Mapping immune cell infiltration using restricted diffusion MRI.
Yeh, Fang-Cheng; Liu, Li; Hitchens, T Kevin; Wu, Yijen L
2017-02-01
Diffusion MRI provides a noninvasive way to assess tissue microstructure. Based on diffusion MRI, we propose a model-free method called restricted diffusion imaging (RDI) to quantify restricted diffusion and correlate it with cellularity. An analytical relation between q-space signals and the density of restricted spins was derived to quantify restricted diffusion. A phantom study was conducted to investigate the performance of RDI, and RDI was applied to an animal study to assess immune cell infiltration in myocardial tissues with ischemia-reperfusion injury. Our phantom study showed a correlation coefficient of 0.998 between cell density and the restricted diffusion quantified by RDI. The animal study also showed that the high-value regions in RDI matched well with the macrophage infiltration areas in the H&E stained slides. In comparison with diffusion tensor imaging (DTI), RDI exhibited its outperformance to detect macrophage infiltration and delineate inflammatory myocardium. RDI can be used to reveal cell density and detect immune cell infiltration. RDI exhibits better specificity than the diffusivity measurement derived from DTI. Magn Reson Med 77:603-612, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Analysis of Molecular Movement Reveals Latticelike Obstructions to Diffusion in Heart Muscle Cells
Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko
2012-01-01
Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. PMID:22385844
Analysis of molecular movement reveals latticelike obstructions to diffusion in heart muscle cells.
Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko
2012-02-22
Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M
2013-09-01
Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion (lower ADC values) is associated with multiple MRI findings that are traditionally associated with active inflammation in pediatric small bowel Crohn disease.
Garcia, Andres; Wang, Jing; Windus, Theresa L.; ...
2016-05-20
Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → B c or B t with concentration-dependent selectivity of the products, B c or B t, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.
Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy
Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.
2011-01-01
The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell density. PMID:20677208
Vendelin, Marko; Birkedal, Rikke
2008-01-01
A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 ± 14 μm2/s in the longitudinal and 52 ± 16 μm2/s in the transverse directions (n = 8, mean ± SD). Those values are ∼2 (longitudinal) and ∼3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes. PMID:18815224
Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors?
Caro-Domínguez, Pablo; Gupta, Abha A; Chavhan, Govind B
2018-01-01
There are limited data on utility of diffusion-weighted imaging (DWI) in the evaluation of pediatric liver lesions. To determine whether qualitative and quantitative DWI can be used to differentiate benign and malignant pediatric liver lesions. We retrospectively reviewed MRIs in children with focal liver lesions to qualitatively evaluate lesions noting diffusion restriction, T2 shine-through, increased diffusion, hypointensity on DWI and apparent diffusion coefficient (ADC) maps, and intermediate signal on both, and to measure ADC values. Pathology confirmation or a combination of clinical, laboratory and imaging features, and follow-up was used to determine final diagnosis. We included 112 focal hepatic lesions in 89 children (median age 11.5 years, 51 female), of which 92 lesions were benign and 20 malignant. Interobserver agreement was almost perfect for both qualitative (kappa 0.8735) and quantitative (intraclass correlation coefficient [ICC] 0.96) diffusion assessment. All malignant lesions showed diffusion restriction. Most benign lesions other than abscesses were not restricted. There was significant association of qualitative restriction with malignancy and non-restriction with benignancy (Fisher exact test P<0.0001). Mean normalized ADC values of malignant lesions (1.23x10 -3 mm 2 /s) were lower than benign lesions (1.62x10 -3 mm 2 /s; Student's t-test, P<0.015). However, there was significant overlap of ADC between benign and malignant lesions, with wide range for each diagnosis. Receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.63 for predicting malignancy using an ADC cut-off value of ≤1.20x10 -3 mm 2 /s, yielding a sensitivity of 78% and a specificity of 54% for differentiating malignant from benign lesions. Qualitative diffusion restriction in pediatric liver lesions is a good predictor of malignancy and can help to differentiate between benign and malignant lesions, in conjunction with conventional MR sequences. Even though malignant lesions demonstrated significantly lower ADC values than benign lesions, the use of quantitative diffusion remains limited in its utility for distinguishing them because of the significant overlap and wide ranges of ADC values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.
2012-01-15
We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitchmore » angle scattering of high-energy electrons into the geomagnetic loss cone.« less
Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review.
Martin, Melanie
2013-01-01
This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE) measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE) measurements could provide shorter diffusion times so smaller restriction sizes could be probed.
Mechanisms Restricting Diffusion of Intracellular cAMP.
Agarwal, Shailesh R; Clancy, Colleen E; Harvey, Robert D
2016-01-22
Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells.
Mechanisms Restricting Diffusion of Intracellular cAMP
Agarwal, Shailesh R.; Clancy, Colleen E.; Harvey, Robert D.
2016-01-01
Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells. PMID:26795432
Pulmonary function test findings in patients with acute inhalation injury caused by smoke bombs
Cao, Lu; Zhang, Xin-Gang; Wang, Jian-Guo; Wang, Han-Bin; Chen, Yi-Bing; Zhao, Da-Hui; Shi, Wen-Fang
2016-01-01
Background This study aimed to determine the effects of smoke bomb-induced acute inhalation injury on pulmonary function at different stages of lung injury. Methods We performed pulmonary function tests (PFTs) in 15 patients with acute inhalation injury from days 3 to 180 after smoke inhalation. We measured the trace element zinc in whole blood on days 4 and 17, and correlations of zinc levels with PFTs were performed. Results In the acute stage of lung injury (day 3), 3 of 11 patients with mild symptoms had normal pulmonary function and 8 patients with restrictive ventilatory dysfunction and reduced diffusing capacity. Some patients also had mild obstructive ventilatory dysfunction (5 patients) and a decline in small airway function (6 patients). For patients with severe symptoms, PFT results showed moderate to severe restrictive ventilatory dysfunction and reduced diffusing capacity. PaCO2 was significantly higher (P=0.047) in patients with reduced small airway function compared with those with normal small airway function. Whole blood zinc levels in the convalescence stage (day 17) were significantly lower than those in the acute stage (day 4). Zinc in the acute stage was negatively correlated with DLCO/VA on days 3, 10, and 46 (r=−0.633, −0.676, and −0.675 respectively, P<0.05). Conclusions Smoke inhalation injury mainly causes restrictive ventilatory dysfunction and reduced diffusing capacity, and causes mild obstructive ventilatory dysfunction and small airway function decline in some patients. Zinc is negatively correlated with DLCO/VA. Zinc levels may be able to predict prognosis and indicate the degree of lung injury. PMID:28066595
Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard
2013-01-01
Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis. PMID:24143189
Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard
2013-01-01
Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis.
NASA Astrophysics Data System (ADS)
Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi
2005-03-01
The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.
Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas
2017-07-01
Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (p<0.0001), I 2 =73%, test for overall effect Z=8.67 (p<0.00001). ADC min correlated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Diffusion Restrictions Surrounding Mitochondria: A Mathematical Model of Heart Muscle Fibers
Ramay, Hena R.; Vendelin, Marko
2009-01-01
Abstract Several experiments on permeabilized heart muscle fibers suggest the existence of diffusion restrictions grouping mitochondria and surrounding ATPases. The specific causes of these restrictions are not known, but intracellular structures are speculated to act as diffusion barriers. In this work, we assume that diffusion restrictions are induced by sarcoplasmic reticulum (SR), cytoskeleton proteins localized near SR, and crowding of cytosolic proteins. The aim of this work was to test whether such localization of diffusion restrictions would be consistent with the available experimental data and evaluate the extent of the restrictions. For that, a three-dimensional finite-element model was composed with the geometry based on mitochondrial and SR structural organization. Diffusion restrictions induced by SR and cytoskeleton proteins were varied with other model parameters to fit the set of experimental data obtained on permeabilized rat heart muscle fibers. There are many sets of model parameters that were able to reproduce all experiments considered in this work. However, in all the sets, <5–6% of the surface formed by SR and associated cytoskeleton proteins is permeable to metabolites. Such a low level of permeability indicates that the proteins should play a dominant part in formation of the diffusion restrictions. PMID:19619458
Numerical simulation of multi-dimensional NMR response in tight sandstone
NASA Astrophysics Data System (ADS)
Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao
2016-06-01
Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.
Computational approach to integrate 3D X-ray microtomography and NMR data
NASA Astrophysics Data System (ADS)
Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Trevizan, Willian A.; Fortulan, Carlos A.; Bonagamba, Tito J.
2018-07-01
Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials.
Simões, Rui V; Muñoz-Moreno, Emma; Cruz-Lemini, Mónica; Eixarch, Elisenda; Bargalló, Núria; Sanz-Cortés, Magdalena; Gratacós, Eduard
2017-01-01
Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. A total of 26 prematurely born intrauterine growth restriction infants (birthweight <10th centile for gestational age), 22 prematurely born but adequate for gestational age controls, and 26 term adequate-for-gestational-age infants underwent brain magnetic resonance imaging and magnetic resonance spectroscopy at 1 year of age during natural sleep, on a 3 Tesla scanner. All brain T1-weighted and diffusion-weighted images were acquired along with short echo time single-voxel proton spectra from the frontal lobe. Magnetic resonance imaging/magnetic resonance spectroscopy data were processed to derive structural, biophysical, and metabolic information, respectively. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales 3rd edition, assessing cognitive, language, motor, socioemotional, and adaptive behavior. Prematurely born intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which correlate with brain structural and biophysical parameters and neurodevelopmental outcome. Our results suggest altered neurodevelopmental trajectories in preterm intrauterine growth restriction and adequate-for-gestational-age infants, compared with term adequate-for-gestational-age infants, which require further characterization. Copyright © 2016 Elsevier Inc. All rights reserved.
Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446
Zacharzewska-Gondek, Anna; Maksymowicz, Hanna; Szymczyk, Małgorzata; Sąsiadek, Marek; Bladowska, Joanna
2017-01-01
Restricted diffusion that is found on magnetic resonance diffusion-weighted imaging (DWI) typically indicates acute ischaemic stroke. However, restricted diffusion can also occur in other diseases, like metastatic brain tumours, which we describe in this case report. A 57-year-old male, with a diagnosis of small-cell cancer of the right lung (microcellular anaplastic carcinoma), was admitted with focal neurological symptoms. Initial brain MRI revealed multiple, disseminated lesions that were hyperintense on T2-weighted images and did not enhance after contrast administration; notably, some lesions manifested restricted diffusion on DWI images. Based on these findings, disseminated ischaemic lesions were diagnosed. On follow-up MRI that was performed after 2 weeks, we observed enlargement of the lesions; there were multiple, disseminated, sharply outlined, contrast-enhancing, oval foci with persistent restriction of diffusion. We diagnosed the lesions as disseminated brain metastases due to lung cancer. To our knowledge, this is the first description of a patient with brain metastases that were characterised by restricted diffusion and no contrast enhancement. Multiple, disseminated brain lesions, that are characterised by restricted diffusion on DWI, typically indicate acute or hyperacute ischemic infarcts; however, they can also be due to hypercellular metastases, even if no contrast enhancement is observed. This latter possibility should be considered particularly in patients with cancer.
Zakhari, N; Taccone, M S; Torres, C; Chakraborty, S; Sinclair, J; Woulfe, J; Jansen, G H; Nguyen, T B
2018-02-01
Centrally restricted diffusion has been demonstrated in recurrent high-grade gliomas treated with bevacizumab. Our purpose was to assess the accuracy of centrally restricted diffusion in the diagnosis of radiation necrosis in high-grade gliomas not treated with bevacizumab. In this prospective study, we enrolled patients with high-grade gliomas who developed a new ring-enhancing necrotic lesion and who underwent re-resection. The presence of a centrally restricted diffusion within the ring-enhancing lesion was assessed visually on diffusion trace images and by ADC measurements on 3T preoperative diffusion tensor examination. The percentage of tumor recurrence and radiation necrosis in each surgical specimen was defined histopathologically. The association between centrally restricted diffusion and radiation necrosis was assessed using the Fisher exact test. Differences in ADC and the ADC ratio between the groups were assessed via the Mann-Whitney U test, and receiver operating characteristic curve analysis was performed. Seventeen patients had re-resected ring-enhancing lesions: 8 cases of radiation necrosis and 9 cases of tumor recurrence. There was significant association between centrally restricted diffusion by visual assessment and radiation necrosis ( P = .015) with a sensitivity of 75% and a specificity of 88.9%, a positive predictive value 85.7%, and a negative predictive value of 80% for the diagnosis of radiation necrosis. There was a statistically significant difference in the ADC and ADC ratio between radiation necrosis and tumor recurrence ( P = .027). The presence of centrally restricted diffusion in a new ring-enhancing lesion might indicate radiation necrosis rather than tumor recurrence in high-grade gliomas previously treated with standard chemoradiation without bevacizumab. © 2018 by American Journal of Neuroradiology.
Pitfalls of diffusion-weighted imaging of the female pelvis
Duarte, Ana Luisa; Dias, João Lopes; Cunha, Teresa Margarida
2018-01-01
Diffusion-weighted imaging (DWI) is widely used in protocols for magnetic resonance imaging (MRI) of the female pelvis. It provides functional and structural information about biological tissues, without the use of ionizing radiation or intravenous administration of contrast medium. High signal intensity on DWI with simultaneous low signal intensity on apparent diffusion coefficient maps is usually associated with malignancy. However, that pattern can also be seen in many benign lesions, a fact that should be recognized by radiologists. Correlating DWI findings with those of conventional (T1- and T2-weighted) MRI sequences and those of contrast-enhanced MRI sequences is mandatory in order to avoid potential pitfalls. The aim of this review article is the description of the most relevant physiological and benign pathological conditions of the female pelvis that can show restricted diffusion on DWI. PMID:29559764
Computational approach to integrate 3D X-ray microtomography and NMR data.
Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G; Trevizan, Willian A; Fortulan, Carlos A; Bonagamba, Tito J
2018-05-04
Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T 1 and T 2 , respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials. Copyright © 2018 Elsevier Inc. All rights reserved.
Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix
Partikian, Arthur; Ölveczky, Bence; Swaminathan, R.; Li, Yuxin; Verkman, A.S.
1998-01-01
Abstract. It is thought that the high protein density in the mitochondrial matrix results in severely restricted solute diffusion and metabolite channeling from one enzyme to another without free aqueous-phase diffusion. To test this hypothesis, we measured the diffusion of green fluorescent protein (GFP) expressed in the mitochondrial matrix of fibroblast, liver, skeletal muscle, and epithelial cell lines. Spot photobleaching of GFP with a 100× objective (0.8-μm spot diam) gave half-times for fluorescence recovery of 15–19 ms with >90% of the GFP mobile. As predicted for aqueous-phase diffusion in a confined compartment, fluorescence recovery was slowed or abolished by increased laser spot size or bleach time, and by paraformaldehyde fixation. Quantitative analysis of bleach data using a mathematical model of matrix diffusion gave GFP diffusion coefficients of 2–3 × 10−7 cm2/s, only three to fourfold less than that for GFP diffusion in water. In contrast, little recovery was found for bleaching of GFP in fusion with subunits of the fatty acid β-oxidation multienzyme complex that are normally present in the matrix. Measurement of the rotation of unconjugated GFP by time-resolved anisotropy gave a rotational correlation time of 23.3 ± 1 ns, similar to that of 20 ns for GFP rotation in water. A rapid rotational correlation time of 325 ps was also found for a small fluorescent probe (BCECF, ∼0.5 kD) in the matrix of isolated liver mitochondria. The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers. We propose that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse. PMID:9472034
Hayakawa, Katsumi; Koshino, Sachiko; Tanda, Koichi; Nishimura, Akira; Sato, Osamu; Morishita, Hiroyuki; Ito, Takaaki
2018-06-01
Pseudonormalization of diffusion-weighted magnetic resonance imaging (MRI) can lead to underestimation of brain injury in newborns with hypoxic-ischemic encephalopathy (HIE), posing a significant problem. We have noticed that some neonates show pseudonormalization negativity on diffusion-weighted imaging. To compare pseudonormalization negativity with clinical outcomes. Seventeen term neonates with moderate or severe HIE underwent therapeutic hypothermia. They were examined by MRI twice at mean ages of 3 days and 10 days. We evaluated the presence of restricted diffusion, and also the presence or absence of pseudonormalization, by diffusion-weighted imaging at the time of the second MRI, and correlated the results with clinical outcome. DWI demonstrated no abnormality in seven neonates. Among the 10 neonates with abnormal diffusion-weighted imaging findings, 2 were positive for pseudonormalization and 8 were negative. Among neonates with normal diffusion-weighted imaging findings and with positivity for pseudonormalization, none had major disability. Among the eight neonates with pseudonormalization negativity, all but one, who was lost to follow-up, had major disability. Abnormal diffusion-weighted imaging with pseudonormalization negativity might be predictive of severe brain injury and major disability. The second-week MRI is important for the judgment of pseudonormalization.
Jacob, Joseph; Bartholmai, Brian J; Brun, Anne Laure; Egashira, Ryoko; Rajagopalan, Srinivasan; Karwoski, Ronald; Kouranos, Vasileios; Kokosi, Maria; Hansell, David M; Wells, Athol U
2017-11-01
To determine whether computer-based quantification (CALIPER software) is superior to visual computed tomography (CT) scoring in the identification of CT patterns indicative of restrictive and obstructive functional indices in hypersensitivity pneumonitis (HP). A total of 135 consecutive HP patients had CT parenchymal patterns evaluated quantitatively by both visual scoring and CALIPER. Results were evaluated against: forced vital capacity (FVC), total lung capacity (TLC), diffusing capacity for carbon monoxide (DL CO ) and a composite physiological index (CPI) to identify which CT scoring method better correlated with functional indices. CALIPER-derived scores of total interstitial lung disease extent correlated more strongly than visual scores: FVC (CALIPER R = 0.73, visual R = 0.51); DL CO (CALIPER R = 0.61, visual R = 0.48); and CPI (CALIPER R = 0·70, visual R = 0·55). The CT variable that correlated most strongly with restrictive functional indices was CALIPER pulmonary vessel volume (PVV): FVC R = 0.75, DL CO R = 0.68 and CPI R = 0.76. Ground-glass opacity quantified by CALIPER alone demonstrated strong associations with restrictive functional indices: CALIPER FVC R = 0.65; DL CO R = 0.59; CPI R = 0.64; and visual = not significant. Decreased attenuation lung quantified by CALIPER was a better morphological measure of obstructive lung disease than equivalent visual scores as judged by relationships with TLC (CALIPER R = 0.63 and visual R = 0.12). All results were maintained on multivariate analysis. CALIPER improved on visual scoring in HP as judged by restrictive and obstructive functional correlations. Decreased attenuation regions of the lung quantified by CALIPER demonstrated better linkages to obstructive lung physiology than visually quantified CT scores. A novel CALIPER variable, the PVV, demonstrated the strongest linkages with restrictive functional indices and could represent a new automated index of disease severity in HP. © 2017 Asian Pacific Society of Respirology.
Hybrid Diffusion Imaging in Mild Traumatic Brain Injury.
Wu, Yu-Chien; Mustafi, Sourajit Mitra; Harezlak, Jaroslaw; Kodiweera, Chandana; Flashman, Laura A; McAllister, Thomas
2018-05-22
Mild traumatic brain injury (mTBI) is an important public health problem. Although conventional medical imaging techniques can detect moderate-to-severe injuries, they are relatively insensitive to mTBI. In this study, we used hybrid diffusion imaging (HYDI) to detect white-matter alterations in nineteen patients with mTBI and 23 other trauma-control patients. Within 15 days (SD=10) of brain injury, all subjects underwent magnetic-resonance HYDI and were assessed with battery of neuropsychological tests of sustained attention, memory, and executive function. Tract-based spatial statistics (TBSS) were used for voxelwise statistical analyses within the white-matter skeleton to study between-group differences in diffusion metrics, within-group correlations between diffusion metrics and clinical outcomes, and between group interaction effects. The advanced diffusion imaging techniques including neurite orientation dispersion and density imaging (NODDI) and q-space analyses appeared to be more sensitive then classic diffusion tensor imaging (DTI). Only NODDI-derived intra-axonal volume fraction (Vic) demonstrated significant group differences (i.e., 5% to 9% lower in the injured brain). Within the mTBI group, Vic and a q-space measure, P0, correlated with 6 of 10 neuropsychological tests including measures of attention, memory, and executive function. In addition, the direction of correlations differed significantly between the groups (R2 > 0.71 and Pinteration < 0.03). Specifically, in the control group, higher Vic and P0 were associated with better performances on clinical assessments, whereas in the mTBI group, higher Vic and P0 were associated with worse performances with correlation coefficients > 0.83. In summary, the NODDI-derived axonal density index and q-space measure for tissue restriction demonstrated superior sensitivity to white-matter changes shortly after mTBI. These techniques hold promise as a neuroimaging biomarker for mTBI.
NASA Astrophysics Data System (ADS)
Du, Zhixue; Dong, Chaoqing; Ren, Jicun
2017-06-01
PTEN (phosphatase and tensin homolog on chromosome 10) is one of the most important tumor-suppressor proteins, which plays a key role in negative regulation of the PI3K/AKT pathway, and governs many cellular processes including growth, proliferation, survival and migration. The dynamics of PTEN proteins in single living cells is as yet unclear owing to a shortage of suitable in vivo approaches. Here, we report a single-molecule method for in vivo study of the dynamics of PTEN proteins in living cells using fluorescence correlation spectroscopy (FCS). First, we established a monoclonal H1299 stable cell line expressing enhanced green fluorescent protein (EGFP) and PTEN (EGFP-PTEN) fusion proteins; we then developed an in vivo FCS method to study the dynamics of EGFP-PTEN both in the nucleus and the cytoplasm. We investigated the diffusion behaviors of EGFP and EGFP-PTEN in solution, nucleus and cytosol, and observed that the motion of PTEN in living cells was restricted compared with EGFP. Finally, we investigated the protein dynamics in living cells under oxidative stress stimulation and a cellular ATP depletion treatment. Under oxidative stress stimulation, the EGFP-PTEN concentration increased in the nucleus, but slightly decreased in the cytoplasm. The diffusion coefficient and alpha value of EGFP-PTEN reduced significantly both in the nucleus and cytoplasm; the significantly decreased alpha parameter indicates a more restricted Brownian diffusion behavior. Under the cellular ATP depletion treatment, the concentration of EGFP-PTEN remained unchanged in the nucleus and decreased significantly in cytosol. The diffusion coefficient of EGFP-PTEN decreased significantly in cytosol, but showed no significant change in the nucleus; the alpha value decreased significantly in both the nucleus and cytoplasm. These results suggest that the concentration and mobility of PTEN in the nucleus and cytoplasm can be regulated by stimulation methods. Our approach provides a unique method for real-time monitoring of protein dynamics in different subcellular compartments under different stimulation treatments.
NASA Astrophysics Data System (ADS)
Kurz, Felix; Kampf, Thomas; Buschle, Lukas; Schlemmer, Heinz-Peter; Bendszus, Martin; Heiland, Sabine; Ziener, Christian
2016-12-01
In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.
Presence of time-dependent diffusion in the brachial plexus.
Mahbub, Zaid B; Peters, Andrew M; Gowland, Penny A
2018-02-01
This work describes the development of a method to measure the variation of apparent diffusion coefficient (ADC) with diffusion time (Δ) in the brachial plexus, as a potential method of probing microstructure. Diffusion-weighted MRI with body signal suppression was used to highlight the nerves from surrounding tissues, and sequence parameters were optimized for sensitivity to change with diffusion time. A porous media-restricted diffusion model based on the Latour-Mitra equation was fitted to the diffusion time-dependent ADC data from the brachial plexus nerves and cord. The ADC was observed to reduce at long diffusion times, confirming that diffusion was restricted in the nerves and cord in healthy subjects. T2 of the nerves was measured to be 80 ± 5 ms, the diffusion coefficient was found to vary from (1.5 ± 0.1) × 10 -3 mm 2 /s at a diffusion time of 18.3 ms to (1.0 ± 0.2) × 10 -3 mm 2 /s at a diffusion time of 81.3 ms. A novel method of probing restricted diffusion in the brachial plexus was developed. Resulting parameters were comparable with values obtained previously on biological systems. Magn Reson Med 79:789-795, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.
Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent
2014-06-01
Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.
Single-shot thermal ghost imaging using wavelength-division multiplexing
NASA Astrophysics Data System (ADS)
Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai
2018-01-01
Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.
Wagih, Alaa; Mohsen, Laila; Rayan, Moustafa M; Hasan, Mo'men M; Al-Sherif, Ashraf H
2015-01-01
Restricted diffusion is the second most common atypical presentation of PRES. This has a very important implication, as lesions with cytotoxic edema may progress to infarction. Several studies suggested the role of DWI in the prediction of development of infarctions in these cases. Other studies, however, suggested that PRES is reversible even with cytotoxic patterns. Our aim was to evaluate whether every restricted diffusion in PRES is reversible and what factors affect this reversibility. Thirty-six patients with acute neurological symptoms suggestive of PRES were included in our study. Inclusion criteria comprised imaging features of atypical PRES where DWI images and ADC maps show restricted diffusion. Patients were imaged with 0.2-T and 1.5-T machines. FLAIR images were evaluated for the severity of the disease and a FLAIR/DWI score was used. ADC values were selectively recorded from the areas of diffusion restriction. A follow-up MRI study was carried out in all patients after 2 weeks. Patients were classified according to reversibility into: Group 1 (reversible PRES; 32 patients) and Group 2 (irreversible changes; 4 patients). The study was approved by the University's research ethics committee, which conforms to the declaration of Helsinki. The age and blood pressure did not vary significantly between both groups. The total number of regions involved and the FLAIR/DWI score did not vary significantly between both groups. Individual regions did not reveal any tendency for the development of irreversible lesions. Similarly, ADC values did not reveal any significant difference between both groups. PRES is completely reversible in the majority of patients, even with restricted diffusion. None of the variables under study could predict the reversibility of PRES lesions. It seems that this process is individual-dependent.
Wagih, Alaa; Mohsen, Laila; Rayan, Moustafa M.; Hasan, Mo’men M.; Al-Sherif, Ashraf H.
2015-01-01
Summary Background Restricted diffusion is the second most common atypical presentation of PRES. This has a very important implication, as lesions with cytotoxic edema may progress to infarction. Several studies suggested the role of DWI in the prediction of development of infarctions in these cases. Other studies, however, suggested that PRES is reversible even with cytotoxic patterns. Our aim was to evaluate whether every restricted diffusion in PRES is reversible and what factors affect this reversibility. Material/Methods Thirty-six patients with acute neurological symptoms suggestive of PRES were included in our study. Inclusion criteria comprised imaging features of atypical PRES where DWI images and ADC maps show restricted diffusion. Patients were imaged with 0.2-T and 1.5-T machines. FLAIR images were evaluated for the severity of the disease and a FLAIR/DWI score was used. ADC values were selectively recorded from the areas of diffusion restriction. A follow-up MRI study was carried out in all patients after 2 weeks. Patients were classified according to reversibility into: Group 1 (reversible PRES; 32 patients) and Group 2 (irreversible changes; 4 patients). The study was approved by the University’s research ethics committee, which conforms to the declaration of Helsinki. Results The age and blood pressure did not vary significantly between both groups. The total number of regions involved and the FLAIR/DWI score did not vary significantly between both groups. Individual regions did not reveal any tendency for the development of irreversible lesions. Similarly, ADC values did not reveal any significant difference between both groups. Conclusions PRES is completely reversible in the majority of patients, even with restricted diffusion. None of the variables under study could predict the reversibility of PRES lesions. It seems that this process is individual-dependent. PMID:25960819
Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout.
Sokolova, Niina; Vendelin, Marko; Birkedal, Rikke
2009-12-17
Restriction of intracellular diffusion of adenine nucleotides has been studied intensively on adult rat cardiomyocytes. However, their cause and role in vivo is still uncertain. Intracellular membrane structures have been suggested to play a role. We therefore chose to study cardiomyocytes from rainbow trout (Oncorhynchus mykiss), which are thinner and have fewer intracellular membrane structures than adult rat cardiomyocytes. Previous studies suggest that trout permeabilized cardiac fibers also have diffusion restrictions. However, results from fibers may be affected by incomplete separation of the cells. This is avoided when studying permeabilized, isolated cardiomyocytes. The aim of this study was to verify the existence of diffusion restrictions in trout cardiomyocytes by comparing ADP-kinetics of mitochondrial respiration in permeabilized fibers, permeabilized cardiomyocytes and isolated mitochondria from rainbow trout heart. Experiments were performed at 10, 15 and 20 degrees C in the absence and presence of creatine. Trout cardiomyocytes hypercontracted in the solutions used for mammalian cardiomyocytes. We developed a new solution in which they retained their shape and showed stable steady state respiration rates throughout an experiment. The apparent ADP-affinity of permeabilized cardiomyocytes was different from that of fibers. It was higher, independent of temperature and not increased by creatine. However, it was still about ten times lower than in isolated mitochondria. The differences between fibers and cardiomyocytes suggest that results from trout heart fibers were affected by incomplete separation of the cells. However, the lower ADP-affinity of cardiomyocytes compared to isolated mitochondria indicate that intracellular diffusion restrictions are still present in trout cardiomyocytes despite their lower density of intracellular membrane structures. The lack of a creatine effect indicates that trout heart lacks mitochondrial creatine kinase tightly coupled to respiration. This argues against diffusion restriction by the outer mitochondrial membrane. These results from rainbow trout cardiomyocytes resemble those from other low-performance hearts such as neonatal rat and rabbit hearts. Thus, it seems that metabolic regulation is related to cardiac performance, and it is likely that rainbow trout can be used as a model animal for further studies of the localization and role of diffusion restrictions in low-performance hearts.
NASA Astrophysics Data System (ADS)
Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.
2011-12-01
We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.
Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method.
Usvyat, Denis
2013-11-21
Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz is presented. The method is formulated in the direct space, employing local representation for the occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spatial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of the method and its implementation exploits the translational symmetry and the site-group symmetries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and even more so the correlation energy differences. The resulting energies are quite insensitive to the resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly more diffuse functions, than those usually used in the periodic calculations, improves the convergence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the periodic context, are not necessary for LMP2-F12 treatment of crystals.
Peng, Sijia; Wang, Wenjuan; Chen, Chunlai
2018-05-10
Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, David M.; Wang, Jing; Evans, James W.
2012-05-30
Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.
Ackerman, David M; Wang, Jing; Evans, James W
2012-06-01
Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.
Balcom, B J; Petersen, N O
1993-01-01
We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892
Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S; Kim, Sungheon Gene
2015-01-01
Purpose To disentangle the free diffusivity (D0) and cellular membrane restrictions, via their surface-to-volume ratio (S/V), using the frequency-dependence of the diffusion coefficient D(ω), measured in brain tumors in the short diffusion-time regime using oscillating gradients (OGSE). Methods In vivo and ex vivo OGSE experiments were performed on mice bearing the GL261 murine glioma model (n=10) to identify the relevant time/frequency (t/ω) domain where D(ω) linearly decreases with ω−1/2. Parametric maps (S/V, D0) are compared to conventional DWI metrics. The impact of frequency range and temperature (20°C vs. 37°C) on S/V and D0 is investigated ex vivo. Results The validity of the short diffusion-time regime is demonstrated in vivo and ex vivo. Ex vivo measurements confirm that the purely geometric restrictions embodied in S/V are independent from temperature and frequency range, while the temperature dependence of the free diffusivity D0 is similar to that of pure water. Conclusion Our results suggest that D(ω) in the short diffusion-time regime can be used to uncouple the purely geometric restriction effect, such as S/V, from the intrinsic medium diffusivity properties, and provides a non-empirical and objective way to interpret frequency/time-dependent diffusion changes in tumors in terms of objective biophysical tissue parameters. PMID:26207354
Simson, Päivo; Jepihhina, Natalja; Laasmaa, Martin; Peterson, Pearu; Birkedal, Rikke; Vendelin, Marko
2016-08-01
Adequate intracellular energy transfer is crucial for proper cardiac function. In energy starved failing hearts, partial restoration of energy transfer can rescue mechanical performance. There are two types of diffusion obstacles that interfere with energy transfer from mitochondria to ATPases: mitochondrial outer membrane (MOM) with voltage-dependent anion channel (VDAC) permeable to small hydrophilic molecules and cytoplasmatic diffusion barriers grouping ATP-producers and -consumers. So far, there is no method developed to clearly distinguish the contributions of cytoplasmatic barriers and MOM to the overall diffusion restriction. Furthermore, the number of open VDACs in vivo remains unknown. The aim of this work was to establish the partitioning of intracellular diffusion obstacles in cardiomyocytes. We studied the response of mitochondrial oxidative phosphorylation of permeabilized rat cardiomyocytes to changes in extracellular ADP by recording 3D image stacks of NADH autofluorescence. Using cell-specific mathematical models, we determined the permeability of MOM and cytoplasmatic barriers. We found that only ~2% of VDACs are accessible to cytosolic ADP and cytoplasmatic diffusion barriers reduce the apparent diffusion coefficient by 6-10×. In cardiomyocytes, diffusion barriers in the cytoplasm and by the MOM restrict ADP/ATP diffusion to similar extents suggesting a major role of both barriers in energy transfer and other intracellular processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diffuse reflectance spectroscopy of pre- and post-treated oral submucous fibrosis: an in vivo study
NASA Astrophysics Data System (ADS)
Sivabalan, S.; Ponranjini Vedeswari, C.; Jayachandran, S.; Koteeswaran, D.; Pravda, C.; Aruna, P.; Ganesan, S.
2010-02-01
Oral submucous fibrosis (OSF) is a high risk precancerous condition characterized by changes in the connective tissue fibers of the lamina propria and deeper parts leading to stiffness of the mucosa and restricted mouth opening, fibrosis of the lining mucosa of the upper digestive tract involving the oral cavity, oro- and hypo-pharynx and the upper two-thirds of the oesophagus. Optical reflectance measurements have been used to extract diagnostic information from a variety of tissue types, in vivo. We apply diffuse reflectance spectroscopy to quantitatively monitor tumour response to chemotherapy. Twenty patients with submucous fibrosis were diagnosed with diffuse reflectance spectroscopy and treated with the chemotherapy drug, Dexamethasone sodium phosphate and Hyaluronidase injection for seven weeks and after the treatment they were again subjected to the diffuse reflectance spectroscopy. The major observed spectral alterations on pre and post treated submucous fibrosis is an increase in the diffuse reflectance from 450 to 600 nm. Normal mucosa has showed higher reflectance when compared to the pre and post-treated cases. The spectral changes were quantified and correlated to conventional diagnostic results viz., maximum mouth opening, tongue protrusion and burning sensation. The results of this study suggest that the diffuse reflectance spectroscopy may also be considered as complementary optical techniques to monitor oral tissue transformation.
Chapiro, Julius; Wood, Laura D.; Lin, MingDe; Duran, Rafael; Cornish, Toby; Lesage, David; Charu, Vivek; Schernthaner, Rüdiger; Wang, Zhijun; Tacher, Vania; Savic, Lynn Jeanette; Kamel, Ihab R.
2014-01-01
Purpose To evaluate the diagnostic performance of three-dimensional (3Dthree-dimensional) quantitative enhancement-based and diffusion-weighted volumetric magnetic resonance (MR) imaging assessment of hepatocellular carcinoma (HCChepatocellular carcinoma) lesions in determining the extent of pathologic tumor necrosis after transarterial chemoembolization (TACEtransarterial chemoembolization). Materials and Methods This institutional review board–approved retrospective study included 17 patients with HCChepatocellular carcinoma who underwent TACEtransarterial chemoembolization before surgery. Semiautomatic 3Dthree-dimensional volumetric segmentation of target lesions was performed at the last MR examination before orthotopic liver transplantation or surgical resection. The amount of necrotic tumor tissue on contrast material–enhanced arterial phase MR images and the amount of diffusion-restricted tumor tissue on apparent diffusion coefficient (ADCapparent diffusion coefficient) maps were expressed as a percentage of the total tumor volume. Visual assessment of the extent of tumor necrosis and tumor response according to European Association for the Study of the Liver (EASLEuropean Association for the Study of the Liver) criteria was performed. Pathologic tumor necrosis was quantified by using slide-by-slide segmentation. Correlation analysis was performed to evaluate the predictive values of the radiologic techniques. Results At histopathologic examination, the mean percentage of tumor necrosis was 70% (range, 10%–100%). Both 3Dthree-dimensional quantitative techniques demonstrated a strong correlation with tumor necrosis at pathologic examination (R2 = 0.9657 and R2 = 0.9662 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively) and a strong intermethod agreement (R2 = 0.9585). Both methods showed a significantly lower discrepancy with pathologically measured necrosis (residual standard error [RSEresidual standard error] = 6.38 and 6.33 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively), when compared with non-3Dthree-dimensional techniques (RSEresidual standard error = 12.18 for visual assessment). Conclusion This radiologic-pathologic correlation study demonstrates the diagnostic accuracy of 3Dthree-dimensional quantitative MR imaging techniques in identifying pathologically measured tumor necrosis in HCChepatocellular carcinoma lesions treated with TACEtransarterial chemoembolization. © RSNA, 2014 Online supplemental material is available for this article. PMID:25028783
White matter changes and word finding failures with increasing age.
Stamatakis, Emmanuel A; Shafto, Meredith A; Williams, Guy; Tam, Phyllis; Tyler, Lorraine K
2011-01-07
Increasing life expectancy necessitates the better understanding of the neurophysiological underpinnings of age-related cognitive changes. The majority of research examining structural-cognitive relationships in aging focuses on the role of age-related changes to grey matter integrity. In the current study, we examined the relationship between age-related changes in white matter and language production. More specifically, we concentrated on word-finding failures, which increase with age. We used Diffusion tensor MRI (a technique used to image, in vivo, the diffusion of water molecules in brain tissue) to relate white matter integrity to measures of successful and unsuccessful picture naming. Diffusion tensor images were used to calculate Fractional Anisotropy (FA) images. FA is considered to be a measure of white matter organization/integrity. FA images were related to measures of successful picture naming and to word finding failures using voxel-based linear regression analyses. Successful naming rates correlated positively with white matter integrity across a broad range of regions implicated in language production. However, word finding failure rates correlated negatively with a more restricted region in the posterior aspect of superior longitudinal fasciculus. The use of DTI-MRI provides evidence for the relationship between age-related white matter changes in specific language regions and word finding failures in old age.
Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction.
Eixarch, Elisenda; Muñoz-Moreno, Emma; Bargallo, Nuria; Batalle, Dafnis; Gratacos, Eduard
2016-06-01
Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0.409 ± 0.046; P = .016) in both networks were observed in the intrauterine growth restriction group, with no differences in number of streamlines. More importantly, strong specific correlation was found between tractography-related metrics and its relative function in both networks in intrauterine growth restricted children. Motor network metrics were correlated specifically with motor scale results (fractional anisotropy: rho = 0.857; integrity: rho = 0.740); cortico-striatal-thalamic network metrics were correlated with cognitive (fractional anisotropy: rho = 0.793; integrity, rho = 0.762) and socioemotional scale (fractional anisotropy: rho = 0.850; integrity: rho = 0.877). These results support the existence of altered brain connectivity in intrauterine growth restriction demonstrated by altered connectivity in motor and cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. The specific correlation between tractography-related metrics and neurodevelopmental outcomes in intrauterine growth restriction shows the potential to use this approach to develop imaging biomarkers to predict specific neurodevelopmental outcome in infants who are at risk because of intrauterine growth restriction and other prenatal diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Karro, Niina; Sepp, Mervi; Jugai, Svetlana; Laasmaa, Martin; Vendelin, Marko; Birkedal, Rikke
2017-01-01
Rainbow trout (Oncorhynchus mykiss) cardiomyocytes have a simple morphology with fewer membrane structures such as sarcoplasmic reticulum and t-tubules penetrating the cytosol. Despite this, intracellular ADP diffusion is restricted. Intriguingly, although diffusion is restricted, trout cardiomyocytes seem to lack the coupling between mitochondrial creatine kinase (CK) and respiration. Our aim was to study the distribution of diffusion restrictions in permeabilized trout cardiomyocytes and verify the role of CK. We found a high activity of hexokinase (HK), which led us to reassess the situation in trout cardiomyocytes. We show that diffusion restrictions are more prominent than previously thought. In the presence of a competitive ADP-trapping system, ADP produced by HK, but not CK, was channeled to the mitochondria. In agreement with this, we found no positively charged mitochondrial CK in trout heart homogenate. The results were best fit by a simple mathematical model suggesting that trout cardiomyocytes lack a functional coupling between ATPases and pyruvate kinase. The model simulations show that diffusion is restricted to almost the same extent in the cytosol and by the outer mitochondrial membrane. Furthermore, they confirm that HK, but not CK, is functionally coupled to respiration. In perspective, our results suggest that across a range of species, cardiomyocyte morphology and metabolism go hand in hand with cardiac performance, which is adapted to the circumstances. Mitochondrial CK is coupled to respiration in adult mammalian hearts, which are specialized to high, sustained performance. HK associates with mitochondria in hearts of trout and neonatal mammals, which are more hypoxia-tolerant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.
2010-08-15
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate resultsmore » and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.« less
Structural Measurements from Images of Noble Gas Diffusion
NASA Astrophysics Data System (ADS)
Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.
2009-03-01
Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.
Kumar, Avinash; Bade, Geetanjali; Trivedi, Anjali; Jyotsna, Viveka P; Talwar, Anjana
2016-01-01
Diabetes mellitus (DM) is characterized by the presence of chronic hyperglycemia and formation of advanced glycation end products (AGEs). Interaction between AGE and its receptor leads to endothelial damage and microangiopathy. This study was undertaken to investigate the possibility of using a postural variation of diffusing capacity as an early marker of lung microangiopathy and its correlation with the level of adhesion molecules, HbA1c, duration of diabetes, and insulin resistance in type 2 DM (T2DM) patients with and without microangiopathy. Forty patients having T2DM without any microangiopathy (n = 20) as well as with microangiopathy (n = 20), and 22 age and sex matched healthy controls were enrolled in this cross-sectional study. Measurement of lung volumes and capacities were done. DLco was measured in sitting and supine position. Levels of vascular cell adhesion molecule-1 (VCAM-1), E-selectin, fasting glucose, and insulin were estimated in plasma of the patients and compared with controls. Restrictive type of ventilatory change was observed in DM patients. Diffusing capacity (% predicted) in the supine position (P < 0.0001), postural change in DLco (P < 0.0001), and coefficient of diffusion were significantly less in DM patients as compared to controls. Plasma levels of VCAM-1 were significantly higher in DM patients without microangiopathy and negatively correlated (r = -0.4054, P = 0.0094) with Δ DLco in all diabetic subjects. All patients had significantly higher insulin resistance. Lack of postural increase in diffusing capacity in type 2 diabetic patients along with increased VCAM-1 levels could reflect the presence of an early microangiopathy of the small pulmonary vessels.
SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY
2016-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031
NASA Astrophysics Data System (ADS)
Martin, Rodger; Ghoniem, Nasr M.
1986-11-01
A pin-type fusion reactor blanket is designed using γ-LiAlO 2 solid tritium breeder. Tritium transport and diffusive inventory are modeled using the DIFFUSE code. Two approaches are used to obtain characteristic LiAlO 2 grain temperatures. DIFFUSE provides intragranular diffusive inventories which scale up to blanket size. These results compare well with a numerical analysis, giving a steady-state blanket tritium inventory of 13 g. Start-up transient inventories are modeled using DIFFUSE for both full and restricted coolant flow. Full flow gives rapid inventory buildup while restricted flow prevents this buildup. Inventories after shutdown are modeled: reduced cooling is found to have little effect on removing tritium, but preheating rapidly purges inventory. DIFFUSE provides parametric modeling of solid breeder density, radiation, and surface effects. 100% dense pins are found to give massive inventory and marginal tritium release. Only large trapping energies and concentrations significantly increase inventory. Diatomic surface recombination is only significant at high temperatures.
Glutathionylation-Dependence of Na+-K+-Pump Currents Can Mimic Reduced Subsarcolemmal Na+ Diffusion
Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J.; Rasmussen, Helge H.
2016-01-01
The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na+. PMID:26958887
Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H
2016-03-08
The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+). Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Quantum image encryption based on restricted geometric and color transformations
NASA Astrophysics Data System (ADS)
Song, Xian-Hua; Wang, Shen; Abd El-Latif, Ahmed A.; Niu, Xia-Mu
2014-08-01
A novel encryption scheme for quantum images based on restricted geometric and color transformations is proposed. The new strategy comprises efficient permutation and diffusion properties for quantum image encryption. The core idea of the permutation stage is to scramble the codes of the pixel positions through restricted geometric transformations. Then, a new quantum diffusion operation is implemented on the permutated quantum image based on restricted color transformations. The encryption keys of the two stages are generated by two sensitive chaotic maps, which can ensure the security of the scheme. The final step, measurement, is built by the probabilistic model. Experiments conducted on statistical analysis demonstrate that significant improvements in the results are in favor of the proposed approach.
Analyzing Intracellular Binding and Diffusion with Continuous Fluorescence Photobleaching
Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W.; Knoch, Tobias A.; Waldeck, Waldemar; Langowski, Jörg
2003-01-01
Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of ∼13 s. PMID:12719264
Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.
Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W; Knoch, Tobias A; Waldeck, Waldemar; Langowski, Jörg
2003-05-01
Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of approximately 13 s.
NASA Astrophysics Data System (ADS)
Liu, X.; Beroza, G. C.; Nakata, N.
2017-12-01
Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.
Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.
Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L; Vaughan-Jones, Richard D; Lefkimmiatis, Konstantinos; Swietach, Pawel
2016-06-01
3',5'-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm(2)/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Correlation of apparent diffusion coefficient ratio on 3.0 T MRI with prostate cancer Gleason score.
Jyoti, Rajeev; Jain, Tarun Pankaj; Haxhimolla, Hodo; Liddell, Heath; Barrett, Sean Edward
2018-01-01
The purpose was to investigate the usefulness of ADC ratio on Diffusion MRI to discriminate between benign and malignant lesions of Prostate. Images of patients who underwent in-gantry MRI guided prostate lesion biopsy were retrospectively analyzed. Prostate Cancers with 20% or more Gleason score (GS) pattern 3 + 3 = 6 in each core or any volume of higher Gleason score pattern were included. ADC ratio was calculated by two reviewers for each lesion. The ADC ratio was calculated for each lesion by dividing the lowest ADC value in a lesion and highest ADC value in normal prostate in peripheral zone (PZ). ADC ratio values were compared with the biopsy result. Data was analysed using independent samples T-test, Spearman correlation, intra-class correlation coefficient (ICC) and Receiver operating characteristic (ROC) curve. 45 lesions in 33 patients were analyzed. 12 lesions were in transitional zone (TZ) and 33 in perpheral zone PZ. All lesions demonstrated an ADC ratio of 0.45 or lower. GS demonstrated a negative correlation with both the ADC value and ADC ratio . However, ADC ratio (p < 0.001) demonstrated a stronger correlation compared to ADC value alone (p = 0.014). There was no significant statistical difference between GS 3 + 4 and GS 4 + 3 mean ADC tumour value (p = 0.167). However when using ADC ratio , there was a significant difference (p = 0.032). ROC curve analysis demonstrated an area under the curve of 0.83 using ADC ratio and 0.76 when using ADC tumour value when discriminating Gleason 6 from Gleason ≥7 tumours. Inter-observer reliability in the calculation of ADC ratios was excellent, with ICC of 0.964. ADC ratio is a reliable and reproducible tool in quantification of diffusion restriction for clinically significant prostate cancer foci.
A monte carlo study of restricted diffusion: Implications for diffusion MRI of prostate cancer.
Gilani, Nima; Malcolm, Paul; Johnson, Glyn
2017-04-01
Diffusion MRI is used frequently to assess prostate cancer. The prostate consists of cellular tissue surrounding fluid filled ducts. Here, the diffusion properties of the ductal fluid alone were studied. Monte Carlo simulations were used to investigate ductal residence times to determine whether ducts can be regarded as forming a separate compartment and whether ductal radius could determine the Apparent Diffusion Coefficient (ADC) of the ductal fluid. Random walks were simulated in cavities. Average residence times were estimated for permeable cavities. Signal reductions resulting from application of a Stejskal-Tanner pulse sequence were calculated in impermeable cavities. Simulations were repeated for cavities of different radii and different diffusion times. Residence times are at least comparable with diffusion times even in relatively high grade tumors. ADCs asymptotically approach theoretical limiting values. At large radii and short diffusion times, ADCs are similar to free diffusion. At small radii and long diffusion times, ADCs are reduced toward zero, and kurtosis approaches a value of -1.2. Restricted diffusion in cavities of similar sizes to prostate ducts may reduce ductal ADCs. This may contribute to reductions in total ADC seen in prostate cancer. Magn Reson Med 77:1671-1677, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Møller, Jan Kloppenborg; Bergmann, Kirsten Riber; Christiansen, Lasse Engbo; Madsen, Henrik
2012-07-21
In the present study, bacterial growth in a rich media is analysed in a Stochastic Differential Equation (SDE) framework. It is demonstrated that the SDE formulation and smoothened state estimates provide a systematic framework for data driven model improvements, using random walk hidden states. Bacterial growth is limited by the available substrate and the inclusion of diffusion must obey this natural restriction. By inclusion of a modified logistic diffusion term it is possible to introduce a diffusion term flexible enough to capture both the growth phase and the stationary phase, while concentration is restricted to the natural state space (substrate and bacteria non-negative). The case considered is the growth of Salmonella and Enterococcus in a rich media. It is found that a hidden state is necessary to capture the lag phase of growth, and that a flexible logistic diffusion term is needed to capture the random behaviour of the growth model. Further, it is concluded that the Monod effect is not needed to capture the dynamics of bacterial growth in the data presented. Copyright © 2012 Elsevier Ltd. All rights reserved.
Posterior reversible encephalopathy syndrome: a case of unusual diffusion-weighted MR images.
Benziada-Boudour, A; Schmitt, E; Kremer, S; Foscolo, S; Rivière, A-S; Tisserand, M; Boudour, A; Bracard, S
2009-05-01
Posterior reversible encephalopathy (PRES) represents an uncommon entity related to multiple pathologies, the most common of which is hypertensive crisis. PRES is classically characterized as symmetrical parieto-occipital edema, but may affect other areas of the brain. Diffusion-weighted magnetic resonance imaging (DWI) is important for differentiating between vasogenic and cytotoxic edema. We present here the case of a 43-year-old woman, known to suffer from arterial hypertension and severe renal failure, who developed PRES with restricted apparent diffusion coefficients (ADC) in various cerebral areas, suggesting irreversible tissue damage. Nevertheless, follow-up cranial MRI revealed complete remission, indicating that restricted diffusion does not always lead to cell death in this pathology. The underlying pathophysiological mechanism is not well understood. Such reversibility of diffusion anomalies has already been reported with transient ischemia, vasospasm after subarachnoid hemorrhage and epilepsy but, to our knowledge, never before in PRES.
Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S
2016-02-27
MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.
ADP Compartmentation Analysis Reveals Coupling between Pyruvate Kinase and ATPases in Heart Muscle
Sepp, Mervi; Vendelin, Marko; Vija, Heiki; Birkedal, Rikke
2010-01-01
Abstract Cardiomyocytes have intracellular diffusion restrictions, which spatially compartmentalize ADP and ATP. However, the models that predict diffusion restrictions have used data sets generated in rat heart permeabilized fibers, where diffusion distances may be heterogeneous. This is avoided by using isolated, permeabilized cardiomyocytes. The aim of this work was to analyze the intracellular diffusion of ATP and ADP in rat permeabilized cardiomyocytes. To do this, we measured respiration rate, ATPase rate, and ADP concentration in the surrounding solution. The data were analyzed using mathematical models that reflect different levels of cell compartmentalization. In agreement with previous studies, we found significant diffusion restriction by the mitochondrial outer membrane and confirmed a functional coupling between mitochondria and a fraction of ATPases in the cell. In addition, our experimental data show that considerable activity of endogenous pyruvate kinase (PK) remains in the cardiomyocytes after permeabilization. A fraction of ATPases were inactive without ATP feedback by this endogenous PK. When analyzing the data, we were able to reproduce the measurements only with the mathematical models that include a tight coupling between the fraction of endogenous PK and ATPases. To our knowledge, this is the first time such a strong coupling of PK to ATPases has been demonstrated in permeabilized cardiomyocytes. PMID:20550890
Dynamics of non-Markovian exclusion processes
NASA Astrophysics Data System (ADS)
Khoromskaia, Diana; Harris, Rosemary J.; Grosskinsky, Stefan
2014-12-01
Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems.
Padilla, Nelly; Junqué, Carme; Figueras, Francesc; Sanz-Cortes, Magdalena; Bargalló, Núria; Arranz, Angela; Donaire, Antonio; Figueras, Josep; Gratacos, Eduard
2014-01-30
Intrauterine growth restriction (IUGR) is associated with a high risk of abnormal neurodevelopment. Underlying neuroanatomical substrates are partially documented. We hypothesized that at 12 months preterm infants would evidence specific white-matter microstructure alterations and gray-matter differences induced by severe IUGR. Twenty preterm infants with IUGR (26-34 weeks of gestation) were compared with 20 term-born infants and 20 appropriate for gestational age preterm infants of similar gestational age. Preterm groups showed no evidence of brain abnormalities. At 12 months, infants were scanned sleeping naturally. Gray-matter volumes were studied with voxel-based morphometry. White-matter microstructure was examined using tract-based spatial statistics. The relationship between diffusivity indices in white matter, gray matter volumes, and perinatal data was also investigated. Gray-matter decrements attributable to IUGR comprised amygdala, basal ganglia, thalamus and insula bilaterally, left occipital and parietal lobes, and right perirolandic area. Gray-matter volumes positively correlated with birth weight exclusively. Preterm infants had reduced FA in the corpus callosum, and increased FA in the anterior corona radiata. Additionally, IUGR infants had increased FA in the forceps minor, internal and external capsules, uncinate and fronto-occipital white matter tracts. Increased axial diffusivity was observed in several white matter tracts. Fractional anisotropy positively correlated with birth weight and gestational age at birth. These data suggest that IUGR differentially affects gray and white matter development preferentially affecting gray matter. At 12 months IUGR is associated with a specific set of structural gray-matter decrements. White matter follows an unusual developmental pattern, and is apparently affected by IUGR and prematurity combined. Copyright © 2013 Elsevier B.V. All rights reserved.
White, Nathan S.; McDonald, Carrie; Farid, Niky; Kuperman, Josh; Karow, David; Schenker-Ahmed, Natalie M.; Bartsch, Hauke; Rakow-Penner, Rebecca; Holland, Dominic; Shabaik, Ahmed; Bjørnerud, Atle; Hope, Tuva; Hattangadi-Gluth, Jona; Liss, Michael; Parsons, J. Kellogg; Chen, Clark C.; Raman, Steve; Margolis, Daniel; Reiter, Robert E.; Marks, Leonard; Kesari, Santosh; Mundt, Arno J.; Kane, Chris J.; Carter, Bob S.; Bradley, William G.; Dale, Anders M.
2014-01-01
Diffusion weighted imaging (DWI) has been at the forefront of cancer imaging since the early 2000’s. Prior to its application in clinical oncology, this powerful technique had already achieved widespread recognition due to its utility in the diagnosis of cerebral infarction. Following this initial success, the ability of DWI to detect inherent tissue contrast began to be exploited in the field of oncology. Although the initial oncologic applications for tumor detection and characterization, assessing treatment response, and predicting survival were primarily in the field of neuro-oncology, the scope of DWI has since broadened to include oncologic imaging of the prostate gland, breast, and liver. Despite its growing success and application, misconceptions as to the underlying physical basis of the DWI signal exist among researchers and clinicians alike. In this review, we provide a detailed explanation of the biophysical basis of diffusion contrast, emphasizing the difference between hindered and restricted diffusion, and elucidating how diffusion parameters in tissue are derived from the measurements via the diffusion model. We describe one advanced DWI modeling technique, called Restriction Spectrum Imaging (RSI). This technique offers a more direct in vivo measure of tumor cells, due to its ability to distinguish separable pools of water within tissue based on their intrinsic diffusion characteristics. Using RSI as an example, we then highlight the ability of advanced DWI techniques to address key clinical challenges in neuro-oncology, including improved tumor conspicuity, distinguishing actual response to therapy from pseudoresponse, and delineation of white matter tracts in regions of peritumoral edema. We also discuss how RSI, combined with new methods for correction of spatial distortions inherent diffusion MRI scans, may enable more precise spatial targeting of lesions, with implications for radiation oncology, and surgical planning. PMID:25183788
Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment
NASA Astrophysics Data System (ADS)
Kramer, Andrew R.
This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.
Spirometry, Static Lung Volumes, and Diffusing Capacity.
Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H
2017-09-01
Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11) because inspiratory capacity decreased with increasing air-flow obstruction ( P < .001), thus opposing the increased FRC ( P < .001). Finally, P values were similar whether adj LS Means were height-cubed standardized. A GLI-defined spirometric restrictive pattern is strongly associated with a restrictive ventilatory defect (decreased TLC, FRC, and RV), while GLI-defined spirometric air-flow obstruction is strongly associated with hyperinflation (increased FRC) and air trapping (increased RV and RV/TLC). Both spirometric impairments were strongly associated with impaired gas exchange (decreased hemoglobin-adjusted single-breath diffusing capacity). Copyright © 2017 by Daedalus Enterprises.
Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.
Stout, David A; Toyjanova, Jennet; Franck, Christian
2015-06-12
The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis.
Kojima, Masazumi; Nakagami, Hiroaki
2002-12-01
The water mobility and diffusivity in the gel-layer of hydrating low-substituted hydroxypropyl cellulose (LH41) tablets with or without a drug were investigated by magnetic resonance imaging (MRI) and compared with those properties in the gel-layer of hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) tablets. For this purpose, a localized image-analysis method was newly developed, and the spin-spin relaxation time (T(2)) and apparent self-diffusion coefficient (ADC) of water in the gel-layer were visualized in one-dimensional maps. Those maps showed that the extent of gel-layer growth in the tablets was in the order of HPC>HPMC>LH41, and there was a water mobility gradient across the gel-layers of all three tablet formulations. The T(2) and ADC in the outer parts of the gel-layers were close to those of free water. In contrast, these values in the inner parts of the gel-layer decreased progressively; suggesting that the water mobility and diffusivity around the core interface were highly restricted. Furthermore, the correlation between the T(2) of (1)H proton in the gel-layer of the tablets and the drug release rate from the tablets was observed.
Tlili-Graiess, Kalthoum; Mama, Nadia; Arifa, Nadia; Kadri, Khaled; Hasni, Ibtissem; Krifa, Hedi; Mokni, Moncef
2014-10-01
Three cases of histopathologically confirmed central neurocytoma (CN) are presented, emphasizing diagnostic imaging issues: conventional magnetic resonance imaging with Proton magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) findings of CN. Patients age ranged from 17 to 32 years, Imaging include a CT scan and MR examination with DWI and proton MRS on a 1.5-T system. DWI and subsequent apparent diffusion coefficient (ADC) were obtained in all. Single voxel MRS was performed prior to surgery using a point resolved spectroscopy sequence (PRESS) with short 35 ms and long echotime (TE) 144 ms, associated with a two-dimensional chemical Shift Imaging (2D-CSI) with 144 ms TE (one case). Histopathological examination included immunostaining with synaptophysin. With the long TE, a variable amount of glycine with markedly increased choline, very small to almost complete loss of N-acetylaspartate and creatine, and inverted triplet of alanine-lactate were observed in all three patients. Increased glutamate and glutamine complex (Glx) was also observed in all with short TE. DWI demonstrated variable low ADC which appeared well correlated with the tumor signal intensity and cell density: the most homogeneous and highly dense cellular tumor with increased nucleus to cytoplasm ratio demonstrated the lower ADC. Histological pattern was typical in two cases and demonstrated an oligodendroglioma-like pattern in one case. Positivity for synaptophysin confirmed the neuronal origin in all. The demonstration within an intraventricular tumor of both glycine and alanine on MRS along with high choline, bulky Glx and restricted diffusion appear diagnostic of CN. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.
2016-01-01
MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables. PMID:27350723
Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride.
Samuel, Devon; Steinhauser, Carl; Smith, Jeffrey G; Kaufman, Aaron; Radin, Maxwell D; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J
2017-12-20
One obstacle to realizing a practical, rechargeable magnesium-ion battery is the development of efficient Mg electrolytes. Electrolytes based on simple Mg(BH 4 ) 2 salts suffer from poor salt solubility and/or low conductivity, presumably due to strong ion pairing. Understanding the molecular-scale processes occurring in these electrolytes would aid in overcoming these performance limitations. Toward this goal, the present study examines the solvation, agglomeration, and transport properties of a family of Mg electrolytes based on the Mg(BH 4 ) 2 salt using classical molecular dynamics. These properties were examined across five different solvents (tetrahydrofuran and the glymes G1-G4) and at four salt concentrations ranging from the dilute limit up to 0.4 M. Significant and irreversible salt agglomeration was observed in all solvents at all nondilute Mg(BH 4 ) 2 concentrations. The degree of clustering observed in these divalent Mg systems is much larger than that reported for electrolytes containing monovalent cations, such as Li. The salt agglomeration rate and diffusivity of Mg 2+ were both observed to correlate with solvent self-diffusivity: electrolytes using longer- (shorter-) chain solvents had the lowest (highest) Mg 2+ diffusivity and agglomeration rates. Incorporation of Mg 2+ into Mg 2+ -BH 4 - clusters significantly reduces the diffusivity of Mg 2+ by restricting displacements to localized motion within largely immobile agglomerates. Consequently, diffusion is increasingly impeded with increasing Mg(BH 4 ) 2 concentration. These data are consistent with the solubility limitations observed experimentally for Mg(BH 4 ) 2 -based electrolytes and highlight the need for strategies that minimize salt agglomeration in electrolytes containing divalent cations.
Method for applying a diffusion barrier interlayer for high temperature components
Wei, Ronghua; Cheruvu, Narayana S.
2016-03-08
A coated substrate and a method of forming a diffusion barrier coating system between a substrate and a MCrAl coating, including a diffusion barrier coating deposited onto at least a portion of a substrate surface, wherein the diffusion barrier coating comprises a nitride, oxide or carbide of one or more transition metals and/or metalloids and a MCrAl coating, wherein M includes a transition metal or a metalloid, deposited on at least a portion of the diffusion barrier coating, wherein the diffusion barrier coating restricts the inward diffusion of aluminum of the MCrAl coating into the substrate.
Driessen, Juliette P; van Bemmel, Alexander J M; van Kempen, Pauline M W; Janssen, Luuk M; Terhaard, Chris H J; Pameijer, Frank A; Willems, Stefan M; Stegeman, Inge; Grolman, Wilko; Philippens, Marielle E P
2016-04-01
Identification of prognostic patient characteristics in head and neck squamous cell carcinoma (HNSCC) is of great importance. Human papillomavirus (HPV)-positive HNSCCs have favorable response to (chemo)radiotherapy. Apparent diffusion coefficient, derived from diffusion-weighted MRI, has also shown to predict treatment response. The purpose of this study was to evaluate the correlation between HPV status and apparent diffusion coefficient. Seventy-three patients with histologically proven HNSCC were retrospectively analyzed. Mean pretreatment apparent diffusion coefficient was calculated by delineation of total tumor volume on diffusion-weighted MRI. HPV status was analyzed and correlated to apparent diffusion coefficient. Six HNSCCs were HPV-positive. HPV-positive HNSCC showed significantly lower apparent diffusion coefficient compared to HPV-negative. This correlation was independent of other patient characteristics. In HNSCC, positive HPV status correlates with low mean apparent diffusion coefficient. The favorable prognostic value of low pretreatment apparent diffusion coefficient might be partially attributed to patients with a positive HPV status. © 2015 Wiley Periodicals, Inc. Head Neck 38: E613-E618, 2016. © 2015 Wiley Periodicals, Inc.
Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Rekik, Islem; Zhang, Jishui; Zhang, Yue; Tian, Hongwei; Peng, Yun; He, Huiguang
2016-05-01
Tourette syndrome (TS) is a neurological disorder that causes uncontrolled repetitive motor and vocal tics in children. Examining the neural basis of TS churned out different research studies that advanced our understanding of the brain pathways involved in its development. Particularly, growing evidence points to abnormalities within the fronto-striato-thalamic pathways. In this study, we combined Tract-Based Spatial Statistics (TBSS) and Atlas-based regions of interest (ROI) analysis approach, to investigate the microstructural diffusion changes in both deep and superficial white matter (SWM) in TS children. We then characterized the altered microstructure of white matter in 27 TS children in comparison with 27 age- and gender-matched healthy controls. We found that fractional anisotropy (FA) decreases and radial diffusivity (RD) increases in deep white matter (DWM) tracts in cortico-striato-thalamo-cortical (CSTC) circuit as well as SWM. Furthermore, we found that lower FA values and higher RD values in white matter regions are correlated with more severe tics, but not tics duration. Besides, we also found both axial diffusivity and mean diffusivity increase using Atlas-based ROI analysis. Our work may suggest that microstructural diffusion changes in white matter is not only restricted to the gray matter of CSTC circuit but also affects SWM within the primary motor and somatosensory cortex, commissural and association fibers. Hum Brain Mapp 37:1903-1919, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
FRAP to Characterize Molecular Diffusion and Interaction in Various Membrane Environments.
Pincet, Frédéric; Adrien, Vladimir; Yang, Rong; Delacotte, Jérôme; Rothman, James E; Urbach, Wladimir; Tareste, David
2016-01-01
Fluorescence recovery after photobleaching (FRAP) is a standard method used to study the dynamics of lipids and proteins in artificial and cellular membrane systems. The advent of confocal microscopy two decades ago has made quantitative FRAP easily available to most laboratories. Usually, a single bleaching pattern/area is used and the corresponding recovery time is assumed to directly provide a diffusion coefficient, although this is only true in the case of unrestricted Brownian motion. Here, we propose some general guidelines to perform FRAP experiments under a confocal microscope with different bleaching patterns and area, allowing the experimentalist to establish whether the molecules undergo Brownian motion (free diffusion) or whether they have restricted or directed movements. Using in silico simulations of FRAP measurements, we further indicate the data acquisition criteria that have to be verified in order to obtain accurate values for the diffusion coefficient and to be able to distinguish between different diffusive species. Using this approach, we compare the behavior of lipids in three different membrane platforms (supported lipid bilayers, giant liposomes and sponge phases), and we demonstrate that FRAP measurements are consistent with results obtained using other techniques such as Fluorescence Correlation Spectroscopy (FCS) or Single Particle Tracking (SPT). Finally, we apply this method to show that the presence of the synaptic protein Munc18-1 inhibits the interaction between the synaptic vesicle SNARE protein, VAMP2, and its partner from the plasma membrane, Syn1A.
Anomalous Surface Diffusion of Protons on Lipid Membranes
Wolf, Maarten G.; Grubmüller, Helmut; Groenhof, Gerrit
2014-01-01
The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of −13.0 ± 0.5 kJ mol−1. The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. PMID:24988343
Moens, Pierre D.J.; Digman, Michelle A.; Gratton, Enrico
2015-01-01
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. PMID:25809257
Moens, Pierre D J; Digman, Michelle A; Gratton, Enrico
2015-03-24
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Demberg, Kerstin; Laun, Frederik Bernd; Windschuh, Johannes; Umathum, Reiner; Bachert, Peter; Kuder, Tristan Anselm
2017-02-01
Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.
Anomalous surface diffusion of protons on lipid membranes.
Wolf, Maarten G; Grubmüller, Helmut; Groenhof, Gerrit
2014-07-01
The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of -13.0 ± 0.5 kJ mol(-1). The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A BOD monitoring disposable reactor with alginate-entrapped bacteria.
Villalobos, Patricio; Acevedo, Cristian A; Albornoz, Fernando; Sánchez, Elizabeth; Valdés, Erika; Galindo, Raúl; Young, Manuel E
2010-10-01
Biochemical oxygen demand (BOD) is a measure of the amount of dissolved oxygen that is required for the biochemical oxidation of the organic compounds in 5 days. New biosensor-based methods have been conducted for a faster determination of BOD. In this study, a mathematical model to evaluate the feasibility of using a BOD sensor, based on disposable alginate-entrapped bacteria, for monitoring BOD in situ was applied. The model considers the influences of alginate bead size and bacterial concentration. The disposable biosensor can be adapted according to specific requirements depending on the organic load contained in the wastewater. Using Klein and Washausen parameter in a Lineweaver-Burk plot, the glucose diffusivity was calculated in 6.4 × 10(-10) (m2/s) for beads of 1 mm in diameter and slight diffusion restrictions were observed (n = 0.85). Experimental results showed a correlation (p < 0.05) between the respirometric peak and the standard BOD test. The biosensor response was representative of BOD.
Bourne, Roger; Liang, Sisi; Panagiotaki, Eleftheria; Bongers, Andre; Sved, Paul; Watson, Geoffrey
2017-10-01
The purpose of this study was to measure and model the diffusion time dependence of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) derived from conventional prostate diffusion-weighted imaging methods as used in recommended multiparametric MRI protocols. Diffusion tensor imaging (DTI) was performed at 9.4 T with three radical prostatectomy specimens, with diffusion times in the range 10-120 ms and b-values 0-3000 s/mm 2 . ADC and FA were calculated from DTI measurements at b-values of 800 and 1600 s/mm 2 . Independently, a two-component model (restricted isotropic plus Gaussian anisotropic) was used to synthesize DTI data, from which ADC and FA were predicted and compared with the measured values. Measured ADC and FA exhibited a diffusion time dependence, which was closely predicted by the two-component model. ADC decreased by about 0.10-0.15 μm 2 /ms as diffusion time increased from 10 to 120 ms. FA increased with diffusion time at b-values of 800 and 1600 s/mm 2 but was predicted to be independent of diffusion time at b = 3000 s/mm 2 . Both ADC and FA exhibited diffusion time dependence that could be modeled as two unmixed water pools - one having isotropic restricted dynamics, and the other unrestricted anisotropic dynamics. These results highlight the importance of considering and reporting diffusion times in conventional ADC and FA calculations and protocol recommendations, and inform the development of improved diffusion methods for prostate cancer imaging. Copyright © 2017 John Wiley & Sons, Ltd.
Drier, Aurélie; Tourdias, Thomas; Attal, Yohan; Sibon, Igor; Mutlu, Gurkan; Lehéricy, Stéphane; Samson, Yves; Chiras, Jacques; Dormont, Didier; Orgogozo, Jean-Marc; Dousset, Vincent; Rosso, Charlotte
2012-11-01
To compare perfusion-weighted (PW) imaging and apparent diffusion coefficient (ADC) maps in prediction of infarct size and growth in patients with acute middle cerebral artery infarct. This study was approved by the local institutional review board. Written informed consent was obtained from all 80 patients. Subsequent infarct volume and growth on follow-up magnetic resonance (MR) images obtained within 6 days were compared with the predictions based on PW images by using a time-to-peak threshold greater than 4 seconds and ADC maps obtained less than 12 hours after middle cerebral artery infarct. ADC- and PW imaging-predicted infarct growth areas and infarct volumes were correlated with subsequent infarct growth and follow-up diffusion-weighted (DW) imaging volumes. The impact of MR imaging time delay on the correlation coefficient between the predicted and subsequent infarct volumes and individual predictions of infarct growth by using receiver operating characteristic curves were assessed. The infarct volume measurements were highly reproducible (concordance correlation coefficient [CCC] of 0.965 and 95% confidence interval [CI]: 0.949, 0.976 for acute DW imaging; CCC of 0.995 and 95% CI: 0.993, 0.997 for subacute DW imaging). The subsequent infarct volume correlated (P<.0001) with ADC- (ρ=0.853) and PW imaging- (ρ=0.669) predicted volumes. The correlation was higher for ADC-predicted volume than for PW imaging-predicted volume (P<.005), but not when the analysis was restricted to patients without recanalization (P=.07). The infarct growth correlated (P<.0001) with PW imaging-DW imaging mismatch (ρ=0.470) and ADC-DW imaging mismatch (ρ=0.438), without significant differences between both methods (P=.71). The correlations were similar among time delays with ADC-predicted volumes but decreased with PW imaging-based volumes beyond the therapeutic window. Accuracies of ADC- and PW imaging-based predictions of infarct growth in an individual prediction were similar (area under the receiver operating characteristic curve [AUC] of 0.698 and 95% CI: 0.585, 0.796 vs AUC of 0.749 and 95% CI: 0.640, 0.839; P=.48). The ADC-based method was as accurate as the PW imaging-based method for evaluating infarct growth and size in the subacute phase. © RSNA, 2012
Restricted exchange microenvironments for cell culture.
Hoh, Jan H; Werbin, Jeffrey L; Heinz, William F
2018-03-01
Metabolite diffusion in tissues produces gradients and heterogeneous microenvironments that are not captured in standard 2D cell culture models. Here we describe restricted exchange environment chambers (REECs) in which diffusive gradients are formed and manipulated on length scales approximating those found in vivo. In REECs, cells are grown in 2D in an asymmetric chamber (<50 μL) formed between a coverglass and a glass bottom cell culture dish separated by a thin (~100 μm) gasket. Diffusive metabolite exchange between the chamber and bulk media occurs through one or more openings micromachined into the coverglass. Cell-generated concentration gradients form radially in REECs with a single round opening (~200 μm diameter). At steady state only cells within several hundred micrometers of the opening experience metabolite concentrations that permit survival which is analogous to diffusive exchange near a capillary in tissue. The chamber dimensions, the openings' shape, size, and number, and the cellular density and metabolic activity define the gradient structure. For example, two parallel slots above confluent cells produce the 1D equivalent of a spheroid. Using REECs, we found that fibroblasts align along the axis of diffusion while MDCK cells do not. MDCK cells do, however, exhibit significant morphological variations along the diffusive gradient.
The permeability of EUDRAGIT RL and HEMA-MMA microcapsules to glucose and inulin.
Douglas, J A; Sefton, M V
1990-10-05
Measurement of the rate of glucose diffusion from EUDGRAGIT RL and HEMA-MMA microcapsules coupled with a Thiele modulus/Biot number analysis of the glucose utilization rate suggests that pancreatic islets and CHO (Chinese hamster ovary) cells (at moderate to high cell densities) should not be adversely affected by the diffusion restrictions associated with these capsule membranes. The mass transfer coefficients for glucose at 20 degrees C were of the same order of magnitude for both capsules, based on release measurements: approximately 5 x 10(-6) cm/s for EUDRAGIT RL and approximately 2 x 10(-6) for HEMA-MMA. Inulin release from EUDRAGIT RL was slower than for glucose (mass transfer coefficient 14 +/- 4 x 10(-8) cm/s). The Thiele moduli were much less than 1, either for a single islet at the center of a capsule or CHO cells uniformly distributed throughout a capsule at 10(-6) cells/ mL, so that diffusion restrictions within the cells in EUDRAGIT RL or 800 microm HEMA-MMA capsules should be negligible. The ratio of external to internal diffusion resistance (Biot number) was less than 1, so that at most, only a small diffusion effect on glucose utilization should be expected (i.e., the overall effectiveness factors were greater than 0.8). These calculations were consistent with experimental observation of encapsulated islet behavior but not fully with CHO cell behavior. Permeability restricted cell viability and growth is potentially a major limitation of encapsulated cells; further analysis is warranted.
Background-Error Correlation Model Based on the Implicit Solution of a Diffusion Equation
2010-01-01
1 Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation Matthew J. Carrier* and Hans Ngodock...4. TITLE AND SUBTITLE Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation 5a. CONTRACT NUMBER 5b. GRANT...2001), which sought to model error correlations based on the explicit solution of a generalized diffusion equation. The implicit solution is
DEVELOPMENT OF SPLIT-OPERATOR, PETROV-GALERKIN METHODS TO SIMULATE TRANSPORT AND DIFFUSION PROBLEMS
The rate at which contaminants in groundwater undergo sorption and desorption is routinely described using diffusion models. Such approaches, when incorporated into transport models, lead to large systems of coupled equations, often nonlinear. This has restricted applications of ...
Axial diffusivity of the corona radiata correlated with ventricular size in adult hydrocephalus.
Cauley, Keith A; Cataltepe, Oguz
2014-07-01
Hydrocephalus causes changes in the diffusion-tensor properties of periventricular white matter. Understanding the nature of these changes may aid in the diagnosis and treatment planning of this relatively common neurologic condition. Because ventricular size is a common measure of the severity of hydrocephalus, we hypothesized that a quantitative correlation could be made between the ventricular size and diffusion-tensor changes in the periventricular corona radiata. In this article, we investigated this relationship in adult patients with hydrocephalus and in healthy adult subjects. Diffusion-tensor imaging metrics of the corona radiata were correlated with ventricular size in 14 adult patients with acute hydrocephalus, 16 patients with long-standing hydrocephalus, and 48 consecutive healthy adult subjects. Regression analysis was performed to investigate the relationship between ventricular size and the diffusion-tensor metrics of the corona radiata. Subject age was analyzed as a covariable. There is a linear correlation between fractional anisotropy of the corona radiata and ventricular size in acute hydrocephalus (r = 0.784, p < 0.001), with positive correlation with axial diffusivity (r = 0.636, p = 0.014) and negative correlation with radial diffusivity (r = 0.668, p = 0.009). In healthy subjects, axial diffusion in the periventricular corona radiata is more strongly correlated with ventricular size than with patient age (r = 0.466, p < 0.001, compared with r = 0.058, p = 0.269). Axial diffusivity of the corona radiata is linearly correlated with ventricular size in healthy adults and in patients with hydrocephalus. Radial diffusivity of the corona radiata decreases linearly with ventricular size in acute hydrocephalus but is not significantly correlated with ventricular size in healthy subjects or in patients with long-standing hydrocephalus.
The Membrane Skeleton Controls Diffusion Dynamics and Signaling through the B Cell Receptor
Treanor, Bebhinn; Depoil, David; Gonzalez-Granja, Aitor; Barral, Patricia; Weber, Michele; Dushek, Omer; Bruckbauer, Andreas; Batista, Facundo D.
2010-01-01
Summary Early events of B cell activation after B cell receptor (BCR) triggering have been well characterized. However, little is known about the steady state of the BCR on the cell surface. Here, we simultaneously visualize single BCR particles and components of the membrane skeleton. We show that an ezrin- and actin-defined network influenced steady-state BCR diffusion by creating boundaries that restrict BCR diffusion. We identified the intracellular domain of Igβ as important in mediating this restriction in diffusion. Importantly, alteration of this network was sufficient to induce robust intracellular signaling and concomitant increase in BCR mobility. Moreover, by using B cells deficient in key signaling molecules, we show that this signaling was most probably initiated by the BCR. Thus, our results suggest the membrane skeleton plays a crucial function in controlling BCR dynamics and thereby signaling, in a way that could be important for understanding tonic signaling necessary for B cell development and survival. PMID:20171124
Restricted diffusion in a model acinar labyrinth by NMR: Theoretical and numerical results
NASA Astrophysics Data System (ADS)
Grebenkov, D. S.; Guillot, G.; Sapoval, B.
2007-01-01
A branched geometrical structure of the mammal lungs is known to be crucial for rapid access of oxygen to blood. But an important pulmonary disease like emphysema results in partial destruction of the alveolar tissue and enlargement of the distal airspaces, which may reduce the total oxygen transfer. This effect has been intensively studied during the last decade by MRI of hyperpolarized gases like helium-3. The relation between geometry and signal attenuation remained obscure due to a lack of realistic geometrical model of the acinar morphology. In this paper, we use Monte Carlo simulations of restricted diffusion in a realistic model acinus to compute the signal attenuation in a diffusion-weighted NMR experiment. We demonstrate that this technique should be sensitive to destruction of the branched structure: partial removal of the interalveolar tissue creates loops in the tree-like acinar architecture that enhance diffusive motion and the consequent signal attenuation. The role of the local geometry and related practical applications are discussed.
Correlations of diffusion tensor imaging values and symptom scores in patients with schizophrenia.
Michael, Andrew M; Calhoun, Vince D; Pearlson, Godfrey D; Baum, Stefi A; Caprihan, Arvind
2008-01-01
Abnormalities in white matter (WM) brain regions are attributed as a possible biomarker for schizophrenia (SZ). Diffusion tensor imaging (DTI) is used to capture WM tracts. Psychometric tests that evaluate the severity of symptoms of SZ are clinically used in the diagnosis process. In this study we investigate the correlates of scalar DTI measures, such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity with behavioral test scores. The correlations were found by different schemes: mean correlation with WM atlas regions and multiple regression of DTI values with test scores. The corpus callosum, superior longitudinal fasciculus right and inferior longitudinal fasciculus left were found to be having high correlations with test scores.
Crossover from anomalous to normal diffusion in porous media
NASA Astrophysics Data System (ADS)
Aarão Reis, F. D. A.; di Caprio, Dung
2014-06-01
Random walks (RW) of particles adsorbed in the internal walls of porous deposits produced by ballistic-type growth models are studied. The particles start at the external surface of the deposits and enter their pores in order to simulate an external flux of a species towards a porous solid. For short times, the walker concentration decays as a stretched exponential of the depth z, but a crossover to long-time normal diffusion is observed in most samples. The anomalous concentration profile remains at long times in very porous solids if the walker steps are restricted to nearest neighbors and is accompanied with subdiffusion features. These findings are correlated with a decay of the explored area with z. The study of RW of tracer particles left at the internal part of the solid rules out an interpretation by diffusion equations with position-dependent coefficients. A model of RW in a tube of decreasing cross section explains those results by showing long crossovers from an effective subdiffusion regime to an asymptotic normal diffusion. The crossover position and density are analytically calculated for a tube with area decreasing exponentially with z and show good agreement with numerical data. The anomalous decay of the concentration profile is interpreted as a templating effect of the tube shape on the total number of diffusing particles at each depth, while the volumetric concentration in the actually explored porous region may not have significant decay. These results may explain the anomalous diffusion of metal atoms in porous deposits observed in recent works. They also confirm the difficulty in interpreting experimental or computational data on anomalous transport reported in recent works, particularly if only the concentration profiles are measured.
Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel
Sayre, William W.; Chamberlain, A.R.
1964-01-01
In natural streams turbulent diffusion is one of the principal mechanisms by which liquid and suspended-particulate contaminants are dispersed in the flow. A knowledge of turbulence characteristics is therefore essential in predicting the dispersal rates of contaminants in streams. In this study the theory of diffusion by continuous movements for homogeneous turbulence is applied to lateral diffusion at the surface of an open channel in which there is uniform flow. An exploratory-laboratory investigation was conducted in which the lateral dispersion at the water surface of a sand-Led flume was studied by measuring the lateral spread from a point source of small floating polyethylene articles. The experiment was restricted to a single set of low and channel geometry conditions. The results of the study indicate that with certain restrictions lateral dispersion in alluvial channels may be successfully described by the theory of diffusion by continuous movements. The experiment demonstrates a means for evaluating the lateral diffusion coefficient and also methods for quantitatively estimating fundamental turbulence properties, such as the intensity and the Lagrangian integral scale of turbulence in an alluvial channel. The experimental results show that with increasing distance from the source the coefficient of lateral turbulent diffusion increases initially but tends toward a constant limiting value. This result is in accordance with turbulent diffusion theory. Indications are that the distance downstream from the source required for the diffusion coefficient to reach its limiting value is actually very small when compared to the length scale of most diffusion phenomena in natural streams which are of practical interest.
Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T
2014-01-01
Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.
Almost-Quantum Correlations Violate the No-Restriction Hypothesis
NASA Astrophysics Data System (ADS)
Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel
2018-05-01
To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.
Almost-Quantum Correlations Violate the No-Restriction Hypothesis.
Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel
2018-05-18
To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.
Conradi, Mark S.; Yablonskiy, Dmitriy A.; Woods, Jason C.; Gierada, David S.; Jacob, Richard E.; Chang, Yulin V.; Choong, Cliff K.; Sukstanskii, Alex L.; Tanoli, Tariq; Lefrak, Stephen S.; Cooper, Joel D.
2007-01-01
Rationale and Objectives MR imaging of the restricted diffusion of laser-polarized 3He gas provides unique insights into the changes in lung microstructure in emphysema. Results We discuss measurements of ventilation (spin density), mean diffusivity, and the anisotropy of diffusion, which yields the mean acinar airway radius. In addition, the use of spatially modulated longitudinal magnetization allows diffusion to be measured over longer distances and times, with sensitivity to collateral ventilation paths. Early results are also presented for spin density and diffusivity maps made with a perfluorinated inert gas, C3F8. Methods Techniques for purging and imaging excised lungs are discussed. PMID:16253852
Haggie, Peter M; Verkman, A S
2002-10-25
It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.
Background Error Correlation Modeling with Diffusion Operators
2013-01-01
RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 07-10-2013 Book Chapter Background Error Correlation Modeling with Diffusion Operators...normalization Unclassified Unclassified Unclassified UU 27 Max Yaremchuk (228) 688-5259 Reset Chapter 8 Background error correlation modeling with diffusion ...field, then a structure like this simulates enhanced diffusive transport of model errors in the regions of strong cur- rents on the background of
Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.
2016-01-01
Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011
Permeabilized Rat Cardiomyocyte Response Demonstrates Intracellular Origin of Diffusion Obstacles
Jepihhina, Natalja; Beraud, Nathalie; Sepp, Mervi; Birkedal, Rikke; Vendelin, Marko
2011-01-01
Intracellular diffusion restrictions for ADP and other molecules have been predicted earlier based on experiments on permeabilized fibers or cardiomyocytes. However, it is possible that the effective diffusion distance is larger than the cell dimensions due to clumping of cells and incomplete separation of cells in fiber preparations. The aim of this work was to check whether diffusion restrictions exist inside rat cardiomyocytes or are caused by large effective diffusion distance. For that, we determined the response of oxidative phosphorylation (OxPhos) to exogenous ADP and ATP stimulation in permeabilized rat cardiomyocytes using fluorescence microscopy. The state of OxPhos was monitored via NADH and flavoprotein autofluorescence. By varying the ADP or ATP concentration in flow chamber, we determined that OxPhos has a low affinity in cardiomyocytes. The experiments were repeated in a fluorometer on cardiomyocyte suspensions leading to similar autofluorescence changes induced by ADP as recorded under the microscope. ATP stimulated OxPhos more in a fluorometer than under the microscope, which was attributed to accumulation of ADP in fluorometer chamber. By calculating the flow profile around the cell in the microscope chamber and comparing model solutions to measured data, we demonstrate that intracellular structures impose significant diffusion obstacles in rat cardiomyocytes. PMID:22067148
Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing
2018-02-28
Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.
Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI
NASA Astrophysics Data System (ADS)
Chang, Yulin V.; Conradi, Mark S.
2006-08-01
We report measurements of free diffusivity D0 and relaxation times T1 and T2 for pure C 2F 6 and C 3F 8 and their mixtures with oxygen. A simplified relaxation theory is presented and used to fit the data. The results enable spatially localized relaxation time measurements to determine the local gas concentration in lung MR images, so the free diffusivity D0 is then known. Comparison of the measured diffusion to D0 will express the extent of diffusion restriction and allow the local surface-to-volume ratio to be found.
Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829
Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.
Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power
Miciak, Jeremy; Taylor, W. Pat; Stuebing, Karla K.; Fletcher, Jack M.; Vaughn, Sharon
2016-01-01
An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated measures. This can result in attenuated pretest-posttest correlations, reducing the variance explained by the pretest covariate. We investigated the implications of two potential range restriction scenarios: direct truncation on a selection measure and indirect range restriction on correlated measures. Empirical and simulated data indicated direct range restriction on the pretest covariate greatly reduced statistical power and necessitated sample size increases of 82%–155% (dependent on selection criteria) to achieve equivalent statistical power to parameters with unrestricted samples. However, measures demonstrating indirect range restriction required much smaller sample size increases (32%–71%) under equivalent scenarios. Additional analyses manipulated the correlations between measures and pretest-posttest correlations to guide planning experiments. Results highlight the need to differentiate between selection measures and potential covariates and to investigate range restriction as a factor impacting statistical power. PMID:28479943
Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power.
Miciak, Jeremy; Taylor, W Pat; Stuebing, Karla K; Fletcher, Jack M; Vaughn, Sharon
2016-01-01
An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated measures. This can result in attenuated pretest-posttest correlations, reducing the variance explained by the pretest covariate. We investigated the implications of two potential range restriction scenarios: direct truncation on a selection measure and indirect range restriction on correlated measures. Empirical and simulated data indicated direct range restriction on the pretest covariate greatly reduced statistical power and necessitated sample size increases of 82%-155% (dependent on selection criteria) to achieve equivalent statistical power to parameters with unrestricted samples. However, measures demonstrating indirect range restriction required much smaller sample size increases (32%-71%) under equivalent scenarios. Additional analyses manipulated the correlations between measures and pretest-posttest correlations to guide planning experiments. Results highlight the need to differentiate between selection measures and potential covariates and to investigate range restriction as a factor impacting statistical power.
Neonatal neuroimaging: going beyond the pictures.
Ramenghi, Luca A; Rutherford, Mary; Fumagalli, Monica; Bassi, Laura; Messner, Hubert; Counsell, Serena; Mosca, Fabio
2009-10-01
The cerebral ultrasound has been used many years for the diagnosis of brain lesions in term and preterm newborns. Major improvements were obtained by the combination of different imaging modalities such as Magnetic Resonance Imaging with the Diffusion Weighted Imaging (DWI) and the new quantitative Diffusion Tensor Imaging (DTI). The clinical use of MRI has been validated over some years especially to depict the perinatal asphyxia lesions in term newborns, but its use in order to diagnose the typical diseases of preterm babies is very recent and useful in identifying a marker able to predict neurological outcome. The imaging correlates for motor impairment are well recognized (periventricular white matter cavitations), but no any imaging correlate for cognitive impairment and neurobehavioral disorders. While DWI has been used in term newborns to identify the ischemic areas with restricted diffusion, it may be also used to characterize brain development in preterm infants with the Apparent Diffusion Coefficient (ADC) and may allow us to detect abnormalities responsible for the non-motor impairments. Recent datas showed that in infants without focal lesions higher ADC values in WM were associated with poorer neurodevelopmental assessment at 2 years. The DTI also allows to detect the Fractional Anisotropy (FA) that measures the microstructure. DTI can also be used to map the WM tracts in the immature brain and may be applied to understand the normal development or the response of the brain to injury. Some WM regions in the preterm brain have a lower FA suggesting that widespread WM abnormalities are present in preterms even in the absence of focal lesions. The complexity of the developing brain can be explained by the new tractography that can assess the connectivity of different WM regions and the association between structure and function, such as optic radiations microstructure and visual assessment score. Technological advances in neonatal brain imaging have made a major contribution to understand the neurobehavioral disorders of the developing brain that have the origin in the early structural cerebral organization and maturation.
Oxygen concentration sensor for an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, T.; Okada, Y.; Mieno, T.
1988-09-29
This patent describes an oxygen concentration sensor, comprising: an oxygen ion conductive solid electrolyte member forming a gas diffusion restricted region into which a measuring gas is introduced; a pair of electrodes sandwiching the solid electrolyte member; pump current supply means applying a pump voltage to the pair of electrodes through a current detection element to generate a pump current; and a heater element connected to the solid electrolyte member for heating the solid electrolyte member for heating the solid electrolyte member when a heater current is supplied from a heater current source; wherein the oxygen concentration sensor detects anmore » oxygen concentration in the measuring gas in terms of a current value of the pump current supplied through the current detection element and controls oxygen concentration in the gas diffusion restricted region by conducting oxygen ions through the solid electrolyte member in accordance to the flow of the pump current; and wherein the current detection element is connected to the electrode of the pair of electrodes facing the gas diffusion restricted region for insuring that the current value is representative of the pump current and possible leakage current from the heater current.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Nieto, Beatriz, E-mail: bsanchez@fis.puc.cl; Goset, Karen C.; Caviedes, Ivan
Purpose: To propose multivariate predictive models for changes in pulmonary function tests ({Delta}PFTs) with respect to preradiotherapy (pre-RT) values in patients undergoing RT for breast cancer and lymphoma. Methods and Materials: A prospective study was designed to measure {Delta}PFTs of patients undergoing RT. Sixty-six patients were included. Spirometry, lung capacity (measured by helium dilution), and diffusing capacity of carbon monoxide tests were used to measure lung function. Two lung definitions were considered: paired lung vs. irradiated lung (IL). Correlation analysis of dosimetric parameters (mean lung dose and the percentage of lung volume receiving more than a threshold dose) and {Delta}PFTsmore » was carried out to find the best dosimetric predictor. Chemotherapy, age, smoking, and the selected dose-volume parameter were considered as single and interaction terms in a multivariate analysis. Stability of results was checked by bootstrapping. Results: Both lung definitions proved to be similar. Modeling was carried out for IL. Acute and late damage showed the highest correlations with volumes irradiated above {approx}20 Gy (maximum R{sup 2} = 0.28) and {approx}40 Gy (maximum R{sup 2} = 0.21), respectively. RT alone induced a minor and transitory restrictive defect (p = 0.013). Doxorubicin-cyclophosphamide-paclitaxel (Taxol), when administered pre-RT, induced a late, large restrictive effect, independent of RT (p = 0.031). Bootstrap values confirmed the results. Conclusions: None of the dose-volume parameters was a perfect predictor of outcome. Thus, different predictor models for {Delta}PFTs were derived for the IL, which incorporated other nondosimetric parameters mainly through interaction terms. Late {Delta}PFTs seem to behave more serially than early ones. Large restrictive defects were demonstrated in patients pretreated with doxorubicin-cyclophosphamide-paclitaxel.« less
NASA Astrophysics Data System (ADS)
Ganesan, Goutham; Cotter, Joshua; Reuland, Warren; Warren, Robert V.; Mirzaei Zarandi, Soroush M.; Cerussi, Albert E.; Tromberg, Bruce J.; Galassetti, Pietro
2013-03-01
The use of near-infrared time-resolved spectroscopy (TRS-20, Hamamatsu Corporation) in two resistance type exercise applications in human subjects is described. First, using isometric flexion of the biceps, we compared the magnitude and relevance of tissue hemoglobin concentration and oxygen saturation (stO2) changes when assuming constant scattering versus continuous measurement of reduced scattering coefficients at three wavelengths. It was found that the assumption of constant scattering resulted in significant errors in hemoglobin concentration assessment during sustained isometric contractions. Secondly, we tested the effect of blood flow restriction (BFR) on oxygenation in a muscle (vastus medialis oblique, VMO) and in the prefrontal cortex (PFC) of the brain. The BFR training technique resulted in considerably more fatigability in subjects, and correlated with reduced muscle stO2 between sets of exertion. Additionally, exercise with BFR resulted in greater PFC deoxygenation than a condition with equivalent work performance but no BFR. These experiments demonstrate novel applications for diffuse optical spectroscopy in strength testing and targeted muscle rehabilitation.
Breschi, Gian Luca; Librizzi, Laura; Pastori, Chiara; Zucca, Ileana; Mastropietro, Alfonso; Cattalini, Alessandro; de Curtis, Marco
2010-08-01
Magnetic resonance imaging (MRI) during the acute phase of a stroke contributes to recognize ischemic regions and is potentially useful to predict clinical outcome. Yet, the functional significance of early MRI alterations during brain ischemia is not clearly understood. We achieved an experimental study to interpret MRI signals in a novel model of focal ischemia in the in vitro isolated guinea pig brain. By combining neurophysiological and morphological analysis with MR-imaging, we evaluated the suitability of MR to identify ischemic and peri-ischemic regions. Extracellular recordings demonstrated depolarizations in the ischemic core, but not in adjacent areas, where evoked activity was preserved and brief peri-infarct depolarizations occurred. Diffusion-weighted MRI and immunostaining performed after neurophysiological characterization showed changes restricted to the core region. Diffusion-weighted MR alterations did not include the penumbra region characterized by peri-infarct depolarizations. Therefore, by comparing neurophysiological, imaging and anatomical data, we can conclude that DW-MRI underestimates the extension of the tissue damage involved in brain ischemia.
Diffusion on social networks: Survey data from rural villages in central China.
Xiong, Hang; Wang, Puqing; Zhu, Yueji
2016-06-01
Empirical studies on social diffusions are often restricted by the access to data of diffusion and social relations on the same objects. We present a set of first-hand data that we collected in ten rural villages in central China through household surveys. The dataset contains detailed and comprehensive data of the diffusion of an innovation, the major social relationships and the household level demographic characteristics in these villages. The data have been used to study peer effects in social diffusion using simulation models, "Peer Effects and Social Network: The Case of Rural Diffusion in Central China" [1]. They can also be used to estimate spatial econometric models. Data are supplied with this article.
Zhang, Yulin; Mason, Sean; McNeill, Ann; McLaughlin, Michael J
2014-09-09
The utilization of Amberlite (IRP-69 ion-exchange resin, 100-500 wet mesh) as the binding phase in the diffusive gradients in thin films (DGT) technique has shown potential to improve the assessment of plant-available K in soils. The binding phase has recently been optimized by using a mixed Amberlite and ferrihydrite (MAF) gel which results in linear K uptake over extended deployment periods and in solutions with higher K concentrations. As restriction of K uptake by Ca on the Amberlite based resin gel has been previously proposed, potential competing effects of Ca(2+), Mg(2+) and NH(4+) on K uptake by the MAF gel were investigated. These cations had no effect on K elution efficiency which was 85%. However, K uptake by the MAF gel was restricted in the presence of competing cations in solution. Consequently, the diffusion coefficient of K decreased in the presence of cations compared to previous studies but was stable at 1.12×10(-5)cm(2)s(-1) at 25°C regardless of cation concentrations. Uptake of K by the DGT device was affected by the presence of excessive Ca in more than 30% of twenty typical Australian agricultural soils. However, this problem could be circumvented by using a shorter deployment time than the normal 24 h. Moderate correlation of concentrations of K extracted by DGT with Colwell K (extracted by NaHCO(3), R(2)=0.69) and NH4OAc K (R(2)=0.61) indicates that DGT measures a different pool of K in soils than that measured by the standard extractants used. In addition, the MAF gel has the ability to measure Ca and Mg simultaneously. Copyright © 2014 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
The eigenmode perspective of NMR spin relaxation in proteins
NASA Astrophysics Data System (ADS)
Shapiro, Yury E.; Meirovitch, Eva
2013-12-01
We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D1, the local (probe-related) diffusion tensor, D2, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the 15N-1H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D2 ≫ D1), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the global motion. The effects of local diffusion axiality, potential strength, and extent of mode-coupling on the eigenmode setup are investigated. We detect largely global motional or largely local motional eigenmodes. In addition, we detect mixed eigenmodes associated with correlated/prograde or anti-correlated/retrograde rotations of the global (D1) and local (D2) motional modes. The eigenmode paradigm is applied to N-H bond dynamics in the β-sheet residue K19, and the α-helix residue A34, of the third immunoglobulin-binding domain of streptococcal protein G. The largest contribution to the SRLS TCFs is made by mixed anti-correlated D1 and D2 eigenmodes. The next largest contribution is made by D1-dominated eigenmodes. Eigenmodes dominated by the local motion contribute appreciably to A34 and marginally to K19. Correlated D1 and D2 eigenmodes contribute exclusively to K19 and do not contribute above 1% to A34. The differences between K19 and A34 are delineated and rationalized in terms of the best-fit SRLS parameters and mode-mixing. It may be concluded that eigenmode analysis is complementary and supplementary to data-fitting-based analysis.
Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi
2016-01-01
To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.
Continuous Fluorescence Microphotolysis and Correlation Spectroscopy Using 4Pi Microscopy
Arkhipov, Anton; Hüve, Jana; Kahms, Martin; Peters, Reiner; Schulten, Klaus
2007-01-01
Continuous fluorescence microphotolysis (CFM) and fluorescence correlation spectroscopy (FCS) permit measurement of molecular mobility and association reactions in single living cells. CFM and FCS complement each other ideally and can be realized using identical equipment. So far, the spatial resolution of CFM and FCS was restricted by the resolution of the light microscope to the micrometer scale. However, cellular functions generally occur on the nanometer scale. Here, we develop the theoretical and computational framework for CFM and FCS experiments using 4Pi microscopy, which features an axial resolution of ∼100 nm. The framework, taking the actual 4Pi point spread function of the instrument into account, was validated by measurements on model systems, employing 4Pi conditions or normal confocal conditions together with either single- or two-photon excitation. In all cases experimental data could be well fitted by computed curves for expected diffusion coefficients, even when the signal/noise ratio was small due to the small number of fluorophores involved. PMID:17704168
Richardson, Sarah L; Swietach, Pawel
2016-10-25
During capillary transit, red blood cells (RBCs) must exchange large quantities of CO 2 and O 2 in typically less than one second, but the degree to which this is rate-limited by diffusion through cytoplasm is not known. Gas diffusivity is intuitively assumed to be fast and this would imply that the intracellular path-length, defined by RBC shape, is not a factor that could meaningfully compromise physiology. Here, we evaluated CO 2 diffusivity (D CO2 ) in RBCs and related our results to cell shape. D CO2 inside RBCs was determined by fluorescence imaging of [H + ] dynamics in cells under superfusion. This method is based on the principle that H + diffusion is facilitated by CO 2 /HCO 3 - buffer and thus provides a read-out of D CO2 . By imaging the spread of H + ions from a photochemically-activated source (6-nitroveratraldehyde), D CO2 in human RBCs was calculated to be only 5% of the rate in water. Measurements on RBCs containing different hemoglobin concentrations demonstrated a halving of D CO2 with every 75 g/L increase in mean corpuscular hemoglobin concentration (MCHC). Thus, to compensate for highly-restricted cytoplasmic diffusion, RBC thickness must be reduced as appropriate for its MCHC. This can explain the inverse relationship between MCHC and RBC thickness determined from >250 animal species.
Richardson, Sarah L.; Swietach, Pawel
2016-01-01
During capillary transit, red blood cells (RBCs) must exchange large quantities of CO2 and O2 in typically less than one second, but the degree to which this is rate-limited by diffusion through cytoplasm is not known. Gas diffusivity is intuitively assumed to be fast and this would imply that the intracellular path-length, defined by RBC shape, is not a factor that could meaningfully compromise physiology. Here, we evaluated CO2 diffusivity (DCO2) in RBCs and related our results to cell shape. DCO2 inside RBCs was determined by fluorescence imaging of [H+] dynamics in cells under superfusion. This method is based on the principle that H+ diffusion is facilitated by CO2/HCO3− buffer and thus provides a read-out of DCO2. By imaging the spread of H+ ions from a photochemically-activated source (6-nitroveratraldehyde), DCO2 in human RBCs was calculated to be only 5% of the rate in water. Measurements on RBCs containing different hemoglobin concentrations demonstrated a halving of DCO2 with every 75 g/L increase in mean corpuscular hemoglobin concentration (MCHC). Thus, to compensate for highly-restricted cytoplasmic diffusion, RBC thickness must be reduced as appropriate for its MCHC. This can explain the inverse relationship between MCHC and RBC thickness determined from >250 animal species. PMID:27777410
Mikuni, Shintaro; Yamamoto, Johtaro; Horio, Takashi; Kinjo, Masataka
2017-08-25
The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.
Fluid self-diffusion in Scots pine sapwood tracheid cells.
Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B
2006-02-09
The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.
NASA Astrophysics Data System (ADS)
Marrocco, Michele
2007-11-01
Fluorescence correlation spectroscopy is fundamental in many physical, chemical and biological studies of molecular diffusion. However, the concept of fluorescence correlation is founded on the assumption that the analytical description of the correlation decay of diffusion can be achieved if the spatial profile of the detected volume obeys a three-dimensional Gaussian distribution. In the present Letter, the analytical result is instead proven for the fundamental Gaussian-Lorentzian profile.
Correlated diffusion of colloidal particles near a liquid-liquid interface.
Zhang, Wei; Chen, Song; Li, Na; Zhang, Jia Zheng; Chen, Wei
2014-01-01
Optical microscopy and multi-particle tracking are used to investigate the cross-correlated diffusion of quasi two-dimensional colloidal particles near an oil-water interface. The behaviors of the correlated diffusion along longitudinal and transverse direction are asymmetric. It is shown that the characteristic length for longitudinal and transverse correlated diffusion are particle diameter d and the distance z from particle center to the interface, respectively, for large particle separation z. The longitudinal and transverse correlated diffusion coefficient D||(r) and D[perpendicular](r) are independent of the colloidal area fraction n when n < 0.3, which indicates that the hydrodynamic interactions(HIs) among the particles are dominated by HIs through the surrounding fluid for small n. For high area fraction n > 0.4 the power law exponent for the spatial decay of [Formula: see text] begins to decrease, which suggests the HIs are more contributed from the 2D particle monolayer self for large n.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Ackerman, David M.; Lin, Victor S.-Y.
2013-04-02
Statistical mechanical modeling is performed of a catalytic conversion reaction within a functionalized nanoporous material to assess the effect of varying the reaction product-pore interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed not just due to the shift in reaction equilibrium towards completion but also due to enhanced transport within the pore resulting from reduced loading. The latter effect is strongest for highly restricted transport (single-file diffusion), and applies even for irreversible reactions. The analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reactionmore » and restricted transport.« less
Non-Gaussian diffusion in static disordered media
NASA Astrophysics Data System (ADS)
Luo, Liang; Yi, Ming
2018-04-01
Non-Gaussian diffusion is commonly considered as a result of fluctuating diffusivity, which is correlated in time or in space or both. In this work, we investigate the non-Gaussian diffusion in static disordered media via a quenched trap model, where the diffusivity is spatially correlated. Several unique effects due to quenched disorder are reported. We analytically estimate the diffusion coefficient Ddis and its fluctuation over samples of finite size. We show a mechanism of population splitting in the non-Gaussian diffusion. It results in a sharp peak in the distribution of displacement P (x ,t ) around x =0 , that has frequently been observed in experiments. We examine the fidelity of the coarse-grained diffusion map, which is reconstructed from particle trajectories. Finally, we propose a procedure to estimate the correlation length in static disordered environments, where the information stored in the sample-to-sample fluctuation has been utilized.
Nakata, T; Sato-Yoshitake, R; Okada, Y; Noda, Y; Hirokawa, N
1993-01-01
One-dimensional diffusion of microtubules (MTs), a back-and-forth motion of MTs due to thermal diffusion, was reported in dynein motility assay. The interaction between MTs and dynein that allows such motion was implicated in its importance in the force generating cycle of dynein ATPase cycle. However, it was not known whether the phenomenon is special to motor proteins. Here we show two independent examples of one-dimensional diffusion of MTs in the absence of motor proteins. Dynamin, a MT-activated GTPase, causes a nucleotide dependent back-and-forth movement of single MT up to 1 micron along the longitudinal axes, although the MT never showed unidirectional consistent movement. Quantitative analysis of the motion and its nucleotide condition indicates that the motion is due to a thermal driven diffusion, restricted to one dimension, under the weak interaction between MT and dynamin. However, specific protein-protein interaction is not essential for the motion, because similar back-and-forth movement of MT was achieved on coverslips coated with only 0.8% methylcellulose. Both cases demonstrate that thermal diffusion could provide a considerable sliding of MTs only if MTs are restricted on the surface appropriately. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:7906153
Correlation and prediction of gaseous diffusion coefficients.
NASA Technical Reports Server (NTRS)
Marrero, T. R.; Mason, E. A.
1973-01-01
A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.
A generalized view of the correlation factor in solid-state diffusion
NASA Astrophysics Data System (ADS)
Akbar, Sheikh A.
1994-03-01
The correlation factor is commonly used to determine the mechanism of diffusion in solids. Although originally thought to be associated only with tracer diffusion, the concept of the correlation factor has broadened considerably over the last couple of decades. In light of these developments, it is important to generalize the concept. This article attempts to present a simple picture of an integrated view of the correlation factor in a way accessible to a wider audience. Some areas where the generalized correlation factor plays important roles are also highlighted.
Kleinnijenhuis, Michiel; Mollink, Jeroen; Lam, Wilfred W; Kinchesh, Paul; Khrapitchev, Alexandre A; Smart, Sean C; Jbabdi, Saad; Miller, Karla L
2018-02-01
To demonstrate how reference data affect the quantification of the apparent diffusion coefficient (ADC) in long diffusion time measurements with diffusion-weighted stimulated echo acquisition mode (DW-STEAM) measurements, and to present a modification to avoid contribution from crusher gradients in DW-STEAM. For DW-STEAM, reference measurements at long diffusion times have significant b 0 value, because b = 0 cannot be achieved in practice as a result of the need for signal spoiling. Two strategies for acquiring reference data over a range of diffusion times were considered: constant diffusion weighting (fixed-b 0 ) and constant gradient area (fixed-q 0 ). Fixed-b 0 and fixed-q 0 were compared using signal calculations for systems with one and two diffusion coefficients, and experimentally using data from postmortem human corpus callosum samples. Calculations of biexponential diffusion decay show that the ADC is underestimated for reference images with b > 0, which can induce an apparent time-dependence for fixed-q 0 . Restricted systems were also found to be affected. Experimentally, the exaggeration of the diffusion time-dependent effect under fixed-q 0 versus fixed-b 0 was in a range predicted theoretically, accounting for 62% (longitudinal) and 35% (radial) of the time dependence observed in white matter. Variation in the b-value of reference measurements in DW-STEAM can induce artificial diffusion time dependence in ADC, even in the absence of restriction. Magn Reson Med 79:952-959, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Statistical error in simulations of Poisson processes: Example of diffusion in solids
NASA Astrophysics Data System (ADS)
Nilsson, Johan O.; Leetmaa, Mikael; Vekilova, Olga Yu.; Simak, Sergei I.; Skorodumova, Natalia V.
2016-08-01
Simulations of diffusion in solids often produce poor statistics of diffusion events. We present an analytical expression for the statistical error in ion conductivity obtained in such simulations. The error expression is not restricted to any computational method in particular, but valid in the context of simulation of Poisson processes in general. This analytical error expression is verified numerically for the case of Gd-doped ceria by running a large number of kinetic Monte Carlo calculations.
Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan; Lee, Jeong Hyun
2016-01-01
To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D(*)), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D(*) and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D(*) and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D(*) (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.
N-acetyl-aspartate levels correlate with intra-axonal compartment parameters from diffusion MRI.
Grossman, Elan J; Kirov, Ivan I; Gonen, Oded; Novikov, Dmitry S; Davitz, Matthew S; Lui, Yvonne W; Grossman, Robert I; Inglese, Matilde; Fieremans, Els
2015-09-01
Diffusion MRI combined with biophysical modeling allows for the description of a white matter (WM) fiber bundle in terms of compartment specific white matter tract integrity (WMTI) metrics, which include intra-axonal diffusivity (Daxon), extra-axonal axial diffusivity (De||), extra-axonal radial diffusivity (De┴), axonal water fraction (AWF), and tortuosity (α) of extra-axonal space. Here we derive these parameters from diffusion kurtosis imaging to examine their relationship to concentrations of global WM N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myo-Inositol (mI), as measured with proton MR spectroscopy ((1)H-MRS), in a cohort of 25 patients with mild traumatic brain injury (MTBI). We found statistically significant (p<0.05) positive correlations between NAA and Daxon, AWF, α, and fractional anisotropy; negative correlations between NAA and De,┴ and the overall radial diffusivity (D┴). These correlations were supported by similar findings in regional analysis of the genu and splenium of the corpus callosum. Furthermore, a positive correlation in global WM was noted between Daxon and Cr, as well as a positive correlation between De|| and Cho, and a positive trend between De|| and mI. The specific correlations between NAA, an endogenous probe of the neuronal intracellular space, and WMTI metrics related to the intra-axonal space, combined with the specific correlations of De|| with mI and Cho, both predominantly present extra-axonally, corroborate the overarching assumption of many advanced modeling approaches that diffusion imaging can disentangle between the intra- and extra-axonal compartments in WM fiber bundles. Our findings are also generally consistent with what is known about the pathophysiology of MTBI, which appears to involve both intra-axonal injury (as reflected by a positive trend between NAA and Daxon) as well as axonal shrinkage, demyelination, degeneration, and/or loss (as reflected by correlations between NAA and De┴, AWF, and α). Copyright © 2015 Elsevier Inc. All rights reserved.
Charge transport through split photoelectrodes in dye-sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.
2014-04-28
Charge transport and recombination are relatively ignored parameters while upscaling dye-sensitized solar cells (DSCs). Enhanced photovoltaic parameters are anticipated by merely widening the devices physical dimensions, viz., thickness and area as evident from the device design adopted in reported large area DSCs. These strip designs lead to ≤50% loss in photocurrent compared to the high efficiency lab scale devices. Herein, we report that the key to achieving higher current density (J{sub SC}) is optimized diffusion volume rather than the increased photoelectrode area because kinetics of the devices is strongly influenced by the varied choices of diffusion pathways upon increasing themore » electrode area. For a given electrode area and thickness, we altered the photoelectrode design by splitting the electrode into multiple fractions to restrict the electron diffusion pathways. We observed a correlation between the device physical dimensions and its charge collection efficiency via current-voltage and impedance spectroscopy measurements. The modified electrode designs showed >50% increased J{sub SC} due to shorter transport time, higher recombination resistance and enhanced charge collection efficiency compared to the conventional ones despite their similar active volume (∼3.36 × 10{sup −4} cm{sup 3}). A detailed charge transport characteristic of the split devices and their comparison with single electrode configuration is described in this article.« less
Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H
2018-03-20
The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.
Sigmund, E E; Baete, S H; Luo, T; Patel, K; Wang, D; Rossi, I; Duarte, A; Bruno, M; Mossa, D; Femia, A; Ramachandran, S; Stoffel, D; Babb, J S; Franks, A; Bencardino, J
2018-06-04
Dermatomyositis (DM) is an idiopathic inflammatory myopathy involving severe debilitation in need of diagnostics. We evaluated the proximal lower extremity musculature with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM) and dynamic DTI in DM patients and controls and compared with standard clinical workup. METHODS: In this IRB-approved, HIPAA-compliant study with written informed consent, anatomical, Dixon fat/water and diffusion imaging were collected in bilateral thigh MRI of 22 controls and 27 DM patients in a 3T scanner. Compartments were scored on T1/T2 scales. Single voxel dynamic DTI metrics in quadriceps before and after 3-min leg exercise were measured. Spearman rank correlation and mixed model analysis of variance/covariance (ANOVA/ANCOVA) were used to correlate with T1 and T2 scores and to compare patients with controls. DM patients showed significantly lower pseudo-diffusion and volume in quadriceps than controls. All subjects showed significant correlation between T1 score and signal-weighted fat fraction; tissue diffusion and pseudo-diffusion varied significantly with T1 and T2 score in patients. Radial and mean diffusion exercise response in patients was significantly higher than controls. Static and dynamic diffusion imaging metrics show correlation with conventional imaging scores, reveal spatial heterogeneity, and provide means to differentiate dermatomyositis patients from controls. • Diffusion imaging shows regional differences between thigh muscles of dermatomyositis patients and controls. • Signal-weighted fat fraction and diffusion metrics correlate with T1/T2 scores of disease severity. • Dermatomyositis patients show significantly higher radial diffusion exercise response than controls.
Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements
NASA Astrophysics Data System (ADS)
Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao
2015-10-01
Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.
Diffusion-weighted imaging in the evaluation of odontogenic cysts and tumours.
Srinivasan, K; Seith Bhalla, A; Sharma, R; Kumar, A; Roychoudhury, A; Bhutia, O
2012-10-01
The differentiation between keratocystic odontogenic tumour (KCOT) and other cystic/predominantly cystic odontogenic tumours is difficult on conventional CT and MR sequences as there is overlap in the imaging characteristics of these lesions. The purpose of this study was to evaluate the role of diffusion-weighted imaging (DWI) and to assess the performance of apparent diffusion coefficients (ADCs) in the differential diagnosis of odontogenic cysts and tumours. 20 patients with odontogenic cysts and tumours of the maxillomandibular region were examined with DWI. Diffusion-weighted images were obtained with a single-shot echoplanar technique with b-values of 0, 500 and 1000 s mm(-2). An ADC map was obtained at each slice position. The cystic areas of ameloblastoma (n=10) showed free diffusion with a mean ADC value of 2.192±0.33×10(-3) mm(2) s(-1), whereas the solid areas showed restricted diffusion with a mean ADC value of 1.041±0.41×10(-3) mm(2) s(-1). KCOT (n=5) showed restricted diffusion with a mean ADC value of 1.019±0.07×10(-3) mm(2) s(-1). There was a significant difference between the ADC values of KCOT and cystic ameloblastoma (p<0.01, Mann-Whitney U-test). The cut-off with which KCOT and predominantly cystic ameloblastomas were optimally differentiated was 2.013×10(-3) mm(2) s(-1), which yielded 100% sensitivity and 100% specificity. DWI can be used to differentiate KCOT from cystic (or predominantly cystic) odontogenic tumours.
Correlation Structure of Fractional Pearson Diffusions.
Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla
2013-09-01
The stochastic solution to a diffusion equations with polynomial coefficients is called a Pearson diffusion. If the first time derivative is replaced by a Caputo fractional derivative of order less than one, the stochastic solution is called a fractional Pearson diffusion. This paper develops an explicit formula for the covariance function of a fractional Pearson diffusion in steady state, in terms of Mittag-Leffler functions. That formula shows that fractional Pearson diffusions are long range dependent, with a correlation that falls off like a power law, whose exponent equals the order of the fractional derivative.
Kadowaki, Joy; Vuolo, Mike; Kelly, Brian C.
2014-01-01
In this article, we present the results of a systematic review of state, county, and municipal restrictions on the use of electronic cigarettes (e-cigarettes) in public spaces within the United States, alongside an overview of the current legal landscape. The lack of federal guidance leaves lower-level jurisdictions to debate the merits of restrictions on use in public spaces without sufficient scientific research. As we show through a geographic assessment of restrictions, this has resulted in an inconsistent patchwork of e-cigarette use bans across the United States of varying degrees of coverage. Bans have emerged over time in a manner that suggests a “bottom up” diffusion of e-cigarette clean air policies. Ultimately, the lack of clinical and scientific knowledge on the risks and potential harm reduction benefits has led to precautionary policymaking, which often lacks grounding in empirical evidence and results in spatially uneven diffusion of policy. PMID:25463920
Diffusion-tensor MR imaging of the breast: hormonal regulation.
Nissan, Noam; Furman-Haran, Edna; Shapiro-Feinberg, Myra; Grobgeld, Dov; Degani, Hadassa
2014-06-01
To investigate the parameters obtained with magnetic resonance (MR) diffusion-tensor imaging (DTI) of the breast throughout the menstrual cycle phases, during lactation, and after menopause, with and without hormone replacement therapy (HRT). All protocols were approved by the internal review board, and signed informed consent was obtained from all participants. Forty-five healthy volunteers underwent imaging by using T2-weighted and DTI MR sequences at 3 T. Premenopausal volunteers (n = 16) underwent imaging weekly, four times during one menstrual cycle. Postmenopausal volunteers (n = 19) and lactating volunteers (n = 10) underwent imaging once. The principal diffusion coefficients (λ1, λ2, and λ3), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and maximal anisotropy (λ1-λ3) were calculated pixel by pixel for the fibroglandular tissue in the entire breast. In all premenopausal volunteers, the DTI parameters exhibited high repeatability, remaining almost equal along the menstrual cycle, with a low mean within-subject coefficient of variance of λ1, λ2, λ3, and ADC (1%-2% for all) and FA (5%), as well as a high intraclass correlation of 0.92-0.98. The diffusion coefficients were significantly lower (a) in the group without HRT use as compared with the group with HRT use (P < .01) and premenopausal volunteers (P < .01) and (b) in the lactating volunteers as compared with the premenopausal volunteers (P < .005). No significant differences in DTI parameters were found between premenopausal volunteers free of oral contraceptives and those who used oral contraceptives (P = .28-0.82) and between premenopausal volunteers and postmenopausal volunteers who used HRT (P = .31-0.93). DTI parameters are not sensitive to menstrual cycle changes, while menopause, long-term HRT, and presence of milk in lactating women affected the DTI parameters. Therefore, the timing for performing breast DTI is not restricted throughout the menstrual cycle, whereas the modulations in diffusion parameters due to HRT and lactation should be taken into account in DTI evaluation.
Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji
2017-04-01
The activity of the glymphatic system is impaired in animal models of Alzheimer's disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along the perivascular spaces as well as projection fibers and association fibers separately, to acquire an index for diffusivity along the perivascular space (ALPS-index) and correlated them with the mini mental state examinations (MMSE) score. We found a significant negative correlation between diffusivity along the projection fibers and association fibers. We also observed a significant positive correlation between diffusivity along perivascular spaces shown as ALPS-index and the MMSE score, indicating lower water diffusivity along the perivascular space in relation to AD severity. Activity of the glymphatic system may be evaluated with diffusion images. Lower diffusivity along the perivascular space on DTI-APLS seems to reflect impairment of the glymphatic system. This method may be useful for evaluating the activity of the glymphatic system.
NASA Astrophysics Data System (ADS)
Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2015-06-01
Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell-Stefan (MS) Diffusivities of molten salt LiF-BeF2, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity ĐLi-F and ĐBe-F decreases sharply for higher concentration of LiF and BeF2 respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except ĐBe-F at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.
Urea cycle disorders: brain MRI and neurological outcome.
Bireley, William R; Van Hove, Johan L K; Gallagher, Renata C; Fenton, Laura Z
2012-04-01
Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions.
Palombo, Marco; Gentili, Silvia; Bozzali, Marco; Macaluso, Emiliano; Capuani, Silvia
2015-05-01
In this MRI study, diffusional kurtosis imaging (DKI) and T2 * multiecho relaxometry were measured from the white matter (WM) of human brains and correlated with each other, with the aim of investigating the influence of magnetic-susceptibility (Δχ (H2O-TISSUE) ) on the contrast. We focused our in vivo analysis on assessing the dependence of mean, axial, and radial kurtosis (MK, K‖ , K⊥ ), as well as DTI indices on Δχ (H2O-TISSUE) (quantified by T2 *) between extracellular water and WM tissue molecules. Moreover, Monte Carlo (MC) simulations were used to elucidate experimental data. A significant positive correlation was observed between K⊥ , MK and R2 * = 1/T2 *, suggesting that Δχ (H2O-TISSUE) could be a source of DKI contrast. In this view, K⊥ and MK-map contrasts in human WM would not just be due to different restricted diffusion processes of compartmentalized water but also to local Δχ (H2O-TISSUE) . However, MC simulations show a strong dependence on microstructure rearrangement and a feeble dependence on Δχ (H2O-TISSUE) of DKI signal. Our results suggests a concomitant and complementary existence of multi-compartmentalized diffusion process and Δχ (H2O-TISSUE) in DKI contrast that might explain why kurtosis contrast is more sensitive than DTI in discriminating between different tissues. However, more realistic numerical simulations are needed to confirm this statement. © 2014 Wiley Periodicals, Inc.
Diffuse Optics for Tissue Monitoring and Tomography
Durduran, T; Choe, R; Baker, W B; Yodh, A G
2015-01-01
This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. PMID:26120204
Patel, H C; Tokarski, J S; Hopfinger, A J
1997-10-01
The purpose of this study was to identify the key physicochemical molecular properties of polymeric materials responsible for gaseous diffusion in the polymers. Quantitative structure-property relationships, QSPRs were constructed using a genetic algorithm on a training set of 16 polymers for which CO2, N2, O2 diffusion constants were measured. Nine physicochemical properties of each of the polymers were used in the trial basis set for QSPR model construction. The linear cross-correlation matrices were constructed and investigated for colinearity among the members of the training sets. Common water diffusion measures for a limited training set of six polymers was used to construct a "semi-QSPR" model. The bulk modulus of the polymer was overwhelmingly found to be the dominant physicochemical polymer property that governs CO2, N2 and O2 diffusion. Some secondary physicochemical properties controlling diffusion, including conformational entropy, were also identified as correlation descriptors. Very significant QSPR diffusion models were constructed for all three gases. Cohesive energy was identified as the main correlation physicochemical property with aqueous diffusion measures. The dominant role of polymer bulk modulus on gaseous diffusion makes it difficult to develop criteria for selective transport of gases through polymers. Moreover, high bulk moduli are predicted to be necessary for effective gas barrier materials. This property requirement may limit the processing and packaging features of the material. Aqueous diffusion in polymers may occur by a different mechanism than gaseous diffusion since bulk modulus does not correlate with aqueous diffusion, but rather cohesive energy of the polymer.
Kaur, Gurpreet; Costa, Mauro W; Nefzger, Christian M; Silva, Juan; Fierro-González, Juan Carlos; Polo, Jose M; Bell, Toby D M; Plachta, Nicolas
2013-01-01
Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.
Lee, James T; Liau, Joy; Murphy, Paul; Schroeder, Michael E; Sirlin, Claude B; Bydder, Mark
2012-05-01
The purpose of this study was to investigate the relationship between liver fat fraction (FF) and diffusion parameters derived from the intravoxel incoherent motion (IVIM) model. Thirty-six subjects with suspected nonalcoholic fatty liver disease underwent diffusion-weighted magnetic resonance imaging with 10 b-values and spoiled gradient recalled echo imaging with six echoes for fat quantification. Correlations were measured between FF, transverse relaxivity (R2), diffusivity (D) and perfusion fraction (f). The primary finding was that no significant correlation was obtained for D vs. FF or f vs. FF. Significant correlations were obtained for D vs. R2 (r=-0.490, P=.002) and f vs. D (r=-0.458, P=.005). The conclusion is that hepatic steatosis does not affect measurement of perfusion or diffusion and therefore is unlikely to confound the use of apparent diffusivity to evaluate hepatic fibrosis. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Pfaffel, Andreas; Spiel, Christiane
2016-01-01
Approaches to correcting correlation coefficients for range restriction have been developed under the framework of large sample theory. The accuracy of missing data techniques for correcting correlation coefficients for range restriction has thus far only been investigated with relatively large samples. However, researchers and evaluators are…
Culpepper, Steven Andrew
2016-06-01
Standardized tests are frequently used for selection decisions, and the validation of test scores remains an important area of research. This paper builds upon prior literature about the effect of nonlinearity and heteroscedasticity on the accuracy of standard formulas for correcting correlations in restricted samples. Existing formulas for direct range restriction require three assumptions: (1) the criterion variable is missing at random; (2) a linear relationship between independent and dependent variables; and (3) constant error variance or homoscedasticity. The results in this paper demonstrate that the standard approach for correcting restricted correlations is severely biased in cases of extreme monotone quadratic nonlinearity and heteroscedasticity. This paper offers at least three significant contributions to the existing literature. First, a method from the econometrics literature is adapted to provide more accurate estimates of unrestricted correlations. Second, derivations establish bounds on the degree of bias attributed to quadratic functions under the assumption of a monotonic relationship between test scores and criterion measurements. New results are presented on the bias associated with using the standard range restriction correction formula, and the results show that the standard correction formula yields estimates of unrestricted correlations that deviate by as much as 0.2 for high to moderate selectivity. Third, Monte Carlo simulation results demonstrate that the new procedure for correcting restricted correlations provides more accurate estimates in the presence of quadratic and heteroscedastic test score and criterion relationships.
Modeling of Diffusion Based Correlations Between Heart Rate Modulations and Respiration Pattern
2001-10-25
1 of 4 MODELING OF DIFFUSION BASED CORRELATIONS BETWEEN HEART RATE MODULATIONS AND RESPIRATION PATTERN R.Langer,(1) Y.Smorzik,(2) S.Akselrod,(1...generations of the bronchial tree. The second stage describes the oxygen diffusion process from the pulmonary gas in the alveoli into the pulmonary...patterns (FRC, TV, rate). Keywords – Modeling, Diffusion , Heart Rate fluctuations I. INTRODUCTION Under a whole-body management perception, the
Multiple-scattering coefficients and absorption controlled diffusive processes
NASA Astrophysics Data System (ADS)
Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor
1999-11-01
Multiple-scattering transmission and reflection coefficients (T,R) are introduced in addition to the diffusion coefficient D for the description of ballistic diffusion in the presence of absorption. For 1D (one-dimensional) systems, the measurement of only one between T and D imposes restrictions on the possible values of the other. If D is measured, then T is bounded between the Landauer and Lambert-Beer equations. Measurements of both (T,D) imply the theoretical knowledge of the microscopic absorption Σa and scattering rΣs cross sections.
Ye, Hanhui; Yuan, Jinjin; Wang, Zhengwu; Huang, Aiqiong; Liu, Xiaolong; Han, Xiao; Chen, Yahong
2016-01-01
Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.
Quasi-equilibria in reduced Liouville spaces.
Halse, Meghan E; Dumez, Jean-Nicolas; Emsley, Lyndon
2012-06-14
The quasi-equilibrium behaviour of isolated nuclear spin systems in full and reduced Liouville spaces is discussed. We focus in particular on the reduced Liouville spaces used in the low-order correlations in Liouville space (LCL) simulation method, a restricted-spin-space approach to efficiently modelling the dynamics of large networks of strongly coupled spins. General numerical methods for the calculation of quasi-equilibrium expectation values of observables in Liouville space are presented. In particular, we treat the cases of a time-independent Hamiltonian, a time-periodic Hamiltonian (with and without stroboscopic sampling) and powder averaging. These quasi-equilibrium calculation methods are applied to the example case of spin diffusion in solid-state nuclear magnetic resonance. We show that there are marked differences between the quasi-equilibrium behaviour of spin systems in the full and reduced spaces. These differences are particularly interesting in the time-periodic-Hamiltonian case, where simulations carried out in the reduced space demonstrate ergodic behaviour even for small spins systems (as few as five homonuclei). The implications of this ergodic property on the success of the LCL method in modelling the dynamics of spin diffusion in magic-angle spinning experiments of powders is discussed.
Diffuse Waves and Energy Densities Near Boundaries
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.
2007-12-01
Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of this energy spectrum, ruling out non linear effects, may influence the seismic response for future earthquakes. Partial supports from DGAPA-UNAM, Project IN114706, Mexico; from Proyect MCyT CGL2005-05500-C02/BTE, Spain; from project DyETI of INSU-CNRS, France, and from the Instituto Mexicano del Petróleo are greatly appreciated.
Facilitated diffusion in chromatin lattices: mechanistic diversity and regulatory potential.
Kampmann, Martin
2005-08-01
The interaction between a protein and a specific DNA site is the molecular basis for vital processes in all organisms. Location of the DNA target site by the protein commonly involves facilitated diffusion. Mechanisms of facilitated diffusion vary among proteins; they include one- and two-dimensional sliding along DNA, direct transfer between uncorrelated sites, as well as combinations of these mechanisms. Facilitated diffusion has almost exclusively been studied in vitro. This review discusses facilitated diffusion in the context of the living cell and proposes a theoretical model for facilitated diffusion in chromatin lattices. Chromatin structure differentially affects proteins in different modes of diffusion. The interplay of facilitated diffusion and chromatin structure can determine the rate of protein association with the target site, the frequency of association-dissociation events at the target site, and, under particular conditions, the occupancy of the target site. Facilitated diffusion is required in vivo for efficient DNA repair and bacteriophage restriction and has potential roles in fine-tuning gene regulatory networks and kinetically compartmentalizing the eukaryotic nucleus.
Anxiety is correlated with running in adolescent female mice undergoing activity-based anorexia
Wable, Gauri S.; Min, Jung-Yun; Chen, Yi-Wen; Aoki, Chiye
2015-01-01
Activity-based anorexia (ABA) is a widely used animal model for identifying the biological basis of excessive exercise and starvation, two hallmarks of anorexia nervosa (AN). Anxiety is correlated with exercise in AN. Yet the anxiety level of animals in ABA has not been reported. We asked: Does food restriction as part of ABA induction change the anxiety level of animals? If so, is the degree of anxiety correlated with degree of hyperactivity? We used the open field test before food restriction and the elevated plus maze test (EPM) during food restriction to quantify anxiety among singly housed adolescent female mice and determined whether food restriction alone or combined with exercise (i.e., ABA induction) abates or increases anxiety. We show that food restriction, with or without exercise, reduced anxiety significantly, as measured by the proportion of entries into the open arms of EPM (35.73 %, p= .04). Moreover, ABA-induced individuals varied in their open arm time measure of anxiety and this value was highly and negatively correlated to the individual’s food restriction-evoked wheel activity during the 24 hours following the anxiety test (R = − .75, p= .004, N = 12). This correlation was absent among the exercise-only controls. Additionally, mice with higher increase in anxiety ran more following food restriction. Our data suggest that food restriction-evoked wheel running hyperactivity can be used as a reliable and continuous measure of anxiety in ABA. The parallel relationship between anxiety level and activity in AN and ABA-induced female mice strengthens the animal model. PMID:25730124
A Comparison of Two Approaches to Correction of Restriction of Range in Correlation Analysis
ERIC Educational Resources Information Center
Wiberg, Marie; Sundstrom, Anna
2009-01-01
A common problem in predictive validity studies in the educational and psychological fields, e.g. in educational and employment selection, is restriction in range of the predictor variables. There are several methods for correcting correlations for restriction of range. The aim of this paper was to examine the usefulness of two approaches to…
Obstructed metabolite diffusion within skeletal muscle cells in silico.
Aliev, Mayis K; Tikhonov, Alexander N
2011-12-01
Using a Monte Carlo simulation technique, we have modeled 3D diffusion of low molecular weight metabolites inside a skeletal muscle cell. The following structural elements are considered: (i) a regular lattice of actin and myosin filaments inside a myofibril, (ii) the membranes of sarcoplasmic reticulum and mitochondria surrounding the myofibrils, (iii) a set of myofibrils inside a skeletal muscle cell encircled by the outer cell membrane, and (iv) an additional set of regular intracellular structures ("macrocompartments") embedded into the cell interior. The macrocompartments are considered to simulate diffusion restrictions because of hypothetical cylindrical structures (16-22 μm in diameter) suggested earlier (de Graaf et al. Biophys J 78: 1657-1664, 2000). This model allowed us to calculate the apparent coefficients of particle diffusion in the radial and axial directions, D(app)(⊥) and D(app)(II), respectively. Particle movements in the axial direction are considered, at first approximation, as unrestricted diffusion (D(app)(II) = const). The apparent coefficient of radial diffusion, D(app)(⊥), decreases with time because of particle collisions with myofilaments and other rigid obstacles. Results of our random walk simulations are in fairly good agreement with experimental data on NMR measurements of restricted radial diffusion of phosphocreatine in white and red skeletal muscles of goldfish (Kinsey et al. NMR Biomed 12:1-7, 1999). Particle reflections from the low-permeable borders of macrocompartments (efficient diameter, D(eff)(MC) ≈ 9.2-10.4 μm) are the prerequisite for agreeing theoretical and experimental data. The low-permeable coverage of hypothetical macrocompartments (99.8% of coverage) provides the main contribution to time-dependent decrease in D(app)(⊥).
Diffusion-weighted MR of the brain: methodology and clinical application.
Mascalchi, Mario; Filippi, Massimo; Floris, Roberto; Fonda, Claudio; Gasparotti, Roberto; Villari, Natale
2005-03-01
Clinical diffusion magnetic resonance (MR) imaging in humans started in the last decade with the demonstration of the capabilities of this technique of depicting the anatomy of the white matter fibre tracts in the brain. Two main approaches in terms of reconstruction and evaluation of the images obtained with application of diffusion sensitising gradients to an echo planar imaging sequence are possible. The first approach consists of reconstruction of images in which the effect of white matter anisotropy is averaged -- known as the isotropic or diffusion weighted images, which are usually evaluated subjectively for possible areas of increased or decreased signal, reflecting restricted and facilitated diffusion, respectively. The second approach implies reconstruction of image maps of the apparent diffusion coefficient (ADC), in which the T2 weighting of the echo planar diffusion sequence is cancelled out, and their objective, i.e. numerical, evaluation with regions of interest or histogram analysis. This second approach enables a quantitative and reproducible assessment of the diffusion changes not only in areas exhibiting signal abnormality in conventional MR images but also in areas of normal signal. A further level of image post-processing requires the acquisition of images after application of sensitising gradients along at least 6 different spatial orientations and consists of computation of the diffusion tensor and reconstruction of maps of the mean diffusivity (D) and of the white matter anisotropic properties, usually in terms of fractional anisotropy (FA). Diffusion-weighted imaging is complementary to conventional MR imaging in the evaluation of the acute ischaemic stroke. The combination of diffusion and perfusion MR imaging has the potential of providing all the information necessary for the diagnosis and management of the individual patient with acute ischaemic stroke. Diffusion-weighted MR, in particular quantitative evaluation based on the diffusion tensor, has a fundamental role in the assessment of brain maturation and of white matter diseases in the fetus, in the neonate and in the child. Diffusion MR imaging enables a better characterisation of the lesions demonstrated by conventional MR imaging, for instance in the hypoxic-ischaemic encephalopathy, in infections and in the inherited metabolic diseases, and is particularly important for the longitudinal evaluation of these conditions. Diffusion-weighted MR imaging has an established role in the differential diagnosis between brain abscess and cystic tumour and between epidermoid tumour and arachnoid cyst. On the other hand, the results obtained with diffusion MR in the characterisation of type and extension of glioma do not yet allow decision making in the individual patient. Diffusion is one of the most relevant MR techniques to have contributed to a better understanding of the pathophysiological mechanisms of multiple sclerosis (MS). In fact, it improves the specificity of MR in characterising the different pathological substrata underlying the rather uniform lesion appearance on the conventional images and enables detection of damage in the normal-appearing white and grey matter. In MS patients the ADC or D values in the normal-appearing white matter are increased as compared to control values, albeit to a lesser degree than in the lesions demonstrated by T2-weighted images. In addition, the D of the normal appearing grey matter is increased in MS patients and this change correlates with the cognitive deficit of these patients. Histogram analysis in MS patients shows that the peak of the brain D is decreased and right-shifted, reflecting an increase of its value, and the two features correlate with the patient's clinical disability. Ageing is associated to a mild but significant increase of the brain ADC or D which is predominantly due to changes in the white matter. Region of interest and histogram studies have demonstrated that D or ADC are increased in either the areas of leukoaraiosis or the normal-appearing white matter in patients with inherited cerebral autosomal dominant arteriopathy with subcortical infarcts and stroke or sporadic ischaemic leukoencephalopathy. Diffusion changes might be a more sensitive marker for progression of the disease than conventional imaging findings. In neurodegenerative diseases of the central nervous system such as Alzheimer's disease, Huntington's disease, hereditary ataxias and motor neuron disease, quantitative diffusion MR demonstrates the cortical and subcortical grey matter damage, which is reflected in a regional increase of D or ADC, but also reveals the concomitant white matter changes that are associated with an increase in D or ADC and decrease in FA. In all these diseases the diffusion changes are correlated to the clinical deficit and are potentially useful for early diagnosis and longitudinal evaluation, especially in the context of pharmacological trials.
Novikov, S V
2018-01-14
Diffusive transport of a particle in a spatially correlated random energy landscape having exponential density of states has been considered. We exactly calculate the diffusivity in the nondispersive quasi-equilibrium transport regime for the 1D transport model and found that for slow decaying correlation functions the diffusivity becomes singular at some particular temperature higher than the temperature of the transition to the true non-equilibrium dispersive transport regime. It means that the diffusion becomes anomalous and does not follow the usual ∝ t 1/2 law. In such situation, the fully developed non-equilibrium regime emerges in two stages: first, at some temperature there is the transition from the normal to anomalous diffusion, and then at lower temperature the average velocity for the infinite medium goes to zero, thus indicating the development of the true dispersive regime. Validity of the Einstein relation is discussed for the situation where the diffusivity does exist. We provide also some arguments in favor of conservation of the major features of the new transition scenario in higher dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Brahmananda, E-mail: brahma@barc.gov.in; Ramaniah, Lavanya M.
2015-06-24
Applying Green–Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell–Stefan (MS) Diffusivities of molten salt LiF-BeF{sub 2}, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity Đ{sub Li-F} and Đ{sub Be-F} decreases sharply for higher concentration of LiF and BeF{sub 2} respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture atmore » 1000K (except Đ{sub Be-F} at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.« less
Kubilus, James K.; Zapater i Morales, Carolina; Linsenmayer, Thomas F.
2017-01-01
Purpose During development, the corneal epithelium (CE) and the conjunctiva are derived from the surface ectoderm. Here we have examined how, during development, the cells of these two issues become isolated from each other. Methods Epithelia from the anterior eyes of chicken embryos were labeled with the fluorescent, lipophilic dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI). DiI was placed on the epithelial surface of the developing anterior eye and its diffusion was monitored by fluorescence microscopy. Concomitant morphologic changes in the surface cells of these epithelial were examined by scanning electron microscopy. Immunofluorescence was used to analyze the expression of cytokeratin K3, ZO-1, N-cadherin and Connexin-43 and the function of gap junctions was analyzed using a cut-loading with the fluorescent dye rhodamine-dextran. Results Prior to embryonic day 8 (E8), DiI placed on the surface of the CE spreads throughout all the epithelial cells of the anterior eye. When older eyes were similarly labeled, dye diffusion was restricted to the CE. Similarly, diffusion of DiI placed on the conjunctival surface after E8 was restricted to the conjunctiva. Scanning electron microscopy showed that developmentally (1) physical separations progressively form between the cells of the CE and those of the conjunctiva, and (2) by E8 these separations form a ring that completely encompasses the cornea. The functional restriction of gap junctions between these tissues did not occur until E14. Conclusions During ocular development, a barrier to the diffusion of DiI forms between the contiguous CE and conjunctiva prior to the differential expression of gap junctions within these tissues. PMID:28319640
On the diffuse fraction of daily and monthly global radiation for the island of Cyprus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacovides, C.P.; Hadjioannou, L.; Pashiardis, S.
1996-06-01
Six years of hourly global and diffuse irradiation measurements on a horizontal surface performed at Athalassa, Cyprus, are used to establish a relationship between the daily diffuse fraction and the daily clearness index. Two types of correlations - yearly and seasonal - have been developed. These correlations, of first and third order in the clearness index are compared to the various correlations established by Collares-Pereira and Rabl (1979), Newland (1989), Erbs et al. (1982), Rao et al. (1984), Page (1961), Liu and Jordan (1960) and Lalas et al. (1987). The comparison has been performed in terms of the widely usedmore » statistical indicators (MBE) and (RMSE) errors; and additional statistical indicator, the t-statistic, combining the earlier indicators, is introduced. The results indicate that the proposed yearly correlation matches the earlier correlations quite closely and all correlations examined yield results that are statistically significant. For large K{sub t} > 0.60 values, most of the earlier correlations exhibit a slight tendency to systematically overestimate the diffuse fraction. This marginal disagreement between the earlier correlations and the proposed model is probably significantly affected by the clear sky conditions that prevail over Cyprus for most of the time as well as atmospheric humidity content. It is clear that the standard correlations examined in this analysis appear to be location-independent models for diffuse irradiation predictions, at least for the Cyprus case. 13 refs., 5 figs., 4 tabs.« less
Kinetics of biochemical sensing by single cells and populations of cells
NASA Astrophysics Data System (ADS)
Saakian, David B.
2017-10-01
We investigate the collective stationary sensing using N communicative cells, which involves surface receptors, diffusive signaling molecules, and cell-cell communication messengers. We restrict the scenarios to the signal-to-noise ratios (SNRs) for both strong communication and extrinsic noise only. We modified a previous model [Bialek and Setayeshgar, Proc. Natl. Acad. Sci. USA 102, 10040 (2005), 10.1073/pnas.0504321102] to eliminate the singularities in the fluctuation correlations by considering a uniform receptor distribution over the surface of each cell with a finite radius a . The modified model enables a simple and rigorous mathematical treatment of the collective sensing phenomenon. We then derive the scaling of the SNR for both juxtacrine and autocrine cases in all dimensions. For the optimal locations of the cells in the autocrine case, we find identical scaling for both two and three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemach, Charles; Kurien, Susan
These notes present an account of the Local Wave Vector (LWV) model of a turbulent flow defined throughout physical space. The previously-developed Local Wave Number (LWN) model is taken as a point of departure. Some general properties of turbulent fields and appropriate notation are given first. The LWV model is presently restricted to incompressible flows and the incompressibility assumption is introduced at an early point in the discussion. The assumption that the turbulence is homogeneous is also introduced early on. This assumption can be relaxed by generalizing the space diffusion terms of LWN, but the present discussion is focused onmore » a modeling of homogeneous turbulence.« less
Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool.
Nobre, R C M; Rotunno Filho, O C; Mansur, W J; Nobre, M M M; Cosenza, C A N
2007-12-07
A groundwater vulnerability and risk mapping assessment, based on a source-pathway-receptor approach, is presented for an urban coastal aquifer in northeastern Brazil. A modified version of the DRASTIC methodology was used to map the intrinsic and specific groundwater vulnerability of a 292 km(2) study area. A fuzzy hierarchy methodology was adopted to evaluate the potential contaminant source index, including diffuse and point sources. Numerical modeling was performed for delineation of well capture zones, using MODFLOW and MODPATH. The integration of these elements provided the mechanism to assess groundwater pollution risks and identify areas that must be prioritized in terms of groundwater monitoring and restriction on use. A groundwater quality index based on nitrate and chloride concentrations was calculated, which had a positive correlation with the specific vulnerability index.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut
2006-02-01
Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.
Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties
NASA Astrophysics Data System (ADS)
Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
2014-11-01
We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
Bulk diffusion in a kinetically constrained lattice gas
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone
2018-03-01
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.
NASA Technical Reports Server (NTRS)
Paillat, O.; Wasserburg, G. J.
1993-01-01
Experimental studies of self-diffusion isotopes in silicate melts often have quite large uncertainties when comparing one study to another. We designed an experiment in order to improve the precision of the results by simultaneously studying several elements (Mg, Ca, Sr, Ba) during the same experiment thereby greatly reducing the relative experimental uncertainties. Results show that the uncertainties on the diffusion coefficients can be reduced to 10 percent, allowing a more reliable comparison of differences of self-diffusion coefficients of the elements. This type of experiment permits us to study precisely and simultaneously several elements with no restriction on any element. We also designed an experiment to investigate the possible effects of multicomponent diffusion during Mg self-diffusion experiments by comparing cases where the concentrations of the elements and the isotopic compositions are different. The results suggest that there are differences between the effective means of transport. This approach should allow us to investigate the importance of multicomponent diffusion in silicate melts.
Debnam, E S; Levin, R J
1975-01-01
The effects of dietary restriction on the kinetics of absorption in vivo of glucose, galactose and alpha-methyl glucoside were assessed by electrical and chemical methods in the rat jejunum. 2. The 'apparent Km', maximum absorption or Vmax (mu-mole/10 cm. 15 min) and maximum potential difference (p.d.max) were obtained for the jejunal electrogenic active transfer mechanism from the transfer p.d.s and the chemical absorption data corrected for diffusion using various graphical kinetic plots. 3. Fasting for 3 days greatly decreased the 'apparent Kms', obtained from electrical or chemical data, for all the sugars but had no effect on those for L-valine or L-methionine. Semistarvation caused a less pronounced reduction of the 'apparent Kms' for the sugars. The dietary-induced change in 'apparent Km' for glucose was also observed in the fasted hamster. One interpretation of these changes is that the affinity of the carriers for sugars increases during dietary restriction; the greater the level of restriction the greater the increase. 4. Fasting and semistarvation caused large reductions in the Vmax. These reductions were correlated with a reduced enterocyte population estimated by changes in enterocyte column size. 5. The reduction in the Vmax for galactose was mainly accounted for by the decrease in enterocyte population. In the case of glucose, other factors such as reduced enterocyte metabolism or changes in the carriers must be involved to explain the discrepancy between the large decrease in Vmax and the enterocyte column size. 6. Fasting and semi-starvation had complex, differential actions on the p.d.max for glucose, galactose and alpha-methyl glucoside. These changes did not correlate with those observed in the Vmax measured chemically. 7. A standard diet obtained from two commercial sources was found to differ greatly in its effect on the electrogenic transfer system for alpha-methyl glucoside but had no effect on those for galactose and glucose. PMID:1206572
Optimal resource diffusion for suppressing disease spreading in multiplex networks
NASA Astrophysics Data System (ADS)
Chen, Xiaolong; Wang, Wei; Cai, Shimin; Stanley, H. Eugene; Braunstein, Lidia A.
2018-05-01
Resource diffusion is a ubiquitous phenomenon, but how it impacts epidemic spreading has received little study. We propose a model that couples epidemic spreading and resource diffusion in multiplex networks. The spread of disease in a physical contact layer and the recovery of the infected nodes are both strongly dependent upon resources supplied by their counterparts in the social layer. The generation and diffusion of resources in the social layer are in turn strongly dependent upon the state of the nodes in the physical contact layer. Resources diffuse preferentially or randomly in this model. To quantify the degree of preferential diffusion, a bias parameter that controls the resource diffusion is proposed. We conduct extensive simulations and find that the preferential resource diffusion can change phase transition type of the fraction of infected nodes. When the degree of interlayer correlation is below a critical value, increasing the bias parameter changes the phase transition from double continuous to single continuous. When the degree of interlayer correlation is above a critical value, the phase transition changes from multiple continuous to first discontinuous and then to hybrid. We find hysteresis loops in the phase transition. We also find that there is an optimal resource strategy at each fixed degree of interlayer correlation under which the threshold reaches a maximum and the disease can be maximally suppressed. In addition, the optimal controlling parameter increases as the degree of inter-layer correlation increases.
Establishing the diffuse correlation spectroscopy signal relationship with blood flow.
Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A
2016-07-01
Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.
Meier-Schroers, Michael; Kukuk, Guido; Wolter, Karsten; Decker, Georges; Fischer, Stefan; Marx, Christian; Traeber, Frank; Sprinkart, Alois Martin; Block, Wolfgang; Schild, Hans Heinz; Willinek, Winfried
2016-07-01
To determine if prostate cancer (PCa) and prostatitis can be differentiated by using PI-RADS. 3T MR images of 68 patients with 85 cancer suspicious lesions were analyzed. The findings were correlated with histopathology. T2w imaging (T2WI), diffusion weighted imaging (DWI), dynamic contrast enhancement (DCE), and MR-Spectroscopy (MRS) were acquired. Every lesion was given a single PI-RADS score for each parameter, as well as a sum score and a PI-RADS v2 score. Furthermore, T2-morphology, ADC-value, perfusion type, citrate/choline-level, and localization were evaluated. 44 of 85 lesions showed PCa (51.8%), 21 chronic prostatitis (24.7%), and 20 other benign tissue such as hyperplasia or fibromuscular tissue (23.5%). The single PI-RADS score for T2WI, DWI, DCE, as well as the aggregated score including and not including MRS, and the PI-RADS v2-score were all significantly higher for PCa than for prostatitis or other tissue (p<0.001). The single PI-RADS score for MRS and the PI-RADS sum score including MRS were significantly higher for prostatitis than for other tissue (p=0.029 and p=0.020), whereas the other parameters were not different. Prostatitis usually presented borderline pathological PI-RADS scores, showed restricted diffusion with ADC≥900mm(2)/s in 100% of cases, was more often indistinctly hypointense on T2WI (66.7%), and localized in the transitional zone (57.1%). An ADC≥900mm(2)/s achieved the highest predictive value for prostatitis (AUC=0.859). Prostatitis can be differentiated from PCa using PI-RADS, since all available parameters are more distinct in cases of cancer. However, there is significant overlap between prostatitis and other benign findings, thus PI-RADS is only suitable to a limited extent for the primary assessment of prostatitis. Restricted diffusion with ADC≥900mm(2)/s is believed to be a good indicator for prostatitis. MRS can help to distinguish between prostatitis and other tissue. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Prediction of stream volatilization coefficients
Rathbun, Ronald E.
1990-01-01
Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.
Marchadour, Charlotte; Brouillet, Emmanuel; Hantraye, Philippe; Lebon, Vincent; Valette, Julien
2012-01-01
Translational displacement of molecules within cells is a key process in cellular biology. Molecular motion potentially depends on many factors, including active transport, cytosol viscosity and molecular crowding, tortuosity resulting from cytoskeleton and organelles, and restriction barriers. However, the relative contribution of these factors to molecular motion in the cytoplasm remains poorly understood. In this work, we designed an original diffusion-weighted magnetic resonance spectroscopy strategy to probe molecular motion at subcellular scales in vivo. This led to the first observation of anomalous diffusion, that is, dependence of the apparent diffusion coefficient (ADC) on the diffusion time, for endogenous intracellular metabolites in the brain. The observed increase of the ADC at short diffusion time yields evidence that metabolite motion is characteristic of hindered random diffusion rather than active transport, for time scales up to the dozen milliseconds. Armed with this knowledge, data modeling based on geometrically constrained diffusion was performed. Results suggest that metabolite diffusion occurs in a low-viscosity cytosol hindered by ∼2-μm structures, which is consistent with known intracellular organization. PMID:22929443
NMR-based diffusion pore imaging.
Laun, Frederik Bernd; Kuder, Tristan Anselm; Wetscherek, Andreas; Stieltjes, Bram; Semmler, Wolfhard
2012-08-01
Nuclear magnetic resonance (NMR) diffusion experiments offer a unique opportunity to study boundaries restricting the diffusion process. In a recent Letter [Phys. Rev. Lett. 107, 048102 (2011)], we introduced the idea and concept that such diffusion experiments can be interpreted as NMR imaging experiments. Consequently, images of closed pores, in which the spins diffuse, can be acquired. In the work presented here, an in-depth description of the diffusion pore imaging technique is provided. Image artifacts due to gradient profiles of finite duration, field inhomogeneities, and surface relaxation are considered. Gradients of finite duration lead to image blurring and edge enhancement artifacts. Field inhomogeneities have benign effects on diffusion pore images, and surface relaxation can lead to a shrinkage and shift of the pore image. The relation between boundary structure and the imaginary part of the diffusion weighted signal is analyzed, and it is shown that information on pore coherence can be obtained without the need to measure the phase of the diffusion weighted signal. Moreover, it is shown that quite arbitrary gradient profiles can be used for diffusion pore imaging. The matrices required for numerical calculations are stated and provided as supplemental material.
Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging
Yeh, Fang-Cheng; Verstynen, Timothy D.
2016-01-01
Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539
de Souza, Vanessa K; Wales, David J
2006-02-10
On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.
Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azhar, Mueed; Greiner, Andreas; Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de
We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. Aftermore » a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.« less
Magnetic resonance features of cerebral malaria.
Yadav, P; Sharma, R; Kumar, S; Kumar, U
2008-06-01
Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm(2), and apparent diffusion coefficient (ADC) maps were obtained. Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, D.; Baylon, D.; Smith, O.
1980-01-01
Four commonly used solar radiation models that determine the diffuse and direct components of the solar radiation on a horizontal surface are compared against measured data to determine their predictive and modeling applicability. The John Hay model is determined to underpredict the diffuse and the Pereira/Rabl model to overpredict the diffuse radiation. The daily Liu and Jordan correlation and the hourly Boes correlation are shown to be better predictors.
Menezes, Everardo Albuquerque; Vasconcelos Júnior, Antônio Alexandre de; Ângelo, Maria Rozzelê Ferreira; Cunha, Maria da Conceição dos Santos Oliveira; Cunha, Francisco Afrânio
2013-01-01
Antifungal susceptibility testing assists in finding the appropriate treatment for fungal infections, which are increasingly common. However, such testing is not very widespread. There are several existing methods, and the correlation between such methods was evaluated in this study. The susceptibility to fluconazole of 35 strains of Candida sp. isolated from blood cultures was evaluated by the following methods: microdilution, Etest, and disk diffusion. The correlation between the methods was around 90%. The disk diffusion test exhibited a good correlation and can be used in laboratory routines to detect strains of Candida sp. that are resistant to fluconazole.
Lee, Kye Hwa; Kim, Grace Juyun
2015-01-01
The relationship between the number of withdrawn/restricted drugs and socioeconomic, health, and welfare indicators were investigated in a comprehensive review of drug regulation information in the United Nations (UN) countries. A total of of 362 drugs were withdrawn and 248 were restricted during 1950-2010, corresponding to rates of 12.02±13.07 and 5.77±8.69 (mean±SD), respectively, among 94 UN countries. A socioeconomic, health, and welfare analysis was performed for 33 OECD countries for which data were available regarding withdrawn/restricted drugs. The gross domestic product (GDP) per capita, GDP per hour worked, health expenditure per GDP, and elderly population rate were positively correlated with the numbers of withdrawn and restricted drugs (P<0.05), while the out-of-pocket health expenditure payment rate was negatively correlated. The number of restricted drugs was also correlated with the rate of drug-related deaths (P<0.05). The World Bank data cross-validated the findings of 33 OECD countries. The lists of withdrawn/restricted drugs showed markedly poor international agreement between them (Fleiss's kappa=-0.114). Twenty-seven drugs that had been withdrawn internationally by manufacturers are still available in some countries. The wide variation in the numbers of drug withdrawals and restrictions among countries indicates the need to improve drug surveillance systems and regulatory communication networks. PMID:26538999
Lee, Kye Hwa; Kim, Grace Juyun; Kim, Ju Han
2015-11-01
The relationship between the number of withdrawn/restricted drugs and socioeconomic, health, and welfare indicators were investigated in a comprehensive review of drug regulation information in the United Nations (UN) countries. A total of of 362 drugs were withdrawn and 248 were restricted during 1950-2010, corresponding to rates of 12.02 ± 13.07 and 5.77 ± 8.69 (mean ± SD), respectively, among 94 UN countries. A socioeconomic, health, and welfare analysis was performed for 33 OECD countries for which data were available regarding withdrawn/restricted drugs. The gross domestic product (GDP) per capita, GDP per hour worked, health expenditure per GDP, and elderly population rate were positively correlated with the numbers of withdrawn and restricted drugs (P < 0.05), while the out-of-pocket health expenditure payment rate was negatively correlated. The number of restricted drugs was also correlated with the rate of drug-related deaths (P < 0.05). The World Bank data cross-validated the findings of 33 OECD countries. The lists of withdrawn/restricted drugs showed markedly poor international agreement between them (Fleiss's kappa = -0.114). Twenty-seven drugs that had been withdrawn internationally by manufacturers are still available in some countries. The wide variation in the numbers of drug withdrawals and restrictions among countries indicates the need to improve drug surveillance systems and regulatory communication networks.
Knowledge diffusion within a large conservation organization and beyond.
Fisher, Jonathan R B; Montambault, Jensen; Burford, Kyle P; Gopalakrishna, Trisha; Masuda, Yuta J; Reddy, Sheila M W; Torphy, Kaitlin; Salcedo, Andrea I
2018-01-01
The spread and uptake of new ideas (diffusion of innovations) is critical for organizations to adapt over time, but there is little evidence of how this happens within organizations and to their broader community. To address this, we analyzed how individuals accessed information about a recent science innovation at a large, international, biodiversity conservation non-profit-The Nature Conservancy-and then traced the flow of how this information was shared within the organization and externally, drawing on an exceptionally data-rich environment. We used surveys and tracking of individual internet activity to understand mechanisms for early-stage diffusion (knowledge seeking and sharing) following the integration of social science and evidence principles into the institutional planning framework: Conservation by Design (CbD 2.0). Communications sent to all employees effectively catalyzed 56.4% to exhibit knowledge seeking behavior, measured by individual downloads from and visits to a restricted-access site. Individuals who self-reported through a survey that they shared information about CbD 2.0 internally were more likely to have both received and sought out information about the framework. Such individuals tended to hold positions within a higher job grade, were more likely to train others on CbD as part of their job, and to enroll in other online professional development offerings. Communication strategies targeting external audiences did not appear to influence information seeking behavior. Staff who engaged in internal knowledge sharing and adopting "evidence" practices from CbD 2.0 were more likely to have shared the document externally. We found a negative correlation with external sharing behavior and in-person trainings. Our findings suggest repeated, direct email communications aimed at wide audiences can effectively promote diffusion of new ideas. We also found a wide range of employee characteristics and circumstances to be associated with knowledge diffusion behavior (at both an organizational and individual level).
Knowledge diffusion within a large conservation organization and beyond
Montambault, Jensen; Burford, Kyle P.; Gopalakrishna, Trisha; Masuda, Yuta J.; Reddy, Sheila M. W.; Torphy, Kaitlin; Salcedo, Andrea I.
2018-01-01
The spread and uptake of new ideas (diffusion of innovations) is critical for organizations to adapt over time, but there is little evidence of how this happens within organizations and to their broader community. To address this, we analyzed how individuals accessed information about a recent science innovation at a large, international, biodiversity conservation non-profit–The Nature Conservancy–and then traced the flow of how this information was shared within the organization and externally, drawing on an exceptionally data-rich environment. We used surveys and tracking of individual internet activity to understand mechanisms for early-stage diffusion (knowledge seeking and sharing) following the integration of social science and evidence principles into the institutional planning framework: Conservation by Design (CbD 2.0). Communications sent to all employees effectively catalyzed 56.4% to exhibit knowledge seeking behavior, measured by individual downloads from and visits to a restricted-access site. Individuals who self-reported through a survey that they shared information about CbD 2.0 internally were more likely to have both received and sought out information about the framework. Such individuals tended to hold positions within a higher job grade, were more likely to train others on CbD as part of their job, and to enroll in other online professional development offerings. Communication strategies targeting external audiences did not appear to influence information seeking behavior. Staff who engaged in internal knowledge sharing and adopting “evidence” practices from CbD 2.0 were more likely to have shared the document externally. We found a negative correlation with external sharing behavior and in-person trainings. Our findings suggest repeated, direct email communications aimed at wide audiences can effectively promote diffusion of new ideas. We also found a wide range of employee characteristics and circumstances to be associated with knowledge diffusion behavior (at both an organizational and individual level). PMID:29494644
Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.
Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte
2010-09-27
The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.
Scrambling and thermalization in a diffusive quantum many-body system
Bohrdt, A.; Mendl, C. B.; Endres, M.; ...
2017-06-02
Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. Themore » slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.« less
Scrambling and thermalization in a diffusive quantum many-body system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohrdt, A.; Mendl, C. B.; Endres, M.
Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. Themore » slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.« less
Lee, Hwa; Lee, Young Hen; Suh, Sang-Il; Jeong, Eun-Kee; Baek, Sehyun; Seo, Hyung Suk
The aim of this study was to determine whether the optic nerve is affected by thyroid eye disease (TED) before the development of dysthyroid optic neuropathy with diffusion-tensor imaging (DTI). Twenty TED patients and 20 controls were included. The mean, axial, and radial diffusivities and fractional anisotropy (FA) value were measured at the optic nerves in DTI. Extraocular muscle diameters were measured on computed tomography. The diffusivities and FA of the optic nerves were compared between TED and controls and between active and inactive stages of TED. The correlations between these DTI parameters and the clinical features were determined. The mean, axial, and radial diffusivities were lower in TED compared with the controls (P < 0.05). In contrast, FA was higher in TED (P = 0.001). Radial diffusivity was lower in the active stage of TED than the inactive stage (P = 0.035). The FA was higher in the TED group than in the control group (P = 0.021) and was positively correlated with clinical activity score (r = 0.364, P = 0.021), modified NOSPECS score (r = 0.469, P = 0.002), and extraocular muscle thickness (r = 0.325, P = 0.041) in the TED group. Radial diffusivity was negatively correlated with modified NOSPECS score (r = -0.384, P = 0.014), and axial diffusivity was positively correlated with exophthalmos degree (r = 0.363, P = 0.025). The diffusivities and FA reflected changes in the optic nerve before dysthyroid optic neuropathy in TED. The FA, in particular, reflected TED activity and severity.
Robustness of Two Formulas to Correct Pearson Correlation for Restriction of Range
ERIC Educational Resources Information Center
tran, minh
2011-01-01
Many research studies involving Pearson correlations are conducted in settings where one of the two variables has a restricted range in the sample. For example, this situation occurs when tests are used for selecting candidates for employment or university admission. Often after selection, there is interest in correlating the selection variable,…
An approximate analysis of the diffusing flow in a self-controlled heat pipe.
NASA Technical Reports Server (NTRS)
Somogyi, D.; Yen, H. H.
1973-01-01
Constant-density two-dimensional axisymmetric equations are presented for the diffusing flow of a class of self-controlled heat pipes. The analysis is restricted to the vapor space. Condensation of the vapor is related to its mass fraction at the wall by the gas kinetic formula. The Karman-Pohlhausen integral method is applied to obtain approximate solutions. Solutions are presented for a water heat pipe with neon control gas.
Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules.
Thatcher, Robert W; North, Duane M; Biver, Carl J
2012-05-01
The purpose of this study was to test the hypothesis that the highest temporal correlations between 3-dimensional EEG current source density corresponds to anatomical Modules of high synaptic connectivity. Eyes closed and eyes open EEG was recorded from 19 scalp locations with a linked ears reference from 71 subjects age 13-42 years. LORETA was computed from 1 to 30 Hz in 2,394 cortical gray matter voxels that were grouped into six anatomical Modules corresponding to the ROIs in the Hagmann et al.'s [2008] diffusion spectral imaging (DSI) study. All possible cross-correlations between voxels within a DSI Module were compared with the correlations between Modules. The Hagmann et al. [ 2008] Module correlation structure was replicated in the correlation structure of EEG three-dimensional current source density. EEG Temporal correlation between brain regions is related to synaptic density as measured by diffusion spectral imaging. Copyright © 2011 Wiley-Liss, Inc.
Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy
Xu, Junzhong; Does, Mark D.; Gore, John C.
2009-01-01
The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979
Diffusive dynamics of nanoparticles in ultra-confined media
Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; ...
2015-08-10
Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accountedmore » for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Altogether, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.« less
Marrale, M; Collura, G; Brai, M; Toschi, N; Midiri, F; La Tona, G; Lo Casto, A; Gagliardo, C
2016-12-01
In recent years many papers about diagnostic applications of diffusion tensor imaging (DTI) have been published. This is because DTI allows to evaluate in vivo and in a non-invasive way the process of diffusion of water molecules in biological tissues. However, the simplified description of the diffusion process assumed in DTI does not permit to completely map the complex underlying cellular components and structures, which hinder and restrict the diffusion of water molecules. These limitations can be partially overcome by means of diffusion kurtosis imaging (DKI). The aim of this paper is the description of the theory of DKI, a new topic of growing interest in radiology. DKI is a higher order diffusion model that is a straightforward extension of the DTI model. Here, we analyze the physics underlying this method, we report our MRI acquisition protocol with the preprocessing pipeline used and the DKI parametric maps obtained on a 1.5 T scanner, and we review the most relevant clinical applications of this technique in various neurological diseases.
Borodin, Oleg
2009-09-10
A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.
de Jong, Antoinette; Kwee, Thomas C; de Klerk, John MH; Adam, Judit A; de Keizer, Bart; Fijnheer, Rob; Kersten, Marie José; Ludwig, Inge; Jauw, Yvonne WS; Zijlstra, Josée M; den Bos, Indra C Pieters - Van; Stoker, Jaap; Hoekstra, Otto S; Nievelstein, Rutger AJ
2014-01-01
The purpose of this study was to determine the correlation between the 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) standardized uptake value (SUV) and the diffusion-weighted magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Pretreatment FDG-PET and diffusion-weighted MRI of 21 patients with histologically proven DLBCL were prospectively analyzed. In each patient, maximum, mean and peak standardized uptake value (SUV) was measured in the lesion with visually highest FDG uptake and in the largest lesion. Mean ADC (ADCmean, calculated with b-values of 0 and 1000 s/mm2) was measured in the same lesions. Correlations between FDG-PET metrics (SUVmax, SUVmean, SUVpeak) and ADCmean were assessed using Pearson’s correlation coefficients. In the lesions with visually highest FDG uptake, no significant correlations were found between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.498, P=0.609 and P=0.595, respectively). In the largest lesions, there were no significant correlations either between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.992, P=0.843 and P=0.894, respectively). The results of this study indicate that the glycolytic rate as measured by FDG-PET and changes in water compartmentalization and water diffusion as measured by the ADC are independent biological phenomena in newly diagnosed DLBCL. Further studies are warranted to assess the complementary roles of these different imaging biomarkers in the evaluation and follow-up of DLBCL. PMID:24795837
Roth, Yiftach; Tichler, Thomas; Kostenich, Genady; Ruiz-Cabello, Jesus; Maier, Stephan E; Cohen, Jack S; Orenstein, Arie; Mardor, Yael
2004-09-01
To evaluate the use of diffusion-weighted magnetic resonance (MR) imaging with standard and high b values for pretreatment prediction and early detection of tumor response to various antineoplastic therapies in an animal model. Mice bearing C26 colon carcinoma tumors were treated with doxorubicin (n = 25) and with aminolevulinic acid-based photodynamic therapy (n = 23). Fourteen mice served as controls. Conventional T2-weighted fast spin-echo and diffusion-weighted MR images were acquired once before therapy and at 6, 24, and 48 hours after treatment. Pretreatment and early (1-2 days) posttreatment water diffusion parameters were calculated and compared with later changes in tumor volumes measured on conventional MR images by using the Pearson correlation test. In chemotherapy-treated tumors, a significant correlation (P <.002, r = 0.6) was observed between diffusion parameters that reflected tumor viability, measured prior to treatment, and changes in tumor volumes after therapy. This correlation implies that tumors with high pretreatment viability will respond better to chemotherapy than more necrotic tumors. In tumors treated with photodynamic therapy, no such correlation was found. Changes observed in water diffusion 1-2 days after treatment significantly correlated with later tumor growth rate for both therapies (P <.002, r = 0.54 for photodynamic therapy; P <.0003, r = 0.61 for chemotherapy). High-b-value diffusion-weighted MR imaging has potential use for the early detection of response to therapy and for predicting treatment outcome prior to initiation of chemotherapy. Copyright RSNA, 2004
Correlation between diffusion kurtosis and NODDI metrics in neonates and young children
NASA Astrophysics Data System (ADS)
Ahmed, Shaheen; Wang, Zhiyue J.; Chia, Jonathan M.; Rollins, Nancy K.
2016-03-01
Diffusion Tensor Imaging (DTI) uses single shell gradient encoding scheme for studying brain tissue diffusion. NODDI (Neurite Orientation Dispersion and Density Imaging) incorporates a gradient scheme with multiple b-values which is used to characterize neurite density and coherence of neuron fiber orientations. Similarly, the diffusion kurtosis imaging also uses a multiple shell scheme to quantify non-Gaussian diffusion but does not assume a tissue model like NODDI. In this study we investigate the connection between metrics derived by NODDI and DKI in children with ages from 46 weeks to 6 years. We correlate the NODDI metrics and Kurtosis measures from the same ROIs in multiple brain regions. We compare the range of these metrics between neonates (46 - 47 weeks), infants (2 -10 months) and young children (2 - 6 years). We find that there exists strong correlation between neurite density vs. mean kurtosis, orientation dispersion vs. kurtosis fractional anisotropy (FA) in pediatric brain imaging.
NASA Astrophysics Data System (ADS)
Calvin, Mark; Punjabi, Alkesh
1996-11-01
We use the method of quasi-magnetic surfaces to calculate the correlation between the field line and particle diffusion coefficients. The magnetic topology of a tokamak is perturbed by a spectrum of neighboring resonant resistive modes. The Hamiltonian equations of motion for the field line are integrated numerically. Poincare plots of the quasi-magnetic surfaces are generated initially and after the field line has traversed a considerable distance. From the areas of the quasi-magnetic surfaces and the field line distance, we estimate the field line diffusion coefficient. We start plasma particles on the initial quasi-surface, and calculate the particle diffusion coefficient from our Monte Carlo method (Punjabi A., Boozer A., Lam M., Kim H. and Burke K., J. Plasma Phys.), 44, 405 (1990). We then estimate the correlation between the particle and field diffusion as the strength of the resistive modes is varied.
Intermolecular correlations are necessary to explain diffuse scattering from protein crystals
Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph
2018-02-21
Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less
Intermolecular correlations are necessary to explain diffuse scattering from protein crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph
Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less
Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.
Rowland, David J; Tuson, Hannah H; Biteen, Julie S
2016-05-24
By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Khoo, Boo-Cheong; Sonin, Ain A.
1992-01-01
An experimental correlation is derived for gas absorption at a turbulent, shear-free liquid interface. The correlation is expressed in terms of the liquid-side turbulence intensity, liquid-side macroscale, and the properties of the diffusing gas and solvent. The transfer coefficient increases linearly with rms velocity up to a point where the eddy Reynolds number reaches a critical (Schmidt number dependent) value. At higher velocities, there is a more rapid linear rise. The slope of the lower Reynolds number region is proportional to the square root of the diffusivity; at Reynolds numbers much higher than that of the break point, the slope becomes independent of diffusivity.
Coarse-grained hydrodynamics from correlation functions
NASA Astrophysics Data System (ADS)
Palmer, Bruce
2018-02-01
This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.
Reznik, Carmen; Estillore, Nicel; Advincula, Rigoberto C; Landes, Christy F
2009-11-05
Single molecule polarization and fluorescence correlation spectroscopy were used to evaluate heterogeneous transport mechanisms of molecular ions within supported polyelectrolyte brushes. Modes of diffusive transport include periods of significantly restricted rotational motion, often maintained over tens of milliseconds; periods of fast molecular rotation; and occasional adsorption of fluorescent probe molecules in the brush. The studies reveal rapid switching between orientational states during each observed mode of motion. Through quantitative analysis of state occupation times, the rate constants for transitions from weakly associated to strongly associated states were extracted. Additionally, the pH dependence of the ion transport rates in the brush exhibits an abrupt, rather than continuous, trend. These single molecule studies demonstrate the presence of dynamic anisotropic interactions between the charged molecular probe and the polymer brush and provide experimental evidence of stimuli responsive switchable transport functionality in the polyelectrolyte brush.
Wooden Breast Myodegeneration of Pectoralis Major Muscle Over the Growth Period in Broilers.
Sihvo, H-K; Lindén, J; Airas, N; Immonen, K; Valaja, J; Puolanne, E
2017-01-01
Wooden breast (WB) myopathy of broiler chickens is a myodegenerative disease of an unknown etiology and is macroscopically characterized by a hardened consistency of the pectoralis major muscle. Our aim was to describe the development and morphology of WB over the growth period in broilers. Additionally, the effect of restricted dietary selenium on the occurrence of WB was examined by allocating the birds in 2 dietary groups: restricted and conventional level of selenium. The experiment included 240 male broilers that were euthanized at ages of 10, 18, 24, 35, 38, or 42 days and evaluated for WB based on abnormal hardness of the pectoralis major muscle. The severity and the distribution of the lesion and presence of white striping were recorded. The first WB cases were seen at 18 days; 13/47 birds (28%) were affected and the majority exhibited a mild focal lesion. In subsequent age groups the WB prevalence varied between 48% and 73% and the lesion was usually diffuse and markedly firm. White striping often coexisted with WB. Histological evaluation performed on 111 cases revealed a significant association of myodegeneration and lymphocytic vasculitis with WB. Vasculitis and perivascular cell infiltration were restricted to the veins. Restricted dietary selenium did not affect the occurrence of WB ( P = .44). Our results indicate that WB starts focally and spreads to form a diffuse and more severe lesion.
Demographic and clinical correlates of autism symptom domains and autism spectrum diagnosis.
Frazier, Thomas W; Youngstrom, Eric A; Embacher, Rebecca; Hardan, Antonio Y; Constantino, John N; Law, Paul; Findling, Robert L; Eng, Charis
2014-07-01
Demographic and clinical factors may influence assessment of autism symptoms. This study evaluated these correlates and also examined whether social communication and interaction and restricted/repetitive behavior provided unique prediction of autism spectrum disorder diagnosis. We analyzed data from 7352 siblings included in the Interactive Autism Network registry. Social communication and interaction and restricted/repetitive behavior symptoms were obtained using caregiver-reports on the Social Responsiveness Scale. Demographic and clinical correlates were covariates in regression models predicting social communication and interaction and restricted/repetitive behavior symptoms. Logistic regression and receiver operating characteristic curve analyses evaluated the incremental validity of social communication and interaction and restricted/repetitive behavior domains over and above global autism symptoms. Autism spectrum disorder diagnosis was the strongest correlate of caregiver-reported social communication and interaction and restricted/repetitive behavior symptoms. The presence of comorbid diagnoses also increased symptom levels. Social communication and interaction and restricted/repetitive behavior symptoms provided significant, but modest, incremental validity in predicting diagnosis beyond global autism symptoms. These findings suggest that autism spectrum disorder diagnosis is by far the largest determinant of quantitatively measured autism symptoms. Externalizing (attention deficit hyperactivity disorder) and internalizing (anxiety) behavior, low cognitive ability, and demographic factors may confound caregiver-report of autism symptoms, potentially necessitating a continuous norming approach to the revision of symptom measures. Social communication and interaction and restricted/repetitive behavior symptoms may provide incremental validity in the diagnosis of autism spectrum disorder. © The Author(s) 2013.
Demographic and clinical correlates of autism symptom domains and autism spectrum diagnosis
Frazier, Thomas W; Youngstrom, Eric A; Embacher, Rebecca; Hardan, Antonio Y; Constantino, John N; Law, Paul; Findling, Robert L; Eng, Charis
2014-01-01
Demographic and clinical factors may influence assessment of autism symptoms. This study evaluated these correlates and also examined whether social communication and interaction and restricted/repetitive behavior provided unique prediction of autism spectrum disorder diagnosis. We analyzed data from 7352 siblings included in the Interactive Autism Network registry. Social communication and interaction and restricted/repetitive behavior symptoms were obtained using caregiver-reports on the Social Responsiveness Scale. Demographic and clinical correlates were covariates in regression models predicting social communication and interaction and restricted/repetitive behavior symptoms. Logistic regression and receiver operating characteristic curve analyses evaluated the incremental validity of social communication and interaction and restricted/repetitive behavior domains over and above global autism symptoms. Autism spectrum disorder diagnosis was the strongest correlate of caregiver-reported social communication and interaction and restricted/repetitive behavior symptoms. The presence of comorbid diagnoses also increased symptom levels. Social communication and interaction and restricted/repetitive behavior symptoms provided significant, but modest, incremental validity in predicting diagnosis beyond global autism symptoms. These findings suggest that autism spectrum disorder diagnosis is by far the largest determinant of quantitatively measured autism symptoms. Externalizing (attention deficit hyperactivity disorder) and internalizing (anxiety) behavior, low cognitive ability, and demographic factors may confound caregiver-report of autism symptoms, potentially necessitating a continuous norming approach to the revision of symptom measures. Social communication and interaction and restricted/repetitive behavior symptoms may provide incremental validity in the diagnosis of autism spectrum disorder. PMID:24104512
Interplay between inhibited transport and reaction in nanoporous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, David Michael
2013-01-01
This work presents a detailed formulation of reaction and diffusion dynamics of molecules in confined pores such as mesoporous silica and zeolites. A general reaction-diffusion model and discrete Monte Carlo simulations are presented. Both transient and steady state behavior is covered. Failure of previous mean-field models for these systems is explained and discussed. A coarse-grained, generalized hydrodynamic model is developed that accurately captures the interplay between reaction and restricted transport in these systems. This method incorporates the non-uniform chemical diffusion behavior present in finite pores with multi-component diffusion. Two methods of calculating these diffusion values are developed: a random walkmore » based approach and a driven diffusion model based on an extension of Fick's law. The effects of reaction, diffusion, pore length, and catalytic site distribution are investigated. In addition to strictly single file motion, quasi-single file diffusion is incorporated into the model to match a range of experimental systems. The connection between these experimental systems and model parameters is made through Langevin dynamics modeling of particles in confined pores.« less
Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi
2018-01-01
The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.
Long-Term Pulmonary Function in Survivors of Childhood Cancer
Armenian, Saro H.; Landier, Wendy; Francisco, Liton; Herrera, Claudia; Mills, George; Siyahian, Aida; Supab, Natt; Wilson, Karla; Wolfson, Julie A.; Horak, David; Bhatia, Smita
2015-01-01
Purpose This study was undertaken to determine the magnitude of pulmonary dysfunction in childhood cancer survivors when compared with healthy controls and the extent (and predictors) of decline over time. Patients and Methods Survivors underwent baseline (t1) pulmonary function tests, followed by a second comprehensive evaluation (t2) after a median of 5 years (range, 1.0 to 10.3 years). Survivors were also compared with age- and sex-matched healthy controls at t2. Results Median age at cancer diagnosis was 16.5 years (range, 0.2 to 21.9 years), and time from diagnosis to t2 was 17.1 years (range, 6.3 to 40.1 years). Compared with odds for healthy controls, the odds of restrictive defects were increased 6.5-fold (odds ratio [OR], 6.5; 95% CI, 1.5 to 28.4; P < .01), and the odds of diffusion abnormalities were increased 5.2-fold (OR, 5.2; 95% CI, 1.8 to 15.5; P < .01). Among survivors, age younger than 16 years at diagnosis (OR, 3.0; 95% CI, 1.2 to 7.8; P = .02) and exposure to more than 20 Gy chest radiation (OR, 5.6; 95% CI, 1.5 to 21.0; P = .02, referent, no chest radiation) were associated with restrictive defects. Female sex (OR, 3.9; 95% CI, 1.7 to 9.5; P < .01) and chest radiation dose (referent: no chest radiation; ≤ 20 Gy: OR, 6.4; 95% CI, 1.7 to 24.4; P < .01; > 20 Gy: OR, 11.3; 95% CI, 2.6 to 49.5; P < .01) were associated with diffusion abnormalities. Among survivors with normal pulmonary function tests at t1, females and survivors treated with more than 20 Gy chest radiation demonstrated decline in diffusion function over time. Conclusion Childhood cancer survivors exposed to pulmonary-toxic therapy are significantly more likely to have restrictive and diffusion defects when compared with healthy controls. Diffusion capacity declines with time after exposure to pulmonary-toxic therapy, particularly among females and survivors treated with high-dose chest radiation. These individuals could benefit from subsequent monitoring. PMID:25847925
Shoga, Janty S; Graham, Brian T; Wang, Liyun; Price, Christopher
2017-10-01
Articular cartilage is an avascular tissue; diffusive transport is critical for its homeostasis. While numerous techniques have been used to quantify diffusivity within porous, hydrated tissues and tissue engineered constructs, these techniques have suffered from issues regarding invasiveness and spatial resolution. In the present study, we implemented and compared two separate correlation spectroscopy techniques, fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), for the direct, and minimally-invasive quantification of fluorescent solute diffusion in agarose and articular cartilage. Specifically, we quantified the diffusional properties of fluorescein and Alexa Fluor 488-conjugated dextrans (3k and 10k) in aqueous solutions, agarose gels of varying concentration (i.e. 1, 3, 5%), and in different zones of juvenile bovine articular cartilage explants (i.e. superficial, middle, and deep). In agarose, properties of solute diffusion obtained via FCS and RICS were inversely related to molecule size, gel concentration, and applied strain. In cartilage, the diffusional properties of solutes were similarly dependent upon solute size, cartilage zone, and compressive strain; findings that agree with work utilizing other quantification techniques. In conclusion, this study established the utility of FCS and RICS as simple and minimally invasive techniques for quantifying microscale solute diffusivity within agarose constructs and articular cartilage explants.
Gestational Age at Birth and Brain White Matter Development in Term-Born Infants and Children.
Ou, X; Glasier, C M; Ramakrishnaiah, R H; Kanfi, A; Rowell, A C; Pivik, R T; Andres, A; Cleves, M A; Badger, T M
2017-12-01
Studies on infants and children born preterm have shown that adequate gestational length is critical for brain white matter development. Less is known regarding how variations in gestational age at birth in term infants and children affect white matter development, which was evaluated in this study. Using DTI tract-based spatial statistics methods, we evaluated white matter microstructures in 2 groups of term-born (≥37 weeks of gestation) healthy subjects: 2-week-old infants ( n = 44) and 8-year-old children ( n = 63). DTI parameters including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated by voxelwise and ROI methods and were correlated with gestational age at birth, with potential confounding factors such as postnatal age and sex controlled. Fractional anisotropy values, which are markers for white matter microstructural integrity, positively correlated ( P < .05, corrected) with gestational age at birth in most major white matter tracts/regions for the term infants. Mean diffusivity values, which are measures of water diffusivities in the brain, and axial and radial diffusivity values, which are markers for axonal growth and myelination, respectively, negatively correlated ( P < .05, corrected) with gestational age at birth in all major white matter tracts/regions excluding the body and splenium of the corpus callosum for the term infants. No significant correlations with gestational age were observed for any tracts/regions for the term-born 8-year-old children. Our results indicate that longer gestation during the normal term period is associated with significantly greater infant white matter development (as reflected by higher fractional anisotropy and lower mean diffusivity, axial diffusivity, and radial diffusivity values); however, similar associations were not observable in later childhood. © 2017 by American Journal of Neuroradiology.
Albayrak, Eda; Sonmezgoz, Fitnet; Ozmen, Zafer; Aktas, Fatma; Altunkas, Aysegul
2017-01-01
A 26-year-old female patient with Type 1 Gaucher’s disease (GD) was admitted to our clinic with complaints of stomachache and signs of anemia. The patient underwent ultrasonography (US), computerised tomography (CT), and magnetic resonance imaging (MRI) scan. Imaging studies revealed massive hepatosplenomegaly, choledocolithiasis, and six nodules in the spleen with a mean size of 14 mm. The nodules appeared hyperechoic, hypoechoic, and of mixed echogenicity on the US and hypodense on the CT. While the nodules were observed to be iso-hypointense in T1-weighted (T1WI) images, they appeared to be hyperintense in the T2-weighted (T2WI) images. There were no diffusion restrictions in these nodules that appeared on the diffusion-weighted magnetic resonance imaging (DWI). A nodule located at the lower pole was observed to be hypointense in the T2WI images. The nodule located at the lower pole, which appeared hypointense in T2WI series, had restricted diffusion upon DWI. In this study, we aimed to present the properties of splenic GD nodules using US, CT, and conventional MRI, together with DWI. This case report is the first to apply US, CT, and conventional MRI, together with DWI, to the splenic nodules associated with Gaucher’s disease. PMID:29386979
Yuan, Wei-Hsin; Lin, Tai-Chi; Lirng, Jiing-Feng; Guo, Wan-You; Chang, Fu-Pang; Ho, Donald Ming-Tak
2016-05-13
Granular cell tumors are rare neoplasms which can occur in any part of the body. Granular cell tumors of the orbit account for only 3 % of all granular cell tumor cases. Computed tomography and magnetic resonance imaging of the orbit have proven useful for diagnosing orbital tumors. However, the rarity of intraorbital granular cell tumors poses a significant diagnostic challenge for both clinicians and radiologists. We report a case of a 37-year-old Chinese woman with a rare intraocular granular cell tumor of her right eye presenting with diplopia, proptosis, and restriction of ocular movement. Preoperative orbital computed tomography and magnetic resonance imaging with contrast enhancement revealed an enhancing solid, ovoid, well-demarcated, retrobulbar nodule. In addition, magnetic resonance imaging features included an intraorbital tumor which was isointense relative to gray matter on T1-weighted imaging and hypointense on T2-weighted imaging. No diffusion restriction of water was noted on either axial diffusion-weighted images or apparent diffusion coefficient maps. Both computed tomography and magnetic resonance imaging features suggested an intraorbital hemangioma. However, postoperative pathology (together with immunohistochemistry) identified an intraorbital granular cell tumor. When intraorbital T2 hypointensity and free diffusion of water are observed on magnetic resonance imaging, a granular cell tumor should be included in the differential diagnosis of an intraocular tumor.
Reboredo, Fernando A; Kim, Jeongnim
2014-02-21
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.
NASA Astrophysics Data System (ADS)
Reboredo, Fernando A.; Kim, Jeongnim
2014-02-01
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.
Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma
Monje, Michelle; Mitra, Siddhartha S.; Freret, Morgan E.; Raveh, Tal B.; Kim, James; Masek, Marilyn; Attema, Joanne L.; Haddix, Terri; Edwards, Michael S. B.; Fisher, Paul G.; Weissman, Irving L.; Rowitch, David H.; Vogel, Hannes; Wong, Albert J.; Beachy, Philip A.
2011-01-01
Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive tumors of childhood that are almost universally fatal. Our understanding of this devastating cancer is limited by a dearth of available tissue for study and by the lack of a faithful animal model. Intriguingly, DIPGs are restricted to the ventral pons and occur during a narrow window of middle childhood, suggesting dysregulation of a postnatal neurodevelopmental process. Here, we report the identification of a previously undescribed population of immunophenotypic neural precursor cells in the human and murine brainstem whose temporal and spatial distributions correlate closely with the incidence of DIPG and highlight a candidate cell of origin. Using early postmortem DIPG tumor tissue, we have established in vitro and xenograft models and find that the Hedgehog (Hh) signaling pathway implicated in many developmental and oncogenic processes is active in DIPG tumor cells. Modulation of Hh pathway activity has functional consequences for DIPG self-renewal capacity in neurosphere culture. The Hh pathway also appears to be active in normal ventral pontine precursor-like cells of the mouse, and unregulated pathway activity results in hypertrophy of the ventral pons. Together, these findings provide a foundation for understanding the cellular and molecular origins of DIPG, and suggest that the Hh pathway represents a potential therapeutic target in this devastating pediatric tumor. PMID:21368213
NASA Astrophysics Data System (ADS)
Paul, Andre; Spikings, Richard; Ulyanov, Alexey; Chew, David
2016-04-01
Application of high temperature (>350oC) thermochronology is limited to the U-Pb system of accessory minerals, such as apatite, under the assumption that radiogenic lead is lost to thermally activated volume diffusion into an infinite reservoir. Cochrane et al. (2015) have demonstrated a working example from the northern Andes of South America. Predictions from volume diffusion theory were compared with measured single grain U-Pb date correlated to shortest diffusion radius and in-situ profiles measured by LA-ICP-MS. Results from both techniques were found to be in agreement with predictions from thermally activated, volume diffusion. However, outliers from the ID-TIMS data suggested some complexity, as grains were found to be too young relative to their diffusion radius. Interaction of multiple processes can be responsible for the alteration of apatite U-Pb dates such as: (1) metamorphic (over)growth, (2) fluid aided alteration/recrystallization and (3) metamictization and fracturing of the grain. Further, predictions from volume diffusion rely on the input parameters: (a) diffusivity, (b) activation energy and (c) shortest diffusion radius. Diffusivity and activation energy are potentially influenced by the chemical composition and subsequent changes in crystal structure. Currently there is one value for diffusion parameter and activation energy established for (Durango) apatite (Cherniak et al., 1991). Correlation between diffusivity/activation energy and composition has not been established. We investigate if correlations exist between diffusivity/activation energy and composition by obtaining single grain apatite U-Pb date and chemical compostion and correlating these to their diffusion radius. We test the consistency of apatite closure temperature, by comparing the apatite U-Pb dates with lower temperature thermochronometers such as white mica and K-feldspar Ar/Ar and by petrographic observations. We test if chemical information can be a proxy to identify metamorphic (over)growth and fluid aided alteration/recrystallization. We seek to evaluate if apatite U-Pb thermochronology can be applied to a broad range of rock types and geological environments or if limitations must be drawn.
Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS.
Lanzanò, Luca; Scipioni, Lorenzo; Di Bona, Melody; Bianchini, Paolo; Bizzarri, Ranieri; Cardarelli, Francesco; Diaspro, Alberto; Vicidomini, Giuseppe
2017-07-06
The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells.The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.
Jung, Caroline; Rabinowitsch, Ariana; Lee, Wei Ting; Zheng, Danielle; de Vaca, Soledad Cabeza; Carr, Kenneth D
2016-09-01
When ad libitum-fed rats undergo cocaine place preference conditioning (CPP) but are switched to food restriction for testing, CPP becomes resistant to extinction and correlates with phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 at Ser845 in nucleus accumbens (NAc) core. This study tested whether food restriction increases persistence of morphine CPP and conditioned place aversions (CPA) induced by LiCl and naloxone-precipitated morphine withdrawal. Ad libitum-fed rats were conditioned with morphine (6.0 mg/kg, i.p.), LiCl (50.0/75.0 mg/kg, i.p.), or naloxone (1.0 mg/kg, s.c.) 22 h post-morphine (20.0 mg/kg, s.c.). Half of the subjects were then switched to food restriction. Daily testing resumed 3 weeks later, and brains were harvested when one diet group met extinction criterion. Western analyses probed for pSer845-GluA1, pERK1, and pERK2 in NAc. Food restriction increased persistence of morphine CPP and preference scores correlated with pSer845-GluA1 in NAc core and shell. LiCl CPA was curtailed by food restriction, yet pSer845-GluA1 and pERK2 were elevated in NAc core of food-restricted rats. Food restriction increased persistence of naloxone CPA and elevated pSer845-GluA1 in NAc core and shell, and aversion scores were negatively correlated with pERK1 and pERK2 in NAc core. These results suggest that food restriction prolongs responsiveness to environmental contexts paired with subjective effects of both morphine and morphine withdrawal. A mechanistic scheme, attributing these effects to upregulation of pSer845-GluA1, but subject to override by CPA-specific, pERK2-mediated extinction learning, is explored to accommodate opposite effects of food restriction on LiCl and naloxone CPA.
Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison.
Panagiotaki, Eleftheria; Schneider, Torben; Siow, Bernard; Hall, Matt G; Lythgoe, Mark F; Alexander, Daniel C
2012-02-01
This paper aims to identify the minimum requirements for an accurate model of the diffusion MR signal in white matter of the brain. We construct a taxonomy of multi-compartment models of white matter from combinations of simple models for the intra- and the extra-axonal spaces. We devise a new diffusion MRI protocol that provides measurements with a wide range of imaging parameters for diffusion sensitization both parallel and perpendicular to white matter fibres. We use the protocol to acquire data from two fixed rat brains, which allows us to fit, study and compare the different models. The study examines a total of 47 analytic models, including several well-used models from the literature, which we place within the taxonomy. The results show that models that incorporate intra-axonal restriction, such as ball and stick or CHARMED, generally explain the data better than those that do not, such as the DT or the biexponential models. However, three-compartment models which account for restriction parallel to the axons and incorporate pore size explain the measurements most accurately. The best fit comes from combining a full diffusion tensor (DT) model of the extra-axonal space with a cylindrical intra-axonal component of single radius and a third spherical compartment of non-zero radius. We also measure the stability of the non-zero radius intra-axonal models and find that single radius intra-axonal models are more stable than gamma distributed radii models with similar fitting performance. Copyright © 2011 Elsevier Inc. All rights reserved.
Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.
Feder, T J; Brust-Mascher, I; Slattery, J P; Baird, B; Webb, W W
1996-01-01
Protein lateral mobility in cell membranes is generally measured using fluorescence photobleaching recovery (FPR). Since the development of this technique, the data have been interpreted by assuming free Brownian diffusion of cell surface receptors in two dimensions, an interpretation that requires that a subset of the diffusing species remains immobile. The origin of this so-called immobile fraction remains a mystery. In FPR, the motions of thousands of particles are inherently averaged, inevitably masking the details of individual motions. Recently, tracking of individual cell surface receptors has identified several distinct types of motion (Gross and Webb, 1988; Ghosh and Webb, 1988, 1990, 1994; Kusumi et al. 1993; Qian et al. 1991; Slattery, 1995), thereby calling into question the classical interpretation of FPR data as free Brownian motion of a limited mobile fraction. We have measured the motion of fluorescently labeled immunoglobulin E complexed to high affinity receptors (Fc epsilon RI) on rat basophilic leukemia cells using both single particle tracking and FPR. As in previous studies, our tracking results show that individual receptors may diffuse freely, or may exhibit restricted, time-dependent (anomalous) diffusion. Accordingly, we have analyzed FPR data by a new model to take this varied motion into account, and we show that the immobile fraction may be due to particles moving with the anomalous subdiffusion associated with restricted lateral mobility. Anomalous subdiffusion denotes random molecular motion in which the mean square displacements grow as a power law in time with a fractional positive exponent less than one. These findings call for a new model of cell membrane structure. PMID:8744314
Kochunov, P; Chiappelli, J; Hong, L E
2013-01-01
Diffusion tensor imaging (DTI) assumes a single pool of anisotropically diffusing water to calculate fractional anisotropy (FA) and is commonly used to ascertain white matter (WM) deficits in schizophrenia. At higher b-values, diffusion-signal decay becomes bi-exponential, suggesting the presence of two, unrestricted and restricted, water pools. Theoretical work suggests that semi-permeable cellular membrane rather than the presence of two physical compartments is the cause. The permeability-diffusivity (PD) parameters measured from bi-exponential modeling may offer advantages, over traditional DTI-FA, in identifying WM deficits in schizophrenia. Imaging was performed in N = 26/26 patients/controls (age = 20-61 years, average age = 40.5 ± 12.6). Imaging consisted of fifteen b-shells: b = 250-3800 s/mm(2) with 30 directions/shell, covering seven slices of mid-sagittal corpus callosum (CC) at 1.7 × 1.7 × 4.6 mm. 64-direction DTI was also collected. Permeability-diffusivity-index (PDI), the ratio of restricted to unrestricted apparent diffusion coefficients, and the fraction of unrestricted compartment (Mu) were calculated for CC and cingulate gray matter (GM). FA values for CC were calculated using tract-based-spatial-statistics. Patients had significantly reduced PDI in CC (p ≅ 10(- 4)) and cingulate GM (p = 0.002), while differences in CC FA were modest (p ≅ .03). There was no group-related difference in Mu. Additional theoretical-modeling analysis suggested that reduced PDI in patients may be caused by reduced cross-membrane water molecule exchanges. PDI measurements for cerebral WM and GM yielded more robust patient-control differences than DTI-FA. Theoretical work offers an explanation that patient-control PDI differences should implicate abnormal active membrane permeability. This would implicate abnormal activities in ion-channels that use water as substrate for ion exchange, in cerebral tissues of schizophrenia patients.
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly.
Bai, Ruiliang; Stewart, Craig V; Plenz, Dietmar; Basser, Peter J
2016-03-22
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity.
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly
Bai, Ruiliang; Stewart, Craig V.; Plenz, Dietmar; Basser, Peter J.
2016-01-01
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity. PMID:26941239
Empirical relationship of ultraviolet extinction and the interstellar diffuse bands
NASA Astrophysics Data System (ADS)
Wu, C.-C.; York, D. G.; Snow, T. P.
1981-05-01
New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.
Empirical relationship of ultraviolet extinction and the interstellar diffuse bands
NASA Technical Reports Server (NTRS)
Wu, C.-C.; York, D. G.; Snow, T. P.
1981-01-01
New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.
Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong
2014-05-30
The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less
Experimental and computational data from a small rocket exhaust diffuser
NASA Astrophysics Data System (ADS)
Stephens, Samuel E.
1993-06-01
The Diagnostics Testbed Facility (DTF) at the NASA Stennis Space Center in Mississippi is a versatile facility that is used primarily to aid in the development of nonintrusive diagnostics for liquid rocket engine testing. The DTF consists of a fixed, 1200 lbf thrust, pressure fed, liquid oxygen/gaseous hydrogen rocket engine, and associated support systems. An exhaust diffuser has been fabricated and installed to provide subatmospheric pressures at the exit of the engine. The diffuser aerodynamic design was calculated prior to fabrication using the PARC Navier-Stokes computational fluid dynamics code. The diffuser was then fabricated and tested at the DTF. Experimental data from these tests were acquired to determine the operational characteristics of the system and to correlate the actual and predicted flow fields. The results show that a good engineering approximation of overall diffuser performance can be made using the PARC Navier-Stokes code and a simplified geometry. Correlations between actual and predicted cell pressure and initial plume expansion in the diffuser are good; however, the wall pressure profiles do not correlate as well with the experimental data.
Viscosity-dependent diffusion of fluorescent particles using fluorescence correlation spectroscopy.
Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sok Won
2014-11-01
Fluorescent particles show the variety characteristics by the interaction with other particles and solvent. In order to investigate the relationship between the dynamic properties of fluorescent particles and solvent viscosity, particle diffusion in various solvents was evaluated using a fluorescence correlation spectroscopy. Upon analyzing the correlation functions of AF-647, Q-dot, and beads with different viscosity values, the diffusion time of all particles was observed to increase with increasing solvent viscosity, and the ratio of diffusion time to solvent viscosity, τ D /η, showed a linear dependence on particle size. The particle diffusion coefficients calculated from the diffusion time decreased with increasing solvent viscosity. Further, the hydrodynamic radii of AF-647, Q-dot, and beads were 0.98 ± 0.1 nm, 64.8 ± 3.23 nm, and 89.8 ± 4.91 nm, respectively, revealing a linear dependence on τ D /η, which suggests that the hydrodynamic radius of a particle strongly depends on both the physical size of the particle and solvent viscosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Christopher H., E-mail: chchap@umich.edu; Nagesh, Vijaya; Sundgren, Pia C.
Purpose: To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). Methods and Materials: Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. Results:more » In both structures, longitudinal diffusivity ({lambda}{sub Double-Vertical-Line }) decreased and perpendicular diffusivity ({lambda}{sub Up-Tack }) increased after RT, with early changes correlating to later changes (p < .05). The radiation dose correlated with an increase in cingulum {lambda}{sub Up-Tack} at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in {lambda}{sub Up-Tack} at 3 and 6 weeks (p < .05). The post-RT changes in verbal recall scores correlated linearly with the late changes in cingulum {lambda}{sub Double-Vertical-Line} (30 weeks, p < .02). Using receiver operating characteristic curves, early cingulum {lambda}{sub Double-Vertical-Line} changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. Conclusions: The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.« less
NASA Astrophysics Data System (ADS)
Digman, Michelle
Fluorescence fluctuation spectroscopy has evolved from single point detection of molecular diffusion to a family of microscopy imaging correlation tools (i.e. ICS, RICS, STICS, and kICS) useful in deriving spatial-temporal dynamics of proteins in living cells The advantage of the imaging techniques is the simultaneous measurement of all points in an image with a frame rate that is increasingly becoming faster with better sensitivity cameras and new microscopy modalities such as the sheet illumination technique. A new frontier in this area is now emerging towards a high level of mapping diffusion rates and protein dynamics in the 2 and 3 dimensions. In this talk, I will discuss the evolution of fluctuation analysis from the single point source to mapping diffusion in whole cells and the technology behind this technique. In particular, new methods of analysis exploit correlation of molecular fluctuations originating from measurement of fluctuation correlations at distant points (pair correlation analysis) and methods that exploit spatial averaging of fluctuations in small regions (iMSD). For example the pair correlation fluctuation (pCF) analyses done between adjacent pixels in all possible radial directions provide a window into anisotropic molecular diffusion. Similar to the connectivity atlas of neuronal connections from the MRI diffusion tensor imaging these new tools will be used to map the connectome of protein diffusion in living cells. For biological reaction-diffusion systems, live single cell spatial-temporal analysis of protein dynamics provides a mean to observe stochastic biochemical signaling in the context of the intracellular environment which may lead to better understanding of cancer cell invasion, stem cell differentiation and other fundamental biological processes. National Institutes of Health Grant P41-RRO3155.
NASA Astrophysics Data System (ADS)
M. C. Sagis, Leonard
2001-03-01
In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.
NMR diffusion simulation based on conditional random walk.
Gudbjartsson, H; Patz, S
1995-01-01
The authors introduce here a new, very fast, simulation method for free diffusion in a linear magnetic field gradient, which is an extension of the conventional Monte Carlo (MC) method or the convolution method described by Wong et al. (in 12th SMRM, New York, 1993, p.10). In earlier NMR-diffusion simulation methods, such as the finite difference method (FD), the Monte Carlo method, and the deterministic convolution method, the outcome of the calculations depends on the simulation time step. In the authors' method, however, the results are independent of the time step, although, in the convolution method the step size has to be adequate for spins to diffuse to adjacent grid points. By always selecting the largest possible time step the computation time can therefore be reduced. Finally the authors point out that in simple geometric configurations their simulation algorithm can be used to reduce computation time in the simulation of restricted diffusion.
Chen, Fang; Neupane, Bhanu; Li, Peiyuan; Su, Wei; Wang, Gufeng
2016-08-01
We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of ∼2, which can be satisfactorily explained by hydrodynamic frictions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular dynamics study of rhodamine 6G diffusion at n-decane-water interfaces.
Popov, Piotr; Steinkerchner, Leo; Mann, Elizabeth K
2015-05-01
Two-dimensional diffusion of a rhodamine 6G fluorescent tracer molecule at the n-decane-water interface was studied with all-atom molecular dynamics simulations. In agreement with experimental data, we find increased mobility of the tracer at the n-decane-water interfaces in comparison to its mobility in bulk water. Orientational ordering of water and n-decane molecules near the interface is observed, and may change the interfacial viscosity as suggested to explain the experimental data. However, the restricted rotational motion of the rhodamine molecule at the interface suggests that the Saffman-Delbrück model may be a more appropriate approximation of rhodamine diffusion at n-decane-water interfaces, and, without any decrease in interfacial viscosity, suggests faster diffusion consistent with both experimental and simulation values.
No differences in brain microstructure between young KIBRA-C carriers and non-carriers.
Hu, Li; Xu, Qunxing; Li, Jizhen; Wang, Feifei; Xu, Xinghua; Sun, Zhiyuan; Ma, Xiangxing; Liu, Yong; Wang, Qing; Wang, Dawei
2018-01-02
KIBRA rs17070145 polymorphism is associated with variations in memory function and the microstructure of related brain areas. Diffusion kurtosis imaging (DKI) as an extension of diffusion tensor imaging that can provide more information about changes in microstructure, based on the idea that water diffusion in biological tissues is heterogeneous due to structural hindrance and restriction. We used DKI to explore the relationship between KIBRA gene polymorphism and brain microstructure in young adults. We recruited 100 healthy young volunteers, including 53 TT carriers and 47 C allele carriers. No differences were detected between the TT homozygotes and C-allele carriers for any diffusion and kurtosis parameter. These results indicate KIBRA rs17070145 polymorphism likely has little or no effect on brain microstructure in young adults.
Geith, Tobias; Biffar, Andreas; Schmidt, Gerwin; Sourbron, Steven; Dietrich, Olaf; Reiser, Maximilian; Baur-Melnyk, Andrea
2015-01-01
To test the hypothesis that apparent diffusion coefficient (ADC) in vertebral bone marrow of benign and malignant fractures is related to the volume of the interstitial space, determined with dynamic contrast-enhanced (DCE) magnetic resonance imaging. Patients with acute benign (n = 24) and malignant (n = 19) vertebral body fractures were examined at 1.5 T. A diffusion-weighted single-shot turbo-spin-echo sequence (b = 100 to 600 s/mm) and DCE turbo-FLASH sequence were evaluated. Regions of interest were manually selected for each fracture. Apparent diffusion coefficient was determined with a monoexponential decay model. The DCE magnetic resonance imaging concentration-time curves were analyzed using a 2-compartment tracer-kinetic model. Apparent diffusion coefficient showed a significant positive correlation with interstitial volume in the whole study population (Pearson r = 0.66, P < 0.001), as well as in the malignant (Pearson r = 0.64, P = 0.004) and benign (Pearson r = 0.52, P = 0.01) subgroup. A significant correlation between ADC and the permeability-surface area product could be observed when analyzing the whole study population (Spearman rs = 0.40, P = 0.008), but not when separately examining the subgroups. Plasma flow showed a significant correlation with ADC in benign fractures (Pearson r = 0.23, P = 0.03). Plasma volume did not show significant correlations with ADC. The results support the hypothesis that the ADC of a lesion is inversely correlated to its cellularity. This explains previous observations that ADC is reduced in more malignant lesions.
NASA Astrophysics Data System (ADS)
Baig, Mohammad Saad; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
NaF-ZrF4 is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF4 system were studied along with Onsagercoefficients and Maxwell-Stefan (MS) Diffusivities applying Green-Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity ĐNa-F shows interesting behavior with the increase in concentration of ZrF4. This is because of network formation in NaF-ZrF4. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.
Wendel, Kara M; Lee, Jeong Bin; Affeldt, Bethann; Hamer, Mary; Harahap-Carrillo, Indira S; Pardo, Andrea C; Obenaus, Andre
2018-05-09
Emerging data suggest that pediatric traumatic brain injury (TBI) is associated with impaired developmental plasticity and poorer neuropsychological outcomes than adults with similar head injuries. Unlike adult mild TBI (mTBI), the effects of mTBI on white matter (WM) microstructure and vascular supply are not well-understood in the pediatric population. The cerebral vasculature plays an important role providing necessary nutrients and removing waste. To address this critical element, we examined the microstructure of the corpus callosum (CC) following pediatric mTBI using diffusion tensor imaging (DTI), and investigated myelin, oligodendrocytes, and vasculature of WM with immunohistochemistry. We hypothesized that pediatric mTBI leads to abnormal WM microstructure and impacts the vasculature within the CC, and that these alterations to WM vasculature contribute to the long-term altered microstructure. We induced a closed head injury mTBI at postnatal day 14, then at 4, 14, and 60 days post injury (DPI) mice were sacrificed for analysis. We observed persistent changes in apparent diffusion coefficient (ADC) within the ipsilateral CC following mTBI, indicating microstructural changes, but surprisingly changes in myelin and oligodendrocyte densities were minimal. However, vasculature features of the ipsilateral CC such as vessel density, length, and number of junctions were persistently altered following mTBI. Correlative analysis showed a strong inverse relationship between ADC and vessel density at 60 DPI, suggesting increased vessel density following mTBI may restrict WM diffusion characteristics. Our findings suggest that WM vasculature contributes to the long-term microstructural changes within the ipsilateral CC following mTBI.
Active motion assisted by correlated stochastic torques.
Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter
2011-07-01
The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.
Woodhams, Reiko; Kakita, Satoko; Hata, Hirofumi; Iwabuchi, Keiichi; Umeoka, Shigeaki; Mountford, Carolyn E; Hatabu, Hiroto
2009-07-01
The purposes of this study were to compare the apparent diffusion coefficient (ADC) of mucinous carcinoma of the breast with that of other breast tumors and to analyze correlations between signal intensity on diffusion-weighted images and the histologic features of mucinous carcinoma. Two hundred seventy-six patients with 277 lesions, including 15 mucinous carcinomas (13 pure type, two mixed type), 204 other malignant tumors, and 58 benign lesions, were examined with 1.5-T MRI at b values of 0 and 1,500 s/mm(2). The correlations between cellularity and ADC, homogeneity of signal intensity on diffusion-weighted images, and histopathologic findings were analyzed. The difference was statistically significant (p < 0.05). The mean ADC of mucinous carcinoma (1.8 +/- 0.4 x 10(-3) mm(2)/s) was statistically higher than that of benign lesions (1.3+/- 0.3 x 10(-3) mm(2)/s) and other malignant tumors (0.9 +/- 0.2 x 10(-3) mm(2)/s) (p < 0.001). The ADC of pure type mucinous carcinoma (1.8 +/- 0.3 x 10(-3) mm(2)/s) was higher than that of mixed type mucinous carcinoma (1.2 +/- 0.2 x 10(-3) mm(2)/s) (p < 0.001) and other histologic types (p > 0.05). The correlation between mean cellularity and the ADC of mucinous carcinoma was significant (rho(s) = -0.754; p = 0.001). The homogeneity of signal intensity on diffusion-weighted images correlated with the homogeneity of histologic structures of mucinous carcinoma (p < 0.001; kappa = 0.826). Mucinous carcinoma can be clearly differentiated from other breast tumors on the basis of ADC. The low signal intensity of mucinous carcinoma on diffusion-weighted images appears to reflect the presence of mucin and low cellularity. High signal intensity on diffusion-weighted images may reflect the presence of fibrovascular bundles, increased cell density, or a combination of these features.
Blue Luminescence and Extended Red Emission: Possible Connections to the Diffuse Interstellar Bands
NASA Astrophysics Data System (ADS)
Witt, A. N.
2014-02-01
Blue luminescence (BL) and extended red emission (ERE) are observed as diffuse, optical-wavelength emissions in interstellar space, resulting from photoluminescence by ultraviolet(UV)-illuminated interstellar grains. Faintness and the challenge of separating the BL and ERE from the frequently much brighter dust-scattered continuum present major observational hurdles, which have permitted only slow progress in testing the numerous models that have been advanced to explain these two phenomena. Both the ERE, peaking near 680 nm (FWHM ~ 60 - 120 nm) and the BL, asymmetrically peaking at ~ 378 nm (FWHM ~ 45 nm), were first discovered in the Red Rectangle nebula. Subsequently, ERE and BL have been observed in other reflection nebulae, and in the case of the ERE, in carbon-rich planetary nebulae, H II regions, high-latitude cirrus clouds, the galactic diffuse ISM, and in external galaxies. BL exhibits a close spatial and intensity correlation with emission in the aromatic emission feature at 3.3 micron, most likely arising from small, neutral polycyclic aromatic hydrocarbon (PAH) molecules. The spectral characteristics of the BL also agree with those of fluorescence by PAH molecules with 13 to 19 carbon atoms. The BL phenomenon is thus most readily understood as the optical fluorescence of small, UV-excited aromatic molecules. The ERE, by contrast, though co-existent with mid-IR PAH emissions, does not correlate with emissions from either neutral or ionized PAHs. Instead, the spatial ERE morphology appears to be strictly governed by the density of far-UV (E >= 10.5 eV) photons, which are required for the ERE excitation. The most restrictive observational constraint for the ERE process is its exceptionally high quantum efficiency. If the ERE results from photo-excitation of a nano-particle carrier by photons with E >= 10.5 eV in a single-step process, the quantum efficiency exceeds 100%. Such a process, in which one to three low-energy optical photons may be emitted following a single far-UV excitation, is possible in highly isolated small clusters, e.g. small, dehydrogenated carbon clusters with about 20 to 28 carbon atoms. A possible connection between the ERE carriers and the carriers of DIBs may exist in that both are ubiquitous throughout the diffuse interstellar medium and both have an abundance of low-lying electronic levels with E <= 2.3 eV above the ground state.
Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers
Kim, KyungDuk; Yu, Hyeonseung; Lee, KyeoReh; Park, YongKeun
2017-01-01
Here, we present a concept based on the realization that a complex medium can be used as a simple interferometer. Changes in the wavefront of an incident coherent beam can be retrieved by analyzing changes in speckle patterns when the beam passes through a light diffuser. We demonstrate that the spatial intensity correlations of the speckle patterns are independent of the light diffusers, and are solely determined by the phase changes of an incident beam. With numerical simulations using the random matrix theory, and an experimental pressure-driven wavefront-deforming setup using a microfluidic channel, we theoretically and experimentally confirm the universal sensitivity of speckle intensity correlations, which is attributed to the conservation of optical field correlation despite multiple light scattering. This work demonstrates that a light diffuser works as a simple interferometer, and presents opportunities to retrieve phase information of optical fields with a compact scattering layer in various applications in metrology, analytical chemistry, and biomedicine. PMID:28322268
Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L
2017-03-01
Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm 3 spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated with axonal disruption, where lower FA was associated with greater axonal disruption in white matter directly adjacent to hyperphosphorylated tau positive sulci. In summary, our findings indicate that axonal disruption and tau pathology are closely associated, and high spatial resolution ex vivo diffusion MRI has the potential to detect microstructural alterations observed in CTE tissue. Future studies will be required to determine whether this approach can be applied to living people.
Image correlation microscopy for uniform illumination.
Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L
2010-01-01
Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.
Sapkota, Nabraj; Yoon, Sook; Thapa, Bijaya; Lee, YouJung; Bisson, Erica F; Bowman, Beth M; Miller, Scott C; Shah, Lubdha M; Rose, John W; Jeong, Eun-Kee
2016-11-01
Signal measured from white matter in diffusion-weighted imaging is difficult to interpret because of the heterogeneous structure of white matter. Characterization of the white matter will be straightforward if the signal contributed from the hindered space is suppressed and purely restricted signal is analyzed. In this study, a Monte Carlo simulation (MCS) of water diffusion in white matter was performed to understand the behavior of the diffusion-weighted signal in white matter. The signal originating from the hindered space of an excised pig cervical spinal cord white matter was suppressed using the ultrahigh-b radial diffusion-weighted imaging. A light microscopy image of a section of white matter was obtained from the excised pig cervical spinal cord for the MCS. The radial diffusion-weighted signals originating from each of the intra-axonal, extra-axonal, and total spaces were studied using the MCS. The MCS predicted that the radial diffusion-weighted signal remains almost constant in the intra-axonal space and decreases gradually to about 2% of its initial value in the extra-axonal space when the b-value is increased to 30,000s/mm 2 . The MCS also revealed that the diffusion-weighted signal for a b-value greater than 20,000s/mm 2 is mostly from the intra-axonal space. The decaying behavior of the signal-b curve obtained from ultrahigh-b diffusion-weighted imaging (b max ∼30,000s/mm 2 ) of the excised pig cord was very similar to the decaying behavior of the total signal-b curve synthesized in the MCS. A mono-exponential plus constant fitting of the signal-b curve obtained from a white matter pixel estimated the values of constant fraction and apparent diffusion coefficient of decaying fraction as 0.32±0.05 and (0.16±0.01)×10 -3 mm 2 /s, respectively, which agreed well with the results of the MCS. The signal measured in the ultrahigh-b region (b>20,000s/mm 2 ) is mostly from the restricted (intra-axonal) space. Integrity and intactness of the axons can be evaluated by assessing the remaining signal in the ultrahigh-b region. Published by Elsevier Inc.
Mauskopf, Josephine; Chirila, Costel; Birt, Julie; Boye, Kristina S; Bowman, Lee
2013-04-01
Determine whether reimbursement restrictions recommended by the National Institute for Health and Clinical Excellence (NICE) have impacted the United Kingdom (UK) National Health Service (NHS) budget. Data were abstracted from NICE guidance documents and costing statements through March 2011. Estimated maximum and adjusted potential budget impact (PBI) on the NHS was derived using estimates of the UK marketing-approved population and the annual cost for the new drug. Descriptive and logistic analyses were used to estimate the correlation between the degree of restrictions on reimbursement recommended by NICE for each new drug indication and the PBI controlling for clinical effectiveness and cost-effectiveness. PBI was significantly correlated with the degree of reimbursement restrictions. In descriptive analysis, the adjusted PBI for drugs that were recommended without restrictions was £20.3 million (SD = 22.2) compared with £49.8 million (SD = 90.8) for those recommended with restrictions and £71.1 million (SE = 99.9) for those not recommended. In logistic analysis, the odds ratio for less restrictive reimbursement was 0.848 (95% CI, 0.762-0.945) for each £20 million increase in the adjusted PBI. Results were similar using the maximum PBI. After controlling for clinical effectiveness and cost-effectiveness, the degree of reimbursement restriction recommended by NICE remains significantly correlated with the PBI, despite that fact that the NICE decision process does not consider budget impact. This correlation might be due to NICE consideration of effectiveness and cost-effectiveness for subgroups of the approved population. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy.
Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O
2010-12-22
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.
Stefl, Martin; Kułakowska, Anna; Hof, Martin
2009-08-05
A new (to our knowledge) robust approach for the determination of lateral diffusion coefficients of weakly bound proteins is applied for the phosphatidylserine specific membrane interaction of bovine prothrombin. It is shown that z-scan fluorescence correlation spectroscopy in combination with pulsed interleaved dual excitation allows simultaneous monitoring of the lateral diffusion of labeled protein and phospholipids. Moreover, from the dependencies of the particle numbers on the axial sample positions at different protein concentrations phosphatidylserine-dependent equilibrium dissociation constants are derived confirming literature values. Increasing the amount of membrane-bound prothrombin retards the lateral protein and lipid diffusion, indicating coupling of both processes. The lateral diffusion coefficients of labeled lipids are considerably larger than the simultaneously determined lateral diffusion coefficients of prothrombin, which contradicts findings reported for the isolated N-terminus of prothrombin.
Emergent spatial synaptic structure from diffusive plasticity.
Sweeney, Yann; Clopath, Claudia
2017-04-01
Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a simple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the preferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexibly interact with other forms of synaptic organisation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Zhou, Iris Yuwen; Guo, Yingkun; Igarashi, Takahiro; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Wen, Lingyi; Vangel, Mark; Lo, Eng H; Ji, Xunming; Sun, Phillip Zhe
2016-12-01
Diffusion kurtosis imaging (DKI) has been shown to augment diffusion-weighted imaging (DWI) for the definition of irreversible ischemic injury. However, the complexity of cerebral structure/composition makes the kurtosis map heterogeneous, limiting the specificity of kurtosis hyperintensity to acute ischemia. We propose an Inherent COrrelation-based Normalization (ICON) analysis to suppress the intrinsic kurtosis heterogeneity for improved characterization of heterogeneous ischemic tissue injury. Fast DKI and relaxation measurements were performed on normal (n = 10) and stroke rats following middle cerebral artery occlusion (MCAO) (n = 20). We evaluated the correlations between mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) derived from the fast DKI sequence and relaxation rates R 1 and R 2 , and found a highly significant correlation between MK and R 1 (p < 0.001). We showed that ICON analysis suppressed the intrinsic kurtosis heterogeneity in normal cerebral tissue, enabling automated tissue segmentation in an animal stroke model. We found significantly different kurtosis and diffusivity lesion volumes: 147 ± 59 and 180 ± 66 mm 3 , respectively (p = 0.003, paired t-test). The ratio of kurtosis to diffusivity lesion volume was 84% ± 19% (p < 0.001, one-sample t-test). We found that relaxation-normalized MK (RNMK), but not MD, values were significantly different between kurtosis and diffusivity lesions (p < 0.001, analysis of variance). Our study showed that fast DKI with ICON analysis provides a promising means of demarcation of heterogeneous DWI stroke lesions. Copyright © 2016 John Wiley & Sons, Ltd.
Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation.
Zorin, Vadim; Zorina, Alla; Smetanina, Nadezhda; Kopnin, Pavel; Ozerov, Ivan V; Leonov, Sergey; Isaev, Artur; Klokov, Dmitry; Osipov, Andreyan N
2017-05-16
Development of personalized skin treatment in medicine and skin care may benefit from simple and accurate evaluation of the fraction of senescent skin fibroblasts that lost their proliferative capacity. We examined whether enriched analysis of colonies formed by primary human skin fibroblasts, a simple and widely available cellular assay, could reveal correlations with the fraction of senescent cells in heterogenic cell population. We measured fractions of senescence associated β-galactosidase (SA-βgal) positive cells in either mass cultures or colonies of various morphological types (dense, mixed and diffuse) formed by skin fibroblasts from 10 human donors. Although the donors were chosen to be within the same age group (33-54 years), the colony forming efficiency of their fibroblasts (ECO-f) and the percentage of dense, mixed and diffuse colonies varied greatly among the donors. We showed, for the first time, that the SA-βgal positive fraction was the largest in diffuse colonies, confirming that they originated from cells with the least proliferative capacity. The percentage of diffuse colonies was also found to correlate with the SA-βgal positive cells in mass culture. Using Ki67 as a cell proliferation marker, we further demonstrated a strong inverse correlation (r=-0.85, p=0.02) between the percentage of diffuse colonies and the fraction of Ki67+ cells. Moreover, a significant inverse correlation (r=-0.94, p=0.0001) between the percentage of diffuse colonies and ECO-f was found. Our data indicate that quantification of a fraction of diffuse colonies may provide a simple and useful method to evaluate the extent of cellular senescence in human skin fibroblasts.
Notelaers, Kristof; Smisdom, Nick; Rocha, Susana; Janssen, Daniel; Meier, Jochen C; Rigo, Jean-Michel; Hofkens, Johan; Ameloot, Marcel
2012-12-01
The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.
Shang, Liu-Tong; Yang, Jia-Fei; Lu, Jing; Wang, Ting-Ting; Zhou, Ying; Xing, Xin-Bo; Wang, Xin-Kun; Yang, Shu-Hui; Hu, Ming-Yan
2017-10-20
To study the correlation of apparent diffusion coefficient (ADC) measured by diffusion-weighted magnetic resonance imaging (MRI) with the molecular subtypes and biological prognostic factors of invasive breast cancer masses. Breast MRI data (including dynamic enhanced and diffusion-weighted imaging) were collected from 64 patients with pathologically confirmed invasive breast cancer masses (a total of 69 lesions). The mean ADC values of the lesions were calculated and their correlations were analyzed with the 5 molecular subtypes of invasive breast cancer and the biological prognostic factors including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), and Ki-67 index. The ADC values did not differ significantly among the 5 molecular subtypes of invasive breast cancer masses (P>0.05) or among lesions with different ER, PR, or HER2 status (P>0.05). The mean ADC values were significantly higher in Ki-67-positive lesions than in the negative lesions (P=0.023 and negatively correlated with the expressions of Ki-67 (r=-0.249). ADC value can not be used to identify the molecular subtypes of invasive breast cancer masses or to evaluate the biological prognosis of the lesions, but its correlation with Ki-67 expression may help in prognostic evaluation and guiding clinical therapy of the tumors.
Scherfler, Christoph; Esterhammer, Regina; Nocker, Michael; Mahlknecht, Philipp; Stockner, Heike; Warwitz, Boris; Spielberger, Sabine; Pinter, Bernadette; Donnemiller, Eveline; Decristoforo, Clemens; Virgolini, Irene; Schocke, Michael; Poewe, Werner; Seppi, Klaus
2013-10-01
Signal abnormalities of the substantia nigra and the olfactory tract detected either by diffusion tensor imaging, including measurements of mean diffusivity, a parameter of brain tissue integrity, and fractional anisotropy, a parameter of neuronal fibre integrity, or transcranial sonography, were recently reported in the early stages of Parkinson's disease. In this study, changes in the nigral and olfactory diffusion tensor signal, as well as nigral echogenicity, were correlated with clinical scales of motor disability, odour function and putaminal dopamine storage capacity measured with 6-[(18)F] fluorolevodopa positron emission tomography in early and advanced stages of Parkinson's disease. Diffusion tensor imaging, transcranial sonography and positron emission tomography were performed on 16 patients with Parkinson's disease (mean disease duration 3.7 ± 3.7 years, Hoehn and Yahr stage 1 to 4) and 14 age-matched healthy control subjects. Odour function was measured by the standardized Sniffin' Sticks Test. Mean putaminal 6-[(18)F] fluorolevodopa influx constant, mean nigral echogenicity, mean diffusivity and fractional anisotropy values of the substantia nigra and the olfactory tract were identified by region of interest analysis. When compared with the healthy control group, the Parkinson's disease group showed significant signal changes in the caudate and putamen by 6-[(18)F] fluorolevodopa positron emission tomography, in the substantia nigra by transcranial sonography, mean diffusivity and fractional anisotropy (P < 0.001, P < 0.01, P < 0.05, respectively) and in the olfactory tract by mean diffusivity (P < 0.05). Regional mean diffusivity values of the substantia nigra and the olfactory tract correlated significantly with putaminal 6-[(18)F] fluorolevodopa uptake (r = -0.52, P < 0.05 and r = -0.71, P < 0.01). Significant correlations were also found between nigral mean diffusivity values and the Unified Parkinson's Disease Rating Scale motor score (r = -0.48, P < 0.01) and between mean putaminal 6-[(18)F] fluorolevodopa uptake and the total odour score (r = 0.58; P < 0.05) as well as the Unified Parkinson's Disease Rating Scale motor score (r = -0.53, P < 0.05). This study reports a significant association between increased mean diffusivity signal and decreased 6-[(18)F] fluorolevodopa uptake, indicating that microstructural degradation of the substantia nigra and the olfactory tract parallels progression of putaminal dopaminergic dysfunction in Parkinson's disease. Since increases in nigral mean diffusivity signal also correlated with motor dysfunction, diffusion tensor imaging may serve as a surrogate marker for disease progression in future studies of putative disease modifying therapies.
Analysis of diffusion and binding in cells using the RICS approach.
Digman, Michelle A; Gratton, Enrico
2009-04-01
The movement of macromolecules in cells is assumed to occur either through active transport or by diffusion. However, the determination of the diffusion coefficients in cells using fluctuation methods or FRAP frequently give diffusion coefficient that are orders of magnitude smaller than the diffusion coefficients measured for the same macromolecule in solution. It is assumed that the cell internal viscosity is partially responsible for this decrease in the apparent diffusion. When the apparent diffusion is too slow to be due to cytoplasm viscosity, it is assumed that weak binding of the macromolecules to immobile or quasi immobile structures is taking place. In this article, we derive equations for fitting of the RICS (Raster-scan Image Correlations Spectroscopy) data in cells to a model that includes transient binding to immobile structures, and we show that under some conditions, the spatio-temporal correlation provided by the RICS approach can distinguish the process of diffusion and weak binding. We apply the method to determine the diffusion in the cytoplasm and binding of Focal Adhesion Kinase-EGFP to adhesions in MEF cells.
Rosser, Zoë H.; Zerjal, Tatiana; Hurles, Matthew E.; Adojaan, Maarja; Alavantic, Dragan; Amorim, António; Amos, William; Armenteros, Manuel; Arroyo, Eduardo; Barbujani, Guido; Beckman, Gunhild; Beckman, Lars; Bertranpetit, Jaume; Bosch, Elena; Bradley, Daniel G.; Brede, Gaute; Cooper, Gillian; Côrte-Real, Helena B. S. M.; de Knijff, Peter; Decorte, Ronny; Dubrova, Yuri E.; Evgrafov, Oleg; Gilissen, Anja; Glisic, Sanja; Gölge, Mukaddes; Hill, Emmeline W.; Jeziorowska, Anna; Kalaydjieva, Luba; Kayser, Manfred; Kivisild, Toomas; Kravchenko, Sergey A.; Krumina, Astrida; Kučinskas, Vaidutis; Lavinha, João; Livshits, Ludmila A.; Malaspina, Patrizia; Maria, Syrrou; McElreavey, Ken; Meitinger, Thomas A.; Mikelsaar, Aavo-Valdur; Mitchell, R. John; Nafa, Khedoudja; Nicholson, Jayne; Nørby, Søren; Pandya, Arpita; Parik, Jüri; Patsalis, Philippos C.; Pereira, Luísa; Peterlin, Borut; Pielberg, Gerli; Prata, Maria João; Previderé, Carlo; Roewer, Lutz; Rootsi, Siiri; Rubinsztein, D. C.; Saillard, Juliette; Santos, Fabrício R.; Stefanescu, Gheorghe; Sykes, Bryan C.; Tolun, Aslihan; Villems, Richard; Tyler-Smith, Chris; Jobling, Mark A.
2000-01-01
Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. Principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift. PMID:11078479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Yu; Lin, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu
2014-05-12
Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo strokemore » model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.« less
Anomalous diffusion and long-range correlations in the score evolution of the game of cricket
NASA Astrophysics Data System (ADS)
Ribeiro, Haroldo V.; Mukherjee, Satyam; Zeng, Xiao Han T.
2012-08-01
We investigate the time evolution of the scores of the second most popular sport in the world: the game of cricket. By analyzing, event by event, the scores of more than 2000 matches, we point out that the score dynamics is an anomalous diffusive process. Our analysis reveals that the variance of the process is described by a power-law dependence with a superdiffusive exponent, that the scores are statistically self-similar following a universal Gaussian distribution, and that there are long-range correlations in the score evolution. We employ a generalized Langevin equation with a power-law correlated noise that describes all the empirical findings very well. These observations suggest that competition among agents may be a mechanism leading to anomalous diffusion and long-range correlation.
Measurement of hyperpolarized gas diffusion at very short time scales
Carl, Michael; Wilson Miller, G.; Mugler, John P.; Rohrbaugh, Scott; Tobias, William A.; Cates, Gordon D.
2007-01-01
We present a new pulse sequence for measuring very-short-time-scale restricted diffusion of hyperpolarized noble gases. The pulse sequence is based on concatenating a large number of bipolar diffusion-sensitizing gradients to increase the diffusion attenuation of the MR signal while maintaining a fundamentally short diffusion time. However, it differs in several respects from existing methods that use oscillating diffusion gradients for this purpose. First, a wait time is inserted between neighboring pairs of gradient pulses; second, consecutive pulse pairs may be applied along orthogonal axes; and finally, the diffusion-attenuated signal is not simply read out at the end of the gradient train but is periodically sampled during the wait times between neighboring pulse pairs. The first two features minimize systematic differences between the measured (apparent) diffusion coefficient and the actual time-dependent diffusivity, while the third feature optimizes the use of the available MR signal to improve the precision of the diffusivity measurement in the face of noise. The benefits of this technique are demonstrated using theoretical calculations, Monte-Carlo simulations of gas diffusion in simple geometries, and experimental phantom measurements in a glass sphere containing hyperpolarized 3He gas. The advantages over the conventional single-bipolar approach were found to increase with decreasing diffusion time, and thus represent a significant step toward making accurate surface-to-volume measurements in the lung airspaces. PMID:17936048
Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.
Sheng, Yin; Zeng, Zhigang
2018-07-01
This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Brownian dynamics simulation of rigid particles of arbitrary shape in external fields.
Fernandes, Miguel X; de la Torre, José García
2002-12-01
We have developed a Brownian dynamics simulation algorithm to generate Brownian trajectories of an isolated, rigid particle of arbitrary shape in the presence of electric fields or any other external agents. Starting from the generalized diffusion tensor, which can be calculated with the existing HYDRO software, the new program BROWNRIG (including a case-specific subprogram for the external agent) carries out a simulation that is analyzed later to extract the observable dynamic properties. We provide a variety of examples of utilization of this method, which serve as tests of its performance, and also illustrate its applicability. Examples include free diffusion, transport in an electric field, and diffusion in a restricting environment.
VBM-DTI correlates of verbal intelligence: a potential link to Broca's area.
Konrad, Andreas; Vucurevic, Goran; Musso, Francesco; Winterer, Georg
2012-04-01
Human brain lesion studies first investigated the biological roots of cognitive functions including language in the late 1800s. Neuroimaging studies have reported correlation findings with general intelligence predominantly in fronto-parietal cortical areas. However, there is still little evidence about the relationship between verbal intelligence and structural properties of the brain. We predicted that verbal performance is related to language regions of Broca's and Wernicke's areas. Verbal intelligence quotient (vIQ) was assessed in 30 healthy young subjects. T1-weighted MRI and diffusion tensor imaging data sets were acquired. Voxel-wise regression analyses were used to correlate fractional anisotropy (FA) and mean diffusivity values with vIQ. Moreover, regression analyses of regional brain volume with vIQ were performed adopting voxel-based morphometry (VBM) and ROI methodology. Our analyses revealed a significant negative correlation between vIQ and FA and a significant positive correlation between vIQ and mean diffusivity in the left-hemispheric Broca's area. VBM regression analyses did not show significant results, whereas a subsequent ROI analysis of Broca's area FA peak cluster demonstrated a positive correlation of gray matter volume and vIQ. These findings suggest that cortical thickness in Broca's area contributes to verbal intelligence. Diffusion parameters predicted gray matter ratio in Broca's area more sensitive than VBM methodology.
Sun, Kun; Chen, Xiaosong; Chai, Weimin; Fei, Xiaochun; Fu, Caixia; Yan, Xu; Zhan, Ying; Chen, Kemin; Shen, Kunwei; Yan, Fuhua
2015-10-01
To assess diagnostic accuracy with diffusion kurtosis imaging (DKI) in patients with breast lesions and to evaluate the potential association between DKI-derived parameters and breast cancer clinical-pathologic factors. Institutional review board approval and written informed consent were obtained. Data from 97 patients (mean age ± standard deviation, 45.7 years ± 13.1; range, 19-70 years) with 98 lesions (57 malignant and 41 benign) who were treated between January 2014 and April 2014 were retrospectively analyzed. DKI (with b values of 0-2800 sec/mm(2)) and conventional diffusion-weighted imaging data were acquired. Kurtosis and diffusion coefficients from DKI and apparent diffusion coefficients from diffusion-weighted imaging were measured by two radiologists. Student t test, Wilcoxon signed-rank test, Jonckheere-Terpstra test, receiver operating characteristic curves, and Spearman correlation were used for statistical analysis. Kurtosis coefficients were significantly higher in the malignant lesions than in the benign lesions (1.05 ± 0.22 vs 0.65 ± 0.11, respectively; P < .0001). Diffusivity and apparent diffusion coefficients in the malignant lesions were significantly lower than those in the benign lesions (1.13 ± 0.27 vs 1.97 ± 0.33 and 1.02 ± 0.18 vs 1.48 ± 0.33, respectively; P < .0001). Significantly higher specificity for differentiation of malignant from benign lesions was shown with the use of kurtosis and diffusivity coefficients than with the use of apparent diffusion coefficients (83% [34 of 41] and 83% [34 of 41] vs 76% [31 of 41], respectively; P < .0001) with equal sensitivity (95% [54 of 57]). In patients with invasive breast cancer, kurtosis was positively correlated with tumor histologic grade (r = 0.75) and expression of the Ki-67 protein (r = 0.55). Diffusivity was negatively correlated with tumor histologic grades (r = -0.44) and Ki-67 expression (r = -0.46). DKI showed higher specificity than did conventional diffusion-weighted imaging for assessment of benign and malignant breast lesions. Patients with grade 3 breast cancer or tumors with high expression of Ki-67 were associated with higher kurtosis and lower diffusivity coefficients; however, this association must be confirmed in prospective studies. (©) RSNA, 2015 Online supplemental material is available for this article.
Mazzoli, Valentina; Oudeman, Jos; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M; Nederveen, Aart J; Froeling, Martijn; Strijkers, Gustav J
2016-12-01
In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence of lengthening and shortening of the muscle. Diffusion Tensor MRI (DT-MRI) measurements were made twice in five healthy volunteers, with the foot in three different positions (30° plantarflexion, neutral position and 15° dorsiflexion). The muscles of the calf were manually segmented on co-registered high resolution anatomical scans, and maps of RD and axial diffusivity (AD) were reconstructed from the DT-MRI data. Fiber tractography was performed and mean fiber length was calculated for each muscle group. Significant negative correlations were found between the changes in RD and changes in fiber length in the dorsiflexed and plantarflexed positions, compared with the neutral foot position. Changes in AD did not correlate with changes in fiber length. Assuming a simple cylindrical model with constant volume for the muscle fiber, the changes in the muscle fiber CSA were calculated from the changes in fiber length. In line with our hypothesis, we observed a significant positive correlation of the CSA with the measured changes in RD. In conclusion, we showed that changes in diffusion coefficients induced by passive muscle stretching and lengthening can be explained by changes in muscle CSA, advancing the physiological interpretation of parameters derived from skeletal muscle DT-MRI. Copyright © 2016 John Wiley & Sons, Ltd.
Ning, Lipeng; Özarslan, Evren; Westin, Carl-Fredrik; Rathi, Yogesh
2017-01-01
Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons. PMID:27751940
Ning, Lipeng; Özarslan, Evren; Westin, Carl-Fredrik; Rathi, Yogesh
2017-02-01
Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons. Copyright © 2016 Elsevier Inc. All rights reserved.
Rayhan, Rakib U; Stevens, Benson W; Timbol, Christian R; Adewuyi, Oluwatoyin; Walitt, Brian; VanMeter, John W; Baraniuk, James N
2013-01-01
Gulf War exposures in 1990 and 1991 have caused 25% to 30% of deployed personnel to develop a syndrome of chronic fatigue, pain, hyperalgesia, cognitive and affective dysfunction. Gulf War veterans (n = 31) and sedentary veteran and civilian controls (n = 20) completed fMRI scans for diffusion tensor imaging. A combination of dolorimetry, subjective reports of pain and fatigue were correlated to white matter diffusivity properties to identify tracts associated with symptom constructs. Gulf War Illness subjects had significantly correlated fatigue, pain, hyperalgesia, and increased axial diffusivity in the right inferior fronto-occipital fasciculus. ROC generated thresholds and subsequent binary regression analysis predicted CMI classification based upon axial diffusivity in the right inferior fronto-occipital fasciculus. These correlates were absent for controls in dichotomous regression analysis. The right inferior fronto-occipital fasciculus may be a potential biomarker for Gulf War Illness. This tract links cortical regions involved in fatigue, pain, emotional and reward processing, and the right ventral attention network in cognition. The axonal neuropathological mechanism(s) explaining increased axial diffusivity may account for the most prominent symptoms of Gulf War Illness.
Pathways for diffusion in the potential energy landscape of the network glass former SiO2
NASA Astrophysics Data System (ADS)
Niblett, S. P.; Biedermann, M.; Wales, D. J.; de Souza, V. K.
2017-10-01
We study the dynamical behaviour of a computer model for viscous silica, the archetypal strong glass former, and compare its diffusion mechanism with earlier studies of a fragile binary Lennard-Jones liquid. Three different methods of analysis are employed. First, the temperature and time scale dependence of the diffusion constant is analysed. Negative correlation of particle displacements influences transport properties in silica as well as in fragile liquids. We suggest that the difference between Arrhenius and super-Arrhenius diffusive behaviour results from competition between the correlation time scale and the caging time scale. Second, we analyse the dynamics using a geometrical definition of cage-breaking transitions that was proposed previously for fragile glass formers. We find that this definition accurately captures the bond rearrangement mechanisms that control transport in open network liquids, and reproduces the diffusion constants accurately at low temperatures. As the same method is applicable to both strong and fragile glass formers, we can compare correlation time scales in these two types of systems. We compare the time spent in chains of correlated cage breaks with the characteristic caging time and find that correlations in the fragile binary Lennard-Jones system persist for an order of magnitude longer than those in the strong silica system. We investigate the origin of the correlation behaviour by sampling the potential energy landscape for silica and comparing it with the binary Lennard-Jones model. We find no qualitative difference between the landscapes, but several metrics suggest that the landscape of the fragile liquid is rougher and more frustrated. Metabasins in silica are smaller than those in binary Lennard-Jones and contain fewer high-barrier processes. This difference probably leads to the observed separation of correlation and caging time scales.
Reversible geminate recombination of hydrogen-bonded water molecule pair
NASA Astrophysics Data System (ADS)
Markovitch, Omer; Agmon, Noam
2008-08-01
The (history independent) autocorrelation function for a hydrogen-bonded water molecule pair, calculated from classical molecular dynamics trajectories of liquid water, exhibits a t-3/2 asymptotic tail. Its whole time dependence agrees quantitatively with the solution for reversible diffusion-influenced geminate recombination derived by Agmon and Weiss [J. Chem. Phys. 91, 6937 (1989)]. Agreement with diffusion theory is independent of the precise definition of the bound state. Given the water self-diffusion constant, this theory enables us to determine the dissociation and bimolecular recombination rate parameters for a water dimer. (The theory is indispensable for obtaining the bimolecular rate coefficient.) Interestingly, the activation energies obtained from the temperature dependence of these rate coefficients are similar, rather than differing by the hydrogen-bond (HB) strength. This suggests that recombination requires displacing another water molecule, which meanwhile occupied the binding site. Because these activation energies are about twice the HB strength, cleavage of two HBs may be required to allow pair separation. The autocorrelation function without the HB angular restriction yields a recombination rate coefficient that is larger than that for rebinding to all four tetrahedral water sites (with angular restrictions), suggesting the additional participation of interstitial sites. Following dissociation, the probability of the pair to be unbound but within the reaction sphere rises more slowly than expected, possibly because binding to the interstitial sites delays pair separation. An extended diffusion model, which includes an additional binding site, can account for this behavior.
Measuring nanoparticle diffusion in an ABELtrap
NASA Astrophysics Data System (ADS)
Dienerowitz, M.; Dienerowitz, F.; Börsch, M.
2018-03-01
Monitoring the Brownian motion of individual nanoscopic objects is key to investigate their transport properties and interactions with their close environment. Most techniques rely on transient diffusion through a detection volume or immobilisation, which restrict observation times or motility. We measure the diffusion coefficient and surface charge of individual nanoparticles and DNA molecules in an anti-Brownian electrokinetic trap (ABELtrap). This instrument is an active feedback trap confining the Brownian motion of a nanoparticle to the detection site by applying an electric field based on the particle’s current position. We simulate the Brownian motion of nanospheres in our sample geometry, including wall effects, due to partial confinement in the third dimension. The theoretically predicted values are in excellent agreement with our diffusion measurements in the ABELtrap. We also demonstrate the ABELtrap’s ability to measure varying sizes of DNA origami structures during denaturation.
Stephen, Renu M.; Jha, Abhinav K.; Roe, Denise J.; Trouard, Theodore P.; Galons, Jean-Philippe; Kupinski, Matthew A.; Frey, Georgette; Cui, Haiyan; Squire, Scott; Pagel, Mark D.; Rodriguez, Jeffrey J.; Gillies, Robert J.; Stopeck, Alison T.
2015-01-01
Purpose To assess the value of semi-automated segmentation applied to diffusion MRI for predicting the therapeutic response of liver metastasis. Methods Conventional diffusion weighted magnetic resonance imaging (MRI) was performed using b-values of 0, 150, 300 and 450 s/mm2 at baseline and days 4, 11 and 39 following initiation of a new chemotherapy regimen in a pilot study with 18 women with 37 liver metastases from primary breast cancer. A semi-automated segmentation approach was used to identify liver metastases. Linear regression analysis was used to assess the relationship between baseline values of the apparent diffusion coefficient (ADC) and change in tumor size by day 39. Results A semi-automated segmentation scheme was critical for obtaining the most reliable ADC measurements. A statistically significant relationship between baseline ADC values and change in tumor size at day 39 was observed for minimally treated patients with metastatic liver lesions measuring 2–5 cm in size (p = 0.002), but not for heavily treated patients with the same tumor size range (p = 0.29), or for tumors of smaller or larger sizes. ROC analysis identified a baseline threshold ADC value of 1.33 μm2/ms as 75% sensitive and 83% specific for identifying non-responding metastases in minimally treated patients with 2–5 cm liver lesions. Conclusion Quantitative imaging can substantially benefit from a semi-automated segmentation scheme. Quantitative diffusion MRI results can be predictive of therapeutic outcome in selected patients with liver metastases, but not for all liver metastases, and therefore should be considered to be a restricted biomarker. PMID:26284600
The Role of Synaptopodin in Membrane Protein Diffusion in the Dendritic Spine Neck.
Wang, Lili; Dumoulin, Andréa; Renner, Marianne; Triller, Antoine; Specht, Christian G
2016-01-01
The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion.
The Role of Synaptopodin in Membrane Protein Diffusion in the Dendritic Spine Neck
Wang, Lili; Dumoulin, Andréa; Renner, Marianne; Triller, Antoine; Specht, Christian G.
2016-01-01
The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion. PMID:26840625
Stephen, Renu M; Jha, Abhinav K; Roe, Denise J; Trouard, Theodore P; Galons, Jean-Philippe; Kupinski, Matthew A; Frey, Georgette; Cui, Haiyan; Squire, Scott; Pagel, Mark D; Rodriguez, Jeffrey J; Gillies, Robert J; Stopeck, Alison T
2015-12-01
To assess the value of semi-automated segmentation applied to diffusion MRI for predicting the therapeutic response of liver metastasis. Conventional diffusion weighted magnetic resonance imaging (MRI) was performed using b-values of 0, 150, 300 and 450s/mm(2) at baseline and days 4, 11 and 39 following initiation of a new chemotherapy regimen in a pilot study with 18 women with 37 liver metastases from primary breast cancer. A semi-automated segmentation approach was used to identify liver metastases. Linear regression analysis was used to assess the relationship between baseline values of the apparent diffusion coefficient (ADC) and change in tumor size by day 39. A semi-automated segmentation scheme was critical for obtaining the most reliable ADC measurements. A statistically significant relationship between baseline ADC values and change in tumor size at day 39 was observed for minimally treated patients with metastatic liver lesions measuring 2-5cm in size (p=0.002), but not for heavily treated patients with the same tumor size range (p=0.29), or for tumors of smaller or larger sizes. ROC analysis identified a baseline threshold ADC value of 1.33μm(2)/ms as 75% sensitive and 83% specific for identifying non-responding metastases in minimally treated patients with 2-5cm liver lesions. Quantitative imaging can substantially benefit from a semi-automated segmentation scheme. Quantitative diffusion MRI results can be predictive of therapeutic outcome in selected patients with liver metastases, but not for all liver metastases, and therefore should be considered to be a restricted biomarker. Copyright © 2015 Elsevier Inc. All rights reserved.
Dynamics of a magnetic active Brownian particle under a uniform magnetic field.
Vidal-Urquiza, Glenn C; Córdova-Figueroa, Ubaldo M
2017-11-01
The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α. In this work, the time-dependent active diffusivity and the crossover time (τ^{cross})-from ballistic to diffusive regimes-are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α, the particle undergoes a directional (or ballistic) propulsive motion at very short times (t≪τ^{cross}). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t≫τ^{cross}), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α=0), the crossover time is equal to the characteristic time scale for rotational diffusion, τ_{rot}. In the presence of a magnetic field (α>0), the correlation function, the active diffusivity, and the crossover time decrease with increasing α. The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τ^{cross}≪τ_{rot}. In the limit of weak fields (α≪1), the crossover time decreases quadratically with α, while in the limit of strong fields (α≫1) it decays asymptotically as α^{-1}. The results are in excellent agreement with those obtained by Brownian dynamics simulations.
Dynamics of a magnetic active Brownian particle under a uniform magnetic field
NASA Astrophysics Data System (ADS)
Vidal-Urquiza, Glenn C.; Córdova-Figueroa, Ubaldo M.
2017-11-01
The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α . In this work, the time-dependent active diffusivity and the crossover time (τcross)—from ballistic to diffusive regimes—are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α , the particle undergoes a directional (or ballistic) propulsive motion at very short times (t ≪τcross ). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t ≫τcross ), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α =0 ), the crossover time is equal to the characteristic time scale for rotational diffusion, τrot. In the presence of a magnetic field (α >0 ), the correlation function, the active diffusivity, and the crossover time decrease with increasing α . The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τcross≪τrot . In the limit of weak fields (α ≪1 ), the crossover time decreases quadratically with α , while in the limit of strong fields (α ≫1 ) it decays asymptotically as α-1. The results are in excellent agreement with those obtained by Brownian dynamics simulations.
Jelescu, Ileana O; Zurek, Magdalena; Winters, Kerryanne V; Veraart, Jelle; Rajaratnam, Anjali; Kim, Nathanael S; Babb, James S; Shepherd, Timothy M; Novikov, Dmitry S; Kim, Sungheon G; Fieremans, Els
2016-05-15
There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities. We evaluate the potential of WMTI to quantify demyelination by monitoring the effects of both acute (6weeks) and chronic (12weeks) cuprizone intoxication and subsequent recovery in the mouse corpus callosum, and compare its performance with that of conventional metrics (T2, magnetization transfer, and DTI parameters). The changes observed in vivo correlated with those obtained from quantitative electron microscopy image analysis. A 6-week intoxication produced a significant decrease in axonal water fraction (p<0.001), with only mild changes in extra-axonal radial diffusivity, consistent with patchy demyelination, while a 12-week intoxication caused a more marked decrease in extra-axonal radial diffusivity (p=0.0135), consistent with more severe demyelination and clearance of the extra-axonal space. Results thus revealed increased specificity of the axonal water fraction and extra-axonal radial diffusivity parameters to different degrees and patterns of demyelination. The specificities of these parameters were corroborated by their respective correlations with microstructural features: the axonal water fraction correlated significantly with the electron microscopy derived total axonal water fraction (ρ=0.66; p=0.0014) but not with the g-ratio, while the extra-axonal radial diffusivity correlated with the g-ratio (ρ=0.48; p=0.0342) but not with the electron microscopy derived axonal water fraction. These parameters represent promising candidates as clinically feasible biomarkers of demyelination and remyelination in the white matter. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan
2018-03-01
Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.
NASA Astrophysics Data System (ADS)
Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis
2017-12-01
We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.
Plasma fluctuations as Markovian noise.
Li, B; Hazeltine, R D; Gentle, K W
2007-12-01
Noise theory is used to study the correlations of stationary Markovian fluctuations that are homogeneous and isotropic in space. The relaxation of the fluctuations is modeled by the diffusion equation. The spatial correlations of random fluctuations are modeled by the exponential decay. Based on these models, the temporal correlations of random fluctuations, such as the correlation function and the power spectrum, are calculated. We find that the diffusion process can give rise to the decay of the correlation function and a broad frequency spectrum of random fluctuations. We also find that the transport coefficients may be estimated by the correlation length and the correlation time. The theoretical results are compared with the observed plasma density fluctuations from the tokamak and helimak experiments.
Dichotomous-noise-induced pattern formation in a reaction-diffusion system
NASA Astrophysics Data System (ADS)
Das, Debojyoti; Ray, Deb Shankar
2013-06-01
We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.
Correlation time and diffusion coefficient imaging: application to a granular flow system.
Caprihan, A; Seymour, J D
2000-05-01
A parametric method for spatially resolved measurements for velocity autocorrelation functions, R(u)(tau) = , expressed as a sum of exponentials, is presented. The method is applied to a granular flow system of 2-mm oil-filled spheres rotated in a half-filled horizontal cylinder, which is an Ornstein-Uhlenbeck process with velocity autocorrelation function R(u)(tau) = e(- ||tau ||/tau(c)), where tau(c) is the correlation time and D = tau(c) is the diffusion coefficient. The pulsed-field-gradient NMR method consists of applying three different gradient pulse sequences of varying motion sensitivity to distinguish the range of correlation times present for particle motion. Time-dependent apparent diffusion coefficients are measured for these three sequences and tau(c) and D are then calculated from the apparent diffusion coefficient images. For the cylinder rotation rate of 2.3 rad/s, the axial diffusion coefficient at the top center of the free surface was 5.5 x 10(-6) m(2)/s, the correlation time was 3 ms, and the velocity fluctuation or granular temperature was 1.8 x 10(-3) m(2)/s(2). This method is also applicable to study transport in systems involving turbulence and porous media flows. Copyright 2000 Academic Press.
Large disparity between gallium and antimony self-diffusion in gallium antimonide.
Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E
2000-11-02
The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.
Peugnet, Pauline; Wimel, Laurence; Duchamp, Guy; Sandersen, Charlotte; Camous, Sylvaine; Guillaume, Daniel; Dahirel, Michèle; Dubois, Cédric; Jouneau, Luc; Reigner, Fabrice; Berthelot, Valérie; Chaffaux, Stéphane; Tarrade, Anne; Serteyn, Didier; Chavatte-Palmer, Pascale
2014-01-01
In equids, placentation is diffuse and nutrient supply to the fetus is determined by uterine size. This correlates with maternal size and affects intra-uterine development and subsequent post-natal growth, as well as insulin sensitivity in the newborn. Long-term effects remain to be described. In this study, fetal growth was enhanced or restricted through ET using pony (P), saddlebred (S) and draft (D) horses. Control P-P (n = 21) and S-S (n = 28) pregnancies were obtained by AI. Enhanced and restricted pregnancies were obtained by transferring P or S embryos into D mares (P-D, n = 6 and S-D, n = 8) or S embryos into P mares (S-P, n = 6), respectively. Control and experimental foals were raised by their dams and recipient mothers, respectively. Weight gain, growth hormones and glucose homeostasis were investigated in the foals from birth to weaning. Fetal growth was enhanced in P-D and these foals remained consistently heavier, with reduced T3 concentrations until weaning compared to P-P. P-D had lower fasting glucose from days 30 to 200 and higher insulin secretion than P-P after IVGTT on day 3. Euglycemic clamps in the immediate post-weaning period revealed no difference in insulin sensitivity between P-D and P-P. Fetal growth was restricted in S-P and these foals remained consistently lighter until weaning compared to S-D, with elevated T3 concentrations in the newborn compared to S-S. S-P exhibited higher fasting glycemia than S-S and S-D from days 30 to 200. They had higher maximum increment in plasma glucose than S-D after IVGTT on day 3 and clamps on day 200 demonstrated higher insulin sensitivity compared to S-D. Neither the restricted nor the enhanced fetal environment affected IGF-1 concentrations. Thus, enhanced and restricted fetal and post-natal environments had combined effects that persisted until weaning. They induced different adaptive responses in post-natal glucose metabolism: an early insulin-resistance was induced in enhanced P-D, while S-P developed increased insulin sensitivity. PMID:25006665
NASA Astrophysics Data System (ADS)
Laun, Frederik B.; Demberg, Kerstin; Nagel, Armin M.; Uder, Micheal; Kuder, Tristan A.
2017-11-01
Nuclear magnetic resonance (NMR) diffusion measurements can be used to probe porous structures or biological tissues by means of the random motion of water molecules. The short-time expansion of the diffusion coefficient in powers of sqrt(t), where t is the diffusion time related to the duration of the diffusion-weighting magnetic field gradient profile, is universally connected to structural parameters of the boundaries restricting the diffusive motion. The sqrt(t)-term is proportional to the surface to volume ratio. The t-term is related to permeability and curvature. The short time expansion can be measured with two approaches in NMR-based diffusion experiments: First, by the use of diffusion encodings of short total duration and, second, by application of oscillating gradients of long total duration. For oscillating gradients, the inverse of the oscillation frequency becomes the relevant time scale. The purpose of this manuscript is to show that the oscillating gradient approach is blind to the t-term. On the one hand, this prevents fitting of permeability and curvature measures from this term. On the other hand, the t-term does not bias the determination of the sqrt(t)-term in experiments.
(De)coupled zircon metamictization, radiation damage, and He diffusivity
NASA Astrophysics Data System (ADS)
Ault, A. K.; Guenthner, W.; Reiners, P. W.; Moser, A. C.; Miller, G. H.; Refsnider, K. A.
2017-12-01
We develop and apply a new protocol for targeting crystals for the zircon (U-Th)/He (He) thermochronometry to maximize effective U (eU) and corresponding closure temperature variability to develop zircon He date-eU correlations observed in some datasets. Our approach exploits visual proxies for radiation damage accumulation (metamictization) during zircon selection. We show that by purposefully targeting a spectrum of zircon textures from pristine to metamict grains, it is possible to generate broad eU variation in suites of zircon from a single sample and zircon He date-eU-metamictization trends that can be exploited to resolve increasingly complex thermal histories. We present plane light photographs, eU concentration, and zircon He results from 59 individual zircons from nine crystalline rock samples. Six of the nine samples come from exposed Proterozoic granitoids on SE Baffin Island, Canada; Boulder Creek, CO; Sandia Mountains, NM; and Mecca Hills, CA. We report data from three Archean Baffin samples to compare with the Proterozoic Baffin sample date-eU-metamictization trend. In each Proterozoic sample, target zircons display a spectrum of metamictization from pristine, transparent crystals to purple-brown, translucent grains. Progressive loss of transparency and increase in discoloration consistently corresponds to an increase in eU in all samples. Individual zircon eU varies from 89-1885 ppm and, within each sample, the total eU spread is 538 ppm to 1374 ppm. For any given eU value, the Archean zircon appear comparatively more metamict than the Proterozoic Baffin grains and samples collectively define a 1681 ppm range in eU, with more restrictive intrasample eU spreads (199-1120 ppm). Proterozoic samples from Baffin, Sandia, and Front Range yield negative zircon He date-eU correlations with intrasample date ranges of 90-783 Ma. Increasing eU and younger dates correspond with increasing metamictization. In contrast, all three Proterozoic Mecca Hills samples yield uniform 25 Ma zircon He dates over 1800 ppm eU. We apply simple thermal history models that account for the coevolution of zircon radiation damage and He-diffusivity to demonstrate that visible zircon metamictization and He diffusivity can be either coupled or decoupled depending on a sample's thermal history.
Evaluation of non-Gaussian diffusion in cardiac MRI.
McClymont, Darryl; Teh, Irvin; Carruth, Eric; Omens, Jeffrey; McCulloch, Andrew; Whittington, Hannah J; Kohl, Peter; Grau, Vicente; Schneider, Jürgen E
2017-09-01
The diffusion tensor model assumes Gaussian diffusion and is widely applied in cardiac diffusion MRI. However, diffusion in biological tissue deviates from a Gaussian profile as a result of hindrance and restriction from cell and tissue microstructure, and may be quantified better by non-Gaussian modeling. The aim of this study was to investigate non-Gaussian diffusion in healthy and hypertrophic hearts. Thirteen rat hearts (five healthy, four sham, four hypertrophic) were imaged ex vivo. Diffusion-weighted images were acquired at b-values up to 10,000 s/mm 2 . Models of diffusion were fit to the data and ranked based on the Akaike information criterion. The diffusion tensor was ranked best at b-values up to 2000 s/mm 2 but reflected the signal poorly in the high b-value regime, in which the best model was a non-Gaussian "beta distribution" model. Although there was considerable overlap in apparent diffusivities between the healthy, sham, and hypertrophic hearts, diffusion kurtosis and skewness in the hypertrophic hearts were more than 20% higher in the sheetlet and sheetlet-normal directions. Non-Gaussian diffusion models have a higher sensitivity for the detection of hypertrophy compared with the Gaussian model. In particular, diffusion kurtosis may serve as a useful biomarker for characterization of disease and remodeling in the heart. Magn Reson Med 78:1174-1186, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Mapping Diffusion in a Living Cell via the Phasor Approach
Ranjit, Suman; Lanzano, Luca; Gratton, Enrico
2014-01-01
Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145
Correlation of Diffusion and Metabolic Alterations in Different Clinical Forms of Multiple Sclerosis
Hannoun, Salem; Bagory, Matthieu; Durand-Dubief, Francoise; Ibarrola, Danielle; Comte, Jean-Christophe; Confavreux, Christian; Cotton, Francois; Sappey-Marinier, Dominique
2012-01-01
Diffusion tensor imaging (DTI) and MR spectroscopic imaging (MRSI) provide greater sensitivity than conventional MRI to detect diffuse alterations in normal appearing white matter (NAWM) of Multiple Sclerosis (MS) patients with different clinical forms. Therefore, the goal of this study is to combine DTI and MRSI measurements to analyze the relation between diffusion and metabolic markers, T2-weighted lesion load (T2-LL) and the patients clinical status. The sensitivity and specificity of both methods were then compared in terms of MS clinical forms differentiation. MR examination was performed on 71 MS patients (27 relapsing remitting (RR), 26 secondary progressive (SP) and 18 primary progressive (PP)) and 24 control subjects. DTI and MRSI measurements were obtained from two identical regions of interest selected in left and right centrum semioval (CSO) WM. DTI metrics and metabolic contents were significantly altered in MS patients with the exception of N-acetyl-aspartate (NAA) and NAA/Choline (Cho) ratio in RR patients. Significant correlations were observed between diffusion and metabolic measures to various degrees in every MS patients group. Most DTI metrics were significantly correlated with the T2-LL while only NAA/Cr ratio was correlated in RR patients. A comparison analysis of MR methods efficiency demonstrated a better sensitivity/specificity of DTI over MRSI. Nevertheless, NAA/Cr ratio could distinguish all MS and SP patients groups from controls, while NAA/Cho ratio differentiated PP patients from controls. This study demonstrated that diffusivity changes related to microstructural alterations were correlated with metabolic changes and provided a better sensitivity to detect early changes, particularly in RR patients who are more subject to inflammatory processes. In contrast, the better specificity of metabolic ratios to detect axonal damage and demyelination may provide a better index for identification of PP patients. PMID:22479330
Observational analysis of the well-correlated diffuse bands: 6196 and 6614 Å
NASA Astrophysics Data System (ADS)
Krełowski, J.; Galazutdinov, G. A.; Bondar, A.; Beletsky, Y.
2016-08-01
We confirm, using spectra from seven observatories, that the diffuse bands 6196 and 6614 are very tightly correlated. However, their strength ratio is not constant as well as profile shapes. Apparently, the two interstellar features do not react in unison to the varying physical conditions of different interstellar clouds.
Solar energy potential in the United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, A.; Alnajjar, A.
1995-12-31
In the present study, the global, direct and diffuse components of solar radiation as well as temperature, relative humidity and wind speed have been continuously monitored and analyzed on hourly, daily and monthly basis. Experimental data is compared to the predictions of different theoretical models as functions of declination and hour angles. Correlations are obtained describing the variation of hourly, daily and monthly averages of total and diffuse solar radiation using polynomial expressions. Empirical correlations describing the dependence of the daily average diffuse to total radiation ratio on the clearness index are also obtained. Data of daily diffuse to totalmore » radiation ratio is compared to correlations obtained by other investigators. The comparison shows a reasonable agreement with some scatter due to the seasonal dependence of the correlation. Comparison of calculations with experimental measurements under clear sky conditions show excellent agreement with a maximum error of 8%. The measured ratio of hourly to daily insolation is in excellent agreement with the model of Hottel which is expressed as a function of the clearness index, hour and the sunset hour angles.« less
The effect of laterite density on radon diffusion behavior.
Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Fang, Qi; Lv, Junwen; Duan, Xianzhe; Liu, Zhenzhong; Guo, Yueyue
2018-02-01
Radon generated in porous media such as soils and rocks migrates into indoor and outdoor air mainly by diffusion, possessing significant hazards to human health. In order to reduce these hazards of radon, it is of great importance to study the diffusion behavior of radon. In this study, we systematically measured the radon diffusion coefficient of laterite with the density ranging from 0.917gcm -3 to 2.238gcm -3 , and studied the effect of laterite density on the radon diffusion. The results show that the radon diffusion coefficient of the laterite generally decreases with the increasing laterite density. In addition, three possible relationships between the radon diffusion coefficient and the laterite density are found out as follows: (1) the linear correlation with a slope of -4.48 × 10 -6 for laterite with density ranging from 0.917 to 1.095gcm -3 , (2) the exponential correlation for laterite with density from 1.095 to 1.63gcm -3 , (3) linear correlation with a slope of -3.1 × 10 -7 for laterite with density from 1.63 to 2.238gcm -3 . The complex relationship between the radon diffusion coefficient and density is caused by the change of porosity and tortuosity of the laterite. Therefore, we suggest that a suitable density should be adopted while using the laterite to effectively cover uranium tailings or economically produce building materials that can curb the radon exhalation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brenner, Hermann; Jansen, Lina
2015-12-01
The proportion of cases registered by death certificates only (DCO) is a widely used indicator for potential bias in cancer survival studies. Period analysis is increasingly used to derive up-to-date cancer survival estimates. We aimed to assess whether reported DCO proportions should be restricted to the specific recent calendar period ("restricted period") or refer to all diagnosis years of included patients ("full period"). We assessed correlations of bias in period survival estimates resulting from DCO cases with DCO proportions in the restricted and full period, respectively. We used cancer registry data to simulate bias and DCO proportions resulting from various patterns of underreporting of deceased cases. We show results for six common cancers with very different prognosis and five different age groups. In all scenarios, the expected bias was highly correlated with expected DCO proportions in both periods, but correlations were consistently higher with DCO proportions in the restricted period. In period analyses of cancer survival, DCO proportions for the restricted period of specific interest are a better indicator of potential bias due to underreporting of deceased cases than DCO proportions for all years of diagnosis of included patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Spectra of turbulently advected scalars that have small Schmidt number
NASA Astrophysics Data System (ADS)
Hill, Reginald J.
2017-09-01
Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.
Bajpai, Jyoti; Gamnagatti, Shivanand; Kumar, Rakesh; Sreenivas, Vishnubhatla; Sharma, Mehar Chand; Khan, Shah Alam; Rastogi, Shishir; Malhotra, Arun; Safaya, Rajni; Bakhshi, Sameer
2011-04-01
Histological necrosis, the current standard for response evaluation in osteosarcoma, is attainable after neoadjuvant chemotherapy. To establish the role of surrogate markers of response prediction and evaluation using MRI in the early phases of the disease. Thirty-one treatment-naïve osteosarcoma patients received three cycles of neoadjuvant chemotherapy followed by surgery during 2006-2008. All patients underwent baseline and post-chemotherapy conventional, diffusion-weighted and dynamic contrast-enhanced MRI. Taking histological response (good response ≥90% necrosis) as the reference standard, various parameters of MRI were compared to it. A tumor was considered ellipsoidal; volume, average tumor plane and its relative value (average tumor plane relative/body surface area) was calculated using the standard formula for ellipse. Receiver operating characteristic curves were generated to assess best threshold and predictability. After deriving thresholds for each parameter in univariable analysis, multivariable analysis was carried out. Both pre-and post-chemotherapy absolute and relative-size parameters correlated well with necrosis. Apparent diffusion coefficient did not correlate with necrosis; however, on adjusting for volume, significant correlation was found. Thus, we could derive a new parameter: diffusion per unit volume. In osteosarcoma, chemotherapy response can be predicted and evaluated by conventional and diffusion-weighted MRI early in the disease course and it correlates well with necrosis. Further, newly derived parameter diffusion per unit volume appears to be a sensitive substitute for response evaluation in osteosarcoma.
Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A
2007-08-15
Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.
NASA Astrophysics Data System (ADS)
Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.
2007-08-01
Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.
Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
Computing diffuse fraction of global horizontal solar radiation: A model comparison.
Dervishi, Sokol; Mahdavi, Ardeshir
2012-06-01
For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.
An X-Ray Atlas of Groups of Galaxies
NASA Technical Reports Server (NTRS)
Mulchaey, John S.; Davis, David S.; Mushotzky, Richard F.; Burnstein, David
2003-01-01
A search was conducted for a hot intragroup medium in 10(exp 9) low-redshift galaxy groups observed with the ROSAT PSPC. Evidence for diffuse, extended X-ray emission is found in at least 61 groups. Approximately one-third of these detections have not been previously reported in the literature. Most of the groups are detected out to less than half of the virial radius with ROSAT. Although some spiral-rich groups do contain an intragroup medium, diffuse emission is restricted to groups that contain at least one early-type galaxy.
Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut
2016-02-01
A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.
Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhou, Zhigao; Zhang, Taolin; Wang, Xingxiang
2017-11-29
For selection or breeding of rice (Oryza sativa L.) cultivars with low Cd affinity, the role of node Cd restriction on Cd accumulation in brown rice was studied. A pot experiment was conducted to investigate the concentration of Cd in different sections of 12 Chinese rice cultivars. The results indicated that the Cd accumulation in the brown rice was mainly dependent on the root or shoot Cd concentration. Among the cultivars with nearly equal shoot Cd concentrations, Cd accumulation in brown rice was mainly dependent on the transport of Cd in the shoot. However, the Cd transport in the shoot was significantly restricted by the nodes, especially by the first node. Furthermore, the area of the diffuse vascular bundle in the junctional region of the flag leaf and the first node was a key contributor to the variations in Cd restriction by the nodes.
Link-prediction to tackle the boundary specification problem in social network surveys
De Wilde, Philippe; Buarque de Lima-Neto, Fernando
2017-01-01
Diffusion processes in social networks often cause the emergence of global phenomena from individual behavior within a society. The study of those global phenomena and the simulation of those diffusion processes frequently require a good model of the global network. However, survey data and data from online sources are often restricted to single social groups or features, such as age groups, single schools, companies, or interest groups. Hence, a modeling approach is required that extrapolates the locally restricted data to a global network model. We tackle this Missing Data Problem using Link-Prediction techniques from social network research, network generation techniques from the area of Social Simulation, as well as a combination of both. We found that techniques employing less information may be more adequate to solve this problem, especially when data granularity is an issue. We validated the network models created with our techniques on a number of real-world networks, investigating degree distributions as well as the likelihood of links given the geographical distance between two nodes. PMID:28426826
Suzuki, Takashi; Motojima, Sayaka; Saito, Shu; Ishii, Takao; Ryu, Keinosuke; Ryu, Junnosuke; Tokuhashi, Yasuaki
2013-11-01
The type of osteoarthritis and the degree of severity which causes restriction of knee range of motion (ROM) is still largely unknown. The objective of this study was to analyse the location and the degree of cartilage degeneration that affect knee range of motion and the connection, if any, between femorotibial angle (FTA) and knee ROM restriction. Four hundreds and fifty-six knees in 230 subjects with knee osteoarthritis undergoing knee arthroplasty were included. Articular surface was divided into eight sections, and cartilage degeneration was evaluated macroscopically during the operation. Cartilage degeneration was classified into four grades based on the degree of exposure of subchondral bone. A Pearson correlation was conducted between FTA and knee flexion angle to determine whether high a degree of FTA caused knee flexion restriction. A logistic regression analysis was also conducted to detect the locations and levels of cartilage degeneration causing knee flexion restriction. No correlation was found between FTA and flexion angle (r = -0.08). Flexion angle was not restricted with increasing FTA. Logistic regression analysis showed significant correlation between restricted knee ROM and levels of knee cartilage degeneration in the patella (odds ratio (OR) = 1.77; P = 0.01), the lateral femoral condyle (OR = 1.62; P = 0.03) and the posterior medial femoral condyle (OR = 1.80; P = 0.03). For clinical relevance, soft tissue release and osteophyte resection around the patella, lateral femoral condyle and posterior medial femoral condyle might be indicated to obtain a higher degree of knee flexion angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboredo, Fernando A.; Kim, Jeongnim
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspacemore » of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.« less
NASA Astrophysics Data System (ADS)
Halder, Animesh; Saha, Baishakhi; Maity, Pabitra; Kumar, Gopinatha Suresh; Sinha, Deepak Kumar; Karmakar, Sanat
2018-02-01
We have studied the effect of composition and the phase state of phospholipid membranes on the emission spectrum, anisotropy and lifetime of a lipophilic fluorescence probe nile red. Fluorescence spectrum of nile red in membranes containing cholesterol has also been investigated in order to get insights into the influence of cholesterol on the phospholipid membranes. Maximum emission wavelength (λem) of nile red in the fluid phase of saturated and unsaturated phospholipids was found to differ by 10 nm. The λem was also found to be independent of chain length and charge of the membrane. However, the λem is strongly dependent on the temperature in the gel phase. The λem and rotational diffusion rate decrease, whereas the anisotropy and lifetime increase markedly with increasing cholesterol concentration for saturated phosoholipids, such as, dimyristoyl phosphatidylcholine (DMPC) in the liquid ordered phase. However, these spectroscopic properties do not alter significantly in case of unsaturated phospholipids, such as, dioleoyl phosphatidylcholine (DOPC) in liquid disordered phase. Interestingly, red edge excitation shift (REES) in the presence of lipid-cholesterol membranes is the direct consequences of change in rotational diffusion due to motional restriction of lipids in the presence of cholesterol. This study provides correlations between the membrane compositions and fluorescence spectral features which can be utilized in a wide range of biophysical fields as well the cell biology.
Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology
NASA Astrophysics Data System (ADS)
Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert
2015-07-01
Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.
NASA Technical Reports Server (NTRS)
Li, Yong; Moorthi, S.; Bates, J. Ray; Suarez, Max J.
1994-01-01
High order horizontal diffusion of the form K Delta(exp 2m) is widely used in spectral models as a means of preventing energy accumulation at the shortest resolved scales. In the spectral context, an implicit formation of such diffusion is trivial to implement. The present note describes an efficient method of implementing implicit high order diffusion in global finite difference models. The method expresses the high order diffusion equation as a sequence of equations involving Delta(exp 2). The solution is obtained by combining fast Fourier transforms in longitude with a finite difference solver for the second order ordinary differential equation in latitude. The implicit diffusion routine is suitable for use in any finite difference global model that uses a regular latitude/longitude grid. The absence of a restriction on the timestep makes it particularly suitable for use in semi-Lagrangian models. The scale selectivity of the high order diffusion gives it an advantage over the uncentering method that has been used to control computational noise in two-time-level semi-Lagrangian models.
Pulsed-field-gradient measurements of time-dependent gas diffusion
NASA Technical Reports Server (NTRS)
Mair, R. W.; Cory, D. G.; Peled, S.; Tseng, C. H.; Patz, S.; Walsworth, R. L.
1998-01-01
Pulsed-field-gradient NMR techniques are demonstrated for measurements of time-dependent gas diffusion. The standard PGSE technique and variants, applied to a free gas mixture of thermally polarized xenon and O2, are found to provide a reproducible measure of the xenon diffusion coefficient (5.71 x 10(-6) m2 s-1 for 1 atm of pure xenon), in excellent agreement with previous, non-NMR measurements. The utility of pulsed-field-gradient NMR techniques is demonstrated by the first measurement of time-dependent (i.e., restricted) gas diffusion inside a porous medium (a random pack of glass beads), with results that agree well with theory. Two modified NMR pulse sequences derived from the PGSE technique (named the Pulsed Gradient Echo, or PGE, and the Pulsed Gradient Multiple Spin Echo, or PGMSE) are also applied to measurements of time dependent diffusion of laser polarized xenon gas, with results in good agreement with previous measurements on thermally polarized gas. The PGMSE technique is found to be superior to the PGE method, and to standard PGSE techniques and variants, for efficiently measuring laser polarized noble gas diffusion over a wide range of diffusion times. Copyright 1998 Academic Press.
Optical observations related to the molecular chemistry in diffuse interstellar clouds
NASA Technical Reports Server (NTRS)
Federman, S. R.
1987-01-01
Observations, which have been published since 1979, of molecular species in diffuse clouds are discussed. Particular attention is given to the ultraviolet measurements of CO with the Copernicus and IUE satellites and to ground-based optical measurements of CH, CH(+), CN, and 02. These data encompass large enough samples to test the chemical schemes expected to occur in diffuse clouds. Upper limits for other species (e.g., H2O, H2O(+), and C3) place restrictions on the pathways for molecular production. Moreover, analysis of the rotational distribution of the C2 molecule results in the determination of the physical conditions of the cloud. These parameters, including density, temperature, and the intensity of the radiation field, are necessary for modeling the chemistry.
NASA Astrophysics Data System (ADS)
Zhokh, Alexey A.; Strizhak, Peter E.
2018-04-01
The solutions of the time-fractional diffusion equation for the short and long times are obtained via an application of the asymptotic Green's functions. The derived solutions are applied to analysis of the methanol mass transfer through H-ZSM-5/alumina catalyst grain. It is demonstrated that the methanol transport in the catalysts pores may be described by the obtained solutions in a fairly good manner. The measured fractional exponent is equal to 1.20 ± 0.02 and reveals the super-diffusive regime of the methanol mass transfer. The presence of the anomalous transport may be caused by geometrical restrictions and the adsorption process on the internal surface of the catalyst grain's pores.
Traveling wave solutions to a reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.
2009-07-01
In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.
Nonlinear restrictions on dynamo action. [in magnetic fields of astrophysical objects
NASA Technical Reports Server (NTRS)
Vainshtein, Samuel I.; Cattaneo, Fausto
1992-01-01
Astrophysical dynamos operate in the limit of small magnetic diffusivity. In order for magnetic reconnection to occur, very small magnetic structures must form so that diffusion becomes effective. The formation of small-scale fields is accompanied by the stretching of the field lines and therefore by an amplification of the magnetic field strength. The back reaction of the magnetic field on the motions leads to the eventual saturation of the dynamo process, thus posing a constraint on the amount of magnetic flux that can be generated by dynamo action, It is argued that in the limit of small diffusivity only a small amount of flux, many orders of magnitude less than the observed fluxes, can be created by dynamo processes.
NASA Astrophysics Data System (ADS)
Dufty, J. W.
1984-09-01
Diffusion of a tagged particle in a fluid with uniform shear flow is described. The continuity equation for the probability density describing the position of the tagged particle is considered. The diffusion tensor is identified by expanding the irreversible part of the probability current to first order in the gradient of the probability density, but with no restriction on the shear rate. The tensor is expressed as the time integral of a nonequilibrium autocorrelation function for the velocity of the tagged particle in its local fluid rest frame, generalizing the Green-Kubo expression to the nonequilibrium state. The tensor is evaluated from results obtained previously for the velocity autocorrelation function that are exact for Maxwell molecules in the Boltzmann limit. The effects of viscous heating are included and the dependence on frequency and shear rate is displayed explicitly. The mode-coupling contributions to the frequency and shear-rate dependent diffusion tensor are calculated.
Diffusivity anomaly in modified Stillinger-Weber liquids
NASA Astrophysics Data System (ADS)
Sengupta, Shiladitya; Vasisht, Vishwas V.; Sastry, Srikanth
2014-01-01
By modifying the tetrahedrality (the strength of the three body interactions) in the well-known Stillinger-Weber model for silicon, we study the diffusivity of a series of model liquids as a function of tetrahedrality and temperature at fixed pressure. Previous work has shown that at constant temperature, the diffusivity exhibits a maximum as a function of tetrahedrality, which we refer to as the diffusivity anomaly, in analogy with the well-known anomaly in water upon variation of pressure at constant temperature. We explore to what extent the structural and thermodynamic changes accompanying changes in the interaction potential can help rationalize the diffusivity anomaly, by employing the Rosenfeld relation between diffusivity and the excess entropy (over the ideal gas reference value), and the pair correlation entropy, which provides an approximation to the excess entropy in terms of the pair correlation function. We find that in the modified Stillinger-Weber liquids, the Rosenfeld relation works well above the melting temperatures but exhibits deviations below, with the deviations becoming smaller for smaller tetrahedrality. Further we find that both the excess entropy and the pair correlation entropy at constant temperature go through maxima as a function of the tetrahedrality, thus demonstrating the close relationship between structural, thermodynamic, and dynamical anomalies in the modified Stillinger-Weber liquids.
Fluctuation correlation models for receptor immobilization
NASA Astrophysics Data System (ADS)
Fourcade, B.
2017-12-01
Nanoscale dynamics with cycles of receptor diffusion and immobilization by cell-external-or-internal factors is a key process in living cell adhesion phenomena at the origin of a plethora of signal transduction pathways. Motivated by modern correlation microscopy approaches, the receptor correlation functions in physical models based on diffusion-influenced reaction is studied. Using analytical and stochastic modeling, this paper focuses on the hybrid regime where diffusion and reaction are not truly separable. The time receptor autocorrelation functions are shown to be indexed by different time scales and their asymptotic expansions are given. Stochastic simulations show that this analysis can be extended to situations with a small number of molecules. It is also demonstrated that this analysis applies when receptor immobilization is coupled to environmental noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Andres; Evans, James W.
2016-11-03
We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) andmore » also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.« less
Dimensions of Attention Associated With the Microstructure of Corona Radiata White Matter.
Stave, Elise A; De Bellis, Michael D; Hooper, Steven R; Woolley, Donald P; Chang, Suk Ki; Chen, Steven D
2017-04-01
Mirsky proposed a model of attention that included these dimensions: focus/execute, sustain, stabilize, encode, and shift. The neural correlates of these dimensions were investigated within corona radiata subregions in healthy youth. Diffusion tensor imaging and neuropsychological assessments were conducted in 79 healthy, right-handed youth aged 4-17 years. Diffusion tensor imaging maps were analyzed using standardized parcellation methods. Partial Pearson correlations between neuropsychological standardized scores, representing these attention dimensions, and diffusion tensor imaging measures of corona radiata subregions were calculated after adjusting for gender and IQ. Significant correlations were found between the focus/execute, sustain, stabilize, and shift dimensions and imaging metrics in hypothesized corona radiata subregions. Results suggest that greater microstructural white matter integrity of the corona radiata is partly associated with attention across 4 attention dimensions. Findings suggest that white matter microstructure of the corona radiata is a neural correlate of several, but not all, attention dimensions.
Dimensions of Attention Associated with the Microstructure of Corona Radiata White Matter
Stave, Elise A.; Hooper, Stephen R.; Woolley, Donald P.; Chang, Suk Ki; Chen, Steven D.
2016-01-01
Mirsky proposed a model of attention that included these dimensions: focus/execute, sustain, stabilize, encode, and shift. The neural correlates of these dimensions were investigated within corona radiate subregions in healthy youth. Diffusion tensor imaging and neuropsychological assessments were conducted in 79 healthy, right-handed youth aged 4–17 years. Diffusion tensor imaging maps were analyzed using standardized parcellation methods. Partial Pearson correlations between neuropsychological standardized scores, representing these attention dimensions, and diffusion tensor imaging measures of corona radiate subregions were calculated after adjusting for gender and IQ. Significant correlations were found between the focus/execute, sustain, stabilize and shift dimensions and imaging metrics in hypothesized corona radiate subregions. Results suggest that greater microstructural white matter integrity of the corona radiata is partly associated with attention across four attention dimensions. Findings suggest that white matter microstructure of the corona radiata is a neural correlate of several, but not all, attention dimensions. PMID:28090797
Development and Initial Validation of the Environmental Restriction Questionnaire (ERQ)
ERIC Educational Resources Information Center
Rosenberg, Limor; Ratzon, Nava Z.; Jarus, Tal; Bart, Orit
2010-01-01
The purpose of this manuscript was to develop and test the psychometric properties of the Environmental Restriction Questionnaire (ERQ) a parent-reported questionnaire for measuring perceived environmental restrictions for young children participation. Reliability and homogeneity were tested by Cronbach's alpha and inter-item correlations.…
Braileanu, Maria; Yang, Wuyang; Caplan, Justin M; Lin, Li-Mei; Radvany, Martin G; Tamargo, Rafael J; Huang, Judy
2016-11-01
Arteriovenous malformation (AVM) diffuseness has been shown to be prognostic of treatment outcomes. We assessed interobserver agreement of AVM diffuseness among physicians of different specialty and training backgrounds using digital subtraction angiography (DSA). All research protocols were approved by the institutional review board for this retrospective chart review. In a single-blinded setting, 2 attending neurosurgeons, 1 attending interventional neuroradiologist, and 1 senior neurosurgical resident rated 80 DSA views of 36 AVMs as either compact or diffuse. Individual interobserver agreement and subgroup agreement were analyzed using κ agreement and intraclass correlation coefficient. Disagreement regarding AVM diffuseness occurred in 43.8% of all DSA views (n = 80). Interobserver κ agreement on AVM diffuseness using DSA views among 4 physicians ranged from fair (κ = 0.40 [95% confidence interval (CI) = 0.22-0.58]) to substantial (κ = 0.65 [95% CI = 0.48-0.81]), whereas total intraclass correlation coefficient was 0.81 (95% CI = 0.73-0.87). For the 36 AVMs, κ agreement ranged from fair (κ = 0.36 [95% CI = 0.13-0.60]) to moderate (κ = 0.57 [95% CI = 0.35-0.79]), whereas intraclass correlation coefficient among all 4 physicians was 0.68 (95% CI = 0.47-0.82). Moderate agreement on AVM diffuseness (n = 80) was found between attending and resident assessments (κ = 0.57 [95% CI = 0.39-0.75]) and between neurosurgeon and interventional neuroradiologist assessments (κ = 0.55 [95% CI = 0.37-0.73]). Agreement of individual physicians on AVM diffuseness varies from fair to substantial. Objective and three-dimensional measures of AVM diffuseness should be developed for consistent clinical application. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Zhongwei; Yuan, Qing; Zhou, Heling; Zhao, Dawen; Li, Li; Gerberich, Jenifer L; Mason, Ralph P
2015-11-01
To assess tumor response to oxygen challenge using quantitative diffusion magnetic resonance imaging (MRI). A well-characterized Dunning R3327-AT1 rat prostate cancer line was implanted subcutaneously in the right thigh of male Copenhagen rats (n = 8). Diffusion-weighted images (DWI) with multiple b values (0, 25, 50, 100, 150, 200, 300, 500, 1000, 1500 s/mm(2) ) in three orthogonal directions were obtained using a multishot FSE-based Stejskal-Tanner DWI sequence (FSE-DWI) at 4.7T, while rats breathed medical air (21% oxygen) and with 100% oxygen challenge. Stretched-exponential and intravoxel incoherent motion (IVIM) models were used to calculate and compare quantitative diffusion parameters: diffusion heterogeneity index (α), intravoxel distribution of diffusion coefficients (DDC), tissue diffusivity (Dt), pseudo-diffusivity (Dp), and perfusion fraction (f) on a voxel-by-voxel basis. A significant increase of α (73.9 ± 4.7% in air vs. 78.1 ± 4.5% in oxygen, P = 0.0198) and a significant decrease of f (13.4 ± 3.7% in air vs. 10.4 ± 2.7% in oxygen, P = 0.0201) were observed to accompany oxygen challenge. Correlations between f and α during both air and oxygen breathing were found; the correlation coefficients (r) were -0.90 and -0.96, respectively. Positive correlations between Dt and DDC with oxygen breathing (r = 0.95, P = 0.0003), f and DDC with air breathing were also observed (r = 0.95, P = 0.0004). Quantitative diffusion MRI demonstrated changes in tumor perfusion in response to oxygen challenge. © 2015 Wiley Periodicals, Inc.
Ligneul, Clémence; Palombo, Marco; Valette, Julien
2017-04-01
To assess the potential correlation between metabolites diffusion and relaxation in the mouse brain, which is of importance for interpreting and modeling metabolite diffusion based on pure geometry, irrespective of relaxation properties (multicompartmental relaxation or surface relaxivity). A new diffusion-weighted magnetic resonance spectroscopy sequence is introduced, dubbed "STE-LASER," which presents several nice properties, in particular the absence of cross-terms with selection gradients and a very clean localization. Metabolite diffusion is then measured in a large voxel in the mouse brain at 11.7 Tesla using a cryoprobe, resulting in excellent signal-to-noise ratio, up to very high b-values under different echo time, mixing time, and diffusion time combinations. Our results suggest that the correlation between relaxation and diffusion properties is extremely small or even nonexistent for metabolites in the mouse brain. The present work strongly supports the interpretation and modeling of metabolite diffusion primarily based on geometry, irrespective of relaxation properties, at least under current experimental conditions. Magn Reson Med 77:1390-1398, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Cooper, Justin; Harris, Joel M
2014-12-02
Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.
Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong
2012-07-25
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.
Ex Vivo Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity
Jirjis, Michael B.; Kurpad, Shekar N.
2013-01-01
Abstract The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm2. Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r2=0.80). The diffusivity of water significantly decreased throughout “uninjured” portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury. PMID:23782233
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2011 CFR
2011-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2012 CFR
2012-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2010 CFR
2010-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2014 CFR
2014-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
Regulation of pollen tube polarity: Feedback loops rule
USDA-ARS?s Scientific Manuscript database
Targeted delivery of immotile sperm through growing pollen tubes is a crucial step in achieving sexual reproduction in angiosperms. Unlike diffuse-growing cells, the growth of a pollen tube is restricted to the very apical region where targeted exocytosis and regulated endocytosis occur. The plant-s...
Ligneul, Clémence; Palombo, Marco
2016-01-01
Purpose To assess the potential correlation between metabolites diffusion and relaxation in the mouse brain, which is of importance for interpreting and modeling metabolite diffusion based on pure geometry, irrespective of relaxation properties (multicompartmental relaxation or surface relaxivity). Methods A new diffusion‐weighted magnetic resonance spectroscopy sequence is introduced, dubbed “STE‐LASER,” which presents several nice properties, in particular the absence of cross‐terms with selection gradients and a very clean localization. Metabolite diffusion is then measured in a large voxel in the mouse brain at 11.7 Tesla using a cryoprobe, resulting in excellent signal‐to‐noise ratio, up to very high b‐values under different echo time, mixing time, and diffusion time combinations. Results Our results suggest that the correlation between relaxation and diffusion properties is extremely small or even nonexistent for metabolites in the mouse brain. Conclusion The present work strongly supports the interpretation and modeling of metabolite diffusion primarily based on geometry, irrespective of relaxation properties, at least under current experimental conditions. Magn Reson Med 77:1390–1398, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:27018415
Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.
Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J
2016-01-01
Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.
Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis
van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.
2016-01-01
Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964
Huang, J; Friedland, R P; Auchus, A P
2007-01-01
Diffusion tensor imaging (DTI) is a sensitive technique for studying cerebral white matter. We used DTI to characterize microstructural white matter changes and their associations with cognitive dysfunction in Alzheimer disease (AD) and mild cognitive impairment (MCI). We studied elderly subjects with mild AD (n = 6), MCI (n = 11), or normal cognition (n = 8). A standardized clinical and neuropsychological evaluation was conducted on each subject. DTI images were acquired, and fractional anisotropy (FA), axial diffusivity (DA), and radial diffusivity (DR) of normal-appearing white matter (NAWM) in frontal, temporal, parietal, and occipital lobes were determined. These diffusion measurements were compared across the 3 groups, and significant differences were further examined for correlations with tests of cognitive function. Compared with normal controls, AD subjects demonstrated decreased FA and increased DR in the temporal, parietal, and frontal NAWM and decreased DA in temporal NAWM. MCI subjects also showed decreased FA and decreased DA in temporal NAWM, with decreased FA and increased DR in parietal NAWM. Diffusion measurements showed no differences in occipital NAWM. Across all subjects, temporal lobe FA and DR correlated with episodic memory, frontal FA and DR correlated with executive function, and parietal DR significantly correlated with visuospatial ability. We found evidence for functionally relevant microstructural changes in the NAWM of patients with AD and MCI. These changes were present in brain regions serving higher cortical functions, but not in regions serving primary functions, and are consistent with a hypothesized loss of axonal processes in the temporal lobe.
Quantitative MRI in hypomyelinating disorders: Correlation with motor handicap.
Steenweg, Marjan E; Wolf, Nicole I; van Wieringen, Wessel N; Barkhof, Frederik; van der Knaap, Marjo S; Pouwels, Petra J W
2016-08-23
To assess the correlation of tissue parameters estimated by quantitative magnetic resonance (MR) techniques and motor handicap in patients with hypomyelination. Twenty-eight patients with different causes of hypomyelination (12 males, 16 females; mean age 10 years) and 61 controls (33 males, 28 females; mean age 8 years) were prospectively investigated. We quantified T2 relaxation time, magnetization transfer ratio, fractional anisotropy, mean, axial, and radial diffusivities, and brain metabolites. We performed measurements in the splenium, parietal deep white matter, and corticospinal tracts in the centrum semiovale. We further analyzed diffusion measures using tract-based spatial statistics. We estimated severity of motor handicap by the gross motor function classification system. We evaluated correlation of handicap with MR measures by linear regression analyses. Fractional anisotropy, magnetization transfer ratio, choline, and N-acetylaspartate/creatine ratio were lower and diffusivities, T2 values, and inositol were higher in patients than in controls. Tract-based spatial statistics showed that these changes were widespread for fractional anisotropy (96% of the white matter skeleton), radial (93%) and mean (84%) diffusivity, and less so for axial diffusivity (20%). Correlation with handicap yielded radial diffusivity and N-acetylaspartate/creatine ratio as strongest independent explanatory variables. Gross motor function classification system grades are in part explained by MR measures. They indicate that mainly lack of myelin and, to a lesser degree, loss of axonal integrity codetermine the degree of motor handicap in patients with hypomyelinating disorders. These MR measures can be used to evaluate strategies that are aimed at promotion of myelination. © 2016 American Academy of Neurology.
Beheshti, Iman; Olya, Hossain G T; Demirel, Hasan
2016-04-05
Recently, automatic risk assessment methods have been a target for the detection of Alzheimer's disease (AD) risk. This study aims to develop an automatic computer-aided AD diagnosis technique for risk assessment of AD using information diffusion theory. Information diffusion is a fuzzy mathematics logic of set-value that is used for risk assessment of natural phenomena, which attaches fuzziness (uncertainty) and incompleteness. Data were obtained from voxel-based morphometry analysis of structural magnetic resonance imaging. The information diffusion model results revealed that the risk of AD increases with a reduction of the normalized gray matter ratio (p > 0.5, normalized gray matter ratio <40%). The information diffusion model results were evaluated by calculation of the correlation of two traditional risk assessments of AD, the Mini-Mental State Examination and the Clinical Dementia Rating. The correlation results revealed that the information diffusion model findings were in line with Mini-Mental State Examination and Clinical Dementia Rating results. Application of information diffusion model contributes to the computerization of risk assessment of AD, which has a practical implication for the early detection of AD.
Hindered Diffusion in Polymeric Solutions Studied by Fluorescence Correlation Spectroscopy
Zustiak, Silviya P.; Nossal, Ralph; Sackett, Dan L.
2011-01-01
Diffusion of molecules in the crowded and charged interior of the cell has long been of interest for understanding cellular processes. Here, we introduce a model system of hindered diffusion that includes both crowding and binding. In particular, we obtained the diffusivity of the positively charged protein, ribonuclease A (RNase), in solutions of dextrans of various charges (binding) and concentrations (crowding), as well as combinations of both, in a buffer of physiological ionic strength. Using fluorescence correlation spectroscopy, we observed that the diffusivity of RNase was unaffected by the presence of positively charged or neutral dextrans in the dilute regime but was affected by crowding at higher polymer concentrations. Conversely, protein diffusivity was significantly reduced by negatively charged dextrans, even at 0.4 μM (0.02% w/v) dextran. The diffusivity of RNase decreased with increasing concentrations of negative dextran, and the amount of bound RNase increased until it reached a plateau of ∼80% bound RNase. High salt concentrations were used to establish the electrostatic nature of the binding. Binding of RNase to the negatively charged dextrans was further confirmed by ultrafiltration. PMID:21723836
Mechanism of Facilitated Diffusion during a DNA Search in Crowded Environments.
Krepel, Dana; Gomez, David; Klumpp, Stefan; Levy, Yaakov
2016-11-03
The key feature explaining the rapid recognition of a DNA target site by its protein lies in the combination of one- and three-dimensional (1D and 3D) diffusion, which allows efficient scanning of the many alternative sites. This facilitated diffusion mechanism is expected to be affected by cellular conditions, particularly crowding, given that up to 40% of the total cellular volume may by occupied by macromolecules. Using coarse-grained molecular dynamics and Monte Carlo simulations, we show that the crowding particles can enhance facilitated diffusion and accelerate search kinetics. This effect originates from a trade-off between 3D and 1D diffusion. The 3D diffusion coefficient is lower under crowded conditions, but it has little influence because the excluded volume effect of molecular crowding restricts its use. Largely prevented from using 3D diffusion, the searching protein dramatically increases its use of the hopping search mode, which results in a higher linear diffusion coefficient. The coefficient of linear diffusion also increases under crowded conditions as a result of increased collisions between the crowding particles and the searching protein. Overall, less 3D diffusion coupled with an increase in the use of the hopping and speed of 1D diffusion results in faster search kinetics under crowded conditions. Our study shows that the search kinetics and mechanism are modulated not only by the crowding occupancy but also by the properties of the crowding particles and the salt concentration.
High-energy phosphate transfer in human muscle: diffusion of phosphocreatine.
Gabr, Refaat E; El-Sharkawy, Abdel-Monem M; Schär, Michael; Weiss, Robert G; Bottomley, Paul A
2011-07-01
The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.
High-energy phosphate transfer in human muscle: diffusion of phosphocreatine
Gabr, Refaat E.; El-Sharkawy, AbdEl-Monem M.; Schär, Michael; Weiss, Robert G.
2011-01-01
The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (DPCr) is thus critical for modeling and understanding energy transport in the myocyte, but DPCr has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured DPCr in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10−3 mm2/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes. PMID:21368292
On recontamination and directional-bias problems in Monte Carlo simulation of PDF turbulence models
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1991-01-01
Turbulent combustion can not be simulated adequately by conventional moment closure turbulence models. The difficulty lies in the fact that the reaction rate is in general an exponential function of the temperature, and the higher order correlations in the conventional moment closure models of the chemical source term can not be neglected, making the applications of such models impractical. The probability density function (pdf) method offers an attractive alternative: in a pdf model, the chemical source terms are closed and do not require additional models. A grid dependent Monte Carlo scheme was studied, since it is a logical alternative, wherein the number of computer operations increases only linearly with the increase of number of independent variables, as compared to the exponential increase in a conventional finite difference scheme. A new algorithm was devised that satisfies a restriction in the case of pure diffusion or uniform flow problems. Although for nonuniform flows absolute conservation seems impossible, the present scheme has reduced the error considerably.
Suppressing Ionic Terms with Number-Counting Jastrow Factors in Real Space
Goetz, Brett Van Der; Neuscamman, Eric
2017-04-06
Here, we demonstrate that four-body real-space Jastrow factors are, with the right type of Jastrow basis function, capable of performing successful wave function stenciling to remove unwanted ionic terms from an overabundant Fermionic reference without unduly modifying the remaining components. In addition to greatly improving size consistency (restoring it exactly in the case of a geminal power), real-space wave function stenciling is, unlike its Hilbert-space predecessors, immediately compatible with diffusion Monte Carlo, allowing it to be used in the pursuit of compact, strongly correlated trial functions with reliable nodal surfaces. Furthermore, we demonstrate the efficacy of this approach in themore » context of a double bond dissociation by using it to extract a qualitatively correct nodal surface despite being paired with a restricted Slater determinant, that, due to ionic term errors, produces a ground state with a qualitatively incorrect nodal surface when used in the absence of the Jastrow.« less
Suppressing Ionic Terms with Number-Counting Jastrow Factors in Real Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetz, Brett Van Der; Neuscamman, Eric
Here, we demonstrate that four-body real-space Jastrow factors are, with the right type of Jastrow basis function, capable of performing successful wave function stenciling to remove unwanted ionic terms from an overabundant Fermionic reference without unduly modifying the remaining components. In addition to greatly improving size consistency (restoring it exactly in the case of a geminal power), real-space wave function stenciling is, unlike its Hilbert-space predecessors, immediately compatible with diffusion Monte Carlo, allowing it to be used in the pursuit of compact, strongly correlated trial functions with reliable nodal surfaces. Furthermore, we demonstrate the efficacy of this approach in themore » context of a double bond dissociation by using it to extract a qualitatively correct nodal surface despite being paired with a restricted Slater determinant, that, due to ionic term errors, produces a ground state with a qualitatively incorrect nodal surface when used in the absence of the Jastrow.« less
Fluorescence fluctuation spectroscopy for clinical applications
NASA Astrophysics Data System (ADS)
Olson, Eben
Fluorescence correlation spectroscopy (FCS) and the related techniques of brightness analysis have become standard tools in biological and biophysical research. By analyzing the statistics of fluorescence emitted from a restricted volume, a number of parameters including concentrations, diffusion coefficients and chemical reaction rates can be determined. The single-molecule sensitivity, spectral selectivity, small sample volume and non-perturbative measurement mechanism of FCS make it an excellent technique for the study of molecular interactions. However, its adoption outside of the research laboratory has been limited. Potential reasons for this include the cost and complexity of the required apparatus. In this work, the application of fluorescence fluctuation analysis to several clinical problems is considered. Optical designs for FCS instruments which reduce the cost and increase alignment tolerance are presented. Brightness analysis of heterogenous systems, with application to the characterization of protein aggregates and multimer distributions, is considered. Methods for FCS-based assays of two clinically relevant proteins, von Willebrand factor and haptoglobin, are presented as well.
Relativistic diffusive motion in random electromagnetic fields
NASA Astrophysics Data System (ADS)
Haba, Z.
2011-08-01
We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).
Totaro, Pasquale; Adragna, Nicola; Argano, Vincenzo
2008-03-01
Today, the 'gold standard' treatment of functional mitral regurgitation (MR) is the subject of much discussion. Although restrictive annuloplasty is currently considered the most reproducible technique, the means by which the degree of annular restriction is optimized remains problematic. The study was designed in order to identify whether the degree of restriction of the mitral annulus could influence early and midterm results following the treatment of functional MR using restrictive annuloplasty. A total of 32 consecutive patients with functional MR grade > or = 3+ was enrolled, among whom the mean anterior-posterior (AP) mitral annulus diameter was 39 +/- 3 mm. Restrictive mitral annuloplasty (combined with coronary artery bypass grafting) was performed in all patients using a Carpentier-Edwards Classic or Physio ring (size 26 or 28). The degree of AP annular restriction was calculated for each patient, and correlated with early and mid-term residual MR and left ventricular (LV) reverse remodeling (in terms of LV end-diastolic diameter (LVEDD) and LV end-diastolic volume (LVEDV) reduction). All surviving patients were examined at a one-year follow up. The mean AP mitral annulus restriction achieved was 48 +/- 4%. Intraoperatively, transesophageal echocardiography showed no residual MR in any patient. Before discharge from hospital, transthoracic echocardiography confirmed an absence of residual MR and showed significant LV reverse remodeling (LVEDV from 121 +/- 25 ml to 97 +/- 26 ml; LVEDD from 55 +/- 6 mm to 47 +/- 8 mm). A significant correlation (r = 0.57, p < 0.001) was identified between the degree of AP annulus restriction and LVEDV reduction. A cut-off of annular restriction of 40% (based on AP annulus measurement) correlated with a more significant reverse remodeling. The early postoperative data, with no recurrence of significant MR, was confirmed at a one-year follow up examination. A marked restriction of the AP mitral annulus diameter (> 40% of preoperative) appears to have a favorable influence on early postoperative LV reverse remodeling, and also allows for complete resolution of functional MR. In addition, 'no tolerance' of early residual MR seems to have a favorable influence on mid-term results, leading to a reduction in the one-year recurrence of significant MR.
Repeated-cascade theory of strong turbulence in a magnetized plasma
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1976-01-01
A two-dimensional Navier-Stokes equation of vorticity in fluid turbulence is used to model drift turbulence in a plasma with a strong constant magnetic field and a constant mean density gradient. The nonlinear eddy diffusivity is described by a time-integrated Lagrangian correlation of velocities, and the repeated-cascade method is employed to choose the rank accounting for nearest-neighbor interactions, to calculate the Lagrangian correlation, and to close the correlation hierarchy. As a result, the diffusivity becomes dependent on the plasma's induced diffusion and is represented by a memory chain that is cut off by similarity and inertial randomization. Spectral laws relating the kinetic-energy spectrum to the -5, -5/2, -3, and -11 powers of wavenumber are derived for the velocity subranges of production, approach to inertia, inertia, and dissipation, respectively. It is found that the diffusivity is proportional to some inverse power of the magnetic field, that power being 1, 2/3, 5/6, and 2, respectively, for the four velocity subranges.
NASA Astrophysics Data System (ADS)
Sigaut, Lorena; Villarruel, Cecilia; Ponce, María Laura; Ponce Dawson, Silvina
2017-06-01
Many cell signaling pathways involve the diffusion of messengers that bind and unbind to and from intracellular components. Quantifying their net transport rate under different conditions then requires having separate estimates of their free diffusion coefficient and binding or unbinding rates. In this paper, we show how performing sets of fluorescence correlation spectroscopy (FCS) experiments under different conditions, it is possible to quantify free diffusion coefficients and on and off rates of reaction-diffusion systems. We develop the theory and present a practical implementation for the case of the universal second messenger, calcium (Ca2 +) and single-wavelength dyes that increase their fluorescence upon Ca2 + binding. We validate the approach with experiments performed in aqueous solutions containing Ca2 + and Fluo4 dextran (both in its high and low affinity versions). Performing FCS experiments with tetramethylrhodamine-dextran in Xenopus laevis oocytes, we infer the corresponding free diffusion coefficients in the cytosol of these cells. Our approach can be extended to other physiologically relevant reaction-diffusion systems to quantify biophysical parameters that determine the dynamics of various variables of interest.
Correlation of total, diffuse, and direct solar radiation
NASA Technical Reports Server (NTRS)
Buyco, E. H.; Namkoong, D.
1977-01-01
Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.
Herd, R M; Velazco, J I; Arthur, P F; Hegarty, R F
2016-11-01
The objective of the study was to evaluate associations among animal performance and methane emission traits under feedlot conditions and in respiration chambers in Angus cattle bred to vary in residual feed intake (RFI), which is a measure of feed efficiency. Fifty-nine cattle were tested for feedlot RFI, of which 41 had methane production recorded on an ad libitum grain-based ration in the feedlot, 59 on a restricted grain-based ration in respiration chambers, and 57 on a restricted roughage ration in respiration chambers. The cattle became older and heavier as they went through the different phases of the experiment, but their feed intake (expressed as DMI) and daily emission of enteric methane (methane production rate; MPR) did not increase proportionally, as feed offered was restricted in the respiration chamber tests. Methane emissions by individual animals relative to their DMI were calculated as methane yield (MY; MPR/DMI) and as 2 measures of residual methane production (RMP and RMP), which were calculated as the difference between measured MPR and that predicted from feed intake by 2 different equations. Within each test regime, MPR was positively correlated ( = 0.28 to 0.61) with DMI. Phenotypic correlations for MY, RMP, and RMP between the feedlot test and the restricted grain test ( = 0.40 to 0.43) and between the restricted grain test and the restricted roughage test were moderate ( = 0.36 to 0.41) and moderate to strong between the feedlot test and the restricted roughage test ( = 0.54 to 0.58). These results indicate that the rankings of animals for methane production relative to feed consumed are relatively stable over the 3 test phases. Feedlot feed conversion ratio and RFI were not correlated with MPR in the feedlot test and grain-based chamber test but were negatively correlated with MPR in the chamber roughage test ( = -0.31 and -0.37). Both were negatively correlated with MY and RMP in the feedlot test ( = -0.42 to -0.54) and subsequent chamber roughage test ( = -0.27 to -0.49). Midparent estimated breeding values for RFI tended to be negatively correlated with MY and RMP in the feedlot test ( = -0.27 and -0.27) and were negatively correlated with MY, RMP, and RMP in the chamber roughage test ( = -0.33 to -0.36). These results showed that in young growing cattle, lower RFI was associated with higher MY, RMP, and RMP but had no significant association with MPR.
[A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].
Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A
2015-01-01
The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (p<0.05). We also established a relationship between the tensor and kurtosis parameters of CNAWM and the glioma proliferative activity index (p<0.05). The correlation between all the absolute and normalized diffusion parameters and the glioma proliferative activity index, except absolute and normalized FA and RA values, was found to be statistically significant (p<0.05). Kurtosis (MK, AK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the contralateral normal appearing white matter in patients with brain gliomas.
Irie, Ryusuke; Kamagata, Koji; Kerever, Aurelien; Ueda, Ryo; Yokosawa, Suguru; Otake, Yosuke; Ochi, Hisaaki; Yoshizawa, Hidekazu; Hayashi, Ayato; Tagawa, Kazuhiko; Okazawa, Hitoshi; Takahashi, Kohske; Sato, Kanako; Hori, Masaaki; Arikawa-Hirasawa, Eri; Aoki, Shigeki
2018-01-01
Purpose: Diffusional kurtosis imaging (DKI) enables sensitive measurement of tissue microstructure by quantifying the non-Gaussian diffusion of water. Although DKI is widely applied in many situations, histological correlation with DKI analysis is lacking. The purpose of this study was to determine the relationship between DKI metrics and neurite density measured using confocal microscopy of a cleared mouse brain. Methods: One thy-1 yellow fluorescent protein 16 mouse was deeply anesthetized and perfusion fixation was performed. The brain was carefully dissected out and whole-brain MRI was performed using a 7T animal MRI system. DKI and diffusion tensor imaging (DTI) data were obtained. After the MRI scan, brain sections were prepared and then cleared using aminoalcohols (CUBIC). Confocal microscopy was performed using a two-photon confocal microscope with a laser. Forty-eight ROIs were set on the caudate putamen, seven ROIs on the anterior commissure, and seven ROIs on the ventral hippocampal commissure on the confocal microscopic image and a corresponding MR image. In each ROI, histological neurite density and the metrics of DKI and DTI were calculated. The correlations between diffusion metrics and neurite density were analyzed using Pearson correlation coefficient analysis. Results: Mean kurtosis (MK) (P = 5.2 × 10−9, r = 0.73) and radial kurtosis (P = 2.3 × 10−9, r = 0.74) strongly correlated with neurite density in the caudate putamen. The correlation between fractional anisotropy (FA) and neurite density was moderate (P = 0.0030, r = 0.42). In the anterior commissure and the ventral hippocampal commissure, neurite density and FA are very strongly correlated (P = 1.3 × 10−5, r = 0.90). MK in these areas were very high value and showed no significant correlation (P = 0.48). Conclusion: DKI accurately reflected neurite density in the area with crossing fibers, potentially allowing evaluation of complex microstructures. PMID:29213008
Irie, Ryusuke; Kamagata, Koji; Kerever, Aurelien; Ueda, Ryo; Yokosawa, Suguru; Otake, Yosuke; Ochi, Hisaaki; Yoshizawa, Hidekazu; Hayashi, Ayato; Tagawa, Kazuhiko; Okazawa, Hitoshi; Takahashi, Kohske; Sato, Kanako; Hori, Masaaki; Arikawa-Hirasawa, Eri; Aoki, Shigeki
2018-04-10
Diffusional kurtosis imaging (DKI) enables sensitive measurement of tissue microstructure by quantifying the non-Gaussian diffusion of water. Although DKI is widely applied in many situations, histological correlation with DKI analysis is lacking. The purpose of this study was to determine the relationship between DKI metrics and neurite density measured using confocal microscopy of a cleared mouse brain. One thy-1 yellow fluorescent protein 16 mouse was deeply anesthetized and perfusion fixation was performed. The brain was carefully dissected out and whole-brain MRI was performed using a 7T animal MRI system. DKI and diffusion tensor imaging (DTI) data were obtained. After the MRI scan, brain sections were prepared and then cleared using aminoalcohols (CUBIC). Confocal microscopy was performed using a two-photon confocal microscope with a laser. Forty-eight ROIs were set on the caudate putamen, seven ROIs on the anterior commissure, and seven ROIs on the ventral hippocampal commissure on the confocal microscopic image and a corresponding MR image. In each ROI, histological neurite density and the metrics of DKI and DTI were calculated. The correlations between diffusion metrics and neurite density were analyzed using Pearson correlation coefficient analysis. Mean kurtosis (MK) (P = 5.2 × 10 -9 , r = 0.73) and radial kurtosis (P = 2.3 × 10 -9 , r = 0.74) strongly correlated with neurite density in the caudate putamen. The correlation between fractional anisotropy (FA) and neurite density was moderate (P = 0.0030, r = 0.42). In the anterior commissure and the ventral hippocampal commissure, neurite density and FA are very strongly correlated (P = 1.3 × 10 -5 , r = 0.90). MK in these areas were very high value and showed no significant correlation (P = 0.48). DKI accurately reflected neurite density in the area with crossing fibers, potentially allowing evaluation of complex microstructures.
Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns.
Rastegar, Seyed Omid; Gu, Tingyue
2017-03-24
In this work, a new correlation for the axial dispersion coefficient was obtained using experimental data in the literature for axial dispersion in fixed-bed columns packed with particles. The Chung and Wen correlation, the De Ligny correlation are two popular empirical correlations. However, the former lacks the molecular diffusion term and the latter does not consider bed voidage. The new axial dispersion coefficient correlation in this work was based on additional experimental data in the literature by considering both molecular diffusion and bed voidage. It is more comprehensive and accurate. The Peclet number correlation from the new axial dispersion coefficient correlation on the average leads to 12% lower Peclet number values compared to the values from the Chung and Wen correlation, and in many cases much smaller than those from the De Ligny correlation. Copyright © 2017 Elsevier B.V. All rights reserved.
Kondo, Akihiro; Nishizawa, Yuji; Ito, Masaaki; Saito, Norio; Fujii, Satoshi; Akamoto, Shintaro; Fujiwara, Masao; Okano, Keiichi; Suzuki, Yasuyuki
2016-08-01
The aim of the study was to assess the relationship between tissue tension and thermal diffusion to peripheral tissues using an electric scalpel, ultrasonically activated device, or a bipolar sealing system. The mesentery of pigs was excised with each energy device (ED) at three tissue tensions (0, 300, 600 g). The excision time and thermal diffusion area were monitored with thermography, measured for each ED, and then histologically examined. Correlations between tissue tension and thermal diffusion area were examined. The excision time was inversely correlated with tissue tension for all ED (electric scalpel, r = 0.718; ultrasonically activated device, r = 0.949; bipolar sealing system, r = 0.843), and tissue tension was inversely correlated with the thermal diffusion area with the electric scalpel (r = 0.718) and bipolar sealing system (r = 0.869). Histopathologically, limited deep thermal denaturation occurred at a tension of 600 g with all ED. We conclude that thermal damage can be avoided with adequate tissue tension when any ED is used. © 2016 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
Alcohol Control Policies in 46 African Countries: Opportunities for Improvement.
Ferreira-Borges, Carina; Esser, Marissa B; Dias, Sónia; Babor, Thomas; Parry, Charles D H
2015-07-01
There is little information on the extent to which African countries are addressing alcohol consumption and alcohol-related harm, which suggests that evaluations of national alcohol policies are needed in this region. The aim of this article is to examine the strength of a mix of national alcohol control policies in African countries, as well as the relationship between alcohol policy restrictiveness scores and adult alcohol per capita consumption (APC) among drinkers at the national level. We examined national alcohol policies of 46 African countries, as of 2012, in four regulatory categories (price, availability, marketing and drink-driving), and analyzed the restrictiveness of national alcohol policies using an adapted Alcohol Policy Index (API). To assess the validity of the policy restrictiveness scores, we conducted correlational analyses between policy restrictiveness scores and APC among drinkers in 40 countries. Countries attained a mean score of 44.1 of 100 points possible, ranging from 9.1 (Sao Tomé and Principe) to 75.0 (Algeria), with low scores indicating low policy restrictiveness. Policy restrictiveness scores were negatively correlated with and APC among drinkers (rs = -0.353, P = 0.005). There is great variation in the strength of alcohol control policies in countries throughout the African region. Tools for comparing the restrictiveness of alcohol policies across countries are available and are an important instrument to monitor alcohol policy developments. The negative correlation between policy restrictiveness and alcohol consumption among drinkers suggests the need for stronger alcohol policies as well as increased training and capacity building at the country level. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Porosity Measurement in Laminated Composites by Thermography and FEA
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.
Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K; Adams, Paul D; Fraser, James S; Terwilliger, Thomas C
2014-12-16
X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.
Lateral Membrane Diffusion Modulated by a Minimal Actin Cortex
Heinemann, Fabian; Vogel, Sven K.; Schwille, Petra
2013-01-01
Diffusion of lipids and proteins within the cell membrane is essential for numerous membrane-dependent processes including signaling and molecular interactions. It is assumed that the membrane-associated cytoskeleton modulates lateral diffusion. Here, we use a minimal actin cortex to directly study proposed effects of an actin meshwork on the diffusion in a well-defined system. The lateral diffusion of a lipid and a protein probe at varying densities of membrane-bound actin was characterized by fluorescence correlation spectroscopy (FCS). A clear correlation of actin density and reduction in mobility was observed for both the lipid and the protein probe. At high actin densities, the effect on the protein probe was ∼3.5-fold stronger compared to the lipid. Moreover, addition of myosin filaments, which contract the actin mesh, allowed switching between fast and slow diffusion in the minimal system. Spot variation FCS was in accordance with a model of fast microscopic diffusion and slower macroscopic diffusion. Complementing Monte Carlo simulations support the analysis of the experimental FCS data. Our results suggest a stronger interaction of the actin mesh with the larger protein probe compared to the lipid. This might point toward a mechanism where cortical actin controls membrane diffusion in a strong size-dependent manner. PMID:23561523
Correlation of diffusion tensor imaging parameters with neural status in Pott's spine.
Jain, Nikhil; Saini, Namita Singh; Kumar, Sudhir; Rajagopalan, Mukunth; Chakraborti, Kanti Lal; Jain, Anil Kumar
2016-04-29
Diffusion tensor imaging (DTI) has been used in cervical trauma and spondylotic myelopathy, and it has been found to correlate with neural deficit and prognosticate neural recovery. Such a correlation has not been studied in Pott's spine with paraplegia. Hence, this prospective study has been used to find correlation of DTI parameters with neural deficit in these patients. Thirty-four patients of spinal TB were enrolled and DTI was performed before the start of treatment and after six months. Fractional anisotropy (FA), Mean diffusivity (MD), and Tractography were studied. Neurological deficit was graded by the Jain and Sinha scoring. Changes in FA and MD at and below the site of lesion (SOL) were compared to above the SOL (control) using the unpaired t-test. Pre-treatment and post-treatment values were also compared using the paired t-test. Correlation of DTI parameters with neurological score was done by Pearson's correlation. Subjective assessment of Tractography images was done. Mean average FA was not significantly decreased at the SOL in patients with paraplegia as compared to control. After six months of treatment, a significant decrease (p = 0.02) in mean average FA at the SOL compared to pre-treatment was seen. Moderate positive correlation (r = 0.49) between mean average FA and neural score after six months of treatment was found. Tractography images were not consistent with severity of paraplegia. Unlike spondylotic myelopathy and trauma, epidural collection and its organized inflammatory tissue in Pott's spine precludes accurate assessment of diffusion characteristics of the compressed cord.
Adoption and Use of Videocassette Recorders in the Third World.
ERIC Educational Resources Information Center
Straubhaar, Joseph; Boyd, Douglas A.
Videocassette recorder (VCR) acquisition and use in developing nations is largely an individual or household decision, and their rapid diffusion is influenced by several factors: price, and its variations due to government restrictions; income and income distribution; the content of broadcast television; the diversity of entertainment media…
NASA Astrophysics Data System (ADS)
Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar
2018-02-01
We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.
Structure-specific magnetic field inhomogeneities and its effect on the correlation time.
Ziener, Christian H; Bauer, Wolfgang R; Melkus, Gerd; Weber, Thomas; Herold, Volker; Jakob, Peter M
2006-12-01
We describe the relationship between the correlation time and microscopic spatial inhomogeneities in the static magnetic field. The theory takes into account diffusion of nuclear spins in the inhomogeneous field created by magnetized objects. A simple general expression for the correlation time is obtained. It is shown that the correlation time is dependent on a characteristic length, the diffusion coefficient of surrounding medium, the permeability of the surface and the volume fraction of the magnetized objects. For specific geometries (spheres and cylinders), exact analytical expressions for the correlation time are given. The theory can be applied to contrast agents (magnetically labeled cells), capillary network, BOLD effect and so forth.
Yagi, Michiyo; Hirano, Yoshiyuki; Nakazato, Michiko; Nemoto, Kiyotaka; Ishikawa, Kazuhiro; Sutoh, Chihiro; Miyata, Haruko; Matsumoto, Junko; Matsumoto, Koji; Masuda, Yoshitada; Obata, Takayuki; Iyo, Masaomi; Shimizu, Eiji; Nakagawa, Akiko
2017-06-01
To investigate the relationship between the severities of symptom dimensions in obsessive-compulsive disorder (OCD) and white matter alterations. We applied tract-based spatial statistics for diffusion tensor imaging (DTI) acquired by 3T magnetic resonance imaging. First, we compared fractional anisotropy (FA) between 20 OCD patients and 30 healthy controls (HC). Then, applying whole brain analysis, we searched the brain regions showing correlations between the severities of symptom dimensions assessed by Obsessive-Compulsive Inventory-Revised and FA in all participants. Finally, we calculated the correlations between the six symptom dimensions and multiple DTI measures [FA, axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD)] in a region-of-interest (ROI) analysis and explored the differences between OCD patients and HC. There were no between-group differences in FA or brain region correlations between the severities of symptom dimensions and FA in any of the participants. ROI analysis revealed negative correlations between checking severity and left inferior frontal gyrus white matter and left middle temporal gyrus white matter and a positive correlation between ordering severity and right precuneus in FA in OCD compared with HC. We also found negative correlations between ordering severity and right precuneus in RD, between obsessing severities and right supramarginal gyrus in AD and MD, and between hoarding severity and right insular gyrus in AD. Our study supported the hypothesis that the severities of respective symptom dimensions are associated with different patterns of white matter alterations.
The probabilistic origin of Bell's inequality
NASA Technical Reports Server (NTRS)
Krenn, Guenther
1994-01-01
The concept of local realism entails certain restrictions concerning the possible occurrence of correlated events. Although these restrictions are inherent in classical physics they have never been noticed until Bell showed in 1964 that general correlations in quantum mechanics can not be interpreted in a classical way. We demonstrate how a local realistic way of thinking about measurement results necessarily leads to limitations with regard to the possible appearance of correlated events. These limitations, which are equivalent to Bell's inequality can be easily formulated as an immediate consequence of our discussion.
Jakobsdottir, S; van Nieuwpoort, I C; van Bunderen, C C; de Ruiter, M B; Twisk, J W R; Deijen, J B; Veltman, D J; Drent, M L
2016-11-01
Early anthropometric and metabolic changes during a caloric-restricted diet in obese postmenopausal women and correlations between these factors with activity in brain areas involved in processing of visual food related stimuli were investigated. An 8-week prospective intervention study of 18 healthy postmenopausal women, with a body mass index of 30-35 kg m -2 . The first 2 weeks subjects were on an isocaloric diet and 4 weeks on a 1000 kcal restricted diet followed by 2 weeks on an isocaloric diet. Anthropometric and laboratory analyses were performed weekly during the isocaloric diet and three times a week during the caloric-restricted diet. Functional magnetic resonance imaging scans were obtained before and after the caloric restriction in four separate sessions (fasting or sated). Generalized Estimating Equations analysis was used for data analysis. A mean weight loss of 4.2±0.5 kg (4.8%) and a 4.2±0.4 cm decline in waist circumference were achieved. In the first week of caloric restriction, triglyceride, leptin, resistin and adiponectin levels as well as systolic blood pressure decreased and insulin-like growth factor-binding protein 1 levels increased. During and after weight loss, a significant increase in ghrelin levels was observed. Before weight loss, increased activation of the right amygdala was seen in response to food stimuli, and free fatty acids and glucose correlated with activity in various areas involved in food reward processing. After weight loss, fasting ghrelin and sated leptin levels correlated with activity in these areas. Already in the first week of caloric restriction in obese postmenopausal women, various favourable metabolic changes occur before clinically relevant weight loss is achieved. Activity in the amygdala region and correlations of metabolic factors with activity in brain areas involved in food reward processing differ substantially before and after weight loss.
Lee, Hye-Ok; Yim, Jung-Eun; Lee, Jeong-Sook; Kim, Young-Seol; Choue, Ryowon
2013-02-01
Quantities as well as distributions of adipose tissue (AT) are significantly related to cardiovascular disease (CVD) risk factors and can be altered with caloric restriction. This study investigated which cross-sectional slice location of AT is most strongly correlated with changes in CVD risk factors after caloric restriction in obese Korean women. Thirty-three obese pre-menopausal Korean women (32.4 ± 8.5 yrs, BMI 27.1 ± 2.3 kg/m(2)) participated in a 12 weeks caloric restriction program. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were measured using computed tomography (CT) scans at the sites of L2-L3, L3-L4, and L4-L5. Fasting serum levels of glucose, insulin, triglyceride, total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), leptin and homeostasis model assessment-insulin resistance (HOMA-IR) were observed. Pearson's partial correlation coefficients were used to assess the relationship between AT measurement sites and changes in CVD risk factors after calorie restriction. When calories were reduced by 350 kcal/day for 12 weeks, body weight (-2.7%), body fat mass (-8.2%), and waist circumference (-5.8%) all decreased (P < 0.05). In addition, following caloric restriction, serum levels of glucose (-4.6%), TC (-6.2%), LDL-C (-5.3%), leptin (-17.6%) and HOMA-IR (-18.2%) decreased significantly (P < 0.05) as well. Changes in VAT at the level of L3-L4 were significantly greater than those at other abdominal sites, and these changes were correlated with changes in TC (P < 0.05), LDL-C (P < 0.001), SBP (P < 0.001) and HOMA-IR (P < 0.01). These results show that VAT at L3-L4 had a stronger correlation with CVD risk factors than with other AT measurement sites after caloric restriction.
Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael
2004-01-01
Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402
Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael
2004-01-01
Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.
Portnoy, S; Flint, J J; Blackband, S J; Stanisz, G J
2013-04-01
Oscillating gradient spin-echo (OGSE) pulse sequences have been proposed for acquiring diffusion data with very short diffusion times, which probe tissue structure at the subcellular scale. OGSE sequences are an alternative to pulsed gradient spin echo measurements, which typically probe longer diffusion times due to gradient limitations. In this investigation, a high-strength (6600 G/cm) gradient designed for small-sample microscopy was used to acquire OGSE and pulsed gradient spin echo data in a rat hippocampal specimen at microscopic resolution. Measurements covered a broad range of diffusion times (TDeff = 1.2-15.0 ms), frequencies (ω = 67-1000 Hz), and b-values (b = 0-3.2 ms/μm2). Variations in apparent diffusion coefficient with frequency and diffusion time provided microstructural information at a scale much smaller than the imaging resolution. For a more direct comparison of the techniques, OGSE and pulsed gradient spin echo data were acquired with similar effective diffusion times. Measurements with similar TDeff were consistent at low b-value (b < 1 ms/μm(2) ), but diverged at higher b-values. Experimental observations suggest that the effective diffusion time can be helpful in the interpretation of low b-value OGSE data. However, caution is required at higher b, where enhanced sensitivity to restriction and exchange render the effective diffusion time an unsuitable representation. Oscillating and pulsed gradient diffusion techniques offer unique, complementary information. In combination, the two methods provide a powerful tool for characterizing complex diffusion within biological tissues. Copyright © 2012 Wiley Periodicals, Inc.
Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation
NASA Astrophysics Data System (ADS)
Amit, Hagay; Christensen, Ulrich R.
2008-12-01
We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.
Sparse dynamics for partial differential equations
Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D.; Osher, Stanley
2013-01-01
We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms. PMID:23533273
Sparse dynamics for partial differential equations.
Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley
2013-04-23
We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.
Gray, Wendy N; Janicke, David M; Wistedt, Kristin M; Dumont-Driscoll, Marilyn C
2010-10-01
There is a critical need to identify risk factors that make parents more likely to restrict their child's food intake. Child weight and ethnicity, parent weight, parent body dissatisfaction, and parent concern of child weight were examined as correlates of parent use of restrictive feeding practices in a diverse sample of 191 youth (ages 7-17). Participants attending a pediatric outpatient visit completed the Child Feeding Questionnaire (parent feeding practices and beliefs), the Figure Rating Scale (body dissatisfaction) and a demographic form. Parent BMI and child degree of overweight were calculated. Parent use of restrictive feeding practices was positively associated with parent BMI and was moderated by parent body dissatisfaction. Parent concern of child weight mediated the relationship between increasing child degree of overweight and parent use of restrictive feeding practices. There were no differences by child gender or ethnicity in parent use of restrictive feeding practices. These preliminary findings highlight the importance of assessing for underlying parent motivations for utilizing restrictive feeding practices and may help to identify and intervene with families at-risk for engaging in counterproductive weight control strategies. Continued identification of correlates of parent use of restrictive feeding practices is needed across child development and among individuals from diverse backgrounds.
Shim, Woo Hyun; Kim, Ho Sung; Choi, Choong-Gon; Kim, Sang Joon
2015-01-01
Brain tumor cellularity has been assessed by using apparent diffusion coefficient (ADC). However, the ADC value might be influenced by both perfusion and true molecular diffusion, and the perfusion effect on ADC can limit the reliability of ADC in the characterization of tumor cellularity, especially, in hypervascular brain tumors. In contrast, the IVIM technique estimates parameter values for diffusion and perfusion effects separately. The purpose of our study was to compare ADC and IVIM for differentiating among glioblastoma, metastatic tumor, and primary CNS lymphoma (PCNSL) focusing on diffusion-related parameter. We retrospectively reviewed the data of 128 patients with pathologically confirmed glioblastoma (n = 55), metastasis (n = 31), and PCNSL (n = 42) prior to any treatment. Two neuroradiologists independently calculated the maximum IVIM-f (fmax) and minimum IVIM-D (Dmin) by using 16 different b-values with a bi-exponential fitting of diffusion signal decay, minimum ADC (ADCmin) by using 0 and 1000 b-values with a mono-exponential fitting and maximum normalized cerebral blood volume (nCBVmax). The differences in fmax, Dmin, nCBVmax, and ADCmin among the three tumor pathologies were determined by one-way ANOVA with multiple comparisons. The fmax and Dmin were correlated to the corresponding nCBV and ADC using partial correlation analysis, respectively. Using a mono-exponential fitting of diffusion signal decay, the mean ADCmin was significantly lower in PCNSL than in glioblastoma and metastasis. However, using a bi-exponential fitting, the mean Dmin did not significantly differ in the three groups. The mean fmax significantly increased in the glioblastomas (reader 1, 0.103; reader 2, 0.109) and the metastasis (reader 1, 0.105; reader 2, 0.107), compared to the primary CNS lymphomas (reader 1, 0.025; reader 2, 0.023) (P < .001 for each). The correlation between fmax and the corresponding nCBV was highest in glioblastoma group, and the correlation between Dmin and the corresponding ADC was highest in primary CNS lymphomas group. Unlike ADC value derived from a mono-exponential fitting of diffusion signal, diffusion-related parametric value derived from a bi-exponential fitting with separation of perfusion effect doesn't differ among glioblastoma, metastasis, and PCNSL.
Porcari, Paola; Hall, Matt G; Clark, Chris A; Greally, Elizabeth; Straub, Volker; Blamire, Andrew M
2018-03-01
The investigation of age-related changes in muscle microstructure between developmental and healthy adult mice may help us to understand the clinical features of early-onset muscle diseases, such as Duchenne muscular dystrophy. We investigated the evolution of mouse hind-limb muscle microstructure using diffusion imaging of in vivo and in vitro samples from both actively growing and mature mice. Mean apparent diffusion coefficients (ADCs) of the gastrocnemius and tibialis anterior muscles were determined as a function of diffusion time (Δ), age (7.5, 22 and 44 weeks) and diffusion gradient direction, applied parallel or transverse to the principal axis of the muscle fibres. We investigated a wide range of diffusion times with the goal of probing a range of diffusion lengths characteristic of muscle microstructure. We compared the diffusion time-dependent ADC of hind-limb muscles with histology. ADC was found to vary as a function of diffusion time in muscles at all stages of maturation. Muscle water diffusivity was higher in younger (7.5 weeks) than in adult (22 and 44 weeks) mice, whereas no differences were observed between the older ages. In vitro data showed the same diffusivity pattern as in vivo data. The highlighted differences in diffusion properties between young and mature muscles suggested differences in underlying muscle microstructure, which were confirmed by histological assessment. In particular, although diffusion was more restricted in older muscle, muscle fibre size increased significantly from young to adult age. The extracellular space decreased with age by only ~1%. This suggests that the observed diffusivity differences between young and adult muscles may be caused by increased membrane permeability in younger muscle associated with properties of the sarcolemma. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Chung, Gui-Yung; Mccoy, Benjamin J.
1991-01-01
A homogeneous model is developed for the chemical vapor infiltration by one-dimensional diffusion into a system of layered plies consisting of woven tows containing bundles of filaments. The model predictions of the amount of deposition and the porosity of the sample as a function of time are compared with the predictions of a recent nonhomogeneous model with aligned holes formed by the weave. The nonhomogeneous model allows for diffusion through the aligned holes, into the spaces between plies, and into the gaps around filaments; i.e., three diffusion equations apply. Relative to the nonhomogeneous results, the homogeneous model underestimates the amount of deposition, since the absence of holes and spaces allows earlier occlusion of gaps around filaments and restricts the vapor infiltration.
Fielitz, Peter; Borchardt, Günter
2016-08-10
In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.
Comment on: Diffusion through a slab
NASA Astrophysics Data System (ADS)
Gieseler, U. D. J.; Kirk, J. G.
1997-05-01
Mahan [J. Math. Phys. 36, 6758 (1995)] has calculated the transmission coefficient and angular distribution of particles which enter a thick slab at normal incidence and which diffuse in the slab with linear anisotropic, non-absorbing, scattering. Using orthogonality relations derived by McCormick and Kuščer [J. Math. Phys. 6, 1939 (1965); 7, 2036 (1966)] for the eigenfunctions of the problem, this calculation is generalized to a boundary condition with particle input at arbitrary angles. It is also shown how to use the orthogonality relations to relax in a simple way the restriction to a thick slab.
Acute hepatic encephalopathy presenting as cortical laminar necrosis: case report.
Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young
2013-01-01
We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.
Grebenkov, Denis S
2011-02-01
A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.
Physics of ultra-high bioproductivity in algal photobioreactors
NASA Astrophysics Data System (ADS)
Greenwald, Efrat; Gordon, Jeffrey M.; Zarmi, Yair
2012-04-01
Cultivating algae at high densities in thin photobioreactors engenders time scales for random cell motion that approach photosynthetic rate-limiting time scales. This synchronization allows bioproductivity above that achieved with conventional strategies. We show that a diffusion model for cell motion (1) accounts for high bioproductivity at irradiance values previously deemed restricted by photoinhibition, (2) predicts the existence of optimal culture densities and their dependence on irradiance, consistent with available data, (3) accounts for the observed degree to which mixing improves bioproductivity, and (4) provides an estimate of effective cell diffusion coefficients, in accord with independent hydrodynamic estimates.
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Beskardes, G. D.; Everett, M. E.
2016-12-01
In this presentation we review the observational evidence for anomalous electromagnetic diffusion in near-surface geophysical exploration and how such evidence is consistent with a detailed, spatially-correlated geologic medium. To date, the inference of multi-scale geologic correlation is drawn from two independent methods of data analysis. The first of which is analogous to seismic move-out, where the arrival time of an electromagnetic pulse is plotted as a function of transmitter/receiver separation. The "anomalous" diffusion is evident by the fractional-order power law behavior of these arrival times, with an exponent value between unity (pure diffusion) and 2 (lossless wave propagation). The second line of evidence comes from spectral analysis of small-scale fluctuations in electromagnetic profile data which cannot be explained in terms of instrument, user or random error. Rather, the power-law behavior of the spectral content of these signals (i.e., power versus wavenumber) and their increments reveals them to lie in a class of signals with correlations over multiple length scales, a class of signals known formally as fractional Brownian motion. Numerical results over simulated geology with correlated electrical texture - representative of, for example, fractures, sedimentary bedding or metamorphic lineation - are consistent with the (albeit limited, but growing) observational data, suggesting a possible mechanism and modeling approach for a more realistic geology. Furthermore, we show how similar simulated results can arise from a modeling approach where geologic texture is economically captured by a modified diffusion equation containing exotic, but manageable, fractional derivatives. These derivatives arise physically from the generalized convolutional form for the electromagnetic constitutive laws and thus have merit beyond mere mathematical convenience. In short, we are zeroing in on the anomalous, fractional diffusion limit from two converging directions: a zooming down of the macroscopic (fractional derivative) view; and, a heuristic homogenization of the atomistic (brute force discretization) view.
Yu, Xue; Lee, Elaine Yuen Phin; Lai, Vincent; Chan, Queenie
2014-07-01
To evaluate the correlation between standardized uptake value (SUV) (tissue metabolism) and apparent diffusion coefficient (ADC) (water diffusivity) in peritoneal metastases. Patients with peritoneal dissemination detected on (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) were prospectively recruited for MRI examinations with informed consent and the study was approved by the local Institutional Review Board. FDG-PET/CT, diffusion-weighted imaging (DWI), MRI, and DWI/MRI images were independently reviewed by two radiologists based on visual analysis. SUVmax/SUVmean and ADCmin/ADCmean were obtained manually by drawing ROIs over the peritoneal metastases on FDG-PET/CT and DWI, respectively. Diagnostic characteristics of each technique were evaluated. Pearson's coefficient and McNemar and Kappa tests were used for statistical analysis. Eight patients were recruited for this prospective study and 34 peritoneal metastases were evaluated. ADCmean was significantly and negatively correlated with SUVmax (r = -0.528, P = 0.001) and SUVmean (r = -0.548, P = 0.001). ADCmin had similar correlation with SUVmax (r = -0.508, P = 0.002) and SUVmean (r = -0.513, P = 0.002). DWI/MRI had high diagnostic performance (accuracy = 98%) comparable to FDG-PET/CT, in peritoneal metastasis detection. Kappa values were excellent for all techniques. There was a significant inverse correlation between SUV and ADC. © 2013 Wiley Periodicals, Inc.
Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.
The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less
Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action
Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.; ...
2016-11-08
The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less
Clarke, Sharon E; Mistry, Dipan; AlThubaiti, Talal; Khan, M Naeem; Morris, David; Bance, Manohar
2017-05-01
The purpose of this study was to evaluate the sensitivity, specificity, and positive and negative predictive values of the diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique in the detection of cholesteatoma at our institution with surgical confirmation in all cases. A retrospective review of 21 consecutive patients who underwent diffusion-weighted PROPELLER magnetic resonance imaging (MRI) on a 1.5T MRI scanner prior to primary or revision/second-look surgery for suspected cholesteatoma from 2009-2012 was performed. Diffusion-weighted PROPELLER had a sensitivity of 75%, specificity of 60%, positive predictive value of 86%, and negative predictive value of 43%. In the 15 patients for whom the presence or absence of cholesteatoma was correctly predicted, there were 2 cases where the reported locations of diffusion restriction did not correspond to the location of the cholesteatoma observed at surgery. On the basis of our retrospective study, we conclude that diffusion-weighted PROPELLER MRI is not sufficiently accurate to replace second look surgery at our institution. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
The Long and Viscous Road: Uncovering Nuclear Diffusion Barriers in Closed Mitosis
Zavala, Eder; Marquez-Lago, Tatiana T.
2014-01-01
Diffusion barriers are effective means for constraining protein lateral exchange in cellular membranes. In Saccharomyces cerevisiae, they have been shown to sustain parental identity through asymmetric segregation of ageing factors during closed mitosis. Even though barriers have been extensively studied in the plasma membrane, their identity and organization within the nucleus remains poorly understood. Based on different lines of experimental evidence, we present a model of the composition and structural organization of a nuclear diffusion barrier during anaphase. By means of spatial stochastic simulations, we propose how specialised lipid domains, protein rings, and morphological changes of the nucleus may coordinate to restrict protein exchange between mother and daughter nuclear lobes. We explore distinct, plausible configurations of these diffusion barriers and offer testable predictions regarding their protein exclusion properties and the diffusion regimes they generate. Our model predicts that, while a specialised lipid domain and an immobile protein ring at the bud neck can compartmentalize the nucleus during early anaphase; a specialised lipid domain spanning the elongated bridge between lobes would be entirely sufficient during late anaphase. Our work shows how complex nuclear diffusion barriers in closed mitosis may arise from simple nanoscale biophysical interactions. PMID:25032937
NASA Astrophysics Data System (ADS)
Guenthner, W. R.; Reiners, P. W.
2009-12-01
Despite widespread use of zircon (U-Th)/He thermochronometry in many geologic applications, our understanding of the kinetics of He diffusion in this system is rudimentary. Previous studies have shown that both radiation damage and crystallographic anisotropy may strongly influence diffusion kinetics and ages. We present observations of zircon He ages from multiple single-grain analyses from both detrital and bedrock suites from a wide variety of locations, showing relationships consistent with effects arising from the interaction of radiation damage and anisotropy. Individual zircons in each suite have experienced the same post-depositional or exhumational t-T history but grains appear to have experienced differential He loss that is correlated with effective uranium (eU) content, a proxy for the relative extent of radiation damage within each suite. Several suites of zircons heated to partial resetting upon burial or that have experienced slow cooling show positive correlations between age and eU. Examples of partially reset detrital samples include Cretaceous Sevier foreland basin sandstones buried to ~6-8 km depth, with ages ranging from 88-309 Ma across an eU range of 215-1453 ppm, and Apennines and Olympics greywackes heated to >~120 °C, showing similar trends. Some slowly-cooled bedrock samples also show positive age-eU correlations, suggesting increasing closure temperature with higher extents of radiation damage. Conversely, zircons from cratonal bedrock samples with high levels of radiation damage—measured as accumulated alpha dosage (in this case >~10^18 α/g)—generally show negative age-eU correlations. We interpret these contrasting age-eU relationships as a manifestation of the interaction of radiation damage and anisotropic diffusion: at low damage, He diffusivity is relatively high and preferentially through c-axis-parallel channels. As suggested by Farley (2007), however, with increasing damage, channels are progressively blocked and He diffusivity decreases. Eventually, a crystal reaches a threshold level (>~10^18 α/g ) wherein radiation damage is so extensive that damage zones become interconnected and He diffusivity increases once again. In order to evaluate these assertions, we conducted a series of step-heating experiments on several pairs of zircon slabs. Individual slabs were crystallographically oriented either orthogonal or parallel to the c-axis and each pair possessed varying degrees of radiation damage. Results from these experiments provide new closure temperature estimates, explain age-eU correlations within a data set, and allow us to construct diffusion models that more accurately describe the t-T history of a given sample.
Aponte, John; Baur, Peter
2014-01-01
Aerial plant surfaces are covered by a lipophilic cuticular membrane (CM) that restricts the transport of water and small solutes. Non-aerial tissues do not exhibit such a barrier. Recent data have shown that large relative to CM hydrophilic agrochemicals were able to pass at high rates through the non-aerial coleoptile. A moderately large hydrophilic solute like PEG 1000 with a mean molar volume of 782 cm(3) mol(-1) was rejected by the non-aerial hypocotyl. Uptake of smaller solutes like urea (46.5 cm(3) mol(-1) ) was fast and with 99% after 1 day. Cut-off size estimations suggest a pore size diameter below 1.5 nm. Aerial and non-aerial CM differ largely in their absolute barrier properties. This difference is related to the absence of embedded cuticular waxes in the non-aerial hypocotyl membrane, which make the CM physically dense and cause low solubility of hydrophilic solutes. The free volume for diffusion at the interface of the non-aerial hypocotyl cuticle to the environment is much larger resulting in higher penetration rates. It is suggested that diffusion through the non-aerial hypocotyl does not proceed in a real channel system with continuous aqueous phase but is more like transport through a filter with restricted diffusion in the pore openings. © 2013 Society of Chemical Industry.
Multi-Scale Multi-Physics Modeling of Matrix Transport Properties in Fractured Shale Reservoirs
NASA Astrophysics Data System (ADS)
Mehmani, A.; Prodanovic, M.
2014-12-01
Understanding the shale matrix flow behavior is imperative in successful reservoir development for hydrocarbon production and carbon storage. Without a predictive model, significant uncertainties in flowback from the formation, the communication between the fracture and matrix as well as proper fracturing practice will ensue. Informed by SEM images, we develop deterministic network models that couple pores from multiple scales and their respective fluid physics. The models are used to investigate sorption hysteresis as an affordable way of inferring the nanoscale pore structure in core scale. In addition, restricted diffusion as a function of pore shape, pore-throat size ratios and network connectivity is computed to make correct interpretation of the 2D NMR maps possible. Our novel pore network models have the ability to match sorption hysteresis measurements without any tuning parameters. The results clarify a common misconception of linking type 3 nitrogen hysteresis curves to only the shale pore shape and show promising sensitivty for nanopore structre inference in core scale. The results on restricted diffusion shed light on the importance of including shape factors in 2D NMR interpretations. A priori "weighting factors" as a function of pore-throat and throat-length ratio are presented and the effect of network connectivity on diffusion is quantitatively assessed. We are currently working on verifying our models with experimental data gathered from the Eagleford formation.
Grunwald, Iris Quasar; Reith, Wolfgang; Kühn, Anna Luisa; Balami, Joyce S; Karp, Kerstin; Fassbender, Klaus; Walter, Silke; Papanagiotou, Panagiotis; Krick, Christoph
2014-06-01
The aim was to determine the incidence of new ischaemic lesions on diffusion-weighted MR imaging (DWI) in a non-randomised cohort of patients after protected and unprotected carotid artery stent placement using the Parodi Anti-Emboli System (PAES). A retrospective review was conducted on 269 patients who received DWI prior to, and 24-72 hours after, stent placement. All patients were enrolled in one centre. Forty patients stented with the PAES device were matched with 229 patients stented without protection (control group). New diffusion restriction on DWI was detected in 25.8% (PAES) versus 32.3% (control group); p=0.64. On average there were 0.7 lesions (PAES) versus 0.8 lesions (control group) per patient. The area of lesions was 1.7 (PAES) versus 5.6 mm2. In a subanalysis of patients (32 PAES, 148 non-protected) with >80% stenosis, the area of restricted diffusion was less when proximal protection was used (p<0.05). The number and area of DWI lesions did not differ on the contralateral, non-stented side. When the PAES system was used, patients were more likely not to have any lesion at all (p=0.028). In high-grade stenosis, the use of the Gore PAES device significantly reduced the area of new DWI lesions and patients were more likely not to have any new DWI lesion at all.
Simmonds, Benjamin; Chacron, Maurice J
2015-01-01
Correlations between the activities of neighboring neurons are observed ubiquitously across systems and species and are dynamically regulated by several factors such as the stimulus' spatiotemporal extent as well as by the brain's internal state. Using the electrosensory system of gymnotiform weakly electric fish, we recorded the activities of pyramidal cell pairs within the electrosensory lateral line lobe (ELL) under spatially localized and diffuse stimulation. We found that both signal and noise correlations were markedly reduced (>40%) under the latter stimulation. Through a network model incorporating key anatomical features of the ELL, we reveal how activation of diffuse parallel fiber feedback from granule cells by spatially diffuse stimulation can explain both the reduction in signal as well as the reduction in noise correlations seen experimentally through independent mechanisms. First, we show that burst-timing dependent plasticity, which leads to a negative image of the stimulus and thereby reduces single neuron responses, decreases signal but not noise correlations. Second, we show trial-to-trial variability in the responses of single granule cells to sensory input reduces noise but not signal correlations. Thus, our model predicts that the same feedback pathway can simultaneously reduce both signal and noise correlations through independent mechanisms. To test this prediction experimentally, we pharmacologically inactivated parallel fiber feedback onto ELL pyramidal cells. In agreement with modeling predictions, we found that inactivation increased both signal and noise correlations but that there was no significant relationship between magnitude of the increase in signal correlations and the magnitude of the increase in noise correlations. The mechanisms reported in this study are expected to be generally applicable to the cerebellum as well as other cerebellum-like structures. We further discuss the implications of such decorrelation on the neural coding strategies used by the electrosensory and by other systems to process natural stimuli.
Ayres, Caroline; Agranonik, Marilyn; Portella, André Krumel; Filion, Françoise; Johnston, Celeste C; Silveira, Patrícia Pelufo
2012-01-01
Intrauterine growth restriction is associated with increased risk for adult metabolic syndrome and cardiovascular disease, which seems to be related to altered food preferences in these individuals later in life. In this study, we sought to understand whether intrauterine growth leads to fetal programming of the hedonic responses to sweet. Sixteen 1-day-old preterm infants received 24% sucrose solution or water and the taste reactivity was filmed and analyzed. Spearman correlation demonstrated a positive correlation between fetal growth and the hedonic response to the sweet solution in the first 15 seconds after the offer (r = 0.864, P = 0.001), without correlation when the solution given is water (r = 0.314, P = 0.455). In fact, the more intense the intrauterine growth restriction, the lower the frequency of the hedonic response observed. IUGR is strongly correlated with the hedonic response to a sweet solution in the first day of life in preterm infants. This is the first evidence in humans to demonstrate that the hedonic response to sweet taste is programmed very early during the fetal life by the degree of intrauterine growth. The altered hedonic response at birth and subsequent differential food preference may contribute to the increased risk of obesity and related disorders in adulthood in intrauterine growth-restricted individuals.
Redundant correlation effect on personalized recommendation
NASA Astrophysics Data System (ADS)
Qiu, Tian; Han, Teng-Yue; Zhong, Li-Xin; Zhang, Zi-Ke; Chen, Guang
2014-02-01
The high-order redundant correlation effect is investigated for a hybrid algorithm of heat conduction and mass diffusion (HHM), through both heat conduction biased (HCB) and mass diffusion biased (MDB) correlation redundancy elimination processes. The HCB and MDB algorithms do not introduce any additional tunable parameters, but keep the simple character of the original HHM. Based on two empirical datasets, the Netflix and MovieLens, the HCB and MDB are found to show better recommendation accuracy for both the overall objects and the cold objects than the HHM algorithm. Our work suggests that properly eliminating the high-order redundant correlations can provide a simple and effective approach to accurate recommendation.
Sajed, Dipti P; Faquin, William C; Carey, Chris; Severson, Eric A; H Afrogheh, Amir; A Johnson, Carl; Blacklow, Stephen C; Chau, Nicole G; Lin, Derrick T; Krane, Jeffrey F; Jo, Vickie Y; Garcia, Joaquín J; Sholl, Lynette M; Aster, Jon C
2017-11-01
NOTCH1 is frequently mutated in adenoid cystic carcinoma (ACC). To test the idea that immunohistochemical (IHC) staining can identify ACCs with NOTCH1 mutations, we performed IHC for activated NOTCH1 (NICD1) in 197 cases diagnosed as ACC from 173 patients. NICD1 staining was positive in 194 cases (98%) in 2 major patterns: subset positivity, which correlated with tubular/cribriform histology; and diffuse positivity, which correlated with a solid histology. To determine the relationship between NICD1 staining and NOTCH1 mutational status, targeted exome sequencing data were obtained on 14 diffusely NICD1-positive ACC specimens from 11 patients and 15 subset NICD1-positive ACC specimens from 15 patients. This revealed NOTCH1 gain-of-function mutations in 11 of 14 diffusely NICD1-positive ACC specimens, whereas all subset-positive tumors had wild-type NOTCH1 alleles. Notably, tumors with diffuse NICD1 positivity were associated with significantly worse outcomes (P=0.003). To determine whether NOTCH1 activation is unique among tumors included in the differential diagnosis with ACC, we performed NICD1 IHC on a cohort of diverse salivary gland and head and neck tumors. High fractions of each of these tumor types were positive for NICD1 in a subset of cells, particularly in basaloid squamous cell carcinomas; however, sequencing of basaloid squamous cell carcinomas failed to identify NOTCH1 mutations. These findings indicate that diffuse NICD1 positivity in ACC correlates with solid growth pattern, the presence of NOTCH1 gain-of-function mutations, and unfavorable outcome, and suggest that staining for NICD1 can be helpful in distinguishing ACC with solid growth patterns from other salivary gland and head and neck tumors.
Nuclear relaxation and critical fluctuations in membranes containing cholesterol
NASA Astrophysics Data System (ADS)
McConnell, Harden
2009-04-01
Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.
Astrocytes and extracellular matrix in extrasynaptic volume transmission.
Vargová, Lýdia; Syková, Eva
2014-10-19
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
NASA Astrophysics Data System (ADS)
Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter
2016-03-01
Cl- plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl- is not well understood. The role of spines in Cl- diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl- changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl- dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl- diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl- extrusion altered Cl- diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl- diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl- diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.
Nonlocal transport in the presence of transport barriers
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, D.
2013-10-01
There is experimental, numerical, and theoretical evidence that transport in plasmas can, under certain circumstances, depart from the standard local, diffusive description. Examples include fast pulse propagation phenomena in perturbative experiments, non-diffusive scaling in L-mode plasmas, and non-Gaussian statistics of fluctuations. From the theoretical perspective, non-diffusive transport descriptions follow from the relaxation of the restrictive assumptions (locality, scale separation, and Gaussian/Markovian statistics) at the foundation of diffusive models. We discuss an alternative class of models able to capture some of the observed non-diffusive transport phenomenology. The models are based on a class of nonlocal, integro-differential operators that provide a unifying framework to describe non- Fickian scale-free transport, and non-Markovian (memory) effects. We study the interplay between nonlocality and internal transport barriers (ITBs) in perturbative transport including cold edge pulses and power modulation. Of particular interest in the nonlocal ``tunnelling'' of perturbations through ITBs. Also, flux-gradient diagrams are discussed as diagnostics to detect nonlocal transport processes in numerical simulations and experiments. Work supported by the US Department of Energy.
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.
2001-01-01
Carrier diffusion and thermal conduction play a fundamental role in the operation of high-power, broad-area semiconductor lasers. Restricted geometry, high pumping level and dynamic instability lead to inhomogeneous spatial distribution of plasma density, temperature, as well as light field, due to strong light-matter interaction. Thus, modeling and simulation of such optoelectronic devices rely on detailed descriptions of carrier dynamics and energy transport in the system. A self-consistent description of lasing and heating in large-aperture, inhomogeneous edge- or surface-emitting lasers (VCSELs) require coupled diffusion equations for carrier density and temperature. In this paper, we derive such equations from the Boltzmann transport equation for the carrier distributions. The derived self- and mutual-diffusion coefficients are in general nonlinear functions of carrier density and temperature including many-body interactions. We study the effects of many-body interactions on these coefficients, as well as the nonlinearity of these coefficients for large-area VCSELs. The effects of mutual diffusions on carrier and temperature distributions in gain-guided VCSELs will be also presented.
Metabolic Compartmentation – A System Level Property of Muscle Cells
Saks, Valdur; Beraud, Nathalie; Wallimann, Theo
2008-01-01
Problems of quantitative investigation of intracellular diffusion and compartmentation of metabolites are analyzed. Principal controversies in recently published analyses of these problems for the living cells are discussed. It is shown that the formal theoretical analysis of diffusion of metabolites based on Fick's equation and using fixed diffusion coefficients for diluted homogenous aqueous solutions, but applied for biological systems in vivo without any comparison with experimental results, may lead to misleading conclusions, which are contradictory to most biological observations. However, if the same theoretical methods are used for analysis of actual experimental data, the apparent diffusion constants obtained are orders of magnitude lower than those in diluted aqueous solutions. Thus, it can be concluded that local restrictions of diffusion of metabolites in a cell are a system-level properties caused by complex structural organization of the cells, macromolecular crowding, cytoskeletal networks and organization of metabolic pathways into multienzyme complexes and metabolons. This results in microcompartmentation of metabolites, their channeling between enzymes and in modular organization of cellular metabolic networks. The perspectives of further studies of these complex intracellular interactions in the framework of Systems Biology are discussed. PMID:19325782
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbanck, Sylvia, E-mail: sylvia.verbanck@uzbrussel.be; Hanon, Shane; Schuermans, Daniel
Purpose: To assess the effect of radiation therapy on lung function over the course of 3 years. Methods and Materials: Evolution of restrictive and obstructive lung function parameters was investigated in 108 breast cancer participants in a randomized, controlled trial comparing conventional radiation therapy (CR) and hypofractionated tomotherapy (TT) (age at inclusion ranging 32-81 years). Spirometry, plethysmography, and hemoglobin-corrected diffusing capacity were assessed at baseline and after 3 months and 1, 2, and 3 years. Natural aging was accounted for by considering all lung function parameters in terms of percent predicted values using the most recent reference values for women aged up to 80 years. Results:more » In the patients with negligible history of respiratory disease or smoking (n=77), the greatest rate of functional decline was observed during the initial 3 months, this acute decrease being more marked in the CR versus the TT arm. During the remainder of the 3-year follow-up period, values (in terms of percent predicted) were maintained (diffusing capacity) or continued to decline at a slower rate (forced vital capacity). However, the average decline of the restrictive lung function parameters over a 3-year period did not exceed 9% predicted in either the TT or the CR arm. Obstructive lung function parameters remained unaffected throughout. Including also the 31 patients with a history of respiratory disease or more than 10 pack-years showed a very similar restrictive pattern. Conclusions: In women with breast cancer, both conventional radiation therapy and hypofractionated tomotherapy induce small but consistent restrictive lung patterns over the course of a 3-year period, irrespective of baseline respiratory status or smoking history. The fastest rate of lung function decline generally occurred in the first 3 months.« less
k-space image correlation to probe the intracellular dynamics of gold nanoparticles
NASA Astrophysics Data System (ADS)
Bouzin, M.; Sironi, L.; Chirico, G.; D'Alfonso, L.; Inverso, D.; Pallavicini, P.; Collini, M.
2016-04-01
The collective action of dynein, kinesin and myosin molecular motors is responsible for the intracellular active transport of cargoes, vesicles and organelles along the semi-flexible oriented filaments of the cytoskeleton. The overall mobility of the cargoes upon binding and unbinding to motor proteins can be modeled as an intermittency between Brownian diffusion in the cell cytoplasm and active ballistic excursions along actin filaments or microtubules. Such an intermittent intracellular active transport, exhibited by star-shaped gold nanoparticles (GNSs, Gold Nanostars) upon internalization in HeLa cancer cells, is investigated here by combining live-cell time-lapse confocal reflectance microscopy and the spatio-temporal correlation, in the reciprocal Fourier space, of the acquired image sequences. At first, the analytical theoretical framework for the investigation of a two-state intermittent dynamics is presented for Fourier-space Image Correlation Spectroscopy (kICS). Then simulated kICS correlation functions are employed to evaluate the influence of, and sensitivity to, all the kinetic and dynamic parameters the model involves (the transition rates between the diffusive and the active transport states, the diffusion coefficient and drift velocity of the imaged particles). The optimal procedure for the analysis of the experimental data is outlined and finally exploited to derive whole-cell maps for the parameters underlying the GNSs super-diffusive dynamics. Applied here to the GNSs subcellular trafficking, the proposed kICS analysis can be adopted for the characterization of the intracellular (super-) diffusive dynamics of any fluorescent or scattering biological macromolecule.
Loi, Richard Q.; Leyden, Kelly M.; Balachandra, Akshara; Uttarwar, Vedang; Hagler, Donald J.; Paul, Brianna M.; Dale, Anders M.; White, Nathan S.; McDonald, Carrie R.
2016-01-01
Objective Diffusion tensor imaging (DTI) has become a popular tool for delineating the location and extent of white matter injury in temporal lobe epilepsy (TLE). However, DTI yields nonspecific measures that are confounded by changes occurring within both the intracellular and extracellular environments. This study investigated whether an advanced diffusion method, restriction spectrum imaging (RSI) could provide a more robust measure of white matter injury in TLE relative to DTI due to RSI’s ability to separate intra-axonal diffusion (i.e., neurite density; ND) from diffusion associated with extra-axonal factors (e.g., inflammation; crossing fibers). Methods RSI and DTI scans were obtained on 21 patients with TLE and 11 age-matched controls. RSI-derived maps of ND, isotropic hindered (IH) and free (IF) water, and crossing fibers (CF) were compared to DTI-derived fractional anisotropy (FA) maps. Voxelwise and tract-based analyses were performed comparing patients with TLE to controls on each diffusion metric. Results Reductions in FA were seen primarily in frontotemporal white matter in TLE and were most pronounced proximal to the seizure focus. Reductions in ND corresponded to those seen in the FA maps; however, ND reductions were greater in magnitude, more lateralized to the epileptogenic hemisphere, and showed a broader pattern. Increases in IF/IH and effects from CFs also contributed to reduced FA in the ipsilateral parahippocampal cingulum and fornix, with decreases in IH extending into extratemporal regions. Reduced ND of the uncinate fasciculus was associated with longer disease duration, whereas FA was not associated with any clinical variables. Significance RSI may provide a more specific measure of white matter pathology in TLE, distinguishing regions primarily affected by axonal/myelin loss from those where CFs and increases in extracellular water also play a role. By providing a more specific measure of axonal/myelin loss, RSI-derived ND may better reflect overall white matter burden in epilepsy. PMID:27735051
Loi, Richard Q; Leyden, Kelly M; Balachandra, Akshara; Uttarwar, Vedang; Hagler, Donald J; Paul, Brianna M; Dale, Anders M; White, Nathan S; McDonald, Carrie R
2016-11-01
Diffusion tensor imaging (DTI) has become a popular tool for delineating the location and extent of white matter injury in temporal lobe epilepsy (TLE). However, DTI yields nonspecific measures that are confounded by changes occurring within both the intracellular and extracellular environments. This study investigated whether an advanced diffusion method, restriction spectrum imaging (RSI) could provide a more robust measure of white matter injury in TLE relative to DTI due to RSI's ability to separate intraaxonal diffusion (i.e., neurite density; ND) from diffusion associated with extraaxonal factors (e.g., inflammation; crossing fibers). RSI and DTI scans were obtained on 21 patients with TLE and 11 age-matched controls. RSI-derived maps of ND, isotropic-hindered (IH) and isotropic-free (IF) water, and crossing fibers (CFs) were compared to DTI-derived fractional anisotropy (FA) maps. Voxelwise and tract-based analyses were performed comparing patients with TLE to controls on each diffusion metric. Reductions in FA were seen primarily in frontotemporal white matter in TLE, and they were most pronounced proximal to the seizure focus. Reductions in ND corresponded to those seen in the FA maps; however, ND reductions were greater in magnitude, more lateralized to the epileptogenic hemisphere, and showed a broader pattern. Increases in IF/IH and effects from CFs also contributed to reduced FA in the ipsilateral parahippocampal cingulum and fornix, with decreases in IH extending into extratemporal regions. Reduced ND of the uncinate fasciculus was associated with longer disease duration, whereas FA was not associated with any clinical variables. RSI may provide a more specific measure of white matter pathology in TLE, distinguishing regions primarily affected by axonal/myelin loss from those where CFs and increases in extracellular water also play a role. By providing a more specific measure of axonal/myelin loss, RSI-derived ND may better reflect overall white matter burden in epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Reynolds, Alexandra S; Guo, Xiaotao; Matthews, Elizabeth; Brodie, Daniel; Rabbani, Leroy E; Roh, David J; Park, Soojin; Claassen, Jan; Elkind, Mitchell S V; Zhao, Binsheng; Agarwal, Sachin
2017-08-01
Traditional predictors of neurological prognosis after cardiac arrest are unreliable after targeted temperature management. Absence of pupillary reflexes remains a reliable predictor of poor outcome. Diffusion-weighted imaging has emerged as a potential predictor of recovery, and here we compare imaging characteristics to pupillary exam. We identified 69 patients who had MRIs within seven days of arrest and used a semi-automated algorithm to perform quantitative volumetric analysis of apparent diffusion coefficient (ADC) sequences at various thresholds. Area under receiver operating characteristic curves (ROC-AUC) were estimated to compare predictive values of quantitative MRI with pupillary exam at days 3, 5 and 7 post-arrest, for persistence of coma and functional outcomes at discharge. Cerebral Performance Category scores of 3-4 were considered poor outcome. Excluding patients where life support was withdrawn, ≥2.8% diffusion restriction of the entire brain at an ADC of ≤650×10 -6 m 2 /s was 100% specific and 68% sensitive for failure to wake up from coma before discharge. The ROC-AUC of ADC changes at ≤450×10 -6 mm 2 /s and ≤650×10 -6 mm 2 /s were significantly superior in predicting failure to wake up from coma compared to bilateral absence of pupillary reflexes. Among survivors, >0.01% of diffusion restriction of the entire brain at an ADC ≤450×10 -6 m 2 /s was 100% specific and 46% sensitive for poor functional outcome at discharge. The ROC curve predicting poor functional outcome at ADC ≤450×10 -6 mm 2 /s had an AUC of 0.737 (0.574-0.899, p=0.04). Post-anoxic diffusion changes using quantitative brain MRI may aid in predicting persistent coma and poor functional outcomes at hospital discharge. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kondrashova, Daria; Valiullin, Rustem; Kärger, Jörg; Bunde, Armin
2017-07-01
Nanoporous silicon consisting of tubular pores imbedded in a silicon matrix has found many technological applications and provides a useful model system for studying phase transitions under confinement. Recently, a model for mass transfer in these materials has been elaborated [Kondrashova et al., Sci. Rep. 7, 40207 (2017)], which assumes that adjacent channels can be connected by "bridges" (with probability pbridge) which allows diffusion perpendicular to the channels. Along the channels, diffusion can be slowed down by "necks" which occur with probability pneck. In this paper we use Monte-Carlo simulations to study diffusion along the channels and perpendicular to them, as a function of pbridge and pneck, and find remarkable correlations between the diffusivities in longitudinal and radial directions. For clarifying the diffusivity in radial direction, which is governed by the concentration of bridges, we applied percolation theory. We determine analytically how the critical concentration of bridges depends on the size of the system and show that it approaches zero in the thermodynamic limit. Our analysis suggests that the critical properties of the model, including the diffusivity in radial direction, are in the universality class of two-dimensional lattice percolation, which is confirmed by our numerical study.
Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H
2018-03-23
The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.
Wawrezinieck, Laure; Rigneault, Hervé; Marguet, Didier; Lenne, Pierre-François
2005-12-01
To probe the complexity of the cell membrane organization and dynamics, it is important to obtain simple physical observables from experiments on live cells. Here we show that fluorescence correlation spectroscopy (FCS) measurements at different spatial scales enable distinguishing between different submicron confinement models. By plotting the diffusion time versus the transverse area of the confocal volume, we introduce the so-called FCS diffusion law, which is the key concept throughout this article. First, we report experimental FCS diffusion laws for two membrane constituents, which are respectively a putative raft marker and a cytoskeleton-hindered transmembrane protein. We find that these two constituents exhibit very distinct behaviors. To understand these results, we propose different models, which account for the diffusion of molecules either in a membrane comprising isolated microdomains or in a meshwork. By simulating FCS experiments for these two types of organization, we obtain FCS diffusion laws in agreement with our experimental observations. We also demonstrate that simple observables derived from these FCS diffusion laws are strongly related to confinement parameters such as the partition of molecules in microdomains and the average confinement time of molecules in a microdomain or a single mesh of a meshwork.
Mardor, Yael; Pfeffer, Raphael; Spiegelmann, Roberto; Roth, Yiftach; Maier, Stephan E; Nissim, Ouzi; Berger, Raanan; Glicksman, Ami; Baram, Jacob; Orenstein, Arie; Cohen, Jack S; Tichler, Thomas
2003-03-15
To study the feasibility of using diffusion-weighted magnetic resonance imaging (DWMRI), which is sensitive to the diffusion of water molecules in tissues, for detection of early tumor response to radiation therapy; and to evaluate the additional information obtained from high DWMRI, which is more sensitive to low-mobility water molecules (such as intracellular or bound water), in increasing the sensitivity to response. Standard MRI and DWMRI were acquired before and at regular intervals after initiating radiation therapy for 10 malignant brain lesions in eight patients. One week posttherapy, three of six responding lesions showed an increase in the conventional DWMRI parameters. Another three responding lesions showed no change. Four nonresponding lesions showed a decrease or no change. The early change in the diffusion parameters was enhanced by using high DWMRI. When high DWMRI was used, all responding lesions showed increase in the diffusion parameter and all nonresponding lesions showed no change or decrease. Response was determined by standard MRI 7 weeks posttherapy. The changes in the diffusion parameters measured 1 week after initiating treatment were correlated with later tumor response or no response (P <.006). This correlation was increased to P <.0006 when high DWMRI was used. The significant correlation between changes in diffusion parameters 1 week after initiating treatment and later tumor response or no response suggests the feasibility of using DWMRI for early, noninvasive prediction of tumor response. The ability to predict response may enable early termination of treatment in nonresponding patients, prevent additional toxicity, and allow for early changes in treatment.
Effect of diffusion time on liver DWI: an experimental study of normal and fibrotic livers.
Zhou, Iris Y; Gao, Darwin S; Chow, April M; Fan, Shujuan; Cheung, Matthew M; Ling, Changchun; Liu, Xiaobing; Cao, Peng; Guo, Hua; Man, Kwan; Wu, Ed X
2014-11-01
To investigate whether diffusion time (Δ) affects the diffusion measurements in liver and their sensitivity in detecting fibrosis. Liver fibrosis was induced in Sprague-Dawley rats (n = 12) by carbon tetrachloride (CCl(4)) injections. Diffusion-weighted MRI was performed longitudinally during 8-week CCl(4) administration at 7 Tesla (T) using single-shot stimulated-echo EPI with five b-values (0 to 1000 s/mm(2)) and three Δs. Apparent diffusion coefficient (ADC) and true diffusion coefficient (D(true)) were calculated by using all five b-values and large b-values, respectively. ADC and D(true) decreased with Δ for both normal and fibrotic liver at each time point. ADC and D(true) also generally decreased with the time after CCl(4) insult. The reductions in D(true) between 2-week and 4-week CCl(4) insult were larger than the ADC reductions at all Δs. At each time point, D(true) measured with long Δ (200 ms) detected the largest changes among the 3 Δs examined. Histology revealed gradual collagen deposition and presence of intracellular fat vacuoles after CCl(4) insult. Our results demonstrated the Δ dependent diffusion measurements, indicating restricted diffusion in both normal and fibrotic liver. D(true) measured with long Δ acted as a more sensitive index of the pathological alterations in liver microstructure during fibrogenesis. Copyright © 2013 Wiley Periodicals, Inc.
Maxwell-Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Jain, Richa Naja; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green-Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF-KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, ĐLi-K which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2nd law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.
Inferring Diffusion Dynamics from FCS in Heterogeneous Nuclear Environments
Tsekouras, Konstantinos; Siegel, Amanda P.; Day, Richard N.; Pressé, Steve
2015-01-01
Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show—first using synthetic data—that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell’s nucleus as well as 2) in the cell’s cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. PMID:26153697
Measurement and modeling of solar irradiance components on horizontal and tilted planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padovan, Andrea; Col, Davide del
2010-12-15
In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurementsmore » taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)« less
Rumor spreading model with noise interference in complex social networks
NASA Astrophysics Data System (ADS)
Zhu, Liang; Wang, Youguo
2017-03-01
In this paper, a modified susceptible-infected-removed (SIR) model has been proposed to explore rumor diffusion on complex social networks. We take variation of connectivity into consideration and assume the variation as noise. On the basis of related literature on virus networks, the noise is described as standard Brownian motion while stochastic differential equations (SDE) have been derived to characterize dynamics of rumor diffusion both on homogeneous networks and heterogeneous networks. Then, theoretical analysis on homogeneous networks has been demonstrated to investigate the solution of SDE model and the steady state of rumor diffusion. Simulations both on Barabási-Albert (BA) network and Watts-Strogatz (WS) network display that the addition of noise accelerates rumor diffusion and expands diffusion size, meanwhile, the spreading speed on BA network is much faster than on WS network under the same noise intensity. In addition, there exists a rumor diffusion threshold in statistical average meaning on homogeneous network which is absent on heterogeneous network. Finally, we find a positive correlation between peak value of infected individuals and noise intensity while a negative correlation between rumor lifecycle and noise intensity overall.
Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng
2013-08-01
Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.
Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; ...
2014-12-01
X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.
2015-01-01
Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis. PMID:26249347
Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.
2014-01-01
X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions. PMID:25453071
Multiple Diffusion Mechanisms Due to Nanostructuring in Crowded Environments
Sanabria, Hugo; Kubota, Yoshihisa; Waxham, M. Neal
2007-01-01
One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules. PMID:17040979
Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12
Chen, Chi; Lu, Ziheng; Ciucci, Francesco
2017-01-01
Understanding Li diffusion in solid conductors is essential for the next generation Li batteries. Here we show that density-based clustering of the trajectories computed using molecular dynamics simulations helps elucidate the Li diffusion mechanism within the Li7La3Zr2O12 (LLZO) crystal lattice. This unsupervised learning method recognizes lattice sites, is able to give the site type, and can identify Li hopping events. Results show that, while the cubic LLZO has a much higher hopping rate compared to its tetragonal counterpart, most of the Li hops in the cubic LLZO do not contribute to the diffusivity due to the dominance of back-and-forth type jumps. The hopping analysis and local Li configuration statistics give evidence that Li diffusivity in cubic LLZO is limited by the low vacancy concentration. The hopping statistics also shows uncorrelated Poisson-like diffusion for Li in the cubic LLZO, and correlated diffusion for Li in the tetragonal LLZO in the temporal scale. Further analysis of the spatio-temporal correlation using site-to-site mutual information confirms the weak site dependence of Li diffusion in the cubic LLZO as the origin for the uncorrelated diffusion. This work puts forward a perspective on combining machine learning and information theory to interpret results of molecular dynamics simulations. PMID:28094317
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; ...
2015-07-28
Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. In addition, these methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less
Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12
NASA Astrophysics Data System (ADS)
Chen, Chi; Lu, Ziheng; Ciucci, Francesco
2017-01-01
Understanding Li diffusion in solid conductors is essential for the next generation Li batteries. Here we show that density-based clustering of the trajectories computed using molecular dynamics simulations helps elucidate the Li diffusion mechanism within the Li7La3Zr2O12 (LLZO) crystal lattice. This unsupervised learning method recognizes lattice sites, is able to give the site type, and can identify Li hopping events. Results show that, while the cubic LLZO has a much higher hopping rate compared to its tetragonal counterpart, most of the Li hops in the cubic LLZO do not contribute to the diffusivity due to the dominance of back-and-forth type jumps. The hopping analysis and local Li configuration statistics give evidence that Li diffusivity in cubic LLZO is limited by the low vacancy concentration. The hopping statistics also shows uncorrelated Poisson-like diffusion for Li in the cubic LLZO, and correlated diffusion for Li in the tetragonal LLZO in the temporal scale. Further analysis of the spatio-temporal correlation using site-to-site mutual information confirms the weak site dependence of Li diffusion in the cubic LLZO as the origin for the uncorrelated diffusion. This work puts forward a perspective on combining machine learning and information theory to interpret results of molecular dynamics simulations.
The Proper Sequence for Correcting Correlation Coefficients for Range Restriction and Unreliability.
ERIC Educational Resources Information Center
Stauffer, Joseph M.; Mendoza, Jorge L.
2001-01-01
Uses classical test theory to show that it is the nature of the range restriction, rather than the nature of the available reliability coefficient, that determines the sequence for applying corrections for range restriction and unreliability. Shows how the common rule of thumb for choosing the sequence is tenable only when the correction does not…
Cu-Zn binary phase diagram and diffusion couples
NASA Technical Reports Server (NTRS)
Mccoy, Robert A.
1992-01-01
The objectives of this paper are to learn: (1) what information a binary phase diagram can yield; (2) how to construct and heat treat a simple diffusion couple; (3) how to prepare a metallographic sample; (4) how to operate a metallograph; (5) how to correlate phases found in the diffusion couple with phases predicted by the phase diagram; (6) how diffusion couples held at various temperatures could be used to construct a phase diagram; (7) the relation between the thickness of an intermetallic phase layer and the diffusion time; and (8) the effect of one species of atoms diffusing faster than another species in a diffusion couple.
Qing, De-Kui; Mengüç, M Pinar; Payne, Fred A; Danao, Mary-Grace C
2003-06-01
Fluorescence correlation spectroscopy (FCS) is adapted for a new procedure to detect trace amounts of Escherichia coli in water. The present concept is based on convective diffusion rather than Brownian diffusion and employs confocal microscopy as in traditional FCS. With this system it is possible to detect concentrations as small as 1.5 x 10(5) E. coli per milliliter (2.5 x 10(-16) M). This concentration corresponds to an approximately 1.0-nM level of Rhodamine 6G dyes. A detailed analysis of the optical system is presented, and further improvements for the procedure are discussed.
Zhu, Yuanzhao; Zheng, Junjun; Zhang, Ling; Zeng, Zhenguo; Zhu, Min; Li, Xiaobin; Lou, Xiaoliang; Wan, Hui; Hong, Daojun
2016-04-18
Reversible splenial lesion syndrome (RESLES) is a disorder radiologically characterized by reversible lesion in the splenium of the corpus callosum (SCC). Most of patients with RESLES associated with encephalitis/encephalopathy were identified in Japanese population, but almost no Chinese patients were diagnosed as RESLES associated with encephalitis/encephalopathy. Possible patients with reversible isolated SCC lesions were retrieved from January 2012 to July 2015 using keyword "restricted diffusion and isolated SCC lesion" in MRI report system from a large academic center. The clinical, laboratory and radiological data were summarized. A total of 15 encephalitis/encephalopathy patients (9 males and 6 females) were identified with a reversible isolated SCC lesion. Except for 13 patients with fever symptom, 8 patients also had cold symptoms before the onset of neurological symptoms. The neurological symptoms included headache, vertigo, seizure, disturbance of consciousness, and delirious behavior. Thirteen patients completely recovered within 1 month, but 2 patients who were subjected to mechanical ventilation had persistent neurological deficits. The initial MRI features showed isolated ovoid or extending SCC lesions with homogeneous hyperintense on diffusion weighted imaging (DWI) and decreased apparent diffusion coefficient (ADC) values. The follow-up MRI revealed that isolated SCC lesions with diffuse restriction disappeared at 10 to 32 days after the initial MRI study. Fractional anisotropy map revealed the decreased value of SCC lesion in a severe case with poor prognosis. RESLES associated with encephalitis/encephalopathy is a reversible syndrome with an excellent prognosis in most patients, while a few patients required ventilator supporting at the early stage might have severe neurological sequelae. Reversible signal changes on DWI and ADC are identified in all patients, but fractional anisotropy values can be decreased in severe patient with neurological sequelae.
Sujau, Ibrahim; Ng, Chin Teck; Sthaneshwar, Pavai; Sockalingam, Sargunan; Cheah, Tien Eang; Yahya, Fariz; Jasmin, Raja
2015-05-01
To evaluate the clinical and antibody profile of systemic sclerosis (SSc) in a Malaysian cohort. Consecutive patients with SSc in University Malaya Medical Centre from March to November 2012 were included in this study. In addition to clinical characterization, all subjects underwent autoantibody testing using Euroline immunoblot assay. The association between clinical features and autoantibody profile was evaluated. There were 31, predominantly Chinese (45.2%), subjects. Limited cutaneous disease was the most common subtype (71%). Raynaud's phenomenon was the most commonly observed feature (83.9%). Nine (29%) had esophageal dysmotility symptoms and 23 (74.2%), including all patients with diffuse SSc, had symptoms of gastro-esophageal reflux disease (GERD). Restrictive pattern on pulmonary function test and evidence of lung fibrosis were seen in more than 70% of patients. Echocardiographic evidence of pulmonary arterial hypertension was seen in 58.1%. Telangiectasia, calcinosis, digital ulcers, digital pulp loss or pitting were seen more commonly in the diffuse subtype. The two most prevalent autoantibodies were anti-Scl-70 and anti-Ro-52. The presence of anti-Scl-70 was significantly associated with restrictive lung disease (P = 0.05). Anti-Ro-52 was associated with control subjects with other autoimmune diseases (P = 0.043). The presence of anti-PM-Scl-75 was associated with overlap syndrome (P = 0.032). Patients with anticentromere antibodies were more likely to have vasculitic rash (P = 0.012). In Malaysia, SSc most commonly affects the Chinese. Limited cutaneous is more common than diffuse subtype. Features of CREST (calcinosis, Reynaud disease, esophageal dysmotility, sclerodactyly, telangiectasia) are more commonly observed in the diffuse cutaneous subgroup. Anti-Scl-70 and anti-Ro-52 antibodies are promising biomarkers for pulmonary involvement in SSc. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Aye, Tandy; Barnea-Goraly, Naama; Ambler, Christian; Hoang, Sherry; Schleifer, Kristin; Park, Yaena; Drobny, Jessica; Wilson, Darrell M.; Reiss, Allan L.; Buckingham, Bruce A.
2012-01-01
OBJECTIVE To detect clinical correlates of cognitive abilities and white matter (WM) microstructural changes using diffusion tensor imaging (DTI) in young children with type 1 diabetes. RESEARCH DESIGN AND METHODS Children, ages 3 to <10 years, with type 1 diabetes (n = 22) and age- and sex-matched healthy control subjects (n = 14) completed neurocognitive testing and DTI scans. RESULTS Compared with healthy controls, children with type 1 diabetes had lower axial diffusivity (AD) values (P = 0.046) in the temporal and parietal lobe regions. There were no significant differences between groups in fractional anisotropy and radial diffusivity (RD). Within the diabetes group, there was a significant, positive correlation between time-weighted HbA1c and RD (P = 0.028). A higher, time-weighted HbA1c value was significantly correlated with lower overall intellectual functioning measured by the full-scale intelligence quotient (P = 0.03). CONCLUSIONS Children with type 1 diabetes had significantly different WM structure (as measured by AD) when compared with controls. In addition, WM structural differences (as measured by RD) were significantly correlated with their HbA1c values. Additional studies are needed to determine if WM microstructural differences in young children with type 1 diabetes predict future neurocognitive outcome. PMID:22966090
Gangolli, Mihika; Holleran, Laurena; Kim, Joong Hee; Stein, Thor D.; Alvarez, Victor; McKee, Ann C.; Brody, David L.
2017-01-01
Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250 × 250 × 500 micron spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r = 0.94 for the primary fiber direction and r = 0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing between architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter. PMID:28365421
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Sibeck, David G.
2013-01-01
The interaction of electrons with coherent chorus waves in the random phase approximation can be described as quasi-linear diffusion for waves with amplitudes below some limit. The limit is calculated for relativistic and non-relativistic electrons. For stronger waves, the friction force should be taken into account.
The impact of natural transformation on adaptation in spatially structured bacterial populations.
Moradigaravand, Danesh; Engelstädter, Jan
2014-06-20
Recent studies have demonstrated that natural transformation and the formation of highly structured populations in bacteria are interconnected. In spite of growing evidence about this connection, little is known about the dynamics of natural transformation in spatially structured bacterial populations. In this work, we model the interdependency between the dynamics of the bacterial gene pool and those of environmental DNA in space to dissect the effect of transformation on adaptation. Our model reveals that even with only a single locus under consideration, transformation with a free DNA fragment pool results in complex adaptation dynamics that do not emerge in previous models focusing only on the gene shuffling effect of transformation at multiple loci. We demonstrate how spatial restriction on population growth and DNA diffusion in the environment affect the impact of transformation on adaptation. We found that in structured bacterial populations intermediate DNA diffusion rates predominantly cause transformation to impede adaptation by spreading deleterious alleles in the population. Overall, our model highlights distinctive evolutionary consequences of bacterial transformation in spatially restricted compared to planktonic bacterial populations.
Neuroimaging features in subacute encephalopathy with seizures in alcoholics (SESA syndrome)
Drake-Pérez, Marta; de Lucas, Enrique Marco; Lyo, John; Fernández-Torre, José L.
2017-01-01
Purpose To describe the neuroimaging findings in subacute encephalopathy with seizures in alcoholics (SESA syndrome). Methods We reviewed all cases reported previously, as well as 4 patients diagnosed in our center. We included a total of 8 patients. All subjects had clinical and EEG findings compatible with SESA syndrome and at least one MRI study that did not show other underlying condition that could be responsible for the clinical presentation. Results Initial MRI studies revealed the following features: cortical-subcortical areas of increased T2/FLAIR signal and restricted diffusion (6 patients), hyperperfusion (3 patients), atrophy (5 patients), chronic microvascular ischemic changes (4 patients). Follow-up MRI was performed in half of the patients, all showing a resolution of the hyperintense lesions, but developing focal atrophic changes in 75%. Conclusions SESA syndrome should be included among the alcohol-related encephalopathies. Its radiological features include transient cortical-subcortical T2-hyperintense areas with restricted diffusion (overlapping the typical findings in status epilepticus) observed in a patient with atrophy and chronic multifocal vascular lesions. PMID:27391464
Lin, Wei-Che; Chou, Kun-Hsien; Chen, Chao-Long; Chen, Hsiu-Ling; Lu, Cheng-Hsien; Li, Shau-Hsuan; Huang, Chu-Chung; Lin, Ching-Po; Cheng, Yu-Fan
2014-01-01
Cerebral edema is the common pathogenic mechanism for cognitive impairment in minimal hepatic encephalopathy. Whether complete reversibility of brain edema, cognitive deficits, and their associated imaging can be achieved after liver transplantation remains an open question. To characterize white matter integrity before and after liver transplantation in patients with minimal hepatic encephalopathy, multiple diffusivity indices acquired via diffusion tensor imaging was applied. Twenty-eight patients and thirty age- and sex-matched healthy volunteers were included. Multiple diffusivity indices were obtained from diffusion tensor images, including mean diffusivity, fractional anisotropy, axial diffusivity and radial diffusivity. The assessment was repeated 6-12 month after transplantation. Differences in white matter integrity between groups, as well as longitudinal changes, were evaluated using tract-based spatial statistical analysis. Correlation analyses were performed to identify first scan before transplantation and interval changes among the neuropsychiatric tests, clinical laboratory tests, and diffusion tensor imaging indices. After transplantation, decreased water diffusivity without fractional anisotropy change indicating reversible cerebral edema was found in the left anterior cingulate, claustrum, postcentral gyrus, and right corpus callosum. However, a progressive decrease in fractional anisotropy and an increase in radial diffusivity suggesting demyelination were noted in temporal lobe. Improved pre-transplantation albumin levels and interval changes were associated with better recoveries of diffusion tensor imaging indices. Improvements in interval diffusion tensor imaging indices in the right postcentral gyrus were correlated with visuospatial function score correction. In conclusion, longitudinal voxel-wise analysis of multiple diffusion tensor imaging indices demonstrated different white matter changes in minimal hepatic encephalopathy patients. Transplantation improved extracellular cerebral edema and the results of associated cognition tests. However, white matter demyelination may advance in temporal lobe.
Reduced xenon diffusion for quantitative lung study--the role of SF(6)
NASA Technical Reports Server (NTRS)
Mair, R. W.; Hoffmann, D.; Sheth, S. A.; Wong, G. P.; Butler, J. P.; Patz, S.; Topulos, G. P.; Walsworth, R. L.
2000-01-01
The large diffusion coefficients of gases result in significant spin motion during the application of gradient pulses that typically last a few milliseconds in most NMR experiments. In restricted environments, such as the lung, this rapid gas diffusion can lead to violations of the narrow pulse approximation, a basic assumption of the standard Stejskal-Tanner NMR method of diffusion measurement. We therefore investigated the effect of a common, biologically inert buffer gas, sulfur hexafluoride (SF(6)), on (129)Xe NMR and diffusion. We found that the contribution of SF(6) to (129)Xe T(1) relaxation in a 1:1 xenon/oxygen mixture is negligible up to 2 bar of SF(6) at standard temperature. We also measured the contribution of SF(6) gas to (129)Xe T(2) relaxation, and found it to scale inversely with pressure, with this contribution approximately equal to 1 s for 1 bar SF(6) pressure and standard temperature. Finally, we found the coefficient of (129)Xe diffusion through SF(6) to be approximately 4.6 x 10(-6) m(2)s(-1) for 1 bar pressure of SF(6) and standard temperature, which is only 1.2 times smaller than the (129)Xe self diffusion coefficient for 1 bar (129)Xe pressure and standard temperature. From these measurements we conclude that SF(6) will not sufficiently reduce (129)Xe diffusion to allow accurate surface-area/volume ratio measurements in human alveoli using time-dependent gas diffusion NMR.
Hoffman, Matthew P; Taylor, Erik N; Aninwene, George E; Sadayappan, Sakthivel; Gilbert, Richard J
2018-02-01
Contraction of muscular tissue requires the synchronized shortening of myofibers arrayed in complex geometrical patterns. Imaging such myofiber patterns with diffusion-weighted MRI reveals architectural ensembles that underlie force generation at the organ scale. Restricted proton diffusion is a stochastic process resulting from random translational motion that may be used to probe the directionality of myofibers in whole tissue. During diffusion-weighted MRI, magnetic field gradients are applied to determine the directional dependence of proton diffusion through the analysis of a diffusional probability distribution function (PDF). The directions of principal (maximal) diffusion within the PDF are associated with similarly aligned diffusion maxima in adjacent voxels to derive multivoxel tracts. Diffusion-weighted MRI with tractography thus constitutes a multiscale method for depicting patterns of cellular organization within biological tissues. We provide in this review, details of the method by which generalized Q-space imaging is used to interrogate multidimensional diffusion space, and thereby to infer the organization of muscular tissue. Q-space imaging derives the lowest possible angular separation of diffusion maxima by optimizing the conditions by which magnetic field gradients are applied to a given tissue. To illustrate, we present the methods and applications associated with Q-space imaging of the multiscale myoarchitecture associated with the human and rodent tongues. These representations emphasize the intricate and continuous nature of muscle fiber organization and suggest a method to depict structural "blueprints" for skeletal and cardiac muscle tissue. © 2016 Wiley Periodicals, Inc.
An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier
Breslow, David K.; Koslover, Elena F.; Seydel, Federica; Spakowitz, Andrew J.
2013-01-01
Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia. PMID:24100294
Fast and accurate Monte Carlo sampling of first-passage times from Wiener diffusion models.
Drugowitsch, Jan
2016-02-11
We present a new, fast approach for drawing boundary crossing samples from Wiener diffusion models. Diffusion models are widely applied to model choices and reaction times in two-choice decisions. Samples from these models can be used to simulate the choices and reaction times they predict. These samples, in turn, can be utilized to adjust the models' parameters to match observed behavior from humans and other animals. Usually, such samples are drawn by simulating a stochastic differential equation in discrete time steps, which is slow and leads to biases in the reaction time estimates. Our method, instead, facilitates known expressions for first-passage time densities, which results in unbiased, exact samples and a hundred to thousand-fold speed increase in typical situations. In its most basic form it is restricted to diffusion models with symmetric boundaries and non-leaky accumulation, but our approach can be extended to also handle asymmetric boundaries or to approximate leaky accumulation.
NMR investigation of water diffusion in different biofilm structures.
Herrling, Maria P; Weisbrodt, Jessica; Kirkland, Catherine M; Williamson, Nathan H; Lackner, Susanne; Codd, Sarah L; Seymour, Joseph D; Guthausen, Gisela; Horn, Harald
2017-12-01
Mass transfer in biofilms is determined by diffusion. Different mostly invasive approaches have been used to measure diffusion coefficients in biofilms, however, data on heterogeneous biomass under realistic conditions is still missing. To non-invasively elucidate fluid-structure interactions in complex multispecies biofilms pulsed field gradient-nuclear magnetic resonance (PFG-NMR) was applied to measure the water diffusion in five different types of biomass aggregates: one type of sludge flocs, two types of biofilm, and two types of granules. Data analysis is an important issue when measuring heterogeneous systems and is shown to significantly influence the interpretation and understanding of water diffusion. With respect to numerical reproducibility and physico-chemical interpretation, different data processing methods were explored: (bi)-exponential data analysis and the Γ distribution model. Furthermore, the diffusion coefficient distribution in relation to relaxation was studied by D-T 2 maps obtained by 2D inverse Laplace transform (2D ILT). The results show that the effective diffusion coefficients for all biofilm samples ranged from 0.36 to 0.96 relative to that of water. NMR diffusion was linked to biofilm structure (e.g., biomass density, organic and inorganic matter) as observed by magnetic resonance imaging and to traditional biofilm parameters: diffusion was most restricted in granules with compact structures, and fast diffusion was found in heterotrophic biofilms with fluffy structures. The effective diffusion coefficients in the biomass were found to be broadly distributed because of internal biomass heterogeneities, such as gas bubbles, precipitates, and locally changing biofilm densities. Thus, estimations based on biofilm bulk properties in multispecies systems can be overestimated and mean diffusion coefficients might not be sufficiently informative to describe mass transport in biofilms and the near bulk. © 2017 Wiley Periodicals, Inc.
Importance of Diffuse Metal Ion Binding to RNA
Tan, Zhi-Jie; Chen, Shi-Jie
2016-01-01
RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding. PMID:22010269
Importance of diffuse metal ion binding to RNA.
Tan, Zhi-Jie; Chen, Shi-Jie
2011-01-01
RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.
NASA Astrophysics Data System (ADS)
Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut
2014-01-01
The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.
NASA Astrophysics Data System (ADS)
Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.
2010-03-01
Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.
Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D
2010-03-28
Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, T(g) (103 K). Layered films, consisting of CH(3)OH and CD(3)OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above T(g). The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.
Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut
2014-01-01
The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.
Cocaine dependence does not contribute substantially to white matter abnormalities in HIV infection.
Cordero, Daniella M; Towe, Sheri L; Chen, Nan-Kuei; Robertson, Kevin R; Madden, David J; Huettel, Scott A; Meade, Christina S
2017-06-01
This study investigated the association of HIV infection and cocaine dependence with cerebral white matter integrity using diffusion tensor imaging (DTI). One hundred thirty-five participants stratified by HIV and cocaine status (26 HIV+/COC+, 37 HIV+/COC-, 37 HIV-/COC+, and 35 HIV-/COC-) completed a comprehensive substance abuse assessment, neuropsychological testing, and MRI with DTI. Among HIV+ participants, all were receiving HIV care and 46% had an AIDS diagnosis. All COC+ participants were current users and met criteria for cocaine use disorder. We used tract-based spatial statistics (TBSS) to assess the relation of HIV and cocaine to fractional anisotropy (FA) and mean diffusivity (MD). In whole-brain analyses, HIV+ participants had significantly reduced FA and increased MD compared to HIV- participants. The relation of HIV and FA was widespread throughout the brain, whereas the HIV-related MD effects were restricted to the corpus callosum and thalamus. There were no significant cocaine or HIV-by-cocaine effects. These DTI metrics correlated significantly with duration of HIV disease, nadir CD4+ cell count, and AIDS diagnosis, as well as some measures of neuropsychological functioning. These results suggest that HIV is related to white matter integrity throughout the brain, and that HIV-related effects are more pronounced with increasing duration of infection and greater immune compromise. We found no evidence for independent effects of cocaine dependence on white matter integrity, and cocaine dependence did not appear to exacerbate the effects of HIV.
[Measures to be taken in adults with bronchiolitis].
De Crémoux, Hubert
2003-02-22
The majority of bronchial and interstitial diseases of the adult are accompanied by bronchiolar inflammation, but over time the use of the term "bronchiolitis" has been limited to a few specific affections. Bronchiolitis with predominantly alveolar involvement Some "bronchiolites" emphasize the problem of an interstitial pneumopathy, since the disease predominantly involves the alveolar spaces. Only a few bronchiolites are severely damaging: bronchiolitis obliterans with organizing pneumonia and interstitial pneumopathy with respiratory bronchiolitis. These predominantly alveolar affections reveal the clinical (crepitant rales), radiographic (multiple or even diffuse opacities), and functional aspects (restrictive ventilation problems). Brochiolitis with obstructive airway problems In this case the disease predominantly involves the bronchioles and spares the alveolar tissue. The term "bronchiolitis" is in this case perfectly justified. The clinical picture is evocative with obstructed airway and a clear pulmonary parenchyma on the thoracic x-ray. These affections belong to the obstructive broncho-pneumopathy group. The prototype is brochiolitis obliterans, the anatomic correlation of which is generally constrictive bronchiolitis obliterans. Occasionally primitive, it frequently complicates the progression of many morbid states (transplants, collagenosis, inhaled or ingested toxic substances.). Diffuse panbronchiolitis Other "bronchiolites" deviate from this framework and are accompanied by marked lesions of other respiratory tracts (membrane bronchioles, cartilage bronchi, mucosa, ear nose and throat). The prototype is panbronchiolitis, described in the Far East. It is exceptional in Europe, where similar but nosologically different clinical aspects are observed during various diseases: cystic fibrosis, Young's syndrome, hypogammaglobulinemia, bone marrow transplant, context of HIV or haemorrhagic recto-colitis.
Scale-invariant Green-Kubo relation for time-averaged diffusivity
NASA Astrophysics Data System (ADS)
Meyer, Philipp; Barkai, Eli; Kantz, Holger
2017-12-01
In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.
2015-07-28
A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling andmore » validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less
NASA Astrophysics Data System (ADS)
Plessis, S.; McDougall, D.; Mandt, K.; Greathouse, T.; Luspay-Kuti, A.
2015-11-01
Bimolecular diffusion coefficients are important parameters used by atmospheric models to calculate altitude profiles of minor constituents in an atmosphere. Unfortunately, laboratory measurements of these coefficients were never conducted at temperature conditions relevant to the atmosphere of Titan. Here we conduct a detailed uncertainty analysis of the bimolecular diffusion coefficient parameters as applied to Titan's upper atmosphere to provide a better understanding of the impact of uncertainty for this parameter on models. Because temperature and pressure conditions are much lower than the laboratory conditions in which bimolecular diffusion parameters were measured, we apply a Bayesian framework, a problem-agnostic framework, to determine parameter estimates and associated uncertainties. We solve the Bayesian calibration problem using the open-source QUESO library which also performs a propagation of uncertainties in the calibrated parameters to temperature and pressure conditions observed in Titan's upper atmosphere. Our results show that, after propagating uncertainty through the Massman model, the uncertainty in molecular diffusion is highly correlated to temperature and we observe no noticeable correlation with pressure. We propagate the calibrated molecular diffusion estimate and associated uncertainty to obtain an estimate with uncertainty due to bimolecular diffusion for the methane molar fraction as a function of altitude. Results show that the uncertainty in methane abundance due to molecular diffusion is in general small compared to eddy diffusion and the chemical kinetics description. However, methane abundance is most sensitive to uncertainty in molecular diffusion above 1200 km where the errors are nontrivial and could have important implications for scientific research based on diffusion models in this altitude range.
Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre
2016-07-15
Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. Copyright © 2016 Elsevier B.V. All rights reserved.
Rosenbaum, Daniel G; Askin, Gulce; Beneck, Debra M; Kovanlikaya, Arzu
2017-10-01
The role of magnetic resonance imaging (MRI) in pediatric appendicitis is increasing; MRI findings predictive of appendiceal perforation have not been specifically evaluated. To assess the performance of MRI in differentiating perforated from non-perforated appendicitis. A retrospective review of pediatric patients undergoing contrast-enhanced MRI and subsequent appendectomy was performed, with surgicopathological confirmation of perforation. Appendiceal diameter and the following 10 MRI findings were assessed: appendiceal restricted diffusion, wall defect, appendicolith, periappendiceal free fluid, remote free fluid, restricted diffusion within free fluid, abscess, peritoneal enhancement, ileocecal wall thickening and ileus. Two-sample t-test and chi-square tests were used to analyze continuous and discrete data, respectively. Sensitivity and specificity for individual MRI findings were calculated and optimal thresholds for measures of accuracy were selected. Seventy-seven patients (mean age: 12.2 years) with appendicitis were included, of whom 22 had perforation. The perforated group had a larger mean appendiceal diameter and mean number of MRI findings than the non-perforated group (12.3 mm vs. 8.6 mm; 5.0 vs. 2.0, respectively). Abscess, wall defect and restricted diffusion within free fluid had the greatest specificity for perforation (1.00, 1.00 and 0.96, respectively) but low sensitivity (0.36, 0.25 and 0.32, respectively). The receiver operator characteristic curve for total number of MRI findings had an area under the curve of 0.92, with an optimal threshold of 3.5. A threshold of any 4 findings had the best ability to accurately discriminate between perforated and non-perforated cases, with a sensitivity of 82% and specificity of 85%. Contrast-enhanced MRI can differentiate perforated from non-perforated appendicitis. The presence of multiple findings increases diagnostic accuracy, with a threshold of any four findings optimally discriminating between perforated and non-perforated cases. These results may help guide management decisions as MRI assumes a greater role in the work-up of pediatric appendicitis.
CT and MRI Findings in Cerebral Aspergilloma.
Gärtner, Friederike; Forstenpointner, Julia; Ertl-Wagner, Birgit; Hooshmand, Babak; Riedel, Christian; Jansen, Olav
2017-11-20
Purpose Invasive aspergillosis usually affects immunocompromised patients. It carries a high risk of morbidity and mortality and usually has a nonspecific clinical presentation. Early diagnosis is essential in order to start effective treatment and improve clinical outcome. Materials and Methods In a retrospective search of the PACS databases from two medical centers, we identified 9 patients with histologically proven cerebral aspergilloma. We systematically analyzed CT and MRI imaging findings to identify typical imaging appearances of cerebral aspergilloma. Results CT did not show a typical appearance of the aspergillomas. In 100 % (9/9) there was a rim-attenuated diffusion restriction on MRI imaging. Multiple hypointense layers in the aspergillus wall, especially on the internal side, were detected in 100 % on T2-weighted imaging (9/9). Aspergillomas were T1-hypointense in 66 % of cases (6/9) and partly T1-hyperintense in 33 % (3/9). In 78 % (7/9) of cases, a rim-attenuated diffusion restriction was detected after contrast agent application. Conclusion Nine cases were identified. Whereas CT features were less typical, we observed the following imaging features on MRI: A strong, rim-attenuated diffusion restriction (9/9); onion layer-like hypointense zones, in particular in the innermost part of the abscess wall on T2-weighted images (9/9). Enhancement of the lesion border was present in the majority of the cases (7/9). Key points · There are typical MRI imaging features of aspergillomas.. · However, these findings could be affected by the immune status of the patient.. · Swift identification of aspergilloma imaging patterns is essential to allow for adequate therapeutic decision making.. Citation Format · Gärtner F, Forstenpointner J, Ertl-Wagner B et al. CT and MRI Findings in Cerebral Aspergilloma. Fortschr Röntgenstr 2017; DOI: 10.1055/s-0043-120766. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Capiński, Maciej J.; Gidea, Marian; de la Llave, Rafael
2017-01-01
We present a diffusion mechanism for time-dependent perturbations of autonomous Hamiltonian systems introduced in Gidea (2014 arXiv:1405.0866). This mechanism is based on shadowing of pseudo-orbits generated by two dynamics: an ‘outer dynamics’, given by homoclinic trajectories to a normally hyperbolic invariant manifold, and an ‘inner dynamics’, given by the restriction to that manifold. On the inner dynamics the only assumption is that it preserves area. Unlike other approaches, Gidea (2014 arXiv:1405.0866) does not rely on the KAM theory and/or Aubry-Mather theory to establish the existence of diffusion. Moreover, it does not require to check twist conditions or non-degeneracy conditions near resonances. The conditions are explicit and can be checked by finite precision calculations in concrete systems (roughly, they amount to checking that Melnikov-type integrals do not vanish and that some manifolds are transversal). As an application, we study the planar elliptic restricted three-body problem. We present a rigorous theorem that shows that if some concrete calculations yield a non zero value, then for any sufficiently small, positive value of the eccentricity of the orbits of the main bodies, there are orbits of the infinitesimal body that exhibit a change of energy that is bigger than some fixed number, which is independent of the eccentricity. We verify numerically these calculations for values of the masses close to that of the Jupiter/Sun system. The numerical calculations are not completely rigorous, because we ignore issues of round-off error and do not estimate the truncations, but they are not delicate at all by the standard of numerical analysis. (Standard tests indicate that we get 7 or 8 figures of accuracy where 1 would be enough.) The code of these verifications is available. We hope that some full computer assisted proofs will be obtained in the near future since there are packages (CAPD) designed for problems of this type.
A new diffusion matrix for whistler mode chorus waves
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard-Piet, Angelica; Thorne, Richard M.; Li, Wen
2013-10-01
Global models of the Van Allen radiation belts usually include resonant wave-particle interactions as a diffusion process, but there is a large uncertainty over the diffusion rates. Here we present a new diffusion matrix for whistler mode chorus waves that can be used in such models. Data from seven satellites are used to construct 3536 power spectra for upper and lower band chorus for 1.5≤L∗≤10 MLT, magnetic latitude 0°≤|λm|≤60° and five levels of Kp. Five density models are also constructed from the data. Gaussian functions are fitted to the spectra and capture typically 90% of the wave power. The frequency maxima of the power spectra vary with L∗ and are typically lower than that used previously. Lower band chorus diffusion increases with geomagnetic activity and is largest between 21:00 and 12:00 MLT. Energy diffusion extends to a few megaelectron volts at large pitch angles >60° and at high energies exceeds pitch angle diffusion at the loss cone. Most electron diffusion occurs close to the geomagnetic equator (<12°). Pitch angle diffusion rates for lower band chorus increase with L∗ and are significant at L∗=8 even for low levels of geomagnetic activity, while upper band chorus is restricted to mainly L∗<6. The combined drift and bounce averaged diffusion rates for upper and lower band chorus extend from a few kiloelectron volts near the loss cone up to several megaelectron volts at large pitch angles indicating loss at low energies and net acceleration at high energies.
ERIC Educational Resources Information Center
AlHarbi, Nawaf N. S.; Treagust, David F.; Chandrasegaran, A. L.; Won, Mihye
2015-01-01
This study investigated the understanding of diffusion, osmosis and particle theory of matter concepts among 192 pre-service science teachers in Saudi Arabia using a 17-item two-tier multiple-choice diagnostic test. The data analysis showed that the pre-service teachers' understanding of osmosis and diffusion concepts was mildly correlated with…
ERIC Educational Resources Information Center
Fife, Dustin A.; Mendoza, Jorge L.; Terry, Robert
2012-01-01
Though much research and attention has been directed at assessing the correlation coefficient under range restriction, the assessment of reliability under range restriction has been largely ignored. This article uses item response theory to simulate dichotomous item-level data to assess the robustness of KR-20 ([alpha]), [omega], and test-retest…
Characteristics of Perforated Diffusers at Free-stream Mach Number 1.90
NASA Technical Reports Server (NTRS)
Hunczak, Henry R; Kremzier, Emil J
1950-01-01
An investigation was conducted at Mach number 1.90 to determine pressure recovery and mass-flow characteristics of series of perforated convergent-divergent supersonic diffusers. Pressure recoveries as high as 96 percent were obtained, but at reduced mass flows through the diffuser. Theoretical considerations of effect of perforation distribution on shock stability in converging section of diffuser are presented and correlated with experimental data. A method of estimating relative importance of pressure recovery and mass flow on internal thrust coefficient basis is given and a comparison of various diffusers investigated is made.
Random diffusion and leverage effect in financial markets.
Perelló, Josep; Masoliver, Jaume
2003-03-01
We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all parameters involved and allows a deeper study of correlated random diffusion models that may have practical implications for many aspects of financial markets.
NASA Technical Reports Server (NTRS)
Menyuk, N.; Killinger, D. K.
1981-01-01
A pulsed dual-laser direct-detection differential-absorption lidar DIAL system, operating near 10.6 microns, is used to measure the temporal correlation and statistical properties of backscattered returns from specular and diffuse topographic targets. Results show that atmospheric-turbulence fluctuations can effectively be frozen for pulse separation times on the order of 1-3 msec or less. The diffuse target returns, however, yielded a much lower correlation than that obtained with the specular targets; this being due to uncorrelated system noise effects and different statistics for the two types of target returns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, M.P.; Rouvray, D.H.
The propensity of hydrocarbons to form soot in a diffusion flame is correlated here for the first time against various topological indices. Two of the indices, the hydrogen deficiency index, and the Balaban distance-sum connectivity index were found to be especially valuable for correlational purposes. For a total of 98 hydrocarbon fuel moelcules, of differing types, regression analyses yielded good correlations between the threshold soot indices (TSIs) for diffusion flames and these two indices. An equation that can be used to estimate TSI values in fuel molecules is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, M.P.; Rouvray, D.H.
The propensity of hydrocarbons to form soot in a diffusion flame is correlated here for the first time against various topological indices. Two of the indices, the hydrogen deficiency index and the Balaban distance sum connectivity index, were found to be especially valuable for correlational purposes. For the total of 98 hydrocarbon fuel molecules of differing types, regression analyses yielded good correlations between the threshold soot indices (TSIs) for diffusion flames and these two indices. An equation which can be used to estimate TSI values in fuel molecules is presented.
Fogedby, Hans C
2003-08-01
Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associated dynamical pinning, and mode transmutation from diffusive to propagating behavior induced by the solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the multisoliton sector, and in detail the correlations and scaling properties in the two-soliton sector.
Ussavarungsi, Kamonpun; Lee, Augustine S; Burger, Charles D
2016-09-01
Pulmonary hypertension (PH) is commonly observed in patients with diffuse parenchymal lung disease (DPLD). The purpose of this study was to explore the influence of the 6-minute walk test (6MWT) as a simple, non-invasive tool to assess right ventricular (RV) function in patients with DPLD and to identify the need for an echocardiogram (ECHO) to screen for PH. We retrospectively reviewed 48 patients with PH secondary to DPLD, who were evaluated in the PH clinic at the Mayo Clinic in Jacksonville, Florida, from January 1999 to December 2014. Fifty-two percent of patients had RV dysfunction. They had a significantly greater right heart pressure by ECHO and mean pulmonary arterial pressure (MPAP) from right heart catheterization (RHC) than those with normal RV function. A reduced 6-minute walk distance (6MWD) did not predict RV dysfunction (OR 0.995; 95% CI 0.980-1.001, p = 0.138). In addition, worsening restrictive physiology, heart rate at one-minute recovery and desaturation were not different between patients with and without RV dysfunction. However, there were inverse correlations between 6MWD and MPAP from RHC (r = -0.41, p = 0.010), 6MWD and RV systolic pressure (r = -0.51, p < 0.001), and 6MWD and MPAP measured by ECHO (r = -0.46, p =0.013). We also found no significant correlation between 6MWD and pulmonary function test parameters. Our single-center cohort of patients with PH secondary to DPLD, PH was found to have an impact on 6MWD. In contrast to our expectations, 6MWD was not useful to predict RV dysfunction. Interestingly, a severe reduction in the 6MWD was related to PH and not to pulmonary function; therefore, it may be used to justify an ECHO to identify patients with a worse prognosis.
Sundram, Frederick; Deeley, Quinton; Sarkar, Sagari; Daly, Eileen; Latham, Richard; Craig, Michael; Raczek, Malgorzata; Fahy, Tom; Picchioni, Marco; Barker, Gareth J; Murphy, Declan G M
2012-02-01
Antisocial personality disorder (ASPD) and psychopathy involve significant interpersonal and behavioural impairments. However, little is known about their underlying neurobiology and in particular, abnormalities in white matter (WM) microstructure. A preliminary diffusion tensor magnetic resonance imaging (DT-MRI) study of adult psychopaths employing tractography revealed abnormalities in the right uncinate fasciculus (UF) (Craig et al., 2009), indicating fronto-limbic disconnectivity. However, it is not clear whether WM abnormalities are restricted to this tract or are or more widespread, including other tracts which are involved in connectivity with the frontal lobe. We performed whole brain voxel-based analyses on WM fractional anisotropy (FA) and mean diffusivity (MD) maps acquired with DT-MRI to compare 15 adults with ASPD and healthy age, handedness and IQ-matched controls. Also, within ASPD subjects we related differences in FA and MD to measures of psychopathy. Significant WM FA reduction and MD increases were found respectively in ASPD subjects relative to controls. FA was bilaterally reduced in the genu of corpus callosum while in the right frontal lobe FA reduction was found in the UF, inferior fronto-occipital fasciculus (IFOF), anterior corona radiata and anterior limb and genu of the internal capsule. These differences negatively correlated with measures of psychopathy. Also in the right frontal lobe, increased MD was found in the IFOF and UF, and the corpus callosum and anterior corona radiata. There was a significant positive correlation between MD and psychopathy scores. The present study confirms a previous report of reduced FA in the UF. Additionally, we report for the first time, FA deficits in tracts involved in interhemispheric as well as frontal lobe connectivity in conjunction with MD increases in the frontal lobe. Hence, we provide evidence of significant WM microstructural abnormalities in frontal brain regions in ASPD and psychopathy. Copyright © 2011 Elsevier Srl. All rights reserved.
Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis
NASA Astrophysics Data System (ADS)
Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.
2018-02-01
Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.
Shang, Yu; Li, Ting; Yu, Guoqiang
2017-01-01
Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring. PMID:28199219
Diffusion of test particles in stochastic magnetic fields for small Kubo numbers.
Neuer, Marcus; Spatschek, Karl H
2006-02-01
Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used A-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed.
Abdelnour, Farras; Voss, Henning U.; Raj, Ashish
2014-01-01
The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152
Ma, E P; Yiu, E M
2001-06-01
Traditional clinical voice evaluation focuses primarily on the severity of voice impairment, with little emphasis on the impact of voice disorders on the individual's quality of life. This study reports the development of a 28-item assessment tool that evaluates the perception of voice problem, activity limitation, and participation restriction using the International Classification of Impairments, Disabilities and Handicaps-2 Beta-1 concept (World Health Organization, 1997). The questionnaire was administered to 40 subjects with dysphonia and 40 control subjects with normal voices. Results showed that the dysphonic group reported significantly more severe voice problems, limitation in daily voice activities, and restricted participation in these activities than the control group. The study also showed that the perception of a voice problem by the dysphonic subjects correlated positively with the perception of limitation in voice activities and restricted participation. However, the self-perceived voice problem had little correlation with the degree of voice-quality impairment measured acoustically and perceptually by speech pathologists. The data also showed that the aggregate scores of activity limitation and participation restriction were positively correlated, and the extent of activity limitation and participation restriction was similar in all except the job area. These findings highlight the importance of identifying and quantifying the impact of dysphonia on the individual's quality of life in the clinical management of voice disorders.
Ayres, Caroline; Agranonik, Marilyn; Portella, André Krumel; Filion, Françoise; Johnston, Celeste C.; Silveira, Patrícia Pelufo
2012-01-01
Intrauterine growth restriction is associated with increased risk for adult metabolic syndrome and cardiovascular disease, which seems to be related to altered food preferences in these individuals later in life. In this study, we sought to understand whether intrauterine growth leads to fetal programming of the hedonic responses to sweet. Sixteen 1-day-old preterm infants received 24% sucrose solution or water and the taste reactivity was filmed and analyzed. Spearman correlation demonstrated a positive correlation between fetal growth and the hedonic response to the sweet solution in the first 15 seconds after the offer (r = 0.864, P = 0.001), without correlation when the solution given is water (r = 0.314, P = 0.455). In fact, the more intense the intrauterine growth restriction, the lower the frequency of the hedonic response observed. IUGR is strongly correlated with the hedonic response to a sweet solution in the first day of life in preterm infants. This is the first evidence in humans to demonstrate that the hedonic response to sweet taste is programmed very early during the fetal life by the degree of intrauterine growth. The altered hedonic response at birth and subsequent differential food preference may contribute to the increased risk of obesity and related disorders in adulthood in intrauterine growth-restricted individuals. PMID:22851979
A scalable correlator for multichannel diffuse correlation spectroscopy.
Stapels, Christopher J; Kolodziejski, Noah J; McAdams, Daniel; Podolsky, Matthew J; Fernandez, Daniel E; Farkas, Dana; Christian, James F
2016-02-01
Diffuse correlation spectroscopy (DCS) is a technique which enables powerful and robust non-invasive optical studies of tissue micro-circulation and vascular blood flow. The technique amounts to autocorrelation analysis of coherent photons after their migration through moving scatterers and subsequent collection by single-mode optical fibers. A primary cost driver of DCS instruments are the commercial hardware-based correlators, limiting the proliferation of multi-channel instruments for validation of perfusion analysis as a clinical diagnostic metric. We present the development of a low-cost scalable correlator enabled by microchip-based time-tagging, and a software-based multi-tau data analysis method. We will discuss the capabilities of the instrument as well as the implementation and validation of 2- and 8-channel systems built for live animal and pre-clinical settings.
Ho, Leon C.; Wang, Bo; Conner, Ian P.; van der Merwe, Yolandi; Bilonick, Richard A.; Kim, Seong-Gi; Wu, Ed X.; Sigal, Ian A.; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.
2015-01-01
Purpose. Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). Methods. Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. Results. In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. Conclusions. Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye–brain relationships and structural–physiological relationships in the visual system after ERI. PMID:26066747
Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S
2008-07-01
Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.
Cooper, Justin T; Harris, Joel M
2014-08-05
The development of techniques to probe interfacial molecular transport is important for understanding and optimizing surface-based analytical methods including surface-enhanced spectroscopies, biological assays, and chemical separations. Single-molecule-fluorescence imaging and tracking has been used to measure lateral diffusion rates of fluorescent molecules at surfaces, but the technique is limited to the study of slower diffusion, where molecules must remain relatively stationary during acquisition of an image in order to build up sufficient intensity in a spot to detect and localize the molecule. Although faster time resolution can be achieved by fluorescence-correlation spectroscopy (FCS), where intensity fluctuations in a small spot are related to the motions of molecules on the surface, long-lived adsorption events arising from surface inhomogeneity can overwhelm the correlation measurement and mask the surface diffusion of the moving population. Here, we exploit a combination of these two techniques, imaging-FCS, for measurement of fast interfacial transport at a model chromatographic surface. This is accomplished by rapid imaging of the surface using an electron-multiplied-charged-coupled-device (CCD) camera, while limiting the acquisition to a small area on the camera to allow fast framing rates. The total intensity from the sampled region is autocorrelated to determine surface diffusion rates of molecules with millisecond time resolution. The technique allows electronic control over the acquisition region, which can be used to avoid strong adsorption sites and thus minimize their contribution to the measured autocorrelation decay and to vary the acquisition area to resolve surface diffusion from adsorption and desorption kinetics. As proof of concept, imaging-FCS was used to measure surface diffusion rates, interfacial populations, and adsorption-desorption rates of 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (DiI) on planar C18- and C1-modified surfaces.
Tricoli, Ugo; Macdonald, Callum M; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A
2018-02-01
Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.