Sample records for restricted water diffusion

  1. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description

    PubMed Central

    SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY

    2016-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031

  2. Molecular dynamics study of rhodamine 6G diffusion at n-decane-water interfaces.

    PubMed

    Popov, Piotr; Steinkerchner, Leo; Mann, Elizabeth K

    2015-05-01

    Two-dimensional diffusion of a rhodamine 6G fluorescent tracer molecule at the n-decane-water interface was studied with all-atom molecular dynamics simulations. In agreement with experimental data, we find increased mobility of the tracer at the n-decane-water interfaces in comparison to its mobility in bulk water. Orientational ordering of water and n-decane molecules near the interface is observed, and may change the interfacial viscosity as suggested to explain the experimental data. However, the restricted rotational motion of the rhodamine molecule at the interface suggests that the Saffman-Delbrück model may be a more appropriate approximation of rhodamine diffusion at n-decane-water interfaces, and, without any decrease in interfacial viscosity, suggests faster diffusion consistent with both experimental and simulation values.

  3. Reversible geminate recombination of hydrogen-bonded water molecule pair

    NASA Astrophysics Data System (ADS)

    Markovitch, Omer; Agmon, Noam

    2008-08-01

    The (history independent) autocorrelation function for a hydrogen-bonded water molecule pair, calculated from classical molecular dynamics trajectories of liquid water, exhibits a t-3/2 asymptotic tail. Its whole time dependence agrees quantitatively with the solution for reversible diffusion-influenced geminate recombination derived by Agmon and Weiss [J. Chem. Phys. 91, 6937 (1989)]. Agreement with diffusion theory is independent of the precise definition of the bound state. Given the water self-diffusion constant, this theory enables us to determine the dissociation and bimolecular recombination rate parameters for a water dimer. (The theory is indispensable for obtaining the bimolecular rate coefficient.) Interestingly, the activation energies obtained from the temperature dependence of these rate coefficients are similar, rather than differing by the hydrogen-bond (HB) strength. This suggests that recombination requires displacing another water molecule, which meanwhile occupied the binding site. Because these activation energies are about twice the HB strength, cleavage of two HBs may be required to allow pair separation. The autocorrelation function without the HB angular restriction yields a recombination rate coefficient that is larger than that for rebinding to all four tetrahedral water sites (with angular restrictions), suggesting the additional participation of interstitial sites. Following dissociation, the probability of the pair to be unbound but within the reaction sphere rises more slowly than expected, possibly because binding to the interstitial sites delays pair separation. An extended diffusion model, which includes an additional binding site, can account for this behavior.

  4. Surface-to-volume ratio mapping of tumor microstructure using oscillating gradient diffusion weighted imaging

    PubMed Central

    Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S; Kim, Sungheon Gene

    2015-01-01

    Purpose To disentangle the free diffusivity (D0) and cellular membrane restrictions, via their surface-to-volume ratio (S/V), using the frequency-dependence of the diffusion coefficient D(ω), measured in brain tumors in the short diffusion-time regime using oscillating gradients (OGSE). Methods In vivo and ex vivo OGSE experiments were performed on mice bearing the GL261 murine glioma model (n=10) to identify the relevant time/frequency (t/ω) domain where D(ω) linearly decreases with ω−1/2. Parametric maps (S/V, D0) are compared to conventional DWI metrics. The impact of frequency range and temperature (20°C vs. 37°C) on S/V and D0 is investigated ex vivo. Results The validity of the short diffusion-time regime is demonstrated in vivo and ex vivo. Ex vivo measurements confirm that the purely geometric restrictions embodied in S/V are independent from temperature and frequency range, while the temperature dependence of the free diffusivity D0 is similar to that of pure water. Conclusion Our results suggest that D(ω) in the short diffusion-time regime can be used to uncouple the purely geometric restriction effect, such as S/V, from the intrinsic medium diffusivity properties, and provides a non-empirical and objective way to interpret frequency/time-dependent diffusion changes in tumors in terms of objective biophysical tissue parameters. PMID:26207354

  5. Permeability-diffusivity modeling vs. fractional anisotropy on white matter integrity assessment and application in schizophrenia.

    PubMed

    Kochunov, P; Chiappelli, J; Hong, L E

    2013-01-01

    Diffusion tensor imaging (DTI) assumes a single pool of anisotropically diffusing water to calculate fractional anisotropy (FA) and is commonly used to ascertain white matter (WM) deficits in schizophrenia. At higher b-values, diffusion-signal decay becomes bi-exponential, suggesting the presence of two, unrestricted and restricted, water pools. Theoretical work suggests that semi-permeable cellular membrane rather than the presence of two physical compartments is the cause. The permeability-diffusivity (PD) parameters measured from bi-exponential modeling may offer advantages, over traditional DTI-FA, in identifying WM deficits in schizophrenia. Imaging was performed in N = 26/26 patients/controls (age = 20-61 years, average age = 40.5 ± 12.6). Imaging consisted of fifteen b-shells: b = 250-3800 s/mm(2) with 30 directions/shell, covering seven slices of mid-sagittal corpus callosum (CC) at 1.7 × 1.7 × 4.6 mm. 64-direction DTI was also collected. Permeability-diffusivity-index (PDI), the ratio of restricted to unrestricted apparent diffusion coefficients, and the fraction of unrestricted compartment (Mu) were calculated for CC and cingulate gray matter (GM). FA values for CC were calculated using tract-based-spatial-statistics. Patients had significantly reduced PDI in CC (p ≅ 10(- 4)) and cingulate GM (p = 0.002), while differences in CC FA were modest (p ≅ .03). There was no group-related difference in Mu. Additional theoretical-modeling analysis suggested that reduced PDI in patients may be caused by reduced cross-membrane water molecule exchanges. PDI measurements for cerebral WM and GM yielded more robust patient-control differences than DTI-FA. Theoretical work offers an explanation that patient-control PDI differences should implicate abnormal active membrane permeability. This would implicate abnormal activities in ion-channels that use water as substrate for ion exchange, in cerebral tissues of schizophrenia patients.

  6. Relationship between diffusivity of water molecules inside hydrating tablets and their drug release behavior elucidated by magnetic resonance imaging.

    PubMed

    Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo

    2012-01-01

    We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.

  7. Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review.

    PubMed

    Martin, Melanie

    2013-01-01

    This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE) measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE) measurements could provide shorter diffusion times so smaller restriction sizes could be probed.

  8. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    DOE PAGES

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; ...

    2015-01-01

    New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH 4HSO 4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous icemore » nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.« less

  9. Physics, Techniques and Review of Neuroradiological Applications of Diffusion Kurtosis Imaging (DKI).

    PubMed

    Marrale, M; Collura, G; Brai, M; Toschi, N; Midiri, F; La Tona, G; Lo Casto, A; Gagliardo, C

    2016-12-01

    In recent years many papers about diagnostic applications of diffusion tensor imaging (DTI) have been published. This is because DTI allows to evaluate in vivo and in a non-invasive way the process of diffusion of water molecules in biological tissues. However, the simplified description of the diffusion process assumed in DTI does not permit to completely map the complex underlying cellular components and structures, which hinder and restrict the diffusion of water molecules. These limitations can be partially overcome by means of diffusion kurtosis imaging (DKI). The aim of this paper is the description of the theory of DKI, a new topic of growing interest in radiology. DKI is a higher order diffusion model that is a straightforward extension of the DTI model. Here, we analyze the physics underlying this method, we report our MRI acquisition protocol with the preprocessing pipeline used and the DKI parametric maps obtained on a 1.5 T scanner, and we review the most relevant clinical applications of this technique in various neurological diseases.

  10. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    DOE PAGES

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.

    New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH 4HSO 4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous icemore » nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.« less

  12. Water and lipid diffusion MRI using chemical shift displacement-based separation of lipid tissue (SPLIT).

    PubMed

    Ohno, Naoki; Kan, Hirohito; Miyati, Tosiaki; Aoki, Toshitaka; Ishida, Shota; Gabata, Toshifumi

    2017-06-01

    To obtain water and lipid diffusion-weighted images (DWIs) simultaneously, we devised a novel method utilizing chemical shift displacement-based separation of lipid tissue (SPLIT) imaging. Single-shot diffusion echo-planar imaging without fat suppression was used and the imaging parameters were optimized to separate water and lipid DWIs by chemical shift displacement of the lipid signals along the phase-encoding direction. Using the optimized conditions, transverse DWIs at the maximum diameter of the right calf were scanned with multiple b-values in five healthy subjects. Then, apparent diffusion coefficients (ADCs) were calculated in the tibialis anterior muscle (TA), tibialis bone marrow (TB), and subcutaneous fat (SF), as well as restricted and perfusion-related diffusion coefficients (D and D*, respectively) and the fraction of the perfusion-related diffusion component (F) for TA. Water and lipid DWIs were separated adequately. The mean ADCs of the TA, TB, and SF were 1.56±0.03mm 2 /s, 0.01±0.01mm 2 /s, and 0.06±0.02mm 2 /s, respectively. The mean D*, D, and F of the TA were 13.7±4.3mm 2 /s, 1.48±0.05mm 2 /s, and 4.3±1.6%, respectively. SPLIT imaging makes it possible to simply and simultaneously obtain water and lipid DWIs without special pulse sequence and increases the amount of diffusion information of water and lipid tissue. Copyright © 2017. Published by Elsevier Inc.

  13. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.

    PubMed

    Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L; Vaughan-Jones, Richard D; Lefkimmiatis, Konstantinos; Swietach, Pawel

    2016-06-01

    3',5'-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm(2)/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  14. Characterization of Free Surface-Bound and Entrapped Water Environments in Poly(N-Isopropyl Acrylamide) Hydrogels via 1H HRMAS PFG NMR Spectroscopy

    DOE PAGES

    Alam, Todd Michael; Childress, Kimberly Kay; Pastoor, Kevin; ...

    2014-09-19

    We found that different water environments in poly(N-isopropyl acrylamide) (PNIPAAm) hydrogels are identified and characterized using 1H high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR). Local water environments corresponding to a “free” highly mobile species, along with waters showing restricted dynamics are resolved in these swollen hydro-gels. For photo-initiated polymerized PNIPAAm gels, an additional entrapped water species is observed. Spin–spin R 2 relaxation experiments support the argument of reduced mobility in the restricted and entrapped water species. Furthermore, by combining pulse field gradient techniques with HRMAS NMR it is possible to directly measure the self-diffusion rate for thesemore » different water environments. The behavior of the heterogeneous water environments through the lower critical solution temperature transition is described.« less

  15. An approximate analysis of the diffusing flow in a self-controlled heat pipe.

    NASA Technical Reports Server (NTRS)

    Somogyi, D.; Yen, H. H.

    1973-01-01

    Constant-density two-dimensional axisymmetric equations are presented for the diffusing flow of a class of self-controlled heat pipes. The analysis is restricted to the vapor space. Condensation of the vapor is related to its mass fraction at the wall by the gas kinetic formula. The Karman-Pohlhausen integral method is applied to obtain approximate solutions. Solutions are presented for a water heat pipe with neon control gas.

  16. Diffusion-weighted imaging in cancer: Physical foundations and applications of Restriction Spectrum Imaging

    PubMed Central

    White, Nathan S.; McDonald, Carrie; Farid, Niky; Kuperman, Josh; Karow, David; Schenker-Ahmed, Natalie M.; Bartsch, Hauke; Rakow-Penner, Rebecca; Holland, Dominic; Shabaik, Ahmed; Bjørnerud, Atle; Hope, Tuva; Hattangadi-Gluth, Jona; Liss, Michael; Parsons, J. Kellogg; Chen, Clark C.; Raman, Steve; Margolis, Daniel; Reiter, Robert E.; Marks, Leonard; Kesari, Santosh; Mundt, Arno J.; Kane, Chris J.; Carter, Bob S.; Bradley, William G.; Dale, Anders M.

    2014-01-01

    Diffusion weighted imaging (DWI) has been at the forefront of cancer imaging since the early 2000’s. Prior to its application in clinical oncology, this powerful technique had already achieved widespread recognition due to its utility in the diagnosis of cerebral infarction. Following this initial success, the ability of DWI to detect inherent tissue contrast began to be exploited in the field of oncology. Although the initial oncologic applications for tumor detection and characterization, assessing treatment response, and predicting survival were primarily in the field of neuro-oncology, the scope of DWI has since broadened to include oncologic imaging of the prostate gland, breast, and liver. Despite its growing success and application, misconceptions as to the underlying physical basis of the DWI signal exist among researchers and clinicians alike. In this review, we provide a detailed explanation of the biophysical basis of diffusion contrast, emphasizing the difference between hindered and restricted diffusion, and elucidating how diffusion parameters in tissue are derived from the measurements via the diffusion model. We describe one advanced DWI modeling technique, called Restriction Spectrum Imaging (RSI). This technique offers a more direct in vivo measure of tumor cells, due to its ability to distinguish separable pools of water within tissue based on their intrinsic diffusion characteristics. Using RSI as an example, we then highlight the ability of advanced DWI techniques to address key clinical challenges in neuro-oncology, including improved tumor conspicuity, distinguishing actual response to therapy from pseudoresponse, and delineation of white matter tracts in regions of peritumoral edema. We also discuss how RSI, combined with new methods for correction of spatial distortions inherent diffusion MRI scans, may enable more precise spatial targeting of lesions, with implications for radiation oncology, and surgical planning. PMID:25183788

  17. NMR investigation of water diffusion in different biofilm structures.

    PubMed

    Herrling, Maria P; Weisbrodt, Jessica; Kirkland, Catherine M; Williamson, Nathan H; Lackner, Susanne; Codd, Sarah L; Seymour, Joseph D; Guthausen, Gisela; Horn, Harald

    2017-12-01

    Mass transfer in biofilms is determined by diffusion. Different mostly invasive approaches have been used to measure diffusion coefficients in biofilms, however, data on heterogeneous biomass under realistic conditions is still missing. To non-invasively elucidate fluid-structure interactions in complex multispecies biofilms pulsed field gradient-nuclear magnetic resonance (PFG-NMR) was applied to measure the water diffusion in five different types of biomass aggregates: one type of sludge flocs, two types of biofilm, and two types of granules. Data analysis is an important issue when measuring heterogeneous systems and is shown to significantly influence the interpretation and understanding of water diffusion. With respect to numerical reproducibility and physico-chemical interpretation, different data processing methods were explored: (bi)-exponential data analysis and the Γ distribution model. Furthermore, the diffusion coefficient distribution in relation to relaxation was studied by D-T 2 maps obtained by 2D inverse Laplace transform (2D ILT). The results show that the effective diffusion coefficients for all biofilm samples ranged from 0.36 to 0.96 relative to that of water. NMR diffusion was linked to biofilm structure (e.g., biomass density, organic and inorganic matter) as observed by magnetic resonance imaging and to traditional biofilm parameters: diffusion was most restricted in granules with compact structures, and fast diffusion was found in heterotrophic biofilms with fluffy structures. The effective diffusion coefficients in the biomass were found to be broadly distributed because of internal biomass heterogeneities, such as gas bubbles, precipitates, and locally changing biofilm densities. Thus, estimations based on biofilm bulk properties in multispecies systems can be overestimated and mean diffusion coefficients might not be sufficiently informative to describe mass transport in biofilms and the near bulk. © 2017 Wiley Periodicals, Inc.

  18. Diffusion Restrictions Surrounding Mitochondria: A Mathematical Model of Heart Muscle Fibers

    PubMed Central

    Ramay, Hena R.; Vendelin, Marko

    2009-01-01

    Abstract Several experiments on permeabilized heart muscle fibers suggest the existence of diffusion restrictions grouping mitochondria and surrounding ATPases. The specific causes of these restrictions are not known, but intracellular structures are speculated to act as diffusion barriers. In this work, we assume that diffusion restrictions are induced by sarcoplasmic reticulum (SR), cytoskeleton proteins localized near SR, and crowding of cytosolic proteins. The aim of this work was to test whether such localization of diffusion restrictions would be consistent with the available experimental data and evaluate the extent of the restrictions. For that, a three-dimensional finite-element model was composed with the geometry based on mitochondrial and SR structural organization. Diffusion restrictions induced by SR and cytoskeleton proteins were varied with other model parameters to fit the set of experimental data obtained on permeabilized rat heart muscle fibers. There are many sets of model parameters that were able to reproduce all experiments considered in this work. However, in all the sets, <5–6% of the surface formed by SR and associated cytoskeleton proteins is permeable to metabolites. Such a low level of permeability indicates that the proteins should play a dominant part in formation of the diffusion restrictions. PMID:19619458

  19. Investigation of water mobility and diffusivity in hydrating micronized low-substituted hydroxypropyl cellulose, hydroxypropylmethyl cellulose, and hydroxypropyl cellulose matrix tablets by magnetic resonance imaging (MRI).

    PubMed

    Kojima, Masazumi; Nakagami, Hiroaki

    2002-12-01

    The water mobility and diffusivity in the gel-layer of hydrating low-substituted hydroxypropyl cellulose (LH41) tablets with or without a drug were investigated by magnetic resonance imaging (MRI) and compared with those properties in the gel-layer of hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) tablets. For this purpose, a localized image-analysis method was newly developed, and the spin-spin relaxation time (T(2)) and apparent self-diffusion coefficient (ADC) of water in the gel-layer were visualized in one-dimensional maps. Those maps showed that the extent of gel-layer growth in the tablets was in the order of HPC>HPMC>LH41, and there was a water mobility gradient across the gel-layers of all three tablet formulations. The T(2) and ADC in the outer parts of the gel-layers were close to those of free water. In contrast, these values in the inner parts of the gel-layer decreased progressively; suggesting that the water mobility and diffusivity around the core interface were highly restricted. Furthermore, the correlation between the T(2) of (1)H proton in the gel-layer of the tablets and the drug release rate from the tablets was observed.

  20. Computed tomography and magnetic resonance imaging findings of intraorbital granular cell tumor (Abrikossoff's tumor): a case report.

    PubMed

    Yuan, Wei-Hsin; Lin, Tai-Chi; Lirng, Jiing-Feng; Guo, Wan-You; Chang, Fu-Pang; Ho, Donald Ming-Tak

    2016-05-13

    Granular cell tumors are rare neoplasms which can occur in any part of the body. Granular cell tumors of the orbit account for only 3 % of all granular cell tumor cases. Computed tomography and magnetic resonance imaging of the orbit have proven useful for diagnosing orbital tumors. However, the rarity of intraorbital granular cell tumors poses a significant diagnostic challenge for both clinicians and radiologists. We report a case of a 37-year-old Chinese woman with a rare intraocular granular cell tumor of her right eye presenting with diplopia, proptosis, and restriction of ocular movement. Preoperative orbital computed tomography and magnetic resonance imaging with contrast enhancement revealed an enhancing solid, ovoid, well-demarcated, retrobulbar nodule. In addition, magnetic resonance imaging features included an intraorbital tumor which was isointense relative to gray matter on T1-weighted imaging and hypointense on T2-weighted imaging. No diffusion restriction of water was noted on either axial diffusion-weighted images or apparent diffusion coefficient maps. Both computed tomography and magnetic resonance imaging features suggested an intraorbital hemangioma. However, postoperative pathology (together with immunohistochemistry) identified an intraorbital granular cell tumor. When intraorbital T2 hypointensity and free diffusion of water are observed on magnetic resonance imaging, a granular cell tumor should be included in the differential diagnosis of an intraocular tumor.

  1. Fluid self-diffusion in Scots pine sapwood tracheid cells.

    PubMed

    Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B

    2006-02-09

    The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.

  2. Mapping immune cell infiltration using restricted diffusion MRI.

    PubMed

    Yeh, Fang-Cheng; Liu, Li; Hitchens, T Kevin; Wu, Yijen L

    2017-02-01

    Diffusion MRI provides a noninvasive way to assess tissue microstructure. Based on diffusion MRI, we propose a model-free method called restricted diffusion imaging (RDI) to quantify restricted diffusion and correlate it with cellularity. An analytical relation between q-space signals and the density of restricted spins was derived to quantify restricted diffusion. A phantom study was conducted to investigate the performance of RDI, and RDI was applied to an animal study to assess immune cell infiltration in myocardial tissues with ischemia-reperfusion injury. Our phantom study showed a correlation coefficient of 0.998 between cell density and the restricted diffusion quantified by RDI. The animal study also showed that the high-value regions in RDI matched well with the macrophage infiltration areas in the H&E stained slides. In comparison with diffusion tensor imaging (DTI), RDI exhibited its outperformance to detect macrophage infiltration and delineate inflammatory myocardium. RDI can be used to reveal cell density and detect immune cell infiltration. RDI exhibits better specificity than the diffusivity measurement derived from DTI. Magn Reson Med 77:603-612, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Measurement and modeling of diffusion time dependence of apparent diffusion coefficient and fractional anisotropy in prostate tissue ex vivo.

    PubMed

    Bourne, Roger; Liang, Sisi; Panagiotaki, Eleftheria; Bongers, Andre; Sved, Paul; Watson, Geoffrey

    2017-10-01

    The purpose of this study was to measure and model the diffusion time dependence of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) derived from conventional prostate diffusion-weighted imaging methods as used in recommended multiparametric MRI protocols. Diffusion tensor imaging (DTI) was performed at 9.4 T with three radical prostatectomy specimens, with diffusion times in the range 10-120 ms and b-values 0-3000 s/mm 2 . ADC and FA were calculated from DTI measurements at b-values of 800 and 1600 s/mm 2 . Independently, a two-component model (restricted isotropic plus Gaussian anisotropic) was used to synthesize DTI data, from which ADC and FA were predicted and compared with the measured values. Measured ADC and FA exhibited a diffusion time dependence, which was closely predicted by the two-component model. ADC decreased by about 0.10-0.15 μm 2 /ms as diffusion time increased from 10 to 120 ms. FA increased with diffusion time at b-values of 800 and 1600 s/mm 2 but was predicted to be independent of diffusion time at b = 3000 s/mm 2 . Both ADC and FA exhibited diffusion time dependence that could be modeled as two unmixed water pools - one having isotropic restricted dynamics, and the other unrestricted anisotropic dynamics. These results highlight the importance of considering and reporting diffusion times in conventional ADC and FA calculations and protocol recommendations, and inform the development of improved diffusion methods for prostate cancer imaging. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.

    PubMed

    Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D

    2016-08-03

    Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods.

  5. Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel

    USGS Publications Warehouse

    Sayre, William W.; Chamberlain, A.R.

    1964-01-01

    In natural streams turbulent diffusion is one of the principal mechanisms by which liquid and suspended-particulate contaminants are dispersed in the flow. A knowledge of turbulence characteristics is therefore essential in predicting the dispersal rates of contaminants in streams. In this study the theory of diffusion by continuous movements for homogeneous turbulence is applied to lateral diffusion at the surface of an open channel in which there is uniform flow. An exploratory-laboratory investigation was conducted in which the lateral dispersion at the water surface of a sand-Led flume was studied by measuring the lateral spread from a point source of small floating polyethylene articles. The experiment was restricted to a single set of low and channel geometry conditions. The results of the study indicate that with certain restrictions lateral dispersion in alluvial channels may be successfully described by the theory of diffusion by continuous movements. The experiment demonstrates a means for evaluating the lateral diffusion coefficient and also methods for quantitatively estimating fundamental turbulence properties, such as the intensity and the Lagrangian integral scale of turbulence in an alluvial channel. The experimental results show that with increasing distance from the source the coefficient of lateral turbulent diffusion increases initially but tends toward a constant limiting value. This result is in accordance with turbulent diffusion theory. Indications are that the distance downstream from the source required for the diffusion coefficient to reach its limiting value is actually very small when compared to the length scale of most diffusion phenomena in natural streams which are of practical interest.

  6. Numerical simulation of multi-dimensional NMR response in tight sandstone

    NASA Astrophysics Data System (ADS)

    Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao

    2016-06-01

    Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.

  7. Analysis of Molecular Movement Reveals Latticelike Obstructions to Diffusion in Heart Muscle Cells

    PubMed Central

    Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko

    2012-01-01

    Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. PMID:22385844

  8. Characteristic Features of Water Dynamics in Restricted Geometries Investigated with Quasi-Elastic Neutron Scattering

    DOE PAGES

    Osti, Naresh C.; Mamontov, Eugene; Ramirez-cuesta, A.; ...

    2015-12-10

    Understanding the molecular behavior of water in spatially restricted environments is important to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrumentmore » resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250≤T≤290 K.« less

  9. Red blood cell thickness is evolutionarily constrained by slow, hemoglobin-restricted diffusion in cytoplasm.

    PubMed

    Richardson, Sarah L; Swietach, Pawel

    2016-10-25

    During capillary transit, red blood cells (RBCs) must exchange large quantities of CO 2 and O 2 in typically less than one second, but the degree to which this is rate-limited by diffusion through cytoplasm is not known. Gas diffusivity is intuitively assumed to be fast and this would imply that the intracellular path-length, defined by RBC shape, is not a factor that could meaningfully compromise physiology. Here, we evaluated CO 2 diffusivity (D CO2 ) in RBCs and related our results to cell shape. D CO2 inside RBCs was determined by fluorescence imaging of [H + ] dynamics in cells under superfusion. This method is based on the principle that H + diffusion is facilitated by CO 2 /HCO 3 - buffer and thus provides a read-out of D CO2 . By imaging the spread of H + ions from a photochemically-activated source (6-nitroveratraldehyde), D CO2 in human RBCs was calculated to be only 5% of the rate in water. Measurements on RBCs containing different hemoglobin concentrations demonstrated a halving of D CO2 with every 75 g/L increase in mean corpuscular hemoglobin concentration (MCHC). Thus, to compensate for highly-restricted cytoplasmic diffusion, RBC thickness must be reduced as appropriate for its MCHC. This can explain the inverse relationship between MCHC and RBC thickness determined from >250 animal species.

  10. Red blood cell thickness is evolutionarily constrained by slow, hemoglobin-restricted diffusion in cytoplasm

    PubMed Central

    Richardson, Sarah L.; Swietach, Pawel

    2016-01-01

    During capillary transit, red blood cells (RBCs) must exchange large quantities of CO2 and O2 in typically less than one second, but the degree to which this is rate-limited by diffusion through cytoplasm is not known. Gas diffusivity is intuitively assumed to be fast and this would imply that the intracellular path-length, defined by RBC shape, is not a factor that could meaningfully compromise physiology. Here, we evaluated CO2 diffusivity (DCO2) in RBCs and related our results to cell shape. DCO2 inside RBCs was determined by fluorescence imaging of [H+] dynamics in cells under superfusion. This method is based on the principle that H+ diffusion is facilitated by CO2/HCO3− buffer and thus provides a read-out of DCO2. By imaging the spread of H+ ions from a photochemically-activated source (6-nitroveratraldehyde), DCO2 in human RBCs was calculated to be only 5% of the rate in water. Measurements on RBCs containing different hemoglobin concentrations demonstrated a halving of DCO2 with every 75 g/L increase in mean corpuscular hemoglobin concentration (MCHC). Thus, to compensate for highly-restricted cytoplasmic diffusion, RBC thickness must be reduced as appropriate for its MCHC. This can explain the inverse relationship between MCHC and RBC thickness determined from >250 animal species. PMID:27777410

  11. Analysis of molecular movement reveals latticelike obstructions to diffusion in heart muscle cells.

    PubMed

    Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko

    2012-02-22

    Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  13. Cerebral Metastases of Lung Cancer Mimicking Multiple Ischaemic Lesions - A Case Report and Review of Literature.

    PubMed

    Zacharzewska-Gondek, Anna; Maksymowicz, Hanna; Szymczyk, Małgorzata; Sąsiadek, Marek; Bladowska, Joanna

    2017-01-01

    Restricted diffusion that is found on magnetic resonance diffusion-weighted imaging (DWI) typically indicates acute ischaemic stroke. However, restricted diffusion can also occur in other diseases, like metastatic brain tumours, which we describe in this case report. A 57-year-old male, with a diagnosis of small-cell cancer of the right lung (microcellular anaplastic carcinoma), was admitted with focal neurological symptoms. Initial brain MRI revealed multiple, disseminated lesions that were hyperintense on T2-weighted images and did not enhance after contrast administration; notably, some lesions manifested restricted diffusion on DWI images. Based on these findings, disseminated ischaemic lesions were diagnosed. On follow-up MRI that was performed after 2 weeks, we observed enlargement of the lesions; there were multiple, disseminated, sharply outlined, contrast-enhancing, oval foci with persistent restriction of diffusion. We diagnosed the lesions as disseminated brain metastases due to lung cancer. To our knowledge, this is the first description of a patient with brain metastases that were characterised by restricted diffusion and no contrast enhancement. Multiple, disseminated brain lesions, that are characterised by restricted diffusion on DWI, typically indicate acute or hyperacute ischemic infarcts; however, they can also be due to hypercellular metastases, even if no contrast enhancement is observed. This latter possibility should be considered particularly in patients with cancer.

  14. Diagnostic Accuracy of Centrally Restricted Diffusion in the Differentiation of Treatment-Related Necrosis from Tumor Recurrence in High-Grade Gliomas.

    PubMed

    Zakhari, N; Taccone, M S; Torres, C; Chakraborty, S; Sinclair, J; Woulfe, J; Jansen, G H; Nguyen, T B

    2018-02-01

    Centrally restricted diffusion has been demonstrated in recurrent high-grade gliomas treated with bevacizumab. Our purpose was to assess the accuracy of centrally restricted diffusion in the diagnosis of radiation necrosis in high-grade gliomas not treated with bevacizumab. In this prospective study, we enrolled patients with high-grade gliomas who developed a new ring-enhancing necrotic lesion and who underwent re-resection. The presence of a centrally restricted diffusion within the ring-enhancing lesion was assessed visually on diffusion trace images and by ADC measurements on 3T preoperative diffusion tensor examination. The percentage of tumor recurrence and radiation necrosis in each surgical specimen was defined histopathologically. The association between centrally restricted diffusion and radiation necrosis was assessed using the Fisher exact test. Differences in ADC and the ADC ratio between the groups were assessed via the Mann-Whitney U test, and receiver operating characteristic curve analysis was performed. Seventeen patients had re-resected ring-enhancing lesions: 8 cases of radiation necrosis and 9 cases of tumor recurrence. There was significant association between centrally restricted diffusion by visual assessment and radiation necrosis ( P = .015) with a sensitivity of 75% and a specificity of 88.9%, a positive predictive value 85.7%, and a negative predictive value of 80% for the diagnosis of radiation necrosis. There was a statistically significant difference in the ADC and ADC ratio between radiation necrosis and tumor recurrence ( P = .027). The presence of centrally restricted diffusion in a new ring-enhancing lesion might indicate radiation necrosis rather than tumor recurrence in high-grade gliomas previously treated with standard chemoradiation without bevacizumab. © 2018 by American Journal of Neuroradiology.

  15. No differences in brain microstructure between young KIBRA-C carriers and non-carriers.

    PubMed

    Hu, Li; Xu, Qunxing; Li, Jizhen; Wang, Feifei; Xu, Xinghua; Sun, Zhiyuan; Ma, Xiangxing; Liu, Yong; Wang, Qing; Wang, Dawei

    2018-01-02

    KIBRA rs17070145 polymorphism is associated with variations in memory function and the microstructure of related brain areas. Diffusion kurtosis imaging (DKI) as an extension of diffusion tensor imaging that can provide more information about changes in microstructure, based on the idea that water diffusion in biological tissues is heterogeneous due to structural hindrance and restriction. We used DKI to explore the relationship between KIBRA gene polymorphism and brain microstructure in young adults. We recruited 100 healthy young volunteers, including 53 TT carriers and 47 C allele carriers. No differences were detected between the TT homozygotes and C-allele carriers for any diffusion and kurtosis parameter. These results indicate KIBRA rs17070145 polymorphism likely has little or no effect on brain microstructure in young adults.

  16. Invariant soil water potential at zero microbial respiration explained by hydrological discontinuity in dry soils

    DOE PAGES

    Manzoni, S.; Katul, G.

    2014-09-30

    We report that soil microbial respiration rates decrease with soil drying, ceasing below water potentials around -15 MPa. A proposed mechanism for this pattern is that under dry conditions, microbes are substrate limited because solute diffusivity is halted due to breaking of water film continuity. However, pore connectivity estimated from hydraulic conductivity and solute diffusivity (at Darcy's scale) is typically interrupted at much less negative water potentials than microbial respiration (-0.1 to -1 MPa). It is hypothesized here that the more negative respiration thresholds than at the Darcy's scale emerge because microbial activity is restricted to microscale soil patches thatmore » retain some hydrological connectivity even when it is lost at the macroscale. This hypothesis is explored using results from percolation theory and meta-analyses of respiration-water potential curves and hydrological percolation points. Lastly, when reducing the spatial scale from macroscale to microscale, hydrological and respiration thresholds become consistent, supporting the proposed hypothesis.« less

  17. Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy

    PubMed Central

    Xu, Junzhong; Does, Mark D.; Gore, John C.

    2009-01-01

    The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979

  18. Water Dynamics in Nafion Fuel Cell Membranes: the Effects of Confinement and Structural Changes on the Hydrogen Bond Network

    PubMed Central

    Moilanen, David E.; Piletic, Ivan R.; Fayer, Michael D.

    2008-01-01

    The complex environments experienced by water molecules in the hydrophilic channels of Nafion membranes are studied by ultrafast infrared pump-probe spectroscopy. A wavelength dependent study of the vibrational lifetime of the O-D stretch of dilute HOD in H2O confined in Nafion membranes provides evidence of two distinct ensembles of water molecules. While only two ensembles are present at each level of membrane hydration studied, the characteristics of the two ensembles change as the water content of the membrane changes. Time dependent anisotropy measurements show that the orientational motions of water molecules in Nafion membranes are significantly slower than in bulk water and that lower hydration levels result in slower orientational relaxation. Initial wavelength dependent results for the anisotropy show no clear variation in the time scale for orientational motion across a broad range of frequencies. The anisotropy decay is analyzed using a model based on restricted orientational diffusion within a hydrogen bond configuration followed by total reorientation through jump diffusion. PMID:18728757

  19. Classical Molecular Dynamics with Mobile Protons.

    PubMed

    Lazaridis, Themis; Hummer, Gerhard

    2017-11-27

    An important limitation of standard classical molecular dynamics simulations is the inability to make or break chemical bonds. This restricts severely our ability to study processes that involve even the simplest of chemical reactions, the transfer of a proton. Existing approaches for allowing proton transfer in the context of classical mechanics are rather cumbersome and have not achieved widespread use and routine status. Here we reconsider the combination of molecular dynamics with periodic stochastic proton hops. To ensure computational efficiency, we propose a non-Boltzmann acceptance criterion that is heuristically adjusted to maintain the correct or desirable thermodynamic equilibria between different protonation states and proton transfer rates. Parameters are proposed for hydronium, Asp, Glu, and His. The algorithm is implemented in the program CHARMM and tested on proton diffusion in bulk water and carbon nanotubes and on proton conductance in the gramicidin A channel. Using hopping parameters determined from proton diffusion in bulk water, the model reproduces the enhanced proton diffusivity in carbon nanotubes and gives a reasonable estimate of the proton conductance in gramicidin A.

  20. Restriction spectrum imaging reveals decreased neurite density in patients with temporal lobe epilepsy

    PubMed Central

    Loi, Richard Q.; Leyden, Kelly M.; Balachandra, Akshara; Uttarwar, Vedang; Hagler, Donald J.; Paul, Brianna M.; Dale, Anders M.; White, Nathan S.; McDonald, Carrie R.

    2016-01-01

    Objective Diffusion tensor imaging (DTI) has become a popular tool for delineating the location and extent of white matter injury in temporal lobe epilepsy (TLE). However, DTI yields nonspecific measures that are confounded by changes occurring within both the intracellular and extracellular environments. This study investigated whether an advanced diffusion method, restriction spectrum imaging (RSI) could provide a more robust measure of white matter injury in TLE relative to DTI due to RSI’s ability to separate intra-axonal diffusion (i.e., neurite density; ND) from diffusion associated with extra-axonal factors (e.g., inflammation; crossing fibers). Methods RSI and DTI scans were obtained on 21 patients with TLE and 11 age-matched controls. RSI-derived maps of ND, isotropic hindered (IH) and free (IF) water, and crossing fibers (CF) were compared to DTI-derived fractional anisotropy (FA) maps. Voxelwise and tract-based analyses were performed comparing patients with TLE to controls on each diffusion metric. Results Reductions in FA were seen primarily in frontotemporal white matter in TLE and were most pronounced proximal to the seizure focus. Reductions in ND corresponded to those seen in the FA maps; however, ND reductions were greater in magnitude, more lateralized to the epileptogenic hemisphere, and showed a broader pattern. Increases in IF/IH and effects from CFs also contributed to reduced FA in the ipsilateral parahippocampal cingulum and fornix, with decreases in IH extending into extratemporal regions. Reduced ND of the uncinate fasciculus was associated with longer disease duration, whereas FA was not associated with any clinical variables. Significance RSI may provide a more specific measure of white matter pathology in TLE, distinguishing regions primarily affected by axonal/myelin loss from those where CFs and increases in extracellular water also play a role. By providing a more specific measure of axonal/myelin loss, RSI-derived ND may better reflect overall white matter burden in epilepsy. PMID:27735051

  1. Restriction spectrum imaging reveals decreased neurite density in patients with temporal lobe epilepsy.

    PubMed

    Loi, Richard Q; Leyden, Kelly M; Balachandra, Akshara; Uttarwar, Vedang; Hagler, Donald J; Paul, Brianna M; Dale, Anders M; White, Nathan S; McDonald, Carrie R

    2016-11-01

    Diffusion tensor imaging (DTI) has become a popular tool for delineating the location and extent of white matter injury in temporal lobe epilepsy (TLE). However, DTI yields nonspecific measures that are confounded by changes occurring within both the intracellular and extracellular environments. This study investigated whether an advanced diffusion method, restriction spectrum imaging (RSI) could provide a more robust measure of white matter injury in TLE relative to DTI due to RSI's ability to separate intraaxonal diffusion (i.e., neurite density; ND) from diffusion associated with extraaxonal factors (e.g., inflammation; crossing fibers). RSI and DTI scans were obtained on 21 patients with TLE and 11 age-matched controls. RSI-derived maps of ND, isotropic-hindered (IH) and isotropic-free (IF) water, and crossing fibers (CFs) were compared to DTI-derived fractional anisotropy (FA) maps. Voxelwise and tract-based analyses were performed comparing patients with TLE to controls on each diffusion metric. Reductions in FA were seen primarily in frontotemporal white matter in TLE, and they were most pronounced proximal to the seizure focus. Reductions in ND corresponded to those seen in the FA maps; however, ND reductions were greater in magnitude, more lateralized to the epileptogenic hemisphere, and showed a broader pattern. Increases in IF/IH and effects from CFs also contributed to reduced FA in the ipsilateral parahippocampal cingulum and fornix, with decreases in IH extending into extratemporal regions. Reduced ND of the uncinate fasciculus was associated with longer disease duration, whereas FA was not associated with any clinical variables. RSI may provide a more specific measure of white matter pathology in TLE, distinguishing regions primarily affected by axonal/myelin loss from those where CFs and increases in extracellular water also play a role. By providing a more specific measure of axonal/myelin loss, RSI-derived ND may better reflect overall white matter burden in epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  2. Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix

    PubMed Central

    Partikian, Arthur; Ölveczky, Bence; Swaminathan, R.; Li, Yuxin; Verkman, A.S.

    1998-01-01

    Abstract. It is thought that the high protein density in the mitochondrial matrix results in severely restricted solute diffusion and metabolite channeling from one enzyme to another without free aqueous-phase diffusion. To test this hypothesis, we measured the diffusion of green fluorescent protein (GFP) expressed in the mitochondrial matrix of fibroblast, liver, skeletal muscle, and epithelial cell lines. Spot photobleaching of GFP with a 100× objective (0.8-μm spot diam) gave half-times for fluorescence recovery of 15–19 ms with >90% of the GFP mobile. As predicted for aqueous-phase diffusion in a confined compartment, fluorescence recovery was slowed or abolished by increased laser spot size or bleach time, and by paraformaldehyde fixation. Quantitative analysis of bleach data using a mathematical model of matrix diffusion gave GFP diffusion coefficients of 2–3 × 10−7 cm2/s, only three to fourfold less than that for GFP diffusion in water. In contrast, little recovery was found for bleaching of GFP in fusion with subunits of the fatty acid β-oxidation multienzyme complex that are normally present in the matrix. Measurement of the rotation of unconjugated GFP by time-resolved anisotropy gave a rotational correlation time of 23.3 ± 1 ns, similar to that of 20 ns for GFP rotation in water. A rapid rotational correlation time of 325 ps was also found for a small fluorescent probe (BCECF, ∼0.5 kD) in the matrix of isolated liver mitochondria. The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers. We propose that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse. PMID:9472034

  3. Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis.

    PubMed

    Hu, Haofeng; Liu, Tiegen; Zhai, Hongchen

    2015-01-26

    The dynamic process of material ejection and shock wave evolution during one single femtosecond laser pulse ablation of aluminum target in water and air is experimentally investigated by employing pump-probe technique. Shadowgraphs and digital holograms with high temporal resolution are recorded, which intuitively reveal the characteristics of femtosecond laser ablation in the water-confined environment. The experimental result indicates that the liquid significantly restrict the diffusion of the ejected material, and it has a considerable effect on the attenuation of the shock wave. In addition, the expansion Mach wave generated by the ultrasonic expansion of the shock wave is observed.

  4. Determination of mean droplet sizes of water-in-oil emulsions using an Earth's field NMR instrument.

    PubMed

    Fridjonsson, Einar O; Flux, Louise S; Johns, Michael L

    2012-08-01

    The use of the Earth's magnetic field (EF) to conduct nuclear magnetic resonance (NMR) experiments has a long history with a growing list of applications (e.g. ground water detection, diffusion measurements of Antarctic sea ice). In this paper we explore whether EFNMR can be used to accurately and practically measure the mean droplet size () of water-in-oil emulsions (paraffin and crude oil). We use both pulsed field gradient (PFG) measurements of restricted self-diffusion and T₂ relaxometry, as appropriate. T₂ relaxometry allows the extension of droplet sizing ability below the limits set by the available magnetic field gradient strength of the EFNMR apparatus. A commercially available bench-top NMR spectrometer is used to verify the results obtained using the EFNMR instrument, with good agreement within experimental error, seen between the two instruments. These results open the potential for further investigation of the application of EFNMR for emulsion droplet sizing. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy

    PubMed Central

    Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.

    2011-01-01

    The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell density. PMID:20677208

  6. Presence of time-dependent diffusion in the brachial plexus.

    PubMed

    Mahbub, Zaid B; Peters, Andrew M; Gowland, Penny A

    2018-02-01

    This work describes the development of a method to measure the variation of apparent diffusion coefficient (ADC) with diffusion time (Δ) in the brachial plexus, as a potential method of probing microstructure. Diffusion-weighted MRI with body signal suppression was used to highlight the nerves from surrounding tissues, and sequence parameters were optimized for sensitivity to change with diffusion time. A porous media-restricted diffusion model based on the Latour-Mitra equation was fitted to the diffusion time-dependent ADC data from the brachial plexus nerves and cord. The ADC was observed to reduce at long diffusion times, confirming that diffusion was restricted in the nerves and cord in healthy subjects. T2 of the nerves was measured to be 80 ± 5 ms, the diffusion coefficient was found to vary from (1.5 ± 0.1) × 10 -3 mm 2 /s at a diffusion time of 18.3 ms to (1.0 ± 0.2) × 10 -3 mm 2 /s at a diffusion time of 81.3 ms. A novel method of probing restricted diffusion in the brachial plexus was developed. Resulting parameters were comparable with values obtained previously on biological systems. Magn Reson Med 79:789-795, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. On the vanishing of the t-term in the short-time expansion of the diffusion coefficient for oscillating gradients in diffusion NMR

    NASA Astrophysics Data System (ADS)

    Laun, Frederik B.; Demberg, Kerstin; Nagel, Armin M.; Uder, Micheal; Kuder, Tristan A.

    2017-11-01

    Nuclear magnetic resonance (NMR) diffusion measurements can be used to probe porous structures or biological tissues by means of the random motion of water molecules. The short-time expansion of the diffusion coefficient in powers of sqrt(t), where t is the diffusion time related to the duration of the diffusion-weighting magnetic field gradient profile, is universally connected to structural parameters of the boundaries restricting the diffusive motion. The sqrt(t)-term is proportional to the surface to volume ratio. The t-term is related to permeability and curvature. The short time expansion can be measured with two approaches in NMR-based diffusion experiments: First, by the use of diffusion encodings of short total duration and, second, by application of oscillating gradients of long total duration. For oscillating gradients, the inverse of the oscillation frequency becomes the relevant time scale. The purpose of this manuscript is to show that the oscillating gradient approach is blind to the t-term. On the one hand, this prevents fitting of permeability and curvature measures from this term. On the other hand, the t-term does not bias the determination of the sqrt(t)-term in experiments.

  8. Composition and method for polymer moderated catalytic water formation

    DOEpatents

    Shepodd, Timothy Jon

    1999-01-01

    A composition suitable for safely removing hydrogen from gaseous mixtures containing hydrogen and oxygen, particularly those mixtures wherein the hydrogen concentration is within the explosive range. The composition comprises a hydrogenation catalyst, preferably Pd dispersed on carbon, wherein the concentration of Pd is from about 1-10 wt %, dispersed in a polymeric material matrix. As well as serving as a matrix to contain the hydrogenation catalyst, the polymeric material, which is substantially unreactive to hydrogen, provides both a diffusion restriction to hydrogen and oxygen, thereby limiting the rate at which the reactants (hydrogen and oxygen) can diffuse to the catalyst surface and thus, the production of heat from the recombination reaction and as a heat sink.

  9. Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors?

    PubMed

    Caro-Domínguez, Pablo; Gupta, Abha A; Chavhan, Govind B

    2018-01-01

    There are limited data on utility of diffusion-weighted imaging (DWI) in the evaluation of pediatric liver lesions. To determine whether qualitative and quantitative DWI can be used to differentiate benign and malignant pediatric liver lesions. We retrospectively reviewed MRIs in children with focal liver lesions to qualitatively evaluate lesions noting diffusion restriction, T2 shine-through, increased diffusion, hypointensity on DWI and apparent diffusion coefficient (ADC) maps, and intermediate signal on both, and to measure ADC values. Pathology confirmation or a combination of clinical, laboratory and imaging features, and follow-up was used to determine final diagnosis. We included 112 focal hepatic lesions in 89 children (median age 11.5 years, 51 female), of which 92 lesions were benign and 20 malignant. Interobserver agreement was almost perfect for both qualitative (kappa 0.8735) and quantitative (intraclass correlation coefficient [ICC] 0.96) diffusion assessment. All malignant lesions showed diffusion restriction. Most benign lesions other than abscesses were not restricted. There was significant association of qualitative restriction with malignancy and non-restriction with benignancy (Fisher exact test P<0.0001). Mean normalized ADC values of malignant lesions (1.23x10 -3  mm 2 /s) were lower than benign lesions (1.62x10 -3  mm 2 /s; Student's t-test, P<0.015). However, there was significant overlap of ADC between benign and malignant lesions, with wide range for each diagnosis. Receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.63 for predicting malignancy using an ADC cut-off value of ≤1.20x10 -3  mm 2 /s, yielding a sensitivity of 78% and a specificity of 54% for differentiating malignant from benign lesions. Qualitative diffusion restriction in pediatric liver lesions is a good predictor of malignancy and can help to differentiate between benign and malignant lesions, in conjunction with conventional MR sequences. Even though malignant lesions demonstrated significantly lower ADC values than benign lesions, the use of quantitative diffusion remains limited in its utility for distinguishing them because of the significant overlap and wide ranges of ADC values.

  10. Posterior Reversible Encephalopathy Syndrome (PRES): Restricted Diffusion does not Necessarily Mean Irreversibility.

    PubMed

    Wagih, Alaa; Mohsen, Laila; Rayan, Moustafa M; Hasan, Mo'men M; Al-Sherif, Ashraf H

    2015-01-01

    Restricted diffusion is the second most common atypical presentation of PRES. This has a very important implication, as lesions with cytotoxic edema may progress to infarction. Several studies suggested the role of DWI in the prediction of development of infarctions in these cases. Other studies, however, suggested that PRES is reversible even with cytotoxic patterns. Our aim was to evaluate whether every restricted diffusion in PRES is reversible and what factors affect this reversibility. Thirty-six patients with acute neurological symptoms suggestive of PRES were included in our study. Inclusion criteria comprised imaging features of atypical PRES where DWI images and ADC maps show restricted diffusion. Patients were imaged with 0.2-T and 1.5-T machines. FLAIR images were evaluated for the severity of the disease and a FLAIR/DWI score was used. ADC values were selectively recorded from the areas of diffusion restriction. A follow-up MRI study was carried out in all patients after 2 weeks. Patients were classified according to reversibility into: Group 1 (reversible PRES; 32 patients) and Group 2 (irreversible changes; 4 patients). The study was approved by the University's research ethics committee, which conforms to the declaration of Helsinki. The age and blood pressure did not vary significantly between both groups. The total number of regions involved and the FLAIR/DWI score did not vary significantly between both groups. Individual regions did not reveal any tendency for the development of irreversible lesions. Similarly, ADC values did not reveal any significant difference between both groups. PRES is completely reversible in the majority of patients, even with restricted diffusion. None of the variables under study could predict the reversibility of PRES lesions. It seems that this process is individual-dependent.

  11. Posterior Reversible Encephalopathy Syndrome (PRES): Restricted Diffusion does not Necessarily Mean Irreversibility

    PubMed Central

    Wagih, Alaa; Mohsen, Laila; Rayan, Moustafa M.; Hasan, Mo’men M.; Al-Sherif, Ashraf H.

    2015-01-01

    Summary Background Restricted diffusion is the second most common atypical presentation of PRES. This has a very important implication, as lesions with cytotoxic edema may progress to infarction. Several studies suggested the role of DWI in the prediction of development of infarctions in these cases. Other studies, however, suggested that PRES is reversible even with cytotoxic patterns. Our aim was to evaluate whether every restricted diffusion in PRES is reversible and what factors affect this reversibility. Material/Methods Thirty-six patients with acute neurological symptoms suggestive of PRES were included in our study. Inclusion criteria comprised imaging features of atypical PRES where DWI images and ADC maps show restricted diffusion. Patients were imaged with 0.2-T and 1.5-T machines. FLAIR images were evaluated for the severity of the disease and a FLAIR/DWI score was used. ADC values were selectively recorded from the areas of diffusion restriction. A follow-up MRI study was carried out in all patients after 2 weeks. Patients were classified according to reversibility into: Group 1 (reversible PRES; 32 patients) and Group 2 (irreversible changes; 4 patients). The study was approved by the University’s research ethics committee, which conforms to the declaration of Helsinki. Results The age and blood pressure did not vary significantly between both groups. The total number of regions involved and the FLAIR/DWI score did not vary significantly between both groups. Individual regions did not reveal any tendency for the development of irreversible lesions. Similarly, ADC values did not reveal any significant difference between both groups. Conclusions PRES is completely reversible in the majority of patients, even with restricted diffusion. None of the variables under study could predict the reversibility of PRES lesions. It seems that this process is individual-dependent. PMID:25960819

  12. Whole-body diffusion kurtosis imaging: initial experience on non-Gaussian diffusion in various organs.

    PubMed

    Filli, Lukas; Wurnig, Moritz; Nanz, Daniel; Luechinger, Roger; Kenkel, David; Boss, Andreas

    2014-12-01

    Diffusion kurtosis imaging (DKI) is based on a non-Gaussian diffusion model that should inherently better account for restricted water diffusion within the complex microstructure of most tissues than the conventional diffusion-weighted imaging (DWI), which presumes Gaussian distributed water molecule displacement probability. The aim of this investigation was to test the technical feasibility of in vivo whole-body DKI, probe for organ-specific differences, and compare whole-body DKI and DWI results. Eight healthy subjects underwent whole-body DWI on a clinical 3.0 T magnetic resonance imaging system. Echo-planar images in the axial orientation were acquired at b-values of 0, 150, 300, 500, and 800 mm²/s. Parametrical whole-body maps of the diffusion coefficient (D), the kurtosis (K), and the traditional apparent diffusion coefficient (ADC) were generated. Goodness of fit was compared between DKI and DWI fits using the sums of squared residuals. Data groups were tested for significant differences of the mean by paired Student t tests. Good-quality parametrical whole-body maps of D, K, and ADC could be computed. Compared with ADC values, D values were significantly higher in the cerebral gray matter (by 30%) and white matter (27%), renal cortex (23%) and medulla (21%), spleen (101%), as well as erector spinae muscle (34%) (each P value <0.001). No significant differences between D and ADC were found in the cerebrospinal fluid (P = 0.08) and in the liver (P = 0.13). Curves of DKI fitted the measurement points significantly better than DWI curves did in most organs. Whole-body DKI is technically feasible and may reflect tissue microstructure more meaningfully than whole-body DWI.

  13. Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout.

    PubMed

    Sokolova, Niina; Vendelin, Marko; Birkedal, Rikke

    2009-12-17

    Restriction of intracellular diffusion of adenine nucleotides has been studied intensively on adult rat cardiomyocytes. However, their cause and role in vivo is still uncertain. Intracellular membrane structures have been suggested to play a role. We therefore chose to study cardiomyocytes from rainbow trout (Oncorhynchus mykiss), which are thinner and have fewer intracellular membrane structures than adult rat cardiomyocytes. Previous studies suggest that trout permeabilized cardiac fibers also have diffusion restrictions. However, results from fibers may be affected by incomplete separation of the cells. This is avoided when studying permeabilized, isolated cardiomyocytes. The aim of this study was to verify the existence of diffusion restrictions in trout cardiomyocytes by comparing ADP-kinetics of mitochondrial respiration in permeabilized fibers, permeabilized cardiomyocytes and isolated mitochondria from rainbow trout heart. Experiments were performed at 10, 15 and 20 degrees C in the absence and presence of creatine. Trout cardiomyocytes hypercontracted in the solutions used for mammalian cardiomyocytes. We developed a new solution in which they retained their shape and showed stable steady state respiration rates throughout an experiment. The apparent ADP-affinity of permeabilized cardiomyocytes was different from that of fibers. It was higher, independent of temperature and not increased by creatine. However, it was still about ten times lower than in isolated mitochondria. The differences between fibers and cardiomyocytes suggest that results from trout heart fibers were affected by incomplete separation of the cells. However, the lower ADP-affinity of cardiomyocytes compared to isolated mitochondria indicate that intracellular diffusion restrictions are still present in trout cardiomyocytes despite their lower density of intracellular membrane structures. The lack of a creatine effect indicates that trout heart lacks mitochondrial creatine kinase tightly coupled to respiration. This argues against diffusion restriction by the outer mitochondrial membrane. These results from rainbow trout cardiomyocytes resemble those from other low-performance hearts such as neonatal rat and rabbit hearts. Thus, it seems that metabolic regulation is related to cardiac performance, and it is likely that rainbow trout can be used as a model animal for further studies of the localization and role of diffusion restrictions in low-performance hearts.

  14. Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers

    DOE PAGES

    Zarzycki, Piotr; Gilbert, Benjamin

    2016-04-27

    Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short-and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without externalmore » water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species.« less

  15. Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers

    PubMed Central

    Zarzycki, Piotr; Gilbert, Benjamin

    2016-01-01

    Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short- and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without external water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species. PMID:27118164

  16. Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution

    NASA Astrophysics Data System (ADS)

    Friedson, A. James; Gonzales, Erica J.

    2017-11-01

    We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for understanding Uranus' anomalously low intrinsic luminosity, and for inducing episodes of intense convection in the atmospheres of Saturn, Uranus, and Neptune.

  17. Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging

    PubMed Central

    Madden, David J.; Bennett, Ilana J.; Song, Allen W.

    2009-01-01

    The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior-posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application. PMID:19705281

  18. Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.

    The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less

  19. Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action

    DOE PAGES

    Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.; ...

    2016-11-08

    The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less

  20. Generalized Hydrodynamic Treatment of the Interplay between Restricted Transport and Catalytic Reactions in Nanoporous Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, David M.; Wang, Jing; Evans, James W.

    2012-05-30

    Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

  1. Generalized hydrodynamic treatment of the interplay between restricted transport and catalytic reactions in nanoporous materials.

    PubMed

    Ackerman, David M; Wang, Jing; Evans, James W

    2012-06-01

    Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

  2. Lateral diffusion in model membranes is independent of the size of the hydrophobic region of molecules.

    PubMed Central

    Balcom, B J; Petersen, N O

    1993-01-01

    We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892

  3. Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltage-dependent anion channels.

    PubMed

    Simson, Päivo; Jepihhina, Natalja; Laasmaa, Martin; Peterson, Pearu; Birkedal, Rikke; Vendelin, Marko

    2016-08-01

    Adequate intracellular energy transfer is crucial for proper cardiac function. In energy starved failing hearts, partial restoration of energy transfer can rescue mechanical performance. There are two types of diffusion obstacles that interfere with energy transfer from mitochondria to ATPases: mitochondrial outer membrane (MOM) with voltage-dependent anion channel (VDAC) permeable to small hydrophilic molecules and cytoplasmatic diffusion barriers grouping ATP-producers and -consumers. So far, there is no method developed to clearly distinguish the contributions of cytoplasmatic barriers and MOM to the overall diffusion restriction. Furthermore, the number of open VDACs in vivo remains unknown. The aim of this work was to establish the partitioning of intracellular diffusion obstacles in cardiomyocytes. We studied the response of mitochondrial oxidative phosphorylation of permeabilized rat cardiomyocytes to changes in extracellular ADP by recording 3D image stacks of NADH autofluorescence. Using cell-specific mathematical models, we determined the permeability of MOM and cytoplasmatic barriers. We found that only ~2% of VDACs are accessible to cytosolic ADP and cytoplasmatic diffusion barriers reduce the apparent diffusion coefficient by 6-10×. In cardiomyocytes, diffusion barriers in the cytoplasm and by the MOM restrict ADP/ATP diffusion to similar extents suggesting a major role of both barriers in energy transfer and other intracellular processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Transport properties of the mung bean (Vigna radiata) non-aerial hypocotyl membrane: permselectivity to hydrophilic compounds.

    PubMed

    Aponte, John; Baur, Peter

    2014-01-01

    Aerial plant surfaces are covered by a lipophilic cuticular membrane (CM) that restricts the transport of water and small solutes. Non-aerial tissues do not exhibit such a barrier. Recent data have shown that large relative to CM hydrophilic agrochemicals were able to pass at high rates through the non-aerial coleoptile. A moderately large hydrophilic solute like PEG 1000 with a mean molar volume of 782 cm(3) mol(-1) was rejected by the non-aerial hypocotyl. Uptake of smaller solutes like urea (46.5 cm(3) mol(-1) ) was fast and with 99% after 1 day. Cut-off size estimations suggest a pore size diameter below 1.5 nm. Aerial and non-aerial CM differ largely in their absolute barrier properties. This difference is related to the absence of embedded cuticular waxes in the non-aerial hypocotyl membrane, which make the CM physically dense and cause low solubility of hydrophilic solutes. The free volume for diffusion at the interface of the non-aerial hypocotyl cuticle to the environment is much larger resulting in higher penetration rates. It is suggested that diffusion through the non-aerial hypocotyl does not proceed in a real channel system with continuous aqueous phase but is more like transport through a filter with restricted diffusion in the pore openings. © 2013 Society of Chemical Industry.

  5. Hybrid quantitative MRI using chemical shift displacement and recovery-based simultaneous water and lipid imaging: A preliminary study.

    PubMed

    Ohno, Naoki; Miyati, Tosiaki; Suzuki, Shuto; Kan, Hirohito; Aoki, Toshitaka; Nakamura, Yoshitaka; Hiramatsu, Yuki; Kobayashi, Satoshi; Gabata, Toshifumi

    2018-07-01

    To suppress olefinic signals and enable simultaneous and quantitative estimation of multiple functional parameters associated with water and lipid, we investigated a modified method using chemical shift displacement and recovery-based separation of lipid tissue (SPLIT) involving acquisitions with different inversion times (TIs), echo times (TEs), and b-values. Single-shot diffusion echo-planar imaging (SSD-EPI) with multiple b-values (0-3000 s/mm 2 ) was performed without fat suppression to separate water and lipid images using the chemical shift displacement of lipid signals in the phase-encoding direction. An inversion pulse (TI = 292 ms) was applied to SSD-EPI to remove olefinic signals. Consecutively, SSD-EPI (b = 0 s/mm 2 ) was performed with TI = 0 ms and TE = 31.8 ms for T 1 and T 2 measurements, respectively. Under these conditions, transverse water and lipid images at the maximum diameter of the right calf were obtained in six healthy subjects. T 1 , T 2 , and the apparent diffusion coefficients (ADC) were then calculated for the tibialis anterior (TA), gastrocnemius (GM), and soleus (SL) muscles, tibialis bone marrow (TB), and subcutaneous fat (SF). Perfusion-related (D*) and restricted diffusion coefficients (D) were calculated for the muscles. Lastly, the lipid fractions (LF) of the muscles were determined after T 1 and T 2 corrections. The modified SPLIT method facilitated sufficient separation of water and lipid images of the calf, and the inversion pulse with TI of 292 ms effectively suppressed olefinic signals. All quantitative parameters obtained with the modified SPLIT method were found to be in general agreement with those previously reported in the literature. The modified SPLIT technique enabled sufficient suppression of olefinic signals and simultaneous acquisition of quantitative parameters including diffusion, perfusion, T 1 and T 2 relaxation times, and LF. Copyright © 2018. Published by Elsevier Inc.

  6. Characterization of spinal cord white matter by suppressing signal from hindered space. A Monte Carlo simulation and an ex vivo ultrahigh-b diffusion-weighted imaging study.

    PubMed

    Sapkota, Nabraj; Yoon, Sook; Thapa, Bijaya; Lee, YouJung; Bisson, Erica F; Bowman, Beth M; Miller, Scott C; Shah, Lubdha M; Rose, John W; Jeong, Eun-Kee

    2016-11-01

    Signal measured from white matter in diffusion-weighted imaging is difficult to interpret because of the heterogeneous structure of white matter. Characterization of the white matter will be straightforward if the signal contributed from the hindered space is suppressed and purely restricted signal is analyzed. In this study, a Monte Carlo simulation (MCS) of water diffusion in white matter was performed to understand the behavior of the diffusion-weighted signal in white matter. The signal originating from the hindered space of an excised pig cervical spinal cord white matter was suppressed using the ultrahigh-b radial diffusion-weighted imaging. A light microscopy image of a section of white matter was obtained from the excised pig cervical spinal cord for the MCS. The radial diffusion-weighted signals originating from each of the intra-axonal, extra-axonal, and total spaces were studied using the MCS. The MCS predicted that the radial diffusion-weighted signal remains almost constant in the intra-axonal space and decreases gradually to about 2% of its initial value in the extra-axonal space when the b-value is increased to 30,000s/mm 2 . The MCS also revealed that the diffusion-weighted signal for a b-value greater than 20,000s/mm 2 is mostly from the intra-axonal space. The decaying behavior of the signal-b curve obtained from ultrahigh-b diffusion-weighted imaging (b max ∼30,000s/mm 2 ) of the excised pig cord was very similar to the decaying behavior of the total signal-b curve synthesized in the MCS. A mono-exponential plus constant fitting of the signal-b curve obtained from a white matter pixel estimated the values of constant fraction and apparent diffusion coefficient of decaying fraction as 0.32±0.05 and (0.16±0.01)×10 -3 mm 2 /s, respectively, which agreed well with the results of the MCS. The signal measured in the ultrahigh-b region (b>20,000s/mm 2 ) is mostly from the restricted (intra-axonal) space. Integrity and intactness of the axons can be evaluated by assessing the remaining signal in the ultrahigh-b region. Published by Elsevier Inc.

  7. Metabolic compartmentation in rainbow trout cardiomyocytes: coupling of hexokinase but not creatine kinase to mitochondrial respiration.

    PubMed

    Karro, Niina; Sepp, Mervi; Jugai, Svetlana; Laasmaa, Martin; Vendelin, Marko; Birkedal, Rikke

    2017-01-01

    Rainbow trout (Oncorhynchus mykiss) cardiomyocytes have a simple morphology with fewer membrane structures such as sarcoplasmic reticulum and t-tubules penetrating the cytosol. Despite this, intracellular ADP diffusion is restricted. Intriguingly, although diffusion is restricted, trout cardiomyocytes seem to lack the coupling between mitochondrial creatine kinase (CK) and respiration. Our aim was to study the distribution of diffusion restrictions in permeabilized trout cardiomyocytes and verify the role of CK. We found a high activity of hexokinase (HK), which led us to reassess the situation in trout cardiomyocytes. We show that diffusion restrictions are more prominent than previously thought. In the presence of a competitive ADP-trapping system, ADP produced by HK, but not CK, was channeled to the mitochondria. In agreement with this, we found no positively charged mitochondrial CK in trout heart homogenate. The results were best fit by a simple mathematical model suggesting that trout cardiomyocytes lack a functional coupling between ATPases and pyruvate kinase. The model simulations show that diffusion is restricted to almost the same extent in the cytosol and by the outer mitochondrial membrane. Furthermore, they confirm that HK, but not CK, is functionally coupled to respiration. In perspective, our results suggest that across a range of species, cardiomyocyte morphology and metabolism go hand in hand with cardiac performance, which is adapted to the circumstances. Mitochondrial CK is coupled to respiration in adult mammalian hearts, which are specialized to high, sustained performance. HK associates with mitochondria in hearts of trout and neonatal mammals, which are more hypoxia-tolerant.

  8. The effects of ageing on mouse muscle microstructure: a comparative study of time-dependent diffusion MRI and histological assessment.

    PubMed

    Porcari, Paola; Hall, Matt G; Clark, Chris A; Greally, Elizabeth; Straub, Volker; Blamire, Andrew M

    2018-03-01

    The investigation of age-related changes in muscle microstructure between developmental and healthy adult mice may help us to understand the clinical features of early-onset muscle diseases, such as Duchenne muscular dystrophy. We investigated the evolution of mouse hind-limb muscle microstructure using diffusion imaging of in vivo and in vitro samples from both actively growing and mature mice. Mean apparent diffusion coefficients (ADCs) of the gastrocnemius and tibialis anterior muscles were determined as a function of diffusion time (Δ), age (7.5, 22 and 44 weeks) and diffusion gradient direction, applied parallel or transverse to the principal axis of the muscle fibres. We investigated a wide range of diffusion times with the goal of probing a range of diffusion lengths characteristic of muscle microstructure. We compared the diffusion time-dependent ADC of hind-limb muscles with histology. ADC was found to vary as a function of diffusion time in muscles at all stages of maturation. Muscle water diffusivity was higher in younger (7.5 weeks) than in adult (22 and 44 weeks) mice, whereas no differences were observed between the older ages. In vitro data showed the same diffusivity pattern as in vivo data. The highlighted differences in diffusion properties between young and mature muscles suggested differences in underlying muscle microstructure, which were confirmed by histological assessment. In particular, although diffusion was more restricted in older muscle, muscle fibre size increased significantly from young to adult age. The extracellular space decreased with age by only ~1%. This suggests that the observed diffusivity differences between young and adult muscles may be caused by increased membrane permeability in younger muscle associated with properties of the sarcolemma. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Changes in diffusion tensor imaging (DTI) eigenvalues of skeletal muscle due to hybrid exercise training.

    PubMed

    Okamoto, Yoshikazu; Kemp, Graham J; Isobe, Tomonori; Sato, Eisuke; Hirano, Yuji; Shoda, Junichi; Minami, Manabu

    2014-12-01

    Several studies have proposed the cell membrane as the main water diffusion restricting factor in the skeletal muscle cell. We sought to establish whether a particular form of exercise training (which is likely to affect only intracellular components) could affect water diffusion. The purpose of this study is to characterise prospectively the changes in diffusion tensor imaging (DTI) eigenvalues of thigh muscle resulting from hybrid training (HYBT) in patients with non-alcoholic fatty liver disease (NAFLD). Twenty-one NAFLD patients underwent HYBT for 30 minutes per day, twice a week for 6 months. Patients were scanned using DTI of the thigh pre- and post-HYBT. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), the three eigenvalues lambda 1 (λ1), λ2, λ3, and the maximal cross sectional area (CSA) were measured in bilateral thigh muscles: knee flexors (biceps femoris (BF), semitendinosus (ST), semimembranous (SM)) and knee extensors (medial vastus (MV), intermediate vastus (IV), lateral vastus (LV), and rectus femoris (RF)), and compared pre- and post-HYBT by paired t-test. Muscle strength of extensors (P<0.01), but not flexors, increased significantly post-HYBT. For FA, ADC and eigenvalues, the overall picture was of increase. Some (P<0.05 in λ2 and P<0.01 in λ1) eigenvalues of flexors and all (λ1-λ3) eigenvalues of extensors increased significantly (P<0.01) post-HYBT. HYBT increased all 3 eigenvalues. We suggest this might be caused by enlargement of muscle intracellular space. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.

    PubMed

    Obreque-Slíer, Elías; Peña-Neira, Alvaro; López-Solís, Remigio

    2010-03-24

    Red wine astringency has been associated with interactions of tannins with salivary proteins. Tannins are active protein precipitants. Not much evidence exists demonstrating contribution of other wine components to astringency. We aimed to investigate an eventual role of ethanol both in astringency and salivary protein-enological tannin interactions. A trained sensory panel scored perceived astringency. Salivary protein-tannin interactions were assessed by observing both tannin-dependent changes in salivary protein diffusion on cellulose membranes and tannin-induced salivary protein precipitation. Proanthocyanidins and gallotannins in aqueous and hydroalcoholic solutions were assayed. A biphasic mode of diffusion on cellulose membranes displayed by salivary proteins was unaffected after dilution with water or enological concentrations of ethanol. At those concentrations ethanol was not astringent. In aqueous solution, tannins provoked both restriction of salivary protein diffusion, protein precipitation, and astringency. Those effects were exacerbated by 13% ethanol. In summary, enological concentrations of ethanol exacerbate astringency and salivary protein-tannin interactions.

  11. Social Diffusion of Water Conservation: A Study of Residential Turf Rebate Programs in Orange County, California

    NASA Astrophysics Data System (ADS)

    Duong, K.; Grant, S. B.; Rippy, M.; Feldman, D.

    2017-12-01

    From 2011 to 2017, the combination of record low precipitation and extreme warm temperatures resulted in the most severe drought in California's written history. In April 2015, Governor Jerry Brown issued an executive order mandating a statewide 25% reduction in potable urban water usage. Under such circumstances, outdoor watering is an obvious target for restriction, because it can account for a large fraction of total domestic water usage, up to 50% in the arid southwest [Syme et. al 2004, Cameron et. al 2012]. In this study we analyzed one such effort, in which the Irvine Ranch Water District (IRWD) in Orange County (California) offered a financial incentive through a turf rebate program to encourage Irvine residents to replace turf grass with drought tolerant landscaping. We focused specifically on the number of residents who applied to the turf rebate program. Our hypothesis was that the observed application rate (number of applicants per month) is influenced by a combination of (a) financial incentives issued by IRWD, (b) drought awareness, and (c) the fraction of neighbors that have already applied to the program (a phenomenon that can be described quantitatively through models of social contagion or social diffusion [Karsai et. al 2014]). Our preliminary results indicate that applications to the program occurred in geographic "hot spots", consistent with the idea that early adopters may have influenced neighbors to retrofit their lawns. We are currently evaluating the geographic, demographic, and temporal drivers that influence the rate of spontaneous adoption, the rate of adoption under influence, and the total size of the susceptible population. Overall, our goal is to identify the key factors that contribute to early rapid uptake of conservation behavior, and the rapid diffusion of that behavior through the community.

  12. Modeling diffusion control on organic matter decomposition in unsaturated soil pore space

    NASA Astrophysics Data System (ADS)

    Vogel, Laure; Pot, Valérie; Garnier, Patricia; Vieublé-Gonod, Laure; Nunan, Naoise; Raynaud, Xavier; Chenu, Claire

    2014-05-01

    Soil Organic Matter decomposition is affected by soil structure and water content, but field and laboratory studies about this issue conclude to highly variable outcomes. Variability could be explained by the discrepancy between the scale at which key processes occur and the measurements scale. We think that physical and biological interactions driving carbon transformation dynamics can be best understood at the pore scale. Because of the spatial disconnection between carbon sources and decomposers, the latter rely on nutrient transport unless they can actively move. In hydrostatic case, diffusion in soil pore space is thus thought to regulate biological activity. In unsaturated conditions, the heterogeneous distribution of water modifies diffusion pathways and rates, thus affects diffusion control on decomposition. Innovative imaging and modeling tools offer new means to address these effects. We have developed a new model based on the association between a 3D Lattice-Boltzmann Model and an adimensional decomposition module. We designed scenarios to study the impact of physical (geometry, saturation, decomposers position) and biological properties on decomposition. The model was applied on porous media with various morphologies. We selected three cubic images of 100 voxels side from µCT-scanned images of an undisturbed soil sample at 68µm resolution. We used LBM to perform phase separation and obtained water phase distributions at equilibrium for different saturation indices. We then simulated the diffusion of a simple soluble substrate (glucose) and its consumption by bacteria. The same mass of glucose was added as a pulse at the beginning of all simulations. Bacteria were placed in few voxels either regularly spaced or concentrated close to or far from the glucose source. We modulated physiological features of decomposers in order to weight them against abiotic conditions. We could evidence several effects creating unequal substrate access conditions for decomposers, hence inducing contrasted decomposition kinetics: position of bacteria relative to the substrate diffusion pathways, diffusion rate and hydraulic connectivity between bacteria and substrate source, local substrate enrichment due to restricted mass transfer. Physiological characteristics had a strong impact on decomposition only when glucose diffused easily but not when diffusion limitation prevailed. This suggests that carbon dynamics should not be considered to derive from decomposers' physiology alone but rather from the interactions of biological and physical processes at the microscale.

  13. Cattle-derived microbial input to source water catchments: An experimental assessment of stream crossing modification.

    PubMed

    Smolders, Andrew; Rolls, Robert J; Ryder, Darren; Watkinson, Andrew; Mackenzie, Mark

    2015-06-01

    The provision of safe drinking water is a global issue, and animal production is recognized as a significant potential origin of human infectious pathogenic microorganisms within source water catchments. On-farm management can be used to mitigate livestock-derived microbial pollution in source water catchments to reduce the risk of contamination to potable water supplies. We applied a modified Before-After Control Impact (BACI) design to test if restricting the access of livestock to direct contact with streams prevented longitudinal increases in the concentrations of faecal indicator bacteria and suspended solids. Significant longitudinal increases in pollutant concentrations were detected between upstream and downstream reaches of the control crossing, whereas such increases were not detected at the treatment crossing. Therefore, while the crossing upgrade was effective in preventing cattle-derived point source pollution by between 112 and 158%, diffuse source pollution to water supplies from livestock is not ameliorated by this intervention alone. Our findings indicate that stream crossings that prevent direct contact between livestock and waterways provide a simple method for reducing pollutant loads in source water catchments, which ultimately minimises the likelihood of pathogenic microorganisms passing through source water catchments and the drinking water supply system. The efficacy of the catchment as a primary barrier to pathogenic risks to drinking water supplies would be improved with the integration of management interventions that minimise direct contact between livestock and waterways, combined with the mitigation of diffuse sources of livestock-derived faecal matter from farmland runoff to the aquatic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Sieving of electrolytes at capillary wall of cat skeletal muscle by osmotic water flow.

    PubMed

    Watson, P D

    1993-12-01

    To test the hypothesis that a significant proportion of transcapillary water flow occurs through solute-restricting channels, we investigated the effects of transcapillary water movement on plasma electrolytes in isolated perfused cat skeletal muscle. The lower hindlimbs of anesthetized cats were perfused with a plasma-albumin solution and were weighed to determine transcapillary water movement. Osmolality was increased 60-70 mosmol/kgH2O with sucrose, creating water fluxes of 8-10 ml.min-1.100 g-1, and the changes in the venous concentrations of sodium, potassium, and chloride were determined. The ion concentrations were all reduced by 6-7% with no significant difference between them. The amount of reduction was quantitatively explained by the flow of ion-free water from the interstitial space into plasma and the diffusion of electrolyte in the same direction. These findings support the hypothesis that important water-only transcapillary channels exist in mammalian skeletal muscle. The observations may also explain some of the electrolyte changes seen in intense exercise.

  15. Structural Measurements from Images of Noble Gas Diffusion

    NASA Astrophysics Data System (ADS)

    Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.

    2009-03-01

    Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.

  16. Structure of peat soils and implications for biogeochemical processes and hydrological flow

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.

    2017-12-01

    Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.

  17. Modeling of tritium transport in a fusion reactor pin-type solid breeder blanket using the diffuse code

    NASA Astrophysics Data System (ADS)

    Martin, Rodger; Ghoniem, Nasr M.

    1986-11-01

    A pin-type fusion reactor blanket is designed using γ-LiAlO 2 solid tritium breeder. Tritium transport and diffusive inventory are modeled using the DIFFUSE code. Two approaches are used to obtain characteristic LiAlO 2 grain temperatures. DIFFUSE provides intragranular diffusive inventories which scale up to blanket size. These results compare well with a numerical analysis, giving a steady-state blanket tritium inventory of 13 g. Start-up transient inventories are modeled using DIFFUSE for both full and restricted coolant flow. Full flow gives rapid inventory buildup while restricted flow prevents this buildup. Inventories after shutdown are modeled: reduced cooling is found to have little effect on removing tritium, but preheating rapidly purges inventory. DIFFUSE provides parametric modeling of solid breeder density, radiation, and surface effects. 100% dense pins are found to give massive inventory and marginal tritium release. Only large trapping energies and concentrations significantly increase inventory. Diatomic surface recombination is only significant at high temperatures.

  18. Glutathionylation-Dependence of Na+-K+-Pump Currents Can Mimic Reduced Subsarcolemmal Na+ Diffusion

    PubMed Central

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J.; Rasmussen, Helge H.

    2016-01-01

    The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na+. PMID:26958887

  19. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-08

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+). Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. In Situ Effective Diffusion Coefficient Profiles in Live Biofilms Using Pulsed-Field Gradient Nuclear Magnetic Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.

    2010-08-15

    Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate resultsmore » and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.« less

  1. Quantum image encryption based on restricted geometric and color transformations

    NASA Astrophysics Data System (ADS)

    Song, Xian-Hua; Wang, Shen; Abd El-Latif, Ahmed A.; Niu, Xia-Mu

    2014-08-01

    A novel encryption scheme for quantum images based on restricted geometric and color transformations is proposed. The new strategy comprises efficient permutation and diffusion properties for quantum image encryption. The core idea of the permutation stage is to scramble the codes of the pixel positions through restricted geometric transformations. Then, a new quantum diffusion operation is implemented on the permutated quantum image based on restricted color transformations. The encryption keys of the two stages are generated by two sensitive chaotic maps, which can ensure the security of the scheme. The final step, measurement, is built by the probabilistic model. Experiments conducted on statistical analysis demonstrate that significant improvements in the results are in favor of the proposed approach.

  2. Mechanically triggered solute uptake in soft contact lenses.

    PubMed

    Tavazzi, Silvia; Ferraro, Lorenzo; Fagnola, Matteo; Cozza, Federica; Farris, Stefano; Bonetti, Simone; Simonutti, Roberto; Borghesi, Alessandro

    2015-06-01

    Molecular arrangement plays a role in the diffusion of water and solutes across soft contact lenses. In particular, the uptake of solutes in hydrated contact lenses can occur as long as free water is available for diffusion. In this work, we investigated the effect of mechanical vibrations of low frequency (200 Hz) on the solute uptake. Hyaluronan, a polysaccharide of ophthalmic use, was taken as example of solute of interest. For a specific water-hydrated hydrogel material, differential scanning calorimetry experiments showed that a large fraction of the hydration water accounted for loosely-bound water, both before and after one week of daily-wear of the lenses. The size (of the order of magnitude of few hundreds of nanometers) of hyaluronan in aqueous solution was found to be less than the size of the pores of the lens observed by scanning electron microscopy. However, solute uptake in already-hydrated lenses was negligible by simple immersion, while a significant increase occurred under mechanical vibrations of 200 Hz, thus providing experimental evidence of mechanically triggered enhanced solute uptake, which is attributed to the release of interfacial loosely-bound water. Also other materials were taken into consideration. However, the effectiveness of mechanical vibrations for hyaluronan uptake is restricted to lenses containing interfacial loosely-bound water. Indeed, loosely-bound water is expected to be bound to the polymer with bonding energies of the order of magnitude of 10-100 J/g, which are compatible with the energy input supplied by the vibrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less

  4. A Short Review of Membrane Fouling in Forward Osmosis Processes

    PubMed Central

    Chun, Youngpil; Mulcahy, Dennis; Zou, Linda; Kim, In S.

    2017-01-01

    Interest in forward osmosis (FO) research has rapidly increased in the last decade due to problems of water and energy scarcity. FO processes have been used in many applications, including wastewater reclamation, desalination, energy production, fertigation, and food and pharmaceutical processing. However, the inherent disadvantages of FO, such as lower permeate water flux compared to pressure driven membrane processes, concentration polarisation (CP), reverse salt diffusion, the energy consumption of draw solution recovery and issues of membrane fouling have restricted its industrial applications. This paper focuses on the fouling phenomena of FO processes in different areas, including organic, inorganic and biological categories, for better understanding of this long-standing issue in membrane processes. Furthermore, membrane fouling monitoring and mitigation strategies are reviewed. PMID:28604649

  5. Correlation Between Minimum Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-analysis.

    PubMed

    Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas

    2017-07-01

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (p<0.0001), I 2 =73%, test for overall effect Z=8.67 (p<0.00001). ADC min correlated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. A monte carlo study of restricted diffusion: Implications for diffusion MRI of prostate cancer.

    PubMed

    Gilani, Nima; Malcolm, Paul; Johnson, Glyn

    2017-04-01

    Diffusion MRI is used frequently to assess prostate cancer. The prostate consists of cellular tissue surrounding fluid filled ducts. Here, the diffusion properties of the ductal fluid alone were studied. Monte Carlo simulations were used to investigate ductal residence times to determine whether ducts can be regarded as forming a separate compartment and whether ductal radius could determine the Apparent Diffusion Coefficient (ADC) of the ductal fluid. Random walks were simulated in cavities. Average residence times were estimated for permeable cavities. Signal reductions resulting from application of a Stejskal-Tanner pulse sequence were calculated in impermeable cavities. Simulations were repeated for cavities of different radii and different diffusion times. Residence times are at least comparable with diffusion times even in relatively high grade tumors. ADCs asymptotically approach theoretical limiting values. At large radii and short diffusion times, ADCs are similar to free diffusion. At small radii and long diffusion times, ADCs are reduced toward zero, and kurtosis approaches a value of -1.2. Restricted diffusion in cavities of similar sizes to prostate ducts may reduce ductal ADCs. This may contribute to reductions in total ADC seen in prostate cancer. Magn Reson Med 77:1671-1677, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Development of a restricted state space stochastic differential equation model for bacterial growth in rich media.

    PubMed

    Møller, Jan Kloppenborg; Bergmann, Kirsten Riber; Christiansen, Lasse Engbo; Madsen, Henrik

    2012-07-21

    In the present study, bacterial growth in a rich media is analysed in a Stochastic Differential Equation (SDE) framework. It is demonstrated that the SDE formulation and smoothened state estimates provide a systematic framework for data driven model improvements, using random walk hidden states. Bacterial growth is limited by the available substrate and the inclusion of diffusion must obey this natural restriction. By inclusion of a modified logistic diffusion term it is possible to introduce a diffusion term flexible enough to capture both the growth phase and the stationary phase, while concentration is restricted to the natural state space (substrate and bacteria non-negative). The case considered is the growth of Salmonella and Enterococcus in a rich media. It is found that a hidden state is necessary to capture the lag phase of growth, and that a flexible logistic diffusion term is needed to capture the random behaviour of the growth model. Further, it is concluded that the Monod effect is not needed to capture the dynamics of bacterial growth in the data presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Posterior reversible encephalopathy syndrome: a case of unusual diffusion-weighted MR images.

    PubMed

    Benziada-Boudour, A; Schmitt, E; Kremer, S; Foscolo, S; Rivière, A-S; Tisserand, M; Boudour, A; Bracard, S

    2009-05-01

    Posterior reversible encephalopathy (PRES) represents an uncommon entity related to multiple pathologies, the most common of which is hypertensive crisis. PRES is classically characterized as symmetrical parieto-occipital edema, but may affect other areas of the brain. Diffusion-weighted magnetic resonance imaging (DWI) is important for differentiating between vasogenic and cytotoxic edema. We present here the case of a 43-year-old woman, known to suffer from arterial hypertension and severe renal failure, who developed PRES with restricted apparent diffusion coefficients (ADC) in various cerebral areas, suggesting irreversible tissue damage. Nevertheless, follow-up cranial MRI revealed complete remission, indicating that restricted diffusion does not always lead to cell death in this pathology. The underlying pathophysiological mechanism is not well understood. Such reversibility of diffusion anomalies has already been reported with transient ischemia, vasospasm after subarachnoid hemorrhage and epilepsy but, to our knowledge, never before in PRES.

  9. Water diffusion in silicate glasses: the effect of glass structure

    NASA Astrophysics Data System (ADS)

    Kuroda, M.; Tachibana, S.

    2016-12-01

    Water diffusion in silicate melts (glasses) is one of the main controlling factors of magmatism in a volcanic system. Water diffusivity in silicate glasses depends on its own concentration. However, the mechanism causing those dependences has not been fully understood yet. In order to construct a general model for water diffusion in various silicate glasses, we performed water diffusion experiments in silica glass and proposed a new water diffusion model [Kuroda et al., 2015]. In the model, water diffusivity is controlled by the concentration of both main diffusion species (i.e. molecular water) and diffusion pathways, which are determined by the concentrations of hydroxyl groups and network modifier cations. The model well explains the water diffusivity in various silicate glasses from silica glass to basalt glass. However, pre-exponential factors of water diffusivity in various glasses show five orders of magnitude variations although the pre-exponential factor should ideally represent the jump frequency and the jump distance of molecular water and show a much smaller variation. Here, we attribute the large variation of pre-exponential factors to a glass structure dependence of activation energy for molecular water diffusion. It has been known that the activation energy depends on the water concentration [Nowak and Behrens, 1997]. The concentration of hydroxyls, which cut Si-O-Si network in the glass structure, increases with water concentration, resulting in lowering the activation energy for water diffusion probably due to more fragmented structure. Network modifier cations are likely to play the same role as water. With taking the effect of glass structure into account, we found that the variation of pre-exponential factors of water diffusivity in silicate glasses can be much smaller than the five orders of magnitude, implying that the diffusion of molecular water in silicate glasses is controlled by the same atomic process.

  10. Hollow Polypropylene Yarns as a Biomimetic Brain Phantom for the Validation of High-Definition Fiber Tractography Imaging.

    PubMed

    Guise, Catarina; Fernandes, Margarida M; Nóbrega, João M; Pathak, Sudhir; Schneider, Walter; Fangueiro, Raul

    2016-11-09

    Current brain imaging methods largely fail to provide detailed information about the location and severity of axonal injuries and do not anticipate recovery of the patients with traumatic brain injury. High-definition fiber tractography appears as a novel imaging modality based on water motion in the brain that allows for direct visualization and quantification of the degree of axons damage, thus predicting the functional deficits due to traumatic axonal injury and loss of cortical projections. This neuroimaging modality still faces major challenges because it lacks a "gold standard" for the technique validation and respective quality control. The present work aims to study the potential of hollow polypropylene yarns to mimic human white matter axons and construct a brain phantom for the calibration and validation of brain diffusion techniques based on magnetic resonance imaging, including high-definition fiber tractography imaging. Hollow multifilament polypropylene yarns were produced by melt-spinning process and characterized in terms of their physicochemical properties. Scanning electronic microscopy images of the filaments cross section has shown an inner diameter of approximately 12 μm, confirming their appropriateness to mimic the brain axons. The chemical purity of polypropylene yarns as well as the interaction between the water and the filament surface, important properties for predicting water behavior and diffusion inside the yarns, were also evaluated. Restricted and hindered water diffusion was confirmed by fluorescence microscopy. Finally, the yarns were magnetic resonance imaging scanned and analyzed using high-definition fiber tractography, revealing an excellent choice of these hollow polypropylene structures for simulation of the white matter brain axons and their suitability for constructing an accurate brain phantom.

  11. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    DOE PAGES

    Garcia, Andres; Wang, Jing; Windus, Theresa L.; ...

    2016-05-20

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → B c or B t with concentration-dependent selectivity of the products, B c or B t, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.

  12. [Further study on possibility of diffusion of Oncomelania hupensis with water in river channels of the east route of South-to-North Water Diversion Project].

    PubMed

    Huang, Yi-Xin; Hang, De-Rong; Tang, Hong-Ping; Sun, Dao-Kuan; Zhou, Can-Hua; Gao, Jin-Bin; Zheng, Bo; Hu, Gui-Quan; Li, Qian; Huang, Yong-Jun; She, Guang-Song; Ren, Zhi-Yuan

    2014-12-01

    To study the drifting law of floats and potential risks of Oncomelania hupensis diffusion in the water diversion rivers of the east route of South-to-North Water Diversion Project. The O. hupensis snails in the river channels were monitored by the salvage method and snail luring method with rice straw curtains, and the diffusion possibility of snails along with water was assessed through the drift test of floats with GPS. In the flood seasons from 2006 to 2013, totally 8 338.0 kg of floats were salvaged, and 2 100 rice straw curtains were put into water in the Li Canal and Jinbao shipping channel, but no Oncomelania snails were found. The drift test of floats with GPS before water diversion showed that the flow velocity on water surface (northbound) was 0.45 m/s, the average drift velocity of the floats was 0.56 - 0.60 m/s, and the average drift distances each time were 999.70 - 1 995.50 m in the Gaoshui River section, while there were no obvious drift in Jinbao shipping channel section. During the water diversion period, the flow velocity on water surface (northbound) was 0.45 m/s, the average drift velocity of the floats was 0.35 - 0.41m/s, and the average drift distances each time were 1 248.06 -1 289.44 m in the Gaoshui River, while in Jinbao shipping channel section, the flow velocity on water surface was 0.28 m/s, the average drift velocity of the floats was 0.25 - 0.27 m/s, and the average drift distances each time were 477.76 - 496.38 m. The drift test showed that the floats gradually closed to the river bank as affected by water flow, wind direction and ship waves, when blocked by the reeds, water plants or other obstacles, and they would stopped and could not continue to drift without outside help. There are no Oncomelania snails found in the river channels of the east route of South-to-North Water Diversion Project. The drifting distance of the floating debris along with the water is restricted by the flow rate and shore environment.

  13. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance.

    PubMed

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.

  14. ADP Compartmentation Analysis Reveals Coupling between Pyruvate Kinase and ATPases in Heart Muscle

    PubMed Central

    Sepp, Mervi; Vendelin, Marko; Vija, Heiki; Birkedal, Rikke

    2010-01-01

    Abstract Cardiomyocytes have intracellular diffusion restrictions, which spatially compartmentalize ADP and ATP. However, the models that predict diffusion restrictions have used data sets generated in rat heart permeabilized fibers, where diffusion distances may be heterogeneous. This is avoided by using isolated, permeabilized cardiomyocytes. The aim of this work was to analyze the intracellular diffusion of ATP and ADP in rat permeabilized cardiomyocytes. To do this, we measured respiration rate, ATPase rate, and ADP concentration in the surrounding solution. The data were analyzed using mathematical models that reflect different levels of cell compartmentalization. In agreement with previous studies, we found significant diffusion restriction by the mitochondrial outer membrane and confirmed a functional coupling between mitochondria and a fraction of ATPases in the cell. In addition, our experimental data show that considerable activity of endogenous pyruvate kinase (PK) remains in the cardiomyocytes after permeabilization. A fraction of ATPases were inactive without ATP feedback by this endogenous PK. When analyzing the data, we were able to reproduce the measurements only with the mathematical models that include a tight coupling between the fraction of endogenous PK and ATPases. To our knowledge, this is the first time such a strong coupling of PK to ATPases has been demonstrated in permeabilized cardiomyocytes. PMID:20550890

  15. Bacterial chemotaxis along vapor-phase gradients of naphthalene.

    PubMed

    Hanzel, Joanna; Harms, Hauke; Wick, Lukas Y

    2010-12-15

    The role of bacterial growth and translocation for the bioremediation of organic contaminants in the vadose zone is poorly understood. Whereas air-filled pores restrict the mobility of bacteria, diffusion of volatile organic compounds in air is more efficient than in water. Past research, however, has focused on chemotactic swimming of bacteria along gradients of water-dissolved chemicals. In this study we tested if and to what extent Pseudomonas putida PpG7 (NAH7) chemotactically reacts to vapor-phase gradients forming above their swimming medium by the volatilization from a spot source of solid naphthalene. The development of an aqueous naphthalene gradient by air-water partitioning was largely suppressed by means of activated carbon in the agar. Surprisingly, strain PpG7 was repelled by vapor-phase naphthalene although the steady state gaseous concentrations were 50-100 times lower than the aqueous concentrations that result in positive chemotaxis of the same strain. It is thus assumed that the efficient gas-phase diffusion resulting in a steady, and possibly toxic, naphthalene flux to the cells controlled the chemotactic reaction rather than the concentration to which the cells were exposed. To our knowledge this is the first demonstration of apparent chemotactic behavior of bacteria in response to vapor-phase effector gradients.

  16. Effect of molecular exchange on water droplet size analysis as determined by diffusion NMR: The W/O/W double emulsion case.

    PubMed

    Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Guthausen, Gisela; Van der Meeren, Paul

    2016-08-01

    The accuracy of the inner water droplet size determination of W/O/W emulsions upon water diffusion measurement by diffusion NMR was evaluated. The resulting droplet size data were compared to the results acquired from the diffusion measurement of a highly water soluble marker compound with low permeability in the oil layer of a W/O/W emulsion, which provide a closer representation of the actual droplet size. Differences in droplet size data obtained from water and the marker were ascribed to extra-droplet water diffusion. The diffusion data of the tetramethylammonium cation marker were measured using high-resolution pulsed field gradient NMR, whereas the water diffusion was measured using both low-resolution and high-resolution NMR. Different data analysis procedures were evaluated to correct for the effect of extra-droplet water diffusion on the accuracy of water droplet size analysis. Using the water diffusion data, the use of a low measurement temperature and diffusion delay Δ could reduce the droplet size overestimation resulting from extra-droplet water diffusion, but this undesirable effect was inevitable. Detailed analysis of the diffusion data revealed that the extra-droplet diffusion effect was due to an exchange between the inner water phase and the oil phase, rather than by exchange between the internal and external aqueous phase. A promising data analysis procedure for retrieving reliable size data consisted of the application of Einstein's diffusion law to the experimentally determined diffusion distances. This simple procedure allowed determining the inner water droplet size of W/O/W emulsions upon measurement of water diffusion by low-resolution NMR at or even above room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of short-term water restriction in hot season on some blood parameters and immune response to Newcastle disease vaccine of local and commercial layers in the late phase of production.

    PubMed

    Alamer, M A; Ahmed, A S

    2012-08-01

    Forty-five Hisex commercial layers and forty-five local Saudi breed layers were used to compare and assess the effect of water restriction under hot conditions on blood constituents and immune response to Newcastle disease (ND) vaccine. The trial was divided into three periods: control (7 day), water restriction (14 day) and rehydration (7 day). During water restriction, layers from each breed were divided into three groups that received 0%, 20% and 40% restriction of drinking water relative to the control period. The immune response against ND was affected by breed; it also declined significantly with 40% water restriction 10 days post-restriction. Water restriction did not affect haematocrit value, plasma total protein, albumin, glucose or osmolality, which may not suggest a reduction in plasma volume. However, plasma creatinine increased in both breeds because of water restriction that remained elevated during rehydration. Water restriction increased plasma urea in the local group, while it decreased in the commercial group. Irrespective of rate of water restriction, it can be concluded that the two breeds can withstand up to 40% water restriction during high environmental temperature. However, the local breed may be superior in water conservation in relation to the commercial layers. © 2011 Blackwell Verlag GmbH.

  18. A combined model of heat and mass transfer for the in situ extraction of volatile water from lunar regolith

    NASA Astrophysics Data System (ADS)

    Reiss, P.

    2018-05-01

    Chemical analysis of lunar soil samples often involves thermal processing to extract their volatile constituents, such as loosely adsorbed water. For the characterization of volatiles and their bonding mechanisms it is important to determine their desorption temperature. However, due to the low thermal diffusivity of lunar regolith, it might be difficult to reach a uniform heat distribution in a sample that is larger than only a few particles. Furthermore, the mass transport through such a sample is restricted, which might lead to a significant delay between actual desorption and measurable outgassing of volatiles from the sample. The entire volatiles extraction process depends on the dynamically changing heat and mass transfer within the sample, and is influenced by physical parameters such as porosity, tortuosity, gas density, temperature and pressure. To correctly interpret measurements of the extracted volatiles, it is important to understand the interaction between heat transfer, sorption, and gas transfer through the sample. The present paper discusses the molecular kinetics and mechanisms that are involved in the thermal extraction process and presents a combined parametrical computation model to simulate this process. The influence of water content on the gas diffusivity and thermal diffusivity is discussed and the issue of possible resorption of desorbed molecules within the sample is addressed. Based on the multi-physical computation model, a case study for the ProSPA instrument for in situ analysis of lunar volatiles is presented, which predicts relevant dynamic process parameters, such as gas pressure and process duration.

  19. Spirometry, Static Lung Volumes, and Diffusing Capacity.

    PubMed

    Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H

    2017-09-01

    Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11) because inspiratory capacity decreased with increasing air-flow obstruction ( P < .001), thus opposing the increased FRC ( P < .001). Finally, P values were similar whether adj LS Means were height-cubed standardized. A GLI-defined spirometric restrictive pattern is strongly associated with a restrictive ventilatory defect (decreased TLC, FRC, and RV), while GLI-defined spirometric air-flow obstruction is strongly associated with hyperinflation (increased FRC) and air trapping (increased RV and RV/TLC). Both spirometric impairments were strongly associated with impaired gas exchange (decreased hemoglobin-adjusted single-breath diffusing capacity). Copyright © 2017 by Daedalus Enterprises.

  20. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Futera, Zdenek; English, Niall J.

    2017-07-01

    The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.

  1. Effect of water restriction on feeding and metabolism in dairy cows.

    PubMed

    Steiger Burgos, M; Senn, M; Sutter, F; Kreuzer, M; Langhans, W

    2001-02-01

    We investigated how lactating cows are able to cope with a sustained water restriction. In experiment 1, body weight and meal patterns were recorded with ad libitum access to water (baseline) and during 8 days of 25 and 50% restriction of drinking water relative to ad libitum intake. In experiment 2, indirect calorimetry was combined with nitrogen and energy balance and plasma hormone and metabolite measurements to assess the effects of 50% water restriction on digestion and metabolism. In experiment 1, food intake and body weight declined during the first 3 days of water restriction depending on the restriction level and stabilized thereafter at a lower level. The daily food intake reduction with 50% water restriction was entirely due to a reduction of meal size. The size of the first meal on every day was markedly (>50%) reduced with 25 and 50% water restriction. In experiment 2, urea concentrations in milk and blood as well as plasma sodium and hematocrit were increased by 50% water restriction. Energy balance was not affected by 50% water restriction, but nitrogen balance became negative, because, relative to intake, nitrogen excretion via urine and milk was higher. The lower energy intake during 50% water restriction was compensated by a lower milk production, a higher digestibility of organic matter and energy, and, apparently, a more efficient energy use. Through these changes and a preserved water balance, the cows reached a new equilibrium at a lower water turnover level, which enabled them to cope with a sustained drinking water restriction of 50%.

  2. Impact assessment of projected climate change on diffuse phosphorous loss in Xin'anjiang catchment, China.

    PubMed

    Zhai, Xiaoyan; Zhang, Yongyong

    2018-02-01

    Diffuse nutrient loss is a serious threat to water security and has severely deteriorated water quality throughout the world. Xin'anjiang catchment, as a main drinking water source for Hangzhou City, has been a national concern for water environment protection with payment for watershed services construction. Detection of diffuse phosphorous (DP) pollution dynamics under climate change is significant for sustainable water quality management. In this study, the impact of projected climate change on DP load was analyzed using SWAT to simulate the future changes of diffuse components (carriers: water discharge and sediment; nutrient: DP) at both station and sub-catchment scales under three climate change scenarios (RCP2.6, RCP4.5, and RCP8.5). Results showed that wetting and warming years were expected with increasing tendencies of both precipitation and temperature in the two future periods (2020s: 2021~2030, 2030s: 2031~2040) except in the 2020s in the RCP2.6 scenario, and the annual average increasing ratios of precipitation and temperature reached - 1.79~3.79% and 0.48~1.27 °C, respectively, comparing with those in the baseline (2000s: 2001~2010). Climate change evidently altered annual and monthly average water discharge and sediment load, while it has a remarkable impact on the timing and monthly value of DP load at station scale. DP load tended to increase in the non-flood season at Yuliang due to strengthened nutrient flushing from rice land into rivers with increasing precipitation and enhanced phosphorous cycle in soil layers with increasing temperature, while it tended to decrease in the flood season at Yuliang and in most months at Tunxi due to restricted phosphorous reaction with reduced dissolved oxygen content and enhanced dilution effect. Spatial variability existed in the changes of sediment load and DP load at sub-catchment scale due to climate change. DP load tended to decrease in most sub-catchments and was the most remarkable in the RCP8.5 scenario (2020s, - 9.00~2.63%; 2030s, - 11.16~7.89%), followed by RCP2.6 (2020s, - 10.00~2.90%; 2030s, - 9.00~6.63%) and RCP4.5 (2020s, - 6.81~5.49%, 2030s, - 10.00~9.09%) scenarios. Decreasing of DP load mainly aggregated in the western and eastern mountainous regions, while it tended to increase in the northern and middle regions. This study was expected to provide insights into diffuse nutrient loss control and management in Xin'anjiang catchment, and scientific references for the implementation of water environmental protection in China.

  3. 36 CFR 13.1174 - Whale water restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Whale water restrictions. 13... Vessel Operating Restrictions § 13.1174 Whale water restrictions. (a) May 15 through September 30, the following waters are designated as whale waters. (1) Waters north of a line drawn from Point Carolus to...

  4. 36 CFR 13.1174 - Whale water restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Whale water restrictions. 13... Vessel Operating Restrictions § 13.1174 Whale water restrictions. (a) May 15 through September 30, the following waters are designated as whale waters. (1) Waters north of a line drawn from Point Carolus to...

  5. Interplay between translational diffusion and large-amplitude angular jumps of water molecules

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Zhang, Yangyang; Zhang, Jian; Wang, Jun; Li, Wenfei; Wang, Wei

    2018-05-01

    Understanding the microscopic mechanism of water molecular translational diffusion is a challenging topic in both physics and chemistry. Here, we report an investigation on the interplay between the translational diffusion and the large-amplitude angular jumps of water molecules in bulk water using molecular dynamics simulations. We found that large-amplitude angular jumps are tightly coupled to the translational diffusions. Particularly, we revealed that concurrent rotational jumps of spatially neighboring water molecules induce inter-basin translational jumps, which contributes to the fast component of the water translational diffusion. Consequently, the translational diffusion shows positional heterogeneity; i.e., the neighbors of the water molecules with inter-basin translational jumps have larger probability to diffuse by inter-basin translational jumps. Our control simulations showed that a model water molecule with moderate hydrogen bond strength can diffuse much faster than a simple Lennard-Jones particle in bulk water due to the capability of disturbing the hydrogen bond network of the surrounding water molecules. Our results added to the understanding of the microscopic picture of the water translational diffusion and demonstrated the unique features of water diffusion arising from their hydrogen bond network structure compared with those of the simple liquids.

  6. The effectiveness of recent water restriction policies on single-family water use in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2013-12-01

    Residential water consumption represents the largest urban water consumer category and is projected to have significant increase over the next 20 years in Los Angeles, California. Successive severe droughts have occurred in Los Angeles over the past 30 years leading to the implementation of emergency water conservation measures that include limiting the time and frequency of urban irrigation as well as applying shortage year water rates. Reliance on imported water sources dramatically increased during the past drought periods, which questions the reliability of future water supply. The objectives of the current study include quantifying the impact of past water restrictions on single-family residential water use in single-family areas in Los Angeles. Three phases of water restrictions were implemented during the 2007-2010 drought period to reduce water consumption: voluntary restrictions during fiscal year 2007-2008, mandatory outdoor use restrictions in fiscal year 2008-2009, and more stringent mandatory restrictions limiting the frequency of irrigation coupled with a water rate increase in fiscal year 2009-2010. Los Angeles Department of Water and Power (LADWP) monthly individual water use records from 2000 to 2010 were aggregated at the block level in the San Fernando Valley. The effectiveness of the three water restrictions phases was analyzed through a linear regression model developed over 2000-2007 with single-family water use as the dependent variable, climate, and economic variables as the predictors at the block level. Predicted water use during the 2007-2010 period was estimated using results from the statistical model and compared with actual water use to calculate the amount of water savings due to the restrictions. The comparison of the impact of water restrictions on single-family water use reveals that the more stringent mandatory water restrictions provided a higher and statistically significant decrease in water use. Single-family water consumption decreased by 20% on average over the study area during the 2009-2010 fiscal year, compared to a 2% increase during the voluntary restriction period and a 9% decrease during the 2008-2009 fiscal year. Mandatory restrictions proved to be more effective than voluntary restrictions as solutions to reduce water use during drought periods. Our results provide key information on potential implementation of future water policies under difficult economic conditions and help identify successful targeted conservation measures that can be permanently established.

  7. Urban water restrictions: Attitudes and avoidance

    NASA Astrophysics Data System (ADS)

    Cooper, Bethany; Burton, Michael; Crase, Lin

    2011-12-01

    In most urban cities across Australia, water restrictions remain the dominant policy mechanism to restrict urban water consumption. The extensive adoption of water restrictions as a means to limit demand, over several years, means that Australian urban water prices have consistently not reflected the opportunity cost of water. Given the generally strong political support for water restrictions and the likelihood that they will persist for some time, there is value in understanding households' attitudes in this context. More specifically, identifying the welfare gains associated with avoiding urban water restrictions entirely would be a nontrivial contribution to our knowledge and offer insights into the benefits of alternative policy responses. This paper describes the results from a contingent valuation study that investigates consumers' willingness to pay to avoid urban water restrictions. Importantly, the research also investigates the influence of cognitive and exogenous dimensions on the utility gain associated with avoiding water restrictions. The results provide insights into the impact of the current policy mechanism on economic welfare.

  8. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance

    PubMed Central

    Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-01-01

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables. PMID:27350723

  9. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation.

    PubMed

    Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M

    2013-09-01

    Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion (lower ADC values) is associated with multiple MRI findings that are traditionally associated with active inflammation in pediatric small bowel Crohn disease.

  10. Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.

    PubMed

    Xiao, Perry; Imhof, Robert E

    2012-10-01

    Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. 36 CFR 13.1174 - Whale water restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Whale water restrictions. 13... Vessel Operating Restrictions § 13.1174 Whale water restrictions. (a) May 15 through September 30, the... designated as temporary whale waters in accordance with § 1.7 of this chapter. (c) Violation of a whale water...

  12. Coarse-grained molecular dynamics simulation of water diffusion in the presence of carbon nanotubes.

    PubMed

    Lado Touriño, Isabel; Naranjo, Arisbel Cerpa; Negri, Viviana; Cerdán, Sebastián; Ballesteros, Paloma

    2015-11-01

    Computational modeling of the translational diffusion of water molecules in anisotropic environments entails vital relevance to understand correctly the information contained in the magnetic resonance images weighted in diffusion (DWI) and of the diffusion tensor images (DTI). In the present work we investigated the validity, strengths and weaknesses of a coarse-grained (CG) model based on the MARTINI force field to simulate water diffusion in a medium containing carbon nanotubes (CNTs) as models of anisotropic water diffusion behavior. We show that water diffusion outside the nanotubes follows Ficḱs law, while water diffusion inside the nanotubes is not described by a Ficḱs behavior. We report on the influence on water diffusion of various parameters such as length and concentration of CNTs, comparing the CG results with those obtained from the more accurate classic force field calculation, like the all-atom approach. Calculated water diffusion coefficients decreased in the presence of nanotubes in a concentration dependent manner. We also observed smaller water diffusion coefficients for longer CNTs. Using the CG methodology we were able to demonstrate anisotropic diffusion of water inside the nanotube scaffold, but we could not prove anisotropy in the surrounding medium, suggesting that grouping several water molecules in a single diffusing unit may affect the diffusional anisotropy calculated. The methodologies investigated in this work represent a first step towards the study of more complex models, including anisotropic cohorts of CNTs or even neuronal axons, with reasonable savings in computation time. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Method for applying a diffusion barrier interlayer for high temperature components

    DOEpatents

    Wei, Ronghua; Cheruvu, Narayana S.

    2016-03-08

    A coated substrate and a method of forming a diffusion barrier coating system between a substrate and a MCrAl coating, including a diffusion barrier coating deposited onto at least a portion of a substrate surface, wherein the diffusion barrier coating comprises a nitride, oxide or carbide of one or more transition metals and/or metalloids and a MCrAl coating, wherein M includes a transition metal or a metalloid, deposited on at least a portion of the diffusion barrier coating, wherein the diffusion barrier coating restricts the inward diffusion of aluminum of the MCrAl coating into the substrate.

  14. Anomalous Surface Diffusion of Protons on Lipid Membranes

    PubMed Central

    Wolf, Maarten G.; Grubmüller, Helmut; Groenhof, Gerrit

    2014-01-01

    The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of −13.0 ± 0.5 kJ mol−1. The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. PMID:24988343

  15. Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis

    PubMed Central

    Moens, Pierre D.J.; Digman, Michelle A.; Gratton, Enrico

    2015-01-01

    The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. PMID:25809257

  16. Modes of diffusion of cholera toxin bound to GM1 on live cell membrane by image mean square displacement analysis.

    PubMed

    Moens, Pierre D J; Digman, Michelle A; Gratton, Enrico

    2015-03-24

    The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Nuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Windschuh, Johannes; Umathum, Reiner; Bachert, Peter; Kuder, Tristan Anselm

    2017-02-01

    Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.

  18. Anomalous surface diffusion of protons on lipid membranes.

    PubMed

    Wolf, Maarten G; Grubmüller, Helmut; Groenhof, Gerrit

    2014-07-01

    The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of -13.0 ± 0.5 kJ mol(-1). The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    PubMed

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  20. Sodium balance in hemodialysis therapy.

    PubMed

    Kooman, Jeroen P; van der Sande, Frank; Leunissen, Karel; Locatelli, Francesco

    2003-01-01

    Water and sodium overload is the predominant factor in the pathogenesis of hypertension in dialysis patients. In many dialysis patients, dry weight is not reached because of an imbalance between the interdialytic accumulation of water and sodium and the brief and discontinuous nature of routine dialysis therapy. During dialysis, sodium is removed by convection and to a lesser degree by diffusion. However, with supraphysiologic dialysate sodium concentrations, diffusive influx from dialysate may occur, especially in patients with low predialytic plasma sodium concentrations. Measuring sodium removal during dialysis is difficult and hampered by the variability in conventional sodium measurements. Ionic mass removal by continuous measurement of conductivity in the dialysate ports appears to be a promising tool for the approximation of sodium removal during dialysis. While the beneficial effects of concomitant water and sodium removal on blood pressure control in dialysis patients are undisputed, it is less well known whether a change in hydrosodium balance solely by reducing dialysate sodium is beneficial. Considering the inherent dangers of such an approach (intradialytic hemodynamic instability), the beneficial effects of strict dietary sodium restriction appear to be of much larger clinical benefit. It has become possible to individualize dialysate sodium concentration by means of online measurements of plasma conductivity and adjustment of dialysate conductivity by feedback technologies. The clinical benefits of this approach deserve further study. Still, reducing dietary sodium intake remains the most important tool in improving blood control in dialysis patients.

  1. Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy

    PubMed Central

    Vendelin, Marko; Birkedal, Rikke

    2008-01-01

    A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 ± 14 μm2/s in the longitudinal and 52 ± 16 μm2/s in the transverse directions (n = 8, mean ± SD). Those values are ∼2 (longitudinal) and ∼3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes. PMID:18815224

  2. Restricted exchange microenvironments for cell culture.

    PubMed

    Hoh, Jan H; Werbin, Jeffrey L; Heinz, William F

    2018-03-01

    Metabolite diffusion in tissues produces gradients and heterogeneous microenvironments that are not captured in standard 2D cell culture models. Here we describe restricted exchange environment chambers (REECs) in which diffusive gradients are formed and manipulated on length scales approximating those found in vivo. In REECs, cells are grown in 2D in an asymmetric chamber (<50 μL) formed between a coverglass and a glass bottom cell culture dish separated by a thin (~100 μm) gasket. Diffusive metabolite exchange between the chamber and bulk media occurs through one or more openings micromachined into the coverglass. Cell-generated concentration gradients form radially in REECs with a single round opening (~200 μm diameter). At steady state only cells within several hundred micrometers of the opening experience metabolite concentrations that permit survival which is analogous to diffusive exchange near a capillary in tissue. The chamber dimensions, the openings' shape, size, and number, and the cellular density and metabolic activity define the gradient structure. For example, two parallel slots above confluent cells produce the 1D equivalent of a spheroid. Using REECs, we found that fibroblasts align along the axis of diffusion while MDCK cells do not. MDCK cells do, however, exhibit significant morphological variations along the diffusive gradient.

  3. The permeability of EUDRAGIT RL and HEMA-MMA microcapsules to glucose and inulin.

    PubMed

    Douglas, J A; Sefton, M V

    1990-10-05

    Measurement of the rate of glucose diffusion from EUDGRAGIT RL and HEMA-MMA microcapsules coupled with a Thiele modulus/Biot number analysis of the glucose utilization rate suggests that pancreatic islets and CHO (Chinese hamster ovary) cells (at moderate to high cell densities) should not be adversely affected by the diffusion restrictions associated with these capsule membranes. The mass transfer coefficients for glucose at 20 degrees C were of the same order of magnitude for both capsules, based on release measurements: approximately 5 x 10(-6) cm/s for EUDRAGIT RL and approximately 2 x 10(-6) for HEMA-MMA. Inulin release from EUDRAGIT RL was slower than for glucose (mass transfer coefficient 14 +/- 4 x 10(-8) cm/s). The Thiele moduli were much less than 1, either for a single islet at the center of a capsule or CHO cells uniformly distributed throughout a capsule at 10(-6) cells/ mL, so that diffusion restrictions within the cells in EUDRAGIT RL or 800 microm HEMA-MMA capsules should be negligible. The ratio of external to internal diffusion resistance (Biot number) was less than 1, so that at most, only a small diffusion effect on glucose utilization should be expected (i.e., the overall effectiveness factors were greater than 0.8). These calculations were consistent with experimental observation of encapsulated islet behavior but not fully with CHO cell behavior. Permeability restricted cell viability and growth is potentially a major limitation of encapsulated cells; further analysis is warranted.

  4. Kinetic isotopic fractionation during diffusion of ionic species in water

    NASA Astrophysics Data System (ADS)

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John N.; Hutcheon, Ian D.; Williams, Ross W.; Sturchio, Neil C.; Beloso, Abelardo D.

    2006-01-01

    Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine DLi/DK,D/D,D/D,D/D,andD/D. The measured ratio of the diffusion coefficients for Li and K in water (D Li/D K = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li, we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D/D=0.99772±0.00026). This difference in the diffusion coefficient of 7Li compared to 6Li is significantly less than that reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D/D=1.00003±0.00006). Cl isotopes were fractionated during diffusion in water (D/D=0.99857±0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in limiting the isotopic fractionation associated with diffusion.

  5. Two-dimensional single-shot diffusion-weighted stimulated EPI with reduced FOV for ultrahigh-b radial diffusion-weighted imaging of spinal cord.

    PubMed

    Sapkota, Nabraj; Shi, Xianfeng; Shah, Lubdha M; Bisson, Erica F; Rose, John W; Jeong, Eun-Kee

    2017-06-01

    High-resolution diffusion-weighted imaging (DWI) of the spinal cord (SC) is problematic because of the small cross-section of the SC and the large field inhomogeneity. Obtaining the ultrahigh-b DWI poses a further challenge. The purpose of the study was to design and validate two-dimensional (2D) single-shot diffusion-weighted stimulated echo planar imaging with reduced field of view (2D ss-DWSTEPI-rFOV) for ultrahigh-b radial DWI (UHB-rDWI) of the SC. A novel time-efficient 2D ss-DWSTEPI-rFOV sequence was developed based on the stimulated echo sequence. Reduced-phase field of view was obtained by using two slice-selective 90 ° radiofrequency pulses in the presence of the orthogonal slice selection gradients. The sequence was validated on a cylindrical phantom and demonstrated on SC imaging. Ultrahigh-b radial diffusion-weighted ( bmax = 7300 s/mm2) images of the SC with greatly reduced distortion were obtained. The exponential plus constant fitting of the diffusion-decay curve estimated the constant fraction (restricted water fraction) as 0.36 ± 0.05 in the SC white matter. A novel 2D ss-DWSTEPI-rFOV sequence has been designed and demonstrated for high-resolution UHB-rDWI of localized anatomic structures with significantly reduced distortion induced by nonlinear static field inhomogeneity. Magn Reson Med 77:2167-2173, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Mechanisms Restricting Diffusion of Intracellular cAMP.

    PubMed

    Agarwal, Shailesh R; Clancy, Colleen E; Harvey, Robert D

    2016-01-22

    Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells.

  7. Mechanisms Restricting Diffusion of Intracellular cAMP

    PubMed Central

    Agarwal, Shailesh R.; Clancy, Colleen E.; Harvey, Robert D.

    2016-01-01

    Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells. PMID:26795432

  8. Investigating the capability to resolve complex white matter structures with high b-value diffusion magnetic resonance imaging on the MGH-USC Connectom scanner.

    PubMed

    Fan, Qiuyun; Nummenmaa, Aapo; Witzel, Thomas; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Van Dijk, Koene R A; Buckner, Randy L; Wedeen, Van J; Rosen, Bruce R; Wald, Lawrence L

    2014-11-01

    One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain.

  9. DEVELOPMENT OF SPLIT-OPERATOR, PETROV-GALERKIN METHODS TO SIMULATE TRANSPORT AND DIFFUSION PROBLEMS

    EPA Science Inventory

    The rate at which contaminants in groundwater undergo sorption and desorption is routinely described using diffusion models. Such approaches, when incorporated into transport models, lead to large systems of coupled equations, often nonlinear. This has restricted applications of ...

  10. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  11. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE PAGES

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; ...

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  12. Functional morphology of the gills of the bowfin, Amia calva L., with special reference to their significance during air exposure.

    PubMed

    Daxboeck, C; Barnard, D K; Randall, D J

    1981-03-01

    The bowfin, Amia calva is a facultative air breathing fish restricted to North America and is reported to estivate. The relative and functional gill surface areas of A. calva are not reduced, as in many amphibious fish, but have areas comparable to many completely aquatic species. The secondary lamellae are fused to form a lattice-work of rectangular pores, a gill arrangement unique among fresh-water fishes. This highly modified gill structure imparts considerable rigidity such that these do not collapse upon air exposure. In vivo blood gas measurements from air exposed Amia reveal that these gills must be free of water, since there is both O2 uptake and CO2 excretion across them. The observed ventilatory motions therefore pass air over the secondary lamellae for diffusive gas exchange during air exposure. In the artificial conditions of our experiments, however, air exposure was associated with a marked acidosis and the fish died within 2 hours of being returned to normoxic water.

  13. Structural changes and triacetin migration of starch acetate film contacting with distilled water as food simulant.

    PubMed

    Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin

    2014-04-15

    This work studied the structural changes and the migration of triacetin plasticizer in starch acetate films in the presence of distilled water as food simulant. Fourier-transform infrared spectroscopy result showed that the macromolecular interaction was enhanced to form compact aggregation of amorphous chains. The characterization of aggregation structures via wide and small angle X-ray scattering techniques indicated that the orderly microregion was compressed and the crystallites inside were "squeezed" to form interference and further aggregation. The compact aggregation structures restricted the mobility of macromolecules, triacetin and water molecules. The overall kinetic and the diffusion model analysis manifested that Fick's second law was the predominant mechanism for the short-term migration of triacetin. The increasing relaxation within film matrix caused the subsequent migration to deviate from Fick's law. The safe and reasonable application of the starch-based materials with restrained plasticizer migration could be accomplished by controlling the molecular interaction and aggregation structures. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. CO2 diffusion in champagne wines: a molecular dynamics study.

    PubMed

    Perret, Alexandre; Bonhommeau, David A; Liger-Belair, Gérard; Cours, Thibaud; Alijah, Alexander

    2014-02-20

    Although diffusion is considered as the main physical process responsible for the nucleation and growth of carbon dioxide bubbles in sparkling beverages, the role of each type of molecule in the diffusion process remains unclear. In the present study, we have used the TIP5P and SPC/E water models to perform force field molecular dynamics simulations of CO2 molecules in water and in a water/ethanol mixture respecting Champagne wine proportions. CO2 diffusion coefficients were computed by applying the generalized Fick's law for the determination of multicomponent diffusion coefficients, a law that simplifies to the standard Fick's law in the case of champagnes. The CO2 diffusion coefficients obtained in pure water and water/ethanol mixtures composed of TIP5P water molecules were always found to exceed the coefficients obtained in mixtures composed of SPC/E water molecules, a trend that was attributed to a larger propensity of SPC/E water molecules to form hydrogen bonds. Despite the fact that the SPC/E model is more accurate than the TIP5P model to compute water self-diffusion and CO2 diffusion in pure water, the diffusion coefficients of CO2 molecules in the water/ethanol mixture are in much better agreement with the experimental values of 1.4 - 1.5 × 10(-9) m(2)/s obtained for Champagne wines when the TIP5P model is employed. This difference was deemed to rely on the larger propensity of SPC/E water molecules to maintain the hydrogen-bonded network between water molecules and form new hydrogen bonds with ethanol, although statistical issues cannot be completely excluded. The remarkable agreement between the theoretical CO2 diffusion coefficients obtained within the TIP5P water/ethanol mixture and the experimental data specific to Champagne wines makes us infer that the diffusion coefficient in these emblematic hydroalcoholic sparkling beverages is expected to remain roughly constant whathever their proportions in sugars, glycerol, or peptides.

  15. The Membrane Skeleton Controls Diffusion Dynamics and Signaling through the B Cell Receptor

    PubMed Central

    Treanor, Bebhinn; Depoil, David; Gonzalez-Granja, Aitor; Barral, Patricia; Weber, Michele; Dushek, Omer; Bruckbauer, Andreas; Batista, Facundo D.

    2010-01-01

    Summary Early events of B cell activation after B cell receptor (BCR) triggering have been well characterized. However, little is known about the steady state of the BCR on the cell surface. Here, we simultaneously visualize single BCR particles and components of the membrane skeleton. We show that an ezrin- and actin-defined network influenced steady-state BCR diffusion by creating boundaries that restrict BCR diffusion. We identified the intracellular domain of Igβ as important in mediating this restriction in diffusion. Importantly, alteration of this network was sufficient to induce robust intracellular signaling and concomitant increase in BCR mobility. Moreover, by using B cells deficient in key signaling molecules, we show that this signaling was most probably initiated by the BCR. Thus, our results suggest the membrane skeleton plays a crucial function in controlling BCR dynamics and thereby signaling, in a way that could be important for understanding tonic signaling necessary for B cell development and survival. PMID:20171124

  16. Restricted diffusion in a model acinar labyrinth by NMR: Theoretical and numerical results

    NASA Astrophysics Data System (ADS)

    Grebenkov, D. S.; Guillot, G.; Sapoval, B.

    2007-01-01

    A branched geometrical structure of the mammal lungs is known to be crucial for rapid access of oxygen to blood. But an important pulmonary disease like emphysema results in partial destruction of the alveolar tissue and enlargement of the distal airspaces, which may reduce the total oxygen transfer. This effect has been intensively studied during the last decade by MRI of hyperpolarized gases like helium-3. The relation between geometry and signal attenuation remained obscure due to a lack of realistic geometrical model of the acinar morphology. In this paper, we use Monte Carlo simulations of restricted diffusion in a realistic model acinus to compute the signal attenuation in a diffusion-weighted NMR experiment. We demonstrate that this technique should be sensitive to destruction of the branched structure: partial removal of the interalveolar tissue creates loops in the tree-like acinar architecture that enhance diffusive motion and the consequent signal attenuation. The role of the local geometry and related practical applications are discussed.

  17. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications.

    PubMed

    Chavhan, Govind B; Alsabban, Zehour; Babyn, Paul S

    2014-01-01

    Diffusion-weighted (DW) imaging is an emerging technique in body imaging that provides indirect information about the microenvironment of tissues and lesions and helps detect, characterize, and follow up abnormalities. Two main challenges in the application of DW imaging to body imaging are the decreased signal-to-noise ratio of body tissues compared with neuronal tissues due to their shorter T2 relaxation time, and image degradation related to physiologic motion (eg, respiratory motion). Use of smaller b values and newer motion compensation techniques allow the evaluation of anatomic structures with DW imaging. DW imaging can be performed as a breath-hold sequence or a free-breathing sequence with or without respiratory triggering. Depending on the mobility of water molecules in their microenvironment, different normal tissues have different signals at DW imaging. Some normal tissues (eg, lymph nodes, spleen, ovarian and testicular parenchyma) are diffusion restricted, whereas others (eg, gallbladder, corpora cavernosa, endometrium, cartilage) show T2 shine-through. Epiphyses that contain fatty marrow and bone cortex appear dark on both DW images and apparent diffusion coefficient maps. Current and emerging applications of DW imaging in pediatric body imaging include tumor detection and characterization, assessment of therapy response and monitoring of tumors, noninvasive detection and grading of liver fibrosis and cirrhosis, detection of abscesses, and evaluation of inflammatory bowel disease. RSNA, 2014

  18. Lactose behaviour in the presence of lactic acid and calcium.

    PubMed

    Wijayasinghe, Rangani; Vasiljevic, Todor; Chandrapala, Jayani

    2016-08-01

    Physical properties of lactose appeared influenced by presence of lactic acid in the system. Some other components such as Ca may further attenuate lactose behaviour and impact its phase transition. A model-based study was thus implemented with varying concentrations of Ca (0·12, 0·072 or 0·035% w/w) and lactic acid (0·05, 0·2, 0·4 or 1% w/w) in establishing the effects of these two main acid whey constituents on lactose phase behaviour. Concentrated solutions (50% w/w) containing lactose, lactic acid and Ca were analysed for thermal behaviour and structural changes by Differential Scanning Colorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. Presence of 1% (w/w) lactic acid and 0·12% (w/w) Ca in lactose solution significantly increased the evaporation enthalpy of water, delayed and increased the energy required for lactose crystallisation as compared to pure lactose. FTIR analysis indicated a strong hydration layer surrounding lactose molecules, restricting water mobility and/or inducing structural changes of lactose, hindering its crystallisation. The formation of calcium lactate, which restricts the diffusion of lactose molecules, is also partly responsible. It appears that Ca removal from acid whey may be a necessary step in improving the processability of acid whey.

  19. Osmotic pressure beyond concentration restrictions.

    PubMed

    Grattoni, Alessandro; Merlo, Manuele; Ferrari, Mauro

    2007-10-11

    Osmosis is a fundamental physical process that involves the transit of solvent molecules across a membrane separating two liquid solutions. Osmosis plays a role in many biological processes such as fluid exchange in animal cells (Cell Biochem. Biophys. 2005, 42, 277-345;1 J. Periodontol. 2007, 78, 757-7632) and water transport in plants. It is also involved in many technological applications such as drug delivery systems (Crit. Rev. Ther. Drug. 2004, 21, 477-520;3 J. Micro-Electromech. Syst. 2004, 13, 75-824) and water purification. Extensive attention has been dedicated in the past to the modeling of osmosis, starting with the classical theories of van't Hoff and Morse. These are predictive, in the sense that they do not involve adjustable parameters; however, they are directly applicable only to limited regimes of dilute solute concentrations. Extensions beyond the domains of validity of these classical theories have required recourse to fitting parameters, transitioning therefore to semiempirical, or nonpredictive models. A novel approach was presented by Granik et al., which is not a priori restricted in concentration domains, presents no adjustable parameters, and is mechanistic, in the sense that it is based on a coupled diffusion model. In this work, we examine the validity of predictive theories of osmosis, by comparison with our new experimental results, and a meta-analysis of literature data.

  20. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.

    PubMed

    Kann, Z R; Skinner, J L

    2014-09-14

    Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.

  1. 3He Diffusion MRI of the Lung

    PubMed Central

    Conradi, Mark S.; Yablonskiy, Dmitriy A.; Woods, Jason C.; Gierada, David S.; Jacob, Richard E.; Chang, Yulin V.; Choong, Cliff K.; Sukstanskii, Alex L.; Tanoli, Tariq; Lefrak, Stephen S.; Cooper, Joel D.

    2007-01-01

    Rationale and Objectives MR imaging of the restricted diffusion of laser-polarized 3He gas provides unique insights into the changes in lung microstructure in emphysema. Results We discuss measurements of ventilation (spin density), mean diffusivity, and the anisotropy of diffusion, which yields the mean acinar airway radius. In addition, the use of spatially modulated longitudinal magnetization allows diffusion to be measured over longer distances and times, with sensitivity to collateral ventilation paths. Early results are also presented for spin density and diffusivity maps made with a perfluorinated inert gas, C3F8. Methods Techniques for purging and imaging excised lungs are discussed. PMID:16253852

  2. Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Evoy, E.; Kamal, S.; Bertram, A. K.

    2017-12-01

    Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.

  3. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema

    PubMed Central

    Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446

  4. Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex.

    PubMed

    Haggie, Peter M; Verkman, A S

    2002-10-25

    It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.

  5. Permeabilized Rat Cardiomyocyte Response Demonstrates Intracellular Origin of Diffusion Obstacles

    PubMed Central

    Jepihhina, Natalja; Beraud, Nathalie; Sepp, Mervi; Birkedal, Rikke; Vendelin, Marko

    2011-01-01

    Intracellular diffusion restrictions for ADP and other molecules have been predicted earlier based on experiments on permeabilized fibers or cardiomyocytes. However, it is possible that the effective diffusion distance is larger than the cell dimensions due to clumping of cells and incomplete separation of cells in fiber preparations. The aim of this work was to check whether diffusion restrictions exist inside rat cardiomyocytes or are caused by large effective diffusion distance. For that, we determined the response of oxidative phosphorylation (OxPhos) to exogenous ADP and ATP stimulation in permeabilized rat cardiomyocytes using fluorescence microscopy. The state of OxPhos was monitored via NADH and flavoprotein autofluorescence. By varying the ADP or ATP concentration in flow chamber, we determined that OxPhos has a low affinity in cardiomyocytes. The experiments were repeated in a fluorometer on cardiomyocyte suspensions leading to similar autofluorescence changes induced by ADP as recorded under the microscope. ATP stimulated OxPhos more in a fluorometer than under the microscope, which was attributed to accumulation of ADP in fluorometer chamber. By calculating the flow profile around the cell in the microscope chamber and comparing model solutions to measured data, we demonstrate that intracellular structures impose significant diffusion obstacles in rat cardiomyocytes. PMID:22067148

  6. The diffusion of water in haploanesite

    NASA Astrophysics Data System (ADS)

    Ni, H.; Zhang, Y.

    2008-12-01

    Diffusive transport of water in silicate melts is a key process in magma dynamics and volcanic eruptions, including bubble growth. Previous studies demonstrate that in additional to temperature, water content and pressure, melt composition also plays an important role in determining water diffusivity. We carried out high temperature (1311-1512°C) diffusion-couple experiments and intermediate temperature (470- 600°C) dehydration experiments to investigate H2O diffusion in a melt of haploandesitic composition. The diffusion couple is composed of an anhydrous (with <0.1 wt.% H2O) and a hydrous (with 2 wt.% H2O) haploandesitic glass. A platinum capsule is used to contain the couple and then it is welded shut. Diffusion runs are carried out in a 12.7-mm piston-cylinder apparatus at 1 GPa and superliquidus temperatures of 1584-1785 K. Infrared microscopy is applied on quenched glass to measure the profile of total H2O concentration (H2Ot). The profile shape is best fit by an error function, indicating an H2O diffusivity virtually independent of H2O concentration, consistent with the results of Behrens et al. (2004) on an Fe-bearing andesite. Dehydration experiments are performed at 743-873 K in a rapid-quench cold-seal vessel, with a heated hydrous glass losing water to 0.1 GPa Ar atmosphere. Measured diffusion profiles, however, show that water diffusivity is dependent on water content. Experimental data can be explained by H2Om being the dominating diffusant or a total H2O diffusivity proportional to total H2O content. The distinction between the high-temperature experiments where H2Ot diffusivity is apparently independent of H2Ot content, and the intermediate-temperature experiments where H2Ot diffusivity depends on H2Ot can be rationalized if OH diffusion has a higher activation energy than molecular H2O diffusion, and their comparable diffusivities at high T gradually diverge as temperature is lowered. At below 1 wt.% H2O, water diffusivity increases from rhyolite to dacite to andesite at >1300°C, and this sequence is reversed at <600°C.

  7. Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI

    NASA Astrophysics Data System (ADS)

    Chang, Yulin V.; Conradi, Mark S.

    2006-08-01

    We report measurements of free diffusivity D0 and relaxation times T1 and T2 for pure C 2F 6 and C 3F 8 and their mixtures with oxygen. A simplified relaxation theory is presented and used to fit the data. The results enable spatially localized relaxation time measurements to determine the local gas concentration in lung MR images, so the free diffusivity D0 is then known. Comparison of the measured diffusion to D0 will express the extent of diffusion restriction and allow the local surface-to-volume ratio to be found.

  8. Patchiness of phytoplankton and primary production in Liaodong Bay, China.

    PubMed

    Pei, Shaofeng; Laws, Edward A; Zhang, Haibo; Ye, Siyuan; Yuan, Hongming; Liu, Haiyue

    2017-01-01

    A comprehensive study of water quality, phytoplankton biomass, and photosynthetic rates in Liaodong Bay, China, during June and July of 2013 revealed two large patches of high biomass and production with dimensions on the order of 10 km. Nutrient concentrations were above growth-rate-saturating concentrations throughout the bay, with the possible exception of phosphate at some stations. The presence of the patches therefore appeared to reflect the distribution of water temperature and variation of light penetration restricted by water turbidity. There was no patch of high phytoplankton biomass or production in a third, linear patch of water with characteristics suitable for rapid phytoplankton growth; the absence of a bloom in that patch likely reflected the fact that the width of the patch was less than the critical size required to overcome losses of phytoplankton to turbulent diffusion. The bottom waters of virtually all of the eastern half of the bay were below the depth of the mixed layer, and the lowest bottom water oxygen concentrations, 3-5 mg L-1, were found in that part of the bay. The water column in much of the remainder of the bay was within the mixed layer, and oxygen concentrations in both surface and bottom waters exceeded 5 mg L-1.

  9. Patchiness of phytoplankton and primary production in Liaodong Bay, China

    PubMed Central

    Laws, Edward A.; Zhang, Haibo; Ye, Siyuan; Yuan, Hongming; Liu, Haiyue

    2017-01-01

    A comprehensive study of water quality, phytoplankton biomass, and photosynthetic rates in Liaodong Bay, China, during June and July of 2013 revealed two large patches of high biomass and production with dimensions on the order of 10 km. Nutrient concentrations were above growth-rate-saturating concentrations throughout the bay, with the possible exception of phosphate at some stations. The presence of the patches therefore appeared to reflect the distribution of water temperature and variation of light penetration restricted by water turbidity. There was no patch of high phytoplankton biomass or production in a third, linear patch of water with characteristics suitable for rapid phytoplankton growth; the absence of a bloom in that patch likely reflected the fact that the width of the patch was less than the critical size required to overcome losses of phytoplankton to turbulent diffusion. The bottom waters of virtually all of the eastern half of the bay were below the depth of the mixed layer, and the lowest bottom water oxygen concentrations, 3–5 mg L–1, were found in that part of the bay. The water column in much of the remainder of the bay was within the mixed layer, and oxygen concentrations in both surface and bottom waters exceeded 5 mg L–1. PMID:28235070

  10. Hydro-economic modeling of integrated solutions for the water-energy-land nexus in Africa

    NASA Astrophysics Data System (ADS)

    Parkinson, S.; Kahil, M.; Wada, Y.; Krey, V.; Byers, E.; Johnson, N. A.; Burek, P.; Satoh, Y.; Willaarts, B.; Langan, S.; Riahi, K.

    2017-12-01

    This study focused on the development of the Extended Continental-scale Hydro-economic Optimization model (ECHO) and its application to the analysis of long-term water, energy and land use pathways for Africa. The framework is important because it integrates multi-decadal decisions surrounding investments into new water infrastructure, electric power generation and irrigation technologies. The improved linkages in ECHO reveal synergies between water allocation strategies across sectors and the greenhouse gas emissions resulting from electricity supply. The African case study features a reduced-form transboundary river network and associated environmental flow constraints covering surface and groundwater withdrawals. Interactions between local water constraints and the continental-scale economy are captured in the model through the combination of regional electricity markets. Spatially-explicit analysis of land availability is used to restrict future reservoir expansion. The analysis demonstrates the massive investments required to ensure rapidly expanding water, energy and food demands in Africa aligned with human development objectives are met in a sustainable way. Modeled constraints on environmental flows in line with presumptive ecological guidelines trigger diffusion of energy-intensive water supply technologies in water-stressed regions, with implications for the cost and speed of the electricity sector decarbonization required to achieve climate targets.

  11. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Diffusion coefficients of organic molecules in sucrose-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin; Renbaum-Wolff, Lindsay; Kamal, Saeid; Bertram, Allan K.

    2017-02-01

    The diffusion coefficients of organic species in secondary organic aerosol (SOA) particles are needed to predict the growth and reactivity of these particles in the atmosphere. Previously, viscosity measurements, along with the Stokes-Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles or proxies of SOA particles. To test the Stokes-Einstein relation, we have measured the diffusion coefficients of three fluorescent organic dyes (fluorescein, rhodamine 6G and calcein) within sucrose-water solutions with varying water activity. Sucrose-water solutions were used as a proxy for SOA material found in the atmosphere. Diffusion coefficients were measured using fluorescence recovery after photobleaching. For the three dyes studied, the diffusion coefficients vary by 4-5 orders of magnitude as the water activity varied from 0.38 to 0.80, illustrating the sensitivity of the diffusion coefficients to the water content in the matrix. At the lowest water activity studied (0.38), the average diffusion coefficients were 1.9 × 10-13, 1.5 × 10-14 and 7.7 × 10-14 cm2 s-1 for fluorescein, rhodamine 6G and calcein, respectively. The measured diffusion coefficients were compared with predictions made using literature viscosities and the Stokes-Einstein relation. We found that at water activity ≥ 0.6 (which corresponds to a viscosity of ≤ 360 Pa s and Tg/T ≤ 0.81), predicted diffusion rates agreed with measured diffusion rates within the experimental uncertainty (Tg represents the glass transition temperature and T is the temperature of the measurements). When the water activity was 0.38 (which corresponds to a viscosity of 3.3 × 106 Pa s and a Tg/T of 0.94), the Stokes-Einstein relation underpredicted the diffusion coefficients of fluorescein, rhodamine 6G and calcein by a factor of 118 (minimum of 10 and maximum of 977), a factor of 17 (minimum of 3 and maximum of 104) and a factor of 70 (minimum of 8 and maximum of 494), respectively. This disagreement is significantly smaller than the disagreement observed when comparing measured and predicted diffusion coefficients of water in sucrose-water mixtures.

  13. The rain-watered lawn: Informing effective lawn watering behavior.

    PubMed

    Survis, Felicia D; Root, Tara L

    2017-09-01

    Water restrictions are a common municipal water conservation strategy to manage outdoor water demand, which generally represents more than 50% of total urban-suburban water use. Although water restrictions are designed to limit the frequency of lawn watering, they do not always result in actual water savings. The project described here tested a weather-based add-on water conservation strategy in a South Florida suburban community to determine if it promoted more effective lawn watering behavior than mandatory water restrictions alone. The "rain-watered lawn" pilot program was designed to inform people of recent rainfall and how that contributed to naturally watering their lawns and offset the need to irrigate as often, or in some cases, at all. The goal of the study was to determine if homeowners would water more conservatively than with water restrictions alone if they were also informed of recent rainfall totals. The results show that households in neighborhoods where the add-on rain watered lawn strategy was implemented watered up to 61% less frequently than the control neighborhoods with water restrictions alone. This study demonstrates that weather-based information strategies can be effective for conservation and suggests that a program that focuses on coupling lawn watering behavior with actual climate variables such as rainfall can yield significant water savings. This study holds significance for municipal areas with water restrictions and provides a model to help improve outdoor water conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 25 CFR 171.300 - Does BIA restrict my water use?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Does BIA restrict my water use? 171.300 Section 171.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Water Use § 171.300 Does BIA restrict my water use? (a) You must not interfere with or alter our...

  15. Thermoregulation and water balance as affected by water and food restrictions in Sudanese desert goats fed good-quality and poor-quality diets.

    PubMed

    Ahmed, Muna M M; El Kheir, I M

    2004-02-01

    Nine desert goats were used in a 3 x 3 Latin square design in which they were subjected to (a) ad libitum water and food (control), (b) ad libitum food and water restricted to about 40% of the control, and (c) ad libitum water and restricted food (same amount as given to group b). Parameters measured were dry matter intake (DMI), water intake, rectal temperature (Tr), respiration rate (RR), water balance and body weight (BW) changes. The acute effects of the above treatments on these parameters were monitored during the dry summer using two types of feed. The ratio of DMI to water intake decreased (p < 0.01) due to water restriction but increased (p < 0.01) with Lucerne hay compared to grass hay. With both feeds, BW decreased (p < 0.01) with water restriction, with a further decrease (p < 0.01) observed with food restriction. The control group showed a higher (p < 0.01) gain with Lucerne hay than grass hay. Tr and RR increased (p < 0.01) from morning to afternoon; Tr decreased due to food restriction during both morning and afternoon with Lucerne hay (p < 0.05) and grass hay (p < 0.05), whereas RR decreased (p < 0.01) with both types of feeds. For all groups of animals, Tr was higher (p < 0.05) with Lucerne hay than with grass hay, this effect being more pronounced (p < 0.01) with the control group. With both feeds, water restriction decreased (p < 0.01) water turnover rate and evaporative losses, with decreased (p < 0.05) faecal losses observed in the water-restricted groups on Lucerne hay but higher (p < 0.05) losses of urine. The tolerance of desert goats to thermal stress and their coping with shortage of water and food depended on their capacity to lose heat through panting and cutenaous evaporation as well as their ability to concentrate urine.

  16. Training Rats Using Water Rewards Without Water Restriction

    PubMed Central

    Reinagel, Pamela

    2018-01-01

    High-throughput behavioral training of rodents has been a transformative development for systems neuroscience. Water or food restriction is typically required to motivate task engagement. We hypothesized a gap between physiological water need and hedonic water satiety that could be leveraged to train rats for water rewards without water restriction. We show that when Citric Acid (CA) is added to water, female rats drink less, yet consume enough to maintain long term health. With 24 h/day access to a visual task with water rewards, rats with ad lib CA water performed 84% ± 18% as many trials as in the same task under water restriction. In 2-h daily sessions, rats with ad lib CA water performed 68% ± 13% as many trials as under water restriction. Using reward sizes <25 μl, rats with ad lib CA performed 804 ± 285 trials/day in live-in sessions or 364 ± 82 trials/day in limited duration daily sessions. The safety of CA water amendment was previously shown for male rats, and the gap between water need and satiety was similar to what we observed in females. Therefore, it is likely that this method will generalize to male rats, though this remains to be shown. We conclude that at least in some contexts rats can be trained using water rewards without water restriction, benefitting both animal welfare and scientific productivity. PMID:29773982

  17. Oxygen concentration sensor for an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, T.; Okada, Y.; Mieno, T.

    1988-09-29

    This patent describes an oxygen concentration sensor, comprising: an oxygen ion conductive solid electrolyte member forming a gas diffusion restricted region into which a measuring gas is introduced; a pair of electrodes sandwiching the solid electrolyte member; pump current supply means applying a pump voltage to the pair of electrodes through a current detection element to generate a pump current; and a heater element connected to the solid electrolyte member for heating the solid electrolyte member for heating the solid electrolyte member when a heater current is supplied from a heater current source; wherein the oxygen concentration sensor detects anmore » oxygen concentration in the measuring gas in terms of a current value of the pump current supplied through the current detection element and controls oxygen concentration in the gas diffusion restricted region by conducting oxygen ions through the solid electrolyte member in accordance to the flow of the pump current; and wherein the current detection element is connected to the electrode of the pair of electrodes facing the gas diffusion restricted region for insuring that the current value is representative of the pump current and possible leakage current from the heater current.« less

  18. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    NASA Astrophysics Data System (ADS)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  19. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    PubMed

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  20. Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes

    NASA Astrophysics Data System (ADS)

    Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2018-06-01

    The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.

  1. Simulations on the Influence of Myelin Water in Diffusion-Weighted Imaging

    PubMed Central

    Harkins, Kevin D.; Does, Mark D.

    2016-01-01

    While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (Dapp) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (Dm), but exhibited important differences compared to Dapp values simulated that neglect Dm (=0). Compared to Dapp, the apparent diffusion kurtosis (Kapp) was generally more sensitive to Dm. Simulations also tested the sensitivity of Dapp and Kapp to the amount of myelin present. Unique variations in Dapp and Kapp caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in Dapp and Kapp with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter. PMID:27271991

  2. Brain Microstructure and Impulsivity Differ between Current and Past Methamphetamine Users.

    PubMed

    Andres, Tamara; Ernst, Thomas; Oishi, Kenichi; Greenstein, David; Nakama, Helenna; Chang, Linda

    2016-09-01

    Methamphetamine (Meth) use disorder continues to be highly prevalent worldwide. Meth users have higher impulsivity and brain abnormalities that may be different between current and past Meth users. The current study assessed impulsivity and depressive symptoms in 94 participants (27 current Meth users, 32 past Meth users and 35 non-drug user controls). Additionally, brain microstructure was assessed using diffusion tensor imaging (DTI); fractional anisotropy (FA) and mean diffusivity (MD) were assessed in the striatum, and FA, MD, radial and axial diffusivity were quantified in five white matter structures using DtiStudio.Across the three subject groups, current users had the highest self-reported impulsivity scores, while both Meth user groups had larger striatal structures than the controls. Past Meth users had the highest FA and lowest MD in the striatum, which is likely due to greater magnetic susceptibility from higher iron content and greater dendritic spine density. In white matter tracts, current Meth users had higher AD than past users, indicating greater water diffusion along the axons, and suggesting inflammation with axonal swelling. In contrast, past users had the lowest AD, indicating more restricted diffusion, which might have resulted from reactive gliosis. Although current Meth users had greater impulsivity than past users, the brain microstructural abnormalities showed differences that may reflect different stages of neuroinflammation or iron-induced neurodegeneration. Combining current and past Meth users may lead to greater variability in studies of Meth users. Longitudinal studies are needed to further evaluate the relationship between recency of Meth use and brain microstructure.

  3. Value of Formalin Fixation for the Prolonged Preservation of Rodent Myocardial Microanatomical Organization: Evidence by MR Diffusion Tensor Imaging.

    PubMed

    Giannakidis, Archontis; Gullberg, Grant T; Pennell, Dudley J; Firmin, David N

    2016-07-01

    Previous ex vivo diffusion tensor imaging (DTI) studies on formalin-fixed myocardial tissue assumed that, after some initial changes in the first 48 hr since the start of fixation, DTI parameters remain stable over time. Prolonged preservation of cardiac tissue in formalin prior to imaging has been seen many times in the DTI literature as it is considered orderly. Our objective is to define the effects of the prolonged cardiac tissue exposure to formalin on tissue microanatomical organization, as this is assessed by DTI parameters. DTI experiments were conducted on eight excised rodent hearts that were fixed by immersion in formalin. The samples were randomly divided into two equinumerous groups corresponding to shorter (∼2 weeks) and more prolonged (∼6-8 weeks) durations of tissue exposure to formalin prior to imaging. We found that when the duration of cardiac tissue exposure to formalin before imaging increased, water diffusion became less restricted, helix angle (HA) histograms flattened out and exhibited heavier tails (even though the classic HA transmural variation was preserved), and a significant loss of inter-voxel primary diffusion orientation integrity was introduced. The prolonged preservation of cardiac tissue in formalin profoundly affected its microstructural organization, as this was assessed by DTI parameters. The accurate interpretation of diffusivity profiles necessitates awareness of the pitfalls of prolonged cardiac tissue exposure duration to formalin. The acquired knowledge works to the advantage of a proper experimental design of DTI studies of fixed hearts. Anat Rec, 299:878-887, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Breakdown of water super-permeation in electrically insulating graphene oxide films: role of dual interlayer spacing.

    PubMed

    Kavitha, Maheshwari Kavirajan; Sakorikar, Tushar; Vayalamkuzhi, Pramitha; Jaiswal, Manu

    2018-08-10

    Conventional graphene oxide (GO) is characterized by low sp 2 content in a sp 3 rich matrix, which is responsible both for electrical insulation and water super-permeation. Upon reduction, electrical conduction is achieved at the expense of water permeation ability. Here, we demonstrate that charge conduction and water permeation can be simultaneously restricted in a functionalized form of GO. Gravimetric studies reveal that diffusion of water vapor through a glassy polymer membrane is arrested by loading a hydrophobic form of GO (H-GO) in the polymer matrix, even as such, water inhibition cannot be realized by substantially increasing the thickness of the bare polymer. As an application, the ability of the coating to impede the degradation of methyl ammonium lead iodide films under high humidity conditions is demonstrated. At the same time the H-GO film has a resistance over 10 7 times higher when compared to thermally reduced GO of similar sp 2 fraction. We attribute this unique behavior to the presence of a sub-micron matrix of GO with simultaneous presence of large (∼9.5 Å) and small (∼4.7 Å) interlayer spacing. This leads to disruption of the spatially distributed percolation pathways for electrical charge, and it also serves to block the nanocapillary networks for water molecules.

  5. Theoretical and experimental studies of water interaction in acetate based ionic liquids.

    PubMed

    Shi, Wei; Damodaran, Krishnan; Nulwala, Hunaid B; Luebke, David R

    2012-12-05

    Water interactions in 1-ethyl-3-methylimidazolium acetate ([emim][CH(3)COO]) were studied utilizing classical and ab initio simulation methods. The self-diffusivities for water and the ionic liquid (IL) were studied experimentally using pulse field gradient NMR spectroscopy and correlated with computational results. Water forms hydrogen bonding networks with the ionic liquid, and depending on the concentration of water, there are profound effects on the self-diffusivities of the various species. Both simulation and experiments show that the self-diffusivities for species in the water-[emim][CH(3)COO] system exhibit minima at 40-50 mol% water. Water interaction with the [CH(3)COO](-) anion predominates over the water-water and water-cation interactions at most water concentrations. Simulations further indicate that decreasing water-[CH(3)COO](-) interaction will increase the IL and water self-diffusivities. Self-diffusivities in the water-IL systems are dependent upon the cation in a complex way. Water interactions with [P(4444)][CH(3)COO] are reduced compared to [emim][CH(3)COO]. The [P(4444)](+) cation is bulkier than the [emim](+) cation and has a smaller self-diffusivity, but when water was introduced to [P(4444)] [CH(3)COO], the water-[CH(3)COO](-) hydrogen bonding network in the [P(4444)][CH(3)COO] was much smaller than the one observed in [emim][CH(3)COO].

  6. Diffusion of hydrous species in model basaltic melt

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  7. Diffusion on social networks: Survey data from rural villages in central China.

    PubMed

    Xiong, Hang; Wang, Puqing; Zhu, Yueji

    2016-06-01

    Empirical studies on social diffusions are often restricted by the access to data of diffusion and social relations on the same objects. We present a set of first-hand data that we collected in ten rural villages in central China through household surveys. The dataset contains detailed and comprehensive data of the diffusion of an innovation, the major social relationships and the household level demographic characteristics in these villages. The data have been used to study peer effects in social diffusion using simulation models, "Peer Effects and Social Network: The Case of Rural Diffusion in Central China" [1]. They can also be used to estimate spatial econometric models. Data are supplied with this article.

  8. 10 CFR 76.119 - Security facility approval and safeguarding of National Security Information and Restricted Data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...

  9. 10 CFR 76.119 - Security facility approval and safeguarding of National Security Information and Restricted Data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...

  10. 10 CFR 76.119 - Security facility approval and safeguarding of National Security Information and Restricted Data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...

  11. 10 CFR 76.119 - Security facility approval and safeguarding of National Security Information and Restricted Data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...

  12. 10 CFR 76.119 - Security facility approval and safeguarding of National Security Information and Restricted Data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...

  13. The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions

    NASA Astrophysics Data System (ADS)

    Nguyen, Mary; Rick, Steven W.

    2018-06-01

    The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.

  14. Assessing the accuracy of using oscillating gradient spin echo sequences with AxCaliber to infer micron-sized axon diameters.

    PubMed

    Mercredi, Morgan; Vincent, Trevor J; Bidinosti, Christopher P; Martin, Melanie

    2017-02-01

    Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue. Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together. The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested. The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.

  15. Strain localization and fabric development in polycrystalline anorthite + melt by water diffusion in an axial deformation experiment

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-ichi; Muto, Jun; Nagahama, Hiroyuki

    2018-01-01

    We performed two axial deformation experiments on synthetic polycrystalline anorthite samples with a grain size of 3 μm and 5 vol% Si-Al-rich glass at 900 °C, a confining pressure of 1.0 GPa, and a strain rate of 10-4.8 s-1. One sample was deformed as-is (dry); in the other sample, two half-cut samples (two cores) with 0.15 wt% water at the boundary were put together in the apparatus. The mechanical data for both samples were essentially identical with a yield strength of 700 MPa and strain weakening of 500 MPa by 20% strain. The dry sample appears to have been deformed by distributed fracturing. Meanwhile, the water-added sample shows plastic strain localization in addition to fracturing and reaction products composed of zoisite grains and SiO2 materials along the boundary between the two sample cores. Infrared spectra of the water-added sample showed dominant water bands of zoisite. The maximum water content was 1500 wt ppm H2O at the two-core boundary, which is the same as the added amount. The water contents gradually decreased from the boundaries to the sample interior, and the gradient fitted well with the solution of the one-dimensional diffusion equation. The determined diffusion coefficient was 7.4 × 10-13 m2/s, which agrees with previous data for the grain boundary diffusion of water. The anorthite grains in the water-added sample showed no crystallographic preferred orientation. Textural observations and water diffusion indicate that water promotes the plastic deformation of polycrystalline anorthite by grain-size-sensitive creep as well as simultaneous reactions. We calculated the strain rate evolution controlled by water diffusion in feldspar aggregates surrounded by a water source. We assumed water diffusion in a dry rock mass with variable sizes. Diffused water weakens a rock mass with time under compressive stress. The calculated strain rate decreased from 10-10 to 10-15 s-1 with an increase in the rock mass size to which water is supplied from < 1 m to 1 km and an increase in the time of water diffusion from < 1 to 10,000 years. This indicates a decrease in the strain rate in a rock mass with increasing deformation via water diffusion.

  16. White matter changes and word finding failures with increasing age.

    PubMed

    Stamatakis, Emmanuel A; Shafto, Meredith A; Williams, Guy; Tam, Phyllis; Tyler, Lorraine K

    2011-01-07

    Increasing life expectancy necessitates the better understanding of the neurophysiological underpinnings of age-related cognitive changes. The majority of research examining structural-cognitive relationships in aging focuses on the role of age-related changes to grey matter integrity. In the current study, we examined the relationship between age-related changes in white matter and language production. More specifically, we concentrated on word-finding failures, which increase with age. We used Diffusion tensor MRI (a technique used to image, in vivo, the diffusion of water molecules in brain tissue) to relate white matter integrity to measures of successful and unsuccessful picture naming. Diffusion tensor images were used to calculate Fractional Anisotropy (FA) images. FA is considered to be a measure of white matter organization/integrity. FA images were related to measures of successful picture naming and to word finding failures using voxel-based linear regression analyses. Successful naming rates correlated positively with white matter integrity across a broad range of regions implicated in language production. However, word finding failure rates correlated negatively with a more restricted region in the posterior aspect of superior longitudinal fasciculus. The use of DTI-MRI provides evidence for the relationship between age-related white matter changes in specific language regions and word finding failures in old age.

  17. 25 CFR 171.300 - Does BIA restrict my water use?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Does BIA restrict my water use? 171.300 Section 171.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Water Use § 171.300 Does BIA restrict my water use? (a) You must not interfere with or alter our service to you without our prior written...

  18. 25 CFR 171.300 - Does BIA restrict my water use?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Does BIA restrict my water use? 171.300 Section 171.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Water Use § 171.300 Does BIA restrict my water use? (a) You must not interfere with or alter our service to you without our prior written...

  19. 25 CFR 171.300 - Does BIA restrict my water use?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Does BIA restrict my water use? 171.300 Section 171.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Water Use § 171.300 Does BIA restrict my water use? (a) You must not interfere with or alter our service to you without our prior written...

  20. Structural and water diffusion of poly(acryl amide)/poly(vinyl alcohol) blend films: Experiment and molecular dynamics simulations.

    PubMed

    Wang, Yanen; Wei, Qinghua; Wang, Shuzhi; Chai, Weihong; Zhang, Yingfeng

    2017-01-01

    To study the effects of composition ratios and temperature on the diffusion of water molecules in PVA/PAM blend films, five simulation models of PVA/PAM with ten water molecules at different composition ratios (4/0, 3/1, 2/2, 1/3, 0/4) were constructed and simulated by using a molecular dynamics (MD) simulation. The diffusion behavior of water molecules in blends were investigated from the aspects of the diffusion coefficient, free volume, pair correlation function (PCF) and trajectories of water molecules, respectively. And the hydrophilicity of blend composite was studied based on the contact angle and equilibrium water content (EWC) of the blend films. The simulation results show that the diffusion coefficient of water molecules and fractional free volume (FFV) of blend membranes increase with the addition of PAM, and a higher temperature can also improve the diffusion of water molecules. Additionally, the analysis of PCFs reveals the main reason why the diffusion coefficient of water in blend system increases with the addition of PAM. The measurement results of contact angle and EWC of blend films indicate that the hydrophilicity of blend films decreases with the addition of PAM, but the EWC of blends increases with the addition of PAM. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes.

    PubMed

    Song, Jinsuk; Han, Oc Hee; Han, Songi

    2015-03-16

    Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 18 CFR 430.7 - Determination of protected areas and restriction on water use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...

  3. 18 CFR 430.7 - Determination of protected areas and restriction on water use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...

  4. 18 CFR 430.7 - Determination of protected areas and restriction on water use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...

  5. Simulations on the influence of myelin water in diffusion-weighted imaging

    NASA Astrophysics Data System (ADS)

    Harkins, K. D.; Does, M. D.

    2016-07-01

    While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.

  6. Simulations on the influence of myelin water in diffusion-weighted imaging.

    PubMed

    Harkins, K D; Does, M D

    2016-07-07

    While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.

  7. Atomistic modeling of water diffusion in hydrolytic biomaterials.

    PubMed

    Gautieri, Alfonso; Mezzanzanica, Andrea; Motta, Alberto; Redealli, Alberto; Vesentini, Simone

    2012-04-01

    One of the most promising applications of hydrolytically degrading biomaterials is their use as drug release carriers. These uses, however, require that the degradation and diffusion of drug are reliably predicted, which is complex to achieve through present experimental methods. Atomistic modeling can help in the knowledge-based design of degrading biomaterials with tuned drug delivery properties, giving insights on the small molecules diffusivity at intermediate states of the degradation process. We present here an atomistic-based approach to investigate the diffusion of water (through which hydrolytic degradation occurs) in degrading bulk models of poly(lactic acid) or PLA. We determine the water diffusion coefficient for different swelling states of the polymeric matrix (from almost dry to pure water) and for different degrees of degradation. We show that water diffusivity is highly influenced by the swelling degree, while little or not influenced by the degradation state. This approach, giving water diffusivity for different states of the matrix, can be combined with diffusion-reaction analytical methods in order to predict the degradation path on longer time scales. Furthermore, atomistic approach can be used to investigate diffusion of other relevant small molecules, eventually leading to the a priori knowledge of degradable biomaterials transport properties, helping the design of the drug delivery systems.

  8. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    PubMed

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  9. Pitfalls and Limitations of Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Urinary Bladder Cancer

    PubMed Central

    Lin, Wei-Ching; Chen, Jeon-Hor

    2015-01-01

    Adequately selecting a therapeutic approach for bladder cancer depends on accurate grading and staging. Substantial inaccuracy of clinical staging with bimanual examination, cystoscopy, and transurethral resection of bladder tumor has facilitated the increasing utility of magnetic resonance imaging to evaluate bladder cancer. Diffusion-weighted imaging (DWI) is a noninvasive functional magnetic resonance imaging technique. The high tissue contrast between cancers and surrounding tissues on DWI is derived from the difference of water molecules motion. DWI is potentially a useful tool for the detection, characterization, and staging of bladder cancers; it can also monitor posttreatment response and provide information on predicting tumor biophysical behaviors. Despite advancements in DWI techniques and the use of quantitative analysis to evaluate the apparent diffusion coefficient values, there are some inherent limitations in DWI interpretation related to relatively poor spatial resolution, lack of cancer specificity, and lack of standardized image acquisition protocols and data analysis procedures that restrict the application of DWI and reproducibility of apparent diffusion coefficient values. In addition, inadequate bladder distension, artifacts, thinness of bladder wall, cancerous mimickers of normal bladder wall and benign lesions, and variations in the manifestation of bladder cancer may interfere with diagnosis and monitoring of treatment. Recognition of these pitfalls and limitations can minimize their impact on image interpretation, and carefully applying the analyzed results and combining with pathologic grading and staging to clinical practice can contribute to the selection of an adequate treatment method to improve patient care. PMID:26055180

  10. Diffusion and mobility of atomic particles in a liquid

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.

    2017-11-01

    The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.

  11. Historical and seasonal dynamics of phosphorus mobility in Sancha Lake of Southwest China's Sichuan Province.

    PubMed

    Jia, Binyang; Tang, Ya; Yang, Bo; Huang, Jen-How

    2017-01-01

    Phosphorus (P) fractionations in the surface sediment of Sancha Lake in China's southwestern Sichuan Province were examined to assess the potential P release at the water-sediment interface and to understand its seasonal (2009-2010) and historical dynamics (1989-2010) in the surface water. Elevated P concentrations were detected in the sediment at main reservoir inflow, south canal of the Dujiangyan irrigation network, and intensive cage fish farming area, accounting for 32 and 40% of current total P discharges. The highest total P concentration (11,200 μg P g -1 ) was observed in the upper sediment below intensive fish farming area with a specific enrichment of HCl-P (51% of total P) mainly from fish feeds and feces. These sediments had larger MgCl 2 -P pools with higher diffusive P fluxes (0.43-0.47 mg m -2  d -1 ) from surface sediment than those from other areas (0.25-0.42 mg m -2  d -1 ). The general small proportion of MgCl 2 -P (5.7-10%) and low diffusive P fluxes from surface sediment (<0.02% of sediment P storage (0-1 cm)) indicate low mobility and slow release of P from sediments. The sediment as an internal P source led to a 3-4-year lag for P concentration decrease in the surface water after restriction of anthropogenic P discharges since 2005. Thus, the peak P concentration in April and September could be explained as a combined effect of supplementing internal loading via reductive processes in sediments and seasonal water vertical circulation in the early spring and fall. Policy played a crucial role in reducing P inputs to the lake.

  12. Controlling reactivity of nanoporous catalyst materials by tuning reaction product-pore interior interactions: Statistical mechanical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Ackerman, David M.; Lin, Victor S.-Y.

    2013-04-02

    Statistical mechanical modeling is performed of a catalytic conversion reaction within a functionalized nanoporous material to assess the effect of varying the reaction product-pore interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed not just due to the shift in reaction equilibrium towards completion but also due to enhanced transport within the pore resulting from reduced loading. The latter effect is strongest for highly restricted transport (single-file diffusion), and applies even for irreversible reactions. The analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reactionmore » and restricted transport.« less

  13. Effects of salt stress imposed during two growth phases on cauliflower production and quality.

    PubMed

    Giuffrida, Francesco; Cassaniti, Carla; Malvuccio, Angelo; Leonardi, Cherubino

    2017-03-01

    Cultivation of cauliflower is diffused in Mediterranean areas where water salinity results in the need to identify alternative irrigation sources or management strategies. Using saline water during two growth phases (from transplanting to visible appearance of inflorescence or from appearance of inflorescence to head harvest), the present study aimed to identify the growth period that is more suitable for irrigation with low quality water in relation to cauliflower production and quality. Salinity affected cauliflower growth mainly when imposed in the first growth phase. The growth reduction depended mainly on ion-specific effects, although slight nutrient imbalances as a result of Na + and Cl - antagonisms were observed. The use of non-saline water in the first or second growth period reduced both the osmotic and toxic effects of salinity. When salinity was applied during inflorescence growth, yield was reduced because of a restriction of water accumulation in the head. The results of the present study demonstrate the possibility of producing marketable cauliflower heads under conditions of salinity by timing the application of the best quality water during the first growth phase to improve fruit quality and during the second phase to reduce the negative effects of salinity on yield. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicatemore » that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.« less

  15. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins.

    PubMed Central

    Nakata, T; Sato-Yoshitake, R; Okada, Y; Noda, Y; Hirokawa, N

    1993-01-01

    One-dimensional diffusion of microtubules (MTs), a back-and-forth motion of MTs due to thermal diffusion, was reported in dynein motility assay. The interaction between MTs and dynein that allows such motion was implicated in its importance in the force generating cycle of dynein ATPase cycle. However, it was not known whether the phenomenon is special to motor proteins. Here we show two independent examples of one-dimensional diffusion of MTs in the absence of motor proteins. Dynamin, a MT-activated GTPase, causes a nucleotide dependent back-and-forth movement of single MT up to 1 micron along the longitudinal axes, although the MT never showed unidirectional consistent movement. Quantitative analysis of the motion and its nucleotide condition indicates that the motion is due to a thermal driven diffusion, restricted to one dimension, under the weak interaction between MT and dynamin. However, specific protein-protein interaction is not essential for the motion, because similar back-and-forth movement of MT was achieved on coverslips coated with only 0.8% methylcellulose. Both cases demonstrate that thermal diffusion could provide a considerable sliding of MTs only if MTs are restricted on the surface appropriately. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:7906153

  16. Cardiac natriuretic peptide response to water restriction in the hormonal adaptation of two semidesert rodents from West Africa (Steatomys caurinus, Taterillus gracilis).

    PubMed

    Lacas, S; Allevard, A M; Ag'Atteinine, S; Gallo-Bona, N; Gauquelin-Koch, G; Hardin-Pouzet, H; Gharib, C; Sicard, B; Maurel, D

    2000-11-01

    Two African rodents, Taterillus gracilis and Steatomys caurinus, native to regions of alternate dry and wet seasons, were studied under laboratory conditions. These species differ in estivation behavior, one undergoing pseudoestivation and the other strong estivation. One group of animals of each species was provided with unlimited access to seed and vegetables rich in water, mimicking the food availability of the wet season (control group). A second group of animals of each species was subjected to water restriction for 8 days, mimicking the natural drought that occurs during the dry-hot season. The effects of water restriction on osmoregulation and body water content were assessed from hematocrit, and plasma and urinary osmolalities (PO, UO). Whether the natriuretic peptide system was modified by the osmoregulator adaptation to aridity of these semidesert rodents was examined from measurements of atrial natriuretic peptide (ANP) levels in plasma, atria, and ventricles, in parallel with morphological studies. In both species, UO was increased by water restriction. In water-deprived T. gracilis, ANP levels were about twice (right atria: 1.08 +/- 0.16 microg/mg protein vs control: 0.40 +/- 0.06 microg/mg protein) and plasma concentrations half (0.28 +/- 0.06 ng/ml vs control: 0.64 +/- 0.07 ng/ml) those in control animals. In S. caurinus these variables were not affected by water availability (right atria water restricted: 2. 20 +/- 0.15 microg/mg protein vs control: 2.86 +/- 0.37 microg/mg protein; plasma ANP water restricted: 0.80 +/- 0.12 ng/ml vs control: 0.90 +/- 0.16 ng/ml). Consistent with these quantitative results, immunohistochemical and ultrastructural observations showed an increase in immunostaining for both the N- and the C-terminal ANP and a larger number of granules in the atria of T. gracilis following water restriction, whereas there was no visible change in S. caurinus. Thus, water restriction induced a decrease in ANP secretion in T. gracilis, increasing cardiac storage alongside a reduced urine production. In contrast, in S. caurinus, the natriuretic system was not affected by an 8-day period of water restriction. Copyright 2000 Academic Press.

  17. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    USGS Publications Warehouse

    Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.

    2012-01-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  18. Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.

    PubMed

    Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar

    2007-11-01

    In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.

  19. Imaging of high-amylose starch tablets. 3. Initial diffusion and temperature effects.

    PubMed

    Thérien-Aubin, Héloïse; Baille, Wilms E; Zhu, Xiao Xia; Marchessault, Robert H

    2005-01-01

    The penetration of water into cross-linked high amylose starch tablets was studied at different temperatures by nuclear magnetic resonance (NMR) imaging, which follows the changes occurring at the surface and inside the starch tablets during swelling. It was found that the swelling was anisotropic, whereas water diffusion was almost isotropic. The water proton image profiles at the initial stage of water penetration were used to calculate the initial diffusion coefficient. The swelling and water concentration gradients in this controlled release system show significant temperature dependence. Diffusion behavior changed from Fickian to Case II diffusion with increasing temperature. The observed phenomena are attributed to the gelatinization of starch and the pseudo-cross-linking effect of double helix formation.

  20. Choice of reference measurements affects quantification of long diffusion time behaviour using stimulated echoes.

    PubMed

    Kleinnijenhuis, Michiel; Mollink, Jeroen; Lam, Wilfred W; Kinchesh, Paul; Khrapitchev, Alexandre A; Smart, Sean C; Jbabdi, Saad; Miller, Karla L

    2018-02-01

    To demonstrate how reference data affect the quantification of the apparent diffusion coefficient (ADC) in long diffusion time measurements with diffusion-weighted stimulated echo acquisition mode (DW-STEAM) measurements, and to present a modification to avoid contribution from crusher gradients in DW-STEAM. For DW-STEAM, reference measurements at long diffusion times have significant b 0 value, because b = 0 cannot be achieved in practice as a result of the need for signal spoiling. Two strategies for acquiring reference data over a range of diffusion times were considered: constant diffusion weighting (fixed-b 0 ) and constant gradient area (fixed-q 0 ). Fixed-b 0 and fixed-q 0 were compared using signal calculations for systems with one and two diffusion coefficients, and experimentally using data from postmortem human corpus callosum samples. Calculations of biexponential diffusion decay show that the ADC is underestimated for reference images with b > 0, which can induce an apparent time-dependence for fixed-q 0 . Restricted systems were also found to be affected. Experimentally, the exaggeration of the diffusion time-dependent effect under fixed-q 0 versus fixed-b 0 was in a range predicted theoretically, accounting for 62% (longitudinal) and 35% (radial) of the time dependence observed in white matter. Variation in the b-value of reference measurements in DW-STEAM can induce artificial diffusion time dependence in ADC, even in the absence of restriction. Magn Reson Med 79:952-959, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  1. Statistical error in simulations of Poisson processes: Example of diffusion in solids

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan O.; Leetmaa, Mikael; Vekilova, Olga Yu.; Simak, Sergei I.; Skorodumova, Natalia V.

    2016-08-01

    Simulations of diffusion in solids often produce poor statistics of diffusion events. We present an analytical expression for the statistical error in ion conductivity obtained in such simulations. The error expression is not restricted to any computational method in particular, but valid in the context of simulation of Poisson processes in general. This analytical error expression is verified numerically for the case of Gd-doped ceria by running a large number of kinetic Monte Carlo calculations.

  2. Phosphorus immobilization in micropores of drinking-water treatment residuals: implications for long-term stability.

    PubMed

    Makris, Konstantinos C; Harris, Willie G; O'Connor, George A; Obreza, Thomas A

    2004-12-15

    Drinking-water treatment residuals (WTRs) can immobilize excess soil phosphorus (P), but little is known about the long-term P retention by WTRs. To evaluate the long-term P sorption characteristics of one Fe- and one Al-based WTR, physicochemical properties pertinent to time-dependency and hysteresis of P sorption were assessed. This study also investigated the P sorption mechanisms that could affect the long-term stability of sorbed P by WTRs. Phosphorus sorption kinetics by the WTRs exhibited a slow phase that followed an initial rapid phase, as typically occurs with metal hydroxides. Phosphorus sorption maxima for both Fe- and Al-based WTRs exceeded 9100 mg of P kg(-1) and required a greater specific surface area (SSA) than would be available based on BET-N2 calculations. Electron microprobe analyses of cross-sectional, P-treated particles showed three-dimensional P sorption by WTRs. Carbon dioxide gas sorption was greater than N2, suggesting steric restriction of N2 diffusion by narrow micropore openings. Phosphorus-treated Co2 SSAs were reduced by P treatment, suggesting P sorption by micropores (5-20 A). Mercury intrusion porosimetry indicated negligible macroporosity (pores > 500 A). Slow P sorption kinetics by WTRs may be explained by intraparticle P diffusion in micropores. Micropore-bound P should be stable and immobilized over long periods.

  3. Sucrose diffusion in aqueous solution

    PubMed Central

    Murray, Benjamin J.

    2016-01-01

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  4. Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers.

    PubMed

    Davies, James F; Wilson, Kevin R

    2016-02-16

    The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.

  5. Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers

    DOE PAGES

    Davies, James F.; Wilson, Kevin R.

    2016-01-11

    The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. Here, we present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D 2O/H 2O) to measure the water diffusion coefficient over amore » broad range (D w ≈ 10 -12-10 -17 m 2s -1) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO 4). For the organic liquids in binary and ternary mixtures, D w depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO 4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, D w can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.« less

  6. Temperature dependence of water diffusion pools in brain white matter.

    PubMed

    Dhital, Bibek; Labadie, Christian; Stallmach, Frank; Möller, Harald E; Turner, Robert

    2016-02-15

    Water diffusion in brain tissue can now be easily investigated using magnetic resonance (MR) techniques, providing unique insights into cellular level microstructure such as axonal orientation. The diffusive motion in white matter is known to be non-Gaussian, with increasing evidence for more than one water-containing tissue compartment. In this study, freshly excised porcine brain white matter was measured using a 125-MHz MR spectrometer (3T) equipped with gradient coils providing magnetic field gradients of up to 35,000 mT/m. The sample temperature was varied between -14 and +19 °C. The hypothesis tested was that white matter contains two slowly exchanging pools of water molecules with different diffusion properties. A Stejskal-Tanner diffusion sequence with very short gradient pulses and b-factors up to 18.8 ms/μm(2) was used. The dependence on b-factor of the attenuation due to diffusion was robustly fitted by a biexponential function, with comparable volume fractions for each component. The diffusion coefficient of each component follows Arrhenius behavior, with significantly different activation energies. The measured volume fractions are consistent with the existence of three water-containing compartments, the first comprising relatively free cytoplasmic and extracellular water molecules, the second of water molecules in glial processes, and the third comprising water molecules closely associated with membranes, as for example, in the myelin sheaths and elsewhere. The activation energy of the slow diffusion pool suggests proton hopping at the surface of membranes by a Grotthuss mechanism, mediated by hydrating water molecules. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Finite Difference Formulation for Prediction of Water Pollution

    NASA Astrophysics Data System (ADS)

    Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab

    2018-03-01

    Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.

  8. 33 CFR 334.1240 - Sinclair Inlet; naval restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sinclair Inlet; naval restricted...; naval restricted areas. (a) Sinclair Inlet: naval restricted areas—(1) Area No. 1. All the waters of... Navy. No person, vessel, craft, article or thing, except those under supervision of military or naval...

  9. 33 CFR 334.1240 - Sinclair Inlet; naval restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sinclair Inlet; naval restricted...; naval restricted areas. (a) Sinclair Inlet: naval restricted areas—(1) Area No. 1. All the waters of... Navy. No person, vessel, craft, article or thing, except those under supervision of military or naval...

  10. A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    2002-11-01

    The 1994 Levitus climatological atlas is used to calculate the Turner angle (named after J. Stewart Turner) to examine which oceanic water masses are favorable for double-diffusion in the form of diffusive convection or salt-fingering and which are doubly stable. This atlas complements the Levitus climatology. It reveals the major double-diffusive signals associated with large-scale water-mass structure. In total, about 44% of the oceans display double-diffusion, of which 30% is salt-fingering and 14% is diffusive double-diffusion. Results show that various central and deep waters are favorable for salt-fingering. The former is due to positive evaporation minus precipitation, and the latter is due to thermohaline circulation, i.e. the southward spreading of relatively warm, salty North Atlantic Deep Water (NADW) overlying cold, fresh Antarctic Bottom Water. In the northern Indian Ocean and eastern North Atlantic, favorable conditions for salt-fingering are found throughout the water column. The Red Sea (including the Persian Gulf) and Mediterranean Sea are the sources of warm, salty water for the ocean. As consequence, temperature and salinity in these outflow regions both decrease from the sea surface to the bottom. On the other hand, ocean currents are in general sluggish in these regions. In the polar and subpolar regions of Arctic and Antarctic, Okhotsk Sea, Gulf of Alaska, the subpolar gyre of the North Pacific, the Labrador Sea, and the Norwegian Sea, the upper layer water is favorable for diffusive convection because of high latitude surface cooling and ice melting. Weak and shallow diffusive convection is also found throughout tropical regions and the Bay of Bengal. The former is due to excessive precipitation over evaporation and rain cooling, and the latter is due to both precipitation and river runoff. Diffusive convection in the ocean's interior is unique to the South Atlantic between Antarctic Intermediate Water and upper NADW (uNADW). It is the consequence of the intrusive equatorward flow of upper Circumpolar Deep Water, which carries with it the minimum temperature and very low salinity overlying warm, salty uNADW.

  11. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  12. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.

    PubMed

    Hsia, Connie C W; Schmitz, Anke; Lambertz, Markus; Perry, Steven F; Maina, John N

    2013-04-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.

  13. Experimental dehydration of natural obsidian and estimation of DH2O at low water contents

    NASA Technical Reports Server (NTRS)

    Jambon, A.; Zhang, Y.; Stolper, E. M.

    1992-01-01

    Water diffusion experiments were carried out by dehydrating rhyolitic obsidian from Valles Caldera (New Mexico, USA) at 510-980 degrees C. The starting glass wafers contained approximately 0.114 wt% total water, lower than any glasses previously investigated for water diffusion. Weight loss due to dehydration was measured as a function of experiment duration, which permits determination of mean bulk water diffusivity, mean Dw. These diffusivities are in the range of 2.6 to 18 X 10(-14) m2/s and can be fit with the following Arrhenius equation: ln mean Dw (m2/s) = -(25.10 +/- 1.29) - (46,480 +/- 11,400) (J/mol) / RT, except for two replicate runs at 510 degrees C which give mean Dw values much lower than that defined by the above equation. When interpreted according to a model of water speciation in which molecular H2O is the diffusing species with concentration-independent diffusivity while OH units do not contribute to the transport but react to provide H2O, the data (except for the 510 degrees C data) are in agreement with extrapolation from previous results and hence extend the previous data base and provide a test of the applicability of the model to very low water contents. Mean bulk water diffusivities are about two orders of magnitude less than molecular H2O diffusivities because the fraction of molecular H2O out of total water is very small at 0.114 wt% total water and less. The 510 degrees C experimental results can be interpreted as due to slow kinetics of OH to H2O interconversion at low temperatures.

  14. Experimental dehydration of natural obsidian and estimation of DH2O at low water contents.

    PubMed

    Jambon, A; Zhang, Y; Stolper, E M

    1992-01-01

    Water diffusion experiments were carried out by dehydrating rhyolitic obsidian from Valles Caldera (New Mexico, USA) at 510-980 degrees C. The starting glass wafers contained approximately 0.114 wt% total water, lower than any glasses previously investigated for water diffusion. Weight loss due to dehydration was measured as a function of experiment duration, which permits determination of mean bulk water diffusivity, mean Dw. These diffusivities are in the range of 2.6 to 18 X 10(-14) m2/s and can be fit with the following Arrhenius equation: ln mean Dw (m2/s) = -(25.10 +/- 1.29) - (46,480 +/- 11,400) (J/mol) / RT, except for two replicate runs at 510 degrees C which give mean Dw values much lower than that defined by the above equation. When interpreted according to a model of water speciation in which molecular H2O is the diffusing species with concentration-independent diffusivity while OH units do not contribute to the transport but react to provide H2O, the data (except for the 510 degrees C data) are in agreement with extrapolation from previous results and hence extend the previous data base and provide a test of the applicability of the model to very low water contents. Mean bulk water diffusivities are about two orders of magnitude less than molecular H2O diffusivities because the fraction of molecular H2O out of total water is very small at 0.114 wt% total water and less. The 510 degrees C experimental results can be interpreted as due to slow kinetics of OH to H2O interconversion at low temperatures.

  15. 33 CFR 334.1270 - Port Townsend, Indian Island, Walan Point; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Port Townsend, Indian Island, Walan Point; naval restricted area. 334.1270 Section 334.1270 Navigation and Navigable Waters CORPS OF....1270 Port Townsend, Indian Island, Walan Point; naval restricted area. (a) The area. The waters of Port...

  16. 33 CFR 334.1270 - Port Townsend, Indian Island, Walan Point; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Port Townsend, Indian Island, Walan Point; naval restricted area. 334.1270 Section 334.1270 Navigation and Navigable Waters CORPS OF....1270 Port Townsend, Indian Island, Walan Point; naval restricted area. (a) The area. The waters of Port...

  17. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOEpatents

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  18. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II.

    PubMed

    Vassiliev, Serguei; Zaraiskaya, Tatiana; Bruce, Doug

    2013-10-01

    Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao

    2015-10-01

    Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.

  20. Diffusion-weighted imaging in the evaluation of odontogenic cysts and tumours.

    PubMed

    Srinivasan, K; Seith Bhalla, A; Sharma, R; Kumar, A; Roychoudhury, A; Bhutia, O

    2012-10-01

    The differentiation between keratocystic odontogenic tumour (KCOT) and other cystic/predominantly cystic odontogenic tumours is difficult on conventional CT and MR sequences as there is overlap in the imaging characteristics of these lesions. The purpose of this study was to evaluate the role of diffusion-weighted imaging (DWI) and to assess the performance of apparent diffusion coefficients (ADCs) in the differential diagnosis of odontogenic cysts and tumours. 20 patients with odontogenic cysts and tumours of the maxillomandibular region were examined with DWI. Diffusion-weighted images were obtained with a single-shot echoplanar technique with b-values of 0, 500 and 1000 s mm(-2). An ADC map was obtained at each slice position. The cystic areas of ameloblastoma (n=10) showed free diffusion with a mean ADC value of 2.192±0.33×10(-3) mm(2) s(-1), whereas the solid areas showed restricted diffusion with a mean ADC value of 1.041±0.41×10(-3) mm(2) s(-1). KCOT (n=5) showed restricted diffusion with a mean ADC value of 1.019±0.07×10(-3) mm(2) s(-1). There was a significant difference between the ADC values of KCOT and cystic ameloblastoma (p<0.01, Mann-Whitney U-test). The cut-off with which KCOT and predominantly cystic ameloblastomas were optimally differentiated was 2.013×10(-3) mm(2) s(-1), which yielded 100% sensitivity and 100% specificity. DWI can be used to differentiate KCOT from cystic (or predominantly cystic) odontogenic tumours.

  1. Forages and Pastures Symposium: development of and field experience with drought-tolerant maize.

    PubMed

    Soderlund, S; Owens, F N; Fagan, C

    2014-07-01

    Drought-tolerant maize hybrids currently are being marketed by several seed suppliers. Such hybrids were developed by phenotypic and marker-assisted selection or through genetic modification and tested by exposing these hybrids to various degrees of water restriction. As drought intensifies, crop yields and survival progressively decline. Water need differs among plants due to differences in root structure, evaporative loss, capacity to store water or enter temporary dormancy, and plant genetics. Availability of water differs widely not only with rainfall and irrigation but also with numerous soil and agronomic factors (e.g., soil type, slope, seeding rates, tillage practices). Reduced weed competition, enhanced pollen shed and silk production, and deep, robust root growth help to reduce the negative impacts of drought. Selected drought-tolerant maize hybrids have consistently yielded more grain even when drought conditions are not apparent either due to reduced use of soil water reserves before water restriction or due to greater tolerance of intermittent water shortages. In DuPont Pioneer trials, whole plant NDF digestibility of maize increased with water restriction, perhaps due to an increased leaf to stem ratio. Efficiency of water use, measured as dry matter or potential milk yield from silage per unit of available water, responded quadratically to water restriction, first increasing slightly but then decreasing as water restriction increased. For grain production, water restriction has its greatest negative impact during or after silking through reducing the number of kernels and reducing kernel filling. For silage production, water restriction during the vegetative growth stage negatively impacts plant height and biomass yield. Earlier planting and shorter season maize hybrids help to avoid midsummer heat stress during pollination and can reduce the number of irrigation events needed. Although drought tolerance of maize hybrids has been improved due to genetic selection or biotech approaches, selecting locally adapted hybrids or crops, adjusting seeding rates, and modifying tillage and irrigation practices are important factors that can improve efficiency of use of available water by grain and forage crops.

  2. A Review of the Current Geographic Distribution of and Debate Surrounding Electronic Cigarette Clean Air Regulations in the United States

    PubMed Central

    Kadowaki, Joy; Vuolo, Mike; Kelly, Brian C.

    2014-01-01

    In this article, we present the results of a systematic review of state, county, and municipal restrictions on the use of electronic cigarettes (e-cigarettes) in public spaces within the United States, alongside an overview of the current legal landscape. The lack of federal guidance leaves lower-level jurisdictions to debate the merits of restrictions on use in public spaces without sufficient scientific research. As we show through a geographic assessment of restrictions, this has resulted in an inconsistent patchwork of e-cigarette use bans across the United States of varying degrees of coverage. Bans have emerged over time in a manner that suggests a “bottom up” diffusion of e-cigarette clean air policies. Ultimately, the lack of clinical and scientific knowledge on the risks and potential harm reduction benefits has led to precautionary policymaking, which often lacks grounding in empirical evidence and results in spatially uneven diffusion of policy. PMID:25463920

  3. Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging.

    PubMed

    Yanagisawa, Osamu; Takahashi, Hideyuki; Fukubayashi, Toru

    2010-09-01

    In this study, we determined the effects of different cooling treatments on exercised muscles. Seven adults underwent four post-exercise treatments (20-min ice-bag application, 60-min gel-pack application at 10 degrees C and 17 degrees C, and non-cooling treatment) with at least 1 week between treatments. Magnetic resonance diffusion- and T2-weighted images were obtained to calculate the apparent diffusion coefficients (apparent diffusion coefficient 1, which reflects intramuscular water diffusion and microcirculation, and apparent diffusion coefficient 2, which is approximately equal to the true diffusion coefficient that excludes as much of the effect of intramuscular microcirculation as possible) and the T2 values (intramuscular water content level) of the ankle dorsiflexors, respectively, before and after ankle dorsiflexion exercise and after post-exercise treatment. The T2 values increased significantly after exercise and returned to pre-exercise values after each treatment; no significant differences were observed among the four post-exercise treatments. Both apparent diffusion coefficients also increased significantly after exercise and decreased significantly after the three cooling treatments; no significant difference was detected among the three cooling treatments. Local cooling suppresses both water diffusion and microcirculation within exercised muscles. Moreover, although the treatment time was longer, adequate cooling effects could be achieved using the gel-pack applications at relatively mild cooling temperatures.

  4. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  5. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  6. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted area. All...

  7. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  8. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  9. Ion pair and solvation dynamics of [Bmim][BF4 ] + water system.

    PubMed

    Cascão, João; Silva, Wagner; Ferreira, Ana S D; Cabrita, Eurico J

    2018-02-01

    In this work, 1-butyl-3-methylimidazolium tetrafluoroborate/water mixtures were analysed over the whole water composition (x w ) in order to study the rotational and translational behaviour of the ions. We employed a multinuclear NMR approach to determine anion/cation/water diffusion coefficients and longitudinal relaxation rates at different water content. In neat ionic liquids (IL), the cation diffuses faster than the anion, and at low x w , anions and cations share almost the same diffusion coefficient, but above a critical water concentration, the anion begins to diffuse faster than the cation. We identified this composition as approximately 10% x w where the ions share the same diffusion coefficient. We found that the water at this composition seems to have a much more dramatic effect in the rotational diffusion of the anion that decreases substantially and approaches that of the anion in the diluted IL. Translational and rotational dynamics of the ions suggest that water is first incorporated in pockets in the nanostructure of the IL allowing the ions to maintain most of the cation/anion interactions present in neat IL but already disrupting some anion/cation interactions due to preferential interaction with the anion. HOESY and NOESY data show that water displays contacts both with the cation and the anion in a positive NOE regime in contrary to the negative regime found for the cation/anion and cation/cation cross-relaxation. This is in accordance with the high relative diffusion coefficient of water and suggests that water molecules can exchange between preferential location sites that allow water to maintain contacts both with the anion and cation. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Use of Passive Diffusion Samplers for Monitoring Volatile Organic Compounds in Ground Water

    USGS Publications Warehouse

    Harte, Philip T.; Brayton, Michael J.; Ives, Wayne

    2000-01-01

    Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC's) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC's in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: * Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. * Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. * Reduction in sampling time by as much as 80 percent of that required for 'purge type' sampling methods. * An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.

  11. Study of drug diffusion rate by laser beam deflection technique

    NASA Astrophysics Data System (ADS)

    Swapna, Mohanachandran Nair. S.; Anitha, Madhu J.; Sankararaman, Sankaranarayana Iyer

    2017-06-01

    Drug administration is an unavoidable part of treatment. When a drug is administered orally or intravenously, it gets absorbed into the blood stream. The rate and efficiency of absorption depend on the route of administration. When a drug is administered through the oral route, it penetrates the epithelial cells of the intestinal mucosa. The diffusion of the drug into the blood stream depends on various parameters, such as concentration, temperature, and the nature of the mucous membrane. The passive diffusion of drugs is found to obey Fick's law. Water soluble drugs penetrate the cell membrane through aqueous channel or pores. Hence, the study of diffusion of drugs into the water and finally into the blood stream is important. An attempt has been made to study the diffusion of the drug in water as 60% to 80% of human body is water. For the study of drug diffusion in water, a commonly used cough syrup of specific gravity 1.263 is used. It is found that the diffusion rate increases with the concentration of the drug.

  12. The effect of varying duration of water restriction on drinking behaviour, welfare and production of lactating sows.

    PubMed

    Jensen, M B; Schild, S-L A; Theil, P K; Andersen, H M-L; Pedersen, L J

    2016-06-01

    Access to drinking water is essential for animal welfare, but it is unclear if temporary water restriction during the night represents a welfare problem. The aim of the present study was to investigate the effect of various durations of nightly restriction of water on thirst in loose housed lactating sows from day 10 to 28 of lactation. A total of 48 sows were deprived of water for either 0 h (n=12; control), 3 h (n=12; 0500 to 0800 h), 6 h (n=12; 0200 to 0800 h) or 12 h (n=12; 2000 to 0800 h). Control sows consumed 22% of their water intake during the night (2000 to 0800 h), whereas water consumption during this time was reduced to 13%, 7% and 0% in sows restricted for 3, 6 and 12 h. With increased duration of nightly water restriction a reduced latency to drink (26.8, 18.0, 5.3 and 6.7 min for 0, 3, 6 and 12 h sows; P<0.001) and an increased water intake during the 1st hour after water became accessible (2.1, 3.4, 4.7 and 5.6 l for 0, 3, 6 and 12 h sows; P<0.001) was seen. During the last 30 min before water became accessible more sows deprived of water investigated (0%, 50%, 75%,and 50% of 0, 3, 6 and 12 h sows; P<0.01) or forcefully manipulated (0%, 17%, 50% and 33% of 0, 3, 6 and 12 h sows; P<0.05) the water trough, suggesting frustration and a negative experience of thirst. When all signs of imminent water access were provided, but access was delayed by 25 min, a tendency for more of the sows deprived of water for 6 and 12 h to interact forcefully with the water trough was seen (22%, 18%, 42% and 67% of 0, 3, 6 and 12 h sows; P=0.09). Duration of water restriction did not affect water consumption on a 24-h basis, nursing behaviour or performance. In conclusion, behavioural indicators of thirst increased with increasing duration of nightly water restriction in lactating sows.

  13. First Principles Study for Proton Transport and Diffusion Behavior in Hydrous Hexagonal WO3

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds; QPAM Team

    2013-03-01

    Proton transport is of great importance in biological species and energy storage and conversion systems. Previous studies have shown fast proton conduction in liquids and polymers but seldom in inorganic materials. In this work, first principles density functional theory (DFT) reveals that the formation of hydronium and water chains inside the hexagonal channels plays the key roles for the anomalously fast proton transport, by following modified Grotthuss mechanism. Our DFT study shows the detailed microscopic proton diffusion mechanism along the channel in hydrous WO3 with 50% water composition, which is proper for water chain formation. The water chain in the channel serves as a possible diffusion media for hydronium (H3O +) . With the continuous formation and cleavage of hydrogen bonds in the channel, the hydronium diffuses by hydrogen bonds exchange between water molecules. This mechanism is very similar with Grotthuss relay mechanism for proton transport in liquid. The possible proton diffusion were studied for hydronium is either far away from the water chain bond defect or next to H2O defect at the end of water chain. The diffusion barriers for both conditions are around 150 meV to 200 meV, and water defects reorganization in the chain is the rate-limited step for proton diffusion. These small diffusion barriers could explain the fast 1-D proton transport in hydrous WO3 channel. Further studies about fast proton transport in other inorganic materials could be an important topic in not only biochemistry but also clean energy applications like fuel cell applications.

  14. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters...

  15. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters...

  16. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters...

  17. Water diffusion-exchange effect on the paramagnetic relaxation enhancement in off-resonance rotating frame

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang; Ji, Tongyu

    2007-06-01

    The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1 contrast in detecting paramagnetic agents, especially at low paramagnetic agent volumetric fractions, low paramagnetic agent concentrations, and low RF amplitudes. Short pulse duration, short pulse recycle delay and efficient paramagnetic relaxation can reduce the influence of water diffusion-exchange on the paramagnetic enhancement. This study paves the way for the design of off-resonance rotating experiments to detect labeled cell clusters/tissue compartments in vivo at a sub-millimeter scale.

  18. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

    2006-09-06

    The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.

  19. Arabidopsis thalianafrom Polarization Transfer Solid-State NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Paul B; Wang, Tuo; Park, Yong Bum

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H–1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water–pectin polarizationmore » transfer is much faster than water–cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water–polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water–pectin spin diffusion precedes water–cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.« less

  20. DMSO Induces Dehydration near Lipid Membrane Surfaces

    PubMed Central

    Cheng, Chi-Yuan; Song, Jinsuk; Pas, Jolien; Meijer, Lenny H.H.; Han, Songi

    2015-01-01

    Dimethyl sulfoxide (DMSO) has been broadly used in biology as a cosolvent, a cryoprotectant, and an enhancer of membrane permeability, leading to the general assumption that DMSO-induced structural changes in cell membranes and their hydration water play important functional roles. Although the effects of DMSO on the membrane structure and the headgroup dehydration have been extensively studied, the mechanism by which DMSO invokes its effect on lipid membranes and the direct role of water in this process are unresolved. By directly probing the translational water diffusivity near unconfined lipid vesicle surfaces, the lipid headgroup mobility, and the repeat distances in multilamellar vesicles, we found that DMSO exclusively weakens the surface water network near the lipid membrane at a bulk DMSO mole fraction (XDMSO) of <0.1, regardless of the lipid composition and the lipid phase. Specifically, DMSO was found to effectively destabilize the hydration water structure at the lipid membrane surface at XDMSO <0.1, lower the energetic barrier to dehydrate this surface water, whose displacement otherwise requires a higher activation energy, consequently yielding compressed interbilayer distances in multilamellar vesicles at equilibrium with unaltered bilayer thicknesses. At XDMSO >0.1, DMSO enters the lipid interface and restricts the lipid headgroup motion. We postulate that DMSO acts as an efficient cryoprotectant even at low concentrations by exclusively disrupting the water network near the lipid membrane surface, weakening the cohesion between water and adhesion of water to the lipid headgroups, and so mitigating the stress induced by the volume change of water during freeze-thaw. PMID:26200868

  1. Ion Diffusion Within Water Films in Unsaturated Porous Media.

    PubMed

    Tokunaga, Tetsu K; Finsterle, Stefan; Kim, Yongman; Wan, Jiamin; Lanzirotti, Antonio; Newville, Matthew

    2017-04-18

    Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb + and Br - in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10 -15 m 2 s -1 at θ = 1.0 × 10 -4 m 3 m -3 , where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o ) of Rb + and Br - in bulk water (30 °C) are both ∼2.4 × 10 -9 m 2 s -1 , we found the impedance factor f = D e /(θD o ) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τ a ) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.

  2. A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow

    ERIC Educational Resources Information Center

    Blanck, Harvey F.

    2005-01-01

    A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.

  3. Potential for advection of volatile organic compounds in ground water to the Cochato River, Baird & McGuire Superfund Site, Holbrook, Massachusetts, March and April 1998

    USGS Publications Warehouse

    Savoie, Jennifer G.; Lyford, Forest P.; Clifford, Scott

    1999-01-01

    In March and April 1998, a network of water-to-vapor diffusion samplers was installed along the Cochato River at the Baird & McGuire Superfund Site in Holbrook, Massachusetts, where a plume of volatile organic compounds (VOCs) is present in ground water. The purpose of installing the sampler network was to determine if VOCs were present in river-bottom sediments while a ground-water extraction system was operating and after the system had been shut down for two weeks. Water-to-water diffusion samplers placed at selected locations provided supplemental information about concentrations of VOCs in pore water in the river-bottom sediments. Water levels in piezometers and river stage were measured concurrently to determine if ground water was discharging to the river. Benzene, toluene, ethylbenzene and xylenes (BTEX compounds) were detected in water-tovapor and water-to-water diffusion samplers located in the area where the plume is known to pass beneath the river for both pumping and nonpumping conditions. Concentrations of total BTEX compounds in water-to-vapor diffusion samplers ranged from non-detect upriver and downriver from the plume area to greater than 200 parts per million by volume in the plume area. Concentrations of total BTEX compounds were not significantly different for pumping than for non-pumping conditions. Concentrations of total BTEX compounds in water-to-water diffusion samplers ranged from non-detect to 680 micrograms per liter. The limited number of water-to-water diffusion samplers did not indicate that concentrations were higher for pumping or non-pumping conditions. Trichloroethylene and tetrachloroethylene also were detected in water-to-vapor diffusion samplers downriver from the area where the BTEX compounds were detected. Water levels in four piezometers were consistently higher than the river stage, indicating an upward hydraulic gradient and ground-water discharge to the river. The concentrations of VOCs in riverbottom sediments and the upward hydraulic gradients observed indicate that contaminants from the Baird & McGuire ground-water plume were discharging to the Cochato River during the study period for both pumping and non-pumping conditions. 

  4. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    NASA Astrophysics Data System (ADS)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  5. Molecular Dynamic Simulation of Water Vapor and Determination of Diffusion Characteristics in the Pore

    NASA Astrophysics Data System (ADS)

    Nikonov, Eduard G.; Pavluš, Miron; Popovičová, Mária

    2018-02-01

    One of the varieties of pores, often found in natural or artificial building materials, are the so-called blind pores of dead-end or saccate type. Three-dimensional model of such kind of pore has been developed in this work. This model has been used for simulation of water vapor interaction with individual pore by molecular dynamics in combination with the diffusion equation method. Special investigations have been done to find dependencies between thermostats implementations and conservation of thermodynamic and statistical values of water vapor - pore system. The two types of evolution of water - pore system have been investigated: drying and wetting of the pore. Full research of diffusion coefficient, diffusion velocity and other diffusion parameters has been made.

  6. Extracting quantitative measures from EAP: a small clinical study using BFOR.

    PubMed

    Hosseinbor, A Pasha; Chung, Moo K; Wu, Yu-Chien; Fleming, John O; Field, Aaron S; Alexander, Andrew L

    2012-01-01

    The ensemble average propagator (EAP) describes the 3D average diffusion process of water molecules, capturing both its radial and angular contents, and hence providing rich information about complex tissue microstructure properties. Bessel Fourier orientation reconstruction (BFOR) is one of several analytical, non-Cartesian EAP reconstruction schemes employing multiple shell acquisitions that have recently been proposed. Such modeling bases have not yet been fully exploited in the extraction of rotationally invariant q-space indices that describe the degree of diffusion anisotropy/restrictivity. Such quantitative measures include the zero-displacement probability (P(o)), mean squared displacement (MSD), q-space inverse variance (QIV), and generalized fractional anisotropy (GFA), and all are simply scalar features of the EAP. In this study, a general relationship between MSD and q-space diffusion signal is derived and an EAP-based definition of GFA is introduced. A significant part of the paper is dedicated to utilizing BFOR in a clinical dataset, comprised of 5 multiple sclerosis (MS) patients and 4 healthy controls, to estimate P(o), MSD, QIV, and GFA of corpus callosum, and specifically, to see if such indices can detect changes between normal appearing white matter (NAWM) and healthy white matter (WM). Although the sample size is small, this study is a proof of concept that can be extended to larger sample sizes in the future.

  7. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.

    PubMed

    Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A

    2013-02-01

    Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Dynamics of the Sediment Plume Over the Yangtze Bank in the Yellow and East China Seas

    NASA Astrophysics Data System (ADS)

    Luo, Zhifa; Zhu, Jianrong; Wu, Hui; Li, Xiangyu

    2017-12-01

    A distinct sediment plume exists over the Yangtze Bank in the Yellow and East China Seas (YECS) in winter, but it disappears in summer. Based on satellite color images, there are two controversial viewpoints about the formation mechanism for the sediment plume. One viewpoint is that the sediment plume forms because of cross-shelf sediment advection of highly turbid water along the Jiangsu coast. The other viewpoint is that the formation is caused by local bottom sediment resuspension and diffused to the surface layer through vertical turbulent mixing. The dynamic mechanism of the sediment plume formation has been unclear until now. This issue was explored by using a numerical sediment model in the present paper. Observed wave, current, and sediment data from 29 December 2016 to 16 January 2017 were collected near the Jiangsu coast and used to validate the model. The results indicated that the model can reproduce the hydrodynamic and sediment processes. Numerical experiments showed that the bottom sediment could be suspended by the bottom shear stress and diffuse to the surface layer by vertical mixing in winter; however, the upward diffusion is restricted by the strong stratification in summer. The sediment plume is generated locally due to bottom sediment resuspension primarily via tide-induced bottom shear stress rather than by cross-shelf sediment advection over the Yangtze Bank.

  9. Anomalous Diffusion of Water in Lamellar Membranes Formed by Pluronic Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ohl, Michael; Han, Youngkyu; Smith, Gregory; Do, Changwoo; Biology; Soft-Matter Division, Oak Ridge National Laboratory Team; Julich CenterNeutron Science Team

    Water diffusion is playing an important role in polymer systems. We calculated the water diffusion coefficient at different layers along z-direction which is perpendicular to the lamellar membrane formed by Pluronic block copolymers (L62: (EO6-PO34-EO6)) with the molecular dynamics simulation trajectories. Water molecules at bulk layers are following the normal diffusion, while that at hydration layers formed by polyethylene oxide (PEO) and hydrophobic layers formed by polypropylene oxide (PPO) are following anomalous diffusion. We find that although the subdiffusive regimes at PEO layers and PPO layers are the same, which is the fractional Brownian motion, however, the dynamics are different, i.e. diffusion at the PEO layers is much faster than that at the PPO layers, and meanwhile it exhibits a normal diffusive approximation within a short time period which is governed by the localized free self-diffusion, but becomes subdiffusive after t >8 ps, which is governed by the viscoelastic medium. The Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; and Zhe Zhang gratefully acknowledges financial support from Julich Center for Neutron Science.

  10. Simultaneous Rapid Determination of the Solubility and Diffusion Coefficients of a Poorly Water-Soluble Drug Based on a Novel UV Imaging System.

    PubMed

    Lu, Yan; Li, Mingzhong

    2016-01-01

    The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations.

    PubMed

    Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan

    2017-10-18

    We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.

  12. Multiple-scattering coefficients and absorption controlled diffusive processes

    NASA Astrophysics Data System (ADS)

    Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor

    1999-11-01

    Multiple-scattering transmission and reflection coefficients (T,R) are introduced in addition to the diffusion coefficient D for the description of ballistic diffusion in the presence of absorption. For 1D (one-dimensional) systems, the measurement of only one between T and D imposes restrictions on the possible values of the other. If D is measured, then T is bounded between the Landauer and Lambert-Beer equations. Measurements of both (T,D) imply the theoretical knowledge of the microscopic absorption Σa and scattering rΣs cross sections.

  13. Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome.

    PubMed

    Simões, Rui V; Muñoz-Moreno, Emma; Cruz-Lemini, Mónica; Eixarch, Elisenda; Bargalló, Núria; Sanz-Cortés, Magdalena; Gratacós, Eduard

    2017-01-01

    Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. A total of 26 prematurely born intrauterine growth restriction infants (birthweight <10th centile for gestational age), 22 prematurely born but adequate for gestational age controls, and 26 term adequate-for-gestational-age infants underwent brain magnetic resonance imaging and magnetic resonance spectroscopy at 1 year of age during natural sleep, on a 3 Tesla scanner. All brain T1-weighted and diffusion-weighted images were acquired along with short echo time single-voxel proton spectra from the frontal lobe. Magnetic resonance imaging/magnetic resonance spectroscopy data were processed to derive structural, biophysical, and metabolic information, respectively. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales 3rd edition, assessing cognitive, language, motor, socioemotional, and adaptive behavior. Prematurely born intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which correlate with brain structural and biophysical parameters and neurodevelopmental outcome. Our results suggest altered neurodevelopmental trajectories in preterm intrauterine growth restriction and adequate-for-gestational-age infants, compared with term adequate-for-gestational-age infants, which require further characterization. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Facilitated diffusion in chromatin lattices: mechanistic diversity and regulatory potential.

    PubMed

    Kampmann, Martin

    2005-08-01

    The interaction between a protein and a specific DNA site is the molecular basis for vital processes in all organisms. Location of the DNA target site by the protein commonly involves facilitated diffusion. Mechanisms of facilitated diffusion vary among proteins; they include one- and two-dimensional sliding along DNA, direct transfer between uncorrelated sites, as well as combinations of these mechanisms. Facilitated diffusion has almost exclusively been studied in vitro. This review discusses facilitated diffusion in the context of the living cell and proposes a theoretical model for facilitated diffusion in chromatin lattices. Chromatin structure differentially affects proteins in different modes of diffusion. The interplay of facilitated diffusion and chromatin structure can determine the rate of protein association with the target site, the frequency of association-dissociation events at the target site, and, under particular conditions, the occupancy of the target site. Facilitated diffusion is required in vivo for efficient DNA repair and bacteriophage restriction and has potential roles in fine-tuning gene regulatory networks and kinetically compartmentalizing the eukaryotic nucleus.

  15. Early water intake restriction to prevent inappropriate antidiuretic hormone secretion following transsphenoidal surgery: low BMI predicts postoperative SIADH.

    PubMed

    Matsuyama, Junko; Ikeda, Hidetoshi; Sato, Shunsuke; Yamamoto, Koh; Ohashi, Genichiro; Watanabe, Kazuo

    2014-12-01

    The goals of this study were to assess the incidence of and risk factors for the syndrome of inappropriate antidiuretic hormone secretion (SIADH) in patients following transsphenoidal surgery (TSS), and to validate the effectiveness of early prophylactic restriction of water intake. Retrospective analysis was performed for 207 patients who had undergone TSS, including 156 patients not placed on early prophylactic water restriction. Sixty-four patients received treatment for SIADH. We compared the incidence of SIADH between patients with and without early water intake restriction, and analyzed various risk factors for SIADH using statistical analyses. BMI was significantly lower for patients with SIADH than for those patients without SIADH. Statistical analysis revealed that the threshold BMI predicting SIADH was 26. Serum sodium levels on postoperative days 5-10 and daily urine volumes on postoperative days 5-10 were significantly lower in patients with SIADH than in those without SIADH. Postoperative body weight loss on days 6, 8, 10, and 11 was significantly higher in patients with SIADH. The incidence of SIADH after starting prophylactic water intake restriction (14%) was significantly lower than the rate before early water restriction (38%; P<0.05). SIADH is relatively common after TSS, and serum sodium concentrations and daily urine volumes should be carefully monitored. Patients with low preoperative BMI should be closely observed, as this represented a significant preoperative risk factor for SIADH. Early prophylactic water intake restriction appears effective at preventing postoperative SIADH. © 2014 European Society of Endocrinology.

  16. Dehydration Parameters and Standards for Laboratory Mice

    PubMed Central

    Bekkevold, Christine M; Robertson, Kimberly L; Reinhard, Mary K; Battles, August H; Rowland, Neil E

    2013-01-01

    Water deprivation and restriction are common features of many physiologic and behavioral studies; however, there are no data-driven humane standards regarding mice on water deprivation or restriction studies to guide IACUC, investigators, and veterinarians. Here we acutely deprived outbred CD1 mice of water for as long as 48 h or restricted them to a 75% or 50% water ration; physical and physiologic indicators of dehydration were measured. With acute water deprivation, the appearance and attitude of mice deteriorated after 24 h, and weight loss exceeded 15%. Plasma osmolality was increased, and plasma volume decreased with each time interval. Plasma corticosterone concentration increased with duration of deprivation. There were no differences in any dehydration measures between mice housed in conventional static cages or ventilated racks. Chronic water restriction induced no significant changes compared with ad libitum availability. We conclude that acute water deprivation of as long as 24 h produces robust physiologic changes; however, deprivation in excess of 24 h is not recommended in light of apparent animal distress. Although clearly thirsty, mice adapt to chronic water restriction of as much as 50% of the ad libitum daily ration that is imposed over an interval of as long as 8 d. PMID:23849404

  17. Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.

    PubMed

    Kumar, Pradeep; Han, Sungho

    2012-09-21

    We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.

  18. Translational Diffusion of Macromolecule-sized Solutes in Cytoplasm and Nucleus

    PubMed Central

    Seksek, Olivier; Biwersi, Joachim; Verkman, A.S.

    1997-01-01

    Fluorescence recovery after photobleaching (FRAP) was used to quantify the translational diffusion of microinjected FITC-dextrans and Ficolls in the cytoplasm and nucleus of MDCK epithelial cells and Swiss 3T3 fibroblasts. Absolute diffusion coefficients (D) were measured using a microsecond-resolution FRAP apparatus and solution standards. In aqueous media (viscosity 1 cP), D for the FITC-dextrans decreased from 75 to 8.4 × 10−7 cm2/s with increasing dextran size (4–2,000 kD). D in cytoplasm relative to that in water (D/Do) was 0.26 ± 0.01 (MDCK) and 0.27 ± 0.01 (fibroblasts), and independent of FITC-dextran and Ficoll size (gyration radii [RG] 40–300 Å). The fraction of mobile FITC-dextran molecules (fmob), determined by the extent of fluorescence recovery after spot photobleaching, was >0.75 for RG < 200 Å, but decreased to <0.5 for RG > 300 Å. The independence of D/Do on FITC-dextran and Ficoll size does not support the concept of solute “sieving” (size-dependent diffusion) in cytoplasm. Photobleaching measurements using different spot diameters (1.5–4 μm) gave similar D/Do, indicating that microcompartments, if present, are of submicron size. Measurements of D/Do and fmob in concentrated dextran solutions, as well as in swollen and shrunken cells, suggested that the low fmob for very large macromolecules might be related to restrictions imposed by immobile obstacles (such as microcompartments) or to anomalous diffusion (such as percolation). In nucleus, D/Do was 0.25 ± 0.02 (MDCK) and 0.27 ± 0.03 (fibroblasts), and independent of solute size (RG 40–300 Å). Our results indicate relatively free and rapid diffusion of macromolecule-sized solutes up to approximately 500 kD in cytoplasm and nucleus. PMID:9214387

  19. Thermodynamic properties and diffusion of water + methane binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less

  20. Proton transfer and the diffusion of H+ and OH- ions along water wires.

    PubMed

    Lee, Song Hi; Rasaiah, Jayendran C

    2013-09-28

    Hydrogen and hydroxide ion transport in narrow carbon nanotubes (CNTs) of diameter 8.1 Å and lengths up to 582 Å are investigated by molecular dynamics simulations using a dissociating water model. The diffusion coefficients of the free ions in an open chain are significantly larger than in periodically replicated wires that necessarily contain D or L end defects, and both are higher than they are in bulk water. The free hydroxide ion diffuses faster than the free hydronium ion in short CNTs, unlike diffusion in liquid water, and both coefficients increase and converge to nearly the same value with increasing tube length. The diffusion coefficients of the two ions increase further when the tubes are immersed in a water reservoir and they move easily out of the tube, suggesting an additional pathway for proton transport via OH(-) ions in biological channels.

  1. Avian Egg Latebra as Brain Tissue Water Diffusion Model

    PubMed Central

    Maier, Stephan E.; Mitsouras, Dimitris; Mulkern, Robert V.

    2013-01-01

    Purpose Simplified models of non-monoexponential diffusion signal decay are of great interest to study the basic constituents of complex diffusion behaviour in tissues. The latebra, a unique structure uniformly present in the yolk of avian eggs, exhibits a non-monoexponential diffusion signal decay. This model is more complex than simple phantoms based on differences between water and lipid diffusion, but is also devoid of microscopic structures with preferential orientation or perfusion effects. Methods Diffusion scans with multiple b-values were performed on a clinical 3 Tesla system in raw and boiled chicken eggs equilibrated to room temperature. Diffusion encoding was applied over the ranges 5–5,000 and 5–50,000 s/mm2. A low read-out bandwidth and chemical shift was used for reliable lipid/water separation. Signal decays were fitted with exponential functions. Results The latebra, when measured over the 5–5,000 s/mm2 range, exhibited independent of preparation clearly biexponential diffusion, with diffusion parameters similar to those typically observed in in-vivo human brain. For the range 5–50,000 s/mm2 there was evidence of a small third, very slow diffusing water component. Conclusion The latebra of the avian egg contains membrane structures, which may explain a deviation from a simple monoexponential diffusion signal decay, which is remarkably similar to the deviation observed in brain tissue. PMID:24105853

  2. Obstructed metabolite diffusion within skeletal muscle cells in silico.

    PubMed

    Aliev, Mayis K; Tikhonov, Alexander N

    2011-12-01

    Using a Monte Carlo simulation technique, we have modeled 3D diffusion of low molecular weight metabolites inside a skeletal muscle cell. The following structural elements are considered: (i) a regular lattice of actin and myosin filaments inside a myofibril, (ii) the membranes of sarcoplasmic reticulum and mitochondria surrounding the myofibrils, (iii) a set of myofibrils inside a skeletal muscle cell encircled by the outer cell membrane, and (iv) an additional set of regular intracellular structures ("macrocompartments") embedded into the cell interior. The macrocompartments are considered to simulate diffusion restrictions because of hypothetical cylindrical structures (16-22 μm in diameter) suggested earlier (de Graaf et al. Biophys J 78: 1657-1664, 2000). This model allowed us to calculate the apparent coefficients of particle diffusion in the radial and axial directions, D(app)(⊥) and D(app)(II), respectively. Particle movements in the axial direction are considered, at first approximation, as unrestricted diffusion (D(app)(II) = const). The apparent coefficient of radial diffusion, D(app)(⊥), decreases with time because of particle collisions with myofilaments and other rigid obstacles. Results of our random walk simulations are in fairly good agreement with experimental data on NMR measurements of restricted radial diffusion of phosphocreatine in white and red skeletal muscles of goldfish (Kinsey et al. NMR Biomed 12:1-7, 1999). Particle reflections from the low-permeable borders of macrocompartments (efficient diameter, D(eff)(MC) ≈ 9.2-10.4 μm) are the prerequisite for agreeing theoretical and experimental data. The low-permeable coverage of hypothetical macrocompartments (99.8% of coverage) provides the main contribution to time-dependent decrease in D(app)(⊥).

  3. Experimental data from coastal diffusion tests. [Smoke diffusion over coastal waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynor, G S; Brown, R M; SethuRaman, S

    1976-10-01

    Data are reported from a series of seven experiments on the diffusion of smoke plumes over northeast Atlantic Ocean coastal waters in response to wind fluctuations and other meteorological variables. A qualitative description of smoke behavior during each experiment is included and photographs of the smoke are included to illustrate the type of diffusion observed. (CH)

  4. Diffusion coefficients of water in biobased hydrogel polymer matrices by nuclear magnetic resonance imaging

    USDA-ARS?s Scientific Manuscript database

    The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...

  5. Evidence for Enhanced Matrix Diffusion in Geological Environment

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu

    2013-01-01

    Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.

  6. Water Diffusion Mechanism in Carbon Nanotube and Polyamide Nanocomposite Reverse Osmosis Membranes: A Possible Percolation-Hopping Mechanism

    NASA Astrophysics Data System (ADS)

    Araki, Takumi; Cruz-Silva, Rodolfo; Tejima, Syogo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Terrones, Mauricio; Endo, Morinobu

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The mechanism of water diffusion across reverse osmosis nanocomposite membranes made of carbon nanotubes (CNTs) and aromatic polyamide is not completely understood despite its high potential for desalination applications. While most of the groups have proposed that superflow inside the CNT might positively impact the water flow across membranes, here we show theoretical evidence that this is not likely the case in composite membranes because CNTs are usually oriented parallel to the membrane surface, not to mention that sometimes the nanotube cores are occluded. Instead, we propose an oriented diffusion mechanism that explains the high water permeation by decreasing the diffusion path of water molecules across the membranes, even in the presence of CNTs that behave as impermeable objects. Finally, we provide a comprehensive description of the molecular dynamics occurring in water desalination membranes by considering the bond polarizability caused by dynamic charge transfer and explore the use of molecular-dynamics-derived stochastic diffusion simulations. The proposed water diffusion mechanism offers an alternative and most likely explanation for the high permeation phenomena observed in CNTs and PA nanocomposite membranes, and its understanding can be helpful to design the next generation of reverse osmosis desalination membranes.

  7. The Corneal Epithelial Barrier and Its Developmental Role in Isolating Corneal Epithelial and Conjunctival Cells From One Another

    PubMed Central

    Kubilus, James K.; Zapater i Morales, Carolina; Linsenmayer, Thomas F.

    2017-01-01

    Purpose During development, the corneal epithelium (CE) and the conjunctiva are derived from the surface ectoderm. Here we have examined how, during development, the cells of these two issues become isolated from each other. Methods Epithelia from the anterior eyes of chicken embryos were labeled with the fluorescent, lipophilic dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI). DiI was placed on the epithelial surface of the developing anterior eye and its diffusion was monitored by fluorescence microscopy. Concomitant morphologic changes in the surface cells of these epithelial were examined by scanning electron microscopy. Immunofluorescence was used to analyze the expression of cytokeratin K3, ZO-1, N-cadherin and Connexin-43 and the function of gap junctions was analyzed using a cut-loading with the fluorescent dye rhodamine-dextran. Results Prior to embryonic day 8 (E8), DiI placed on the surface of the CE spreads throughout all the epithelial cells of the anterior eye. When older eyes were similarly labeled, dye diffusion was restricted to the CE. Similarly, diffusion of DiI placed on the conjunctival surface after E8 was restricted to the conjunctiva. Scanning electron microscopy showed that developmentally (1) physical separations progressively form between the cells of the CE and those of the conjunctiva, and (2) by E8 these separations form a ring that completely encompasses the cornea. The functional restriction of gap junctions between these tissues did not occur until E14. Conclusions During ocular development, a barrier to the diffusion of DiI forms between the contiguous CE and conjunctiva prior to the differential expression of gap junctions within these tissues. PMID:28319640

  8. Study of Water Absorption in Raffia vinifera Fibres from Bandjoun, Cameroon

    PubMed Central

    Sikame Tagne, N. R.; Njeugna, E.; Fogue, M.; Drean, J.-Y.; Nzeukou, A.; Fokwa, D.

    2014-01-01

    The study is focused on the water diffusion phenomenon through the Raffia vinifera fibre from the stem. The knowledge on the behavior of those fibres in presence of liquid during the realization of biocomposite, is necessary. The parameters like percentage of water gain at the point of saturation, modelling of the kinetic of water absorption, and the effective diffusion coefficient were the main objectives. Along a stem of raffia, twelve zones of sampling were defined. From Fick's 2nd law of diffusion, a new model was proposed and evaluated compared to four other models at a constant temperature of 23°C. From the proposed model, the effective diffusion coefficient was deduced. The percentage of water gain was in the range of 303–662%. The proposed model fitted better to the experimental data. The estimated diffusion coefficient was evaluated during the initial phase and at the final phase. In any cross section located along the stem of Raffia vinifera, it was found that the effective diffusion coefficient increases from the periphery to the centre during the initial and final phases. PMID:24592199

  9. Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)

    NASA Astrophysics Data System (ADS)

    Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent

    2012-06-01

    The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.

  10. P-adic model of transport in porous disordered media

    NASA Astrophysics Data System (ADS)

    Khrennikov, Adrei Yu.; Oleschko, Klaudia

    2014-05-01

    The soil porosity and permeability are the most important quantitative indicators of soil dynamics under the land-use change. The main problema in the modeling of this dynamic is still poor correlation between the real measuring data and the mathematical and computer simulation models. In order to overpassed this deep divorce we have designed a new technique, able to compare the data arised from the multiscale image analices and time series of the basic physical properties dynamics in porous media studied in time and space. We present a model of the diffusion reaction type describing transport in disordered porous media, e.g., water or oil flow in a complex network of pores. Our model is based on p-adic representation of such networks. This is a kind of fractal representation. We explore advantages of p- adic representation, namely, the possibility to endow p-adic trees with an algebraic structure and ultrametric topology and, hence, to apply analysis which have (at least some) similarities with ordinary real analysis on the straight line. We present the system of two diffusion reaction equations describing propagation of particles in networks of pores in disordered media. As an application, one can consider water transport through the soil pore Networks, or oil flow through capillaries nets. Under some restrictions on potentials and rate coefficients we found the stationary regime corresponding to water content or concentration of oil in a cluster of capillaries. Usage of p-adic analysis (in particular, p-adic wavelets) gives a possibility to find the stationary solution in the analytic form which makes possible to present a clear pedological or geological picture of the process. The mathematical model elaborated in this paper (Khrennikov, 2013) can be applied to variety of problems from water concentration in aquifers to the problem of formation of oil reservoirs in disordered media with porous structures. Another possible application may have real practical output. In fact, our system of diffusion-reaction equations can be used to model the process of extraction of water or oil from an extended network of capillaries (Khrennikov et al., 2013). The accomplished analyses show that the time series of water content/pressure dynamics in saturated/unsaturated conditions reflect the fractal structure of pores separated by familias base don the seven geometric descriptors which we used for the soils multiscale images (Oleschko et al., 2012). The similar models were applied to the porous media behind the oil flow from wells. These results motivate usage of the fractal and, in particular, p-adic methods of modeling.

  11. Diffusion of water and sodium counter-ions in nanopores of a β-lactoglobulin crystal: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Malek, Kourosh; Odijk, Theo; Coppens, Marc-Olivier

    2005-07-01

    The dynamics of water and sodium counter-ions (Na+) in a C2221 orthorhombic β-lactoglobulin crystal is investigated by means of 5 ns molecular dynamics simulations. The effect of the fluctuation of the protein atoms on the motion of water and sodium ions is studied by comparing simulations in a rigid and in a flexible lattice. The electrostatic interactions of sodium ions with the positively charged LYS residues inside the crystal channels significantly influence the ionic motion. According to our results, water molecules close to the protein surface undergo an anomalous diffusive motion. On the other hand, the motion of water molecules further away from the protein surface is normal diffusive. Protein fluctuations affect the diffusion constant of water, which increases from 0.646 ± 0.108 to 0.887 ± 0.41 nm2 ns-1, when protein fluctuations are taken into account. The pore size (0.63-1.05 nm) and the water diffusivities are in good agreement with previous experimental results. The dynamics of sodium ions is disordered. LYS residues inside the pore are the main obstacles to the motion of sodium ions. However, the simulation time is still too short for providing a precise description of anomalous diffusion of sodium ions. The results are not only of interest for studying ion and water transport through biological nanopores, but may also elucidate water-protein and ion-protein interactions in protein crystals.

  12. Bulk diffusion in a kinetically constrained lattice gas

    NASA Astrophysics Data System (ADS)

    Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone

    2018-03-01

    In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.

  13. Self diffusion of alkaline-Earth in Ca-Mg-aluminosilicate melts: Experimental improvements on the determination of the self-diffusion coefficients

    NASA Technical Reports Server (NTRS)

    Paillat, O.; Wasserburg, G. J.

    1993-01-01

    Experimental studies of self-diffusion isotopes in silicate melts often have quite large uncertainties when comparing one study to another. We designed an experiment in order to improve the precision of the results by simultaneously studying several elements (Mg, Ca, Sr, Ba) during the same experiment thereby greatly reducing the relative experimental uncertainties. Results show that the uncertainties on the diffusion coefficients can be reduced to 10 percent, allowing a more reliable comparison of differences of self-diffusion coefficients of the elements. This type of experiment permits us to study precisely and simultaneously several elements with no restriction on any element. We also designed an experiment to investigate the possible effects of multicomponent diffusion during Mg self-diffusion experiments by comparing cases where the concentrations of the elements and the isotopic compositions are different. The results suggest that there are differences between the effective means of transport. This approach should allow us to investigate the importance of multicomponent diffusion in silicate melts.

  14. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    USGS Publications Warehouse

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  15. Comparison of passive diffusion bag samplers and submersible pump sampling methods for monitoring volatile organic compounds in ground water at Area 6, Naval Air Station, Whidbey Island, Washington

    USGS Publications Warehouse

    Huffman, Raegan L.

    2002-01-01

    Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.

  16. New insight into the contrast in diffusional kurtosis images: does it depend on magnetic susceptibility?

    PubMed

    Palombo, Marco; Gentili, Silvia; Bozzali, Marco; Macaluso, Emiliano; Capuani, Silvia

    2015-05-01

    In this MRI study, diffusional kurtosis imaging (DKI) and T2 * multiecho relaxometry were measured from the white matter (WM) of human brains and correlated with each other, with the aim of investigating the influence of magnetic-susceptibility (Δχ (H2O-TISSUE) ) on the contrast. We focused our in vivo analysis on assessing the dependence of mean, axial, and radial kurtosis (MK, K‖ , K⊥ ), as well as DTI indices on Δχ (H2O-TISSUE) (quantified by T2 *) between extracellular water and WM tissue molecules. Moreover, Monte Carlo (MC) simulations were used to elucidate experimental data. A significant positive correlation was observed between K⊥ , MK and R2 * = 1/T2 *, suggesting that Δχ (H2O-TISSUE) could be a source of DKI contrast. In this view, K⊥ and MK-map contrasts in human WM would not just be due to different restricted diffusion processes of compartmentalized water but also to local Δχ (H2O-TISSUE) . However, MC simulations show a strong dependence on microstructure rearrangement and a feeble dependence on Δχ (H2O-TISSUE) of DKI signal. Our results suggests a concomitant and complementary existence of multi-compartmentalized diffusion process and Δχ (H2O-TISSUE) in DKI contrast that might explain why kurtosis contrast is more sensitive than DTI in discriminating between different tissues. However, more realistic numerical simulations are needed to confirm this statement. © 2014 Wiley Periodicals, Inc.

  17. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  18. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  19. Nonideality in diffusion of ionic and hydrophobic solutes and pair dynamics in water-acetone mixtures of varying composition.

    PubMed

    Gupta, Rini; Chandra, Amalendu

    2007-07-14

    We have performed a series of molecular dynamics simulations of water-acetone mixtures containing either an ionic solute or a neutral hydrophobic solute to study the extent of nonideality in the dynamics of these solutes with variation of composition of the mixtures. The diffusion coefficients of the charged solutes, both cationic and anionic, are found to change nonmonotonically with the composition of the mixtures showing strong nonideality of their dynamics. Also, the extent of nonideality in the diffusion of these charged solutes is found to be similar to the nonideality that is observed for the diffusion and orientational relaxation of water and acetone molecules in these mixtures which show a somewhat similar changes in the solvation characteristics of charged and dipolar solutes with changes of composition of water-acetone mixtures. The diffusion of the hydrophobic solute, however, shows a monotonic increase with increase of acetone concentration showing its different solvation characteristics as compared to the charged and dipolar solutes. The links between the nonideality in diffusion and solvation structures are further confirmed through calculations of the relevant solute-solvent and solvent-solvent radial distribution functions for both ionic and hydrophobic solutes. We have also calculated various pair dynamical properties such as the relaxation of water-water and acetone-water hydrogen bonds and residence dynamics of water molecules in water and acetone hydration shells. The lifetimes of both water-water and acetone-water hydrogen bonds and also the residence times of water molecules are found to increase steadily with increase in acetone concentration. No maximum or minimum was found in the composition dependence of these pair dynamical quantities. The lifetimes of water-water hydrogen bonds are always found to be longer than that of acetone-water hydrogen bonds in these mixtures. The residence times of water molecules are also found to follow a similar trend.

  20. Continuous Diffusion Model for Concentration Dependence of Nitroxide EPR Parameters in Normal and Supercooled Water.

    PubMed

    Merunka, Dalibor; Peric, Miroslav

    2017-05-25

    Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.

  1. Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo

    PubMed Central

    Marchadour, Charlotte; Brouillet, Emmanuel; Hantraye, Philippe; Lebon, Vincent; Valette, Julien

    2012-01-01

    Translational displacement of molecules within cells is a key process in cellular biology. Molecular motion potentially depends on many factors, including active transport, cytosol viscosity and molecular crowding, tortuosity resulting from cytoskeleton and organelles, and restriction barriers. However, the relative contribution of these factors to molecular motion in the cytoplasm remains poorly understood. In this work, we designed an original diffusion-weighted magnetic resonance spectroscopy strategy to probe molecular motion at subcellular scales in vivo. This led to the first observation of anomalous diffusion, that is, dependence of the apparent diffusion coefficient (ADC) on the diffusion time, for endogenous intracellular metabolites in the brain. The observed increase of the ADC at short diffusion time yields evidence that metabolite motion is characteristic of hindered random diffusion rather than active transport, for time scales up to the dozen milliseconds. Armed with this knowledge, data modeling based on geometrically constrained diffusion was performed. Results suggest that metabolite diffusion occurs in a low-viscosity cytosol hindered by ∼2-μm structures, which is consistent with known intracellular organization. PMID:22929443

  2. NMR-based diffusion pore imaging.

    PubMed

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Wetscherek, Andreas; Stieltjes, Bram; Semmler, Wolfhard

    2012-08-01

    Nuclear magnetic resonance (NMR) diffusion experiments offer a unique opportunity to study boundaries restricting the diffusion process. In a recent Letter [Phys. Rev. Lett. 107, 048102 (2011)], we introduced the idea and concept that such diffusion experiments can be interpreted as NMR imaging experiments. Consequently, images of closed pores, in which the spins diffuse, can be acquired. In the work presented here, an in-depth description of the diffusion pore imaging technique is provided. Image artifacts due to gradient profiles of finite duration, field inhomogeneities, and surface relaxation are considered. Gradients of finite duration lead to image blurring and edge enhancement artifacts. Field inhomogeneities have benign effects on diffusion pore images, and surface relaxation can lead to a shrinkage and shift of the pore image. The relation between boundary structure and the imaginary part of the diffusion weighted signal is analyzed, and it is shown that information on pore coherence can be obtained without the need to measure the phase of the diffusion weighted signal. Moreover, it is shown that quite arbitrary gradient profiles can be used for diffusion pore imaging. The matrices required for numerical calculations are stated and provided as supplemental material.

  3. Double-diffusive layers in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Carniel, Sandro; Sclavo, Mauro; Kantha, Lakshmi; Prandke, Hartmut

    2008-01-01

    A microstructure profiler was deployed to make turbulence measurements in the upper layers of the southern Adriatic Sea in the Mediterranean during the Naval Research Laboratory (NRL) DART06A (Dynamics of the Adriatic in Real Time) winter cruise in March 2006. Measurements in the Po river plume along the Italian coast near the Gargano promontory displayed classic double-diffusive layers and staircase structures resulting from the relatively colder and fresher wintertime Po river outflow water masses overlying warmer and more saline water masses from the Adriatic Sea. We report here on the water mass and turbulence structure measurements made both in the double-diffusive interfaces and the adjoining mixed layers in the water columns undergoing double-diffusive convection (DDC). This dataset augments the relatively sparse observations available hitherto on the diffusive layer type of DDC. Measured turbulence diffusivities are consistent with those from earlier theoretical and experimental formulations, suggesting that the wintertime Po river plume is a convenient and easily accessible place to study double diffusive convective processes of importance to mixing in the interior of many regions of the global oceans.

  4. Diffusion of Water through Olivine and Clinopyroxene: Implications for Melt Inclusion Fidelity

    NASA Astrophysics Data System (ADS)

    Plank, T. A.; Lloyd, A. S.; Ferriss, E.

    2016-12-01

    The maximum H2O concentrations measured in olivine-hosted melt inclusions (MIs) from arc tephra fall within a narrow range of 3-5 wt%. A major question is whether this reflects parental water concentrations or diffusive exchange through the host crystal during storage and ascent. Laboratory experiments have shown that water can diffuse through 500 micron olivine in minutes to days at 1100°C. We have tested these predictions with a natural experiment using volatile (H2O, CO2, S) diffusion along melt embayments to constrain ascent rates during the 1974 eruption of Volcan Fuego to 5-8 minutes from 7 km depth [1]. Thus, olivine-hosted MIs may move from their storage region to the surface during some eruptions rapidly enough to retain almost all of their original water. Only the smallest MIs (< 30 microns) will lose any water during such fast ascent, even for the fastest diffusion mechanism through olivine. We have also assessed the potential for clinopyroxene (cpx) to retain water (as H+) during magma ascent. In the same 1974 Fuego deposits, cpx crystals show H-loss on their rims and even from their interiors. Such diffusive loss in 5-8 minutes requires rapid diffusion of H in cpx, comparable to olivine and melt, and consistent with our recent laboratory experiments dehydrating Fe-bearing cpx [2]. Although H-diffusion is dependent on the site occupancy, all sites may lose H rapidly in cpx with Mg# < 92.5. While cpx and olivine may lose H during ascent and degassing, olivine-hosted MIs stand a better chance of retaining water due to the very low partitioning of water in olivine (D 0.001). The most favorable conditions for faithful retention of parental water concentrations involve a) rapid ascent (< hr.) from H2O-undersaturated reservoirs (prior to major water degassing), b) minerals with low partition coefficients for water, c) large crystals (>500 microns) and large melt inclusions (>50 microns), and 4) rapid post-eruptive cooling (< 1min, clast sizes < 1 cm). The rapid diffusion of H through olivine and cpx presents a challenge to MI fidelity, but not necessarily if the above conditions are met. [1] Lloyd et al., 2014, JVGR. [2] Ferriss et al., 2016, AmMin.

  5. Effects of climate change on water abstraction restrictions for irrigation during droughts - The UK case

    NASA Astrophysics Data System (ADS)

    Rey Vicario, D.; Holman, I.

    2016-12-01

    The use of water for irrigation and on-farm reservoir filling is globally important for agricultural production. In humid climates, like the UK, supplemental irrigation can be critical to buffer the effects of rainfall variability and to achieve high quality crops. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. Currently, water abstraction from surface waters for agricultural irrigation can be restricted by the Environment Agency during droughts under Section 57 of the Water Resources Act (1991), based on abnormally low river flow levels and rainfall forecast, causing significant economic impacts on irrigated agricultural production. The aim of this study is to assess the impact that climate change may have on agricultural abstraction in the UK within the context of the abstraction restriction triggers currently in place. These triggers have been applied to the `Future Flows hydrology' database to assess the likelihood of increasing restrictions on agricultural abstraction in the future by comparing the probability of voluntary and compulsory restrictions in the baseline (1961-1990) and future period (2071-2098) for 282 catchments throughout the whole of the UK. The results of this study show a general increase in the probability of future agricultural irrigation abstraction restrictions in the UK in the summer, particularly in the South West, although there is significant variability between the 11 ensemble members. The results also indicate that UK winters are likely to become wetter in the future, although in some catchments the probability of abstraction restriction in the reservoir refilling winter months (November-February) could increase slightly. An increasing frequency of drought events due to climate change is therefore likely to lead to more water abstraction restrictions, increasing the need for irrigators to adapt their businesses to increase drought resilience and hence food security.

  6. Sump bay fever: inhalational fever associated with a biologically contaminated water aerosol.

    PubMed Central

    Anderson, K; McSharry, C P; Clark, C; Clark, C J; Barclay, G R; Morris, G P

    1996-01-01

    OBJECTIVE: To investigate the clinical, serological, and environmental features of a work related inhalational fever associated with exposure to an aerosol generated from a biologically contaminated 130,000 gallon water pool in a building used for testing scientific equipment. METHOD: Cross sectional survey of all exposed subjects (n = 83) by symptom questionnaire, clinical examination, spirometry, and serology for antibody to Pseudomonads, pool water extract, and endotoxin. In symptomatic patients diffusion capacity was measured, and chest radiology was performed if this was abnormal. Serial peak flow was recorded in those subjects with wheeze. Bacterial and fungal air sampling was performed before and during operation of the water pool pump mechanism. Endotoxin was measured in the trapped waters and in the pumps. Serum cotinine was measured as an objective indicator of smoking. RESULTS: Of the 20 symptomatic subjects, fever was most common in those with the highest exposure (chi 2 42.7, P < 0.001) in the sump bay when the water was (torrentially) recirculated by the water pumps. Symptoms occurred late in the working day only on days when the water pumps were used, and were independent of the serum cotinine. Pulmonary function was normal in most subjects (spirometry was normal in 79/83, diffusion capacity was low in five subjects, chest radiology was normal). Peak flow recording did not suggest a work relation. The bacterial content of the aerosol rose from 6 to > 10,000 colony forming units per cubic metre (cfu/m3) (predominantly environmental Pseudomonads) when the pumps were operating. High endotoxin concentrations were measured in the waters and oil sumps in the pumps. Low concentrations of antibody to the organisms isolated were detected (apart from two subjects with high antibody) but there was no relation to exposure or the presence of symptoms and similar antibody was found in the serum samples from a non-exposed population. The fever symptoms settled completely with the simple expedient of changing the water and cleaning the pumps. CONCLUSION: Given the results of our study, the development of inhalational fever in this unique environment and clearly restricted cohort was closely related to the degree of exposure to contaminated aerosol and mainly occurred in the absence of distinct serological abnormality and independent of cigarette smoking. PMID:8777446

  7. Dynamic light scattering measurements of mutual diffusion coefficients of water-rich 2-butoxyethanol/water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, T.M.; Pecora, R.

    1988-03-24

    The mutual diffusion coefficients of the water-rich region of the 2-butoxyethanol (BE)water system were measured by dynamic light scattering at 10, 25, and 40/sup 0/C. At mole fraction of BE greater than 0.02 (X/sub BE/ greater than or equal to 0.02), the results were in good agreement with the work of T. Kato. Below X/sub BE/ = 0.02 an anomalous diffusion region appeared with particles of apparent hydrodynamic radius of up to 1000 A being observed in agreement with the work of S. Kato et al. Further investigations using BE from different sources did not show the anomalous diffusion regionmore » and indicate that the possible presence of small amounts of contaminants in the BE is the source of this anomalous diffusion data« less

  8. Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering

    NASA Astrophysics Data System (ADS)

    König, S.; Pfeiffer, W.; Bayerl, T.; Richter, D.; Sackmann, E.

    1992-08-01

    Molecular motions in highly oriented multilayers of dipalmitoylphosphatidylcholine were studied as a function of temperature and hydration using incoherent quasi-elastic neutron scattering (QENS). The short range diffusive motions of the lipid molecules and the chain/headgroup dynamics were evaluated : 1) by measurement of the dependence of the elastic incoherent structure factor (EISF), the line-width Γ and the dynamic structure factors on the scattering vector Q for two orientations of the sample. The orientations were chosen such that the scattering vecto Q was either predominantly perpendicular or parallel to the membrane normal ; 2) by comparing data from protonated and chain deuterated lipids and 3) by the use of instruments of different energy resolution (i.e. time-of-flight and backscattering spectrometers exploring time regimes of 10^{-13} s to 10^{-11} s and 10^{-11} s to 10^{-9} s respectively). In the fluid phase the time-of-flight spectra revealed a restricted isotropic in-plane and out-of-plane diffusion of the hydrocarbon chain and headgroup protons. The mean displacements range from ≈ 0.6 Å for methylene protons near the glycerol backbone to 7 Å for protons near the chain ends. These values are obtained for a water content of 23 wt%. The values are somewhat increased at 30wt% of water. Measurements of the temperature variation of the EISF and the line-width Γ revealed a remarkably high degree of chain dynamics in the gel (L{β '})-phase. The total elastic intensity as observed with the backscattering instrument showed that L{α}-L{β '}-phase transition is only well expressed at Q-values around 1 Å^{-1}, while the number and mobility of the chain defects characterized at Q≈ 2 Å^{-1} (possibly gtg-kinks) increase continuously between 2 °C and 70 °C. In the time regime explored by the backscattering instrument, motions of the whole lipid molecules are also seen. It was interpreted in terms of a superposition of local in-plane and out-of-plane diffusion and lateral diffusional jumps between adjacent sites as predicted by the free volume model. For a sample containing 12 wt% of water at 60 °C the diffusion coefficient for the out-of-plane motion is D^{allel}=6× 10^{-6} cm2/s with an amplitude of 2.25 Å. In-plane the diffusion coefficients range from D_{min}^{perp}=1.5× 10^{-7} cm2/s to D_{max}^{perp}=6× 10^{-6} cm2/s. The lateral diffusion coefficient is D_lat=9.7× 10^{-8} cm2/s in reasonable agreement with FRAP measurements. The strong increase of the lateral mobility with increasing water content yielded an exponential law for the variation of the diffusion coefficient with excess area per lipid (i.e. hydration) in agreement with the free volume model. The out-of-plane motion is characterized by an amplitude of about 0.5 Å in the time-of-flight time regime and of 2-3 Å in the backscattering time regime. The origin of this discrepancy could be the thermally excited membrane undulations since their relaxation times of ≈ 3× 10^{-9} s (obtained in a separate spin-echo study) agree roughly with the reciprocal line-width of 2.5× 10^{-9} s for the backscattering instrument at Qto 0. The time-of-flight result of 0.5 Å can be attributed to a dynamic surface roughness.

  9. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2014-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  10. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  11. Controlled formation of intense hot spots in Pd@Ag core-shell nanooctapods for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Liu, Maochang; Yang, Yang; Li, Naixu; Du, Yuanchang; Song, Dongxing; Ma, Lijing; Wang, Yi; Zheng, Yiqun; Jing, Dengwei

    2017-08-01

    Plasmonic Ag nanostructures have been of great interest for such applications in cancer therapy and catalysis, etc. However, the relatively week Ag-Ag interaction and spontaneous atom diffusion make it very difficult to generate concaved or branched structures in Ag nanocrystals with sizes less than 100 nm, which has been considered very favorable for plasmonic effects. Herein, by employing a cubic Pd seed and a specific reducing agent to restrict the surface diffusion of Ag atoms, Pd@Ag core-shell nanooctapod structures where Ag atoms can be selectively deposited onto the corner sites of the Pd cubes were obtained. Such selective decoration enables us to precisely control the locations for the hot spot formation during light irradiation. We find that the branched nanooctapod structure shows strong absorption in the visible-light region and generates intense hot spots around the octapod arms of Ag. As such, the photothermal conversion efficiency could be significantly improved by more than 50% with a colloid solution containing only ppm-level nanooctapods compared with pure water. The reported nanostructure is expected to find extensive applications due to its controlled formation of light-induced hot spots at certain points on the crystal surface.

  12. [Mass-transfer, utilization, and diffusion of oxygen in skeletal muscles of the stenohaline goby Gobius cobitus Pallas under conditions of hypoosmotic medium].

    PubMed

    Soldatov, A A

    2012-01-01

    Effect of hypoosmotic conditions of medium on oxygen regime of skeletal muscles of the stenohalin goby Gobius cobitus Pallas was studied under conditions of experiment. The control fish group was maintained at 12-14 %o, the experimental one - at 4.8-5.6 per thousand. Duration of the experiment - 44-45 days, water temperature - 15 +/- 1 degrees C, photoperiod - 12 day/12 night. It was established that under conditions of external hypoosmia there occurred hydration of the goby skeletal muscles and a decrease of their diffusion capability with respect to oxygen. The latter was accompanied by the tissue P(O2) decrease, which is indicated by low values of P(O2) in the venous blood outflowing from muscles. For the first 14-16 days of adaptation to the hypoosmotic medium there were restricted processes of mass transfer and oxygen utilization, which was associated with a decrease of the voluminous tissue blood flow and the blood oxygen concentration. These changes occurred on the background of the blood plasma hydration and a decrease of the number of circulated erythrocytes, and then they were completely compensated.

  13. Whole body MRI: Improved Lesion Detection and Characterization With Diffusion Weighted Techniques

    PubMed Central

    Attariwala, Rajpaul; Picker, Wayne

    2013-01-01

    Diffusion-weighted imaging (DWI) is an established functional imaging technique that interrogates the delicate balance of water movement at the cellular level. Technological advances enable this technique to be applied to whole-body MRI. Theory, b-value selection, common artifacts and target to background for optimized viewing will be reviewed for applications in the neck, chest, abdomen, and pelvis. Whole-body imaging with DWI allows novel applications of MRI to aid in evaluation of conditions such as multiple myeloma, lymphoma, and skeletal metastases, while the quantitative nature of this technique permits evaluation of response to therapy. Persisting signal at high b-values from restricted hypercellular tissue and viscous fluid also permits applications of DWI beyond oncologic imaging. DWI, when used in conjunction with routine imaging, can assist in detecting hemorrhagic degradation products, infection/abscess, and inflammation in colitis, while aiding with discrimination of free fluid and empyema, while limiting the need for intravenous contrast. DWI in conjunction with routine anatomic images provides a platform to improve lesion detection and characterization with findings rivaling other combined anatomic and functional imaging techniques, with the added benefit of no ionizing radiation. PMID:23960006

  14. MRI to assess renal structure and function.

    PubMed

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  15. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells

    PubMed Central

    Qiu, Yongcai; Liu, Wei; Chen, Wei; Chen, Wei; Zhou, Guangmin; Hsu, Po-Chun; Zhang, Rufan; Liang, Zheng; Fan, Shoushan; Zhang, Yuegang; Cui, Yi

    2016-01-01

    Bismuth vanadate (BiVO4) has been widely regarded as a promising photoanode material for photoelectrochemical (PEC) water splitting because of its low cost, its high stability against photocorrosion, and its relatively narrow band gap of 2.4 eV. However, the achieved performance of the BiVO4 photoanode remains unsatisfactory to date because its short carrier diffusion length restricts the total thickness of the BiVO4 film required for sufficient light absorption. We addressed the issue by deposition of nanoporous Mo-doped BiVO4 (Mo:BiVO4) on an engineered cone-shaped nanostructure, in which the Mo:BiVO4 layer with a larger effective thickness maintains highly efficient charge separation and high light absorption capability, which can be further enhanced by multiple light scattering in the nanocone structure. As a result, the nanocone/Mo:BiVO4/Fe(Ni)OOH photoanode exhibits a high water-splitting photocurrent of 5.82 ± 0.36 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under 1-sun illumination. We also demonstrate that the PEC cell in tandem with a single perovskite solar cell exhibits unassisted water splitting with a solar-to-hydrogen conversion efficiency of up to 6.2%. PMID:27386565

  16. Porous Flow and Diffusion of Water in the Mantle Wedge: Melting and Hydration Patterns

    NASA Astrophysics Data System (ADS)

    Conder, J. A.

    2005-12-01

    It is widely accepted that melting at volcanic arcs is primarily triggered by fluxing the mantle wedge from the dehydrating subducting slab. However, there is less concensus regarding how water moves into and within the mantle wedge. There are at least four possible mechanisms for water migration in the wedge: buoyant porous flow, diffusion through mineral crystals, advection of hydrated minerals, and compositionally buoyant diapers. The latter two mechanisms require at least one of the first two to occur to get water from the slab into the wedge before they can function. Using geodynamic models of mantle flow in a simplified subduction setting, we explore the implications of diffusion and porous flow of water in the wedge, particularly as they would affect the time for recycling water through the subduction factory and the predicted pattern of basalt hydration across the arc. The slab is assumed to dehydrate in a continuous fashion as the solubility of water in subducted oceanic crust decreases with temperature and pressure and the water then enters the wedge via one of the two transport mechanisms. Diffusion is controlled by temperature and by which minerals are present. Although olivine dominates the mantle mineral fraction, pyroxenes may control the diffusion of water in the wedge as the diffusivity of pyroxene is one or more orders of magnitude greater than olivine. Even assuming the faster diffusion rate of orthopyroxene in the models, diffusion can only be an important transport mechanism when subduction rates are slower than ~3 cm/yr. Flux melting occurs in the wedge above where the slab is ~100-160 km deep with the maximum above where the slab is ~120 km deep. Models including porous flow can result in melting at higher subduction rates provided the permeability of the mantle is greater than 10-17 m2. The true magnitude of the permeability likely varies with the corresponding porosity created by the free phase. With porous flow, melting occurs 20-30 km closer to the trench and the degree of melting is larger than when only diffusion is allowed. The rate of dehydration depends on the thermal structure which can affect the permeability. The dependence of permeability and diffusion with temperature may explain the variations in volcanic front location as observed at different arcs.

  17. Development and application of an exchange model for anisotropic water diffusion in the microporous MOF aluminum fumarate

    NASA Astrophysics Data System (ADS)

    Splith, Tobias; Fröhlich, Dominik; Henninger, Stefan K.; Stallmach, Frank

    2018-06-01

    Diffusion of water in aluminum fumarate was studied by means of pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Due to water molecules exchanging between the intracrystalline anisotropic pore space and the isotropic intercrystalline void space the model of intracrystalline anisotropic diffusion fails to describe the experimental PFG NMR data at high observation times. Therefore, the two-site exchange model developed by Kärger is extended to the case of exchange between an anisotropic and an isotropic site. This extended exchange model is solved by numerical integration. It describes the experimental data very well and yields values for the intracrystalline diffusion coefficient and the mean residence times of the respective sites. Further PFG NMR studies were performed with coatings consisting of small aluminum fumarate crystals, which are used in adsorptive heat transformation applications. The diffusion coefficients of water in the small crystal coating are compared to the values expected from the extended two-site exchange model and from the model of long-range diffusion.

  18. Diffusion sampler testing at Naval Air Station North Island, San Diego County, California, November 1999 to January 2000

    USGS Publications Warehouse

    Vroblesky, Don A.; Peters, Brian C.

    2000-01-01

    Volatile organic compound concentrations in water from diffusion samplers were compared to concentrations in water obtained by low-flow purging at 15 observation wells at the Naval Air Station North Island, San Diego, California. Multiple diffusion samplers were installed in the wells. In general, comparisons using bladder pumps and diffusion samplers showed similar volatile organic carbon concentrations. In some wells, sharp concentration gradients were observed, such as an increase in cis-1,2-dichloroethene concentration from 100 to 2,600 micrograms per liter over a vertical distance of only 3.4 feet. In areas where such sharp gradients were observed, concentrations in water obtained by low-flow sampling at times reflected an average concentration over the area of influence; however, concentrations obtained by using the diffusion sampler seemed to represent the immediate vicinity of the sampler. When peristaltic pumps were used to collect ground-water samples by low-flow purging, the volatile organic compound concentrations commonly were lower than concentrations obtained by using diffusion samplers. This difference may be due to loss of volatiles by degassing under negative pressures in the sampling lines induced while using the peristaltic pump, mixing in the well screen, or possible short-circuiting of water from an adjacent depth. Diffusion samplers placed in buckets of freephase jet fuel (JP-5) and Stoddard solvent from observation wells did not show evidence of structural integrity loss during the 2 months of equilibration, and volatile organic compounds detected in the free-phase fuel also were detected in the water from the diffusion samplers.

  19. [See the thinking brain: a story about water].

    PubMed

    Le Bihan, D

    2008-01-01

    Among the astonishing Einstein's papers from 1905, there is one which unexpectedly gave birth to a powerful method to explore the brain. Molecular diffusion was explained by Einstein on the basis of the random translational motion of molecules which results from their thermal energy. In the mid 1980s it was shown that water diffusion in the brain could be imaged using MRI. During their random displacements water molecules probe tissue structure at a microscopic scale, interacting with cell membranes and, thus, providing unique information on the functional architecture of tissues. A dramatic application of diffusion MRI has been brain ischemia, following the discovery that water diffusion drops immediately after the onset of an ischemic event, when brain cells undergo swelling through cytotoxic edema. On the other hand, water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the fibers. This feature can be exploited to map out the orientation in space of the white matter tracks and image brain connections. More recently, it has been shown that diffusion MRI could accurately detect cortical activation. As the diffusion response precedes by several seconds the hemodynamic response captured by BOLD fMRI, it has been suggested that water diffusion could reflect early neuronal events, such as the transient swelling of activated cortical cells. If confirmed, this discovery will represent a significant breakthrough, allowing non invasive access to a direct physiological marker of brain activation. This approach will bridge the gap between invasive optical imaging techniques in neuronal cell cultures, and current functional neuroimaging approaches in humans, which are based on indirect and remote blood flow changes.

  20. Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging

    PubMed Central

    Bai, Yan; Lin, Yusong; Tian, Jie; Shi, Dapeng; Cheng, Jingliang; Haacke, E. Mark; Hong, Xiaohua; Ma, Bo; Zhou, Jinyuan

    2016-01-01

    Purpose To quantitatively compare the potential of various diffusion parameters obtained from monoexponential, biexponential, and stretched exponential diffusion-weighted imaging models and diffusion kurtosis imaging in the grading of gliomas. Materials and Methods This study was approved by the local ethics committee, and written informed consent was obtained from all subjects. Both diffusion-weighted imaging and diffusion kurtosis imaging were performed in 69 patients with pathologically proven gliomas by using a 3-T magnetic resonance (MR) imaging unit. An isotropic apparent diffusion coefficient (ADC), true ADC, pseudo-ADC, and perfusion fraction were calculated from diffusion-weighted images by using a biexponential model. A water molecular diffusion heterogeneity index and distributed diffusion coefficient were calculated from diffusion-weighted images by using a stretched exponential model. Mean diffusivity, fractional anisotropy, and mean kurtosis were calculated from diffusion kurtosis images. All values were compared between high-grade and low-grade gliomas by using a Mann-Whitney U test. Receiver operating characteristic and Spearman rank correlation analysis were used for statistical evaluations. Results ADC, true ADC, perfusion fraction, water molecular diffusion heterogeneity index, distributed diffusion coefficient, and mean diffusivity values were significantly lower in high-grade gliomas than in low-grade gliomas (U = 109, 56, 129, 6, 206, and 229, respectively; P < .05). Pseudo-ADC and mean kurtosis values were significantly higher in high-grade gliomas than in low-grade gliomas (U = 98 and 8, respectively; P < .05). Both water molecular diffusion heterogeneity index (area under the receiver operating characteristic curve [AUC] = 0.993) and mean kurtosis (AUC = 0.991) had significantly greater AUC values than ADC (AUC = 0.866), mean diffusivity (AUC = 0.722), and fractional anisotropy (AUC = 0.500) in the differentiation of low-grade and high-grade gliomas (P < .05). Conclusion Water molecular diffusion heterogeneity index and mean kurtosis values may provide additional information and improve the grading of gliomas compared with conventional diffusion parameters. © RSNA, 2015 Online supplemental material is available for this article. PMID:26230975

  1. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. Aftermore » a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.« less

  2. Magnetic resonance features of cerebral malaria.

    PubMed

    Yadav, P; Sharma, R; Kumar, S; Kumar, U

    2008-06-01

    Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm(2), and apparent diffusion coefficient (ADC) maps were obtained. Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients.

  3. Stimulation-induced decreases in the diffusion of extra-vascular water in the human visual cortex: a window in time and space on mechanisms of brain water transport and economy.

    PubMed

    Baslow, Morris H; Hu, Caixia; Guilfoyle, David N

    2012-07-01

    In a human magnetic resonance diffusion-weighted imaging (DWI) investigation at 3 T and high diffusion sensitivity weighting (b = 1,800 s/mm(2)), which emphasizes the contribution of water in the extra-vascular compartment and minimizes that of the vascular compartment, we observed that visual stimulation with a flashing checkerboard at 8 Hz for a period of 600 s in eight subjects resulted in significant increases in DWI signals (mean +2.70%, range +0.51 to 8.54%). The increases in DWI signals in activated areas of the visual cortex indicated that during stimulation, the apparent diffusion coefficient (ADC) of extra-vascular compartment water decreased. In response to continuous stimulation, DWI signals gradually increased from pre-stimulation controls, leveling off after 400-500 s. During recovery from stimulation, DWI signals gradually decreased, approaching control levels in 300-400 s. In this study, we show for the first time that the effects of visual stimulation on DWI signals in the human visual cortex are cumulative over an extended period of time. We propose that these relatively slow stimulation-induced changes in the ADC of water in the extra-vascular compartment are due to transient changes in the ratio of faster diffusing free water to slower diffusing bound water and reflect brain water transport processes between the vascular and extra-vascular compartments at the cellular level. The nature of these processes including possible roles of the putative glucose water import and N-acetylaspartate water export molecular water pumps in brain function are discussed.

  4. Microscopic diffusion processes measured in living planarians

    DOE PAGES

    Mamontov, Eugene

    2018-03-08

    Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.

  5. Microscopic diffusion processes measured in living planarians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene

    Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.

  6. Water diffusion to assess meat microstructure.

    PubMed

    Laghi, Luca; Venturi, Luca; Dellarosa, Nicolò; Petracci, Massimiliano

    2017-12-01

    In the quest for setting up rapid methods to evaluate water retention ability of meat microstructures, time domain nuclear magnetic resonance (TD-NMR) has gained a prominent role, due to the possibility to observe water located outside the myofibrils, easily lost upon storage or cooking. Diffusion weighted signals could be used to monitor the shape and dimension of the pores in which water is confined, thus boosting the information offered by TD-NMR. The work outlines a parsimonious model to describe relative abundance and diffusion coefficient of intra and extra myofibrillar water populations, exchange rate between them, diameter of the myofibrillar cells. To test our model, we registered diffusion and T 2 weighted NMR signals at 20MHz on fresh meat from pectoralis major muscle of 100days old female turkey. We then purposely altered water distribution and myofibrils shape by means of freezing. The model predicted nicely the consequences of the imposed modifications. Copyright © 2016. Published by Elsevier Ltd.

  7. Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance.

    PubMed

    Callaghan, P T; Jolley, K W; Lelievre, J

    1979-10-01

    Pulsed field gradient nuclear magnetic resonance has been used to measure water self-diffusion coefficients in the endosperm tissue of wheat grains as a function of the tissue water content. A model that confines the water molecules to a randomly oriented array of capillaries with both transverse dimension less than 100 nm has been used to fit the data and give a unique diffusion coefficient at each water content. The diffusion rates vary from 1.8 x 10(-10) m2s-1 at the lowest to 1.2 x 10(-9) m2s-1 at the highest moisture content. This variation can be explained in terms of an increase in water film thickness from approximately 0.5 to approximately 2.5 nm over the moisture range investigated (200-360 mg g-1).

  8. Experimental and theoretical study on chemical reactions and species diffusion by a nano-pulse discharged bubble for water treatment

    NASA Astrophysics Data System (ADS)

    He, Yuchen; Uehara, Satoshi; Takana, Hidemasa; Nishiyama, Hideya

    2018-01-01

    Advanced oxidation processes using hydroxyl radicals (ṡOH) generated inside bubbles in water has drawn widely interest for the high oxidation potential of OH radical to decompose persistent organic pollutants such as dioxins and humic acid for water purification. In this study, a two-dimensional diffusion model for a nano-pulse discharged bubble in water is established. Based on the experimental results of streamer propagation inside a bubble, the diffusion processes around the bubble interface and reactions of chemical species in liquids are simulated. The simulation results show that OH radicals can diffuse only several micrometers away from the bubble interface in water. Furthermore, the optimal operating voltage and frequency conditions for OH generation is obtained by comparing the OH concentration in water obtained from numerical simulation with that measured by spectroscopy in experiment.

  9. Swelling mechanism of urea cross-linked starch-lignin films in water.

    PubMed

    Sarwono, Ariyanti; Man, Zakaria; Bustam, M Azmi; Subbarao, Duvvuri; Idris, Alamin; Muhammad, Nawshad; Khan, Amir Sada; Ullah, Zahoor

    2018-06-01

    Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10 -7  cm 2 /s at 25°C, from 5.3 to 2.9 × 10 -7  cm 2 /s at 35°C and from 6.2 to 3.8 × 10 -7  cm 2 /s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.

  10. Characterizing Reactive Flow Paths in Fractured Cement

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.

    2011-12-01

    Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to hydrochloric acid (HCL), is pumped through the core at the same rate as the dye. The low pH water is used as a proxy for acidic CO2-saturated brine. Both staining from the un-reactive dye and acid produce visible permanent color alterations on the cement fracture plane. Results show that nearly the entire fracture width is stained by the red dye, with only a few asperities un-dyed. However the low pH HCl forms restricted reacted channels that are a subset of the area open to un-reactive flow, occupying only 10-50% of the entire fracture width. Low pH HCl is believed to be the driving force for the reaction that causes channeling. As acid flows through the fracture, calcium is stripped from the low pH high velocity flow front and precipitates along of the edges of the channel where pH is higher due to the lower flow velocities outside the channel. It is hypothesized that this mineral precipitation restricts the flow into localized channels within the plane of fractures having apertures of tens of micrometers. Reactions restrict the flow path to a smaller fraction of the surface, which may be an indication of self-limiting behavior.

  11. Water Diffusion through a Titanium Dioxide/Poly(Carbonate Urethane) Nanocomposite for Protecting Cultural Heritage: Interactions and Viscoelastic Behavior

    PubMed Central

    Abbate, Mario; D’Orazio, Loredana

    2017-01-01

    Water diffusion through a TiO2/poly (carbonate urethane) nanocomposite designed for the eco-sustainable protection of outdoor cultural heritage stonework was investigated. Water is recognized as a threat to heritage, hence the aim was to gather information on the amount of water uptake, as well as of species of water molecules absorbed within the polymer matrix. Gravimetric and vibrational spectroscopy measurements demonstrated that diffusion behavior of the nanocomposite/water system is Fickian, i.e., diffusivity is independent of concentration. The addition of only 1% of TiO2 nanoparticles strongly betters PU barrier properties and water-repellency requirement is imparted. Defensive action against penetration of water free from, and bonded through, H-bonding association arises from balance among TiO2 hydrophilicity, tortuosity effects and quality of nanoparticle dispersion and interfacial interactions. Further beneficial to antisoiling/antigraffiti action is that water-free fraction was found to be desorbed at a constant rate. In environmental conditions, under which weathering processes are most likely to occur, nanocomposite Tg values remain suitable for heritage treatments. PMID:28902179

  12. Scaling oxygen microprofiles at the sediment interface of deep stratified waters

    NASA Astrophysics Data System (ADS)

    Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien

    2017-02-01

    Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.

  13. 33 CFR 334.980 - Pacific Ocean, around San Nicholas Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, around San... REGULATIONS § 334.980 Pacific Ocean, around San Nicholas Island, Calif.; naval restricted area. (a) The area—(1) Perimeter (restricted). The waters of the Pacific Ocean around San Nicholas Island, Calif...

  14. 33 CFR 334.1275 - West Arm Behm Canal, Ketchikan, Alaska, restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false West Arm Behm Canal, Ketchikan, Alaska, restricted areas. 334.1275 Section 334.1275 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1275 West Arm...

  15. 33 CFR 334.1275 - West Arm Behm Canal, Ketchikan, Alaska, restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false West Arm Behm Canal, Ketchikan, Alaska, restricted areas. 334.1275 Section 334.1275 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1275 West Arm...

  16. 33 CFR 334.1275 - West Arm Behm Canal, Ketchikan, Alaska, restricted areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false West Arm Behm Canal, Ketchikan, Alaska, restricted areas. 334.1275 Section 334.1275 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1275 West Arm...

  17. 33 CFR 334.1275 - West Arm Behm Canal, Ketchikan, Alaska, restricted areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false West Arm Behm Canal, Ketchikan, Alaska, restricted areas. 334.1275 Section 334.1275 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1275 West Arm...

  18. 36 CFR 13.1174 - Whale water restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Whale water restrictions. 13.1174 Section 13.1174 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Operating Restrictions § 13.1174 Whale...

  19. 36 CFR 13.1174 - Whale water restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Whale water restrictions. 13.1174 Section 13.1174 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Operating Restrictions § 13.1174 Whale...

  20. 33 CFR 334.1215 - Port Gardner, Everett Naval Base, naval restricted area, Everett, Washington.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Port Gardner, Everett Naval Base, naval restricted area, Everett, Washington. 334.1215 Section 334.1215 Navigation and Navigable Waters... REGULATIONS § 334.1215 Port Gardner, Everett Naval Base, naval restricted area, Everett, Washington. (a) The...

  1. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Calif.; naval restricted area. 334.890 Section 334.890 Navigation and Navigable Waters CORPS OF....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the... this section shall be enforced by the Commandant, Eleventh Naval District, San Diego, California, and...

  2. 33 CFR 334.75 - Thames River, Naval Submarine Base New London, restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Thames River, Naval Submarine....75 Thames River, Naval Submarine Base New London, restricted area. (a) The area: The open waters of... restricted area provided their vessels display registration numbers issued by the Naval Submarine Base, New...

  3. 33 CFR 334.75 - Thames River, Naval Submarine Base New London, restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Thames River, Naval Submarine....75 Thames River, Naval Submarine Base New London, restricted area. (a) The area: The open waters of... restricted area provided their vessels display registration numbers issued by the Naval Submarine Base, New...

  4. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Calif.; naval restricted area. 334.890 Section 334.890 Navigation and Navigable Waters CORPS OF....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the... this section shall be enforced by the Commandant, Eleventh Naval District, San Diego, California, and...

  5. Diffusion and emissions of 1,3-dichloro propene in Florida sandy soil in microplots affected by soil moisture, organic matter, and plastic film.

    PubMed

    Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse

    2004-04-01

    The main objective of this study was to determine the influence of soil moisture, organic matter amendment and plastic cover (a virtually impermeable film, VIF) on diffusion and emissions of (Z)- and (E)-1,3-dichloropropene (1,3-D) in microplots of Florida sandy soil (Arredondo fine sand). Upward diffusion of the two isomers in the Arredondo soil without a plastic cover was greatly influenced by soil-water content and (Z)-1,3-D diffused faster than (E)-1,3-D. In less than 5 h after 1,3-D injection to 30 cm depth, (Z)- and (E)-1,3-D in air dry soil had diffused to a 10 cm depth, whereas diffusion for the two isomers was negligible in near-water-saturated soil, even 101 h after injection. The diffusion rate of (Z)- and (E)-1,3-D in near-field-capacity soil was between the rates in the two water regimes. Yard waste compost (YWC) amendment greatly reduced diffusion of (Z)- and (E)-1,3-D, even in air-dry soil. Although upward diffusion of (Z)- and (E)-1,3-D in soil with VIF cover was slightly less than in the corresponding bare soil; the cover promoted retention of vapors of the two isomers in soil pore air in the shallow subsurface. More (Z)-1,3-D vapor was found initially in soil pore air than (E)-1,3-D although the difference declined thereafter. As a result of rapid upward movement in air-dry bare soil, (Z)- and (E)-1,3-D were rapidly volatilized into the atmosphere, but emissions from the near-water-saturated soil were minimal. Virtually impermeable film and YWC amendment retarded emissions. This study indicated that adequate soil water in this sandy soil is needed to prevent rapid emissions, but excess soil water slows diffusion of (Z)- and (E)-1,3-D. Thus, management for optimum water in soil is critical for pesticidal efficacy and the environment.

  6. Determination of the effective diffusivity of water in a poly (methyl methacrylate) membrane containing carbon nanotubes using kinetic Monte Carlo simulations.

    PubMed

    Mermigkis, Panagiotis G; Tsalikis, Dimitrios G; Mavrantzas, Vlasis G

    2015-10-28

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D(eff), of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D(eff) is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D(eff) as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D(eff) (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.

  7. Determination of the effective diffusivity of water in a poly (methyl methacrylate) membrane containing carbon nanotubes using kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Mavrantzas, Vlasis G.

    2015-10-01

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, Deff, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, Deff is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for Deff as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on Deff (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.

  8. Opposing Effects of cAMP and T259 Phosphorylation on Plasma Membrane Diffusion of the Water Channel Aquaporin-5 in Madin-Darby Canine Kidney Cells

    PubMed Central

    Koffman, Jennifer S.; Arnspang, Eva C.; Marlar, Saw; Nejsum, Lene N.

    2015-01-01

    Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport in response to physiological stimuli by changes in protein modifications, interactions with proteins and lipids, nanoscale membrane domain organization, and turnover rates. Such regulatory mechanisms could potentially be associated with alteration of diffusion behavior, possibly resulting in a change in the plasma membrane diffusion coefficient of AQP5. We aimed to test the short-term regulatory effects of the above pathways, by measuring lateral diffusion of AQP5 and an AQP5 phospho-mutant, T259A, using k-space Image Correlation Spectroscopy of quantum dot- and EGFP-labeled AQP5. Elevated cAMP and PKA inhibition significantly decreased lateral diffusion of AQP5, whereas T259A mutation showed opposing effects; slowing diffusion without stimulation and increasing diffusion to basal levels after cAMP elevation. Thus, lateral diffusion of AQP5 is significantly regulated by cAMP, PKA, and T259 phosphorylation, which could be important for regulating water flow in glandular secretions. PMID:26218429

  9. Glucose and electrolyte supplementation of drinking water improve the immune responses of poults with inanition.

    PubMed

    El Hadri, L; Garlich, J D; Qureshi, M A; Ferket, P R; Odetallah, N H

    2004-05-01

    Enteric disorders predispose poultry to malnutrition. The objectives of this paper were 1) to simulate the inanition of poult enteritis mortality syndrome by restricting feed intake and 2) to develop a drinking water supplement that supports the immune functions of poults with inanition. Poults were restricted to 14 g of feed/d for 7 d beginning at 14 d of age then fed ad libitum until 36 d (recovery). The control was fed ad libitum. During the feed-restriction period, duplicate groups of 6 poults received 1 of 5 drinking water treatments: 1) restricted feed, unsupplemented water; 2) restricted feed + electrolytes (RE); 3) RE + glucose + citric acid (REGC); 4) REGC + betaine (REGCB); or 5) REGCB + zinc-methionine (REGCBZ). Immunological functions were assessed by inoculating poults with SRBC and B. abortus (BA) antigen at 15, 22, and 29 d of age. Antibody (Ab) titers were determined 7 d later for primary, secondary, and recovery responses. The primary and secondary total Ab titers to SRBC for restricted feed were 4.71 and 6.16 log3, which where lower (P < 0.05) than for controls (8.00 and 9.66 log3) and the other treatments. The recovery Ab titer for controls was 10.7, significantly higher than restricted feed (8.71) and RE (8.10) groups but not different from other treatments. The primary total Ab responses to BA were significantly lower in the restricted feed and RE groups as compared with the control and other treatments. Although feed restriction of poults to maintenance reduces the humoral immune responses, these responses can be significantly improved by drinking water containing electrolytes and especially sources of energy such as glucose and citric acid.

  10. Diffusive dynamics of nanoparticles in ultra-confined media

    DOE PAGES

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; ...

    2015-08-10

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accountedmore » for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Altogether, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.« less

  11. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V., E-mail: aneimark@rutgers.edu

    2016-01-07

    Using dissipative particle dynamics (DPD), we simulate nanoscale segregation, water diffusion, and proton conductivity in hydrated sulfonated polystyrene (sPS). We employ a novel model [Lee et al. J. Chem. Theory Comput. 11(9), 4395-4403 (2015)] that incorporates protonation/deprotonation equilibria into DPD simulations. The polymer and water are modeled by coarse-grained beads interacting via short-range soft repulsion and smeared charge electrostatic potentials. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with the base beads representing water and sulfonate anions. Morse bond formation and breakup artificially mimics the Grotthuss mechanism of proton hopping between the bases. Themore » DPD model is parameterized by matching the proton mobility in bulk water, dissociation constant of benzenesulfonic acid, and liquid-liquid equilibrium of water-ethylbenzene solutions. The DPD simulations semi-quantitatively predict nanoscale segregation in the hydrated sPS into hydrophobic and hydrophilic subphases, water self-diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from isolated water clusters to a 3D network. The analysis of hydrophilic subphase connectivity and water diffusion demonstrates the importance of the dynamic percolation effect of formation and breakup of temporary junctions between water clusters. The proposed DPD model qualitatively predicts the ratio of proton to water self-diffusion and its dependence on the hydration level that is in reasonable agreement with experiments.« less

  12. Water-Mediated Proton Hopping on an Iron Oxide Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merte, L. R.; Peng, Guowen; Bechstein, Ralf

    2012-05-18

    The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociationmore » is a key step in proton diffusion.« less

  13. Extracting Diffusion Constants from Echo-Time-Dependent PFG NMR Data Using Relaxation-Time Information

    NASA Astrophysics Data System (ADS)

    Vandusschoten, D.; Dejager, P. A.; Vanas, H.

    Heterogeneous (bio)systems are often characterized by several water-containing compartments that differ in relaxation time values and diffusion constants. Because of the relatively small differences among these diffusion constants, nonoptimal measuring conditions easily lead to the conclusion that a single diffusion constant suffices to describe the water mobility in a heterogeneous (bio)system. This paper demonstrates that the combination of a T2 measurement and diffusion measurements at various echo times (TE), based on the PFG MSE sequence, enables the accurate determination of diffusion constants which are less than a factor of 2 apart. This new method gives errors of the diffusion constant below 10% when two fractions are present, while the standard approach of a biexponential fit to the diffusion data in identical circumstances gives larger (>25%) errors. On application of this approach to water in apple parenchyma tissue, the diffusion constant of water in the vacuole of the cells ( D = 1.7 × 10 -9 m 2/s) can be distinguished from that of the cytoplasm ( D = 1.0 × 10 -9 m 2/s). Also, for mung bean seedlings, the cell size determined by PFG MSE measurements increased from 65 to 100 μm when the echo time increased from 150 to 900 ms, demonstrating that the interpretation of PFG SE data used to investigate cell sizes is strongly dependent on the T2 values of the fractions within the sample. Because relaxation times are used to discriminate the diffusion constants, we propose to name this approach diffusion analysis by relaxation- time- separated (DARTS) PFG NMR.

  14. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    PubMed

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  15. Absorption of water and lubricating oils into porous nylon

    NASA Technical Reports Server (NTRS)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  16. A sensitivity study of diffusional mass transfer of gases in tropical storm hydrometeors

    NASA Astrophysics Data System (ADS)

    Ghosh, Satyajit; Gumber, Siddharth; Varotsos, C.

    2017-11-01

    This paper quantifies mass transfer and diffusional uptake rates of gases in liquid and solid hydrometeors within a cyclonic system. The non-availability of transfer rates for trace gases diffusing into storm hydrometeors, particularly over polluted urban conurbations, often constrain modellers the world over; however, this is an essential requirement to quantify the scavenging rates over the region concerned. The present paper seeks to provide modellers with such rates. Further, all of the earlier studies apply only to temperate regimes, and surprisingly identical formulations are assumed even for tropical conditions. The present analysis fills this research gap and couples cloud morphology with the associated thermodynamics through Weather Research and Forecasting (WRF) runs for cyclone Chapala (27 October 2015-04 November 2015) which battered the coasts of Yemen (Skamarock et al. 2008). It was a good example for undertaking this sensitivity study because the vertical extent spanned from around 0.75 to 16 km—enabling uptake rate calculations over both droplet and ice phases. Many of the diffusing gases were polar; the dipole moment of sulphur dioxide (SO2) and water vapour (H2O) was also included using a full Lennard-Jones model to compute the binary diffusivities of these gases as they diffused into the droplets mixed with water vapour. The first-order uptake rate constants ranged from 2.08 × 10-07 to 3.44 × 10-06 (s-1) and 1.97 × 10-07 to 7.81 × 10-07 (s-1) for H2O and SO2 respectively. The rates are of the order of 10-09 (s-1) for diffusion of water vapour into ice crystals further aloft. Closely linked with the gas uptake rates is another crucial parameter—the mass accommodation coefficient, α. The most widely used values are 1 and 0.036 (Pruppacher and Klett 1998)—the chosen values are restrictive and warrants a closer look. In storm systems, the vertical extents are in the kilometre range. Chapala with a large vertical extent warrants a full profile calculation. This study shows that for H2O vapour, α values range from a low of 0.004 reaching up to 0.046, and for SO2 impacting the liquid droplets, they are 0.004 to 0.077. Using these values in cloud droplet growth equations showed large changes in the positioning of the cloud base height up to about a maximum of 30%—a classic example illustrating the coupling of microphysics with dynamics suggesting that even large-scale models should cautiously use standard un-corrected accommodation and diffusion coefficients. Over polluted environments, aerosol number concentrations are very high—several hundreds of particles in a cubic centimetre—the cumulative effect involving such large-scale scavenging ends up in causing substantive changes in the actual scavenging rates. This is likely to affect overall radiative transfer calculations and must be corrected.

  17. Diffusion and drive-point sampling to detect ordnance-related compounds in shallow ground water beneath Snake Pond, Cape Cod, Massachusetts, 2001-02

    USGS Publications Warehouse

    LeBlanc, Denis R.

    2003-01-01

    Diffusion samplers and temporary drive points were used to test for ordnance-related compounds in ground water discharging to Snake Pond near Camp Edwards at the Massachusetts Military Reservation, Cape Cod, MA. The contamination resulted from artillery use and weapons testing at various ranges upgradient of the pond.The diffusion samplers were constructed with a high-grade cellulose membrane that allowed diffusion of explosive compounds, such as RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), into deionized water inside the samplers. Laboratory tests confirmed that the cellulose membrane was permeable to RDX and HMX. One transect of 22 diffusion samplers was installed and retrieved in August-September 2001, and 12 transects with a total of 108 samplers were installed and retrieved in September-October 2001. The diffusion samplers were buried about 0.5 feet into the pond-bottom sediments by scuba divers and allowed to equilibrate with the ground water beneath the pond bottom for 13 to 27 days before retrieval. Water samples were collected from temporary well points driven about 2-4 feet into the pond bottom at 21 sites in December 2001 and March 2002 for analysis of explosives and perchlorate to confirm the diffusion-sampling results. The water samples from the diffusion samplers exhibited numerous chromatographic peaks, but evaluation of the photo-diode-array spectra indicated that most of the peaks did not represent the target compounds. The peaks probably are associated with natural organic compounds present in the soft, organically enriched pond-bottom sediments. The presence of four explosive compounds at five widely spaced sites was confirmed by the photo-diode-array analysis, but the compounds are not generally found in contaminated ground water near the ranges. No explosives were detected in water samples obtained from the drive points. Perchlorate was detected at less than 1 microgram per liter in two drive-point samples collected at the same site on two dates about 3 months apart. The source of the perchlorate in the samples could not be related directly to other contamination from Camp Edwards with the available information. The results from the diffusion and drive-point sampling do not indicate an area of ground-water discharge with concentrations of the ordnance-related compounds that are sufficiently elevated to be detected by these sampling methods. The diffusion and drive-point sampling data cannot be interpreted further without additional information concerning the pattern of ground-water flow at Snake Pond and the distributions of RDX, HMX, and perchlorate in ground water in the aquifer near the pond.

  18. Nuclear magnetic resonance relaxation and diffusion measurements as a proxy for soil properties

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Pohlmeier, Andreas; Galvosas, Petrik; Vereecken, Harry

    2013-04-01

    Nuclear Magnetic Resonance (NMR) relaxation and NMR diffusion measurements are two of a series of fast and non-invasive NMR applications widely used e.g. as well logging tools in petroleum exploration [1]. For experiments with water, NMR relaxation measures the relaxation behaviour of former excited water molecules, and NMR diffusion evaluates the self-diffusion of water. Applied in porous media, both relaxation and diffusion measurements depend on intrinsic properties of the media like pore size distribution, connectivity and tortuosity of the pores, and water saturation [2, 3]. Thus, NMR can be used to characterise the pore space of porous media not only in consolidated sediments but also in soil. The physical principle behind is the relaxation of water molecules in an external magnetic field after excitation. In porous media water molecules in a surface layer of the pores relax faster than the molecules in bulk water because of interactions with the pore wall. Thus, the relaxation in smaller pores is generally faster than in bigger pores resulting in a relaxation time distribution for porous media with a range of pore sizes like soil [4]. In NMR diffusion experiments, there is an additional encoding of water molecules by application of a magnetic field gradient. Subsequent storage of the magnetization and decoding enables the determination of the mean square displacement and therefore of the self-diffusion of the water molecules [5]. Employing various relaxation and diffusion experiments, we get a measure of the surface to volume ratio of the pores and the tortuosity of the media. In this work, we show the characterisation of a set of sand and soil samples covering a wide range of textural classes by NMR methods. Relaxation times were monitored by the Carr-Purcell-Meiboom-Gill sequence and analysed using inverse Laplace transformation. Apparent self-diffusion constants were detected by a 13-intervall pulse sequence and variation of the storage time. We correlated the results with various soil properties like texture, water retention parameters, and hydraulic conductivity. This way we show that we can predict soil properties by NMR measurements and that we are able use results of NMR measurements as a proxy without the need of direct measurements. [1] Song, Y.-Q., Vadose Zone Journal, 9 (2010) [2] Stingaciu, L. R., et al., Water Resources Research, 46 (2010) [3] Vogt, C., et al., Journal of Applied Geophysics, 50 (2002) [4] Barrie, P. J., Annual Reports on NMR Spectroscopy, 41 (2000) [5] Stallmach, F., Galvosas, P., Annual Reports on NMR Spectroscopy, 61 (2007)

  19. An elemental mercury diffusion coefficient for natural waters determined by molecular dynamics simulation.

    PubMed

    Kuss, Joachim; Holzmann, Jörg; Ludwig, Ralf

    2009-05-01

    Mercury is a priority pollutant as its mobility between the hydrosphere and the atmosphere threatens the biosphere globally. The air-water gas transfer of elemental mercury (Hg0) is controlled by its diffusion through the water-side boundary layer and thus by its diffusion coefficient, D(Hg), the value of which, however, has not been established. Here, the diffusion of Hg0 in water was modeled by molecular dynamics (MD) simulation and the diffusion coefficient subsequently determined. Therefore the movement of either Hg(0) or xenon and 1000 model water molecules (TIP4P-Ew) were traced for time spans of 50 ns. The modeled D(Xe) of the monatomic noble gas agreed well with measured data; thus, MD simulation was assumed to be a reliable approach to determine D(Hg) for monatomic Hg(0) as well. Accordingly, Hg(0) diffusion was then simulated for freshwater and seawater, and the data were well-described by the equation of Eyring. The activation energies for the diffusion of Hg0 in freshwater was 17.0 kJ mol(-1) and in seawater 17.8 kJ mol(-1). The newly determined D(Hg) is clearly lower than the one previously used for an oceanic mercury budget. Thus, its incorporation into the model should lead to lower estimates of global ocean mercury emissions.

  20. Water has no effect on oxygen self-diffusion rate in forsterite

    NASA Astrophysics Data System (ADS)

    Fei, H.; Yamazaki, D.; Wiedenbeck, M.; Katsura, T.

    2014-12-01

    Water is thought to play an essential role in dynamical processes in the Earth's interior. Even several tens wt. ppm of water may enhance the creep rates in olivine by orders of magnitude based on deformation experiments [1, 2]. High temperature creep in olivine is believed to be controlled by self-diffusion of the slowest species, which is silicon in olivine. However, silicon self-diffusion experiments suggest that the role of water on olivine rheology is overestimated in previous deformation studies because of the experimental difficulties [3].On the other hand, oxygen is the second slowest species with similar diffusion rate as silicon. It may also play an essential role in olivine creep. By comparing the oxygen self-diffusion coefficient (DO) in olivine at ambient pressure and dry conditions [4] with those at 2 GPa and hydrous conditions, it is found that even 30-50 wt. ppm of water could enhance DO by one order of magnitude [5]. However, comparison of experimental results obtained at different pressures could lead to misinterpretations because different experimental setups have different error sources [6]. In this study, we systematically measured DO in an iron-free olivine, namely, forsterite, at 8 GPa and 1600-1800 K over a wide range of water content (CH2O) from <1 up to 800 wt. ppm. Our results show that DO∝(CH2O)0.05±0.06≈(CH2O)0. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the water content dependence of silicon self-diffusion rate is also very small [3], the role of water on olivine rheology is not as significant as previously thought by assuming the diffusion controlled creep mechanism. [1] Karato &Jung (2003), Philosophical Mag. 83, 401-414.[2] Hirth & Kohlstedt (2003) Geophys. Monogr. 138, 83-105.[3] Fei et al. (2013), Nature 498, 213-215.[4] Dohmen et al. (2002), GRL 29, 2030.[5] Costa & Chakraborty (2008), PEPI 166, 11-29.[6] Fei et al. (2012), EPSL 345, 95-103.

  1. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.H.; Lee, W.C.

    1996-05-01

    Acid gases such as CO{sub 2} and H{sub 2}S are frequently removed from natural gas, synthetic natural gas, and other process gas streams by means of absorption into aqueous alkanol-amine solutions. The solubility and diffusivity of N{sub 2}O in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water) were measured at (30, 35, and 40)C and at atmospheric pressure. Five (diethanolamine + N-methyldiethanolamine + water) and four (diethanolamine + 2-amino-2-methyl-1-propanol + water) systems were studied. The total amine mass percent in all cases was 30. A solubility apparatus was used to measure the solubility of N{sub 2}Omore » in amine solutions. The diffusivity was measured by a wetted wall column absorber. The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water).« less

  2. b matrix errors in echo planar diffusion tensor imaging

    PubMed Central

    Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel

    2001-01-01

    Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015

  3. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  4. Predictive model to describe water migration in cellular solid foods during storage.

    PubMed

    Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J

    2011-11-01

    Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.

  5. Equatorial ground ice on Mars: Steady-state stability

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.; Jakosky, Bruce M.; Postawko, Susan E.

    1993-01-01

    Current Martian equatorial surface temperatures are too warm for water ice to exist at the surface for any appreciable length of time before subliming into the atmosphere. Subsurface temperatures are generally warmer still and, despite the presence of a diffusive barrier of porous regolith material, it has been shown by Smoluchowski, Clifford and Hillel, and Fanale et al. that buried ground ice will also sublime and be lost to the atmosphere in a relatively short time. We investigate the behavior of this subliming subsurface ice and show that it is possible for ice to maintain at a steady-state depth, where sublimation and diffusive loss to the atmosphere is balanced by resupply from beneath by diffusion and recondensation of either a deeper buried ice deposits or ground water. We examine the behavior of equatorial ground ice with a numercial time-marching molecular diffusion model. In our model we allow for diffusion of water vapor through a porous regolith, variations in diffusivity and porosity with ice content, and recondensation of sublimed water vapor. A regolith containing considerable amounts of ice can still be very porous, allowing water vapor to diffuse up from deeper within the ice layer where temperatures are warmer due to the geothermal gradient. This vapor can then recondense nearer to the surface where ice had previously sublimed and been lost to the atmosphere. As a result we find that ice deposits migrate to find a steady-state depth, which represents a balance between diffusive loss to the atmosphere through the overlying porous regolith and diffusive resupply through a porous icy regolith below. This depth depends primarily on the long-term mean surface temperature and the nature of the geothermal gradient, and is independent of the ice-free porosity and the regolith diffusivity. Only the rate of loss of ground ice depends on diffusive properties.

  6. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River at Patrick Air Force Base, Fla.; restricted area. 334.560 Section 334.560 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.560 Banana...

  7. 33 CFR 334.1490 - Caribbean Sea, at St. Croix, V.I.; restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Caribbean Sea, at St. Croix, V.I.; restricted areas. 334.1490 Section 334.1490 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1490 Caribbean Sea...

  8. 33 CFR 334.1490 - Caribbean Sea, at St. Croix, V.I.; restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Caribbean Sea, at St. Croix, V.I.; restricted areas. 334.1490 Section 334.1490 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1490 Caribbean Sea...

  9. 33 CFR 334.763 - Naval Support Activity Panama City; Gulf of Mexico; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Naval Support Activity Panama City; Gulf of Mexico; restricted area. 334.763 Section 334.763 Navigation and Navigable Waters CORPS OF....763 Naval Support Activity Panama City; Gulf of Mexico; restricted area. (a) The area. The area is...

  10. 33 CFR 334.763 - Naval Support Activity Panama City; Gulf of Mexico; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Naval Support Activity Panama City; Gulf of Mexico; restricted area. 334.763 Section 334.763 Navigation and Navigable Waters CORPS OF....763 Naval Support Activity Panama City; Gulf of Mexico; restricted area. (a) The area. The area is...

  11. 33 CFR 162.20 - Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area. 162.20 Section 162.20 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.20 Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area. (a...

  12. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters... be enforced by the Commander, Naval Base, San Diego, and such agencies as he/she shall designate. [50...

  13. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters... be enforced by the Commander, Naval Base, San Diego, and such agencies as he/she shall designate. [50...

  14. 33 CFR 334.1260 - Dabob Bay, Whitney Point; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Dabob Bay, Whitney Point; naval..., Whitney Point; naval restricted area. (a) Dabob Bay, Whitney Point, naval restricted area—(1) The area. Beginning at the high water line along the westerly shore of Dabob Bay, 100 yards northerly of the Naval...

  15. 33 CFR 334.1260 - Dabob Bay, Whitney Point; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Dabob Bay, Whitney Point; naval..., Whitney Point; naval restricted area. (a) Dabob Bay, Whitney Point, naval restricted area—(1) The area. Beginning at the high water line along the westerly shore of Dabob Bay, 100 yards northerly of the Naval...

  16. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area...

  17. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area...

  18. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area...

  19. Experimental investigation on flow in diffuser of 1090 MW steam turbine

    NASA Astrophysics Data System (ADS)

    Hoznedl, Michal; Sedlák, Kamil; Mrózek, Lukáš; Bednář, Lukáš; Kalista, Robert

    2016-06-01

    The paper deals with flow of wet water steam in diffuser of turbine engine 1090 MW on saturated water steam. Experimental measurements were done while the turbine was in operation for a wide range of outputs. Defining the outlet velocity from the last stage and with knowledge of static pressures on the diffuser outlet, it is possible to define the contribution of the diffuser to the whole low pressure part efficiency.

  20. The economic impact of restricted water supply: a computable general equilibrium analysis.

    PubMed

    Berrittella, Maria; Hoekstra, Arjen Y; Rehdanz, Katrin; Roson, Roberto; Tol, Richard S J

    2007-04-01

    Water problems are typically studied at the level of the river catchment. About 70% of all water is used for agriculture, and agricultural products are traded internationally. A full understanding of water use is impossible without understanding the international market for food and related products, such as textiles. The water embedded in commodities is called virtual water. Based on a general equilibrium model, we offer a method for investigating the role of water resources and water scarcity in the context of international trade. We run five alternative scenarios, analyzing the effects of water scarcity due to reduced availability of groundwater. This can be a consequence of physical constraints, and of policies curbing water demand. Four scenarios are based on a "market solution", where water owners can capitalize their water rent or taxes are recycled. In the fifth "non-market" scenario, this is not the case; supply restrictions imply productivity losses. Restrictions in water supply would shift trade patterns of agriculture and virtual water. These shifts are larger if the restriction is larger, and if the use of water in production is more rigid. Welfare losses are substantially larger in the non-market situation. Water-constrained agricultural producers lose, but unconstrained agricultural produces gain; industry gains as well. As a result, there are regional winners and losers from water supply constraints. Because of the current distortions of agricultural markets, water supply constraints could improve allocative efficiency; this welfare gain may more than offset the welfare losses due to the resource constraint.

  1. USGS GeoData Digital Raster Graphics

    USGS Publications Warehouse

    ,

    2001-01-01

    Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC?s) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC?s in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: ? Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. ? Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. ? Reduction in sampling time by as much as 80 percent of that required for ?purge type? sampling methods. ? An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.

  2. The entrance of water into beef and dog red cells.

    PubMed

    VILLEGAS, R; BARTON, T C; SOLOMON, A K

    1958-11-20

    The rate constants for diffusion of THO across the red cell membrane of beef and dog, and the rate of entrance of water into the erythrocytes of these species under an osmotic pressure gradient have been measured. For water entrance into the erythrocyte by diffusion the rate constants are 0.10 +/- 0.02 msec.(-1) (beef) and 0.14 +/- 0.03 msec.(-1) (dog); the permeability coefficients for water entrance under a pressure gradient of 1 osmol./cm(3) are 0.28 See PDF for Equation These values permit the calculation of an equivalent pore radius for the erythrocyte membrane of 4.1 A for beef and 7.4 A for dog. In the beef red cell the change in THO diffusion due to osmotically produced cell volume shifts has been studied. The resistance to THO diffusion increases as the cell volume increases. At the maximum volume, (1.06 times normal), THO diffusion is decreased to 0.84 times the normal rate. This change in diffusion is attributed to swelling of the cellular membrane.

  3. Growth of Megaspherulites In a Rhyolitic Vitrophyre

    NASA Technical Reports Server (NTRS)

    Smith, Robert K.; Tremallo, Robin L.; Lofgren, Gary E.

    2000-01-01

    Megaspherulites occur in the middle zone of a thick sequence of rhyolitic vitrophyre that occupies a small, late Eocene to early Oligocene volcanic-tectonic basin near Silver Cliff, Custer County, Colorado. Diameters of the megaspherulites range from 0.3 m to over 3.66 m, including a clay envelope. The megaspherulites are compound spherulites. consisting of an extremely large number (3.8 x 10(exp 9) to 9.9 x 10(exp 9)) of individual growth cones averaging 3 mm long by 1.25 mm wide at their termination. They are holocrystalline, very fine- to fine-grained, composed of disordered to ordered sanidine (orthoclase) and quartz, and surrounded by a thin K-feldspar, quartz rich rind, an inner clay layer with mordenite, and an outer clay layer composed wholly of 15 A montmorillonite. Whole rock analyses of the megaspherulites show a restricted composition from their core to their outer edge, with an average analyses of 76.3% SiO2, 0.34% CaO, 2.17% Na2O, 6.92% K2O, 0.83% H2O+ compared to the rhyolitic vitrophyre from which they crystallize with 71.07% SiO2, 0.57% CaO, 4.06% Na2O,4.l0% K2O, and 6.40% H2O+. The remaining oxides of Fe2O3 (total Fe), A12O3, MnO,MgO, TiO2, P2O5, Cr2O3, and trace elements show uniform distribution between the megaspherulites and the rhyolitic vitrophyre. Megaspherulite crystallization began soon after the rhyolitic lava ceased to flow as the result of sparse heterogeneous nucleation, under nonequilibrium conditions, due to a high degree of undercooling, delta T. The crystals grow with a fibrous habit which is favored by a large delta T ranging between 245 C and 295 C, despite lowered viscosity, and enhanced diffusion due to the high H2O content, ranging between 5% and 7%. Therefore, megaspherulite growth proceeded in a diffusion controlled manner, where the diffusion, rate lags behind the crystal growth rate at the crystal-liquid interface, restricting fibril lengths and diameters to the 10 micron to 15 micron and 3 micron and 8 micron ranges respectively. Once diffusion reestablishes itself at the crystallization front, a new nucleation event occurs at the terminated tips of the fibril cones and a new cone begins to develop with a similar orientation (small angle branching) to the earlier cones. During crystallization, these fibril cones impinge upon each other, resulting in fibril cone-free areas. These cone-free areas consist of coarser, fine-grained phases, dominated by quartz, which crystallized from the melt as it accumulated between the crystallizing K-feldspar fibrils of the cones. The anhydrous nature of the disordered to ordered sanidine (orthoclase) and quartz, suggests that water in the vitrophyre moved ahead of the crystallization front, resulting in a water rich fluid being enriched in Si, K, Na, Mg, Ca, Sr, Ba, and Y. The clay layers associated with the megaspherulites are therefore, the result of the deuteric alteration between the fractionated water and the vitrophyre, as indicated by the presence of the minerals mordenite and montmorillonite. This silica rich fluid also resulted in the total silicification of the megaspherulites within the upper 3 m of the vitrophyre.

  4. Translational and Rotational Diffusion in Water in the Gigapascal Range

    NASA Astrophysics Data System (ADS)

    Bove, L. E.; Klotz, S.; Strässle, Th.; Koza, M.; Teixeira, J.; Saitta, A. M.

    2013-11-01

    First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.

  5. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.

    PubMed

    Affi, Mahmoud; Solliec, Camille; Legentilhomme, Patrick; Comiti, Jacques; Legrand, Jack; Jouanneau, Sulivan; Thouand, Gérald

    2016-12-01

    Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.

  6. Flexible and transparent polyimide films containing two-dimensional alumina nanosheets templated by graphene oxide for improved barrier property.

    PubMed

    Tseng, I-Hsiang; Tsai, Mei-Hui; Chung, Chi-Wei

    2014-08-13

    Unique two-dimensional alumina nanosheets (Alns) using graphene oxide (GO) as templates are fabricated and successfully incorporated with organo-soluble polyimide (PI) to obtain highly transparent PI nanocomposite films with improved moisture barrier property. The effects of filler types and contents on water vapor transmission rate (WVTR) and transparency of PI are systematically studied. The hydroxyl groups on GO react with aluminum isopropoxide via sol-gel process to obtain alumina coverd-GO (Al-GO), and then thermal decomposition is applied to obtain Alns. Alns are the most efficient fillers among others to restrict the diffusion of water vapor within PI matrix and simultaneously maintain the transparency of PI. XRD pattern, TEM, and AFM images confirm the sheet-like morphology of Alns with ultrahigh aspect ratio. With only 0.01 wt % of Alns, the PI nanocomposite film exhibits the most significant reduction of 95% in WVTR as compared to that of pure PI film. Most importantly, the resultant PI/Alns-0.01 film exhibits excellent optical transparency and high mechanical strength and great thermal stability.

  7. Examination of factors dominating the sediment-water diffusion flux of DDT-related compounds measured by passive sampling in an urbanized estuarine bay.

    PubMed

    Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y

    2016-12-01

    The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.

    PubMed

    Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei

    2018-06-05

    The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.

  9. Effects of pH2O, pH2 and fO2 on the Diffusion of H-Bearing Species in Lunar Basalt and an Iron-Free Basaltic Analog at 1 atm

    NASA Astrophysics Data System (ADS)

    Newcombe, M. E.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    We have conducted water diffusion experiments in synthetic Apollo 15 "yellow glass" (LG) and an iron-free basaltic analog melt (AD) at 1 atm and 1350 °C over a range of fO2 conditions from IW-2.2 to IW+6.7 and over a range of pH2/pH2O from nominally zero to 10. The water concentrations measured in our quenched experimental glasses by SIMS and FTIR vary from a few ppm to 430 ppm. Many studies of water diffusion at higher water concentrations indicate that the apparent diffusivity of total water (D*water; see [1]) in silicate melts is highly concentration dependent at water contents >0.1 wt% (e.g., [1]). However, water concentration gradients in each of our AD and LG experiments are well described by models in which D*water is assumed to be constant. Best-fit values of D*water obtained for our AD and LG experiments are consistent with a modified speciation model [2] in which both molecular water and hydroxyl are allowed to diffuse, and in which hydroxyl is the dominant diffusing species at the low total water concentrations of our experiments. Water concentration gradients generated during hydration and dehydration experiments conducted simultaneously propagate approximately equal distances into the melt and have the same concentration of water dissolved in the melt at the melt-vapor interface, suggesting that hydration and dehydration are symmetric under the conditions of our experiments. Best-fit values of D*water for our LG experiments vary within a factor of 2 over a range of pH2/pH2O from 0.007 to 9.7 (a range of ƒO2 from IW-2.2 to IW+4.9) and a water concentration range from 80 ppm to 280 ppm. The relative insensitivity of D*water to variations in pH2 suggests that loss of H during the degassing of the lunar melts described by [3] was not primarily by loss of dissolved H2. The value of D*water chosen by [3] for modeling diffusive degassing of lunar volcanic glasses is within a factor of three of our measured value in LG melt at 1350 °C. [1] Zhang et al. (1991) GCA 55, 441-456; [2] Ni et al. (2013) GCA 103, 36-48; [3] Saal et al. (2008) Nature 454, 192-195.

  10. Cumulant expansions for measuring water exchange using diffusion MRI

    NASA Astrophysics Data System (ADS)

    Ning, Lipeng; Nilsson, Markus; Lasič, Samo; Westin, Carl-Fredrik; Rathi, Yogesh

    2018-02-01

    The rate of water exchange across cell membranes is a parameter of biological interest and can be measured by diffusion magnetic resonance imaging (dMRI). In this work, we investigate a stochastic model for the diffusion-and-exchange of water molecules. This model provides a general solution for the temporal evolution of dMRI signal using any type of gradient waveform, thereby generalizing the signal expressions for the Kärger model. Moreover, we also derive a general nth order cumulant expansion of the dMRI signal accounting for water exchange, which has not been explored in earlier studies. Based on this analytical expression, we compute the cumulant expansion for dMRI signals for the special case of single diffusion encoding (SDE) and double diffusion encoding (DDE) sequences. Our results provide a theoretical guideline on optimizing experimental parameters for SDE and DDE sequences, respectively. Moreover, we show that DDE signals are more sensitive to water exchange at short-time scale but provide less attenuation at long-time scale than SDE signals. Our theoretical analysis is also validated using Monte Carlo simulations on synthetic structures.

  11. Wooden Breast Myodegeneration of Pectoralis Major Muscle Over the Growth Period in Broilers.

    PubMed

    Sihvo, H-K; Lindén, J; Airas, N; Immonen, K; Valaja, J; Puolanne, E

    2017-01-01

    Wooden breast (WB) myopathy of broiler chickens is a myodegenerative disease of an unknown etiology and is macroscopically characterized by a hardened consistency of the pectoralis major muscle. Our aim was to describe the development and morphology of WB over the growth period in broilers. Additionally, the effect of restricted dietary selenium on the occurrence of WB was examined by allocating the birds in 2 dietary groups: restricted and conventional level of selenium. The experiment included 240 male broilers that were euthanized at ages of 10, 18, 24, 35, 38, or 42 days and evaluated for WB based on abnormal hardness of the pectoralis major muscle. The severity and the distribution of the lesion and presence of white striping were recorded. The first WB cases were seen at 18 days; 13/47 birds (28%) were affected and the majority exhibited a mild focal lesion. In subsequent age groups the WB prevalence varied between 48% and 73% and the lesion was usually diffuse and markedly firm. White striping often coexisted with WB. Histological evaluation performed on 111 cases revealed a significant association of myodegeneration and lymphocytic vasculitis with WB. Vasculitis and perivascular cell infiltration were restricted to the veins. Restricted dietary selenium did not affect the occurrence of WB ( P = .44). Our results indicate that WB starts focally and spreads to form a diffuse and more severe lesion.

  12. Role of Water Activity on Intergranular Transport at High Pressure

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Brunet, F.; Brantut, N.; Corvisier, J.; Findling, N.; Verlaguet, A.; Lathe, C.

    2016-12-01

    The kinetics of the reaction Ca(OH)2 + MgCO3 = CaCO3 + Mg(OH)2 were investigated at a pressure of 1.8 GPa and temperatures of 120-550°C, using synchrotron X-ray diffraction and analysis of reaction rims on recovered samples. Comparable reaction kinetics were obtained under water saturated ( 10 wt.%), intermediate (0.1-1 wt.%) and dry conditions at 150, 400 and 550°C, respectively, where, in the latter case, water activity was buffered below one (no free water). At a given temperature, these gaps imply differences of several orders of magnitude in terms of reaction kinetics. Microscopy analysis shows that intergranular transport of Ca controls the reaction progress. Grain boundary diffusivities were retrieved from measurements of reaction rim widths on recovered samples. In addition, an innovative reaction rim growth model was developed to simulate and fit kinetic data. The diffusion values thus obtained show that both dry and intermediate datasets are in fact consistent with a water saturated intergranular medium with different levels of connectivity. Diffusivity of Ca in the CaCO3 + Mg(OH)2 rims is found to be much larger than that of Mg in enstatite rims, which emphasizes the prominent role of interactions between diffusing species and mineral surfaces on diffusion. We suggest that diffusivity of major species (Mg, Ca) in low-porosity metamorphic rocks is not only water-content dependent but also strongly depends on the interaction between diffusing species and mineral surfaces. This parameter, which will vary from one rock-type to the other, needs to be considered when extrapolating (P,T,t, xH2O) laboratory diffusion data to metamorphic processes. The present study, along with previous data from the literature, will help quantify the tremendous effect of small water content variations, i.e., within the 0-1 wt. % range, on intergranular transport and reaction kinetics (Gasc et al., J. Pet., In press).

  13. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer

    NASA Astrophysics Data System (ADS)

    Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan

    2018-03-01

    Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.

  14. Interplay between inhibited transport and reaction in nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, David Michael

    2013-01-01

    This work presents a detailed formulation of reaction and diffusion dynamics of molecules in confined pores such as mesoporous silica and zeolites. A general reaction-diffusion model and discrete Monte Carlo simulations are presented. Both transient and steady state behavior is covered. Failure of previous mean-field models for these systems is explained and discussed. A coarse-grained, generalized hydrodynamic model is developed that accurately captures the interplay between reaction and restricted transport in these systems. This method incorporates the non-uniform chemical diffusion behavior present in finite pores with multi-component diffusion. Two methods of calculating these diffusion values are developed: a random walkmore » based approach and a driven diffusion model based on an extension of Fick's law. The effects of reaction, diffusion, pore length, and catalytic site distribution are investigated. In addition to strictly single file motion, quasi-single file diffusion is incorporated into the model to match a range of experimental systems. The connection between these experimental systems and model parameters is made through Langevin dynamics modeling of particles in confined pores.« less

  15. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy.

    PubMed

    Jelescu, Ileana O; Zurek, Magdalena; Winters, Kerryanne V; Veraart, Jelle; Rajaratnam, Anjali; Kim, Nathanael S; Babb, James S; Shepherd, Timothy M; Novikov, Dmitry S; Kim, Sungheon G; Fieremans, Els

    2016-05-15

    There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities. We evaluate the potential of WMTI to quantify demyelination by monitoring the effects of both acute (6weeks) and chronic (12weeks) cuprizone intoxication and subsequent recovery in the mouse corpus callosum, and compare its performance with that of conventional metrics (T2, magnetization transfer, and DTI parameters). The changes observed in vivo correlated with those obtained from quantitative electron microscopy image analysis. A 6-week intoxication produced a significant decrease in axonal water fraction (p<0.001), with only mild changes in extra-axonal radial diffusivity, consistent with patchy demyelination, while a 12-week intoxication caused a more marked decrease in extra-axonal radial diffusivity (p=0.0135), consistent with more severe demyelination and clearance of the extra-axonal space. Results thus revealed increased specificity of the axonal water fraction and extra-axonal radial diffusivity parameters to different degrees and patterns of demyelination. The specificities of these parameters were corroborated by their respective correlations with microstructural features: the axonal water fraction correlated significantly with the electron microscopy derived total axonal water fraction (ρ=0.66; p=0.0014) but not with the g-ratio, while the extra-axonal radial diffusivity correlated with the g-ratio (ρ=0.48; p=0.0342) but not with the electron microscopy derived axonal water fraction. These parameters represent promising candidates as clinically feasible biomarkers of demyelination and remyelination in the white matter. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Long-Term Pulmonary Function in Survivors of Childhood Cancer

    PubMed Central

    Armenian, Saro H.; Landier, Wendy; Francisco, Liton; Herrera, Claudia; Mills, George; Siyahian, Aida; Supab, Natt; Wilson, Karla; Wolfson, Julie A.; Horak, David; Bhatia, Smita

    2015-01-01

    Purpose This study was undertaken to determine the magnitude of pulmonary dysfunction in childhood cancer survivors when compared with healthy controls and the extent (and predictors) of decline over time. Patients and Methods Survivors underwent baseline (t1) pulmonary function tests, followed by a second comprehensive evaluation (t2) after a median of 5 years (range, 1.0 to 10.3 years). Survivors were also compared with age- and sex-matched healthy controls at t2. Results Median age at cancer diagnosis was 16.5 years (range, 0.2 to 21.9 years), and time from diagnosis to t2 was 17.1 years (range, 6.3 to 40.1 years). Compared with odds for healthy controls, the odds of restrictive defects were increased 6.5-fold (odds ratio [OR], 6.5; 95% CI, 1.5 to 28.4; P < .01), and the odds of diffusion abnormalities were increased 5.2-fold (OR, 5.2; 95% CI, 1.8 to 15.5; P < .01). Among survivors, age younger than 16 years at diagnosis (OR, 3.0; 95% CI, 1.2 to 7.8; P = .02) and exposure to more than 20 Gy chest radiation (OR, 5.6; 95% CI, 1.5 to 21.0; P = .02, referent, no chest radiation) were associated with restrictive defects. Female sex (OR, 3.9; 95% CI, 1.7 to 9.5; P < .01) and chest radiation dose (referent: no chest radiation; ≤ 20 Gy: OR, 6.4; 95% CI, 1.7 to 24.4; P < .01; > 20 Gy: OR, 11.3; 95% CI, 2.6 to 49.5; P < .01) were associated with diffusion abnormalities. Among survivors with normal pulmonary function tests at t1, females and survivors treated with more than 20 Gy chest radiation demonstrated decline in diffusion function over time. Conclusion Childhood cancer survivors exposed to pulmonary-toxic therapy are significantly more likely to have restrictive and diffusion defects when compared with healthy controls. Diffusion capacity declines with time after exposure to pulmonary-toxic therapy, particularly among females and survivors treated with high-dose chest radiation. These individuals could benefit from subsequent monitoring. PMID:25847925

  17. Evaluating Outdoor Water Use Demand under Changing Climatic and Demographic Conditions: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Kanta, L.

    2016-12-01

    Outdoor water use for landscape and irrigation constitutes a significant end use in residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water use restrictions. Because utilities do not typically record outdoor and indoor water uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density or lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, records of outdoor conservation programs, frequency and type of mandatory water use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.

  18. Evaluating Outdoor Water Use Demand under Changing Climatic and Demographic Conditions: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Berglund, E. Z.; Soh, M. H.

    2017-12-01

    Outdoor water-use for landscape and irrigation constitutes a significant end-use in total residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water-use restrictions. Because utilities do not typically record outdoor and indoor water-uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density, lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, outdoor conservation programs, frequency and type of mandatory water-use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.

  19. Diffusion coefficient and shear viscosity of rigid water models.

    PubMed

    Tazi, Sami; Boţan, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin

    2012-07-18

    We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity.

  20. A Comparison of Ultrasonography, Computerised Tomography, and Conventional MRI Findings for Splenic Nodules Associated with Type 1 Gaucher’s Disease with Diffusion-Weighted MRI Findings

    PubMed Central

    Albayrak, Eda; Sonmezgoz, Fitnet; Ozmen, Zafer; Aktas, Fatma; Altunkas, Aysegul

    2017-01-01

    A 26-year-old female patient with Type 1 Gaucher’s disease (GD) was admitted to our clinic with complaints of stomachache and signs of anemia. The patient underwent ultrasonography (US), computerised tomography (CT), and magnetic resonance imaging (MRI) scan. Imaging studies revealed massive hepatosplenomegaly, choledocolithiasis, and six nodules in the spleen with a mean size of 14 mm. The nodules appeared hyperechoic, hypoechoic, and of mixed echogenicity on the US and hypodense on the CT. While the nodules were observed to be iso-hypointense in T1-weighted (T1WI) images, they appeared to be hyperintense in the T2-weighted (T2WI) images. There were no diffusion restrictions in these nodules that appeared on the diffusion-weighted magnetic resonance imaging (DWI). A nodule located at the lower pole was observed to be hypointense in the T2WI images. The nodule located at the lower pole, which appeared hypointense in T2WI series, had restricted diffusion upon DWI. In this study, we aimed to present the properties of splenic GD nodules using US, CT, and conventional MRI, together with DWI. This case report is the first to apply US, CT, and conventional MRI, together with DWI, to the splenic nodules associated with Gaucher’s disease. PMID:29386979

  1. Water dynamics in different biochar fractions.

    PubMed

    Conte, Pellegrino; Nestle, Nikolaus

    2015-09-01

    Biochar is a carbonaceous porous material deliberately applied to soil to improve its fertility. The mechanisms through which biochar acts on fertility are still poorly understood. The effect of biochar texture size on water dynamics was investigated here in order to provide information to address future research on nutrient mobility towards plant roots as biochar is applied as soil amendment. A poplar biochar has been stainless steel fractionated in three different textured fractions (1.0-2.0 mm, 0.3-1.0 mm and <0.3 mm, respectively). Water-saturated fractions were analyzed by fast field cycling (FFC) NMR relaxometry. Results proved that 3D exchange between bound and bulk water predominantly occurred in the coarsest fraction. However, as porosity decreased, water motion was mainly associated to a restricted 2D diffusion among the surface-site pores and the bulk-site ones. The X-ray μ-CT imaging analyses on the dry fractions revealed the lowest surface/volume ratio for the coarsest fraction, thereby corroborating the 3D water exchange mechanism hypothesized by FFC NMR relaxometry. However, multi-micrometer porosity was evidenced in all the samples. The latter finding suggested that the 3D exchange mechanism cannot even be neglected in the finest fraction as previously excluded only on the basis of NMR relaxometry results. X-ray μ-CT imaging showed heterogeneous distribution of inorganic materials inside all the fractions. The mineral components may contribute to the water relaxation mechanisms by FFC NMR relaxometry. Further studies are needed to understand the role of the inorganic particles on water dynamics. Copyright © 2015 John Wiley & Sons, Ltd.

  2. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  3. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  4. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  5. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  6. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  7. Considerations for sampling inorganic constituents in ground water using diffusion samplers

    USGS Publications Warehouse

    Vroblesky, D.A.; Petkewich, M.D.; Campbell, T.R.; ,

    2002-01-01

    Data indicate that nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water from wells that closely correspond to concentrations obtained by low-flow sampling. Conservative solutes, such as chloride, can be sampled by filling the diffusion samplers with oxygenated water. The samplers should be filled with anaerobic water for sampling redoxsensitive solutes. Oxidation of iron within the samplers, either by using aerobic fill water or by in-well oxygenation events, can lead to erroneous iron concentrations. Lithologic and chemical heterogeneity and sampler placement depth can lead to differences between concentrations from diffusion samples and low-flow samples because of mixing during pumping. A disadvantage of regenerated cellulose dialysis samplers is that they can begin to biodegrade within the two weeks of deployment. Nylon-screen samplers buried beneath streambed sediment along the unnamed tributary in a discharge zone of arseniccontaminated ground water were useful in locating the specific discharge zone.

  8. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.

    2012-05-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.

  9. Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.

    PubMed

    Annunziata, Onofrio; Buzatu, Daniela; Albright, John G

    2012-10-25

    Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.

  10. Ion beam analysis of diffusion in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Clough, A. S.; Jenneson, P. M.

    1998-04-01

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.

  11. Diffusion coefficients in systems with inclusion compounds. 1. alpha. -Cyclodextrin-L-phenylalanine-water at 25 degree C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paduano, L.; Sartorio, R.; Vitagliano, V.

    Diffusion coefficients in the ternary system {alpha}-cyclodextrin (at one concentration)-L-phenylalanine (at four concentrations)-water have been measured by using the Gouy interferometric technique. The effect of the inclusion equilibrium on the cross-term diffusion coefficients was observed. The measured diffusion coefficients in the ternary systems were used to calculate values of the binding constants. These values are in good agreement with the value obtained from calorimetric studies.

  12. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  13. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  14. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  15. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  16. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  17. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  18. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  19. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  20. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  1. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  2. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison.

    PubMed

    Panagiotaki, Eleftheria; Schneider, Torben; Siow, Bernard; Hall, Matt G; Lythgoe, Mark F; Alexander, Daniel C

    2012-02-01

    This paper aims to identify the minimum requirements for an accurate model of the diffusion MR signal in white matter of the brain. We construct a taxonomy of multi-compartment models of white matter from combinations of simple models for the intra- and the extra-axonal spaces. We devise a new diffusion MRI protocol that provides measurements with a wide range of imaging parameters for diffusion sensitization both parallel and perpendicular to white matter fibres. We use the protocol to acquire data from two fixed rat brains, which allows us to fit, study and compare the different models. The study examines a total of 47 analytic models, including several well-used models from the literature, which we place within the taxonomy. The results show that models that incorporate intra-axonal restriction, such as ball and stick or CHARMED, generally explain the data better than those that do not, such as the DT or the biexponential models. However, three-compartment models which account for restriction parallel to the axons and incorporate pore size explain the measurements most accurately. The best fit comes from combining a full diffusion tensor (DT) model of the extra-axonal space with a cylindrical intra-axonal component of single radius and a third spherical compartment of non-zero radius. We also measure the stability of the non-zero radius intra-axonal models and find that single radius intra-axonal models are more stable than gamma distributed radii models with similar fitting performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.

    PubMed Central

    Feder, T J; Brust-Mascher, I; Slattery, J P; Baird, B; Webb, W W

    1996-01-01

    Protein lateral mobility in cell membranes is generally measured using fluorescence photobleaching recovery (FPR). Since the development of this technique, the data have been interpreted by assuming free Brownian diffusion of cell surface receptors in two dimensions, an interpretation that requires that a subset of the diffusing species remains immobile. The origin of this so-called immobile fraction remains a mystery. In FPR, the motions of thousands of particles are inherently averaged, inevitably masking the details of individual motions. Recently, tracking of individual cell surface receptors has identified several distinct types of motion (Gross and Webb, 1988; Ghosh and Webb, 1988, 1990, 1994; Kusumi et al. 1993; Qian et al. 1991; Slattery, 1995), thereby calling into question the classical interpretation of FPR data as free Brownian motion of a limited mobile fraction. We have measured the motion of fluorescently labeled immunoglobulin E complexed to high affinity receptors (Fc epsilon RI) on rat basophilic leukemia cells using both single particle tracking and FPR. As in previous studies, our tracking results show that individual receptors may diffuse freely, or may exhibit restricted, time-dependent (anomalous) diffusion. Accordingly, we have analyzed FPR data by a new model to take this varied motion into account, and we show that the immobile fraction may be due to particles moving with the anomalous subdiffusion associated with restricted lateral mobility. Anomalous subdiffusion denotes random molecular motion in which the mean square displacements grow as a power law in time with a fractional positive exponent less than one. These findings call for a new model of cell membrane structure. PMID:8744314

  4. The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter.

    PubMed

    Nilsson, Markus; van Westen, Danielle; Ståhlberg, Freddy; Sundgren, Pia C; Lätt, Jimmy

    2013-08-01

    Biophysical models that describe the outcome of white matter diffusion MRI experiments have various degrees of complexity. While the simplest models assume equal-sized and parallel axons, more elaborate ones may include distributions of axon diameters and axonal orientation dispersions. These microstructural features can be inferred from diffusion-weighted signal attenuation curves by solving an inverse problem, validated in several Monte Carlo simulation studies. Model development has been paralleled by microscopy studies of the microstructure of excised and fixed nerves, confirming that axon diameter estimates from diffusion measurements agree with those from microscopy. However, results obtained in vivo are less conclusive. For example, the amount of slowly diffusing water is lower than expected, and the diffusion-encoded signal is apparently insensitive to diffusion time variations, contrary to what may be expected. Recent understandings of the resolution limit in diffusion MRI, the rate of water exchange, and the presence of microscopic axonal undulation and axonal orientation dispersions may, however, explain such apparent contradictions. Knowledge of the effects of biophysical mechanisms on water diffusion in tissue can be used to predict the outcome of diffusion tensor imaging (DTI) and of diffusion kurtosis imaging (DKI) studies. Alterations of DTI or DKI parameters found in studies of pathologies such as ischemic stroke can thus be compared with those predicted by modelling. Observations in agreement with the predictions strengthen the credibility of biophysical models; those in disagreement could provide clues of how to improve them. DKI is particularly suited for this purpose; it is performed using higher b-values than DTI, and thus carries more information about the tissue microstructure. The purpose of this review is to provide an update on the current understanding of how various properties of the tissue microstructure and the rate of water exchange between microenvironments are reflected in diffusion MRI measurements. We focus on the use of biophysical models for extracting tissue-specific parameters from data obtained with single PGSE sequences on clinical MRI scanners, but results obtained with animal MRI scanners are also considered. While modelling of white matter is the central theme, experiments on model systems that highlight important aspects of the biophysical models are also reviewed.

  5. NMR Water Self–Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions

    PubMed Central

    Bai, Ruiliang; Basser, Peter J.; Briber, Robert M.; Horkay, Ferenc

    2013-01-01

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001

  6. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    PubMed

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca 2+ and Na + . Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na + on the mobility of water molecules was practically undetectable. By contrast, addition of Ca 2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

  7. Boat Hull Blisters: Repair Techniques and Long Term Effects on Hull Degradation

    DTIC Science & Technology

    1988-08-01

    Swelling Stresses Produced by Diffusion; Long Term Damage by Water Absorption ; Effects of Gel Coat on Leaching of Water Soluble Material from...leinforcesents 5. Swelling Stresses Produced by Diffusion 6. Long Term Damage by Water Absorption 7. Effects of Gel Coat on Leaching of Water Soluble...the importance of bilge side water pick-up is emphasized. A second method for preventing blister formation is to eliminate or minimize the water soluble

  8. Diffusive parameters of tritiated water and uranium in chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descostes, M.; UMR 8587 CEA, Universite d'Evry, CNRS,; Pili, E.

    2012-07-15

    The Cretaceous Chalk of North-western Europe exhibits a double porosity (matrix and fracture) providing pathways for both slow and rapid flow of water. The present study aims at understanding and predicting the contaminant transfer properties through a significant section of this formation, with a particular emphasis on diffusion. This requires to study the nature of porosity and to perform diffusion experiments in representative samples using uranium and tritiated water (HTO), respectively taken as a reactive tracer and an inert one. The diffusive parameters, i.e. the accessible porosity and the effective diffusion coefficient were determined. Additional information was obtained with mercurymore » porosimetry, gravimetric water content, textural and mineralogical characterization. The diffusion tests performed with HTO appear to be the best method to measure the total accessible porosity in any type of porous media, especially those having large pore size distributions. Our study demonstrates that classical gravimetric water content measurements are not sensitive to the reduction in pore size as opposed to HTO diffusion tests because capillary water is not extracted by conventional gravimetric method but can still be probed by diffusion experiments. We found effective diffusion coefficients D{sub e}(U(VI)) near 4 x 10{sup -10} m{sup 2}s{sup -1}). The slower migration of U(VI) compared to HTO indicates sorption, with R{sub d}(U(VI)) from 100 to 360 mL g{sup -1}. These values are one order of magnitude larger than other determinations of the U(VI) sorption coefficient because only the matrix porosity is concerned here. The migration of U(VI) in chalk is only limited by sorption on ancillary Fe-Pb-bearing minerals. Transport of HTO and U(VI) is independent of the porosity distribution. Uranium diffusion in the chalk matrix porosity is fast enough to allow the total invasion of the pore space within characteristic time scales of the order of 1000 years. This results in a partitioning of uranium velocities in fracture flow and matrix flow proportionally to the respective fracture and matrix porosities. (authors)« less

  9. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    NASA Astrophysics Data System (ADS)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  10. NMR diffusion simulation based on conditional random walk.

    PubMed

    Gudbjartsson, H; Patz, S

    1995-01-01

    The authors introduce here a new, very fast, simulation method for free diffusion in a linear magnetic field gradient, which is an extension of the conventional Monte Carlo (MC) method or the convolution method described by Wong et al. (in 12th SMRM, New York, 1993, p.10). In earlier NMR-diffusion simulation methods, such as the finite difference method (FD), the Monte Carlo method, and the deterministic convolution method, the outcome of the calculations depends on the simulation time step. In the authors' method, however, the results are independent of the time step, although, in the convolution method the step size has to be adequate for spins to diffuse to adjacent grid points. By always selecting the largest possible time step the computation time can therefore be reduced. Finally the authors point out that in simple geometric configurations their simulation algorithm can be used to reduce computation time in the simulation of restricted diffusion.

  11. Molecular dynamics study of the diffusivity of a hydrophobic drug Cucurbitacin B in pseudo-poly(ethylene oxide-b-caprolactone) micelle environments.

    PubMed

    Razavilar, Negin; Choi, Phillip

    2014-07-08

    Isobaric-isothermal molecular dynamics simulation was used to study the diffusion of a hydrophobic drug Cucurbitacin B (CuB) in pseudomicelle environments consisting of poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) swollen by various amounts of water. Two PEO-b-PCL configurations, linear and branched, with the same total molecular weight were used. For the branched configuration, the block copolymer contained one linear block of PEO with the same molecular weight as that of the PEO block used in the linear configuration but with one end connecting to three PCL blocks with the same chain length, hereafter denoted PEO-b-3PCL. Regardless of the configuration, the simulation results showed that the diffusivity of CuB was insensitive to the water concentration up to ∼8 wt % while that of water decreased with an increasing water concentration. The diffusivity of CuB (10(-8) cm(2)/s) was 3 orders of magnitude lower than that of water (10(-5) cm(2)/s). This is attributed to the fact that CuB relied on the wiggling motion of the block copolymers to diffuse while water molecules diffused via a hopping mechanism. The rates at which CuB and water diffused into PEO-b-PCL were twice those in PEO-b-3PCL because the chain mobility and the degree of swelling are higher and there are fewer intermolecular hydrogen bonds in the case of PEO-b-PCL. The velocity autocorrelation functions of CuB show that the free volume holes formed by PEO-b-3PCL are more rigid than those formed by PEO-b-PCL, making CuB exhibit higher-frequency collision motion in PEO-b-3PCL than in PEO-b-PCL, and the difference in frequency is insensitive to water concentration.

  12. Distribution of selected volatile organic compounds determined with water-to-vapor diffusion samplers at the interface between ground water and surface water, Centredale Manor site, North Providence, Rhode Island, September 1999

    USGS Publications Warehouse

    Church, Peter E.; Lyford, Forest P.; Clifford, Scott

    2000-01-01

    Volatile organic compounds are present in soils and ground water at the Centredale Manor Superfund Site in North Providence, Rhode Island. In September 1999, water-to-vapor diffusion samplers were placed in the bottom sediments of waterways adjacent to the site to identify possible contaminated ground-water discharge areas. The approximate12-acre site is a narrow stretch of land between the eastern bank of the Woonasquatucket River, downstream from the U.S. Route 44 bridge and a former mill raceway. The samplers were placed along a 2,250-foot reach of the Woonasquatucket River, in the former mill raceway several hundred feet to the east and parallel to the river, and in a cross channel between the river and former mill raceway. Volatile organic compounds were detected in 84 of the 104 water-to-vapor diffusion samplers retrieved. Trichloroethylene and tetrachloro-ethylene were the principal volatile organic compounds detected. The highest vapor concentrations measured for these two chemicals were from diffusion samplers located along an approximate 100-foot reach of the Woonasquatucket River about 500 feet downstream of the bridge; here trichloroethylene and tetrachloroethylene vapor concentrations ranged from about 2,000 to 180,000 and 1,600 to 1,400,000 parts per billion by volume, respectively. Upstream and downstream from this reach and along the former mill raceway, trichloroethylene and tetrachloroethylene vapor concentrations from the diffusion samples were generally less than 100 parts per billion by volume. Along the lower reaches of the river and mill raceway, however, and in the cross channel, vapor concentrations of trichloroethylene exceeded 100 parts per billion by volume and tetrachloroethylene exceeded 1,000 parts per billion by volume in several diffusion samples. Although diffusion sample vapor concentrations are higher than water concentrations in surface waters and in ground water, and they should only be interpreted qualitatively as relative values, these values provide important information as to potential discharge areas of contaminants.

  13. Measurement of the Diffusion Coefficient of Water in RP-3 and RP-5 Jet Fuels Using Digital Holography Interferometry

    NASA Astrophysics Data System (ADS)

    Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua

    2018-04-01

    The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.

  14. The Mechanism of Isotonic Water Transport

    PubMed Central

    Diamond, Jared M.

    1964-01-01

    The mechanism by which active solute transport causes water transport in isotonic proportions across epithelial membranes has been investigated. The principle of the experiments was to measure the osmolarity of the transported fluid when the osmolarity of the bathing solution was varied over an eightfold range by varying the NaCl concentration or by adding impermeant non-electrolytes. An in vitro preparation of rabbit gall bladder was suspended in moist oxygen without an outer bathing solution, and the pure transported fluid was collected as it dripped off the serosal surface. Under all conditions the transported fluid was found to approximate an NaCl solution isotonic to whatever bathing solution used. This finding means that the mechanism of isotonic water transport in the gall bladder is neither the double membrane effect nor co-diffusion but rather local osmosis. In other words, active NaCl transport maintains a locally high concentration of solute in some restricted space in the vicinity of the cell membrane, and water follows NaCl in response to this local osmotic gradient. An equation has been derived enabling one to calculate whether the passive water permeability of an organ is high enough to account for complete osmotic equilibration of actively transported solute. By application of this equation, water transport associated with active NaCl transport in the gall bladder cannot go through the channels for water flow under passive conditions, since these channels are grossly too impermeable. Furthermore, solute-linked water transport fails to produce the streaming potentials expected for water flow through these passive channels. Hence solute-linked water transport does not occur in the passive channels but instead involves special structures in the cell membrane, which remain to be identified. PMID:14212146

  15. Passive Rocket Diffuser Testing: Reacting Flow Performance of Four Second-Throat Geometries

    NASA Technical Reports Server (NTRS)

    Jones, Daniel R.; Allgood, Daniel C.; Saunders, Grady P.

    2016-01-01

    Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure. As one of the nation's largest rocket testing facilities, the performance and design limitations of diffusers are of great interest to NASA's Stennis Space Center. This paper describes a series of tests conducted on four diffuser configurations to better understand the effects of inlet geometry and throat area on starting behavior and boundary layer separation. The diffusers were tested for a duration of five seconds with a 1455-pound thrust, LO2/GH2 thruster to ensure they each reached aerodynamic steady state. The effects of a water spray ring at the diffuser exits and a water-cooled deflector plate were also evaluated. Static pressure and temperature measurements were taken at multiple axial locations along the diffusers, and Computational Fluid Dynamics (CFD) simulations were used as a tool to aid in the interpretation of data. The hot combustion products were confirmed to enable the diffuser start condition with tighter second throats than predicted by historical cold-flow data or the theoretical normal shock method. Both aerodynamic performance and heat transfer were found to increase with smaller diffuser throats. Spray ring and deflector cooling water had negligible impacts on diffuser boundary layer separation. CFD was found to accurately capture diffuser shock structures and full-flowing diffuser wall pressures, and the qualitative behavior of heat transfer. However, the ability to predict boundary layer separated flows was not consistent.

  16. Molecular dynamics simulation of the diffusion of uranium species in clay pores.

    PubMed

    Liu, Xiao-yu; Wang, Lu-hua; Zheng, Zhong; Kang, Ming-liang; Li, Chun; Liu, Chun-li

    2013-01-15

    Molecular dynamics simulations were carried out to investigate the diffusive behavior of aqueous uranium species in montmorillonite pores. Three uranium species (UO(2)(2+), UO(2)CO(3), UO(2)(CO(3))(2)(2-)) were confirmed in both the adsorbed and diffuse layers. UO(2)(CO(3))(3)(4-) was neglected in the subsequent analysis due to its scare occurrence. The species-based diffusion coefficients in montmorillonite pores were then calculated, and compared with the water mobility and their diffusivity in aqueous solution/feldspar nanosized fractures. Three factors were considered that affected the diffusive behavior of the uranium species: the mobility of water, the self-diffusion coefficient of the aqueous species, and the electrostatic forces between the negatively charged surface and charged molecules. The mobility of U species in the adsorbed layer decreased in the following sequence: UO(2)(2+)>UO(2)CO(3)>UO(2)(CO(3))(2)(2-). In the diffuse layer, we obtained the highest diffusion coefficient for UO(2)(CO(3))(2)(2-) with the value of 5.48×10(-10) m(2) s(-1), which was faster than UO(2)(2+). For these two charged species, the influence of electrostatic forces on the diffusion of solutes in the diffuse layer is overwhelming, whereas the influence of self-diffusion and water mobility is minor. Our study demonstrated that the negatively charged uranyl carbonate complex must be addressed in the safety assessment of potential radioactive waste disposal systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Bianchi, Daniele; Pradal, Marie-Aude

    2013-10-01

    of the oceanic lateral eddy diffusion coefficient Aredi vary by more than an order of magnitude, ranging from less than a few hundred m2/s to thousands of m2/s. This uncertainty has first-order implications for the intensity of oceanic hypoxia, which is poorly simulated by the current generation of Earth System Models. Using satellite-based estimate of oxygen consumption in hypoxic waters to estimate the required diffusion coefficient for these waters gives a value of order 1000 m2/s. Varying Aredi across a suite of Earth System Models yields a broadly consistent result given a thermocline diapycnal diffusion coefficient of 1 × 10-5 m2/s.

  18. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from the...

  19. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from the...

  20. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from the...

  1. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from the...

  2. Anisotropic diffusion of metabolites in peripheral nerve using diffusion weighted magnetic resonance spectroscopy at ultra-high field

    NASA Astrophysics Data System (ADS)

    Ellegood, Jacob; McKay, Ryan T.; Hanstock, Chris C.; Beaulieu, Christian

    2007-01-01

    Although the diffusivity and anisotropy of water has been investigated thoroughly in ordered axonal systems (i.e., nervous tissue), there have been very few studies on the directional dependence of diffusion of metabolites. In this study, the mean apparent diffusion coefficient (Trace/3 ADC) and fractional anisotropy (FA) values of the intracellular metabolites N-acetyl aspartate (NAA), creatine and phosphocreatine (tCr), choline (Cho), taurine (Tau), and glutamate and glutamine (Glx) were measured parallel and perpendicular to the length of excised frog sciatic nerve using a water suppressed, diffusion-weighted, spin-echo pulse sequence at 18.8 T. The degree of anisotropy (FA) of NAA (0.41 ± 0.09) was determined to be less than tCr (0.59 ± 0.07) and Cho (0.61 ± 0.11), which is consistent with previously reported human studies of white matter. In contrast, Glx diffusion was found to be almost isotropic with an FA value of 0.20 ± 0.06. The differences of FA between the metabolites is most likely due to their differing micro-environments and could be beneficial as an indicator of compartment specific changes with disease, information not readily available with water diffusion.

  3. Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media.

    PubMed

    Bourg, Ian C; Sposito, Garrison

    2010-03-15

    In this paper, we address the manner in which the continuum-scale diffusive properties of smectite-rich porous media arise from their molecular- and pore-scale features. Our starting point is a successful model of the continuum-scale apparent diffusion coefficient for water tracers and cations, which decomposes it as a sum of pore-scale terms describing diffusion in macropore and interlayer "compartments." We then apply molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients D(interlayer) of water tracers and representative cations (Na(+), Cs(+), Sr(2+)) in Na-smectite interlayers. We find that a remarkably simple expression relates D(interlayer) to the pore-scale parameter δ(nanopore) ≤ 1, a constrictivity factor that accounts for the lower mobility in interlayers as compared to macropores: δ(nanopore) = D(interlayer)/D(0), where D(0) is the diffusion coefficient in bulk liquid water. Using this scaling expression, we can accurately predict the apparent diffusion coefficients of tracers H(2)0, Na(+), Sr(2+), and Cs(+) in compacted Na-smectite-rich materials.

  4. Adaptive hierarchical grid model of water-borne pollutant dispersion

    NASA Astrophysics Data System (ADS)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  5. Between Scylla and Charybdis: Hydrophobic Graphene-Guided Water Diffusion on Hydrophilic Substrates

    PubMed Central

    Kim, Jin-Soo; Choi, Jin Sik; Lee, Mi Jung; Park, Bae Ho; Bukhvalov, Danil; Son, Young-Woo; Yoon, Duhee; Cheong, Hyeonsik; Yun, Jun-Nyeong; Jung, Yousung; Park, Jeong Young; Salmeron, Miquel

    2013-01-01

    The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed. PMID:23896759

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Pooja; Ali, Sk. M., E-mail: musharaf@barc.gov.in

    Water in nanotube exhibits remarkably different properties from the bulk phase, which can be exploited in various nanoconfinement based technologies. The properties of water within nanotube can be further tuned by varying the nanotube electrostatics and functionalization of nanotube ends. Here, therefore, we investigate the effect of quantum partial charges and carbon nanotube (CNT) termination in terms of associated entropic forces. An attempt has been made to correlate the entropic forces with various dynamical and structural properties. The simulated structural features are consistent with general theoretical aspects, in which the interfacial water molecules at H terminated CNT are found tomore » be distributed in a different way as compared to other CNTs. The rotational entropy components for different cases of CNTs are well corroborated by the decay time of hydrogen bond (HB) correlation functions. A part of this event has been explained in terms of orientation of water molecules in the chain, i.e., the change in direction of dipole moment of water molecules in the chain and it has been revealed that the HBs of CNT confined water molecules show long preserving correlation if their rotations inside CNT are restricted. Furthermore, the translational entropy components are rationally integrated with the differing degree of translational constraints, added by the CNTs. To the best of our information, perhaps this is the first study where the thermodynamic effects introduced by H-termination and induced dipole of CNT have been investigated. Additionally, we present a bridge relation between “translational diffusivity and configurational entropy” for water transport from bulk phase to inside CNTs.« less

  7. Procedures for Behavioral Experiments in Head-Fixed Mice

    PubMed Central

    Guo, Zengcai V.; Hires, S. Andrew; Li, Nuo; O'Connor, Daniel H.; Komiyama, Takaki; Ophir, Eran; Huber, Daniel; Bonardi, Claudia; Morandell, Karin; Gutnisky, Diego; Peron, Simon; Xu, Ning-long; Cox, James; Svoboda, Karel

    2014-01-01

    The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilitate precise stimulus control, behavioral monitoring and neural recording. However, choice-based, perceptual decision tasks by head-fixed mice have only recently been introduced. Training mice relies on motivating mice using water restriction. Here we describe procedures for head-fixation, water restriction and behavioral training for head-fixed mice, with a focus on active, whisker-based tactile behaviors. In these experiments mice had restricted access to water (typically 1 ml/day). After ten days of water restriction, body weight stabilized at approximately 80% of initial weight. At that point mice were trained to discriminate sensory stimuli using operant conditioning. Head-fixed mice reported stimuli by licking in go/no-go tasks and also using a forced choice paradigm using a dual lickport. In some cases mice learned to discriminate sensory stimuli in a few trials within the first behavioral session. Delay epochs lasting a second or more were used to separate sensation (e.g. tactile exploration) and action (i.e. licking). Mice performed a variety of perceptual decision tasks with high performance for hundreds of trials per behavioral session. Up to four months of continuous water restriction showed no adverse health effects. Behavioral performance correlated with the degree of water restriction, supporting the importance of controlling access to water. These behavioral paradigms can be combined with cellular resolution imaging, random access photostimulation, and whole cell recordings. PMID:24520413

  8. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease

    PubMed Central

    Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C.; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia

    2011-01-01

    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies. PMID:22131273

  9. Diffusion-weighted magnetic resonance imaging of the fetal brain in intrauterine growth restriction.

    PubMed

    Arthurs, O J; Rega, A; Guimiot, F; Belarbi, N; Rosenblatt, J; Biran, V; Elmaleh, M; Sebag, G; Alison, M

    2017-07-01

    Diffusion-weighted magnetic resonance imaging (DWI) is a sensitive method for assessing brain maturation and detecting brain lesions, providing apparent diffusion coefficient (ADC) values as a measure of water diffusion. Abnormal ADC values are seen in ischemic brain lesions, such as those associated with acute or chronic hypoxia. The aim of this study was to assess whether ADC values in the fetal brain were different in fetuses with severe intrauterine growth restriction (IUGR) compared with normal controls. Brain magnetic resonance imaging (MRI) with single-shot axial DWI (b = 0 and b = 700 s/mm 2 ) was performed in 30 fetuses with severe IUGR (estimated fetal weight < 3 rd centile with absent or reversed umbilical artery Doppler flow) and in 24 normal controls of similar gestational age. Brain morphology and biometry were analyzed. ADC values were measured in frontal and occipital white matter, centrum semiovale, thalami, cerebellar hemisphere and pons. Frontal-occipital and frontal-cerebellar ADC ratios were calculated, and values were compared between IUGR fetuses and controls. There was no difference in gestational age at MRI between IUGR and control fetuses (IUGR, 30.2 ± 1.6 weeks vs controls, 30.7 ± 1.4 weeks). Fetal brain morphology and signals were normal in all fetuses. Brain dimensions (supratentorial ± infratentorial) were decreased (Z-score, < -2) in 20 (66.7%) IUGR fetuses. Compared with controls, IUGR fetuses had significantly lower ADC values in frontal white matter (1.97 ± 0.23 vs 2.17 ± 0.22 × 10 -3 mm 2 /s; P < 0.0001), thalami (1.04 ± 0.15 vs 1.13 ± 0.10 ×10 -3 mm 2 /s; P = 0.0002), centrum semiovale (1.86 ± 0.22 vs 1.97 ± 0.23 ×10 -3 mm 2 /s; P = 0.01) and pons (0.85 ± 0.19 vs 0.94 ± 0.12 ×10 -3 mm 2 /s; P = 0.043). IUGR fetuses had a lower frontal-occipital ADC ratio than did normal fetuses (1.00 ± 0.11 vs 1.08 ± 0.05; P = 0.003). ADC values in IUGR fetuses were significantly lower than in normal controls in the frontal white matter, thalami, centrum semiovale and pons, suggesting abnormal maturation in these regions. However, the prognostic value of these ADC changes is still unknown. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  10. Length of intact plasma membrane determines the diffusion properties of cellular water.

    PubMed

    Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi

    2016-01-11

    Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = -0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death.

  11. Length of intact plasma membrane determines the diffusion properties of cellular water

    PubMed Central

    Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi

    2016-01-01

    Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = −0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death. PMID:26750342

  12. External and Intraparticle Diffusion of Coumarin 102 with Surfactant in the ODS-silica Gel/water System by Single Microparticle Injection and Confocal Fluorescence Microspectroscopy.

    PubMed

    Nakatani, Kiyoharu; Matsuta, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase.

  13. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients.

    PubMed

    Chávez-Capilla, Teresa; Maher, William; Kelly, Tamsin; Foster, Simon

    2016-11-01

    Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species. Copyright © 2016. Published by Elsevier B.V.

  14. Pretreatment Prediction of Brain Tumors' Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI1

    PubMed Central

    Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402

  15. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI.

    PubMed

    Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.

  16. Water-in-Olivine Magma Ascent Chronometry: Every Crystal is a Clock

    NASA Astrophysics Data System (ADS)

    Newcombe, M. E.; Asimow, P. D.; Ferriss, E.; Barth, A.; Lloyd, A. S.; Hauri, E.; Plank, T. A.

    2017-12-01

    The syneruptive decompression rate of basaltic magma in volcanic conduits is thought to be a critical control on eruptive vigor. Recent efforts have constrained decompression rates using models of diffusive water loss from melt embayments (Lloyd et al. 2014; Ferguson et al. 2016), olivine-hosted melt inclusions (Chen et al. 2013; Le Voyer et al. 2014), and clinopyroxene phenocrysts (Lloyd et al. 2016). However, these techniques are difficult to apply because of the rarity of melt embayments and clinopyroxene phenocrysts suitable for analysis and the complexities associated with modeling water loss from melt inclusions. We are developing a new magma ascent chronometer based on syneruptive diffusive water loss from olivine phenocrysts. We have found water zonation in every olivine phenocryst we have measured, from explosive eruptions of Pavlof, Seguam, Fuego, Cerro Negro and Kilauea volcanoes. Phenocrysts were polished to expose a central plane normal to the crystallographic `b' axis and volatile concentration profiles were measured along `a' and `c' axes by SIMS or nanoSIMS. Profiles are compared to 1D and 3D finite-element models of diffusive water loss from olivine, with or without melt inclusions, whose boundaries are in equilibrium with a melt undergoing closed-system degassing. In every case, we observe faster water diffusion along the `a' axis, consistent with the diffusion anisotropy observed by Kohlstedt and Mackwell (1998) for the so-called `proton-polaron' mechanism of H-transport. Water concentration gradients along `a' match the 1D diffusion model with a diffusivity of 10-10 m2/s (see Plank et al., this meeting), olivine-melt partition coefficient of 0.0007­-0.002 (based on melt inclusion-olivine pairs), and decompression rates equal to the best-fit values from melt embayment studies (Lloyd et al. 2014; Ferguson et al. 2016). Agreement between the melt embayment and water-in-olivine ascent chronometers at Fuego, Seguam, and Kilauea Iki demonstrates the potential of this new technique, which can be applied to any olivine-bearing mafic-intermediate eruption using common analytical tools (SIMS and FTIR). In theory, each crystal is a clock, with the potential to record variable ascent in the conduit, over the course of an eruption, and between eruptions.

  17. Combining land use information and small stream sampling with PCR-based methods for better characterization of diffuse sources of human fecal pollution.

    PubMed

    Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C

    2011-07-01

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.

  18. [Stomach ulcers in the horse--clinical and gastroscopic findings in 12 horses (1989-1990)].

    PubMed

    Dieckmann, M; Deegen, E

    1991-08-01

    Twelve horses with clinical symptoms of a gastric disorder were studied by gastroscopy. Symptoms of gastric disorders were periprandial colic, bruxism, ructus and reflux. Preliminary to gastroscopy the horses were fasted for 24 h. Access to water was not restricted. The gastroscopy could be conducted easily using a fiberscope 2.5 m in length and 11 mm in outer diameter. While ulcers were present in the squamous fundus of all horses only one horse showed ulceration of the glandular fundus. Solitary ulcers near the margo plicatus were found in horses with mild clinical symptoms. In contrast, diffuse gastroesophageal ulceration was accompanied by severe clinical symptoms. Four horses were affected by an acute gastroesophageal ulceration with gastric reflux and subsequent aspiration pneumonia. Two of those horses suffered from acute gastric ulceration 3-4 days following laparatomy. All horses were treated with cimetidine (5 mg/kg bwt/q.i.d.) until clinical symptoms ceased.

  19. Environment Humidity Effect on the Weight of Carbonized Na-Al-Si Glass Fabrics Recovery after Heating

    NASA Astrophysics Data System (ADS)

    Pentjuss, E.; Lusis, A.; Gabrusenoks, J.; Bajars, G.

    2015-03-01

    Na-Al-Si glass fabrics fibres contain Na+ ions that diffuse to its surface and along with CO2 and H2O from atmosphere create here the shell of carbonate hydrates. The heating of fabric leads to weight loss by evolving these substances. In this work the results of weight recovery study at room relative humidity (20% - 50%) and elevated humidity (near 70%) of fabrics after its heating at different temperatures (70°C - 150°C) are compared. The experiments shoved the different weight recovery kinetics. The initial exponential stages up to 0.3 h - 0.5 h of the both recoveries are associated with water absorption and differ by its levels. In a case of lower environment humidity the later weight increase are restricted by its value, but at an elevated humidity has a maximum and followed weight increase. The reasons of observed differences are discussed.

  20. Effects of relaxation of gluten network on rehydration kinetics of pasta.

    PubMed

    Ogawa, Takenobu; Hasegawa, Ayako; Adachi, Shuji

    2014-01-01

    The aim of this study was to investigate the effects of the relaxation of the gluten network on pasta rehydration kinetics. The moisture content of pasta, under conditions where the effects of the diffusion of water on the moisture content were negligible, was estimated by extrapolating the average moisture content of pasta of various diameters to 0 mm. The moisture content of imaginary, infinitely thin pasta did not reach equilibrium even after 1 h of rehydration. The rehydration of pasta made of only gluten was also measured. The rate constants estimated by the Long and Richman equation for both the pasta indicated that the rehydration kinetics of infinitely thin pasta were similar to those of gluten pasta. These results suggest that the swelling of starch by fast gelatinization was restricted by the honeycomb structural network of gluten and the relaxation of the gluten network controlled pasta rehydration kinetics.

  1. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    PubMed

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Double diffusion in the frontal zones of the Yellow and East China Seas in winter

    NASA Astrophysics Data System (ADS)

    Oh, K.; Lee, S.

    2017-12-01

    Where the cold, fresh water of the Yellow Sea (YS) and the warm, salty water of the East China Sea (ECS) meet, northern and southern fronts are formed in the southeastern YS and the northwestern ECS, respectively. Strong thermohaline fronts are formed on the northern front, and a strong thermocline and a temperature reversal phenomenon are represented in this front. To understand the water structure of this thermohaline zone, we examined double diffusion in the frontal zones in February 2003 using hydrographic data. In the northern front, the warm, salty Cheju Warm Current Water (CWCW) moved northwards along the bottom layer and the cold, fresh Yellow Sea Cold Water (YSCW) flowed southward in the upper layer. As a result, strong thermohaline fronts forms in the area where the two water masses met, and the slope was developed downward across the front. In this area, a strong thermocline and temperature reversal structures were present. The cold, fresh Korean Coastal Water (KCW) was also found in the upper layer near the thermocline, and has a low-temperature, low-salinity more than surrounding water. When cold, fresh water is located over warm, salty water, heat diffuses through the interface between the two water masses, and then the diffusive-convection can be expected to occur. On the other hand, when warm, salty water overlays cold, fresh water, heat in the upper layer is preferentially transferred downward, and the salt-fingering occurs. The diffusive-convection occurs predominantly in the northern thermohaline front, where the cold, fresh YSCW is situated above the warm, salty CWCW and has the effect of strengthening stratification, so that the water column maintains a physically stable structure. In addition, this phenomenon seems to play a role in maintaining the reversal structure. The salt-fingering occurs in upper layers of the northern front where the cold, fresh YSCW is located over the most cold, fresh KCW. Near the northern thermo-halocline zone, the salt-fingering occurs simultaneously with the diffusive-convection, because three water masses, YSCW, KCW and CWCW, interact in that area. Therefore, it can be seen that the water structure of the northern frontal zone in winter is influenced mainly by the cold, fresh YSCW, the most cold, fresh KCW, and the warm, salty CWCW.

  3. Physiological and behavioral basis for the successful adaptation of goats to severe water restriction under hot environmental conditions.

    PubMed

    Kaliber, M; Koluman, N; Silanikove, N

    2016-01-01

    Among domestic ruminants, goats are renowned for their ability to tolerate water deprivation, water restriction and energy restriction. However, some basic questions regarding their ability to endure water restriction under heat stress are still open. Three levels of water restriction (56%, 73% and 87% of the ad libitum) were imposed on 20 cross-bred 3-year-old female goats (75% German Fawn and 25% Hair Goat) distributed into four groups, with five animals per treatment. The experiment was conducted from the beginning of July to the end of August in a farm located in the Eastern Mediterranean region of Turkey (40 m in altitude; 36 59' N, 35 18'E), in which subtropical weather conditions prevail. The average daily temperature during the experiment was 34.2°C, whereas the highest and lowest temperatures were 42°C and 23.1°C, respectively. The average relative humidity was 68.2% and wind speed was 1.2 km/h. Weekly average thermal heat indexes during the experiment were 78.3 (week 1), 79.1 (week 2), 80.1 (weak 3), 79.8 (weak 4), 81.3 (weak 5) and on average 79.7. Feed intake, heart rate, thermoregulatory responses (rectal temperature, respiration rate), blood plasma concentrations of ions (Na, K), antidiuretic hormone (ADH), metabolites (glucose, cholesterol, creatinine and urea) and behavioral aspects (standing, walking, lying) were studied over 30 days. The responses to water restriction were proportional to the level of restriction. The reductions in feed intake (up to 13%), BW (up to 4.6%) and the increases in rectal temperature (0.5°C) and breath rate (10 respirations/min) were moderate and also were far from responses encountered under severe heat and water stresses. The increase in plasma Na (from 119 to 140 mM) and ADH concentrations (from 12.6 to 17.4 pg/ml) indicates that the physiological response to water restriction was in response to mild dehydration, which also explains the increase in blood plasma concentrations of glucose, cholesterol, creatinine and urea. Behavioral responses (reduction in walking from 226 to 209 min/day and increase in lying from 417 to 457 min/day) were associated with conservation of energy or thermoregulation (reducing the exposure to direct radiation).

  4. Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin—Molecular Dynamics Simulations of the Ground State and the M-Intermediate

    PubMed Central

    Grudinin, Sergei; Büldt, Georg; Gordeliy, Valentin; Baumgaertner, Artur

    2005-01-01

    Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is ∼95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR. PMID:15731388

  5. Vertical profile of tritium concentration in air during a chronic atmospheric HT release.

    PubMed

    Noguchi, Hiroshi; Yokoyama, Sumi

    2003-03-01

    The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.

  6. Evaluating a novel tiered scarcity adjusted water budget and pricing structure using a holistic systems modelling approach.

    PubMed

    Sahin, Oz; Bertone, Edoardo; Beal, Cara; Stewart, Rodney A

    2018-06-01

    Population growth, coupled with declining water availability and changes in climatic conditions underline the need for sustainable and responsive water management instruments. Supply augmentation and demand management are the two main strategies used by water utilities. Water demand management has long been acknowledged as a least-cost strategy to maintain water security. This can be achieved in a variety of ways, including: i) educating consumers to limit their water use; ii) imposing restrictions/penalties; iii) using smart and/or efficient technologies; and iv) pricing mechanisms. Changing water consumption behaviours through pricing or restrictions is challenging as it introduces more social and political issues into the already complex water resources management process. This paper employs a participatory systems modelling approach for: (1) evaluating various forms of a proposed tiered scarcity adjusted water budget and pricing structure, and (2) comparing scenario outcomes against the traditional restriction policy regime. System dynamics modelling was applied since it can explicitly account for the feedbacks, interdependencies, and non-linear relations that inherently characterise the water tariff (price)-demand-revenue system. A combination of empirical water use data, billing data and customer feedback on future projected water bills facilitated the assessment of the suitability and likelihood of the adoption of scarcity-driven tariff options for a medium-sized city within Queensland, Australia. Results showed that the tiered scarcity adjusted water budget and pricing structure presented was preferable to restrictions since it could maintain water security more equitably with the lowest overall long-run marginal cost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    EPA Science Inventory

    Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  8. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  9. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  10. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  11. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  12. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  13. Clinical applications and characteristics of apparent diffusion coefficient maps for the brain of two dogs.

    PubMed

    Kim, Boeun; Yi, Kangjae; Jung, Sunyoung; Ji, Seoyeon; Choi, Mincheol; Yoon, Junghee

    2014-01-01

    Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level.

  14. Measurement of hyperpolarized gas diffusion at very short time scales

    PubMed Central

    Carl, Michael; Wilson Miller, G.; Mugler, John P.; Rohrbaugh, Scott; Tobias, William A.; Cates, Gordon D.

    2007-01-01

    We present a new pulse sequence for measuring very-short-time-scale restricted diffusion of hyperpolarized noble gases. The pulse sequence is based on concatenating a large number of bipolar diffusion-sensitizing gradients to increase the diffusion attenuation of the MR signal while maintaining a fundamentally short diffusion time. However, it differs in several respects from existing methods that use oscillating diffusion gradients for this purpose. First, a wait time is inserted between neighboring pairs of gradient pulses; second, consecutive pulse pairs may be applied along orthogonal axes; and finally, the diffusion-attenuated signal is not simply read out at the end of the gradient train but is periodically sampled during the wait times between neighboring pulse pairs. The first two features minimize systematic differences between the measured (apparent) diffusion coefficient and the actual time-dependent diffusivity, while the third feature optimizes the use of the available MR signal to improve the precision of the diffusivity measurement in the face of noise. The benefits of this technique are demonstrated using theoretical calculations, Monte-Carlo simulations of gas diffusion in simple geometries, and experimental phantom measurements in a glass sphere containing hyperpolarized 3He gas. The advantages over the conventional single-bipolar approach were found to increase with decreasing diffusion time, and thus represent a significant step toward making accurate surface-to-volume measurements in the lung airspaces. PMID:17936048

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Institute of Chemical Engineering and High Temperature Chemical Processes, GR 26500 Patras

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrixmore » and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D{sub eff}, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D{sub eff} is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D{sub eff} as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D{sub eff} (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.« less

  16. Determination of diffusion coefficients of various livestock antibiotics in water at infinite dilution

    NASA Astrophysics Data System (ADS)

    Soriano, Allan N.; Adamos, Kristoni G.; Bonifacio, Pauline B.; Adornado, Adonis P.; Bungay, Vergel C.; Vairavan, Rajendaran

    2017-11-01

    The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic's anion.

  17. Anomalous cation diffusion in salt-doped confined bilayer ice.

    PubMed

    Qiu, Hu; Xue, Minmin; Shen, Chun; Guo, Wanlin

    2018-05-17

    The diffusive dynamics of aqueous electrolyte solutions in nanoconfined spaces has attracted considerable attention due to their potential applications in desalination, biosensors and supercapacitors. Here we show by molecular dynamics simulations that lithium and sodium ions diffuse at a rate at least an order of magnitude higher than that of water molecules when the ions are trapped in an ice bilayer confined between two parallel plates. This novel picture is in sharp contrast to the prevailing view that the diffusion rate of ions is comparable to or even lower than that of water in both bulk and confined solutions. The predicted high ion mobility stems from frequent lateral hopping of ions along the coordination sites inside the hydrogen-bonding network connecting the two water layers of the ice bilayer. This anomalous diffusion should provide new insights into the physics of confined aqueous electrolytes.

  18. Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.

    PubMed

    Sheng, Yin; Zeng, Zhigang

    2018-07-01

    This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Brownian dynamics simulation of rigid particles of arbitrary shape in external fields.

    PubMed

    Fernandes, Miguel X; de la Torre, José García

    2002-12-01

    We have developed a Brownian dynamics simulation algorithm to generate Brownian trajectories of an isolated, rigid particle of arbitrary shape in the presence of electric fields or any other external agents. Starting from the generalized diffusion tensor, which can be calculated with the existing HYDRO software, the new program BROWNRIG (including a case-specific subprogram for the external agent) carries out a simulation that is analyzed later to extract the observable dynamic properties. We provide a variety of examples of utilization of this method, which serve as tests of its performance, and also illustrate its applicability. Examples include free diffusion, transport in an electric field, and diffusion in a restricting environment.

  20. Diffusion coefficients of nitric oxide in water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.

    2016-09-01

    Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.

  1. Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters

    NASA Astrophysics Data System (ADS)

    Mueller, James L.; Trees, Charles C.; Arnone, Robert A.

    1990-09-01

    The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.

  2. 33 CFR 334.1230 - Port Orchard; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Port Orchard; naval restricted... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1230 Port Orchard; naval restricted area. (a) Port Orchard; naval restricted area—(1) The area. Shoreward of a line beginning at a...

  3. 33 CFR 334.1230 - Port Orchard; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Port Orchard; naval restricted... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1230 Port Orchard; naval restricted area. (a) Port Orchard; naval restricted area—(1) The area. Shoreward of a line beginning at a...

  4. Diffusion pseudonormalization and clinical outcome in term neonates with hypoxic-ischemic encephalopathy.

    PubMed

    Hayakawa, Katsumi; Koshino, Sachiko; Tanda, Koichi; Nishimura, Akira; Sato, Osamu; Morishita, Hiroyuki; Ito, Takaaki

    2018-06-01

    Pseudonormalization of diffusion-weighted magnetic resonance imaging (MRI) can lead to underestimation of brain injury in newborns with hypoxic-ischemic encephalopathy (HIE), posing a significant problem. We have noticed that some neonates show pseudonormalization negativity on diffusion-weighted imaging. To compare pseudonormalization negativity with clinical outcomes. Seventeen term neonates with moderate or severe HIE underwent therapeutic hypothermia. They were examined by MRI twice at mean ages of 3 days and 10 days. We evaluated the presence of restricted diffusion, and also the presence or absence of pseudonormalization, by diffusion-weighted imaging at the time of the second MRI, and correlated the results with clinical outcome. DWI demonstrated no abnormality in seven neonates. Among the 10 neonates with abnormal diffusion-weighted imaging findings, 2 were positive for pseudonormalization and 8 were negative. Among neonates with normal diffusion-weighted imaging findings and with positivity for pseudonormalization, none had major disability. Among the eight neonates with pseudonormalization negativity, all but one, who was lost to follow-up, had major disability. Abnormal diffusion-weighted imaging with pseudonormalization negativity might be predictive of severe brain injury and major disability. The second-week MRI is important for the judgment of pseudonormalization.

  5. Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion

    PubMed Central

    Ning, Lipeng; Özarslan, Evren; Westin, Carl-Fredrik; Rathi, Yogesh

    2017-01-01

    Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons. PMID:27751940

  6. Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion.

    PubMed

    Ning, Lipeng; Özarslan, Evren; Westin, Carl-Fredrik; Rathi, Yogesh

    2017-02-01

    Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    USGS Publications Warehouse

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous-waste disposal. In addition, the results from the passive-diffusion samples may show that TCE concentrations are stratified across some screened intervals. The overall results of the limited test of passive-diffusion samplers at site SS-34N were similar to more detailed tests conducted at other contaminated sites across the country and indicate that further evaluation of the use of passive-diffusion samplers at McChord site SS-34N is warranted.

  8. Cytotoxic Lesions of the Corpus Callosum That Show Restricted Diffusion: Mechanisms, Causes, and Manifestations.

    PubMed

    Starkey, Jay; Kobayashi, Nobuo; Numaguchi, Yuji; Moritani, Toshio

    2017-01-01

    Cytotoxic lesions of the corpus callosum (CLOCCs) are secondary lesions associated with various entities. CLOCCs have been found in association with drug therapy, malignancy, infection, subarachnoid hemorrhage, metabolic disorders, trauma, and other entities. In all of these conditions, cell-cytokine interactions lead to markedly increased levels of cytokines and extracellular glutamate. Ultimately, this cascade can lead to dysfunction of the callosal neurons and microglia. Cytotoxic edema develops as water becomes trapped in these cells. On diffusion-weighted magnetic resonance (MR) images, CLOCCs manifest as areas of low diffusion. CLOCCs lack enhancement on contrast material-enhanced images, tend to be midline, and are relatively symmetric. The involvement of the corpus callosum typically shows one of three patterns: (a) a small round or oval lesion located in the center of the splenium, (b) a lesion centered in the splenium but extending through the callosal fibers laterally into the adjacent white matter, or (c) a lesion centered posteriorly but extending into the anterior corpus callosum. CLOCCs are frequently but not invariably reversible. Their pathologic mechanisms are discussed, the typical MR imaging findings are described, and typical cases of CLOCCs are presented. Although CLOCCs are nonspecific with regard to the underlying cause, additional imaging findings and the clinical findings can aid in making a specific diagnosis. Radiologists should be familiar with the imaging appearance of CLOCCs to avoid a misdiagnosis of ischemia. When CLOCCs are found, the underlying cause of the lesion should be sought and addressed. © RSNA, 2017 An earlier incorrect version of this article appeared online. This article was corrected on February 13, 2017.

  9. Measuring nanoparticle diffusion in an ABELtrap

    NASA Astrophysics Data System (ADS)

    Dienerowitz, M.; Dienerowitz, F.; Börsch, M.

    2018-03-01

    Monitoring the Brownian motion of individual nanoscopic objects is key to investigate their transport properties and interactions with their close environment. Most techniques rely on transient diffusion through a detection volume or immobilisation, which restrict observation times or motility. We measure the diffusion coefficient and surface charge of individual nanoparticles and DNA molecules in an anti-Brownian electrokinetic trap (ABELtrap). This instrument is an active feedback trap confining the Brownian motion of a nanoparticle to the detection site by applying an electric field based on the particle’s current position. We simulate the Brownian motion of nanospheres in our sample geometry, including wall effects, due to partial confinement in the third dimension. The theoretically predicted values are in excellent agreement with our diffusion measurements in the ABELtrap. We also demonstrate the ABELtrap’s ability to measure varying sizes of DNA origami structures during denaturation.

  10. Pitfalls of diffusion-weighted imaging of the female pelvis

    PubMed Central

    Duarte, Ana Luisa; Dias, João Lopes; Cunha, Teresa Margarida

    2018-01-01

    Diffusion-weighted imaging (DWI) is widely used in protocols for magnetic resonance imaging (MRI) of the female pelvis. It provides functional and structural information about biological tissues, without the use of ionizing radiation or intravenous administration of contrast medium. High signal intensity on DWI with simultaneous low signal intensity on apparent diffusion coefficient maps is usually associated with malignancy. However, that pattern can also be seen in many benign lesions, a fact that should be recognized by radiologists. Correlating DWI findings with those of conventional (T1- and T2-weighted) MRI sequences and those of contrast-enhanced MRI sequences is mandatory in order to avoid potential pitfalls. The aim of this review article is the description of the most relevant physiological and benign pathological conditions of the female pelvis that can show restricted diffusion on DWI. PMID:29559764

  11. Diffusion MRI with Semi-Automated Segmentation Can Serve as a Restricted Predictive Biomarker of the Therapeutic Response of Liver Metastasis

    PubMed Central

    Stephen, Renu M.; Jha, Abhinav K.; Roe, Denise J.; Trouard, Theodore P.; Galons, Jean-Philippe; Kupinski, Matthew A.; Frey, Georgette; Cui, Haiyan; Squire, Scott; Pagel, Mark D.; Rodriguez, Jeffrey J.; Gillies, Robert J.; Stopeck, Alison T.

    2015-01-01

    Purpose To assess the value of semi-automated segmentation applied to diffusion MRI for predicting the therapeutic response of liver metastasis. Methods Conventional diffusion weighted magnetic resonance imaging (MRI) was performed using b-values of 0, 150, 300 and 450 s/mm2 at baseline and days 4, 11 and 39 following initiation of a new chemotherapy regimen in a pilot study with 18 women with 37 liver metastases from primary breast cancer. A semi-automated segmentation approach was used to identify liver metastases. Linear regression analysis was used to assess the relationship between baseline values of the apparent diffusion coefficient (ADC) and change in tumor size by day 39. Results A semi-automated segmentation scheme was critical for obtaining the most reliable ADC measurements. A statistically significant relationship between baseline ADC values and change in tumor size at day 39 was observed for minimally treated patients with metastatic liver lesions measuring 2–5 cm in size (p = 0.002), but not for heavily treated patients with the same tumor size range (p = 0.29), or for tumors of smaller or larger sizes. ROC analysis identified a baseline threshold ADC value of 1.33 μm2/ms as 75% sensitive and 83% specific for identifying non-responding metastases in minimally treated patients with 2–5 cm liver lesions. Conclusion Quantitative imaging can substantially benefit from a semi-automated segmentation scheme. Quantitative diffusion MRI results can be predictive of therapeutic outcome in selected patients with liver metastases, but not for all liver metastases, and therefore should be considered to be a restricted biomarker. PMID:26284600

  12. Computational approach to integrate 3D X-ray microtomography and NMR data

    NASA Astrophysics Data System (ADS)

    Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Trevizan, Willian A.; Fortulan, Carlos A.; Bonagamba, Tito J.

    2018-07-01

    Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials.

  13. The Role of Synaptopodin in Membrane Protein Diffusion in the Dendritic Spine Neck.

    PubMed

    Wang, Lili; Dumoulin, Andréa; Renner, Marianne; Triller, Antoine; Specht, Christian G

    2016-01-01

    The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion.

  14. The Role of Synaptopodin in Membrane Protein Diffusion in the Dendritic Spine Neck

    PubMed Central

    Wang, Lili; Dumoulin, Andréa; Renner, Marianne; Triller, Antoine; Specht, Christian G.

    2016-01-01

    The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion. PMID:26840625

  15. Diffusion MRI with Semi-Automated Segmentation Can Serve as a Restricted Predictive Biomarker of the Therapeutic Response of Liver Metastasis.

    PubMed

    Stephen, Renu M; Jha, Abhinav K; Roe, Denise J; Trouard, Theodore P; Galons, Jean-Philippe; Kupinski, Matthew A; Frey, Georgette; Cui, Haiyan; Squire, Scott; Pagel, Mark D; Rodriguez, Jeffrey J; Gillies, Robert J; Stopeck, Alison T

    2015-12-01

    To assess the value of semi-automated segmentation applied to diffusion MRI for predicting the therapeutic response of liver metastasis. Conventional diffusion weighted magnetic resonance imaging (MRI) was performed using b-values of 0, 150, 300 and 450s/mm(2) at baseline and days 4, 11 and 39 following initiation of a new chemotherapy regimen in a pilot study with 18 women with 37 liver metastases from primary breast cancer. A semi-automated segmentation approach was used to identify liver metastases. Linear regression analysis was used to assess the relationship between baseline values of the apparent diffusion coefficient (ADC) and change in tumor size by day 39. A semi-automated segmentation scheme was critical for obtaining the most reliable ADC measurements. A statistically significant relationship between baseline ADC values and change in tumor size at day 39 was observed for minimally treated patients with metastatic liver lesions measuring 2-5cm in size (p=0.002), but not for heavily treated patients with the same tumor size range (p=0.29), or for tumors of smaller or larger sizes. ROC analysis identified a baseline threshold ADC value of 1.33μm(2)/ms as 75% sensitive and 83% specific for identifying non-responding metastases in minimally treated patients with 2-5cm liver lesions. Quantitative imaging can substantially benefit from a semi-automated segmentation scheme. Quantitative diffusion MRI results can be predictive of therapeutic outcome in selected patients with liver metastases, but not for all liver metastases, and therefore should be considered to be a restricted biomarker. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Thermal diffusivity of peat, sand and their mixtures at different water contents

    NASA Astrophysics Data System (ADS)

    Gvozdkova, Anna; Arkhangelskaya, Tatiana

    2014-05-01

    Thermal diffusivity of peat, sand and their mixtures at different water contents was studied using the unsteady-state method described in (Parikh et al., 1979). Volume sand content in studied samples was 0 % (pure peat), 5, 10, 15, 20, 30, 40, 50, 55 and 62 % (pure sand). Thermal diffusivity of air-dry samples varied from 0.6×10-7m2s-1 for pure peat to 7.0×10-7m2s-1 for pure sand. Adding 5 and 10 vol. % of sand didn't change the thermal diffusivity of studied mixture as compared with that of the pure air-dry peat. Adding 15 % of sand resulted in significant increase of thermal diffusivity by approximately 1.5 times: from 0.6×10-7m2s-1 to 0.9×10-7m2s-1. It means that small amounts of sand with separate sand particles distributed within the peat don't contribute much to the heat transfer through the studied media. And there is a kind of threshold between the 10 and 15 vol. % of sand, after which the continuous sandy chains are formed within the peat, which can serve as preferential paths of heat transport. Adding 20 and 30 % of sand resulted in further increase of thermal diffusivity to 1.3×10-7m2s-1 and 1.7×10-7m2s-1, which is more than two and three times greater than the initial value for pure peat. Thermal diffusivity vs. moisture content dependencies had different shapes. For sand contents of 0 to 40 vol. % the thermal diffusivity increased with water content in the whole studied range from air-dry samples to the capillary moistened ones. For pure peat the experimental curves were almost linear; the more sand was added the more pronounced became the S-shape of the curves. For sand contents of 50 % and more the curves had a pronounced maximum within the range of water contents between 0.10 and 0.25 m3m-3 and then decreased. The experimental k(θ) curves, where k is soil thermal diffusivity, θ is water content, were parameterized with a 4-parameter approximating function (Arkhangelskaya, 2009, 2014). The suggested approximation has an advantage of clear physical interpretation: the parameters are (1) the thermal diffusivity of the dry sample; (2) the difference between the highest thermal diffusivity at some optional water content and that of the dry sample; (3) the optional water content at which the thermal diffusivity reaches its maximum; (4) half-width of the peak of the k(θ) curve. The increase of sand contents in studied mixtures was accompanied by the increase of the parameters (1), (2) and (4) and the decrease of the parameter (3). References Parikh R.J., Havens J.A., Scott H.D., 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal 43, 1050-1052. Arkhangel'skaya T.A., 2009. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content. Eurasian Soil Science 42 (2), 162-172. doi: 10.1134/S1064229309020070 Arkhangelskaya T.A., 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling // Geoderma. Vol. 213. P. 608-616. doi 10.1016/j.geoderma.2013.04.001

  17. Evolution and Transport of Water in the Upper Regolith of Mars

    NASA Technical Reports Server (NTRS)

    Hudson, T. L.; Aharonson, O.; Schorghofer, N.; Hecht, M. H.; Bridges, N. T.; Green, J. R.

    2003-01-01

    Long standing theoretical predictions [1-3], as well as recent spacecraft observations [4] indicate that large quantities of ice is present in the high latitudes upper decimeters to meters of the Martian regolith. At shallower depths and warmer locations small amounts of H2O, either adsorbed or free, may be present transiently. An understanding of the evolution of water based on theoretical and experimental considerations of the processes operating at the Martian environment is required. In particular, the porosity, diffusivity, and permeability of soils and their effect on water vapor transport under Mars-like conditions have been estimated, but experimental validation of such models is lacking. Goal: Three related mechanisms may affect water transport in the upper Martian regolith. 1) diffusion along a concentration gradient under isobaric conditions, 2) diffusion along a thermal gradient, which may give rise to a concentration gradient as ice sublimes or molecules desorb from the regolith, and 3) hydraulic flow, or mass motion in response to a pressure gradient. Our combined theoretical and experimental investigation seeks to disentangle these mechanisms and determine which process(es) are dominant in the upper regolith over various timescales. A detailed one-dimensional model of the upper regolith is being created which incorporates water adsorption/ desorption, condensation, porosity, diffusivity, and permeability effects. Certain factors such as diffusivity are difficult to determine theoretically due to the wide range of intrinsic grain properties such as particle sizes, shapes, packing densities, and emergent properties such as tortuosity. An experiment is being designed which will allow us to more accurately determine diffusivity, permeability, and water desorption isotherms for regolith simulants.

  18. Position-Dependent Diffusion Tensors in Anisotropic Media from Simulation: Oxygen Transport in and through Membranes.

    PubMed

    Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard

    2017-06-13

    A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.

  19. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-1-propanol + water)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.H.; Lai, M.D.

    1995-03-01

    Solutions of amines are frequently used in gas-treating processes to remove acid gases, such as CO{sub 2} and H{sub 2}S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubility and diffusivity of N{sub 2}O in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water) were measured at 30, 35, and 40 C and at atmospheric pressure. Six (monoethanolamine + N-methyldiethanolamine + water) and five (monoethanolamine + 2-amino-2-methyl-l-propanol + water) systems were studied. The total amine mass percent in all cases was 30. The solubilities were measured by a solubilitymore » apparatus similar to that of Haimour and Sandall (1984). A wetted wall column absorber was used to obtain the diffusivity of N{sub 2}O in amines. The N{sub 2}O solubilities in amine solutions have been correlated on the basis of the excess Henry constant correlation of Wang et al. (1992). The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water).« less

  20. Key diffusion mechanisms involved in regulating bidirectional water permeation across E. coli outer membrane lectin

    PubMed Central

    Sachdeva, Shivangi; Kolimi, Narendar; Nair, Sanjana Anilkumar; Rathinavelan, Thenmalarchelvi

    2016-01-01

    Capsular polysaccharides (CPSs) are major bacterial virulent determinants that facilitate host immune evasion. E. coli group1 K30CPS is noncovalently attached to bacterial surface by Wzi, a lectin. Intriguingly, structure based phylogenetic analysis indicates that Wzi falls into porin superfamily. Molecular dynamics (MD) simulations further shed light on dual role of Wzi as it also functions as a bidirectional passive water specific porin. Such a functional role of Wzi was not realized earlier, due to the occluded pore. While five water specific entry points distributed across extracellular & periplasmic faces regulate the water diffusion involving different mechanisms, a luminal hydrophobic plug governs water permeation across the channel. Coincidently, MD observed open state structure of “YQF” triad is seen in sugar-binding site of sodium-galactose cotransporters, implicating its involvement in K30CPS surface anchorage. Importance of Loop 5 (L5) in membrane insertion is yet another highlight. Change in water diffusion pattern of periplasmic substitution mutants suggests Wzi’s role in osmoregulation by aiding in K30CPS hydration, corroborating earlier functional studies. Water molecules located inside β-barrel of Wzi crystal structure further strengthens the role of Wzi in osmoregulation. Thus, interrupting water diffusion or L5 insertion may reduce bacterial virulence. PMID:27320406

  1. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill U; Gostick, J. T.; Gunterman, H. P.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  2. Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer

    NASA Astrophysics Data System (ADS)

    Maiti, Prabal K.; Bagchi, Biman

    2009-12-01

    In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (Rg) varies as N1/3, the self-diffusion constant (D ) scales, surprisingly, as N-α, with α =0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.

  3. Water in Volcanic Glass: From Volcanic Degassing to Secondary Hydration

    NASA Astrophysics Data System (ADS)

    Seligman, A. N.; Bindeman, I. N.; Palandri, J. L.; Watkins, J. M.; Ross, A. M.

    2015-12-01

    Volcanic glass contains both primary magmatic and secondary meteoric dissolved water, which can have distinguishable hydrogen isotopic ratios. We analyzed compositionally and globally diverse volcanic glass from recent to 640 ka for their δD (‰, VSMOW) and H2Ot (wt.%) on the TC/EA MAT 253 continuous flow system. We find that rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), which is opposite the trend for magmatic degassing, while a few equatorial glasses have little change in δD (‰). To better understand these results, we imaged 6 tephra clasts ranging in age and chemical composition using BSE (by FEI SEM) down to a resolution of ~1 mm. Mafic tephra have lower vesicle number densities (N/mm2 = 25-77) than silicic tephra (736) and thicker average bubble walls (0.07 mm) than silicic tephra (0.02 mm). Lengths of water diffusion were modeled by finite difference using H2Ot concentration-dependent diffusion coefficients for diffusion of water into basalt and rhyolite glass using Zhang et al. (2007) and Ni and Zhang (2008) diffusion parameterizations extrapolated to surface temperatures. Due to the 106 times slower diffusion, water only diffused ~10-5 mm into basaltic glass and ~10 mm into rhyolitic glass after 1000 years. These hydration rates match our H2Ot wt.% values for basaltic tephra, and would cause a rhyolite glass, with an average bubble wall thickness of 0.02 mm as described above, to already be fully hydrated with ~3.0-3.5 wt.% H2Ot after ~1000 years, which is similar to what we observe. Results here are our initial steps in understanding water diffusion rates at ambient temperature in basalt and rhyolite tephra, and the isotopic changes that occur during hydration, which have implications for research in physical volcanology (quantities of residual magmatic water) and paleoenvironments (low temperature hydration rates and isotopic changes of glass).

  4. Enhancement of the ionic conductivity of olivine by the water incorporation based on the Mg diffusivity

    NASA Astrophysics Data System (ADS)

    Katsura, T.; Fei, H.; Koizumi, S.; Sakamoto, N.; Yurimoto, H.

    2016-12-01

    Although the water corporation has been considered to enhance the electrical conductivity of olivine by the proton conduction, the magnitude of the proton conduction is relatively small at asthenospheric temperatures because of its smaller activation energy than those of the small polaron and ionic conductions. However, the water incorporation could enhance the ionic conduction, because it should increase the defect density in the Mg sites. Since the ionic conductivity is proportional to the diffusivity, we have measured the self-diffusion coefficients of Mg in forsterite as a function of pressure, temperature and water content. We annealed fine-grained polycrystalline aggregates of forsterite with water contents up to 300 ppm, on whose polished plane a 25Mg-enriched Mg2SiO4 thin film was made, at pressures of 1 to 13 GPa and temperatures of 1100 to 1300 K. The lattice and grain-boundary diffusion coefficients were calculated simultaneously using profiles obtained by the depth analysis of SIMS. Experimental results gave the activation energy of 280 ± 30 and 360 ± 30 kJ/mol, activation volumes of 4.3 ± 0.3 and 3.9 ± 0.7 cm3/mol, and water content exponents of 1.2 ± 0.2 and 1.0 ± 0.1 for the lattice and grain-boundary diffusions, respectively. Using the ionic conduction data by Constable [2006] and Yoshino et al. [2009], and the water and pressure effects on Mg diffusivity in this study, the ionic conduction is found by 2 orders of magnitude higher than the small polaron and proton conductions under oceanic-asthenosphere conditions. Thus, the high conductivity of the oceanic asthenosphere will be governed by the water-enhanced ionic conduction. The negative pressure dependence of the Mg diffusivity and the gradual temperature increase in the asthenosphere will produce a conductivity maximum at the top of the asthenosphere. The high-conductivity layer at the top of the asthenosphere observed under very young oceanic plates can be attributed to this ionic conduction maximum.

  5. 3D diffusion model within the collagen apatite porosity: An insight to the nanostructure of human trabecular bone

    PubMed Central

    Bini, Fabiano; Pica, Andrada; Marinozzi, Andrea; Marinozzi, Franco

    2017-01-01

    Bone tissue at nanoscale is a composite mainly made of apatite crystals, collagen molecules and water. This work is aimed to study the diffusion within bone nanostructure through Monte-Carlo simulations. To this purpose, an idealized geometric model of the apatite-collagen structure was developed. Gaussian probability distribution functions were employed to design the orientation of the apatite crystals with respect to the axes (length L, width W and thickness T) of a plate-like trabecula. We performed numerical simulations considering the influence of the mineral arrangement on the effective diffusion coefficient of water. To represent the hindrance of the impermeable apatite crystals on the water diffusion process, the effective diffusion coefficient was scaled with the tortuosity, the constrictivity and the porosity factors of the structure. The diffusion phenomenon was investigated in the three main directions of the single trabecula and the introduction of apatite preferential orientation allowed the creation of an anisotropic medium. Thus, different diffusivities values were observed along the axes of the single trabecula. We found good agreement with previous experimental results computed by means of a genetic algorithm. PMID:29220377

  6. Investigating Phase-Change-Induced Flow in Gas Diffusion Layers in Fuel Cells with X-ray Computed Tomography

    DOE PAGES

    Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui; ...

    2017-10-07

    The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less

  7. Large disparity between gallium and antimony self-diffusion in gallium antimonide.

    PubMed

    Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E

    2000-11-02

    The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.

  8. Molecular Simulations of the Diffusion of Uranyl Carbonate Species in Nanosized Mineral Fractures

    NASA Astrophysics Data System (ADS)

    Kerisit, S.; Liu, C.

    2010-12-01

    Uranium is a major groundwater contaminant at uranium processing and mining sites as a result of intentional and accidental discharges of uranium-containing waste products into subsurface environments. Recent characterization has shown that uranium preferentially associates with intragrain and intra-aggregate domains in some of the uranium-contaminated sediments collected from the US Department of Energy Hanford Site [1, 2]. In these sediments, uranium existed as precipitated and/or adsorbed phases in grain micropores with nano- to microscale sizes. Desorption and diffusion characterization studies and continuum-scale modeling indicated that ion diffusion in the microfractures is a major mechanism that led to preferential uranium concentration in the microfracture regions and will control the future mobility of uranium in the subsurface sediments [1, 3-4]. However, the diffusion properties of uranyl species in the intragrain regions, especially at the solid-liquid interface, are still poorly understood. Therefore, a general aim of this work is to provide atomic-level insights into the contribution of microscopic surface effects to the slow diffusion process of uranyl species in porous media with nano- to microsized fractures. In this presentation, we will first present molecular dynamics (MD) simulations of feldspar-water interfaces to investigate their interfacial structure and dynamics and establish a theoretical framework for subsequent simulations of water and ion diffusion at these interfaces [5]. We will then report on MD simulations carried out to probe the effects of confinement and of the presence of the mineral surface on the diffusion of water and electrolyte ions in nanosized feldspar fractures [6]. Several properties of the mineral-water interface were varied, such as the fracture width, the ionic strength of the contacting solution, and the surface charge. Our calculations reveal a 2.0-2.5 nm interfacial region within which the diffusion properties of water and that of the electrolyte ions differ significantly from those in bulk aqueous solutions. We will then present MD simulations of the diffusion of a series of alkaline-earth uranyl carbonate species in aqueous solutions [7]. The MD simulations show that the alkaline-earth uranyl carbonate complexes have distinct water exchange dynamics, which could lead to different reactivities. Finally, we will present recent results on the diffusion and adsorption of uranyl carbonate species in intragrain micropores, modeled with the feldspar-water interfaces mentioned in the above, to help interpret the diffusion behavior of uranium in contaminated sediments. [1] Liu C. et al. Geochim. Cosmochim. Acta 68 4519 (2004) [2] McKinley J. P. et al. Geochim. Cosmochim. Acta 70 1873 (2006) [3] Liu C. et al. Water Resour. Res. 42 W12420 (2006) [4] Ilton E. S. et al. Environ. Sci. Technol. 42 1565 (2009) [5] Kerisit S. et al. Geochim. Cosmochim. Acta 72 1481 (2008) [6] Kerisit S. and Liu C. Environ. Sci. Technol. 43 777 (2009) [7] Kerisit S. and Liu C. Geochim. Cosmochim. Acta 74 4937 (2010)

  9. Changes in the microarchitecture of the pancreatic cancer stroma are linked to neutrophil-dependent reprogramming of stellate cells and reflected by diffusion-weighted magnetic resonance imaging

    PubMed Central

    Mayer, Philipp; Dinkic, Christine; Jesenofsky, Ralf; Klauss, Miriam; Schirmacher, Peter; Dapunt, Ulrike; Hackert, Thilo; Uhle, Florian; Hänsch, G. Maria; Gaida, Matthias M.

    2018-01-01

    In pancreatic cancer (PDAC) intratumor infiltration of polymorphonuclear neutrophils (PMN) is associated with histologically apparent alterations of the tumor growth pattern. The aim of this study was to examine possible associations between PMN infiltration, tumor microarchitecture, and water diffusivity in diffusion-weighted magnetic resonance imaging (DW-MRI), and to further asses the underlying mechanisms. Methods: DW-MRI was performed in 33 PDAC patients prior to surgery. In parallel, tissue specimen were examined histologically for growth pattern, azurocidin-positive PMN infiltrates, and the presence of alpha-smooth muscle actin (α-SMA) and metalloproteinase 9 (MMP9)-positive myofibroblastic cells. For confirmation of the histological findings, a tissue microarray of a second cohort of patients (n=109) was prepared and examined similarly. For in vitro studies, the pancreatic stellate cell line RLT was co-cultivated either with isolated PMN, PMN-lysates, or recombinant azurocidin and characterized by Western blot, flow cytometry, and proteome profiler arrays. Results: Tumors with high PMN density showed restricted water diffusion in DW-MRI and histologic apparent alterations of the tumor microarchitecture (microglandular, micropapillary, or overall poorly differentiated growth pattern) as opposed to tumors with scattered PMN. Areas with altered growth pattern lacked α-SMA-positive myofibroblastic cells. Tissue microarrays confirmed a close association of high PMN density with alterations of the tumor microarchitecture and revealed a significant association of high PMN density with poor histologic grade of differentiation (G3). In vitro experiments provided evidence for direct effects of PMN on stellate cells, where a change to a spindle shaped cell morphology in response to PMN and to PMN-derived azurocidin was seen. Azurocidin incorporated into stellate cells, where it associated with F-actin. Down-regulation of α-SMA was seen within hours, as was activation of the p38-cofilin axis, up-regulation of MMP9, and acquisition of intracellular lipid droplets, which together indicate a phenotype switch of the stellate cells. Conclusion: In PDAC, PMN infiltrates are associated with alterations of the tumor microarchitecture. As a causal relationship, we propose a reprogramming of stellate cells by PMN-derived azurocidin towards a phenotype, which affects the microarchitecture of the tumor. PMID:29290790

  10. Terrestrial Fe-oxide Concretions and Mars Blueberries: Comparisons of Similar Advective and Diffusive Chemical Infiltration Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Chan, M. A.

    2006-12-01

    Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.

  11. Evaluation of non-Gaussian diffusion in cardiac MRI.

    PubMed

    McClymont, Darryl; Teh, Irvin; Carruth, Eric; Omens, Jeffrey; McCulloch, Andrew; Whittington, Hannah J; Kohl, Peter; Grau, Vicente; Schneider, Jürgen E

    2017-09-01

    The diffusion tensor model assumes Gaussian diffusion and is widely applied in cardiac diffusion MRI. However, diffusion in biological tissue deviates from a Gaussian profile as a result of hindrance and restriction from cell and tissue microstructure, and may be quantified better by non-Gaussian modeling. The aim of this study was to investigate non-Gaussian diffusion in healthy and hypertrophic hearts. Thirteen rat hearts (five healthy, four sham, four hypertrophic) were imaged ex vivo. Diffusion-weighted images were acquired at b-values up to 10,000 s/mm 2 . Models of diffusion were fit to the data and ranked based on the Akaike information criterion. The diffusion tensor was ranked best at b-values up to 2000 s/mm 2 but reflected the signal poorly in the high b-value regime, in which the best model was a non-Gaussian "beta distribution" model. Although there was considerable overlap in apparent diffusivities between the healthy, sham, and hypertrophic hearts, diffusion kurtosis and skewness in the hypertrophic hearts were more than 20% higher in the sheetlet and sheetlet-normal directions. Non-Gaussian diffusion models have a higher sensitivity for the detection of hypertrophy compared with the Gaussian model. In particular, diffusion kurtosis may serve as a useful biomarker for characterization of disease and remodeling in the heart. Magn Reson Med 78:1174-1186, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  12. Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.

    PubMed

    Gladich, Ivan; Oswald, Amrei; Bowens, Natalie; Naatz, Sam; Rowe, Penny; Roeselova, Martina; Neshyba, Steven

    2015-09-21

    Predictive theoretical models for mesoscopic roughening of ice require improved understanding of attachment kinetics occurring at the ice-vapor interface. Here, we use classical molecular dynamics to explore the generality and mechanics of a transition from anisotropic to isotropic self-diffusivity on exposed prismatic surfaces. We find that self-diffusion parallel to the crystallographic a-axis is favored over the c-axis at sub-melt temperatures below about -35 °C, for three different representations of the water-water intermolecular potential. In the low-temperature anisotropic regime, diffusion results from interstitial admolecules encountering entropically distinct barriers to diffusion in the two in-plane directions. At higher temperatures, isotropic self-diffusion occurring deeper within the quasi-liquid layer becomes the dominant mechanism, owing to its larger energy of activation.

  13. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    PubMed

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  14. Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future.

    PubMed

    Iima, Mami; Le Bihan, Denis

    2016-01-01

    The concept of diffusion magnetic resonance (MR) imaging emerged in the mid-1980s, together with the first images of water diffusion in the human brain, as a way to probe tissue structure at a microscopic scale, although the images were acquired at a millimetric scale. Since then, diffusion MR imaging has become a pillar of modern clinical imaging. Diffusion MR imaging has mainly been used to investigate neurologic disorders. A dramatic application of diffusion MR imaging has been acute brain ischemia, providing patients with the opportunity to receive suitable treatment at a stage when brain tissue might still be salvageable, thus avoiding terrible handicaps. On the other hand, it was found that water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the nerve fibers. This feature can be exploited to produce stunning maps of the orientation in space of the white matter tracts and brain connections in just a few minutes. Diffusion MR imaging is now also rapidly expanding in oncology, for the detection of malignant lesions and metastases, as well as monitoring. Water diffusion is usually largely decreased in malignant tissues, and body diffusion MR imaging, which does not require any tracer injection, is rapidly becoming a modality of choice to detect, characterize, or even stage malignant lesions, especially for breast or prostate cancer. After a brief summary of the key methodological concepts beyond diffusion MR imaging, this article will give a review of the clinical literature, mainly focusing on current outstanding issues, followed by some innovative proposals for future improvements. © RSNA, 2016

  15. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    PubMed Central

    Miao, Yinglong; Baudry, Jerome

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site. PMID:21943431

  16. Nuclear Quantum Effects in H+ and OH- Diffusion Along Confined Water Wires from Ab Initio Path Integral Molecular Dyanmics

    NASA Astrophysics Data System (ADS)

    Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David

    Diffusion of H+ and OH- along water wires provides an efficient mechanism for charge transport that is exploited by biological systems and shows promise in technological applications. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we consider H+ and OH- in finite water wires using density functional theory. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition of the charge. We employ thermostated ring polymer molecular dynamics and extract a ``universal'' diffusion coefficient from simulations with different wire sizes by considering Langevin dynamics on the potential of mean force of the charged species. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate O-O distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire, presumably making them more robust to environment fluctuations.

  17. Free water determines diffusion alterations and clinical status in cerebral small vessel disease.

    PubMed

    Duering, Marco; Finsterwalder, Sofia; Baykara, Ebru; Tuladhar, Anil Man; Gesierich, Benno; Konieczny, Marek J; Malik, Rainer; Franzmeier, Nicolai; Ewers, Michael; Jouvent, Eric; Biessels, Geert Jan; Schmidt, Reinhold; de Leeuw, Frank-Erik; Pasternak, Ofer; Dichgans, Martin

    2018-06-01

    Diffusion tensor imaging detects early tissue alterations in Alzheimer's disease and cerebral small vessel disease (SVD). However, the origin of diffusion alterations in SVD is largely unknown. To gain further insight, we applied free water (FW) imaging to patients with genetically defined SVD (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy [CADASIL], n = 57), sporadic SVD (n = 444), and healthy controls (n = 28). We modeled freely diffusing water in the extracellular space (FW) and measures reflecting fiber structure (tissue compartment). We tested associations between these measures and clinical status (processing speed and disability). Diffusion alterations in SVD were mostly driven by increased FW and less by tissue compartment alterations. Among imaging markers, FW showed the strongest association with clinical status (R 2 up to 34%, P < .0001). Findings were consistent across patients with CADASIL and sporadic SVD. Diffusion alterations and clinical status in SVD are largely determined by extracellular fluid increase rather than alterations of white matter fiber organization. Copyright © 2018 the Alzheimer's Association. All rights reserved.

  18. Pulmonary function test findings in patients with acute inhalation injury caused by smoke bombs

    PubMed Central

    Cao, Lu; Zhang, Xin-Gang; Wang, Jian-Guo; Wang, Han-Bin; Chen, Yi-Bing; Zhao, Da-Hui; Shi, Wen-Fang

    2016-01-01

    Background This study aimed to determine the effects of smoke bomb-induced acute inhalation injury on pulmonary function at different stages of lung injury. Methods We performed pulmonary function tests (PFTs) in 15 patients with acute inhalation injury from days 3 to 180 after smoke inhalation. We measured the trace element zinc in whole blood on days 4 and 17, and correlations of zinc levels with PFTs were performed. Results In the acute stage of lung injury (day 3), 3 of 11 patients with mild symptoms had normal pulmonary function and 8 patients with restrictive ventilatory dysfunction and reduced diffusing capacity. Some patients also had mild obstructive ventilatory dysfunction (5 patients) and a decline in small airway function (6 patients). For patients with severe symptoms, PFT results showed moderate to severe restrictive ventilatory dysfunction and reduced diffusing capacity. PaCO2 was significantly higher (P=0.047) in patients with reduced small airway function compared with those with normal small airway function. Whole blood zinc levels in the convalescence stage (day 17) were significantly lower than those in the acute stage (day 4). Zinc in the acute stage was negatively correlated with DLCO/VA on days 3, 10, and 46 (r=−0.633, −0.676, and −0.675 respectively, P<0.05). Conclusions Smoke inhalation injury mainly causes restrictive ventilatory dysfunction and reduced diffusing capacity, and causes mild obstructive ventilatory dysfunction and small airway function decline in some patients. Zinc is negatively correlated with DLCO/VA. Zinc levels may be able to predict prognosis and indicate the degree of lung injury. PMID:28066595

  19. Spectra of turbulently advected scalars that have small Schmidt number

    NASA Astrophysics Data System (ADS)

    Hill, Reginald J.

    2017-09-01

    Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.

  20. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

Top