control an external device, but they also offer the opportunity to focus concurrently on achieving rehabilitative goals. In this study we developed a portable, and low-cost BoMI that addresses both problems. The BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer monitor. By controlling the cursor, the user can perform functional tasks, such as entering text and playing games. This framework also allows the mapping between the body and the cursor space to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change the behavior of our SCI subject, who initially used almost exclusively his less impaired degrees of freedom - on the left side - for controlling the BoMI. At the end of the few practice sessions he had restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom involved in the control of the interface. This is the first proof of concept that our BoMI can be used to control assistive devices and reach specific rehabilitative goals simultaneously.
Calpeptin is neuroprotective against acrylamide-induced neuropathy in rats.
Su, Benyu; Guan, Qiangdong; Wang, Miaomiao; Liu, Ning; Wei, Xiaomin; Wang, Shue; Yang, Xiwei; Jiang, Wenchong; Xu, Mengmeng; Yu, Sufang
2018-05-01
The aim of this study is to explore the potent neuroprotective effect of calpeptin (CP) on neuron damage induced by acrylamide (ACR) and its mechanism. Behavioural indicators such as hind limb splay, rota-rod performance, and gait analysis were assessed weekly to evaluate neurobehavioural changes after ACR and/or CP administration. The histopathological alterations and the changes of μ-calpain, m-calpain, microtubule-associated protein 2 (MAP2), and α-tubulin and β-tubulin protein levels in spinal cord were determined. Results showed that after administration of 30 mg/kg ACR, decreased body weight, attenuated neurobehavioural function, injury of motor neuron, increased protein levels of m-calpain and β-tubulin, suppressed MAP2 protein level, and no significant changes of μ-calpain and α-tubulin protein levels were observed compared with the control group rats. After administration of 200 μg/kg CP, partially restored body weight and neurobehavioural function, improvement of motor neuron injury, decreased protein levels of m- calpain and β-tubulin, and reversed effects of MAP2 protein level were observed compared with the ACR group rats. Our results suggested that CP alleviates neuropathy induced by ACR in rats. The calpain's overactivation causes the degrading of MAP2 and eventually leads to the destruction of microtubules (MTs), which may be one of the mechanisms of cytoskeletal damage induced by ACR. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Dianyou; Zhang, Chencheng; Gault, Judith; Wang, Wei; Liu, Jianmin; Shao, Ming; Zhao, Yanyan; Zeljic, Kristina; Gao, Guodong; Sun, Bomin
2017-01-01
Deep brain stimulation (DBS) is the most commonly performed surgery for the debilitating symptoms of Parkinson disease (PD). However, DBS systems remain largely unaffordable to patients in developing countries, warranting the development of a safe, economically viable, and functionally comparable alternative. To investigate the efficacy and safety of wirelessly programmed DBS of bilateral subthalamic nucleus (STN) in patients with primary PD. Sixty-four patients with primary PD were randomly divided into test and control groups (1:1), where DBS was initiated at either 1 month or 3 months, respectively, after surgery. Safety and efficacy of the treatment were compared between on- and off-medication states 3 months after surgery. Outcome measures included analysis of Unified Parkinson's Disease Rating Scale (UPDRS) scores, duration of "on" periods, and daily equivalent doses of levodopa. All patients were followed up both 6 and 12 months after surgery. Three months after surgery, significant decrease in the UPDRS motor scores were observed for the test group in the off-medication state (25.08 ± 1.00) versus the control group (4.20 ± 1.99). Bilateral wireless programming STN-DBS is safe and effective for patients with primary PD in whom medical management has failed to restore motor function. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
White, J. C.; Hill, M. J.; Bickerton, M. A.; Wood, P. J.
2017-09-01
The widespread degradation of lotic ecosystems has prompted extensive river restoration efforts globally, but many studies have reported modest ecological responses to rehabilitation practices. The functional properties of biotic communities are rarely examined within post-project appraisals, which would provide more ecological information underpinning ecosystem responses to restoration practices and potentially pinpoint project limitations. This study examines macroinvertebrate community responses to three projects which aimed to physically restore channel morphologies. Taxonomic and functional trait compositions supported by widely occurring lotic habitats (biotopes) were examined across paired restored and non-restored (control) reaches. The multivariate location (average community composition) of taxonomic and functional trait compositions differed marginally between control and restored reaches. However, changes in the amount of multivariate dispersion were more robust and indicated greater ecological heterogeneity within restored reaches, particularly when considering functional trait compositions. Organic biotopes (macrophyte stands and macroalgae) occurred widely across all study sites and supported a high alpha (within-habitat) taxonomic diversity compared to mineralogical biotopes (sand and gravel patches), which were characteristic of restored reaches. However, mineralogical biotopes possessed a higher beta (between-habitat) functional diversity, although this was less pronounced for taxonomic compositions. This study demonstrates that examining the functional and structural properties of taxa across distinct biotopes can provide a greater understanding of biotic responses to river restoration works. Such information could be used to better understand the ecological implications of rehabilitation practices and guide more effective management strategies.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... period long enough to provide restorative sleep regardless of the number of hours worked prior to the... No. FMCSA-2004-19608] RIN 2126-AB26 Hours of Service AGENCY: Federal Motor Carrier Safety... hold three public listening sessions to solicit comments and information on potential hours-of- service...
Motor function domains in alternating hemiplegia of childhood.
Masoud, Melanie; Gordon, Kelly; Hall, Amanda; Jasien, Joan; Lardinois, Kara; Uchitel, Julie; Mclean, Melissa; Prange, Lyndsey; Wuchich, Jeffrey; Mikati, Mohamad A
2017-08-01
To characterize motor function profiles in alternating hemiplegia of childhood, and to investigate interrelationships between these domains and with age. We studied a cohort of 23 patients (9 males, 14 females; mean age 9y 4mo, range 4mo-43y) who underwent standardized tests to assess gross motor, upper extremity motor control, motor speech, and dysphagia functions. Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure-88 (GMFM-88), Manual Ability Classification System (MACS), and Revised Melbourne Assessment (MA2) scales manifested predominantly mild impairments; motor speech, moderate to severe; Modified Dysphagia Outcome and Severity Scale (M-DOSS), mild-to moderate deficits. GMFCS correlated with GMFM-88 scores (Pearson's correlation, p=0.002), MACS (p=0.038), and MA2 fluency (p=0.005) and accuracy (p=0.038) scores. GMFCS did not correlate with motor speech (p=0.399), MA2 dexterity (p=0.247), range of motion (p=0.063), or M-DOSS (p=0.856). Motor speech was more severely impaired than the GMFCS (p<0.013). There was no correlation between any of the assessment tools and age (p=0.210-0.798). Our data establish a detailed profile of motor function in alternating hemiplegia of childhood, argue against the presence of worse motor function in older patients, identify tools helpful in evaluating this population, and identify oropharyngeal function as the more severely affected domain, suggesting that brain areas controlling this function are more affected than others. © 2017 Mac Keith Press.
Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.
2016-01-01
Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794
Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge
2015-01-01
The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring dopamine neurons in Parkinson’s disease. PMID:25693197
Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.
2012-01-01
Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650
Surgical Treatment Options for Subacute Ischemia of the Hand: Case Report and Literature Review
Dunn, Ashley A.; Belek, Kyle A.; Devcic, Zlatko; Rathnayake, Samira; Kuo, Jennifer H.; Kuri, Mauricio; Chang, David S.; Hansen, Scott L.
2010-01-01
Purpose: The most effective surgical approach to the treatment of digital ischemia has not yet been established. The purpose of this study is to review currently accepted options for revascularization in acute and chronic settings of digital ischemia, and to augment this discussion by describing the approach of our surgical team in a unique case of subacute ischemia. Operative Technique: To restore blood flow to a patient's ischemic hand, we performed a microvascular reconstruction, using a reverse interpositional vein graft with 3 anastomoses: the ulnar artery was used for inflow and the superficial palmar arch and the common digital artery were used for outflow. Results: The patient experienced immediate postoperative pain relief. Blood flow was restored, which prevented digital amputation. The graft remained patent at 18 months' follow-up and the patient exhibited normal motor and sensory function. Conclusions: Surgical reconstruction of the hand is a viable treatment option for carefully selected patients presenting with subacute digital ischemia. Other medical and surgical techniques have been described in the recent literature, but further study is needed to determine the long-term success of newer microsurgical interventions. PMID:20396617
Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.
Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro
2012-07-30
Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Tat, D. M.; Bullard, A. J.; Woo, S. L.; Sando, I. C.; Urbanchek, M. G.; Cederna, P. S.; Chestek, C. A.
2016-08-01
Objective. Loss of even part of the upper limb is a devastating injury. In order to fully restore natural function when lacking sufficient residual musculature, it is necessary to record directly from peripheral nerves. However, current approaches must make trade-offs between signal quality and longevity which limit their clinical potential. To address this issue, we have developed the regenerative peripheral nerve interface (RPNI) and tested its use in non-human primates. Approach. The RPNI consists of a small, autologous partial muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft acts as a bioamplifier for descending motor commands in the nerve, enabling long-term recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two rhesus macaques who were trained to perform cued finger movements. Main results. No adverse events were noted in either monkey, and we recorded normal EMG with high SNR (>8) from the RPNIs for up to 20 months post-implantation. Using RPNI signals recorded during the behavioral task, we were able to classify each monkey’s finger movements as flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic control, allowing the monkeys to perform the same behavioral task equally well with either physical finger movements or RPNI-based movement classifications. Significance. The RPNI signal strength, stability, and longevity demonstrated here represents a promising method for controlling advanced prosthetic limbs and fully restoring natural movement.
Irwin, Z T; Schroeder, K E; Vu, P P; Tat, D M; Bullard, A J; Woo, S L; Sando, I C; Urbanchek, M G; Cederna, P S; Chestek, C A
2016-08-01
Loss of even part of the upper limb is a devastating injury. In order to fully restore natural function when lacking sufficient residual musculature, it is necessary to record directly from peripheral nerves. However, current approaches must make trade-offs between signal quality and longevity which limit their clinical potential. To address this issue, we have developed the regenerative peripheral nerve interface (RPNI) and tested its use in non-human primates. The RPNI consists of a small, autologous partial muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft acts as a bioamplifier for descending motor commands in the nerve, enabling long-term recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two rhesus macaques who were trained to perform cued finger movements. No adverse events were noted in either monkey, and we recorded normal EMG with high SNR (>8) from the RPNIs for up to 20 months post-implantation. Using RPNI signals recorded during the behavioral task, we were able to classify each monkey's finger movements as flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic control, allowing the monkeys to perform the same behavioral task equally well with either physical finger movements or RPNI-based movement classifications. The RPNI signal strength, stability, and longevity demonstrated here represents a promising method for controlling advanced prosthetic limbs and fully restoring natural movement.
2015-10-01
AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff
Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation.
Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki
2017-01-01
Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis.
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson's disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson's disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient's static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson's disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson's disease.
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson’s disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson’s disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient’s static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson’s disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson’s disease. PMID:28210066
Pechlaner, S; Hussl, H
1998-01-01
The hand is very exposed to injuries in the daily man's work. The multiple functions of the hand are based on vitality, sensibility, motor function and stability. In severe hand injuries the functional results of the repair are often very poor. In a complex injury of the hand we are faced with the damage of the soft tissue and bone and the loss of vitality and function of the hand. The cause of hand injuries are mainly a crush trauma or the rotating saw. Basically, we recommend an extended primary repair. After the radical debridement we have to reconstruct the damaged structures. We start doing the osteosynthesis and stabilization of the joints. Thereafter, suturing of extensor and flexor tendons. Then, we do the microsurgical reconstructions of vessels and nerves. In case tendons and bones are exposed we have to cover the defect with a pedicled or a free flap. In a long ischemic time we have to change our concept and do the reconstruction of the vessels first. Our results in vitality and sensibility are listed. In the result of a complex hand injury each single functional restoration is very important. Therefore, it is necessary that severe hand injuries are treated at well established centres for hand surgery.
Restoring the sense of touch with a prosthetic hand through a brain interface.
Tabot, Gregg A; Dammann, John F; Berg, Joshua A; Tenore, Francesco V; Boback, Jessica L; Vogelstein, R Jacob; Bensmaia, Sliman J
2013-11-05
Our ability to manipulate objects dexterously relies fundamentally on sensory signals originating from the hand. To restore motor function with upper-limb neuroprostheses requires that somatosensory feedback be provided to the tetraplegic patient or amputee. Given the complexity of state-of-the-art prosthetic limbs and, thus, the huge state space they can traverse, it is desirable to minimize the need for the patient to learn associations between events impinging on the limb and arbitrary sensations. Accordingly, we have developed approaches to intuitively convey sensory information that is critical for object manipulation--information about contact location, pressure, and timing--through intracortical microstimulation of primary somatosensory cortex. In experiments with nonhuman primates, we show that we can elicit percepts that are projected to a localized patch of skin and that track the pressure exerted on the skin. In a real-time application, we demonstrate that animals can perform a tactile discrimination task equally well whether mechanical stimuli are delivered to their native fingers or to a prosthetic one. Finally, we propose that the timing of contact events can be signaled through phasic intracortical microstimulation at the onset and offset of object contact that mimics the ubiquitous on and off responses observed in primary somatosensory cortex to complement slowly varying pressure-related feedback. We anticipate that the proposed biomimetic feedback will considerably increase the dexterity and embodiment of upper-limb neuroprostheses and will constitute an important step in restoring touch to individuals who have lost it.
Is restoring an ecosystem good for your health?
Speldewinde, P C; Slaney, D; Weinstein, P
2015-01-01
It is well known that the degradation of ecosystems can have serious impacts on human health. There is currently a knowledge gap on what impact restoring ecosystems has on human health. In restoring ecosystems there is a drive to restore the functionality of ecosystems rather than restoring ecosystems to 'pristine' condition. Even so, the complete restoration of all ecosystem functions is not necessarily possible. Given the uncertain trajectory of the ecosystem during the ecosystem restoration process the impact of the restoration on human health is also uncertain. Even with this uncertainty, the restoration of ecosystems for human health is still a necessity. Copyright © 2014 Elsevier B.V. All rights reserved.
Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M
2017-04-01
The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.
Gupta, Rahul; Ashe, James
2009-06-01
Brain-machine interfaces (BMIs) hold a lot of promise for restoring some level of motor function to patients with neuronal disease or injury. Current BMI approaches fall into two broad categories--those that decode discrete properties of limb movement (such as movement direction and movement intent) and those that decode continuous variables (such as position and velocity). However, to enable the prosthetic devices to be useful for common everyday tasks, precise control of the forces applied by the end-point of the prosthesis (e.g., the hand) is also essential. Here, we used linear regression and Kalman filter methods to show that neural activity recorded from the motor cortex of the monkey during movements in a force field can be used to decode the end-point forces applied by the subject successfully and with high fidelity. Furthermore, the models exhibit some generalization to novel task conditions. We also demonstrate how the simultaneous prediction of kinematics and kinetics can be easily achieved using the same framework, without any degradation in decoding quality. Our results represent a useful extension of the current BMI technology, making dynamic control of a prosthetic device a distinct possibility in the near future.
Speers, Allison M.; Schindler, Bryan D.; Hwang, Jihwan; Genc, Aycin; Reguera, Gemma
2016-01-01
The metal-reducing bacterium Geobacter sulfurreducens requires the expression of conductive pili to reduce iron oxides and to wire electroactive biofilms, but the role of pilus retraction in these functions has remained elusive. Here we show that of the four PilT proteins encoded in the genome of G. sulfurreducens, PilT3 powered pilus retraction in planktonic cells of a PilT-deficient strain of P. aeruginosa and restored the dense mutant biofilms to wild-type levels. Furthermore, PilT3 and PilT4 rescued the twitching motility defect of the PilT-deficient mutant. However, PilT4 was the only paralog whose inactivation in G. sulfurreducens lead to phenotypes associated with the hyperpiliation of non-retractile mutants such as enhanced adhesion and biofilm-forming abilities. In addition, PilT4 was required to reduce iron oxides. Taken together, the results indicate that PilT4 is the motor ATPase of G. sulfurreducens pili and reveal a previously unrecognized role for pilus retraction in extracellular electron transfer, a strategy that confers on Geobacter spp. an adaptive advantage for metal reduction in the natural environment. PMID:27799920
Pani, Danilo; Barabino, Gianluca; Citi, Luca; Meloni, Paolo; Raspopovic, Stanisa; Micera, Silvestro; Raffo, Luigi
2016-09-01
The control of upper limb neuroprostheses through the peripheral nervous system (PNS) can allow restoring motor functions in amputees. At present, the important aspect of the real-time implementation of neural decoding algorithms on embedded systems has been often overlooked, notwithstanding the impact that limited hardware resources have on the efficiency/effectiveness of any given algorithm. Present study is addressing the optimization of a template matching based algorithm for PNS signals decoding that is a milestone for its real-time, full implementation onto a floating-point digital signal processor (DSP). The proposed optimized real-time algorithm achieves up to 96% of correct classification on real PNS signals acquired through LIFE electrodes on animals, and can correctly sort spikes of a synthetic cortical dataset with sufficiently uncorrelated spike morphologies (93% average correct classification) comparably to the results obtained with top spike sorter (94% on average on the same dataset). The power consumption enables more than 24 h processing at the maximum load, and latency model has been derived to enable a fair performance assessment. The final embodiment demonstrates the real-time performance onto a low-power off-the-shelf DSP, opening to experiments exploiting the efferent signals to control a motor neuroprosthesis.
TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination.
Palazuelos, Javier; Crawford, Howard C; Klingener, Michael; Sun, Bingru; Karelis, Jason; Raines, Elaine W; Aguirre, Adan
2014-09-03
Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination. Copyright © 2014 the authors 0270-6474/14/3411884-13$15.00/0.
Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo
2011-01-01
This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE
Motoneuron regeneration accuracy and recovery of gait after femoral nerve injuries in rats.
Kruspe, M; Thieme, H; Guntinas-Lichius, O; Irintchev, A
2014-11-07
The rat femoral nerve is a valuable model allowing studies on specificity of motor axon regeneration. Despite common use of this model, the functional consequences of femoral nerve lesions and their relationship to precision of axonal regeneration have not been evaluated. Here we assessed gait recovery after femoral nerve injuries of varying severity in adult female Wistar rats using a video-based approach, single-frame motion analysis (SFMA). After nerve crush, recovery was complete at 4 weeks after injury (99% of maximum 100% as estimated by a recovery index). Functional restoration after nerve section/suture was much slower and incomplete (84%) even 20 weeks post-surgery. A 5-mm gap between the distal and proximal nerve stumps additionally delayed recovery and worsened the outcome (68% recovery). As assessed by retrograde labeling in the same rats at 20 weeks after injury, the anatomical outcome was also dependent on lesion severity. After nerve crush, 97% of the femoral motoneurons (MNs) had axons correctly projecting only into the distal quadriceps branch of the femoral nerve. The percentage of correctly projecting MNs was only 55% and 15% after nerve suture and gap repair, respectively. As indicated by regression analyses, better functional recovery was associated with higher numbers of correctly projecting MNs and, unexpectedly, lower numbers of MNs projecting to both muscle and skin. The data show that type of nerve injury and repair profoundly influence selectivity of motor reinnervation and, in parallel, functional outcome. The results also suggest that MNs' projection patterns may influence their contribution to muscle performance. In addition to the experiments described above, we performed repeated measurements and statistical analyses to validate the SFMA. The results revealed high accuracy and reproducibility of the SFMA measurements. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Jin, Ying; Bouyer, Julien; Haas, Christopher; Fischer, Itzhak
2014-07-01
Moderate and severe spinal cord contusion injuries have been extensively studied, yet much less is known about mild injuries. Mild contusions result in transient functional deficits, proceeding to near-complete recovery, but they may render the spinal cord vulnerable to future injuries. However, to date there have been no appropriate models to study the behavioral consequences, anatomical changes, and susceptibility of a mild contusion to repeated injuries, which may occur in children as well as adults during competitive sport activities. We have developed a novel mild spinal cord contusion injury model characterized by a sequence of transient functional deficits after the first injury and restoration to near-complete motor and sensory function, which is then followed up by a second injury. This model can serve not only to study the effects of repeated injuries on behavioral and anatomical changes, but also to examine the relationship between successive tissue damage and recovery of function. In the present study, we confirmed that mild thoracic spinal cord contusion, utilizing the NYU impactor device, resulted in localized tissue damage, characterized by a cystic cavity and peripheral rim of spared white matter at the injury epicenter, and rapid functional recovery to near-normal levels utilizing several behavioral tests. Repeated injury after 3weeks, when functional recovery has been completed, resulted in worsening of both motor and sensory function, which did not recover to prior levels. Anatomical analyses showed no differences in the volumes of spared white matter, lesion, or cyst, but revealed modest extension of lesion area rostral to the injury epicenter as well as an increase in inflammation and apoptosis. These studies demonstrate that a mild injury model can be used to test efficacy of treatments for repeated injuries and may serve to assist in the formulation of policies and clinical practice regarding mild SCI injury and spinal concussion. Copyright © 2014 Elsevier Inc. All rights reserved.
Holanda, Ledycnarf J; Silva, Patrícia M M; Amorim, Thiago C; Lacerda, Matheus O; Simão, Camila R; Morya, Edgard
2017-12-04
Spinal cord injury (SCI) is characterized by a total or partial deficit of sensory and motor pathways. Impairments of this injury compromise muscle recruitment and motor planning, thus reducing functional capacity. SCI patients commonly present psychological, intestinal, urinary, osteomioarticular, tegumentary, cardiorespiratory and neural alterations that aggravate in chronic phase. One of the neurorehabilitation goals is the restoration of these abilities by favoring improvement in the quality of life and functional independence. Current literature highlights several benefits of robotic gait therapies in SCI individuals. The purpose of this study was to compare the robotic gait devices, and systematize the scientific evidences of these devices as a tool for rehabilitation of SCI individuals. A systematic review was carried out in which relevant articles were identified by searching the following databases: Cochrane Library, PubMed, PEDro and Capes Periodic. Two authors selected the articles which used a robotic device for rehabilitation of spinal cord injury. Databases search found 2941 articles, 39 articles were included due to meet the inclusion criteria. The robotic devices presented distinct features, with increasing application in the last years. Studies have shown promising results regarding the reduction of pain perception and spasticity level; alteration of the proprioceptive capacity, sensitivity to temperature, vibration, pressure, reflex behavior, electrical activity at muscular and cortical level, classification of the injury level; increase in walking speed, step length and distance traveled; improvements in sitting posture, intestinal, cardiorespiratory, metabolic, tegmental and psychological functions. This systematic review shows a significant progress encompassing robotic devices as an innovative and effective therapy for the rehabilitation of individuals with SCI.
Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H
2014-01-28
ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.
Wei, Yan-Yan; Chen, Jing; Dou, Ke-Feng; Wang, Ya-Yun
2013-01-01
Background Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr) in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. Methods Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE). The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. Results In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. Conclusion Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure. PMID:23741482
Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin
2018-01-01
A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.
Burns, Emma; Chipchase, Lucinda Sian; Schabrun, Siobhan May
2016-02-13
. Corticomotor output is reduced in response to acute muscle pain, yet the mechanisms that underpin this effect remain unclear. Here the authors investigate the effect of acute muscle pain on short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition to determine whether these mechanisms could plausibly contribute to reduced motor output in pain. . Observational same subject pre-post test design. . Neurophysiology research laboratory. . Healthy, right-handed human volunteers (n = 22, 9 male; mean age ± standard deviation, 22.6 ± 7.8 years). . Transcranial magnetic stimulation was used to assess corticomotor output, short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition before, during, immediately after, and 15 minutes after hypertonic saline infusion into right first dorsal interosseous muscle. Pain intensity and quality were recorded using an 11-point numerical rating scale and the McGill Pain Questionnaire. . Compared with baseline, corticomotor output was reduced at all time points (p = 0.001). Short-latency afferent inhibition was reduced immediately after (p = 0.039), and long-latency afferent inhibition 15 minutes after (p = 0.035), the resolution of pain. Long-interval intra-cortical inhibition was unchanged at any time point (p = 0.36). . These findings suggest short- and long-latency afferent inhibition, mechanisms thought to reflect the integration of sensory information with motor output at the cortex, are reduced following acute muscle pain. Although the functional relevance is unclear, the authors hypothesize a reduction in these mechanisms may contribute to the restoration of normal motor output after an episode of acute muscle pain. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bee venom effects on ubiquitin proteasome system in hSOD1(G85R)-expressing NSC34 motor neuron cells.
Kim, Seon Hwy; Jung, So Young; Lee, Kang-Woo; Lee, Sun Hwa; Cai, MuDan; Choi, Sun-Mi; Yang, Eun Jin
2013-07-18
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from a progressive loss of motor neurons. Familial ALS (fALS) is caused by missense mutations in Cu, Zn-superoxide dismutase 1 (SOD1) that frequently result in the accumulation of mutant protein aggregates that are associated with impairments in the ubiquitin-proteasome system (UPS). UPS impairment has been implicated in many neurological disorders. Bee venom (BV) extracted from honey bees has been used as a traditional medicine for treating inflammatory diseases and has been shown to attenuate the neuroinflammatory events that occur in a symptomatic ALS animal model. NSC34 cells were transiently transfected with a WT or G85R hSOD1-GFP construct for 24 hrs and then stimulated with 2.5 μg/ml BV for 24 hrs. To determine whether a SOD1 mutation affects UPS function in NSC34 cells, we examined proteasome activity and performed western blotting and immunofluorescence using specific antibodies, such as anti-misfolded SOD1, anti-ubiquitin, anti-GRP78, anti-LC3, and anti-ISG15 antibodies. We found that GFP-hSOD1G85R overexpression induced SOD1 inclusions and reduced proteasome activity compared with the overexpression of GFP alone in NSC34 motor neuronal cells. In addition, we also observed that BV treatment restored proteasome activity and reduced the accumulation of ubiquitinated and misfolded SOD1 in GFP-hSOD1G85R-overexpressing NSC34 motor neuronal cells. However, BV treatment did not activate the autophagic pathway in these cells. Our findings suggest that BV may rescue the impairment of the UPS in ALS models.
Iyer, Chitra C; McGovern, Vicki L; Murray, Jason D; Gombash, Sara E; Zaworski, Phillip G; Foust, Kevin D; Janssen, Paul M L; Burghes, Arthur H M
2015-11-01
Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sundareshwar, P.V.; Richardson, C.J.; Gleason, R.A.; Pellechia, P.J.; Honomichl, S.
2009-01-01
Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts. Copyright 2009 by the American Geophysical Union.
Functional variability of habitats within the Sacramento-San Joaquin Delta: Restoration implications
Lucas, L.V.; Cloern, J.E.; Thompson, J.K.; Monsen, N.E.
2002-01-01
We have now entered an era of large-scale attempts to restore ecological functions and biological communities in impaired ecosystems. Our knowledge base of complex ecosystems and interrelated functions is limited, so the outcomes of specific restoration actions are highly uncertain. One approach for exploring that uncertainty and anticipating the range of possible restoration outcomes is comparative study of existing habitats similar to future habitats slated for construction. Here we compare two examples of one habitat type targeted for restoration in the Sacramento-San Joaquin River Delta. We compare one critical ecological function provided by these shallow tidal habitats - production and distribution of phytoplankton biomass as the food supply to pelagic consumers. We measured spatial and short-term temporal variability of phytoplankton biomass and growth rate and quantified the hydrodynamic and biological processes governing that variability. Results show that the production and distribution of phytoplankton biomass can be highly variable within and between nearby habitats of the same type, due to variations in phytoplankton sources, sinks, and transport. Therefore, superficially similar, geographically proximate habitats can function very differently, and that functional variability introduces large uncertainties into the restoration process. Comparative study of existing habitats is one way ecosystem science can elucidate and potentially minimize restoration uncertainties, by identifying processes shaping habitat functionality, including those that can be controlled in the restoration design.
Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li
2012-01-01
Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308
Jarrahi, M; Sedighi Moghadam, B; Torkmandi, H
2015-08-15
Assessment of the ability of rat to balance by rotarod apparatus (ROTA) is frequently used as a measure of impaired motor system function. Most of these methods have some disadvantages, such as failing to sense motor coordination rather than endurance and as the sensitivity of the method is low, more animals are needed to obtain statistically significant results. We have designed and tested a new designed apparatus (NDA) to measure motor system function in rats. Our system consists of a glass box containing 4 beams which placed with 1cm distance between them, two electrical motors for rotating the beams, and a camera to record the movements of the rats. The RPM of the beams is adjustable digitally between 0 and 50 rounds per minute. We evaluated experimentally the capability of the NDA for the rapid measurement of impaired motor function in rats. Also we demonstrated that the sensitivity of the NDA increases by faster rotation speeds and may be more sensitive than ROTA for evaluating of impaired motor system function. Compared to a previous version of this task, our NDA provides a more efficient method to test rodents for studies of motor system function after impaired motor nervous system. In summary, our NDA will allow high efficient monitoring of rat motor system function and may be more sensitive than ROTA for evaluating of impaired motor system function in rats. Copyright © 2015 Elsevier B.V. All rights reserved.
Physical activity, motor function, and white matter hyperintensity burden in healthy older adults.
Fleischman, Debra A; Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E; Turner, Arlener D; Barnes, Lisa L; Bennett, David A; Buchman, Aron S
2015-03-31
To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = -0.304, slope = -0.133) and low (10th percentile; estimate = -1.793, slope = -0.241) activity. Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. © 2015 American Academy of Neurology.
Physical activity, motor function, and white matter hyperintensity burden in healthy older adults
Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E.; Turner, Arlener D.; Barnes, Lisa L.; Bennett, David A.; Buchman, Aron S.
2015-01-01
Objective: To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Methods: Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Results: Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = −0.304, slope = −0.133) and low (10th percentile; estimate = −1.793, slope = −0.241) activity. Conclusions: Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. PMID:25762710
Soundarapandian, Mangala M.; Selvaraj, Vimal; Lo, U-Ging; Golub, Mari S.; Feldman, Daniel H.; Pleasure, David E.; Deng, Wenbin
2011-01-01
Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role in oligodendrogenesis of adult neural progenitor cells is not known. In this study, we tested whether Zfp488 could promote an oligodendrogenic fate in adult subventricular zone (SVZ) neural stem/progenitor cells (NSPCs). Using a cuprizone-induced demyelination model in mice, we examined the effect of retrovirus-mediated Zfp488 overexpression in SVZ NSPCs. Our results showed that Zfp488 efficiently promoted the differentiation of the SVZ NSPCs into mature oligodendrocytes in vivo. After cuprizone-induced demyelination injury, Zfp488-transduced mice also showed significant restoration of motor function to levels comparable to control mice. Together, these findings identify a previously unreported role for Zfp488 in adult oligodendrogenesis and functional remyelination after injury. PMID:22355521
Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.
Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly
2016-01-01
Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.
Dougherty, Brendan J.; Kopp, Elizabeth S.
2017-01-01
Gonadal steroids modulate CNS plasticity, including phrenic long-term facilitation (pLTF), a form of spinal respiratory neuroplasticity resulting in increased phrenic nerve motor output following exposure to acute intermittent hypoxia (aIH; three 5 min episodes, 10.5% O2). Despite the importance of respiratory system neuroplasticity, and its dependence on estrogen in males, little is known about pLTF expression or mechanisms of estrogen signaling in females. Here, we tested the hypotheses that (1) pLTF expression in young, gonadally intact female rats would be expressed during estrous cycle stages in which 17β-estradiol (E2) is naturally high (e.g., proestrus vs estrus), (2) pLTF would be absent in ovariectomized (OVX) rats and in physiological conditions in which serum progesterone, but not E2, is elevated (e.g., lactating rats, 3–10 d postpartum), and (3) acute E2 administration would be sufficient to restore pLTF in OVX rats. Recordings of phrenic nerve activity in female Sprague Dawley rats (3–4 months) revealed a direct correlation between serum E2 levels and pLTF expression in cycling female rats. pLTF was abolished with OVX, but was re-established by acute E2 replacement (3 h, intraperitoneal). To identify underlying E2 signaling mechanisms, we intrathecally applied BSA-conjugated E2 over the spinal phrenic motor nucleus and found that pLTF expression was restored within 15 min, suggesting nongenomic E2 effects at membrane estrogen receptors. These data are the first to investigate the role of ovarian E2 in young cycling females, and to identify a role for nongenomic estrogen signaling in any form of respiratory system neuroplasticity. SIGNIFICANCE STATEMENT Exposure to acute intermittent hypoxia induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity that improves breathing in models of spinal cord injury. Although pathways leading to pLTF are well studied in males and estradiol (E2) is known to be required, it has seldom been investigated in females, and underlying mechanisms of E2 signaling are unknown in either sex. We found that while ovariectomy abolished pLTF, it could be restored by acute systemic E2, or by intraspinal application of the membrane-impermeable E2 (BSA-conjugated E2; 15 min). The ability of nongenomic estrogen signaling within the cervical spinal cord to recover respiratory neuroplasticity in disorders of respiratory insufficiency suggests that membrane estrogen receptors may represent novel therapeutic targets to restore breathing in both sexes. PMID:28592693
Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V
2017-09-01
Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Tong, Xiaoping; Ao, Yan; Faas, Guido C.; Nwaobi, Sinifunanya E.; Xu, Ji; Haustein, Martin D.; Anderson, Mark A.; Mody, Istvan; Olsen, Michelle L.; Sofroniew, Michael V.; Khakh, Baljit S.
2014-01-01
Huntington's disease (HD) is characterized by striatal medium spiny neuron (MSN) dysfunction, but the underlying mechanisms remain unclear. We explored roles for astrocytes, which display mutant huntingtin in HD patients and mouse models. We found that symptom onset in R6/2 and Q175 HD mouse models is not associated with classical astrogliosis, but is associated with decreased Kir4.1 K+ channel functional expression, leading to elevated in vivo levels of striatal extracellular K+, which increased MSN excitability in vitro. Viral delivery of Kir4.1 channels to striatal astrocytes restored Kir4.1 function, normalized extracellular K+, recovered aspects of MSN dysfunction, prolonged survival and attenuated some motor phenotypes in R6/2 mice. These findings indicate that components of altered MSN excitability in HD may be caused by heretofore unknown disturbances of astrocyte–mediated K+ homeostasis, revealing astrocytes and Kir4.1 channels as novel therapeutic targets. PMID:24686787
Temporal coding of brain patterns for direct limb control in humans.
Müller-Putz, Gernot R; Scherer, Reinhold; Pfurtscheller, Gert; Neuper, Christa
2010-01-01
For individuals with a high spinal cord injury (SCI) not only the lower limbs, but also the upper extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm function in those tetraplegics. The main problem for this group of individuals, however, is the reduced ability to voluntarily operate device controllers. A brain-computer interface provides a non-manual alternative to conventional input devices by translating brain activity patterns into control commands. We show that the temporal coding of individual mental imagery pattern can be used to control two independent degrees of freedom - grasp and elbow function - of an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe the procedure from the initial screening to the final application. From eight naïve subjects participating online feedback experiments, four were able to voluntarily control an artificial arm by inducing one motor imagery pattern derived from one EEG derivation only.
The evolution of functional hand replacement: From iron prostheses to hand transplantation
Zuo, Kevin J; Olson, Jaret L
2014-01-01
The hand is an integral component of the human body, with an incredible spectrum of functionality. In addition to possessing gross and fine motor capabilities essential for physical survival, the hand is fundamental to social conventions, enabling greeting, grooming, artistic expression and syntactical communication. The loss of one or both hands is, thus, a devastating experience, requiring significant psychological support and physical rehabilitation. The majority of hand amputations occur in working-age males, most commonly as a result of work-related trauma or as casualties sustained during combat. For millennia, humans have used state-of-the-art technology to design clever devices to facilitate the reintegration of hand amputees into society. The present article provides a historical overview of the progress in replacing a missing hand, from early iron hands intended primarily for use in battle, to today’s standard body-powered and myoelectric prostheses, to revolutionary advancements in the restoration of sensorimotor control with targeted reinnervation and hand transplantation. PMID:25152647
Restoration of mitochondria function as a target for cancer therapy
Bhat, Tariq A.; Kumar, Sandeep; Chaudhary, Ajay K.; Yadav, Neelu; Chandra, Dhyan
2015-01-01
Defective oxidative phosphorylation has a crucial role in the attenuation of mitochondrial function, which confers therapy resistance in cancer. Various factors, including endogenous heat shock proteins (HSPs) and exogenous agents such as dichloroacetate, restore respiratory and other physiological functions of mitochondria in cancer cells. Functional mitochondria might ultimately lead to the restoration of apoptosis in cancer cells that are refractory to current anticancer agents. Here, we summarize the key reasons contributing to mitochondria dysfunction in cancer cells and whether and/or how restoration of mitochondrial function could be exploited for cancer therapeutics. PMID:25766095
Habitat Function of a Restored Salt Marsh: Post-Larval Gulf Killifish as a Sentinel
Successful marsh restoration requires recreating conditions to ensure proper ecosystem function. One approach to monitor restoration success is using a sentinel species as a proxy integrator of salt marsh function. The gulf killifish (Fundulus grandis, Baird and Girard) is a goo...
Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function
Leisman, Gerry; Moustafa, Ahmed A.; Shafir, Tal
2016-01-01
In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other. PMID:27252937
Olfaction Is Related to Motor Function in Older Adults.
Tian, Qu; Resnick, Susan M; Studenski, Stephanie A
2017-08-01
Among older adults, both olfaction and motor function predict future cognitive decline and dementia, suggesting potential shared causal pathways. However, it is not known whether olfactory and motor function are independently related in late life. We assessed cross-sectional associations of olfaction with motor and cognitive function, using concurrent data on olfactory function, mobility, balance, fine motor function, manual dexterity, and cognition in 163 Baltimore Longitudinal Study of Aging participants aged 60 and older without common neurological diseases (n = 114 with available cognitive data). Using multiple linear regression, we adjusted for age, sex, race, smoking history, height, and weight for mobility and balance, and education for cognition. We used multiple linear regression to test whether olfaction-motor associations were independent of cognition and depressive symptoms. Olfactory scores were significantly associated with mobility (usual gait speed, rapid gait speed, 400-m walk time, and Health ABC Physical Performance Battery score), balance, fine motor function, and manual dexterity (all p < .05). In those with available cognitive data, additional adjustment for depressive symptoms, verbal memory, or visuoperceptual speed demonstrated especially strong independent relationships with challenging motor tasks such as 400-m walk and nondominant hand manual dexterity (p < .005). This study demonstrates for the first time that, in older adults, olfactory function is associated with mobility, balance, fine motor function, and manual dexterity, and independent of cognitive function, with challenging upper and lower extremity motor function tasks. Longitudinal studies are needed to determine if olfactory performance predicts future mobility and functional decline. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
CHEN, LIJIE; HU, MIN; ZHANG, LIHAI; LIU, SANXIA; LUO, JINCHAO; DENG, TIANZHENG; TAO, YE
2012-01-01
Understanding the microanatomy of the facial nerve is vital to functional restoration of facial nerve injury. This study aimed to locate the spatial orientation of five branches in the extratemporal trunk of the rat facial nerve (ETFN). Fifteen adult Sprague-Dawley albino rats were divided randomly into five groups corresponding to the five facial nerves. Fluoro-Gold™ (FG) was applied to one branch in all three rats in each group. The trunk of the facial nerve was cut at three points for fluorescence detection. Staining results showed that each branch of the facial motor nerve had a topographical orientation in the distal part of the ETFN. The temporal branch was located in the medial and acroscopic quadrant of the nerve trunk. The zygomatic branch was located in the lateral and acroscopic quadrant. The buccal branch occupied the upper half of the nerve trunk, whereas the mandibular branch occupied the lower half. The cervical branch presented a square-shaped distribution in the lateral nerve trunk. In the middle part of the ETFN, the topographical orientation remained clear, but the FG-labeled zone was extended to some extent. In the stylomastoid foramen region, all branches diffused, thereby blurring the orientation. In conclusion, each branch of the facial motor nerve had a topographical orientation and distribution in the crotch and middle part of the ETFN, but the branches diffused near the stylomastoid foramen. PMID:23226737
Winstein, Carolee; Lewthwaite, Rebecca; Blanton, Sarah R.; Wolf, Lois B.; Wishart, Laurie
2016-01-01
This special interest article provides a historical framework with a contemporary case example that traces the infusion of the science of motor learning into neurorehabilitation practice. The revolution in neuroscience provided the first evidence for learning-dependent neuroplasticity and presaged the role of motor learning as critical for restorative therapies after stroke. The scientific underpinnings of motor learning have continued to evolve from a dominance of cognitive or information processing perspectives to a blend with neural science and contemporary social-cognitive psychological science. Furthermore, advances in the science of behavior change have contributed insights into influences on sustainable and generalizable gains in motor skills and associated behaviors, including physical activity and other recovery-promoting habits. For neurorehabilitation, these insights have tremendous relevance for the therapist–patient interactions and relationships. We describe a principle-based intervention for neurorehabilitation termed the Accelerated Skill Acquisition Program that we developed. This approach emphasizes integration from a broad set of scientific lines of inquiry including the contemporary fields of motor learning, neuroscience, and the psychological science of behavior change. Three overlapping essential elements—skill acquisition, impairment mitigation, and motivational enhancements—are integrated. PMID:24828523
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
Matsubayashi, Yoshito; Asakawa, Yasuyoshi; Yamaguchi, Haruyasu
2016-01-01
[Purpose] This study examined whether low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring. [Subjects] The subjects were community-dwelling elderly people in a rural area of Japan. [Methods] One group (n = 50) performed group exercise combined with home exercise with self-monitoring. Another group (n = 37) performed group exercise only. Low-frequency group exercise (warm-up, exercises for motor functions, and cool-down) was performed in seven 40 to 70-minute sessions over 9 weeks by both groups. Five items of motor functions were assessed before and after the intervention. [Results] Significant interactions were observed between groups and assessment times for all motor functions. Improvements in motor functions were significantly greater in the group that performed group exercise combined with home exercise with self-monitoring than in the group that performed group exercise only. Post-hoc comparisons revealed significant differences in 3 items of motor functions. No significant improvements were observed in motor functions in the group that performed group exercise only. [Conclusions] Group exercise combined with home exercise with self-monitoring improved motor functions in the setting of low-frequency group exercise for community-dwelling elderly people in a rural area. PMID:27065520
NASA Technical Reports Server (NTRS)
1979-01-01
In the accompanying photos, a laboratory technician is restoring the once-obliterated serial number of a revolver. The four-photo sequence shows the gradual progression from total invisibility to clear readability. The technician is using a new process developed in an applications engineering project conducted by NASA's Lewis Research Center in conjunction with Chicago State University. Serial numbers and other markings are frequently eliminated from metal objects to prevent tracing ownership of guns, motor vehicles, bicycles, cameras, appliances and jewelry. To restore obliterated numbers, crime laboratory investigators most often employ a chemical etching technique. It is effective, but it may cause metal corrosion and it requires extensive preparatory grinding and polishing. The NASA-Chicago State process is advantageous because it can be applied without variation to any kind of metal, it needs no preparatory work and number recovery can be accomplished without corrosive chemicals; the liquid used is water.
Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.
Differential sensitivity of cranial and limb motor function to nigrostriatal dopamine depletion
Plowman, Emily K.; Maling, Nicholas; Rivera, Benjamin J.; Larson, Krista; Thomas, Nagheme J.; Fowler, Stephen C.; Manfredsson, Fredric P.; Shrivastav, Rahul; Kleim, Jeffrey A.
2012-01-01
The present study determined the differential effects of unilateral striatal dopamine depletion on cranial motor versus limb motor function. Forty male Long Evans rats were first trained on a comprehensive motor testing battery that dissociated cranial versus limb motor function and included: cylinder forepaw placement, single pellet reaching, vermicelli pasta handling; sunflower seed opening, pasta biting acoustics, and a licking task. Following baseline testing, animals were randomized to either a 6-hydroxydopamine (6-OHDA) (n = 20) or control (n = 20) group. Animals in the 6-OHDA group received unilateral intrastriatal 6-OHDA infusions to induce striatal dopamine depletion. Six-weeks following infusion, all animals were re-tested on the same battery of motor tests. Near infrared densitometry was performed on sections taken through the striatum that were immunohistochemically stained for tyrosine hydroxylase (TH). Animals in the 6-OHDA condition showed a mean reduction in TH staining of 88.27%. Although 6-OHDA animals were significantly impaired on all motor tasks, limb motor deficits were more severe than cranial motor impairments. Further, performance on limb motor tasks was correlated with degree of TH depletion while performance on cranial motor impairments showed no significant correlation. These results suggest that limb motor function may be more sensitive to striatal dopaminergic depletion than cranial motor function and is consistent with the clinical observation that therapies targeting the nigrostriatal dopaminergic system in Parkinson’s disease are more effective for limb motor symptoms than cranial motor impairments. PMID:23018122
Hand-in-hand advances in biomedical engineering and sensorimotor restoration.
Pisotta, Iolanda; Perruchoud, David; Ionta, Silvio
2015-05-15
Living in a multisensory world entails the continuous sensory processing of environmental information in order to enact appropriate motor routines. The interaction between our body and our brain is the crucial factor for achieving such sensorimotor integration ability. Several clinical conditions dramatically affect the constant body-brain exchange, but the latest developments in biomedical engineering provide promising solutions for overcoming this communication breakdown. The ultimate technological developments succeeded in transforming neuronal electrical activity into computational input for robotic devices, giving birth to the era of the so-called brain-machine interfaces. Combining rehabilitation robotics and experimental neuroscience the rise of brain-machine interfaces into clinical protocols provided the technological solution for bypassing the neural disconnection and restore sensorimotor function. Based on these advances, the recovery of sensorimotor functionality is progressively becoming a concrete reality. However, despite the success of several recent techniques, some open issues still need to be addressed. Typical interventions for sensorimotor deficits include pharmaceutical treatments and manual/robotic assistance in passive movements. These procedures achieve symptoms relief but their applicability to more severe disconnection pathologies is limited (e.g. spinal cord injury or amputation). Here we review how state-of-the-art solutions in biomedical engineering are continuously increasing expectances in sensorimotor rehabilitation, as well as the current challenges especially with regards to the translation of the signals from brain-machine interfaces into sensory feedback and the incorporation of brain-machine interfaces into daily activities. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Graue, Elizabeth
2009-01-01
The traditional kindergarten program often reflected a rich but generic approach with creative contexts for typical kindergartners organized around materials (manipulatives or dramatic play) or a developmental area (fine motor or language). The purpose of kindergarten reflected beliefs about how children learn, specialized training for…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
... and Motorized Travel Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to... a risk to ecological resources will be restored to reduce risk to resources. This project responds to the Travel Management Rule, Subpart B (36 CFR 212.52), which requires the public be allowed to...
ERIC Educational Resources Information Center
Schaefer, Larry; And Others
The first year of a project to train high school aged handicapped and/or disadvantaged youth for employment in marine and related trades was considered successful. Specific areas of training included motor mechanics, electrical, woodworking, refinishing, restoration, fiberglass work, and blueprint reading under the direction of skilled…
Monge-Pereira, Esther; Ibañez-Pereda, Jaime; Alguacil-Diego, Isabel M; Serrano, Jose I; Spottorno-Rubio, María P; Molina-Rueda, Francisco
2017-09-01
Brain-computer interface (BCI) systems have been suggested as a promising tool for neurorehabilitation. However, to date, there is a lack of homogeneous findings. Furthermore, no systematic reviews have analyzed the degree of validation of these interventions for upper limb (UL) motor rehabilitation poststroke. The study aims were to compile all available studies that assess an UL intervention based on an electroencephalography (EEG) BCI system in stroke; to analyze the methodological quality of the studies retrieved; and to determine the effects of these interventions on the improvement of motor abilities. TYPE: This was a systematic review. Searches were conducted in PubMed, PEDro, Embase, Cumulative Index to Nursing and Allied Health, Web of Science, and Cochrane Central Register of Controlled Trial from inception to September 30, 2015. This systematic review compiles all available studies that assess UL intervention based on an EEG-BCI system in patients with stroke, analyzing their methodological quality using the Critical Review Form for Quantitative Studies, and determining the grade of recommendation of these interventions for improving motor abilities as established by the Oxford Centre for Evidence-based Medicine. The articles were selected according to the following criteria: studies evaluating an EEG-based BCI intervention; studies including patients with a stroke and hemiplegia, regardless of lesion origin or temporal evolution; interventions using an EEG-based BCI to restore functional abilities of the affected UL, regardless of the interface used or its combination with other therapies; and studies using validated tools to evaluate motor function. After the literature search, 13 articles were included in this review: 4 studies were randomized controlled trials; 1 study was a controlled study; 4 studies were case series studies; and 4 studies were case reports. The methodological quality of the included papers ranged from 6 to 15, and the level of evidence varied from 1b to 5. The articles included in this review involved a total of 141 stroke patients. This systematic review suggests that BCI interventions may be a promising rehabilitation approach in subjects with stroke. II. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G
2016-01-01
To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neurobionics and the brain-computer interface: current applications and future horizons.
Rosenfeld, Jeffrey V; Wong, Yan Tat
2017-05-01
The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.
Rincon, Sergio A.; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D.; Tran, Phong T.
2017-01-01
Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors. PMID:28513584
Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto
2014-03-01
We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.
Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling
2014-02-01
Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.
Gross motor function change after multilevel soft tissue release in children with cerebral palsy.
Chang, Chia-Hsieh; Chen, Yu-Ying; Yeh, Kuo-Kuang; Chen, Chia-Ling
2017-06-01
Improving motor function is a major goal of therapy for children with cerebral palsy (CP). However, changes in motor function after orthopedic surgery for gait disorders are seldom discussed. This study aimed to evaluate the postoperative changes in gross motor function and to investigate the prognostic factors for such changes. We prospectively studied 25 children with CP (4-12 years) who were gross motor function classification system (GMFCS) level II to IV and and underwent bilateral multilevel soft-tissue release for knee flexion gait. Patients were evaluated preoperatively and at 6 weeks and 3 and 6 months postoperatively for Gross Motor Function Measure (GMFM-66), range of motion, spasticity, and selective motor control. The associations between change in GMFM-66 score and possible factors were analyzed. 25 children with gross motor function level II to IV underwent surgery at a mean age of 8.6 years (range, 4-12 years). Mean GMFM-66 score decreased from 55.9 at baseline to 54.3 at 6-weeks postoperatively and increased to 57.5 at 6-months postoperatively (p < 0.05). Regression analysis revealed better gross motor function level and greater surgical reduction of spasticity were predictors for decreased GMFM-66 score at 6-weeks postoperatively. Younger age was a predictor for increased GMFM-66 score at 6-months postoperatively. Reduction of contracture and spasticity and improvement of selective motor control were noted after surgery in children with CP. However, a down-and-up course of GMFM-66 score was noted. It is emphasized that deterioration of motor function in children with ambulatory ability and the improvement in young children after orthopedic surgery for gait disorders. case series, therapeutic study, level 4. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.
Assessment of motor functioning in the preschool period.
Piek, Jan P; Hands, Beth; Licari, Melissa K
2012-12-01
The assessment of motor functioning in young children has become increasingly important in recent years with the acknowledgement that motor impairment is linked with cognitive, language, social and emotional difficulties. However, there is no one gold standard assessment tool to investigate motor ability in children. The aim of the current paper was to discuss the issues related to the assessment of motor ability in young pre-school children and to provide guidelines on the best approach for motor assessment. The paper discusses the maturational changes in brain development at the preschool level in relation to motor ability. Other issues include sex differences in motor ability at this young age, and evidence for this in relation to sociological versus biological influences. From the previous literature it is unclear what needs to be assessed in relation to motor functioning. Should the focus be underlying motor processes or movement skill assessment? Several key assessment tools are discussed that produce a general measure of motor performance followed by a description of tools that assess specific skills, such as fine and gross motor, ball and graphomotor skills. The paper concludes with recommendations on the best approach in assessing motor function in pre-school children.
Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.
Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R
2012-01-11
Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.
Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems
NASA Astrophysics Data System (ADS)
James, W. R.; Nelson, J. A.
2017-12-01
Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.
Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.
2012-01-01
While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely correlated with connectivity between the left premotor area and left supplementary motor area, for both the left and the right hands (P < 0.01). Finally, two subjects who experienced severe weakness following surgery for their brain tumours were followed longitudinally, and the subject who recovered showed reconstitution of her motor network at follow-up. The subject who was persistently weak did not reconstitute his motor network. Motor weakness in subjects with brain tumours that do not involve primary motor structures is associated with decreased connectivity within motor functional networks, particularly interhemispheric connections. Motor networks become weaker as the subjects become weaker, and may become strong again during motor recovery. PMID:22408270
Maturation of Sensori-Motor Functional Responses in the Preterm Brain.
Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne
2016-01-01
Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.
Evaluation of Esophageal Motor Function With High-resolution Manometry
2013-01-01
For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094
Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun
2013-01-01
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA. PMID:23208423
Tomata, Yasutake; Kogure, Mana; Sugawara, Yumi; Watanabe, Takashi; Asaka, Tadayoshi; Tsuji, Ichiro
2016-01-01
Objective Previous studies have reported that elderly victims of natural disasters might be prone to a subsequent decline in motor function. Victims of the Great East Japan Earthquake (GEJE) relocated to a wide range of different types of housing. As the evacuee lifestyle varies according to the type of housing available to them, their degree of motor function loss might also vary accordingly. However, the association between postdisaster housing type and loss of motor function has never been investigated. The present study was conducted to investigate the association between housing type after the GEJE and loss of motor function in elderly victims. Methods We conducted a prospective observational study of 478 Japanese individuals aged ≥65 years living in Miyagi Prefecture, one of the areas most significantly affected by the GEJE. Information on housing type after the GEJE, motor function as assessed by the Kihon checklist and other lifestyle factors was collected by interview and questionnaire in 2012. Information on motor function was then collected 1 year later. The multiple logistic regression model was used to estimate the multivariate adjusted ORs of motor function loss. Results We classified 53 (11.1%) of the respondents as having loss of motor function. The multivariate adjusted OR (with 95% CI) for loss of motor function among participants who were living in privately rented temporary housing/rental housing was 2.62 (1.10 to 6.24) compared to those who had remained in the same housing as that before the GEJE, and this increase was statistically significant. Conclusions The proportion of individuals with loss of motor function was higher among persons who had relocated to privately rented temporary housing/rental housing after the GEJE. This result may reflect the influence of a move to a living environment where few acquaintances are located (lack of social capital). PMID:27810976
Aasvang, Eske Kvanner; Jørgensen, Christoffer Calov; Laursen, Mogens Berg; Madsen, Jacob; Solgaard, Søren; Krøigaard, Mogens; Kjærsgaard-Andersen, Per; Mandøe, Hans; Hansen, Torben Bæk; Nielsen, Jørgen Ulrich; Krarup, Niels; Skøtt, Annette Elisabeth; Kehlet, Henrik
2017-06-01
Postanesthesia care unit (PACU) discharge without observation of lower limb motor function after spinal anesthesia has been suggested to significantly reduce PACU stay and enhance resource optimization and early rehabilitation but without enough data to allow clinical recommendations. A multicenter, semiblinded, noninferiority randomized controlled trial of discharge from the PACU with or without assessment of lower limb motor function after elective total hip or knee arthroplasty under spinal anesthesia was undertaken. The primary outcome was frequency of a successful fast-track course (length of stay 4 days or less and no 30-day readmission). Noninferiority would be declared if the odds ratio (OR) for a successful fast-track course was no worse for those patients receiving no motor function assessment versus those patients receiving motor function assessment by OR = 0.68. A total of 1,359 patients (98.8% follow-up) were available for analysis (93% American Society of Anesthesiologists class 1 to 2). The primary outcome occurred in 92.2% and 92.0%, corresponding to no motor function assessment being noninferior to motor function assessment with OR 0.97 (95% CI, 0.70 to 1.35). Adverse events in the ward during the first 24 h occurred in 5.8% versus 7.4% with or without motor function assessment, respectively (OR, 0.77; 95% CI, 0.5 to 1.19, P = 0.24). PACU discharge without assessment of lower limb motor function after spinal anesthesia for total hip or knee arthroplasty was noninferior to motor function assessment in achieving length of stay 4 days or less or 30-day readmissions. Because a nonsignificant tendency toward increased adverse events during the first 24 h in the ward was discovered, further safety data are needed in patients without assessment of lower limb motor function before PACU discharge.
A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire
2016-11-10
Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.
A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates
Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire
2016-01-01
Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury. PMID:27830790
Smetacek, Victor
2010-10-01
Sleep is an enigma because we all know what it means and does to us, yet a scientific explanation for why animals including humans need to sleep is still lacking. However, the enigma can be resolved if the animal body is regarded as a purposeful machine whose moving parts are coordinated with spatial information provided by a disparate array of sense organs. The performance of all complex machines deteriorates with time due to inevitable instrument drift of the individual sensors combined with wear and tear of the moving parts which result in declining precision and coordination. Peak performance is restored by servicing the machine, which involves calibrating the sensors against baselines and standards, then with one another, and finally readjusting the connections between instruments and moving parts. It follows that the animal body and its sensors will also require regular calibration of sense organs and readjustment of brain-body connections which will need to be carried out while the animal is not in functional but in calibration mode. I suggest that this is the core function of sleep. This recalibration hypothesis of sleep can be tested subjectively. We all know from personal experience that sleep is needed to recover from tiredness that sets in towards the end of a long day. This tiredness, which is quite distinct from mental or muscular exhaustion caused by strenuous exertion, manifests itself in deteriorating general performance: the sense organs lose precision, movements become clumsy and the mind struggles to maintain focus. We can all agree that sleep sharpens the sense organs and restores agility to mind and body. I now propose that the sense of freshness and buoyancy after a good night's sleep is the feeling of recalibrated sensory and motor systems. The hypothesis can be tested rigorously by examining available data on sleep cycles and stages against this background. For instance, REM and deep sleep cycles can be interpreted as successive, separate calibration runs of the vestibulo-ocular reflex and the sensory-motor systems, respectively, amongst other functions running in parallel, such as dreaming. Because the split-second connections between sensory information and emotional responses will also require calibration, some aspects of dreaming could be interpreted in this light. Much of the baffling behaviour and patterns of brain activity of sleeping animals and humans make sense in the framework of this technological paradigm since different animal lineages will have evolved different techniques to achieve calibration. Copyright 2010 Elsevier Ltd. All rights reserved.
Obsessive-compulsive disorder: a disorder of pessimal (non-functional) motor behavior.
Zor, R; Keren, H; Hermesh, H; Szechtman, H; Mort, J; Eilam, D
2009-10-01
To determine whether in addition to repetitiveness, the motor rituals of patients with obsessive-compulsive disorder (OCD) involve reduced functionality due to numerous and measurable acts that are irrelevant and unnecessary for task completion. Comparing motor rituals of OCD patients with behavior of non-patient control individuals who were instructed to perform the same motor task. Obsessive-compulsive disorder behavior comprises abundant acts that were not performed by the controls. These acts seem unnecessary or even irrelevant for the task that the patients were performing, and therefore are termed 'non-functional'. Non-functional acts comprise some 60% of OCD motor behavior. Moreover, OCD behavior consists of short chains of functional acts bounded by long chains of non-functional acts. The abundance of irrelevant or unnecessary acts in OCD motor rituals represents reduced functionality in terms of task completion, typifying OCD rituals as pessimal behavior (antonym of optimal behavior).
Optimum constrained image restoration filters
NASA Technical Reports Server (NTRS)
Riemer, T. E.; Mcgillem, C. D.
1974-01-01
The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.
Jayabal, Sriram; Chang, Hui Ho Vanessa; Cullen, Kathleen E.; Watt, Alanna J.
2016-01-01
Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA684Q/+) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA684Q/84Q) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA684Q/84Q mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6. PMID:27381005
Jayabal, Sriram; Chang, Hui Ho Vanessa; Cullen, Kathleen E; Watt, Alanna J
2016-07-06
Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA6(84Q/+)) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA6(84Q/84Q)) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA6(84Q/84Q) mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6.
Zhang, Luduan; Butler, Andrew J.; Sun, Chang-Kai; Sahgal, Vinod; Wittenberg, George F.; Yue, Guang H.
2008-01-01
Little is known about the association between brain white matter (WM) structure and motor function in humans. This study investigated complexity of brain WM interior shape as determined by magnetic resonance imaging (MRI) and its relationship with upper-extremity (UE) motor function in patients post stroke. We hypothesized that (1) the WM complexity would decrease following stroke, and (2) higher WM complexity in non-affected cortical areas would be related to greater UE motor function. Thirty-eight stroke patients (16 with left-hemisphere lesions) underwent MRI anatomical brain scans. Fractal dimension (FD), a quantitative shape metric, was applied onto skeletonized brain WM images to evaluate WM internal structural complexity. Wolf Motor Function Test (WMFT) and Fugl-Meyer Motor Assessment (FM) scores were measured to assess motor function of the affected limb. The WM complexity was lower in the stroke-affected hemisphere. The FD was associated with better motor function in two subgroups: with left-subcortical lesions, FD values of the lesion-free areas of the left hemisphere were associated with better FM scores; with right-cortical lesions, FD values of lesion-free regions were robustly associated with better WMFT scores. These findings suggest that greater residual WM complexity is associated with less impaired UE motor function, which is more robust in patients with right-hemisphere lesions. No correlations were found between lesion volume and WMFT or FM scores. This study addressed WM complexity in stroke patients and its relationship with UE motor function. Measurement of brain WM reorganization may be a sensitive correlate of UE function in people recovering from stroke. PMID:18590710
Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas
2018-06-01
This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.
ASTRAKAS, LOUKAS G.; NAQVI, SYED HASSAN ABBAS; KATEB, BABAK; TZIKA, A. ARIA
2012-01-01
The number of individuals suffering from stroke is increasing daily, and its consequences are a major contributor to invalidity in today’s society. Stroke rehabilitation is relatively new, having been hampered from the longstanding view that lost functions were not recoverable. Nowadays, robotic devices, which aid by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain which can be monitored by MRI. Multiparametric magnetic resonance imaging (MRI) of stroke patients participating in a training program with a novel Magnetic Resonance Compatible Hand-Induced Robotic Device (MR_CHIROD) could yield a promising biomarker that, ultimately, will enhance our ability to advance hand motor recovery following chronic stroke. Using state-of-the art MRI in conjunction with MR_CHIROD-assisted therapy can provide novel biomarkers for stroke patient rehabilitation extracted by a meta-analysis of data. Successful completion of such studies may provide a ground breaking method for the future evaluation of stroke rehabilitation therapies. Their results will attest to the effectiveness of using MR-compatible hand devices with MRI to provide accurate monitoring during rehabilitative therapy. Furthermore, such results may identify biomarkers of brain plasticity that can be monitored during stroke patient rehabilitation. The potential benefit for chronic stroke patients is that rehabilitation may become possible for a longer period of time after stroke than previously thought, unveiling motor skill improvements possible even after six months due to retained brain plasticity. PMID:22426741
Improving brain-machine interface performance by decoding intended future movements
NASA Astrophysics Data System (ADS)
Willett, Francis R.; Suminski, Aaron J.; Fagg, Andrew H.; Hatsopoulos, Nicholas G.
2013-04-01
Objective. A brain-machine interface (BMI) records neural signals in real time from a subject's brain, interprets them as motor commands, and reroutes them to a device such as a robotic arm, so as to restore lost motor function. Our objective here is to improve BMI performance by minimizing the deleterious effects of delay in the BMI control loop. We mitigate the effects of delay by decoding the subject's intended movements a short time lead in the future. Approach. We use the decoded, intended future movements of the subject as the control signal that drives the movement of our BMI. This should allow the user's intended trajectory to be implemented more quickly by the BMI, reducing the amount of delay in the system. In our experiment, a monkey (Macaca mulatta) uses a future prediction BMI to control a simulated arm to hit targets on a screen. Main Results. Results from experiments with BMIs possessing different system delays (100, 200 and 300 ms) show that the monkey can make significantly straighter, faster and smoother movements when the decoder predicts the user's future intent. We also characterize how BMI performance changes as a function of delay, and explore offline how the accuracy of future prediction decoders varies at different time leads. Significance. This study is the first to characterize the effects of control delays in a BMI and to show that decoding the user's future intent can compensate for the negative effect of control delay on BMI performance.
Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M; Hu, Kun
2016-01-01
One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations-similar fluctuation structure at different time scales-that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)-a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)-the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the SCN. The differential impacts of food restriction on fractal activity control in intact and DMH-lesioned animals suggest that the DMH plays a crucial role in integrating these different time cues to the circadian network for multiscale regulation of motor activity.
Spectrum of gross motor and cognitive functions in children with cerebral palsy: gender differences.
Romeo, Domenico M M; Cioni, Matteo; Battaglia, Laura R; Palermo, Filippo; Mazzone, Domenico
2011-01-01
Multiple differences between males and females are reported both in physiological and pathophysiological conditions. To test the hypothesis that gender could influence the motor and cognitive development in children with cerebral palsy (CP). Prospective, cross-sectional. One hundred seventy one children with CP (98 males and 73 females) were evaluated for motor (Gross Motor Function Measure, Gross Motor Function Classification System) and cognitive (Bayley II, Wechsler Scales) functions. Eighty-four of them were assessed before and other eighty-seven children after 4 years of age. No gender-related differences were observed in children with diplegia or quadriplegia, both for motor and cognitive functions. On the contrary, females with hemiplegia scored significantly better (P < 0.01) in cognitive functions and in the dimension D (standing) of the Gross Motor Function Measure, under the age of 4 years. These differences were not observed after this age. In this study we point out that gender might influence differently the psycho-motor development of children with hemiplegia and of those with a more severe clinical involvement as diplegia and quadriplegia. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577
John Stanturf; Brian J. Palik; Mary I. Williams; R. Kasten Dumroese
2014-01-01
An estimated 2 billion ha of forests are degraded globally and global change suggests even greater need for forest restoration. Four forest restoration paradigms are identified and discussed: revegetation, ecological restoration, functional restoration, and forest landscape restoration. Restoration is examined in terms of a degraded starting point and an ending point...
Motor functions and adaptive behaviour in children with childhood apraxia of speech.
Tükel, Şermin; Björelius, Helena; Henningsson, Gunilla; McAllister, Anita; Eliasson, Ann Christin
2015-01-01
Undiagnosed motor and behavioural problems have been reported for children with childhood apraxia of speech (CAS). This study aims to understand the extent of these problems by determining the profile of and relationships between speech/non-speech oral, manual and overall body motor functions and adaptive behaviours in CAS. Eighteen children (five girls and 13 boys) with CAS, 4 years 4 months to 10 years 6 months old, participated in this study. The assessments used were the Verbal Motor Production Assessment for Children (VMPAC), Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) and Adaptive Behaviour Assessment System (ABAS-II). Median result of speech/non-speech oral motor function was between -1 and -2 SD of the mean VMPAC norms. For BOT-2 and ABAS-II, the median result was between the mean and -1 SD of test norms. However, on an individual level, many children had co-occurring difficulties (below -1 SD of the mean) in overall and manual motor functions and in adaptive behaviour, despite few correlations between sub-tests. In addition to the impaired speech motor output, children displayed heterogeneous motor problems suggesting the presence of a global motor deficit. The complex relationship between motor functions and behaviour may partly explain the undiagnosed developmental difficulties in CAS.
Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation
Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki
2017-01-01
Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis. PMID:28883745
Ghost suppression in image restoration filtering
NASA Technical Reports Server (NTRS)
Riemer, T. E.; Mcgillem, C. D.
1975-01-01
An optimum image restoration filter is described in which provision is made to constrain the spatial extent of the restoration function, the noise level of the filter output and the rate of falloff of the composite system point-spread away from the origin. Experimental results show that sidelobes on the composite system point-spread function produce ghosts in the restored image near discontinuities in intensity level. By redetermining the filter using a penalty function that is zero over the main lobe of the composite point-spread function of the optimum filter and nonzero where the point-spread function departs from a smoothly decaying function in the sidelobe region, a great reduction in sidelobe level is obtained. Almost no loss in resolving power of the composite system results from this procedure. By iteratively carrying out the same procedure even further reductions in sidelobe level are obtained. Examples of original and iterated restoration functions are shown along with their effects on a test image.
Motor function and incident dementia: a systematic review and meta-analysis.
Kueper, Jacqueline Kathleen; Speechley, Mark; Lingum, Navena Rebecca; Montero-Odasso, Manuel
2017-09-01
cognitive and mobility decline are interrelated processes, whereby mobility decline coincides or precedes the onset of cognitive decline. to assess whether there is an association between performance on motor function tests and incident dementia. electronic database, grey literature and hand searching identified studies testing for associations between baseline motor function and incident dementia in older adults. of 2,540 potentially relevant documents, 37 met the final inclusion criteria and were reviewed qualitatively. Three meta-analyses were conducted using data from 10 studies. Three main motor domains-upper limb motor function, parkinsonism and lower limb motor function-emerged as associated with increased risk of incident dementia. Studies including older adults without neurological overt disease found a higher risk of incident dementia associated with poorer performance on composite motor function scores, balance and gait velocity (meta-analysis pooled HR = 1.94, 95% CI: 1.41, 2.65). Mixed results were found across different study samples for upper limb motor function, overall parkinsonism (meta-analysis pooled OR = 3.05, 95% CI: 1.31, 7.08), bradykinesia and rigidity. Studies restricted to older adults with Parkinson's Disease found weak or no association with incident dementia even for motor domains highly associated in less restrictive samples. Tremor was not associated with an increased risk of dementia in any population (meta-analysis pooled HR = 0.80, 95% CI 0.31, 2.03). lower limb motor function was associated with increased risk of developing dementia, while tremor and hand grip strength were not. Our results support future research investigating the inclusion of quantitative motor assessment, specifically gait velocity tests, for clinical dementia risk evaluation. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com
Motor Function Is Associated With Incident Disability in Older African Americans
Wilson, Robert S.; Yu, Lei; Boyle, Patricia A.; Bennett, David A.; Barnes, Lisa L.
2016-01-01
Background: Disability in older African American adults is common, but its basis is unclear. We tested the hypothesis that the level of motor function is associated with incident disability in older African Americans after adjusting for cognition. Methods: A prospective observational cohort study of 605 older community-dwelling African American adults without dementia was carried out. Baseline global motor score summarized 11 motor performances, cognition was based on 19 cognitive tests, and self-reported disability was obtained annually. We examined the association of motor function with incident disability (instrumental activities of daily living [IADL], activities of daily living [ADL], and mobility disability) with a series of Cox proportional hazards models which controlled for age, sex, and education. Results: Average follow-up was about 5 years. In proportional hazards models, a 1-SD increase in baseline level of global motor score was associated with about a 50% decrease in the risk of subsequent IADL, ADL, and mobility disability (all p values < .001). These associations were unchanged in analyses controlling for cognition and other covariates. Further, the association of global motor score and incident ADL disability varied with the level of cognition (estimate −5.541, SE 1.634, p < .001), such that higher motor function was more protective at higher levels of cognition. Mobility and dexterity components of global motor score were more strongly associated with incident disability than strength (all p values < .001). Conclusions: Better motor function in older African Americans is associated with a decreased risk of developing disability. Moreover, the association of motor function and disability is stronger in individuals with better cognitive function. PMID:26525087
Pashmdarfard, Marzieh; Amini, Malek; Badv, Reza Shervin; Ghaffarzade Namazi, Narges; Rassafiani, Mehdi
2017-01-01
The aim of this study was to assess the effect of parent report gross motor function level of cerebral palsy (CP) children on the parent report quality of life of CP children. Sampling of this cross-sectional study was done in occupational therapy clinics and CP children's schools in 2016 in Zanjan, Iran. Samples size was 60 CP children aged 6-12 yr and for sampling method, a non-probability convenience was used. For assessing the quality of life of CP children the cerebral palsy quality of life (CP QOL) questionnaire and for assessing the level of gross motor function of CP children the Gross Motor Function Classification System Family Report Questionnaire (GMFCSFRQ) were used. The average age of children (22 males and 30 females) was 8.92 yr old (minimum 6 yr and maximum 12 yr). The relationship between the level of gross motor function and participation and physical health was direct and significant (r=0.65). The relationship between functioning, access to services and family health with the level of gross motor function was direct but was not significant ( P >0.05) and the relationship between pain and impact of disability and emotional well-being with the level of gross motor function was significant ( P <0.05). There was no strong correlation between the level of gross motor function and quality of life of children with cerebral palsy. It means that the level of gross motor function cannot be used as a predictor of quality of life for children with cerebral palsy alone.
Engineered kinesin motor proteins amenable to small-molecule inhibition
Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.
2016-01-01
The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608
ERIC Educational Resources Information Center
Wuang, Y-P.; Su, C-Y.; Huang, M-H.
2012-01-01
Background: Deficit in motor performance is common in children with intellectual disabilities (ID). A motor function measure with sound psychometric properties is indispensable for clinical and research use. The purpose of this study was to compare the psychometric properties of three commonly used clinical measures for assessing motor function in…
Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.
2015-01-01
Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996
Egger, Fabienne; Benzing, Valentin; Jäger, Katja; Conzelmann, Achim; Roebers, Claudia M.; Pesce, Caterina
2017-01-01
Even though positive relations between children’s motor ability and their academic achievement are frequently reported, the underlying mechanisms are still unclear. Executive function has indeed been proposed, but hardly tested as a potential mediator. The aim of the present study was therefore to examine the mediating role of executive function in the relationship between motor ability and academic achievement, also investigating the individual contribution of specific motor abilities to the hypothesized mediated linkage to academic achievement. At intervals of ten weeks, 236 children aged between 10 and 12 years were tested in terms of their motor ability (t1: cardiovascular endurance, muscular strength, motor coordination), core executive functions (t2: updating, inhibition, shifting), and academic achievement (t3: mathematics, reading, spelling). Structural equation modelling revealed executive function to be a mediator in the relation between motor ability and academic achievement, represented by a significant indirect effect. In separate analyses, each of the three motor abilities were positively related to children’s academic achievement. However, only in the case of children’s motor coordination, the mediation by executive function accounted for a significance percentage of variance of academic achievement data. The results provide evidence in support of models that conceive executive function as a mechanism explaining the relationship that links children’s physical activity-related outcomes to academic achievement and strengthen the advocacy for quality physical activity not merely focused on health-related physical fitness outcomes, but also on motor skill development and learning. PMID:28817625
Restoration of landscape function: Reserves or active management?
A.B. Carey
2003-01-01
A 20-year program of research suggests that old-growth forests are ecologically unique and highly valued by people, that naturally young forests with legacies from old forests sustain many, if not all, the higher organisms associated with old growth, but that many managed forests are impoverished in species. Thus, restoring landscape function entails restoring function...
Understanding and planning ecological restoration of plant-pollinator networks.
Devoto, Mariano; Bailey, Sallie; Craze, Paul; Memmott, Jane
2012-04-01
Theory developed from studying changes in the structure and function of communities during natural or managed succession can guide the restoration of particular communities. We constructed 30 quantitative plant-flower visitor networks along a managed successional gradient to identify the main drivers of change in network structure. We then applied two alternative restoration strategies in silico (restoring for functional complementarity or redundancy) to data from our early successional plots to examine whether different strategies affected the restoration trajectories. Changes in network structure were explained by a combination of age, tree density and variation in tree diameter, even when variance explained by undergrowth structure was accounted for first. A combination of field data, a network approach and numerical simulations helped to identify which species should be given restoration priority in the context of different restoration targets. This combined approach provides a powerful tool for directing management decisions, particularly when management seeks to restore or conserve ecosystem function. © 2012 Blackwell Publishing Ltd/CNRS.
Exchange of rotor components in functioning bacterial flagellar motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, Hajime; Inoue, Yuichi; Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577
2010-03-26
The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP,more » and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s{sup -1}, meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.« less
Vohr, Betty R; Msall, Michael E; Wilson, Dee; Wright, Linda L; McDonald, Scott; Poole, W Kenneth
2005-07-01
The purpose of this study was to evaluate the relationship between cerebral palsy (CP) diagnoses as measured by the topographic distribution of the tone abnormality with level of function on the Gross Motor Function Classification System (GMFCS) and developmental performance on the Bayley Scales of Infant Development II (BSID-II). It was hypothesized that (1) the greater the number of limbs involved, the higher the GMFCS and the lower the BSID-II Motor Scores and (2) there would be a spectrum of function and skill achievement on the GMFCS and BSID-II Motor Scores for children in each of the CP categories. A multicenter, longitudinal cohort study was conducted of 1860 extremely low birth weight (ELBW) infants who were born between August 1, 1995 and February 1, 1998, and evaluated at 18 to 22 months' corrected age. Children were categorized into impairment groups on the basis of the typography of neurologic findings: spastic quadriplegia, triplegia, diplegia, hemiplegia, monoplegia, hypotonic and/or athetotic CP, other abnormal neurologic findings, and normal. The neurologic category then was compared with GMFCS level and BSID-II Motor Scores. A total of 282 (15.2%) of the 1860 children evaluated had CP. Children with more limbs involved had more abnormal GMFCS levels and lower BSID-II scores, reflecting more severe functional limitations. However, for each CP diagnostic category, there was a spectrum of gross motor functional levels and BSID-II scores. Although more than 1 (26.6%) in 4 of the children with CP had moderate to severe gross motor functional impairment, 1 (27.6%) in 4 had motor functional skills that allowed for ambulation. Given the range of gross motor skill outcomes for specific types of CP, the GMFCS is a better indicator of gross motor functional impairment than the traditional categorization of CP that specifies the number of limbs with neurologic impairment. The neurodevelopmental assessment of young children is optimized by combining a standard neurologic examination with measures of gross and fine motor function (GMFCS and Bayley Psychomotor Developmental Index). Additional studies to examine longer term functional motor and adaptive-functional developmental skills are required to devise strategies that delineate therapies to optimize functional performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liljedahl, D.R.; Terry, J.
1977-01-01
Emission and fuel economy tests were performed on a sample of one hundred individually-owned 1975 and 1976 model-year light-duty vehicles in the Chicago metropolitan area. Vehicles manufactured by Chrysler Corporation, Ford Motor Company and General Motors Corporation were represented somewhat equally. The purpose of these tests was to investigate emission and fuel economy performance of typical in-use passenger cars and to quantify the individual and combined effects of any observable defects, disablement and/or maladjustments on exhaust emissions and fuel economy. The investigation followed a test plan which consisted of two portions. All vehicles entered the first or Restorative Maintenance Evaluationmore » portion. Certain vehicles that received a major tune-up and passed Federal Exhaust Emission Standards upon completion of the first portion proceeded into the second of Selective Malperformance Evaluation portion. The first test in the plan was conducted with the vehicle in its as received condition. Up to three additional tests were conducted in the first portion each of which was preceded by a restorative maintenance action. Vehicles that proceeded into the second portion were tested five or more times. Each of these tests was preceded by a selected maladjustment. Each test point consisted of the 1975 Federal Test Procedure Economy Test and five short cycle tests. A modest driveability evaluation was also included. (Portions of this document are not fully legible)« less
7 CFR 1467.4 - Program requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that promote the restoration, protection, enhancement, maintenance, and management of wetland functions... successful restoration of wetland functions and values when considering the cost of acquiring the easement...) The likelihood of the successful restoration of such land and the resultant wetland values merit...
Rehabilitation outcomes in children with cerebral palsy during a 2 year period
İçağasıoğlu, Afitap; Mesci, Erkan; Yumusakhuylu, Yasemin; Turgut, Selin Turan; Murat, Sadiye
2015-01-01
[Purpose] To observe motor and functional progress of children with cerebral palsy during 2 years. [Subjects and Methods] Pediatric cerebral palsy patients aged 3–15 years (n = 35/69) with 24-month follow-up at our outpatient cerebral palsy clinic were evaluated retrospectively. The distribution of cerebral palsy types was as follows: diplegia (n = 19), hemiplegia (n = 4), and quadriplegia (n = 12). Participants were divided into 3 groups according to their Gross Motor Functional Classification System scores (i.e., mild, moderate, and severe). All participants were evaluated initially and at the final assessment 2 years later. During this time, patients were treated 3 times/week. Changes in motor and functional abilities were assessed based on Gross Motor Function Measure-88 and Wee Functional Independence Measure. [Results] Significant improvements were observed in Gross Motor Function Measure-88 and Wee Functional Independence Measure results in all 35 patients at the end of 2 years. The Gross Motor Function Measure-88 scores correlated with Wee Functional Independence Measure Scores. Marked increases in motor and functional capabilities in mild and moderate cerebral palsy patients were observed in the subgroup assessments, but not in those with severe cerebral palsy. [Conclusion] Rehabilitation may greatly help mild and moderate cerebral palsy patients achieve their full potential. PMID:26644677
Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin
2017-01-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient's motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction.
A Subcortical Oscillatory Network Contributes to Recovery of Hand Dexterity after Spinal Cord Injury
ERIC Educational Resources Information Center
Nishimura, Yukio; Morichika, Yosuke; Isa, Tadashi
2009-01-01
Recent studies have shown that after partial spinal-cord lesion at the mid-cervical segment, the remaining pathways compensate for restoring finger dexterity; however, how they control hand/arm muscles has remained unclear. To elucidate the changes in dynamic properties of neural circuits connecting the motor cortex and hand/arm muscles, we…
Physical activity and motor decline in older persons.
Buchman, A S; Boyle, P A; Wilson, R S; Bienias, Julia L; Bennett, D A
2007-03-01
We tested the hypothesis that physical activity modifies the course of age-related motor decline. More than 850 older participants of the Rush Memory and Aging Project underwent baseline assessment of physical activity and annual motor testing for up to 8 years. Nine strength measures and nine motor performance measures were summarized into composite measures of motor function. In generalized estimating equation models, global motor function declined during follow-up (estimate, -0.072; SE, 0.008; P < 0.001). Each additional hour of physical activity at baseline was associated with about a 5% decrease in the rate of global motor function decline (estimate, 0.004; SE, 0.001; P = 0.007). Secondary analyses suggested that the association of physical activity with motor decline was mostly due to the effect of physical activity on the rate of motor performance decline. Thus, higher levels of physical activity are associated with a slower rate of motor decline in older persons.
Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S
2017-07-01
The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.
McGregor, Heather R; Gribble, Paul L
2017-08-01
Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.
McLeod, Kevin R; Langevin, Lisa Marie; Dewey, Deborah; Goodyear, Bradley G
2016-01-01
Developmental coordination disorder (DCD) and attention-deficit hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1) cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD), a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.
Canonici, Ana Paula; Andrade, Larissa Pires de; Gobbi, Sebastião; Santos-Galduroz, Ruth Ferreira; Gobbi, Lílian Teresa Bucken; Stella, Florindo
2012-09-01
Cognitive decline has a negative impact on functional activities in Alzheimer's disease. Investigating the effects of motor intervention with the intent to reduce the decline in functionality is an expected target for patients and caregivers. The aim of this study was to verify if a 6-month motor intervention programme promoted functionality in Alzheimer's patients and attenuated caregivers' burden. The sample comprised 32 community patients with Alzheimer's disease and their 32 respective caregivers. Patients were divided into two groups: 16 participated in the motor intervention programme and 16 controls. Subjects performed 60 minutes of exercises, three times per week during the 6-month period, to improve flexibility, strength, agility and balance. Caregivers followed the procedures with their patients during this period. Functionality was evaluated by the Berg Functional Balance Scale and the Functional Independence Measure. Caregivers completed the Neuropsychiatric Inventory Caregiver Distress Scale and the Zarit Carer Burden Scale. Two-way ANOVA was used to verify the interaction between time (pre- and post-intervention) and the motor intervention program. While patients in the motor programme preserved their functionality, as assessed by the Functional Independence Measure, the controls suffered a relative decline (motor intervention group: from 109.6 to 108.4 vs controls: from 99.5 to 71.6; P= 0.01). Patients from motor intervention also had better scores than the controls on functional balance assessed by Berg scale (F: 22.2; P= 0.001). As assessed by the Neuropsychiatric Inventory and Zarit scale, burden was reduced among caregivers whose patients participated in the motor intervention programme compared with caregivers whose patients did not participate in this programme (Neuropsychiatric Inventory, caregiver's part: F: 9.37; P= 0.01; Zarit: F: 11.28; P= 0.01). Patients from the motor intervention group showed reduced functional decline compared to the controls, and there was an associated decrease in caregivers' burden. © 2012 The Authors. Psychogeriatrics © 2012 Japanese Psychogeriatric Society.
Curcumin restores diabetes induced neurochemical changes in the brain stem of Wistar rats.
Kumar, Peeyush T; George, Naijil; Antony, Sherin; Paulose, Cheramadathikudiyil Skaria
2013-02-28
Diabetes mellitus, when poorly controlled, leads to debilitating central nervous system (CNS) complications including cognitive deficits, somatosensory and motor dysfunction. The present study investigated curcumin's potential in modulating diabetes induced neurochemical changes in brainstem. Expression analysis of cholinergic, insulin receptor and GLUT-3 in the brainstem of streptozotocin (STZ) induced diabetic rats were studied. Radioreceptor binding assays, gene expression studies and immunohistochemical analysis were done in the brainstem of male Wistar rats. Our result showed that Bmax of total muscarinic and muscarinic M3 receptors were increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. mRNA level of muscarinic M3, α7-nicotinic acetylcholine, insulin receptors, acetylcholine esterase, choline acetyltransferase and GLUT-3 significantly increased and M1 receptor decreased in the brainstem of diabetic rats. Curcumin and insulin treatment restored the alterations and maintained all parameters to near control. The results show that diabetes is associated with significant reduction in brainstem function coupled with altered cholinergic, insulin receptor and GLUT-3 gene expression. The present study indicates beneficial effect of curcumin in diabetic rats by regulating the cholinergic, insulin receptor and GLUT-3 in the brainstem similar to the responses obtained with insulin therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanrahan, T. P.; Hill, Z.; Levell, A.; Maguire, T.; Risso, D.
2014-12-01
A large wetland and floodplain complex adjacent to the Snake River in southeastern Idaho, USA, encompasses numerous spring-fed creeks that originate on the floodplain and discharge at their confluence with the Snake River and American Falls Reservoir. Resource managers are implementing a program to restore these spring creeks for the recovery of Yellowstone cutthroat trout and ecosystem health. Our objectives were to evaluate the physical characteristics of these spring creeks, develop a conceptual model of their geomorphic function, compare the restoration potential of individual reaches, and communicate our findings to a broad audience of resource managers and regional stakeholders in order to foster restoration planning. A geomorphic assessment along 38 km of three spring creeks was completed by collecting data at several transects within distinct geomorphic reaches, and by collecting data continuously throughout all reaches. These data were summarized in a GIS database and used to quantify the overall geomorphic functioning of each reach. The geomorphic functional scores were scaled from 0% (non-functional) to 100% (fully functional). Among all three spring creeks, geomorphic function ranged from 29% to 63%, with bank conditions and riparian vegetation being the primary causes of overall channel degradation. Results from the geomorphic assessment fostered the development of a conceptual model for spring creek function, whereby degraded bank conditions represent the primary controlling factor of decreased geomorphic function and fish habitat quality. The reach-based geomorphic functional scoring provides an indicator of relative restoration potential for each reach, and is one of the factors used in determining site-specific priorities for protecting, enhancing, and restoring spring creeks on the Fort Hall Bottoms. The study results, conceptual model and restoration strategy were communicated to resource managers and regional stakeholders through a graphically-rich, large format atlas document. Presentation of hard copy and electronic versions of maps and infographics fostered a high level of engagement among those interested in restoring these spring creek systems.
Dynamic Modulation of Human Motor Activity When Observing Actions
Press, Clare; Cook, Jennifer; Blakemore, Sarah-Jayne; Kilner, James
2012-01-01
Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography, we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions. PMID:21414901
Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats
Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.
2014-01-01
Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465
Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice.
Ferrier, Andrew; De Repentigny, Yves; Lynch-Godrei, Anisha; Gibeault, Sabrina; Eid, Walaa; Kuo, Daniel; Zha, Xiaohui; Kothary, Rashmi
2015-01-01
A homozygous mutation in the DST (dystonin) gene causes a newly identified lethal form of hereditary sensory and autonomic neuropathy in humans (HSAN-VI). DST loss of function similarly leads to sensory neuron degeneration and severe ataxia in dystonia musculorum (Dst(dt)) mice. DST is involved in maintaining cytoskeletal integrity and intracellular transport. As autophagy is highly reliant upon stable microtubules and motor proteins, we assessed the influence of DST loss of function on autophagy using the Dst(dt-Tg4) mouse model. Electron microscopy (EM) revealed an accumulation of autophagosomes in sensory neurons from these mice. Furthermore, we demonstrated that the autophagic flux was impaired. Levels of LC3-II, a marker of autophagosomes, were elevated. Consequently, Dst(dt-Tg4) sensory neurons displayed impaired protein turnover of autophagosome substrate SQTSM1/p62 and of polyubiquitinated proteins. Interestingly, in a previously described Dst(dt-Tg4) mouse model that is partially rescued by neuronal specific expression of the DST-A2 isoform, autophagosomes, autolysosomes, and damaged organelles were reduced when compared to Dst(dt-Tg4) mutant mice. LC3-II, SQTSM1, polyubiquitinated proteins and autophagic flux were also restored to wild-type levels in the rescued mice. Finally, a significant decrease in DNAIC1 (dynein, axonemal, intermediate chain 1; the mouse ortholog of human DNAI1), a member of the DMC (dynein/dynactin motor complex), was noted in Dst(dt-Tg4) dorsal root ganglia and sensory neurons. Thus, DST-A2 loss of function perturbs late stages of autophagy, and dysfunctional autophagy at least partially underlies Dst(dt) pathogenesis. We therefore conclude that the DST-A2 isoform normally facilitates autophagy within sensory neurons to maintain cellular homeostasis.
Negredo, Pilar; Rivero, José-Luis L; González, Beatriz; Ramón-Cueto, Almudena; Manso, Rafael
2008-01-01
Paralysed skeletal muscle of rats with spinal cord injury (SCI) undergoes atrophy and a switch in gene expression pattern which leads to faster, more fatigable phenotypes. Olfactory ensheathing glia (OEG) transplants have been reported to promote axonal regeneration and to restore sensory-motor function in animals with SCI. We hypothesized that OEG transplants could attenuate skeletal muscle phenotypic deterioration and that this effect could underlie the functional recovery observed in behavioural tests. A variety of morphological, metabolic and molecular markers were assessed in soleus (SOL) and extensor digitorum longus (EDL) muscles of spinal cord transected (SCT), OEG-transplanted rats 8 months after the intervention and compared with non-transplanted SCT rats and sham-operated (without SCT) controls (C). A multivariate analysis encompassing all the parameters indicated that OEG-transplanted rats displayed skeletal muscle phenotypes intermediate between non-transplanted and sham-operated controls, but different from both. A high correlation was observed between behaviourally tested sensory-motor functional capacity and expression level of slow- and fast-twitch hind limb skeletal muscle phenotypic markers, particularly the histochemical glycerol-3-phosphate dehydrogenase activity (−0.843, P < 0.0001) and the fraction of variant 2s of the slow regulatory myosin light chain isoform (0.848, P < 0.0001) in SOL. Despite the mean overall effect of OEG transplants in patterning skeletal muscle protein expression towards normal, in 6 out of 9 animals they appeared insufficient to overcome fibre type switching and to support a consistent and generalized long-term maintenance of normal skeletal muscle characteristics. The interplay of OEG and exercise-mediated neurotrophic actions is a plausible mechanism underlying OEG transplantation effects on paralysed skeletal muscle. PMID:18372308
α6β2* and α4β2* Nicotinic Acetylcholine Receptors As Drug Targets for Parkinson's Disease
Wonnacott, Susan
2011-01-01
Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the “gold standard” for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease. PMID:21969327
Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice
Ferrier, Andrew; De Repentigny, Yves; Lynch-Godrei, Anisha; Gibeault, Sabrina; Eid, Walaa; Kuo, Daniel; Zha, Xiaohui; Kothary, Rashmi
2015-01-01
A homozygous mutation in the DST (dystonin) gene causes a newly identified lethal form of hereditary sensory and autonomic neuropathy in humans (HSAN-VI). DST loss of function similarly leads to sensory neuron degeneration and severe ataxia in dystonia musculorum (Dstdt) mice. DST is involved in maintaining cytoskeletal integrity and intracellular transport. As autophagy is highly reliant upon stable microtubules and motor proteins, we assessed the influence of DST loss of function on autophagy using the Dstdt-Tg4 mouse model. Electron microscopy (EM) revealed an accumulation of autophagosomes in sensory neurons from these mice. Furthermore, we demonstrated that the autophagic flux was impaired. Levels of LC3-II, a marker of autophagosomes, were elevated. Consequently, Dstdt-Tg4 sensory neurons displayed impaired protein turnover of autophagosome substrate SQTSM1/p62 and of polyubiquitinated proteins. Interestingly, in a previously described Dstdt-Tg4 mouse model that is partially rescued by neuronal specific expression of the DST-A2 isoform, autophagosomes, autolysosomes, and damaged organelles were reduced when compared to Dstdt-Tg4 mutant mice. LC3-II, SQTSM1, polyubiquitinated proteins and autophagic flux were also restored to wild-type levels in the rescued mice. Finally, a significant decrease in DNAIC1 (dynein, axonemal, intermediate chain 1; the mouse ortholog of human DNAI1), a member of the DMC (dynein/dynactin motor complex), was noted in Dstdt-Tg4 dorsal root ganglia and sensory neurons. Thus, DST-A2 loss of function perturbs late stages of autophagy, and dysfunctional autophagy at least partially underlies Dstdt pathogenesis. We therefore conclude that the DST-A2 isoform normally facilitates autophagy within sensory neurons to maintain cellular homeostasis. PMID:26043942